TW200922159A - Transmission system, transmitter, receiver and transmission method - Google Patents

Transmission system, transmitter, receiver and transmission method Download PDF

Info

Publication number
TW200922159A
TW200922159A TW97134625A TW97134625A TW200922159A TW 200922159 A TW200922159 A TW 200922159A TW 97134625 A TW97134625 A TW 97134625A TW 97134625 A TW97134625 A TW 97134625A TW 200922159 A TW200922159 A TW 200922159A
Authority
TW
Taiwan
Prior art keywords
signal
transmission
receiving
transmitting
antenna
Prior art date
Application number
TW97134625A
Other languages
Chinese (zh)
Inventor
Hiroshi Furukawa
Yukinori Higa
Original Assignee
Univ Kyushu Nat Univ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kyushu Nat Univ Corp filed Critical Univ Kyushu Nat Univ Corp
Publication of TW200922159A publication Critical patent/TW200922159A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transmitters (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Transceivers (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

To provide a transmission system that solves the problems obstructing an achievement of a transmission scheme exhibiting a high efficiency and a large capacity and that achieves reduction in size and in power consumption. The transmission system (1) comprises a transmitter (3) that includes at least one transmitting part (9) for transmitting, from a transmission antenna (15), a transport signal obtained by modulating a source signal, and a receiver (5) that includes at least one receiving part (17) for demodulating a received signal obtained via a reception antenna (19). In this transmission system (1), a nonlinear modulation part (11) of the transmitting part (9) performs a constant envelope modulation of the source signal to obtain the transport signal, while an analog processing part (21) of the receiving part (17) converts the received signal to an IF signal and then samples the IF signal to produce a real sampled signal.

Description

200922159 九、發明說明: 【發明所屬之技術領域】 本案發明是關於傳輸系統(transmission system)、發 送機(transmitter)、接收機(receiver)及傳輸方法,特別 是關於具備如下構件之傳輸系統等:至少具有一個由發送 天線(transmitting antenna)傳輸將來源信號(S0Urce signal)調變(modulate)而得的發送信號的發送手段 (transmitting means)之發送機;以及至少具有一個將經 由接收天線(receiving antenna)而得的接收信號解調 (demodulate)的接收手段(receiving means)之接收機。 【先前技術】 為了回應高速傳輸的要求,以往使用複數個天線之 MIMO(Multi-Input Multi-Output:多輸入多輸出)傳輸技 術及擅長於多路徑傳輸(multipath transmission)之 0FDM(0rthogonal Frequency Division Multiplexing:正 交分頻多工)的適用被熱烈地進行(參照非專利文獻1)。 圖1 2是進行習知的ΜI M0傳輸技術與使用0FDM的信號 的傳輸之傳輸系統3 0 1的概要方塊圖。在傳輸系統3 0 1中, 信號是由具有複數個天線309及311的發送機303藉由 ΜIM0傳輸路徑3 0 7傳輸到具有複數個天線3 1 3及3 1 5之接 收機3 0 5。 發送機3 0 3對應天線3 0 9具有線性調變部3 1 7及線性 放大器部31 9,對應天線3 1 1具有線性調變部3 2 1及線性 200922159 放大器部323。由天線3 0 9發送的信號是藉由線性調變部 3Π進行例如〇剛等的線性調變,也被進行由線性放大器 部319進行之電力轉換處理。而且,由天線3ιι發送的信 號也同樣地被進行由線性調變部321及線性放大器部323 進行之處理。 接收機305對應天線313具有多值量化^部325及線 性解調部327,對應天、線315具有多值量化A""29及線 性解調部331,具有ΜΙΜΟ解調部333。藉由天線313接收 的接收信號是藉由多值量化…部325轉換成數位信號。多 值量化AD部325通常是使用類比數位轉換器 (analog-digital C〇nverter,以下稱為[ADC])而被實現。 該ADC為對一個取樣信號(sampHng signal)轉換後的數位 信號以1 0位元(b i t)表現之多值者被使用。藉由多值量化 AD部325轉換的數位信號是藉由線性解調部32 7線性解 調。而且’藉由天線315接收的信號也藉由多值量化AD 部3 2 9及線性解調部3 3 1進行同樣的處理。μ I M0解調部3 3 3 是分離包含於藉由線性解調部3 2 7及3 3 1進行線性解調之 各信號的干擾成分。 [非專利文獻1] Ye(Geoffrey)Li,另外兩名著者, ΜIM0-0FDM for Wireless Communications : Signa1 Detection With Enhanced Channel Estimation » IEEE TRANSACTIONS ON COMMUNICATIONS , Vol_50 , No.9 , September 2002 容 内 明 發 但是,若採用像MIM0-0FDM之線性調變方式,則需要 6 200922159 線性發送放大器的適用(參照圖1 2的線性放大器部3丨9及 323)。線性發送放大器的適用最高也僅能實現20%左右的 電力轉換效率,為低功率消耗化的最大的阻礙要因。 而且,若採用像ΜI Μ 0 - 0 F D Μ信號之線性調變方式,則 在接收機側需要高精度的ADC (參照圖1 2的多值量化AD部 325及329)。ADC需要比較器(comparator)等的類比電路。 該類比電路無法受到LSI微細化的恩惠。因此,儘管為單 純的功能’仍需要大的晶片(chip)面積’會使電路規模與 功率消耗(power con sumption)都增大。特別是適用MIM〇 的情形,因各天線需要高精度的ADC的適用,故需天線條 數份的ADC。而且,為了發揮高精度ADC的性能至最大限 度,需AGC(Automatic Gain Control :自動增益控制)電路 的適用,惟該電路需包含類比電路之複雜的控制機構,更 這種課題不僅ΜΙΜΟ的情形, e-〇utput:單給入 认,、, 干饰入早輸出)的 使電路面積與功率消耗增大。 在 SIS〇(Single-Input Singl 情形也會成為問題。 因此,本案發明盆目的兔與山 . 、的為如出一種傳輪系統等,可解 決阻礙高效率且大容量的傳輸方式的達成 & ^ < 别述課題,可 實現小型化、低功率消耗化。 與申請專利範圍第i項有關的發明是一種 包含:至少具有-個由發送天線傳輸將來源』變而 的發送信號的發送手段之發送機;以及至少罝有—變而付 由接收天線而得的接收信號解調的接收手 個將經 中前述發送手段呈有將俞、fx之接收機’其 、有將…源信號定包絡線調變 7 200922159 constant envelope modulation)而得至丨J 前述 發送信 調變手段’前述接收手段具有將前述接收信 IF(Intermediate Frequency:中頻)信號之第 段,與將前述I F信號取樣並產生實際取樣信號( sampling signal)之類比數位轉換手段。 號轉 換 轉换 戍 手 ac t200922159 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a transmission system, a transmitter, a receiver, and a transmission method, and more particularly to a transmission system having the following components: a transmitter having at least one transmitting means for transmitting a transmission signal obtained by transmitting a transmission signal by a transmitting antenna; and having at least one transmitting antenna (receiving antenna) A receiver that receives demodulated receiving means of the received signal. [Prior Art] In response to the demand for high-speed transmission, MIMO (Multi-Input Multi-Output) transmission technology using a plurality of antennas and 0FDM (0rtDM) which is good at multipath transmission are widely used. The application of the orthogonal frequency division multiplexing is performed enthusiastically (see Non-Patent Document 1). Figure 12 is a schematic block diagram of a transmission system 301 for carrying out the conventional ΜI M0 transmission technique and transmission of signals using OFDM. In the transmission system 301, the signal is transmitted by the transmitter 303 having a plurality of antennas 309 and 311 via the ΜIM0 transmission path 307 to the receiver 305 having a plurality of antennas 3 1 3 and 315. The transmitter 3 0 3 corresponds to the antenna 309 and has a linear modulation unit 3 17 and a linear amplifier unit 31 9 , and the corresponding antenna 3 1 1 has a linear modulation unit 3 2 1 and a linear 200922159 amplifier unit 323. The signal transmitted from the antenna 309 is linearly modulated by the linear modulation unit 3, for example, 〇, and the like, and is also subjected to power conversion processing by the linear amplifier unit 319. Further, the signal transmitted by the antenna 3 ι is similarly processed by the linear modulation unit 321 and the linear amplifier unit 323. The receiver 305 corresponds to the antenna 313 having a multi-value quantization unit 325 and a linear demodulation unit 327, and the corresponding day and line 315 has a multi-value quantization A"" 29 and a linear demodulation unit 331 having a chirp demodulation unit 333. The received signal received by the antenna 313 is converted into a digital signal by the multi-value quantization ... section 325. The multi-valued quantization AD unit 325 is usually implemented using an analog-digital converter (hereinafter referred to as [ADC]). The ADC is used to multiply a digital signal converted by a sampHng signal by 10 bits (b i t). The digital signal converted by the AD 325 by the multi-value quantization is linearly demodulated by the linear demodulation section 32 7 . Further, the signal received by the antenna 315 is also subjected to the same processing by the multi-value quantization AD unit 319 and the linear demodulation unit 331. The μ I M0 demodulation unit 3 3 3 is an interference component for separating the signals included in the linear demodulation by the linear demodulation units 3 2 7 and 3 3 1 . [Non-Patent Document 1] Ye (Geoffrey) Li, two other authors, ΜIM0-0FDM for Wireless Communications: Signa1 Detection With Enhanced Channel Estimation » IEEE TRANSACTIONS ON COMMUNICATIONS , Vol_50 , No.9 , September 2002 If a linear modulation method like MIM0-0FDM is used, the application of the 6 200922159 linear transmission amplifier is required (refer to the linear amplifier sections 3丨9 and 323 of Fig. 12). The application of a linear transmit amplifier can only achieve a power conversion efficiency of about 20%, which is the biggest obstacle to low power consumption. Further, if a linear modulation method such as ΜI Μ 0 - 0 F D Μ is employed, a highly accurate ADC is required on the receiver side (see the multi-valued quantization AD sections 325 and 329 of Fig. 12). The ADC requires an analog circuit such as a comparator. This analog circuit cannot be favored by LSI miniaturization. Therefore, although a pure chip function requires a large chip area, both circuit scale and power consumption are increased. Especially in the case of MIM〇, since each antenna requires the application of a high-precision ADC, an ADC with several antennas is required. Moreover, in order to maximize the performance of the high-precision ADC, an AGC (Automatic Gain Control) circuit is required, but the circuit needs to include a complicated control mechanism of the analog circuit, and this problem is not only an embarrassing situation. E-〇utput: single-input, ,, dry-out early output) increases circuit area and power consumption. In the SIS〇 (Single-Input Singl situation will also become a problem. Therefore, the invention of the rabbit and the mountain in the case of the present invention, such as a transmission system, can solve the obstacles to achieve high efficiency and large capacity transmission & ^ < The problem of miniaturization and low power consumption can be achieved. The invention relating to the item i of the patent application is a transmission means including a transmission signal having at least one transmission source transmitted by a transmission antenna. The transmitter; and at least the receiver that demodulates the received signal obtained by the receiving antenna will be subjected to the aforementioned transmission means to have the receiver of the Yu, fx Envelope modulation 7 200922159 constant envelope modulation) 丨J The aforementioned transmission signal modulation means 'the aforementioned receiving means has the first segment of the received IF (Intermediate Frequency) signal, and the IF signal is sampled An analogous digital conversion method that produces an actual sampling signal. Number conversion conversion 戍 hand ac t

Ua 1 專利範圍第 碼多重信 與申請專利範圍第2項有關的發明是申請 項之傳輸系統,其中前述來源信號是藉由分Ua 1 Patent Scope Code Multiplex The invention relating to the second application of the patent scope is the transmission system of the application, wherein the aforementioned source signal is by

(c 〇 d e d i v i s i ο n m u 11 i p 1 e s i g n a 1)產生。 與申請專利範圍第3項有關的發明是申請專利範 項或第2項之傳輸系統,其中前述類比數位轉換手1 行以信號的振幅為基準輸出不同的值之1位 Z疋進 邶比數位轉 換處理’在信號的振幅為規定的值以上的情形與比規^ 值還小的情形下,或者在比規定的值還大的情形與規定的 值以下的情形下輸出不同的值。 、 與申請專利範圍第4項有關的發明是申請專利範圍第工 項或第2項之傳輸系統,其中前述接收手段具有:將前述實 際取樣信號轉換成複數基頻信號(c〇mplex baseband signal)之第二轉換手段;以及對前述複數基頻信號微分並 產生微分複數基頻信號之微分手段,前述接收機具有:以前 述複數基頻信號當作參照信號相關接收前述微分複數基頻 仏號 端判疋相關接收的輸出值並產生暫時判定位元之 第相關接收手^又,根據前述暫時判定位元產生調變信號 複製品(rep lica)’由該調變信號複製品產生參照信號之再 合成手段;以及藉由透過前述再合成手段產生的參照信號 200922159 相關接收前 與申請 項之傳輸系 徑(transmi —相關接收 的每一各路 與申請 項或第2項 手段,前述 手段產生的 使用相同的 送信號經由 前述各接收 段的任一個 徑進行相關 收手段輸出 成分之干擾 述微分複數基頻信號之第_ 乐一相關接收手段。 專利範圍第5項有關的益_ 統’其中前述發送作 4 • ^ “達減料的傳輸路 ssion path)是多路徑僂終 仫得輪路徑的情形,前述笛 手段及前述第二相關& & & 钱收手段疋刚述傳輪路徑 徑進行相關接收,合成相關接收後的輸出信號。 專利轭圍帛6項有關的發明是申請專利範圍第1 之傳輪系統’其中前述發送機具有複數個發送 接收機具有複數個接收手段,藉由前述各發送 發送信冑是由各發送手⑨的發$天線分別同時 載波(carrier wave)頻率而被傳輸,前述各發 傳輸路徑合成後到達各接收手段的接收天線: 手段對連結各個接收天線與前述複數個發送手 的發送天線之傳輸路徑,每一該傳輸路徑的路 接收,前述接收機具有除去包含於由前述各接 的相關接收後的輸出值之干擾(interference) 除去電路。 與申請專利範圍第7項有關的發明是一種發送機,至 少具有一個由發送天線傳輸將來源信號調變而得的發送信 號的發送手段’其中前述各發送手段具有將前述來源信號 非線性調變而得到前述發送信號之調變手段,前述發送信 號在經由傳輸路徑到達的接收機中被轉換成I F信號,j F 信號被取樣並產生有實際取樣信號。 與申請專利範圍第8項有關的發明是一種接收機,至 9 200922159 少具有一個將經由接收天線而得的接收信號解調的接收手 段,其中前述接收信號為在發送機中進行非線性調變而得 的發送信號經由傳輸路徑到達接收機者,包含:將前述接收 信號轉換成I F信號之轉換手段;以及將前述I F信號取樣 並產生實際取樣信號之類比數位轉換手段。 與申請專利範圍第9項有關的發明是一種傳輸方法, 是包含如下構件之傳輸系統中的傳輸方法:至少具有一個 由發送天線傳輸將來源化说§周變而得的發送信號的發送手 段之發送機;以及至少具有一個將經由接收天線而得的接 收信號解調的接收手段之接收機,其中包含:前述發送手段 的調變手段將前述來源信號定包絡線調變而得到前述發送 信號之步驟;前述接收手段的第一轉換手段將前述接收信 號轉換成I F信號之步驟,前述接收手段的類比數位轉換手 段將前述I F信號取樣並產生實際取樣信號之步驟;前述接 收手段的第二轉換手段將前述實際取樣信號轉換成複數基 頻信號之步驟;前述接收手段的微分手段對前述複數基頻 信號微分並產生微分複數基頻信號之步驟;以及前述接收 機的相關接收手段相關接收前述微分複數基頻信號之步 驟。 此外,定包絡線調變的一例為FM(Frequency Modulation:頻率調變)調變。 【發明的功效】 依照與本案的各申請專利範圍有關的發明,可實現利 10 200922159 用像定包絡線調變(例如FM調變等)之非線性調變的信號 的傳輸。 因此,非線性放大器的適用為可能,電力轉換效率可 達成90%以上。在線性放大器中僅能實現20%左右的電力轉 換效率。因此,可實現效率佳的信號的傳輸。 而且,如與申請專利範圍第3項有關的發明般,直接 取樣的1位元ADC的適用為可能。因可利用這種低量化 ADC,進而也無須AGC電路 例如寬頻無線接取(broadband wireless access)在哪 裡都可能此點很重要。但是寬頻越進展,一個基地台(b a s e station)可守備的通訊區域越窄,其結果必須設置龐大的 基地台。需要極大的設置成本。因此,以無線中繼各基地 台,在基地台設置時無須有線通訊線路的鋪設之蜂巢式架 構(ceHuUr· architecture)被檢討。此等被稱為無線網狀 網路(wireless fflesh network)。在這種無線網狀網路中, 連結基地台間之無線中繼線路的高效率化、大容量化很重 2為了無線中繼線路的高效率化、大容量化,採用mim〇 傳輸於該線路很有效。為了降低 △的机罢a、丄 …'綠宁繼功成之基地 口的叹置成本,需要小型且低功率 咖傳輸方式的適用。依照本案發二耗的;^為可能之 消耗的安震為可能。 冑月,-種小型且低功率 【實施方式】 參照圖面針對本案發明的實施例來說明 200922159 [實施例一] 圖1疋顯不與本案發明的實施的形態有Μ的傳輸系統1 的例之概要方塊圖。在傳輸系統1中’信號由發送機3 藉由傳輸路徑7傳輸至接收機5。 發送機3具備發送部9(對應中請專利範圍記載之[發送 手段])。發送部9具有:辦來源信號進行像定包絡線調變(例 如FM調變等)的非線性調變之非線性調變部11;進行電力 轉換處理並產生發送信號之放大器部13 ;以及發送天線 15。因非線性調變部11進行像FM調變之非線性調變’故 放^器。P 13可使用可達成電力轉換效率以上之飽和放 大器而實現。發送信號是由發送天線1 5傳輸。來源信號藉 由分碼多重信號產生也可以。 接收機5具備接收部丨7 (對應申請專利範圍記載之[接 收手^又])與相關接收處理部1卜接收部1 7具有接收天線1 9 與類比處理部2 1與數位處理部2 3。經由接收天線1 9得到 的接收信號是藉由類比處理部2 1與數位處理部2 3與相關接 收處理部1 8解調。類比處理部21將接收信號轉換成IF信 號’將IF信號取樣並產生實際取樣信號。在本實施例中類 比處理部21是使用1位元ADC而實現(參照圖5的1位元 ADC47)。數位處理部23將實際取樣信號轉換成複數基頻作 號’對複數基頻信號微分並產生微分複數基頻 , σ 。相關 接收處理部18藉由參照信號相關接收微分複數基頻彳★號^ •傳輸路徑為多路徑傳輸路徑的情形,傳輸路徑的每— 徑進行相關接收,相關接收後的輸出信號被合成。 12 200922159 接著參照圖2〜圖4,針對圖1的發送機3具體地說明。 圖2是顯示圖1的發送機3的具體例之圖。非線性調 變部11具有:對N條來源信號b。、tn.....進行分碼 多重之 CDM(Code Devision Multiple:分碼多重)部 31 ;進 行頻帶(band)限制用的脈衝整形(pul se shaping)之脈衝 整形部33 ;以及進行FM調變處理之FM調變部35。放大器 部1 3具有包含例如發送放大器和爐波器(f i 11 e r)等之R F 部37。 首先,參照圖3針對圖2的CDM部31的動作來說明。 圖3是顯示藉由發送機3同時進行處理之符元(symbol )的 時間關係之圖。1個符元是由Ncm個片碼(ch i p )構成(以片 碼3 9表示符元k中的一個片碼),設N個符元在擴散後被 多重(multiple)。ncm(2 N)為與擴散率等價。Ci(t)為第i 個擴政碼的擴散系列,T c為片碼週期(c h i p p e r i 〇 d),了 b 為符元週期(symbol peri〇d) ONcm.Tc)。此時,對某資訊符 a k之CDM部31的輸出是表示成如(1)式。Si是表 示資訊符元。 其次,參照圖4針對圖2的脈衝整形部33的動作來說 明i圖4(a)是顯示由圖2的脈衝整形部33進行之脈衝整 一⑴的Qi(t)的頻譜(spectrum)的一例之圖,圖4(匕)是顯 下脈衝整形後# Ω。⑴的頻譜的-例之圖。藉由圖4得 知,編衝整形使頻帶被限制。 4付 t其-人’針對圖2的FM調變部35的動作來說明。FM調 ^ 35疋輸人Ω °(t),輸出藉由(2)式表示的fFM⑴。此 200922159 處’ ω。為載波頻率,kn為調變指數。 RF部37對fFM(t)進行電力轉換處理等,處理後的信 號由發送天線15發送。 [公式1 ] (1) (2) Λμ (0 = c〇s〔iyc,+ J二 Ω。⑺介) 接著,參照圖5〜圖8針對圖1的接收機5具體地說明。 圖5是顯示圖1的接收機5的具體例之圖。類比處理 部21具有:包含LNA(Low Noise Amplifier:低雜訊放大器) 和濾波器等之RF部4 1 ;進行頻率選擇產生I F信號之MI X 部 43;帶通濾波器(band pass filter)(BPF)45;以及 1 位元ADC47。數位處理部23具有:數位MIX部49與低通濾 波器(low pass f i 1 ter) (LPF)51與微分電路52。相關接收 處理部18是3段的相關器(correlator)的情形的構成,具 有:延遲元件56及59、相關器庫(correlator bank)53、 55及58以及再合成器54及57。在相關接收處理部is中, 相關器庫53是以通過LPF51而被產生的基頻信號Rt^t)當 作參照信號,相關接收R。( t)通過微分電路5 2而被產生的 信號。相關器庫53的輸出是藉由再合成器54再合成。在 相關器庫55輸入有由再合成器54進行的再合成處理後的 ' 信號Rr,〇i(t)及藉由延遲元件56進行延遲處理之微分電路 ' 52的輸出信號。相關器庫55是以Rr,fll( t)當作參照信號, 相關接收由延遲元件5 6進行之延遲處理後的信號。相關器 14 成。在相關器 埋後的信號h ?虎。相關器庫 埏遲元件5 9 ϋ 200922159 庫55的輸出是藉由再合成器57再合 輸入有由再合成器57進行的再合成處 及藉由延遲π件59進行延遲處理之信 以Rm(t)當作參照信號,相關接收由 延遲處理後的信號。 針對各部的動作更具體地說明。 RF部41具有LNA、濾波器等, -^ π^ %仃藉由天線1 的#琥的放大或雜訊除去。 ΜΙΧ部43進行由藉由RF部41造一 頻率ω。頻率轉換至更低的頻率ω。《處理後的1 BPF45對藉由MIX部43頻率轉拖2 所至Μ i的作余 出頻率ω i附近的成分,提高SN比 ° ϋ亚產生IF信號。 1位兀ADC47對藉由BPF45產生沾 .-LU ^ 王的IF信號’與」 巾田比較輸出-1或i。例如若設基準振 - .nP/(r7 派^為〇 ’輸入至 的信號的振幅比〇大的話則輸出i,否則輸出一 數位Mix部49及LPF51對被進位元Ακ處王】 信號再度進行頻率轉換處理,將輸入的信號轉換成与 附近的信號,亦即基頻信號。LPF51的輸出基頻信號^ (3)式表示的信號RG(t)表示。此處’ A(t)是表示振幅 微分電路5 2對基頻信號R〇 (t )微分,產生以(4 ) 5 的信號DQ( t)。此處因使用FM調變,故如在(5)般 A (t)是藉由與時間無關的常數α大致被給予。因此, 式表示的信號( t)是如(6 )式被給予。 1位元 ADC的適用會使大的量化誤差(quanti2 庫58 〇2 ( t ) 58是 :行之 接收 號的 僅抽 準振 位元 〇 的IF 率0 以由 〇 表示 振幅 乂(4) L t i on 200922159 error)產生。因此,叙沐 “ ‘、法適用於將資旬 線性調變方式的解調電路。彳 、11栽於振幅而被傳輪的 不將資訊載於振幅而胳次▲ 疋’本發明所採用之FM調變 村貝訊i載於箱 慮為若在不損及頻率杳 …罕(或相位)。因此,可考 T貝机的程戶; * 行取樣,則即使是〗私-* 人藉由充分的取樣速度進 & 1位兀ADC,資句认〜 明對將資訊能量集中於+ # 、-的復原仍可能。本案發 A tL·暴頻信號 ^ 行取樣乃是基於此。 。,還咼的頻率之IF信號進 參照圖6說明藉* Ιρ信號取樣 能此點。目6是顯示在以實際上資訊的復原為可 response)的傳輸路徑被給的脈衝響應⑽u i se(c 〇 d e d i v i s i ο n m u 11 i p 1 e s i g n a 1). The invention relating to the third aspect of the patent application is the transmission system of the patent application or the second item, wherein the analog-to-digital conversion hand 1 line outputs a different value of the 1-bit Z-input-ratio digit based on the amplitude of the signal. The conversion process 'outputs a different value when the amplitude of the signal is equal to or greater than a predetermined value and is smaller than the predetermined value, or when the value is larger than a predetermined value and is equal to or smaller than a predetermined value. The invention relating to the fourth aspect of the patent application is the transmission system of the application of the patent scope or the second item, wherein the receiving means has: converting the actual sampling signal into a complex fundamental frequency signal (c〇mplex baseband signal) a second converting means; and a differentiating means for differentiating the complex fundamental frequency signal and generating a differential complex fundamental frequency signal, wherein the receiver has: receiving the differential fundamental fundamental frequency apostrophe with the complex fundamental frequency signal as a reference signal correlation Determining the relevant received output value and generating the first relevant receiving hand of the temporary determining bit, and generating a modulated signal replica (rep lica) according to the temporary determining bit to generate a reference signal from the modulated signal replica a means for synthesizing; and a reference signal generated by the aforementioned resynthesis means 200922159 related to the transmission system of the pre-receipt and the application (transmi - each of the received and the application or the second means of the reception, the use of the foregoing means The same transmission signal is subjected to the correlation receiving means output component via any one of the aforementioned receiving segments Interfering with the first _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the case of the round path, the above-mentioned flute means and the aforementioned second correlation &&&&&&&&&&&&&&&&&&&&&&&&&&&&&& The invention is a transmission system of claim 1 wherein the transmitter has a plurality of transceivers having a plurality of receiving means, wherein each of the transmitting and transmitting signals is simultaneously transmitted by the transmitting antennas of the respective transmitting hands 9 ( The carrier wave is transmitted by the frequency, and the receiving antennas of the respective transmitting transmission paths are combined to reach the receiving antennas of the receiving means: means for connecting the transmission paths of the respective receiving antennas and the transmitting antennas of the plurality of transmitting hands, and the path receiving of each of the transmitting paths The receiver has an interference removal circuit that removes an output value included in the correlation received by the respective connections. The invention according to claim 7 is a transmitter having at least one transmission means for transmitting a transmission signal obtained by modulating a source signal by a transmission antenna, wherein each of the transmission means has a nonlinear modulation of the source signal to obtain the foregoing The modulation signal of the transmission signal, the foregoing transmission signal is converted into an IF signal in a receiver arriving via a transmission path, and the j F signal is sampled and generated with an actual sampling signal. The invention related to the eighth aspect of the patent application is a reception. The device has a receiving means for demodulating a received signal obtained via a receiving antenna, wherein the received signal is a signal transmitted to the receiver via a transmission path by a nonlinear modulation in the transmitter. And comprising: converting means for converting the received signal into an IF signal; and analog digital conversion means for sampling the IF signal and generating an actual sampled signal. The invention relating to the ninth application of the patent application is a transmission method, which is a transmission method in a transmission system including at least one transmission means for transmitting a transmission signal obtained by transmitting a transmission antenna. a transmitter; and a receiver having at least one receiving means for demodulating a received signal obtained via the receiving antenna, wherein: the modulation means of the transmitting means modulates the source signal envelope to obtain the transmitted signal a step of converting the received signal into an IF signal by the first converting means of the receiving means, a step of sampling the IF signal by the analog digital converting means of the receiving means and generating an actual sampling signal; and a second converting means of the receiving means a step of converting the actual sampled signal into a complex baseband signal; a step of differentiating the plurality of baseband signals by the different means of the receiving means and generating a differential complex baseband signal; and receiving, by the receiver, a differential complex number The step of the baseband signal. Further, an example of the fixed envelope modulation is FM (Frequency Modulation) modulation. [Effects of the Invention] According to the invention relating to the scope of the respective patent applications of the present invention, it is possible to realize the transmission of a signal which is nonlinearly modulated by a fixed envelope modulation (e.g., FM modulation, etc.). Therefore, the application of a non-linear amplifier is possible, and the power conversion efficiency can reach more than 90%. Only about 20% of the power conversion efficiency can be achieved in the linear amplifier. Therefore, efficient transmission of signals can be achieved. Moreover, as with the invention relating to the third item of the patent application, the application of a directly sampled 1-bit ADC is possible. This is important because of the availability of such low-quantity ADCs, and thus without the need for AGC circuits such as broadband wireless access. However, the more progress the broadband is, the narrower the communication area that a base station (b a s e station) can guard, and the result is that a huge base station must be set up. Great setup costs are required. Therefore, the cellular architecture (ceHuUr·architecture) in which the base stations are installed and the wired communication lines are not required to be installed in the base station is reviewed. These are called wireless fflesh networks. In such a wireless mesh network, the efficiency and capacity of the wireless trunk line connecting the base stations are very heavy. 2 In order to increase the efficiency and capacity of the wireless trunk line, it is very effective. In order to reduce the cost of the △, a... 绿 绿 继 继 继 基地 基地 基地 , , , , , , , , , , 基地 , , 基地 基地 基地 基地 基地 基地 基地 基地 基地According to the case, the second consumption is made; ^ is the possible consumption of An Zhen.胄月,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Summary block diagram. In the transmission system 1, the signal is transmitted by the transmitter 3 to the receiver 5 via the transmission path 7. The transmitter 3 is provided with a transmitting unit 9 (corresponding to the [transmission means] described in the patent range). The transmitting unit 9 includes a nonlinear modulation unit 11 that performs nonlinear modulation such as constant-mode modulation (for example, FM modulation), a source unit signal, an amplifier unit 13 that performs power conversion processing to generate a transmission signal, and a transmission unit 13; Antenna 15. The nonlinear modulation unit 11 performs a nonlinear modulation such as FM modulation. P 13 can be realized using a saturation amplifier that can achieve a power conversion efficiency or higher. The transmitted signal is transmitted by the transmitting antenna 15. The source signal can also be generated by a coded multiple signal. The receiver 5 includes a receiving unit 7 (corresponding to the [receiving hand] of the patent application scope) and a related receiving processing unit 1 receiving unit 17 having a receiving antenna 19 and an analog processing unit 2 1 and a digital processing unit 2 3 . The received signal obtained via the receiving antenna 19 is demodulated by the analog processing unit 21 and the digital processing unit 23 and the associated reception processing unit 18. The analog processing section 21 converts the received signal into an IF signal' to sample the IF signal and generate an actual sampled signal. In the present embodiment, the analog processing unit 21 is realized by using a 1-bit ADC (see the 1-bit ADC 47 of Fig. 5). The digital processing unit 23 converts the actual sampled signal into a complex fundamental frequency signal' to differentiate the complex fundamental frequency signal and produces a differential complex fundamental frequency, σ. The correlation receiving processing unit 18 receives the differential complex fundamental frequency by referring to the signal correlation. The transmission path is a multipath transmission path, and each path of the transmission path is correlatedly received, and the correlated received output signals are synthesized. 12 200922159 Next, the transmitter 3 of Fig. 1 will be specifically described with reference to Figs. 2 to 4 . FIG. 2 is a view showing a specific example of the transmitter 3 of FIG. 1. The nonlinear modulation section 11 has a pair of N source signals b. , tn.....a code-decoding multiple CDM (Code Devision Multiple) unit 31; a pulse shaping unit 33 for performing pulse shaping for band limitation; and performing FM modulation The FM modulation unit 35 of the variable processing. The amplifier unit 13 has an R F portion 37 including, for example, a transmission amplifier and a furnace waver (f i 11 e r). First, the operation of the CDM unit 31 of Fig. 2 will be described with reference to Fig. 3 . Fig. 3 is a view showing the time relationship of symbols which are simultaneously processed by the transmitter 3. One symbol is composed of Ncm chip codes (ch i p ) (one chip code in symbol k is represented by a chip code 39), and N symbols are multiplied after being diffused. Ncm (2 N) is equivalent to the diffusivity. Ci(t) is the diffusion series of the i-th spreading code, T c is the chip period (c h i p p e r i 〇 d), and b is the symbol period (symbol peri〇d) ONcm.Tc). At this time, the output of the CDM unit 31 of a certain information a k is expressed as (1). Si is an information symbol. Next, referring to FIG. 4, the operation of the pulse shaping unit 33 of FIG. 2 will be described. FIG. 4(a) shows the spectrum of the Qi(t) of the pulse (1) by the pulse shaping unit 33 of FIG. For an example, Figure 4 (匕) shows the #Ω after pulse shaping. (1) A diagram of the spectrum - an example. As can be seen from Figure 4, the buffer shaping limits the frequency band. The four payouts are described with respect to the operation of the FM modulation unit 35 of Fig. 2 . FM adjusts ^35疋 input Ω °(t), and outputs fFM(1) expressed by equation (2). This 200922159 is at ω. For the carrier frequency, kn is the modulation index. The RF unit 37 performs power conversion processing or the like on fFM(t), and the processed signal is transmitted by the transmitting antenna 15. [Formula 1] (1) (2) Λμ (0 = c〇s [iyc, + J 2 Ω. (7)] Next, the receiver 5 of Fig. 1 will be specifically described with reference to Figs. 5 to 8 . FIG. 5 is a view showing a specific example of the receiver 5 of FIG. 1. The analog processing unit 21 includes an RF unit 41 including an LNA (Low Noise Amplifier) and a filter, an MI X unit 43 that performs frequency selection to generate an IF signal, and a band pass filter ( BPF) 45; and 1-bit ADC 47. The digital processing unit 23 has a digital MIX unit 49, a low pass filter (LPF) 51, and a differentiating circuit 52. The correlation reception processing unit 18 is a configuration of a three-stage correlator, and includes delay elements 56 and 59, correlator banks 53, 55 and 58 and resynthesizers 54 and 57. In the correlation reception processing unit is, the correlator bank 53 uses the baseband signal Rt^t) generated by the LPF 51 as a reference signal, and receives the correlation R. (t) A signal generated by the differentiation circuit 52. The output of the correlator bank 53 is resynthesized by the resynthesizer 54. The correlator bank 55 receives the output signals of the 'signal Rr, 〇i(t) after the resynthesis processing by the resynthesizer 54 and the differential circuit '52 for delay processing by the delay element 56. The correlator bank 55 uses Rr, fll(t) as a reference signal, and receives the delayed signal by the delay element 56. Correlator 14 into. The signal buried in the correlator h? Correlator library later element 5 9 ϋ 200922159 The output of library 55 is recombined by resynthesizer 57 with the resynthesis by resynthesizer 57 and the delay processing by delay π 59 to Rm ( t) As a reference signal, the relevant received signal is delayed. The actions of each part are more specifically explained. The RF unit 41 has an LNA, a filter, etc., and -^ π^ % is removed by amplification or noise of the antenna 1 of the antenna 1. The crotch portion 43 performs a frequency ω by the RF unit 41. The frequency is converted to a lower frequency ω. The processed 1 BPF 45 increases the SN ratio ° to generate an IF signal by shifting the frequency of the MIX section 43 to the component near the residual frequency ω i of Μ i . The 1-bit 兀ADC47 outputs -1 or i to the IF signal of the LU.-LU^ king by the BPF 45. For example, if the amplitude of the signal input to the reference vibration - .nP/ (r7 is ^ 〇 ' is greater than 〇, the output i is output, otherwise the output of the digital portion 49 and the LPF 51 is re-transmitted to the signal of the carry Α κ The frequency conversion process converts the input signal into a nearby signal, that is, a fundamental frequency signal. The output baseband signal of the LPF 51 is represented by a signal RG(t) expressed by the equation (3). Here, 'A(t) is expressed The amplitude differentiating circuit 52 2 differentiates the fundamental frequency signal R〇(t) to generate a signal DQ(t) of (4) 5. Here, since FM modulation is used, A (t) is borrowed as in (5) The time-independent constant α is roughly given. Therefore, the signal (t) represented by the equation is given as in equation (6). The application of the 1-bit ADC causes a large quantization error (quanti2 library 58 〇 2 ( t ) 58 is: the IF rate of only the quasi-excitation bit 行 of the receiving number of the line is generated by 〇(乂)(4) L ti on 200922159 error). Therefore, the method is applicable to the linear Modulation mode demodulation circuit. 彳, 11 is planted in the amplitude and is transmitted by the wheel without transmitting the information to the amplitude ▲ 疋 'The present invention The FM modulation used by the village is contained in the box. If it does not damage the frequency, it is rare (or phase). Therefore, you can test the T-Bay machine; * Line sampling, even if it is private-* By taking a full sampling speed into the & 1 bit 兀 ADC, it is still possible to focus on the recovery of information energy on + #, -. The A tL·storm frequency signal in this case is based on sampling. This is also the IF signal of the frequency of the 进 进 参照 图 说明 说明 说明 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号 信号Se

2 ϋ a/# & 月尽下,精由採用1位元ADC 之本案發明的傳輸方式檢 .X ^ ^ ^ * L 守%路徑的脈衝響應的結果2 ϋ a/# & Month, fine results from the transmission method of the invention using the 1-bit ADC. X ^ ^ ^ * L The result of the impulse response of the % path

(a)’與檢測變更成1〇位元ADC 響應的結果(b)。 障形的該傳輸路徑之脈衝 具體上,僅藉由一個PN系;5,) Ω . (t) ( ^ a- 11 2 '、·螞 CPN(t)給予發送機的 υ 11八參舨圖2 ),同時僅由i 士绐舳—+ '、發送天線輸出,藉由接收 天線執仃在以下具體地說明的路徑檢測。 使圖5的微分電路5 2的輪 ^ .. A J执出信號通過匹配於CPN(t) 的濾波器Μ(以下稱為[匹配廣波 ^ a E為])。匹配濾波器的脈衝響 應疋由hM(t)=CpN(Tii-t)A手。丨心占 于此處,星號*是表示複數共 軛,T«是表示時間偏移量。 圖6是顯示匹配濾波器μ的於山 裔π輸出脈衝響應的一例之圖, 如前述,(a)是顯示適用1位元Anr u ^ DC的情形,(b)是顯示適用 高密度量化ADC(10位元ADc)的悴p 潰形之結果。而且,(c)是 給予的多路徑傳輸路徑的脈衝響 I應。橫軸是顯示時間的經 16 200922159 過。 如圖6的(a)所示,得知即使是適用1位元ADC的情形, 也出現對應顯示於同圖(c)的多路徑傳輸路徑之兩個尖峰 (peak)。得知圖6的(a)與顯示於同圖(b)之適用高密度量化 ADC的情形的結果之差異很少。因此,顯示了即使適用i位 元ADC也能正確地進行路徑檢測。因如圖6所示即使適用】 位元ADC,路徑分離也可能’故cPN(t)乘以資訊位元並傳 輸’合成通過匹配濾波器後出現的尖峰值,亦即若進行 RAKE(耙式)接收,則該資訊位元的檢測立即變成可能。在本 實施例中’本處理是藉由在微分電路5 2之後被進行處理的 相關器庫53、55及58進行。 [公式2 ] ⑶ ⑷ (5) ⑹(a) The result of changing the response to the 1-bit ADC response (b). The pulse of the transmission path of the barrier is specifically by a PN system; 5,) Ω . (t) ( ^ a- 11 2 ', · CPN (t) is given to the transmitter. 2), at the same time only by i 绐舳 绐舳 - + ', transmit antenna output, by the receiving antenna to perform the path detection specifically described below. The wheel ^ .. A J of the differentiating circuit 5 2 of FIG. 5 is passed through a filter 匹配 (hereinafter referred to as [matching wide wave ^ a E is]) matched to CPN(t). The impulse response of the matched filter is determined by hM(t)=CpN(Tii-t)A. The heart is occupied here, the asterisk * means the complex conjugate, and T« is the time offset. Fig. 6 is a view showing an example of the Yamashita π output impulse response of the matched filter μ, as described above, (a) showing the case where the 1-bit Anr u ^ DC is applied, and (b) showing the application of the high-density quantization ADC. (10-bit ADc) results of 悴p collapse. Moreover, (c) is the impulse response of the multipath transmission path given. The horizontal axis is the display time of 16 200922159. As shown in (a) of FIG. 6, it is found that even in the case where a 1-bit ADC is applied, two peaks corresponding to the multi-path transmission path shown in the same figure (c) appear. It is found that the difference between the results of (a) of Fig. 6 and the case of the high-density quantized ADC shown in the same figure (b) is small. Therefore, it is shown that the path detection can be performed correctly even if the i-bit ADC is applied. Since even if the bit ADC is applied as shown in Figure 6, the path separation may be such that cPN(t) is multiplied by the information bit and transmitted 'synthesized spikes that appear after passing through the matched filter, that is, if RAKE is performed. When receiving, the detection of the information bit becomes possible immediately. In the present embodiment, the present processing is performed by the correlator banks 53, 55 and 58 which are processed after the differentiating circuit 52. [Formula 2] (3) (4) (5) (6)

Ra(i) ^ A(t)eJlCm^a〇(T)dTRa(i) ^ A(t)eJlCm^a〇(T)dT

D〇^ = dtR〇^ * A\t)e3km^a〇Wdt +jA(t)kmQ〇(t)eikFM^Q〇iT)dT A(t) — (X » = 〇D〇^ = dtR〇^ * A\t)e3km^a〇Wdt +jA(t)kmQ〇(t)eikFM^Q〇iT)dT A(t) — (X » = 〇

D0 (t) = jcdmQ〇 ^eJkfMLa〇^dT 接者,參照圖7與@ 8針對相關器庫53、55及58的 動作來說丨圖7疋顯示圖5的相關器庫53、55及58的 構成的一例之圖。* M gg由— 圃在相關為庫53中,首先以由公式(3)規 定之通過微分電路俞' | > J的基頻k號R〇(t)當作參照信號Mt) 進行處理。 對信號D 〇 (t )延遲部6 j 進行乘以p〇*Cfl( t)R(1(t),積 此處,cKt)為第〇個擴 給予時間偏移T。,乘法器63 分器6 5進行積分處理。 散碼的擴散系列。參照圖8針 200922159 對Τ。、p。來說明。圖8是顯示多路徑傳輸路徑的一例之圖。 ρ 〇、p 1、p 2是分別表示時刻<2。、(2 1、α 2中的各路徑的振 幅,為複數。顯示於圖8的多路徑傳輸路徑的情形,Td、 Τ!及τ2是針對對符元週期TB,Tb>Td> α 2> α Ο α。之Td,如 T〇 = Td-(2。、Ti = Td-(2 1、T2 = Td-Q: 2 般而設定。 同樣地藉由延遲部6 7、乘法器6 9以及積分器7 1以及 延遲部73、乘法器75以及積分器77等,藉由所謂的相關 接收得到各多路徑成分,最後在加法器7 9中被同相合成, 產生輸出be〇。 藉由同樣的處理,得到b。1、…、bc ( n -1)。 再合成器54再合成be〇、bei、…、be(N-u。再合成器 54藉由(7)式產生信號Ω ^(t)。此處,det(bei)(i是由0 到N-1的數)為暫時判定位元,是對各b%、b%.....bc(N-n 判定-1或1而被決定者。其次,再合成器54藉由(8)式產 生調變信號複製品Ω r,。( t)。此處F i 1 ( ·)為與圖2的脈衝 整形部3 3等價之脈衝整形濾波器。其次,再合成器5 4藉 由(9)式產生信號RmU)。再合成器54將該信號Rr,<n(t) 輸入到相關器庫5 5。 微分電路52的輸出信號是藉由延遲元件56進行延遲 處理(Td(>Tb))並被輸入到相關器庫55。相關器庫55與相 關器庫53 —樣是以信號Rr.(n(t)當作參照信號Rr(t),對 藉由延遲元件5 6進行延遲處理的信號進行與參照圖7說明 的處理一樣的處理。 再合成器57是對相關器庫55的輸出信號與再合成器 將信號RnKt)輸入到相 200922159 54 —樣產生信號Rr,„2(t) 58 ° 延遲元件56的輸出信號艎 琥藉由延遲元件59更途 行延遲處理並被輸入到相關考庙c。上 關盎庫58。相關器庫58 器庫53及55 —樣是以信號p ,、上h 就Rr,°2(t)當作參照信號 對藉由延遲元件5 9進行延通忐u >上 疋1丁、遲處理的信號進行與參 說明的處理一樣的處理。 [公式3 ] N-l Ω" (ο=Σ det(〇c, (〇 i=0 ^〇(〇=F//(nrJ(〇)D0 (t) = jcdmQ〇^eJkfMLa〇^dT, referring to FIG. 7 and @8 for the actions of the correlator banks 53, 55 and 58, FIG. 7 shows the correlator banks 53, 55 and 58 of FIG. An example of the composition. * M gg is treated as the reference signal Mt by the base frequency k number R 〇 (t) of the differential circuit yu' | > J, which is defined by the formula (3). The signal D 〇 (t ) delay unit 6 j is multiplied by p 〇 * Cfl ( t ) R (1 (t), where, cKt) is the third spread time offset T. The multiplier 63 is divided into 65 to perform integration processing. A diffuse series of scatter codes. Refer to Figure 8 for the 200922159 confrontation. , p. To illustrate. FIG. 8 is a diagram showing an example of a multipath transmission path. ρ 〇, p 1 , and p 2 represent time < 2, respectively. (2, the amplitude of each path in α 2 is a complex number. In the case of the multipath transmission path of Fig. 8, Td, Τ! and τ2 are for the symbol period TB, Tb > Td > α 2 > α Ο α. Td, such as T 〇 = Td - (2, Ti = Td - (2 1 , T2 = Td-Q: 2 is set. Similarly by the delay unit 67, multiplier 6 9 and The integrator 71 and the delay unit 73, the multiplier 75, the integrator 77, and the like obtain respective multipath components by so-called correlation reception, and finally are combined in phase in the adder 79 to generate an output be 〇. Processing, obtaining b. 1, ..., bc (n -1). The resynthesizer 54 re-synthesizes be, bei, ..., be (Nu. The resynthesizer 54 generates a signal Ω ^(t) by the equation (7) Here, det(bei) (i is a number from 0 to N-1) is a temporary decision bit, which is determined for each b%, b%, ..., bc (Nn judges -1 or 1) Next, the resynthesizer 54 generates a modulated signal replica Ω r by (8), where t i ( ) is a pulse equivalent to the pulse shaping section 33 of FIG. 2 . The shaping filter. Next, the resynthesizer 54 generates the signal RmU by the equation (9). The synthesizer 54 inputs the signal Rr, <n(t) to the correlator bank 55. The output signal of the differential circuit 52 is delayed (Td(>Tb)) by the delay element 56 and input to the correlation. The library 55. The correlator library 55 and the correlator bank 53 perform the signal delayed processing by the delay element 56 by using the signal Rr. (n(t) as the reference signal Rr(t). The same processing is explained in Fig. 7. The resynthesizer 57 inputs the output signal of the correlator bank 55 and the resynthesizer to the signal RnKt) to the phase 200922159 54 to generate the signal Rr, „2(t) 58 ° delay element 56 The output signal is delayed by the delay element 59 and input to the relevant test c. The upper library 58. The correlator library 58 and the library 53 and 55 are like the signal p, and h is Rr, °2(t) is used as a reference signal to perform the same processing as the description of the signal by delaying the delay element 5.9 and delaying the signal. [Formula 3] Nl Ω&quot ; (ο=Σ det(〇c, (〇i=0 ^〇(〇=F//(nrJ(〇)

Rr0l(t) = eJkFM^Qr〇Cr)dT 此外,在圖5的相關接收處理部丨8中,對相 53、55及58的至少一個輸出信號配設干擾除去電 以。干擾除去電路是產生分離包含於某信號的干擾』 徑間干擾專)之彳§號。針對干擾除去電路是在之後更 說明(參照圖I 0的干擾除去電路I 6 3的說明)。在對 庫5 5或5 8的輸出彳§號配设干擾除去電路的情形下 成器54或57對由干擾除去電路進行之干擾除去處 信號進行再合成處理也可以(參照圖I 〇的再合成器 167 、 173 及 176)。 [實施例二] 接者,參照圖9及圖I 〇針對ΜI Μ 0傳輸的情形5 圖9是顯示與本案發明的其他的實施的形態有 輸系統I 21的例子之概要方塊圖。在傳輸系統I 21 關器庫 •一步進 與相關 Rr(t), •照圖7 關器庫 路也可 (分(路 具體地 相關器 ’再合 理後的 164、 .說明。 關的傳 中,信 200922159 號是由具有發送部m及131的發送機123藉由瞧傳輪 路径m傳輸到具有接收部133丨135的接收機125。 針對發送機m,發送部129及131的構 圖2說明的一樣。 …、 接广參照圖10針對圖9的接收機125具體地說明。 圖1 〇疋顯不圖9的接收機i25的具體例之圖。 部137。機125具有接收部133及135以及相關接收處理 接收部133具有接收天線141與類比處理部142與數 ^處理143 °數位處理部143具有數位Μιχ冑⑷與 LPF145與微分電路146。接收部135具有接收天線m與 類比處理部i48與數位處理部149。數位處理部149呈有 =立w部m與LPF152與微分電路153。接收部133及 5是進行與針對圖5的接收部17說明的一樣的處理。 ^實施例中相關接收處理部137是進行與圖5的相 ::收處理部:8-樣的處理。但是,再合成器164、167、 去電二:Γ是根據相關器庫的輸出信號而是根據干擾除 去電路的輪出信號進行再合成處理。 明。在以下中針對該相關接收處理部137的動作具體地說 相關=二庫上6 1是以LPF1 45的輸出信號當作參照信號, 信號為‘、刀b路146的輸出信號(參照® 7)。令該輸出 LPF152的:出二:、bWl)。而且,相關器庫162是以 '13唬當作參照信號,相關接收微分電路丨5 3 20 200922159 的輸出信號。令該輸出信號為bei。、beii、…、beuN-u。相 關器庫161及162的Ί\、p,的設定例如相關器庫161的情 形,以連結圖9的發送部1 2 9的發送天線與圖1 0的接收天 線1 4 1之傳輸路徑作為對象。而且,相關器庫1 6 2的情形, 以連結圖9的發送部1 3 1的發送天線與圖1 0的接收天線 1 4 7之傳輸路徑作為對象。 干擾除去電路163產生分離包含於藉由相關器庫161 及162產生的各信號be。。.....beHN-"的干擾成分(符元間 干擾成分、碼間干擾成分、天線間干擾成分等)之信號 B〇。、…、Bum。例如在多路徑的延遲擴展(delay spread) 限制於1符元週期内的情形下,在干擾除去電路1 6 3中僅 將碼間干擾及天線間干擾當作除去的對象的話也可以吧。1 符元週期内的多路徑成分是藉由相關器庫進行路徑分集 (p a t h d i v e r s i t y )合成。此情形設記述碼間干擾及天線間 干擾的樣子之傳輸路徑矩陣為Η,設be。。、…、bei (X-1)的向 量為y3c,設B。。、…、Bi(n-i)的向量為B,則因;Se = H./3 , 故干擾除去電路是藉由對 /3 ε 乘以滿足 B = H-1./3C = H_1.H.;8=/S的矩陣Η-1之電路而實現。 再合成器164是根據信號B。。、…、Bo(n-i)進行再合成 處理(參照(7 )式〜(9 )式),將再合成處理後的信號輸入到相 關器庫165。而且,在相關器庫165與圖5的相關器庫55 一樣,微分電路146的輸出信號藉由延遲元件166進行延 遲處理並被輸入(Td(>Tb))。而且,再合成器167也一樣, 根據信號B1。、…、B1 ( h -1)進行再合成處理,將再合成處理 200922159 後的信號輸入到相關器庫168。而且,在相 圖5的相關器庫55 -樣’微分電路146的輸 =與 遲元件166進行延遲處理並被輸入。相關器庫^輕由延 是與圖5的相關器庫55一樣進行相關接收處⑨及168 由相關器庫165& 168進行之相關接收處理 是藉由干擾除去電路170與干擾除去電 仏唬 信號被除去。由干擾除去雷踗17n 干擾 方屬路170進仃之處理後 藉由再合成器17…“進行再合成處理 仏破是 相關器庫m及175。而且,延遲元件16 :輪入到 處理後的信號也分別II由延遲元件173及17 9的延遲 理並被輸入到相關器庫1 7? 订延遲處 平1 (2及175。相關器庫n 是與圖5的相關器庫58 -樣進行相關接收處理。75 由相關器庫1 7 2及1 7 ς、杜— > 上 5進仃之相關接收處理後Me % 是藉由干擾除去電路177進行干擾除去處理。後的以 [實施例三] 接著,參照圖U針對本案發明的實 實施例來說明。在調變指數kM為,:之其他的 0-<<"(2Tc))的情形下,如(1〇)式般(中调變指數 部可大致視為常數。其結果,“為低調變數 下,(6)式是如(π)式般被大幅地簡化,d 、月形 被線性調變的C D Μ信號。 可大致視為 [公式4] eJkm^Q〇WdT = β (10) (Π) D〇{t)^afikma〇{t) 22 200922159Rr0l(t) = eJkFM^Qr〇Cr)dT Further, in the correlation receiving processing unit 8 of Fig. 5, interference removal power is applied to at least one of the outputs of the phases 53, 55 and 58. The interference removal circuit is a § § that generates interference that separates the interference contained in a certain signal. The interference removal circuit will be described later (refer to the description of the interference removal circuit I 63 in Fig. 10). In the case where the interference removal circuit is provided to the output 彳 § of the bank 5 5 or 5 8 , the generator 54 or 57 re-synthesizes the signal at the interference removal by the interference removal circuit (refer to FIG. Synthesizers 167, 173 and 176). [Embodiment 2] FIG. 9 is a schematic block diagram showing an example of the transmission system I 21 of the other embodiment of the present invention, with reference to FIG. 9 and FIG. In the transmission system I 21 off the library • a step and related Rr (t), • according to Figure 7 off the library road can also be (sub-channel specific correlator 'reasonable after the 164, . Description. Guan Chuanzhong The letter 200922159 is transmitted from the transmitter 123 having the transmitting units m and 131 to the receiver 125 having the receiving unit 133 135 via the transmission path m. The description of the configuration of the transmitting unit 129 and 131 for the transmitter m The same applies to the receiver 125 of Fig. 9. Fig. 1 is a view showing a specific example of the receiver i25 of Fig. 9. The unit 137 has a receiving unit 133 and 135. The reception processing unit 133 includes a reception antenna 141, an analog processing unit 142, and a digital processing unit 143. The digital processing unit 143 has a digit Μ χ胄 (4) and an LPF 145 and a differentiation circuit 146. The reception unit 135 has a reception antenna m and an analog processing unit i48. And the digital processing unit 149. The digital processing unit 149 has a vertical w portion m, an LPF 152, and a differentiating circuit 153. The receiving units 133 and 5 perform the same processing as that described for the receiving unit 17 of Fig. 5. The reception processing unit 137 performs the phase with FIG. 5: : Receiving processing unit: 8-type processing. However, the resynthesizers 164, 167 and the de-energizing unit 2: 再 are re-synthesized according to the output signal of the correlator bank and based on the round-out signal of the interference removing circuit. In the following, the operation of the correlation receiving processing unit 137 is specifically related to the second bank 61. The output signal of the LPF1 45 is used as a reference signal, and the signal is the output signal of the ' knife b channel 146 (refer to ® 7). Let the output LPF 152: out 2:, bWl). Moreover, the correlator bank 162 uses '13唬 as a reference signal, and the output signal of the relevant receiving differential circuit 丨5 3 20 200922159. Let the output signal be bei. , beii, ..., beuN-u. The settings of Ί\, p of the correlator banks 161 and 162, for example, in the case of the correlator bank 161, are connected to the transmitting antenna of the transmitting unit 1 29 of Fig. 9 and the receiving of Fig. 10 The transmission path of the antenna 141 is targeted. Further, in the case of the correlator bank 162, the transmission path connecting the transmission antenna of the transmission unit 133 of Fig. 9 and the reception antenna 148 of Fig. 10 is targeted. The interference removal circuit 163 generates separations that are generated by the correlator banks 161 and 162. Signals B〇, . . . , Bum of interference components (inter-symbol components, inter-symbol interference components, inter-antenna interference components, etc.) of each signal be.....beHN-", for example, in multipath When the delay spread is limited to one symbol period, it is also possible to use only the inter-symbol interference and the inter-antenna interference as the object of removal in the interference removal circuit 136. The multipath components in the 1 symbol period are synthesized by path clustering (p a t h d i v e r s i t y ) by the correlator library. In this case, the transmission path matrix in which the inter-code interference and the inter-antenna interference are described is set to Η, and be. . , ..., bei (X-1) has a vector of y3c and B. . The vector of Bi(ni) is B, then; Se = H./3, so the interference removal circuit is multiplied by /3 ε to satisfy B = H-1./3C = H_1.H.; 8=/S is implemented by the circuit of the matrix Η-1. Resynthesizer 164 is based on signal B. . Further, Bo(n-i) performs resynthesis processing (refer to equations (7) to (9)), and inputs the resynthesized signal to the correlator bank 165. Further, in the correlator bank 165, like the correlator bank 55 of Fig. 5, the output signal of the differentiating circuit 146 is delayed by the delay element 166 and input (Td (> Tb)). Moreover, the resynthesizer 167 is also the same, according to the signal B1. , ..., B1 ( h -1) perform resynthesis processing, and input the signal after the resynthesis processing 200922159 to the correlator bank 168. Further, the output of the correlator bank 55-like-differentiation circuit 146 of Fig. 5 is delayed and input to the delay element 166. The correlator library is the same as the correlator bank 55 of FIG. 5, and the related receiving stations 9 and 168 are subjected to correlation processing by the correlator bank 165 & 168 to remove the power signal by the interference removing circuit 170 and the interference. Was removed. After the processing of removing the Thunder 17n interference path 170 is performed by the interference, the resynthesis processing is performed by the resynthesis device 17... "The recombination processing is performed by the correlator banks m and 175. Moreover, the delay element 16 is rounded up to the processing. The signals are also delayed by the delay elements 173 and 17 respectively and input to the correlator bank 1 7 . The delay is flat 1 (2 and 175. The correlator bank n is sampled with the correlator bank 58 of FIG. Correlation receiving processing. 75 After the correlation processing is performed by the correlator banks 1 7 2 and 1 7 ς, Du  上 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 [3] Next, a description will be given of a practical embodiment of the present invention with reference to Fig. U. In the case where the modulation index kM is other 0-<<<" (2Tc)), In general, the mid-adjusted index portion can be roughly regarded as a constant. As a result, "for a low-key variable, the equation (6) is greatly simplified as in the (π) equation, and the d and the moon are linearly modulated by the CD Μ signal. Can be roughly regarded as [Equation 4] eJkm^Q〇WdT = β (10) (Π) D〇{t)^afikma〇{t) 22 200922159

圖11是顯示本案發明的I …低調變指數的情…;二:實施的形態之調變指 一例之圖。本實施例中的發送機的構傳;^中的接收機181的 一樣。 的構成與圖9的發送機123 187 。接收機181具有接收部183及185與相關接收處理部 首先,針對接收部183 & .^ 1Rq ^ 來說明。接收部183具有接收 天綠1 8 9與類比處理部1叫 1與數位處理部1 93。接收天線 1 89與類比處理部1 9丨是 別進仃與圖1的接收天線19及 類比處理部2 1同樣的動作。叙你老 數位處理部193具有數位MIX 部201與LPF2 0 3與微分雷玫9nc机 电路205。數位MIX部201與LPF 203Fig. 11 is a view showing the I ... low modulation index of the invention of the present invention; and 2: the modulation of the embodiment is a diagram of an example. The configuration of the transmitter in this embodiment is the same as that of the receiver 181 in the ^. The configuration is the same as the transmitter 123 187 of FIG. The receiver 181 has reception units 183 and 185 and a related reception processing unit. First, the reception unit 183 & .1 1Rq ^ will be described. The receiving unit 183 has a reception sky 1899, an analog processing unit 1 called 1 and a digital processing unit 1 93. The receiving antenna 1 89 and the analog processing unit 1 are the same operations as the receiving antenna 19 and the analog processing unit 21 of Fig. 1 . The old digital processing unit 193 has a digital MIX unit 201 and an LPF2 0 3 and a differential Raymond 9nc machine circuit 205. Digital MIX unit 201 and LPF 203

與微分電路2 0 5是分别谁/命同c ^ A J礎仃與圖5的數位MIX部49鱼 LPF51與微分電路52同槎认缸从 樣的動作。而且’接收部丨8 5也 行與接收部1 8 3同樣的動作。 相關接收處理部1 8 7 s 士 Μ Λ 具有相關益庫213及215以及干 擾除去電路217。如上述. 因在kF«為低調變指數的情形下, D〇(t)可大致視為被線性調變的CDM信號故相關器庫 是設參照信號為1 (亦即’例如圖7的乘法器63是進行乘 以P/C。⑴等),產生信號b%。、…、〜㈠)。而且,相 器庫215也與相關器庫213 一樣產生信號匕。、…、It is the same as the differential circuit 2 0 5 which is the same as the c ^ A J base and the digital MIX part 49 of the Fig. 5 and the LPF 51 and the differential circuit 52 recognize the cylinder. Further, the receiving unit 丨 8 5 also operates in the same manner as the receiving unit 186. The correlation receiving processing unit 1 8 7 s Μ Λ has associated profit pools 213 and 215 and interference removal circuit 217. As described above. In the case where kF« is a low-modulation index, D〇(t) can be roughly regarded as a linearly modulated CDM signal, so the correlator bank sets the reference signal to 1 (that is, 'for example, multiplication in Fig. 7 The unit 63 is multiplied by P/C. (1), etc., and generates a signal b%. ,...,~(a)). Moreover, the phase library 215 also generates a signal 一样 like the correlator bank 213. ,...,

干擾除去電路217是進行與圖1〇的干擾除去電路 163、170及177同樣的動作,產生由信號b%fl、…、b、N 成分、天線間干擾成分等)之信號Β〇ι 分離包含於各信號的干擾成分(符元間干擾成分、碼間干~擾 23 200922159 【圖式簡單說明] 圖1是顯示與本案發明 例之概要方塊圖。 施的形態有關的傳輪系統i 圖2是顯示圖1的發送檣, 圖3是顯示藉由圖1的:3的具體例之圖。 的時間關係之圖。 送機3同時進行處理之符元 圖4(a)是顯示由圖2的 Kt)的頻譜的—例之、:整开“"3進行之脈衝整 U〇(t)的頻譜的一例之圖。,圖4(b)是顯示脈衝整形圖5是顯示圖i的接收機: 圖6是顯示在以(c)給 的具體例之圖。 下,藉由採用1位:二::響應的傳輪略徑被給予 路徑的脈衝響應的結果。本案發明的傳輪方式檢測 的 形前的 的情形 該傳 ΛL之士也 一"入,、口 j ,路徑的脈衝響應的本案發明的傳輪方式檢測 的情形的該傳輪路後之脈二’與檢測變更成10位元 圖7是顯示圖5的相 β 的結果⑻之圖。 庫53、55、58的構成的一例 圖8是顯示多路徑傳輪 圊9是顯示蛊太 ,例之圖。 本案發明的i 系統】2 1的例子之細 的η施的形態有關的傳 <概要方塊圖。 圖疋顯示圖9 圖是顯示本索’收機125的具體例之圖。 數k”為低謂變指數的明的其他的實施的形態之調變指 一例之圖。 、月形之ΜίΜ0傳輸中的接收機181的The interference removal circuit 217 performs the same operation as the interference removal circuits 163, 170, and 177 of FIG. 1A, and generates signals including signals b%fl, ..., b, N components, inter-antenna interference components, and the like. Interference component of each signal (inter-symbol interference component, inter-symbol interference~interference 23 200922159] Brief Description of the Drawings Fig. 1 is a schematic block diagram showing an example of the present invention. Fig. 3 is a view showing a time chart of a specific example of Fig. 1: Fig. 3 is a diagram showing a time relationship of Fig. 1; Fig. 4 (a) is a display of Fig. 2 The spectrum of Kt) - for example, a picture of the spectrum of the whole U 〇 (t) pulsed by ""3. Figure 4 (b) shows the pulse shaping Figure 5 shows the diagram of Figure i Receiver: Fig. 6 is a diagram showing a specific example given by (c). The result of the impulse response given to the path by using the one-bit: two:: response is slightly transmitted. The situation before the detection of the shape of the 该L is also a " into, mouth j, the impulse response of the path In the case of the transmission mode detection of the invention, the pulse 2' and the detection are changed to 10 bits. FIG. 7 is a diagram showing the result (8) of the phase β of Fig. 5. The composition of the libraries 53, 55, 58 An example of Fig. 8 is a diagram showing an example in which the multipath transmission wheel 9 is a display unit. The i system of the present invention is an example of a thin η embodiment of the example of 2 1 . Fig. 9 is a view showing a specific example of the "receiving machine 125". The number k" is a diagram of an example of modulation of another embodiment of the low-prediction index. , the shape of the moon Μ Μ 0 transmission receiver 181

ADC 之圖 輸 24 200922159 圖1 2是進行習知的Μ I MO傳輸技術與使用OFDM的信號 的傳輸之傳輸系統3 0 1的概要方塊圖。 【主要元件符號說明】 1 :傳輸系統 3 :發送機 5 :接收機 7 ·.傳輸路徑 9 :發送部 1 1 :非線性調變部 1 3 :放大器部 1 5 :發送天線 1 7 :接收部 1 8 :相關接收處理部 1 9 :接收天線 2 1 :類比處理部 2 3 :數位處理部 31:CDM 部 3 3 :脈衝整形部 35 : FM調變部 37-.RF 部 3 9 :片碼 43:MIX 部 41:RF 部 25 200922159Diagram of ADC Input 24 200922159 Figure 12 is a schematic block diagram of a transmission system 301 for carrying out the transmission of the conventional MO I MO transmission technique and the signal using OFDM. [Description of main component symbols] 1 : Transmission system 3 : Transmitter 5 : Receiver 7 · Transmission path 9 : Transmission unit 1 1 : Nonlinear modulation unit 1 3 : Amplifier unit 1 5 : Transmitting antenna 1 7 : Receiving unit 1 8 : correlation reception processing unit 1 9 : reception antenna 2 1 : analog processing unit 2 3 : digital processing unit 31 : CDM unit 3 3 : pulse shaping unit 35 : FM modulation unit 37 - RF unit 3 9 : chip code 43: MIX Part 41: RF Part 25 200922159

4 3 : ΜI X 部 45:BPF4 3 : ΜI X Department 45: BPF

47 : 1 位元 ADC 49:數位MIX部 51:LPF 5 2 :微分電路 53、 55、58:相關器庫 54、 57:再合成器 56、59:延遲元件 61、67、73:延遲部 63、 69、 75:乘法器 71 ' 77:積分器 7 9 :加法器 1 2 1 :傳輸系統 1 2 3 :發送機 1 2 5 :接收機 127 : ΜΙΜΟ傳輸路徑 1 2 9、1 3 1 :發送部 1 3 3、1 3 5 :接收部 1 3 7 :相關接收處理部 1 4 1、1 4 7 :接收天線 142、148 :類比處理部 1 4 3、1 4 9 :數位處理部 144、151 :數位 MIX 部 26 200922159 145 ' 152-.LPF 146、153 :微分電路 161、162、165、168、172、175:相關器庫 164、167、171、174:再合成器 163、170、177:干擾除去電路 1 8 1 :接收機 183、185:接收部 1 8 7 :相關接收處理部 1 8 9、1 9 5 :接收天線 1 91、1 9 7 :類比處理部 1 9 3、1 9 9 :數位處理部47: 1-bit ADC 49: Digital MIX section 51: LPF 5 2: Differentiating circuits 53, 55, 58: correlator banks 54, 57: resynthesizers 56, 59: delay elements 61, 67, 73: delay section 63 , 69, 75: multiplier 71 ' 77: integrator 7 9 : adder 1 2 1 : transmission system 1 2 3 : transmitter 1 2 5 : receiver 127 : ΜΙΜΟ transmission path 1 2 9 , 1 3 1 : transmission Unit 1 3 3, 1 3 5 : receiving unit 1 3 7 : correlation receiving processing unit 1 4 1 , 1 4 7 : receiving antennas 142 and 148 : analog processing unit 1 4 3 , 1 4 9 : digital processing unit 144, 151 : Digital MIX section 26 200922159 145 ' 152-.LPF 146, 153 : Differentiating circuits 161, 162, 165, 168, 172, 175: correlator banks 164, 167, 171, 174: resynthesizers 163, 170, 177: Interference removal circuit 1 8 1 : Receiver 183, 185: Reception unit 1 8 7 : Correlation reception processing unit 1 8 9 , 1 9 5 : Receive antenna 1 91, 1 9 7 : Analog processing unit 1 9 3, 1 9 9 : Digital Processing Department

2 0 1、2 0 7 :數位 ΜI X 部 203 ' 209:LPF 2 0 5、2 11 :微分電路 2 1 3、2 1 5 :相關器庫 217:干擾除去電路 3 0 1 :傳輸系統 3 0 3 :發送機 3 0 5 :接收機 3 0 7 : ΜΙΜΟ傳輸路徑 309、 311、 313、 315:天線 317、321 :線性調變部 3 1 9、3 2 3 ·.線性放大器部 3 25、32 9 :多值量化AD部 27 200922159 3 2 7、3 3 1 :線性解調部 333 : ΜΙΜΟ解調部 282 0 1 , 2 0 7 : digit Μ I X part 203 ' 209: LPF 2 0 5, 2 11 : differential circuit 2 1 3, 2 1 5 : correlator bank 217: interference removal circuit 3 0 1 : transmission system 3 0 3: Transmitter 3 0 5 : Receiver 3 0 7 : ΜΙΜΟ transmission paths 309, 311, 313, 315: antennas 317, 321 : linear modulation unit 3 1 9 , 3 2 3 · linear amplifier unit 3 25, 32 9 : Multi-valued quantization AD unit 27 200922159 3 2 7 , 3 3 1 : Linear demodulation unit 333 : ΜΙΜΟ demodulation unit 28

Claims (1)

200922159 十、申請專利範圍: 1、 一種傳輸系統,包含:至少具有一個由發送天線傳 輸將來源信號調變而得的發送信號的發送手段之發送機; 以及至少具有一個將經由接收天線而得的接收信號解調的 接收手段之接收機,其中 該發送手段具有將該來源信號定包絡線調變而得到該 發送信號之調變手段, 該接收手段具有: 將該接收信號轉換成I F信號之第一轉換手段;以及 將該I F信號取樣並產生實際取樣信號之類比數位轉 換手段。 2、 如申請專利範圍第1項之傳輸系統,其中該來源信 號是藉由分碼多重信號產生。 3、 如申請專利範圍第1項或第2項之傳輸系統,其中 該類比數位轉換手段是進行以信號的振幅為基準輸出不同 的值之1位元類比數位轉換處理, 在信號的振幅為規定的值以上的情形與比規定的值還 小的情形下,或者在比規定的值還大的情形與規定的值以 下的情形下輸出不同的值。 4、 如申請專利範圍第1項或第2項之傳輸系統,其中 該接收手段具有: ' 將該實際取樣信號轉換成複數基頻信號之第二轉換手 - 段;以及 對該複數基頻信號微分並產生微分複數基頻信號之微 29 200922159 分手段1 該接收機具有: 以該複數基頻信號當作參照信號相關接收該微分複數 基頻仏號 鳊判疋相關接收的輪出值並產生暫時判定位 元之第一相關接收手段; 根據該暫時判定位元產生調變信號複製品,由該調變 信號複製品產生參照信號之再合成手段;以及 藉由透過該再合成手段產生的參照信號相關接收該微 分複數基頻信號之第二相關接收手段。 5、如申請專利範圍第4項之傳輪系統,其中該發送信 號到達接收機時的傳輸路徑是多路#傳輸路徑的情形, 該第一相關接收年_ 一 于·^又及δ亥第一相關接收手段是該傳輸 路徑的每一各路徑進杆相 進丁相關接收’合成相關接收後的輸出 信號。 項之傳輸系統,其 收機具有複數個接 中 收 6、如申請專利範圍第1項或第2 該發送機具有複數個發送手段,該接 手段, 藉由S亥各發送丰^ , 段的 段的 予·^產生的發送信號是由各發送 發达天線分別同時使用相同的載波頻率而被傳輸, 該各接收手段對連 段的任一個的發送天線 徑進行相關接收, 30 1 亥各發送信號經由傳輸路徑合成後到達各接收 接收天線, 結各個接收天線與該複數個發送手 之傳輸路徑’每一該傳輸路徑的路 200922159 °亥接收機具有除去包含於由該各接收 接收後的輪出值之干擾成分之干擾除去電 7 種發送機,至少具有一個由發送 信號調變而得的發送信號的發送手段, 其中該各發送手段具有將該來源信號 到該發送信號之調變手段, 忒發送信號在經由傳輸路徑到達的接 I F彳5號,I F信號被取樣並產生有實際取相 8、 一種接收機,至少具有一個將經由 接收信號解調的接收手段, 其中該接收信號為在發送機中進行非 發送#號經由傳輸路徑到達接收機者, 包含: 將該接收信號轉換成IF信號之轉換今 將該IF信號取樣並產生實際取樣信 換手段。 9、 一種傳輸方法,是包含如下構件之 輸方法:至少具有一個由發送天線傳輸將 得的發送信號的發送手段之發送機;以及 經由接收天線而得的接收信號解調的接收 其中包含: 該發送手段的調變手段將該來源信號 得到該發送信號之步驟; 该接收手段的第—轉換手段將該接收 .手段輸出的相關 路。 天線傳輪將來源 非線性調變而得 收機中被轉換成 Μ言號。 接收天線而得的 線性調變而得的 1段;以及 號之類比數位轉 傳輪系統中的傳 來源信號調變而 至ν具有一個將 手·^之接收機, 定包絡線調變而 :信號轉換成ί F 200922159 信號之步驟; 該接收手段的類比數位轉換手段將該I F信號取樣並 產生實際取樣信號之步驟; 該接收手段的第二轉換手段將該實際取樣信號轉換成 複數基頻信號之步驟; 該接收手段的微分手段對該複數基頻信號微分並產生 微分複數基頻信號之步驟;以及 該接收機的相關接收手段相關接收該微分複數基頻信 號之步驟。 32200922159 X. Patent application scope: 1. A transmission system comprising: a transmitter having at least one transmitting means for transmitting a transmission signal obtained by transmitting a source signal by a transmitting antenna; and having at least one transmitting body via a receiving antenna a receiver for receiving a signal demodulating receiving means, wherein the transmitting means has a modulation means for modulating the source signal envelope to obtain the transmission signal, the receiving means having: converting the received signal into an IF signal a conversion means; and an analog digital conversion means for sampling the IF signal and generating an actual sampled signal. 2. The transmission system of claim 1, wherein the source signal is generated by a code division multiple signal. 3. The transmission system of claim 1 or 2, wherein the analog-to-digital conversion means performs a 1-bit analog-to-digital conversion process that outputs different values based on the amplitude of the signal, and the amplitude of the signal is specified. When the value is equal to or greater than the predetermined value, or when the value is larger than the predetermined value and is equal to or smaller than the predetermined value, a different value is output. 4. The transmission system of claim 1 or 2, wherein the receiving means has: 'a second conversion hand-segment that converts the actual sampled signal into a complex fundamental frequency signal; and the complex baseband signal Deriving and generating a differential complex fundamental frequency signal. 29 200922159 Sub-means 1 The receiver has: receiving the differential complex fundamental frequency nickname by using the complex fundamental frequency signal as a reference signal, and determining the relevant received round-out value and generating a first correlation receiving means for temporarily determining a bit; a replica signal replica according to the temporary determining bit, a resynthesis means for generating a reference signal from the replica signal replica; and a reference generated by the resynthesis means The signal is associated with a second associated receiving means for receiving the differential complex baseband signal. 5. The transmission system of claim 4, wherein the transmission path when the transmission signal arrives at the receiver is a multi-channel transmission path, the first relevant reception year _ one in ^^ and δ hai A related receiving means is that each path of the transmission path enters the phase to receive the received signal after the synthesis-related reception. The transmission system of the item has a plurality of receiving and receiving in the receiving machine. For example, the first or second application of the patent scope has a plurality of transmitting means, and the connecting means transmits the sum of the segments by S The transmission signal generated by the segment is transmitted by using the same carrier frequency for each of the transmission developed antennas, and each of the receiving means performs correlation reception on the transmission antenna diameter of any one of the connected segments, and the transmission is performed at 30 1 The signal is synthesized via the transmission path and reaches each receiving and receiving antenna, and the transmission path of each receiving antenna and the plurality of transmitting hands is transmitted. The path of each of the transmission paths is removed from the round received by the receiving and receiving. The interference of the interference component of the value is removed, and the seven transmitters have at least one transmission means for transmitting the signal modulated by the transmission signal, wherein the transmission means has a modulation means for transmitting the source signal to the transmission signal,忒 The transmission signal is connected to the IF 彳5 via the transmission path. The IF signal is sampled and generated with the actual phase pickup 8 and a reception. The machine has at least one receiving means for demodulating via the received signal, wherein the received signal is a non-transmitted # in the transmitter, and the receiver arrives at the receiver via the transmission path, and includes: converting the received signal into an IF signal The IF signal is sampled and an actual sample conversion means is generated. 9. A transmission method comprising: a transmitter having at least one transmission means for transmitting a transmission signal to be transmitted by a transmission antenna; and a reception of demodulation of a reception signal obtained via a reception antenna, wherein: The modulation means of the transmitting means obtains the transmission signal from the source signal; and the first conversion means of the receiving means outputs the correlation path of the receiving means. The antenna transmission wheel is converted to a slogan in the receiver. The linear modulation obtained by receiving the antenna is 1 segment; and the source signal of the analog digital transmission wheel system is modulated to ν with a receiver of the hand, and the envelope is modulated: The step of converting the signal into a signal of ί F 200922159; the analog digital conversion means of the receiving means sampling the IF signal and generating an actual sampled signal; the second converting means of the receiving means converting the actual sampled signal into a complex fundamental frequency signal a step of: differentiating means of the receiving means to differentiate the complex baseband signal and generating a differential complex baseband signal; and correlating the receiving means of the receiver with the step of receiving the differential complex baseband signal. 32
TW97134625A 2007-09-27 2008-09-10 Transmission system, transmitter, receiver and transmission method TW200922159A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007250312A JP4963097B2 (en) 2007-09-27 2007-09-27 Transmission system, transmitter, receiver, and transmission method

Publications (1)

Publication Number Publication Date
TW200922159A true TW200922159A (en) 2009-05-16

Family

ID=40511180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134625A TW200922159A (en) 2007-09-27 2008-09-10 Transmission system, transmitter, receiver and transmission method

Country Status (3)

Country Link
JP (1) JP4963097B2 (en)
TW (1) TW200922159A (en)
WO (1) WO2009041293A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155569A1 (en) * 2010-06-09 2011-12-15 国立大学法人九州大学 Wireless communication system, transmitter, propagation path characteristic estimating apparatus, propagation path characteristic estimating method and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3752261B2 (en) * 1994-12-21 2006-03-08 株式会社豊田自動織機 Spread spectrum communication system and receiving apparatus thereof
JP2000261512A (en) * 1999-01-05 2000-09-22 Matsushita Electric Ind Co Ltd Receiver and phase extract circuit
WO2002032029A1 (en) * 2000-10-06 2002-04-18 Yozan Inc. Receiver
JP4108554B2 (en) * 2003-07-04 2008-06-25 松下電器産業株式会社 Digital AGC circuit
EP1545019A1 (en) * 2003-12-19 2005-06-22 Telefonaktiebolaget LM Ericsson (publ) GPS receiver using differential correlation
JP4666150B2 (en) * 2005-05-31 2011-04-06 日本電気株式会社 MIMO receiving apparatus, receiving method, and radio communication system
JP4848146B2 (en) * 2005-07-05 2011-12-28 船井電機株式会社 Apparatus for transmitting positioning signal, positioning system including the apparatus, and system for transmitting positioning signal

Also Published As

Publication number Publication date
JP4963097B2 (en) 2012-06-27
JP2009081745A (en) 2009-04-16
WO2009041293A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7173919B1 (en) Random access preamble coding for initiation of wireless mobile communications sessions
CN100542059C (en) The method and the device thereof that are used for received signal
JP5687303B2 (en) Improved random access preamble coding for wireless mobile communication session initiation
CA2109947C (en) Rake receiver with selective ray combining
EP1774670B1 (en) Use of adaptive filters in cdma wireless systems employing pilot signals
US8693521B2 (en) Method and apparatus for packet acquisition
US5353301A (en) Method and apparatus for combining multipath spread-spectrum signals
TWI272780B (en) Joint signal demodulation in a low and high data rate channel environment
JPH09504667A (en) Quadrature multiplexing of two data signals spread by different PN sequences
JPH06510415A (en) Method and apparatus for canceling spread spectrum noise
JPH10327126A (en) Cdma receiver
JPH06252889A (en) Apparatus and method for reception in sign divided multiple access system
EP0807345A1 (en) Data transmission method, transmitter, and receiver
US20030076872A1 (en) Method and apparatus for enhancing data rates in spread spectrum communication systems
JP2003508964A (en) Method and system for measuring and adjusting the quality of an orthogonal transmit diversity signal
JP3000037B2 (en) Communication method and apparatus for the communication method
CN110855593B (en) Downlink communication method of single-code cyclic shift multiple access system
JP2003503875A (en) Communication system and method for multi-carrier orthogonal coding
MXPA04010993A (en) Channel estimation for systems with transmission diversity.
TW200922159A (en) Transmission system, transmitter, receiver and transmission method
CN1185839C (en) Offset correction in spread spectrum communication system
JP3139707B2 (en) Spread spectrum communication equipment
Dahmane et al. FPGA implementation of BP-DF-MPIC detectors for DS-CDMA systems in frequency selective channels
EP1505739B1 (en) Improved random access preamble coding for initiation of wireless mobile communications sessions
JPH10308690A (en) Interference removal reception equipment