TW200922107A - Position feedback for self bearing motor - Google Patents

Position feedback for self bearing motor Download PDF

Info

Publication number
TW200922107A
TW200922107A TW97124038A TW97124038A TW200922107A TW 200922107 A TW200922107 A TW 200922107A TW 97124038 A TW97124038 A TW 97124038A TW 97124038 A TW97124038 A TW 97124038A TW 200922107 A TW200922107 A TW 200922107A
Authority
TW
Taiwan
Prior art keywords
magnetic
sensor
scale
absolute
rotor
Prior art date
Application number
TW97124038A
Other languages
Chinese (zh)
Other versions
TWI491168B (en
Inventor
Martin Hosek
Jairo Terra Moura
Jay Krishnasamy
Jeff Paranay
Original Assignee
Brooks Automation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brooks Automation Inc filed Critical Brooks Automation Inc
Publication of TW200922107A publication Critical patent/TW200922107A/en
Application granted granted Critical
Publication of TWI491168B publication Critical patent/TWI491168B/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A sensing mechanism includes a magnetic source, a magnetic flux sensor, a sensor backing no which the magnetic source and flux sensor are mounted, and a ferromagnetic target, where the magnetic source, magnetic flux sensor, and ferromagnetic target are positioned to form a magnetic circuit from the magnetic source to the target, from the target to the sensor, and returning to the magnetic source through the sensor backing.

Description

200922107 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種位置之決定,特別是提供電動機的非接 觸及非侵入位置決定方法 【先前技術】 電動機系統可能需要電抗元件,例如轉子的偏心和方向的 測值,以維持定子和電抗元件間的所需間隙,從而產生所需的 動力、及軸和徑向剛度,以利適當控制電抗元件的動作。例如, 無軸承電動機的間隙資訊通常從接近感測器獲取,這些感測器 可以檢測不同位置處的定子和轉子間的間隙。接近感測器往往 輔之以其他測量設備,例如定位解算器,可以確定轉子相對於 定子的方向。 在某些應用中,必須在可控的清潔環境中處理物料,否則 微觀污染可能會造成嚴重的問題。在這些應用中,清潔與收益 直接相關,而這反過來又會影響到成本。其他應用可能包括在 高度腐蝕性氣體和高溫惡劣瓖境下的處理步驟。接觸式軸承電 動機會磨損,產生微粒子污染,並最終會因惡劣環境而不能使 用。故障前,軸承也會不停地振動。雖然無軸承電動機可以針 對這些場合提供可行的替代方法,但是通過電纜或其他導體滲 透或侵入惡劣環境測量電抗元件的精確位置是不妥當的方 法。光學技術也有局限性,因為其需要使用「窗戶」進入惡劣 環境,這同樣可能損失包含此環境的外殼完整性。 這將有利於採用感測器系統和連接到電動機電抗元件的 標尺,如轉子,提供精確定位,和偏心測量。 200922107 也有利於使用㈣磁通密度的❹n统來準破測量 子的定位和連接或集成到電抗元件的標尺。 還有利於無需使用二種類型的感測器,就可通過 統同時測量轉子相對於定子的偏奸方^ 饋系 【發明内容】 本發明係有關一種可提供所需準確性和重複性的電動機 所用之位置感測系統。另外亦有關電動機在惡劣或清潔環境中 使用的系統,特鼓自動機_動應用程式,纟中定子和轉 可氣壓的彼此隔離。 【實施方式】 圖1A所示為適用於執行本文中揭示之實施例的電動機 10雖然根據附圖描述多種實施例,但應知其可用許多備選形 式實施該等實施例,時應知任何大小、形狀或類型合適的元 件或材料均可使用。 、電動機10包括一個電抗元件(本實施例採用轉子u形 式),二個繞組12、15及一個定子14。圖丨所示的電動機 10的只施例具有旋轉結構,儘管其他的實施例可以包括如下 述的線性結構。轉子11可以有任何合適的結構。轉子u上可 以安裝一個或多個磁源,例如,永久磁鐵、電磁鐵或其他類型 的磁源。繞組12、15可以包括一個或多個線圈,可以由電流 放大器25驅動,該放大器包括軟體、硬體或用於驅動繞組的 軟硬體組合。電流放大器25也可包括一處理器27、用來驅動 繞組的一換向功能元件元件和一個電流環功能元件元件。換向 功能70件30可以根據一組特定的功能元件為每個繞組的一個 200922107 或多個線圈提供電流;電流環功能元件35可以提供回饋和驅 動能力,以維持通過線圈的電流。處理器27、換向功能元件30 和電流環功能元件35還包括用於接收來自一個或多個感測器 或提供定位資訊的感測器系統。此處公開的每個電流放大器包 括電路、按所需任何組合的軟體、硬體,來完成公開的實施例 功能和計算。 圖1B所示為具有線性結構的又一示範性實施例。電動機 20包括一個電抗元件,本實施例採用壓板21形式,繞組22、 24和一個定子45。類似圖1的實施例,壓板21上可以安裝一 個或多個磁源,例如,永久磁鐵、電磁鐵或其他類型的磁源。 壓板21可以採用任何合適的方式構造,繞組22、24可以包 括一個或多個線圈。 電動機10、20都可使用最小的氣隙和鐵磁材料,以在氣 隙獲得最大磁通密度增益,從而產生所需的軸向和傾斜剛度。 精確測量電動機10、20的電抗元件的位置乃極有利。 圖2例示自動輸送機械200。該輸送機械至少包括一個 有上臂210的手臂、一個前臂220和至少一個末端作用器230。 可將末端作用器旋轉連接到前臂合,前臂旋轉連接到上臂。例 如,可以通過旋轉方式將上臂連接到包括上述一個或多個電動 機10、20的輸送設備的驅動部件240上。 圖3為包含本發明特徵的基板處理設備300。所示處理設 備300具有一般批次處理工具的結構。在備選實施例中,該工 具可以具有任何所需的配備,例如該工具可設計來用單步處理 基板。在其他備選實施例中,基板設備可以是任何所需的類 200922107 型,例如分類機、儲料器、測量工具等等。在設備100中處理 的基板215可以是任何合適的基板,包括但不限於液晶顯示 幕、半導體晶片,例如200mm、300mm、450mm的晶片或任 何其他所需的直徑基板、任何其他適用於基板處理設備100處 理的基板、基板坯料,或其特性類似於基板的物件,例如具有 特定尺寸或特殊材質者。 在本實施例中,裝置300 —般有前半部件105,例如,形 成一個小環境,和一個毗鄰大氣的隔離部件110,例如其被設 置可作為一個真空室。在備選實施例中,大氣隔離區可容納惰 性氣體(如N2)或任何其他隔離和/或可控氣體。 在實施例中,前半部件105 —般可配備一個或多個裝有磁 帶115的基板,類似於圖2所示的前端自動機械手臂120。前 半部件105也還可以有其他站或部件,例如前轴定位器162或 位於其中的缓衝器。部件110可以有一個或多個處理模組 125,一個類似於圖2所示的真空自動機械手臂130。處理模 組12 5可以是任何類型,例如材料沉積、#刻、烘烤、磨光、 離子注入清潔等等。 對於一個所需的參考系,如自動機械參考系,可通過控制 器170註冊記錄每個模組的位置。另外,一個或多個模組可 以處理基板195,這些基板按照所需的方向,例如利用基板上 的基準線(未示出)來設置。處理模組基板的所需取向也可以 通過控制器170註冊記錄。真空部件110還可以有一個或多個 中央室,指的是負載鎖。 圖3所示的實施例可以包含二個負載鎖,即負載鎖A135 200922107 和負載鎖B140。負載鎖A和B作為介面運轉,允許基板在前 半部105和真空部件110間傳輸而又不破壞可能存在於真空部 件110中的任何真空的完整性。基板處理器具100 —般包括一 個控制基板處理設備1〇〇運轉的控制器170。控制器17〇包括 一個處理器和一個記憶體178。除了上述提到的這些資訊,記 憶體178包括含高速運轉中的基板偏心和偏心檢測的糾正技 術的程式。記憶體178還包括處理參數,例如處理模組和設備 部件105、110的其他部件或站的溫度和/或壓力、正在處理的 基板215的時間資訊和基板的度量資訊以及利用設備和基板 的位置推算資料來確定運轉基板的偏心度的程式,如演算法 式。 在設備300中’前端自動機械手臂120,也稱為atm自 動機械,包括一個驅動部件150和一個或多個手臂155。至少 可以將一個手臂155安裝在驅動部件150上,該驅動部件包括 一個或多個類似於上圖1A和1B的電動機。至少一個手臂155 可連接到一個手腕160’該手腕又可連接到帶有一個或多個基 板215的一個或多個末端作用器165。末端作用器165可旋轉 連接到160。ATM自動機械12〇可將基板傳輪到前半部件1〇5 中的任意位置。例如’ATM自動機械12〇可以在裝備磁帶115 的基板、負載鎖A135和負载鎖B14〇之間傳輸基板。atm自 動機械12G還可以來回地在前軸定位器162之間傳輸基板。驅 動。Η牛150可接收控制器17〇發出的命令,並響應自動 機械120#直接徑向、圓肖、前視向、複合及其他的運動。 在本實施例中,真空自動機械手臂130可安裝在部件110 200922107 的中央室175處。控制器170可以圍繞開口 180、185作迴圈 運行,並協調真空自動機械手臂130的運行,以便在處理模組 125、負載鎖A135和負載鎖B140之間傳輸基板。真空自動機 械手臂130包括一個驅動部件190及一個或多個末端作用器 195。在備選實施例中,ATM.自動機械120和真空自動機械手 臂130可以是任何合適的傳輸設備類型,如SCARA式的自動 機械、絞合手臂自動機械、蛙腿式設備或雙對稱傳輸設備等。 圖4所示為可用在傳輸自動機械200的驅動部件240的無 轴承電動機400的原理圖。無軸承電動機400包括一個轉子 410和一個定子415。圖4所示為轉子/定子的組合,僅供參考。 應認識到,電動機400可包括具有合適結構的任意數目的轉 子。在圖4的示範性實施例f,定子415本質上與上述圖1的 定子14相似。同樣,定子410也與圖1的定子11相似。定子 410可用鐵磁材料製作,包括永久磁體420和鐵支撐物425。 在其他備選實施例中,永久磁體可更換為能與定子互動的 任何合適的鐵磁材料,包括其他類型的磁源,如電磁體。轉子 磁體420包括大量的轉子週邊安裝了交變極性的磁鐵。轉子週 邊可以指其内邊牆或外邊牆。在備選實施例中,磁鐵420可 以插到轉子内部。在其他備選實施例中,磁鐵420可以位於轉 子410内外的任何合適的位置。 定子415包括繞組,加電後,這些繞組可輪流地、放射狀 地和/或軸向地驅動轉子。在此示範性實施例中,定子415可 由鐵磁材料製造,但是在備選實施例中,定子可由任何合適的 材料製作。對於非磁質定子,其中可包含磁性材料以提供被動 10 200922107 磁懸浮。定子415和轉子磁體420之間的相互作用可沿箭頭 410方向產生消極力量。箭頭“ο、445方向上的磁通線435 可產生徑向力或引力。這些引力造成環境很不穩定,所以線圈 加電後’要使轉子居中和/或呈放射狀地定位定子,以便轉子/ 自轉軸的幾何中心保持在一個所需的位置。 圖4所示’轉子410與定子415之間被牆450隔開,該牆 允許轉子410在別於定子415的環境中工作,如真空《牆450 可由無磁性材料製造,這樣磁力就能穿透轉子410和定子415 間的牆。 圖5,該圖所示為基於公開的實施例的傳感機制500的原 理。圖5實施例所示為鐵磁目標’如鐵磁支援物510。鐵磁支 援物可以連接到電抗電動機元件,如轉子505。轉子505包括 一個或多個永久磁體515。轉'子被包在室525内部,以支持不 同於室外的環境,如真空、高溫或腐蝕性空氣。室525可用非 磁性材料做成。轉子505可由位於室525外的一個或多個線圈 52〇驅動。 傳感機制5〇〇包括一個讀磁頭545,感測器支援物550上 安裝有磁源530和感測器540。在此實施例中,感測器實施磁 路或由磁源530形成的通量環路徑、磁源530和磁鐵目標間 的氣隙555、本實施例中的轉子支持物510、穿過轉子支持物 510的路徑560、氣隙535至—感測器540的回路,經感測器支 持物550返回磁源530。磁通環路不斷被關閉,因此感測器540 能確定磁通密度,而影響磁通密度的因素是磁源530和轉子支 持物510間的距離。至少在一個實施例中,感測器540有一個 11 200922107 輸出,該輸出唯一將磁通密度與磁源和鐵磁體目標間的距離關 聯。磁源530包括一個或多個永久磁體、電磁鐵或任何其他合 適的磁源。感測器540包括一個或多個磁通感測器、霍耳效應 感測器、磁阻或任何其他適於檢測磁通的感測器。 圖6所示為相當於圖5感測器機構的磁路。磁源5 3 0用恒 定通量源Φγ和並聯的磁源磁阻Rm表示。磁通Φ的密度由磁 源530與轉子支持物510間的氣隙555的磁阻及轉子支持物 510和感測器540間的氣隙535的磁阻共同決定。氣隙磁阻以 2Rg符號表示、磁源磁阻以Rm表示、轉子支持物電阻以RT 表示,感測器支持物電阻以RB表示《磁源磁阻Rm、轉子支 持物磁阻RT和感測器支持物磁阻RB相對穩定。氣隙磁阻2Rg 直接取決於磁源530和轉子支援物510間的距離和轉子支持物 510和感測器540間的距離,因此氣隙磁阻可隨距離的變化與 其單獨關聯。因此,無需侵乂室525和檢測其内的設備,就可 確定距離535、555上的轉子支持物的位置。 圖5所示,可於轉子505上設定二個標尺,以確定轉子位 置是否達到所需的解析度。該等標尺必須予以定位並構成,以 使感測器540測定的磁通密度產生變化。感測器輸出會隨影響 感測器的標尺的特定部分而改變,因此提供位置指示器。例 如,第一個標尺提供帶信號内插的高解析度增量位置;第二個 標尺提供第一個增量標尺之一個週期内的轉子505的絕對位 置。 一 圖7所示為增量標尺705、符號720、725是設置於例如 室525的牆壁730的一面上的感測器系統720、725,這些系 12 200922107 統與增量標尺705相互作用。為簡單起見,特以線性標尺為 例’但應該認識到上述的增量標尺和絕對標尺也都可以包括旋 轉結構。增量標尺705包括帶有間隔均勻的齒距715的側面 710。其他均勻的格局也可以用於增量標尺,只要它們能夠指 示標尺上的增量位置即可。增量標尺7〇5由合適的材料製成, 嚴格上只能用於電動機505。,孟其他的實施例中’標尺705可 鑄成、製成或集成到電動機505。每個感測器系統720、725 分別包括感測器740、755和磁源745、765。感測器740、755 可以提供類比或數位輸出。在此實施例中,感測器系統720、 725已定位’感測器740、感測器系統的磁源745、感測器系 統720都位於增量標尺705的同一個位置上。換句話說,相應 感測器740和同一感測器系統720的磁源745之間的中心距 750可設置為一個近似于增量標尺705的整間距數715。由於 感測器路徑上的氣隙磁阻各不同,感測器系統720、725的間 距可以是與彼此相距一個增量標尺的分數值,如輸出可以是 90度的相位差。 至少有一個實施例,感測器740、755可輸出類似於正弦/ 余弦的類比信號。在一些實施例中,感測器740、755的組合 輸出包括正交計數。因此,增量位置可根據正弦波的正交計數 和特定正弦週期内的内插位置確定增量位置。實際解析度取決 於模數轉換器的比特數,轉換器可將類比輪出及輸出的雜訊電 平數位化。雖然每個感測器和磁源沿平行線定向到標尺節距, 或用於指示圖7標尺的增量位置的格局節距,但是感測器和磁 源的其他方向也應加以考慮。 13 200922107 圖8所示為另一個感測器系統示範性實施例,解釋了感測 器系統820和在室830中結構了增量標尺835的轉子82。圖 8中的磁源810和感測器系統820的感測器815沿垂線定向到 用於指示標尺上的增量位置的格局節距。因此,感測器和磁源 均面向標尺格局的同一部分。 圖9A和9B所示為不同增量位置上的示範性實施例。圖 9A實施例中,增量標尺905是與轉子910分開的,因此獨立 於轉子直徑。在一些實施例中,增量標尺905可通過轉軸或其 他設備915直接連接到轉子910 ;而在另一些實施例中,增量 標尺905可使用任何合適的間接聯結裝置或連接法直接連接 到轉子910。在圖9B中,增量標尺925被整合到轉子930的 内徑。應注意:可通過適當地調整轉子支持物的厚度和高度在 磁性方面將轉子磁體與增量標尺相分離。 如上所述,可定義轉子的二個標尺測量定位、增量標尺和 絕對定位標尺。至少有一個實施例的絕對定位標尺包括單獨定 位轉子所需的其他定位資訊。絕對位置編碼器一般無需參考任 何運動,就能提供一個唯一的位置。通常,這種編碼器可能需 要多個標尺,其中每個標尺由一個獨立的感測器系統讀取。標 尺數量可以確定絕對位置編碼器的比特數,及其相應的解析 度。在使用絕對數字位置標尺的實施例中,絕對數字位置可由 多個面對各自標尺的獨立感測器讀取。每個感測器可提供定義 數字位置的字包含的一個各自位元的狀態。圖10所示為格局 1005的一個經典示範,稱為5位格雷碼。每行格局1005包括 一個表示絕對位置的5位字,在本實施例中表示為角位置,並 14 200922107 以度為單位。S4代表每個5位字的最高位,每個字與其相鄰 字都有且僅有一位不同,.屬於典型的格雷碼順序。 使用連接到轉子的單數字標尺可獲得絕對位置。若要讀取 絕對數字位置,可以結構一組感測器,這些感測器在相對彼此 的某一特定時間間隔内面向絕對磁軌。感測器數量決定絕對位 置的位數。使用單標尺設計更有優勢,因為它能使設計瘦身。 單標尺的位元格局順序還可採用格雷碼形式,即一次只有一個 比特不同。 … 圖11所示為指示絕對位置的單標尺1105。單標尺1105 的格局類似於圖10展示的S4格局。通過將標尺1105周圍的 五個感測器 S0 1110、S1 1115、S2 1120、S3 1125、S4 1130 定位到一些特定位置,這些感測器會隨格局的旋轉生成圖10 順序,從而指示已連轉子的絕對位置。可以使用任意數量的能 提供理想位置解析度的位製作標尺,理解這點很重要。單絕對 標尺可以和增量標尺一起使用,如圖11的單絕對標尺1135和 增量標尺感測器1140。 在其他實施例中,圖11的單絕對標尺1105可單獨使用, 以同時生成絕對數字位置和此絕對數字位置解析度的内插增 量位置。如上所述,磁感測器能夠提供數位或類比輸出。在實 施例中,如果磁感測器能提供模擬輸出,則通過設置閾值確定 格局位發生變化的時間,類比輸出信號可生成絕對位置標尺的 數位輸出格局。同時,可測量變化信號的類比值,並用這些值 確定含單絕對標尺提供的額外解析度的位置。例如,可以使用 數位信號處理器測量感測器的輸出,根據已設閾值檢測感測器 15 200922107 的數字輸出,及檢測正發生一個位變化的感測器的暫態模擬輸 出。可以使用此暫態類比輸出在當前數位絕對位置和下一個位 置間生成内插位置。 圖12所示為圖10和U的感測器S2的輸出變化,其中轉 子在12和24度之間變化’如圖1〇所示。在圖12,角θ表示 内插位置,參數V表示模擬感測器輸出。由於這是採用格雷 碼的標尺,因此只有感測器S2的狀態正在變化(在本例中為 ( 從南到低)。根據輸出V確定的内插位置θ為·· ‘ 因此,圖12中的位置指示給定的轉子總絕對位置為 ®ABS =12° +Θ Θ的騎度取決於執行信號V抽樣的轉換功能的有 ,解析度,如A/D轉換器。表示絕對位置的_種總位數運算 式是感測器數量的總和加AD轉換器的位數·200922107 IX. Description of the Invention: [Technical Field] The present invention relates to a position determination, in particular to a non-contact and non-intrusive position determination method for an electric motor. [Prior Art] A motor system may require a reactive element, such as an eccentricity of a rotor. And the direction of the measurement to maintain the required clearance between the stator and the reactance element, resulting in the required power, and shaft and radial stiffness to facilitate proper control of the action of the reactance element. For example, gap information for bearingless motors is typically obtained from proximity sensors that detect gaps between the stator and rotor at different locations. Proximity sensors are often supplemented by other measuring devices, such as positioning solvers, to determine the direction of the rotor relative to the stator. In some applications, materials must be disposed of in a controlled, clean environment, otherwise microscopic contamination can cause serious problems. In these applications, cleaning is directly related to revenue, which in turn affects costs. Other applications may include processing steps in highly corrosive gases and high temperature environments. Contact bearing motor wear and tear, causing particulate contamination and eventually can not be used due to harsh environments. The bearing will also vibrate continuously before the fault. While bearingless motors can provide a viable alternative to these applications, it is not appropriate to measure the exact location of the reactive components by cable or other conductors that penetrate or invade the harsh environment. Optical technology is also limited because it requires the use of "windows" to enter harsh environments, which can also compromise the integrity of the enclosure containing the environment. This will facilitate the use of sensor systems and scales connected to the motor reactance components, such as the rotor, to provide precise positioning, and eccentricity measurements. 200922107 also facilitates the use of (iv) the magnetic flux density of the 来n system to break the positioning of the measurement and the connection or integration of the scale of the reactance component. It is also advantageous to simultaneously measure the rotor relative to the stator without using two types of sensors. SUMMARY OF THE INVENTION The present invention relates to an electric motor that provides required accuracy and repeatability. The position sensing system used. In addition, the system is used in a harsh or clean environment. The special drum motor is used to isolate the stator and the air pressure. [Embodiment] FIG. 1A shows an electric motor 10 suitable for use in carrying out the embodiments disclosed herein. Although various embodiments are described in accordance with the accompanying drawings, it should be understood that Any component or material of a suitable shape or type can be used. The motor 10 includes a reactance element (this embodiment employs a rotor u-shape), two windings 12, 15 and a stator 14. The illustrated embodiment of the motor 10 has a rotating configuration, although other embodiments may include a linear structure as described below. The rotor 11 can have any suitable structure. One or more magnetic sources can be mounted on the rotor u, such as permanent magnets, electromagnets or other types of magnetic sources. The windings 12, 15 may comprise one or more coils which may be driven by a current amplifier 25 comprising a soft body, a hardware or a combination of soft and hard for driving the windings. Current amplifier 25 may also include a processor 27, a commutating functional component for driving the windings, and a current loop functional component. The commutation function 70 member 30 can supply current to a 200922107 or multiple coils of each winding based on a particular set of functional components; the current loop functional component 35 can provide feedback and drive capability to maintain current through the coil. Processor 27, commutation function 30 and current loop function 35 also include a sensor system for receiving information from one or more sensors or providing positioning information. Each of the current amplifiers disclosed herein includes circuitry, software, hardware in any combination desired to accomplish the disclosed embodiment functions and calculations. FIG. 1B shows yet another exemplary embodiment having a linear structure. The motor 20 includes a reactive element, in the form of a pressure plate 21, windings 22, 24 and a stator 45. Similar to the embodiment of Figure 1, one or more magnetic sources, such as permanent magnets, electromagnets or other types of magnetic sources, may be mounted on the platen 21. Platen 21 can be constructed in any suitable manner and windings 22, 24 can include one or more coils. Both the electric motors 10, 20 can use the smallest air gap and ferromagnetic material to achieve maximum flux density gain in the air gap, resulting in the desired axial and tilt stiffness. It is highly advantageous to accurately measure the position of the reactance elements of the motors 10, 20. FIG. 2 illustrates an automatic transfer machine 200. The delivery mechanism includes at least one arm having an upper arm 210, a forearm 220, and at least one end effector 230. The end effector can be rotatably coupled to the forearm and the forearm can be rotatably coupled to the upper arm. For example, the upper arm can be coupled to the drive member 240 of the conveyor apparatus including one or more of the above-described motors 10, 20 by rotation. 3 is a substrate processing apparatus 300 incorporating features of the present invention. The illustrated processing device 300 has the structure of a general batch processing tool. In an alternative embodiment, the tool can have any desired equipment, such as the tool can be designed to process the substrate in a single step. In other alternative embodiments, the substrate device can be of any desired type 200922107, such as a sorter, stocker, measurement tool, and the like. The substrate 215 processed in the device 100 can be any suitable substrate including, but not limited to, a liquid crystal display, a semiconductor wafer, such as a 200 mm, 300 mm, 450 mm wafer or any other desired diameter substrate, any other suitable for substrate processing equipment. A 100-processed substrate, a substrate blank, or an article having properties similar to those of a substrate, such as those having a particular size or special material. In the present embodiment, the apparatus 300 generally has a front half member 105, for example, forming a small environment, and an isolation member 110 adjacent to the atmosphere, for example, which is provided as a vacuum chamber. In an alternate embodiment, the atmospheric isolation zone can contain an inert gas (e.g., N2) or any other isolated and/or controllable gas. In an embodiment, the front half member 105 can generally be provided with one or more substrates with a magnetic tape 115, similar to the front end robotic arm 120 shown in FIG. The front half member 105 can also have other stations or components, such as the front axle positioner 162 or a bumper located therein. Component 110 can have one or more processing modules 125, a vacuum robotic arm 130 similar to that shown in FIG. The processing module 12 5 can be of any type, such as material deposition, #刻, baking, buffing, ion implantation cleaning, and the like. For a desired reference frame, such as an automated mechanical reference frame, the position of each module can be registered by the controller 170. Additionally, one or more modules can process substrates 195 that are disposed in a desired direction, such as with a reference line (not shown) on the substrate. The desired orientation of the processing module substrate can also be registered by the controller 170. The vacuum component 110 can also have one or more central chambers, referred to as load locks. The embodiment shown in Figure 3 can include two load locks, load lock A135 200922107 and load lock B140. Load locks A and B operate as interfaces, allowing the substrate to be transported between the front half 105 and the vacuum component 110 without destroying the integrity of any vacuum that may be present in the vacuum component 110. The substrate handler 100 generally includes a controller 170 that controls the operation of the substrate processing apparatus. The controller 17A includes a processor and a memory 178. In addition to the above mentioned information, the memory 178 includes a program containing correction techniques for substrate eccentricity and eccentricity detection at high speeds. The memory 178 also includes processing parameters such as temperature and/or pressure of the processing module and other components or stations of the device components 105, 110, time information of the substrate 215 being processed, and metric information of the substrate and location of the utilizing device and substrate A program that estimates the eccentricity of the running substrate, such as an algorithmic formula. In the device 300, the front end robotic arm 120, also referred to as an atm robot, includes a drive member 150 and one or more arms 155. At least one arm 155 can be mounted on the drive member 150, which includes one or more motors similar to those of Figures 1A and 1B above. At least one arm 155 can be coupled to a wrist 160' which in turn can be coupled to one or more end effectors 165 having one or more substrates 215. End effector 165 is rotatably coupled to 160. The ATM robot 12 turns the substrate to any position in the front half 1〇5. For example, the 'ATM robot 12' can transport the substrate between the substrate on which the magnetic tape 115 is mounted, the load lock A 135, and the load lock B 14 。. The atm robot 12G can also transfer substrates back and forth between the front axle positioners 162. Drive. The yak 150 can receive commands from the controller 17 and respond to the automatic mechanical 120# direct radial, circular, forward, composite, and other motions. In the present embodiment, the vacuum robot arm 130 can be mounted at the central chamber 175 of the component 110 200922107. The controller 170 can operate in a loop around the openings 180, 185 and coordinate the operation of the vacuum robot arm 130 to transfer the substrate between the processing module 125, the load lock A 135 and the load lock B 140. The vacuum robotic arm 130 includes a drive member 190 and one or more end effectors 195. In alternative embodiments, the ATM.automatic machine 120 and the vacuum robotic arm 130 may be of any suitable type of transmission device, such as a SCARA-type robot, a twisted arm robot, a frog-legged device, or a dual-symmetric transmission device. . 4 is a schematic diagram of a bearingless motor 400 that can be used to transport the drive member 240 of the robot 200. The bearingless motor 400 includes a rotor 410 and a stator 415. Figure 4 shows the rotor/stator combination for reference only. It will be appreciated that the motor 400 can include any number of rotors having suitable configurations. In the exemplary embodiment f of Fig. 4, the stator 415 is substantially similar to the stator 14 of Fig. 1 described above. Likewise, the stator 410 is also similar to the stator 11 of FIG. The stator 410 can be fabricated from a ferromagnetic material, including a permanent magnet 420 and an iron support 425. In other alternative embodiments, the permanent magnets can be replaced with any suitable ferromagnetic material that can interact with the stator, including other types of magnetic sources, such as electromagnets. The rotor magnet 420 includes a large number of magnets with alternating polarity mounted around the rotor. The circumference of the rotor can refer to its inner or outer wall. In an alternative embodiment, the magnet 420 can be inserted into the interior of the rotor. In other alternative embodiments, the magnet 420 can be located at any suitable location inside and outside of the rotor 410. The stator 415 includes windings that, when energized, can drive the rotor in turn, radially, and/or axially. In this exemplary embodiment, the stator 415 can be fabricated from a ferromagnetic material, but in alternative embodiments, the stator can be fabricated from any suitable material. For non-magnetic stators, magnetic materials may be included to provide passive 10 200922107 magnetic levitation. The interaction between the stator 415 and the rotor magnet 420 can create a negative force in the direction of arrow 410. The magnetic flux lines 435 in the direction of arrows ο, 445 can generate radial forces or gravitational forces. These gravitational forces cause the environment to be very unstable, so after the coil is energized, the rotor should be centered and/or radially positioned so that the rotor / The geometric center of the self-rotating shaft is held in a desired position. The 'rotor 410 and the stator 415 are shown separated by a wall 450 as shown in Fig. 4, which allows the rotor 410 to operate in an environment other than the stator 415, such as a vacuum. The wall 450 can be made of a non-magnetic material such that the magnetic force can penetrate the wall between the rotor 410 and the stator 415. Figure 5, which shows the principle of the sensing mechanism 500 based on the disclosed embodiment. It is a ferromagnetic target 'such as a ferromagnetic support 510. The ferromagnetic support can be connected to a reactive motor component, such as rotor 505. The rotor 505 includes one or more permanent magnets 515. The rotor is enclosed within chamber 525 to support Unlike an outdoor environment, such as vacuum, high temperature, or corrosive air, chamber 525 can be constructed of a non-magnetic material. Rotor 505 can be driven by one or more coils 52〇 located outside chamber 525. Sensing mechanism 5〇〇 includes a read magnetic 545. A magnetic source 530 and a sensor 540 are mounted on the sensor support 550. In this embodiment, the sensor implements a magnetic circuit or a flux loop path formed by the magnetic source 530, a magnetic source 530, and a magnet target. The inter-air gap 555, the rotor support 510 in this embodiment, the path 560 through the rotor support 510, the air gap 535 to the loop of the sensor 540, is returned to the magnetic source 530 via the sensor holder 550. The flux loop is continuously turned off, so the sensor 540 can determine the magnetic flux density, and the factor affecting the magnetic flux density is the distance between the magnetic source 530 and the rotor support 510. In at least one embodiment, the sensor 540 There is an 11 200922107 output that uniquely relates the flux density to the distance between the magnetic source and the ferromagnetic target. The magnetic source 530 includes one or more permanent magnets, electromagnets, or any other suitable magnetic source. Include one or more flux sensors, Hall effect sensors, magnetoresistance or any other sensor suitable for detecting magnetic flux. Figure 6 shows the magnetic circuit corresponding to the sensor mechanism of Figure 5. The magnetic source 530 is represented by a constant flux source Φγ and a parallel magnetic source reluctance Rm. The density of the magnetic flux Φ is determined by the reluctance of the air gap 555 between the magnetic source 530 and the rotor support 510 and the reluctance of the air gap 535 between the rotor support 510 and the sensor 540. The air gap reluctance is 2 Rg. Symbolic representation, magnetic source reluctance in Rm, rotor support resistance in RT, sensor support resistance in RB "magnetic source reluctance Rm, rotor support magnetoresistance RT and sensor support magnetoresistance RB" Relatively stable, the air gap reluctance 2Rg is directly dependent on the distance between the magnetic source 530 and the rotor support 510 and the distance between the rotor support 510 and the sensor 540, so that the air gap reluctance can be individually associated with the change in distance. Thus, the position of the rotor support at distances 535, 555 can be determined without damming the chamber 525 and detecting the equipment therein. As shown in Figure 5, two scales can be placed on the rotor 505 to determine if the rotor position has reached the desired resolution. The scales must be positioned and constructed to cause a change in the magnetic flux density measured by the sensor 540. The sensor output changes with a specific portion of the scale that affects the sensor, thus providing a position indicator. For example, the first scale provides a high resolution incremental position with signal interpolation; the second scale provides the absolute position of the rotor 505 during one cycle of the first incremental scale. A Figure 7 shows an incremental scale 705, symbols 720, 725 being sensor systems 720, 725 disposed on one side of a wall 730, such as chamber 525, which interact with incremental scale 705. For the sake of simplicity, the linear scale is exemplified' but it should be recognized that both the incremental scale and the absolute scale described above may also include a rotating structure. The incremental scale 705 includes a side 710 with a evenly spaced pitch 715. Other uniform patterns can also be used for incremental gauges as long as they indicate the incremental position on the scale. The incremental scale 7〇5 is made of a suitable material and can only be used strictly for the motor 505. In other embodiments of the invention, the 'scale 705' can be cast, fabricated or integrated into the motor 505. Each of the sensor systems 720, 725 includes sensors 740, 755 and magnetic sources 745, 765, respectively. The sensors 740, 755 can provide an analog or digital output. In this embodiment, the sensor system 720, 725 has been positioned 'sensor 740, the magnetic source 745 of the sensor system, and the sensor system 720 are all located at the same location of the incremental scale 705. In other words, the center-to-center distance 750 between the respective sensor 740 and the magnetic source 745 of the same sensor system 720 can be set to a full spacing number 715 that approximates the incremental scale 705. Since the air gap reluctance on the sensor path varies, the distance between the sensor systems 720, 725 can be a fractional value of an incremental scale from each other, e.g., the output can be a phase difference of 90 degrees. In at least one embodiment, the sensors 740, 755 can output an analog signal similar to sine/cosine. In some embodiments, the combined output of sensors 740, 755 includes quadrature counts. Thus, the incremental position determines the incremental position based on the quadrature count of the sine wave and the interpolated position within a particular sinusoidal period. The actual resolution depends on the number of bits in the analog-to-digital converter, and the converter digitizes the analog-to-round and output noise levels. While each sensor and source is oriented along a parallel line to the scale of the scale, or used to indicate the pattern pitch of the incremental position of the scale of Figure 7, the sensor and other directions of the source should also be considered. 13 200922107 FIG. 8 shows another exemplary embodiment of a sensor system, which illustrates a sensor system 820 and a rotor 82 in which an incremental scale 835 is constructed in chamber 830. The magnetic source 810 of Figure 8 and the sensor 815 of the sensor system 820 are oriented along a vertical line to a pattern pitch for indicating the incremental position on the scale. Therefore, both the sensor and the magnetic source face the same part of the scale pattern. Figures 9A and 9B show exemplary embodiments at different incremental positions. In the embodiment of Figure 9A, the incremental scale 905 is separate from the rotor 910 and is therefore independent of the rotor diameter. In some embodiments, the incremental scale 905 can be directly coupled to the rotor 910 by a rotating shaft or other device 915; while in other embodiments, the incremental scale 905 can be directly coupled to the rotor using any suitable indirect coupling or connection method. 910. In Figure 9B, the incremental scale 925 is integrated into the inner diameter of the rotor 930. It should be noted that the rotor magnet can be magnetically separated from the incremental scale by appropriately adjusting the thickness and height of the rotor support. As described above, two scale measurement positions, incremental scales, and absolute positioning scales of the rotor can be defined. The absolute positioning scale of at least one embodiment includes other positioning information required to position the rotor separately. Absolute position encoders typically provide a unique position without reference to any motion. Typically, such encoders may require multiple scales, each of which is read by a separate sensor system. The number of scales determines the number of bits in the absolute position encoder and its corresponding resolution. In an embodiment using an absolute digital position scale, the absolute digital position can be read by a plurality of independent sensors facing the respective scales. Each sensor provides the status of a respective bit contained in the word defining the digital position. Figure 10 shows a classic example of a pattern 1005 called a 5-bit Gray code. Each line pattern 1005 includes a 5-bit word representing the absolute position, which is represented as an angular position in this embodiment, and 14 200922107 in degrees. S4 represents the highest bit of each 5-bit word, and each word has one and only one bit different from its neighbors. It belongs to the typical Gray code order. The absolute position can be obtained using a single digital scale attached to the rotor. To read an absolute digital position, a set of sensors can be constructed that face the absolute track at a particular time interval relative to each other. The number of sensors determines the number of bits in the absolute position. Using a single ruler design is more advantageous because it makes the design slim. The bit pattern order of a single ruler can also be in the form of a Gray code, that is, only one bit at a time is different. ... Figure 11 shows a single scale 1105 indicating the absolute position. The pattern of the single scale 1105 is similar to the S4 pattern shown in FIG. By positioning the five sensors S0 1110, S1 1115, S2 1120, S3 1125, S4 1130 around the scale 1105 to some specific positions, these sensors will generate the sequence of Figure 10 as the pattern rotates, indicating that the rotor has been connected Absolute position. It is important to understand that you can use any number of bits that provide the ideal position resolution to make the ruler. A single absolute scale can be used with the incremental scale, such as the single absolute scale 1135 and the incremental scale sensor 1140 of Figure 11. In other embodiments, the single absolute scale 1105 of Figure 11 can be used alone to simultaneously generate an absolute digital position and an interpolated incremental position of this absolute digital position resolution. As mentioned above, the magnetic sensor is capable of providing a digital or analog output. In an embodiment, if the magnetic sensor can provide an analog output, the threshold value is used to determine when the pattern bit changes, and the analog output signal can generate a digital output pattern of the absolute position scale. At the same time, the analog values of the varying signals can be measured and used to determine the location of the additional resolution provided by the single absolute scale. For example, a digital signal processor can be used to measure the output of the sensor, detect the digital output of the sensor 15 200922107 based on the threshold, and detect the transient analog output of the sensor that is undergoing a bit change. You can use this transient analog output to generate an interpolation position between the current digit absolute position and the next position. Figure 12 shows the output change of sensor S2 of Figures 10 and U in which the rotor varies between 12 and 24 degrees as shown in Figure 1A. In Fig. 12, the angle θ represents the interpolation position, and the parameter V represents the analog sensor output. Since this is a ruler using Gray code, only the state of the sensor S2 is changing (in this example, (from south to low). The interpolation position θ determined according to the output V is ·· ' Therefore, in Fig. 12 The position indicates that the total absolute position of the given rotor is оABS = 12° + Θ 骑 The riding degree depends on the conversion function of the signal V sampling, the resolution, such as the A/D converter. The total number of bits is the sum of the number of sensors plus the number of bits in the AD converter.

Nabs — Nsensors 位二換圖Λ顯矣示查的順序’如果使用圖11的感測器和η AD轉換g,則表達絕對位置㈣位數是Η。因此, 獨使用5位元格雷碼順序相比,顯著改善 ^ 圖13所示為多標尺位於同_ 啊又 實施例中,絕對標K 1305、間距^'、外性實施例。在此 在軸向上減偏移。至少在―個實^1^和增«尺1315 個_例中,可酌情將增量標尺 16 200922107 的上表面1320或下表面1325確定為間距表面並使用此處介紹 的磁阻測量技術測量該點的間距來消除間距標尺。在其他實施 例中,還可通過上述方法使用絕對標尺1305的上表面1330或 下表面1335測量間距,以消除對單個間距標尺的需要《在此 實施例中,標尺位於轉子1345的内表面,該轉子配有一些磁 體1350。支援物1340將這些標尺關聯的磁感測器系統與轉子 磁體1350的效應相隔離。 · 圖14所示為多感測器系統,該系統採用多標尺排列,如 圖13所示。該圖還解釋帶鐵磁支持物1410的轉子1405,及 一個或多個永久磁體1415。轉子可封閉在室1425内,並且該 室支持有別於室外的環境,如真空、高溫或腐蝕性空氣。室 1425可用非磁性材料製作。轉子1405可由室外1425外的一 個或多個線圈1420驅動。 在本實施例中,三個標尺已連接或整合到轉子1405,即 絕對標尺1430、間距標尺1435和增量標尺1440。一個或多個 感測器系統可以連接到每個標尺。本實施例包括一個用來讀取 絕對標尺1430的絕對感測器系統1445、一個用來讀取間距標 尺1435的間距感測器系統1450及一個讀取增量標尺1440的 增量感測器系統1455。三個感測器系統1445、1450、1455均 可以包括上述任意數量的磁源和感測器。如上所述,間距標尺 1435可組合或連接到其他二個標尺。組合或附加間距標尺 時,繼續使用間距感測器系統1450讀取該標尺,或使用與特 定標尺組合或連接的感測器系統讀取相應的標尺。應明白雖然 該實施例只解釋了三個標尺及其對應的感測器系統,實際上可 17 200922107 以使用任意數目的標尺和感測器系統。 在本實施例中,多感測器系統還包括連接到絕對、增量和 間距感測器系統的電路1460。這些電路根據絕對、增量和間 距感測器系統的輸出組合,提供電抗電動機元件的測量位置的 輸出指示。 圖15所示為適用於以此處描述的實施例一起使用的示範 感省! 系統1500。感測盗系統1500採用類似於上述介紹的磁 路原理來確定鐵磁目標1555、轉子支援物與感測器系統參考 系間的距離。鐵磁目標1555可以是平面或曲面,或將任何— 個製件的側面連接、嵌入或整合到目標,如上述的標尺。感測 器系統1500包括一個鐵磁元件1505、一個磁源151〇、一個永 久磁體、多個磁感測器1515、1520、1525、1530和調節電路 1535。鐵磁元件1505可以限制磁源1510。在其他實施例中, 鐵磁元件1505可以包圍甚或封閉磁源151〇β至少在一個實施 例中,鐵磁元件1505是帽蓋形,閉端1565 ,開端157〇。磁 源1510是圓柱形,磁化方向與鐵磁元件15〇5的對稱軸平行。 磁源1510可以是永久磁體、電磁體或任何其他合適的磁能 源。借助引力,可將磁源1510從鐵磁元件内部連接到鐵磁元 件1505的中心處,並用合適的緊固物固定住,如粘合劑。至 少在一個實施例中,感測器系統1500可以定向到帽蓋面向鐵 磁目標1555的開面1570。 圖15展示的實施例建立了鐵磁元件15〇5和磁源ΐ5ι〇間 的磁路,因此對於杯軸或磁源151〇和鐵磁元件15〇5間的同、 周邊,通量密度是勻稱的。鐵磁元件1505的形狀會影響磁二 18 200922107 的形狀。在實施例中,鐵磁元件1505是帽蓋形,磁場相對封 閉,因此提高到鐵磁目標的距離1560變化的敏感性。可以定 制鐵磁元件1505的形狀,以創建特定形狀的磁場。在一些實 施例中,還可定做鐵磁元件1505,提供對感測器系統15〇〇 和鐵磁目標1555間距離變化的特定敏感性。 磁感測器1515、1520、1525、1530可以檢測通量密度, 並可定位到軌道結構,使其以鐵磁元件15〇5的對稱軸保持恒 定的徑向距離。還可定位磁感測器,使其輸出大致相似。雖然 只圖示了 4個磁感測器,但應明白任意數量的合適磁感測器都 可以利用。可以向調節電路1535提供磁感測器1515、152〇、 1525、1530的輸出。調節電路1535包括處理感測器輸出的信 號處理電路,以提供補償、渡波、降噪或任何其他合適的信號 處理。通常處理感測器輸出信號是為了提供感測器系統 1550。使用附加感測器可提高系統的雜訊免疫。鐵磁元件15〇5 也可作為磁源的磁隔離器’使來自周邊環境的外部磁場干擾降 到最低。因此可結構感測器系統1500測量磁感測器檢測到的 磁通密度失量的變化。特別是’因為有鐵磁目標1555,所以 感測器系統1500可以測量磁通密度失量的變化。至少在一個 實施例中,可調節磁感測器1515、1520、1525、153〇的輪出, 以提供感測器系統輸出1550來指示到鐵磁目標1555的距離 1560 ° 圖16所示為鐵磁元件周圍的磁感測器的示範排列。在此 實施例中’磁感測器1610與1615、1620與1625、1630與1635、 1640與1645可成對排列’交替方向是相對於鐵磁元件15〇5 19 200922107 和磁源1510間的磁通密度線。在此實施例中,每對感測器可 提供差分輸出。總和165〇和微分調節電路1655是調節電路 1535的一部分,並以微分信號形式進一步提供感測器系統輸 出、1550。使用差分輸出可以提高雜訊免疫,特別是信號為低 電平、遭受惡劣的電磁環境或·在可感知的距離内傳播。例如以 微分信號形式提供感測器輸出155〇可以提高雜訊免疫,因為 - 該輸出會讀取設備1660。 ( 在其他實施例中,不必將磁感測器放在距對稱軸相等的徑 向距離上,它們的輸出也沒必要一定相等,但可以適當地處理 廷些輪出,以產生有效的目標距離。應該認識到可以使用任意 數里的磁感測器,不管它們是未分組的還是以任意適當的數量 或排列進行分組。 除了測量目標距離,測讀系、统15〇〇還可以和圖7和8的 測讀系、统720、725或820交換使,讀取增量或絕對位置 磁轨。 請返回圖15,如果鐵磁目標1555置於感測器系統15〇〇 〇 前面,會改變磁感測器⑸5、1520、1525、153〇檢_磁通 密度失量,從而影響輸出信號⑸0。目標1555和感測器系統 間的距離15⑼決定感測器系統輸出155G的值。感測器系統輸 出1550的值隨-個或多個標尺引起的磁通變化而改變,這些 才示尺可以連接或整合到鐵磁目標15 5 5。 可以修改《 1510和鐵磁元件测㈣狀,以獲得特定 的通量密度格局或結構及優化或改善感測器系統輸出155〇或 距離測。例如,在-些實施例中,至少有—個鐵磁元件蘭 20 200922107 和磁源1510的形狀為圓柱體、圓錐、立方體、其他多面體、 抛物面或任意合適的形狀。如上所述,可以使用任意數量的感 測器。此外,可以對感測器進行任意排列以實現特定的通量密 度格局’或優化感測器系統輸出1550或距離156〇。 通過此處公開的室中所用的非磁體壁,感測器系統1500 適用於此處介紹的實施例,因-為這些室能使目標轉子或標尺與 感測器系統隔開。感測器系統15〇〇適用於真空自動化系統實Nabs — Nsensors Bit 2 map changes the order of the display ’ If the sensor of Figure 11 and η AD are used to convert g, the absolute position (four) digits are expressed as Η. Therefore, the significant improvement is achieved by using the 5-bit Gray code order alone. Figure 13 shows the multi-scale in the same embodiment, the absolute standard K 1305, the spacing ^', and the external embodiment. Here, the offset is reduced in the axial direction. At least in the case of "1" and "1315", the upper surface 1320 or the lower surface 1325 of the incremental scale 16 200922107 may be determined as a pitch surface as appropriate and measured using the magnetoresistive measurement technique described herein. The spacing of the points to eliminate the spacing ruler. In other embodiments, the spacing may also be measured using the upper surface 1330 or the lower surface 1335 of the absolute scale 1305 by the above method to eliminate the need for a single pitch scale. In this embodiment, the scale is located on the inner surface of the rotor 1345. The rotor is equipped with some magnets 1350. The support 1340 isolates the magnetic sensor system associated with these scales from the effects of the rotor magnet 1350. • Figure 14 shows a multi-sensor system that uses a multi-scale arrangement, as shown in Figure 13. The figure also illustrates a rotor 1405 with a ferromagnetic support 1410 and one or more permanent magnets 1415. The rotor can be enclosed within chamber 1425 and the chamber supports an environment other than the outside, such as vacuum, high temperature or corrosive air. Chamber 1425 can be fabricated from a non-magnetic material. Rotor 1405 can be driven by one or more coils 1420 outside of outdoor 1425. In the present embodiment, three scales have been attached or integrated to the rotor 1405, i.e., the absolute scale 1430, the pitch scale 1435, and the incremental scale 1440. One or more sensor systems can be connected to each scale. This embodiment includes an absolute sensor system 1445 for reading the absolute scale 1430, a pitch sensor system 1450 for reading the pitch scale 1435, and an incremental sensor system for reading the incremental scale 1440. 1455. Each of the three sensor systems 1445, 1450, 1455 can include any of the magnetic sources and sensors described above. As described above, the pitch scale 1435 can be combined or connected to the other two scales. When the pitch gauge is combined or added, the scale sensor system 1450 continues to be used to read the scale, or the corresponding scale is read using a sensor system that is combined or connected to a particular scale. It should be understood that although this embodiment only explains three scales and their corresponding sensor systems, in fact 17 200922107 can be used to use any number of scale and sensor systems. In this embodiment, the multi-sensor system also includes circuitry 1460 coupled to the absolute, incremental, and pitch sensor systems. These circuits provide an output indication of the measurement position of the reactance motor component based on the output combination of the absolute, incremental, and inter-distance sensor systems. Figure 15 illustrates an exemplary sensation! system 1500 suitable for use with the embodiments described herein. The sensing system 1500 uses a magnetic circuit principle similar to that described above to determine the distance between the ferromagnetic target 1555, the rotor support, and the sensor system reference frame. The ferromagnetic target 1555 can be planar or curved, or the sides of any of the articles can be joined, embedded or integrated into the target, such as the scale described above. The sensor system 1500 includes a ferromagnetic component 1505, a magnetic source 151A, a permanent magnet, a plurality of magnetic sensors 1515, 1520, 1525, 1530 and an adjustment circuit 1535. Ferromagnetic element 1505 can limit magnetic source 1510. In other embodiments, ferromagnetic element 1505 can enclose or even enclose magnetic source 151 〇 β. In at least one embodiment, ferromagnetic element 1505 is capped, closed end 1565, open end 157 〇. The magnetic source 1510 is cylindrical and has a magnetization direction parallel to the axis of symmetry of the ferromagnetic element 15〇5. Magnetic source 1510 can be a permanent magnet, an electromagnet, or any other suitable source of magnetic energy. With the aid of gravity, the magnetic source 1510 can be attached from the inside of the ferromagnetic element to the center of the ferromagnetic element 1505 and held in place by a suitable fastener, such as an adhesive. In at least one embodiment, the sensor system 1500 can be oriented to the open face 1570 of the cap facing the ferromagnetic target 1555. The embodiment shown in Fig. 15 establishes a magnetic circuit between the ferromagnetic element 15〇5 and the magnetic source ΐ5ι〇, so that the flux density is the same or the periphery between the cup shaft or the magnetic source 151〇 and the ferromagnetic element 15〇5. Well-proportioned. The shape of the ferromagnetic element 1505 affects the shape of the magnetic ii 18 200922107. In an embodiment, the ferromagnetic element 1505 is capped and the magnetic field is relatively closed, thus increasing the sensitivity to the change in distance 1560 to the ferromagnetic target. The shape of the ferromagnetic element 1505 can be tailored to create a magnetic field of a particular shape. In some embodiments, a ferromagnetic element 1505 can also be customized to provide a particular sensitivity to the change in distance between the sensor system 15A and the ferromagnetic target 1555. Magnetic sensors 1515, 1520, 1525, 1530 can detect flux density and can be positioned to track structures to maintain a constant radial distance from the axis of symmetry of ferromagnetic elements 15〇5. The magnetic sensor can also be positioned to have a similar output. Although only four magnetic sensors are illustrated, it should be understood that any number of suitable magnetic sensors can be utilized. The output of the magnetic sensors 1515, 152A, 1525, 1530 can be provided to the conditioning circuit 1535. Adjustment circuit 1535 includes signal processing circuitry that processes the sensor output to provide compensation, crossing, noise reduction, or any other suitable signal processing. The sensor output signal is typically processed to provide a sensor system 1550. Use additional sensors to increase the system's noise immunity. The ferromagnetic element 15〇5 can also act as a magnetic isolator for the magnetic source to minimize external magnetic field interference from the surrounding environment. Thus, the structurable sensor system 1500 measures the change in magnetic flux density loss detected by the magnetic sensor. In particular, because of the ferromagnetic target 1555, the sensor system 1500 can measure changes in flux loss. In at least one embodiment, the rotation of the magnetic sensors 1515, 1520, 1525, 153A can be adjusted to provide a sensor system output 1550 to indicate a distance to the ferromagnetic target 1555 of 1560 °. Figure 16 shows iron An exemplary arrangement of magnetic sensors around the magnetic components. In this embodiment, 'magnetic sensors 1610 and 1615, 1620 and 1625, 1630 and 1635, 1640 and 1645 can be arranged in pairs. The alternating direction is relative to the magnetic field between the ferromagnetic element 15〇5 19 200922107 and the magnetic source 1510. Through density line. In this embodiment, each pair of sensors can provide a differential output. The sum 165 〇 and differential adjustment circuit 1655 is part of the conditioning circuit 1535 and further provides the sensor system output, 1550 in the form of a differential signal. Using differential outputs can increase noise immunity, especially if the signal is low, experiencing a harsh electromagnetic environment, or propagating within a perceived distance. Providing the sensor output 155 for example in the form of a differential signal can increase noise immunity because - the output will read device 1660. (In other embodiments, the magnetic sensors do not have to be placed at equal radial distances from the axis of symmetry, and their outputs do not have to be equal, but can be properly processed to produce effective target distances. It should be recognized that any number of magnetic sensors can be used, whether they are ungrouped or grouped in any suitable number or arrangement. In addition to measuring the target distance, the reading system can also be combined with Figure 7. Exchanging with the 8 reading system, system 720, 725 or 820, reading the incremental or absolute position track. Return to Figure 15, if the ferromagnetic target 1555 is placed in front of the sensor system 15〇〇〇, it will change The magnetic sensors (5) 5, 1520, 1525, 153 detect the loss of the magnetic flux density, thereby affecting the output signal (5) 0. The distance 15 (9) between the target 1555 and the sensor system determines the value of the sensor system output 155G. The value of the system output 1550 changes with the flux change caused by one or more of the scales. These gauges can be connected or integrated into the ferromagnetic target 15 5 5. The 1510 and ferromagnetic component measurements can be modified to obtain Specific flux Degree pattern or structure and optimization or improvement of the sensor system output 155 距离 or distance measurement. For example, in some embodiments, at least one of the ferromagnetic elements lan 20 200922107 and the magnetic source 1510 are in the shape of a cylinder, a cone, Cubes, other polyhedrons, parabolas, or any suitable shape. As mentioned above, any number of sensors can be used. In addition, the sensors can be arbitrarily arranged to achieve a specific flux density pattern' or optimized sensor system Output 1550 or distance 156. Through the non-magnetic walls used in the chambers disclosed herein, the sensor system 1500 is suitable for the embodiments described herein, as these chambers enable the target rotor or scale and sensor system Separate. The sensor system 15〇〇 is suitable for vacuum automation systems.

施。感測器系統15〇〇特別適合於測量此處介紹的所有實施例 的磁通、間距和標尺。 圖π所示為示範電動機211〇’其中包括與示範性實施例 致的位置回饋系統21〇〇。儘管針對圖紙所示的實施例將 紹的是公開的實施例,但應明白公開的實施例可有多種備選實 施例表現m外,可以使縣何合 元 類型或材料。 小狀、7〇件 實施例的回饋系統可以為 度的位置_。基於彳目输¥ 機提供高解析 镇系統可以同時測|φ “ 丁㈣實_的回 轉)。"利量相對於電動機好的偏心和方向(如旋 …1不的電動機211〇包括僅作為示 疋子,但應認識到電動機211〇 :二:早轉子/ 意數量的轉子,包括但不限於 γ適結構排列的任 17的示範性實施例中,定子2 ^軸結構。例如在圖 選實施例中,該定子可以採用 ^是鐵芯定子,但在備 21脈可爾㈣姻 21 200922107 鐵支援物2110B。在備選實施例中,轉子可以包括任何能與定 子2110S相互作用的鐵磁材料。 定子2110S可包括任何合適的能控制轉子2u〇R在χ γ 平面和/或Ζ方向的位置的繞組。在備選實施例中,繞組可以 是任何合適的結構。定子2110S和轉子磁體2110Μ間的相互 作用可以產生使轉子2110R被動懸浮的力。懸浮力可由彎曲 磁通曲線產生,磁通曲線可由相對於定子邊緣的轉子磁鐵邊緣 的偏移產生,其在美國臨時專利申請號6〇/946,687,代理人 卷號:390P〇12913-US(-#l),標題《具有磁浮主軸軸承的自動 機械驅動器》,申請曰期2007年6月27曰,此處作為參考文 獻加以整體引述。在備選實施例,懸浮力可以任何合適的方式 產生。 本示範性實施例的回饋系統21〇〇包括多個讀取頭213〇和 一個標尺2120。讀取頭2i30可以採用任何合適的形式,包括 但不限於非接觸式光學式、電容式、感應式和磁式讀取頭。備 選實施例中的讀取頭可以接觸式讀取頭。這些讀取頭可以置 於電動機的任意適當位置,以使讀取頭213〇 保持固I在備選實施例的中讀取頭213M目對於3蘭 可以具有任意合適的關係。應當認識到,在備選實施例中,讀 取頭2130被定位、設置和/或與轉子2u〇R和定子2n〇s分 離。例如,讀取頭2U0和轉子2U0R以及定子2u〇s間的磁 相互作用不會改變讀取頭2130提供的讀數。 讀取頭213〇 T以通信方式連接到任意合適的處理器 ’這些處理器被設置來接收讀取頭2m的輸出信號,並 22 200922107 按如下所述方式處理這些信號來確定轉子2職的位置資 ;=頭2130可通過任何合適的有線或無線連接方式與處 器2160進行通信,包括但不限於廣域,網、局域網、藍牙、 紅線外'無線電頻率或任何其他合適的連接方式,這歧示範僅 m戈多個實施例中,讀取頭㈣可以:括一個 或夕個感測态500或上述感測器系統15〇〇。 標尺2U0可以是任何合適的標尺,包括但不限於設置用 於上述讀取頭使用的絕對或增量標尺。雖然圖只顯示了—個標 ^ ’但是在備選實施例中,可以使用任意合適數目的標尺。作 為了個非限制示範’在—個襟選實施例中,每個讀取頭⑽ 可以有其各自的標尺,而在其他備選實施财,—些讀取 共用同-個標尺’另-些讀取頭共用不同的標尺。 在一個示範性實施例中,標尺212〇可枯結或附接到轉子 2110R上。在其他不範性實施例中,例如可通過加工、钱刻 任何其他合適的製造工藝將標尺2120嵌入轉子211011中。在 ,選實施例中’標尺212〇可--以是連接到轉子的磁片和從轉子 ,徑向延伸的磁片。在其他備選實施例中,標尺可以是任何人 適的結構。可以設置標尺212〇,排列標尺上的刻度212〇^ 以便讀取頭可以檢測轉子u〇R的偏心和/或的旋轉,下文將 此詳細說明。在備選實施财,標尺上的刻度可以按照任竟入 適的方式排列。 ^由圖17所示可知,回饋系統2100可以用在任意合適的環 包括但不限於真空、大氣環境或可控氣體環境。在一 〇生實域中’電動機可以包域界214G,該邊界允許轉子 23 200922107 2110R在真空中運作,而定子2110S在大氣環境中運作。在備 選實施例中,每個定子和轉子可以在任何合適的環境中運作, 這些環境可以彼此相同或不同。邊界2140可由任何可在真空 環境中使用的合適材料做成,或用可插入磁場而又不會造成通 量短路或不易受渦流和磁相互作用所生的熱的影響的材料製 作。該邊界還可連接到合適的換熱設備(如被動或主動換熱設 備),以儘量降低驅動部件的溫度。在一個實施例中,如果讀 取頭2130是光學式讀取頭2130,邊界可以包括光學視點來支 援讀取頭2130讀取標尺2120〇如果讀取頭2130是電容式、 感應式或磁體式(如霍耳感測器),則沒有與讀取頭2130相 關的任何視點。 圖18,該圖所示為基於示範性實施例的回饋系統的示意 圖。在圖18所示的示範性實施例中,回饋系統2100,包括三個 讀取頭2130A-2130C,但在備選實施例中,回饋系統21〇〇,可 含有多於或少於三個讀取頭。圖中所示的讀取頭2130A-2130C 大體上是以等距的方式排列在定子21 i〇s的周圍,因此這些讀 取頭呈放射狀地指向標尺2120。在備選實施例中,讀取頭 2130A-2130C可以任何合適的預定間隔排列方式排列在轉子 2110S周圍,並可位於相對於標尺212〇的任何合適的方向上。 在一個不範性實施例中,每個讀取頭2l3〇A_2i3〇c可設置來 提供有關各個讀取頭正在查看的標尺212〇上的點和標尺212〇 的源so間的距離(如Μ、dB、dC)的位置資訊。例如,這 些資訊可用於確定轉子2llGiM目對於定子2題的偏心和取 向。在備選實施例+ ’讀㈣213〇A_213〇c可以提供任意合 24 200922107 適的資訊,以確定轉子2110R相對於定子2110S的偏心和取 向。圖18所示的距離dA、dB、dC是以順時針方向延伸,但 在備選實施例中,根據轉子2110R的旋轉方向,這些距離可 以在逆時針方向上。 圖19,該圖依據一示範性實施例,描述了利用來自於4 個讀取頭2230A-2230D相切位置測量,來確定轉子2110R的 偏心和取向。然而,下文所述的對應於4個讀取頭2230A-2230D 的示範式方程可被採用在任意合適數量的讀取頭上,從而可確 定轉子2110R的偏心和旋轉位置。 應知道在電動機2110運作期間,轉子2110R可使旋轉的 第一中心C偏離至旋轉的第二中心C1。例如,這種偏離可能 是由於施加到轉子的徑向和/或轴向負載引起的。回饋系統 2100’’可設置來計算轉子2110R的偏差和旋轉方向。在下文所 述的示範性位置確定中,假定距離d 1 -d4在逆時針方向上是隨 轉子2110R旋轉而增加。然而,在備選實施例中,假定距離 dl-d4在順時針方向上是隨轉子2110R旋轉而增加,這裏下面 所述的方程作適當修改。 作為一個非限制性示例,在本示範性實施例中,可以使用 下列方程算出中心點C的偏心率或偏差: x0 = rcos[(c?2 -)/(2r)] (100) Λ =rcos[(c/3 -dx)/{2r)] (101) 其中,xG和yQ分別指轉子211 OR偏心分量的x和y。從上述 25 200922107 測量知道可以根據讀取頭22細和22繼沿切線方式 據^ 概對應的角算出偏心距離XG。同樣,可以根 ==30C和223。A沿切線方式測量㈣長22術對應 =异出偏心距離3V可以使用下列方程式算出轉子的旋轉方 回教*位置: (102) (103) (104) θ\ ~di /r-asin(>/〇 //-) ~d2 /r—Ίπ/2 + asin(x0 /r) r~n + asin(_y〇 / r) θ4 =d4/r-;r/2-asin〇。/r) (105) 4 θ〇 =Σ^/4=(^ι +d2 +d3 +i/4)/(4r)-3^-/4 (l〇6) 其中,θ〇是轉子2110R的方向。θι_θ4分別指讀取頭 2230A-2230D與標尺2120的源SO之間構成的4個角。桿尺 C. 源so和讀取頭2230A_2230D之間構成的4個距離分別表示為 山-4。標尺2120的半徑用符號Γ表示。上述方程式可以算出 轉子2110R在Χ-Υ平面的精准位置(如偏心)和相對於任何 所需的參照點轉子211〇R的棱轉取向❷。。 〃在其他不例中’無需計算三角函數也可確定轉子的偏心和 旋轉方向Θ0的近似值。可通過以下方程式算出位置近似值: (107) x〇 = -(d2 -d4 - τζτ) / 2 = (i/4 -d2 + nr) / 2 = ~(d2 -di~^)/2 = (dx-d3+ 7tr) / 2 26 (108) (109) 200922107 (HO) dll) (112) (113) θ\ ~y0)/r θ2 =(^2 ~3nr/2 + x〇)/r θ3 =Κ ~^ + y0)/r ^4 =(ί/4 -nr/2-x〇)/r 4 -2^/4=(^ +d2 +d3 +ά4)/(^)-3π/4Shi. The sensor system 15A is particularly well suited for measuring the flux, spacing and scale of all of the embodiments described herein. Figure π shows an exemplary motor 211'' which includes a position feedback system 21A with an exemplary embodiment. Although the disclosed embodiments are described with respect to the embodiments shown in the drawings, it should be understood that the disclosed embodiments may have various alternative embodiments that can be used to make a county type or material. The small, 7-inch embodiment of the feedback system can be the position of the degree _. Based on the eye-catching machine, a high-resolution town system can simultaneously measure |φ "D (four) real _ slewing). " good eccentricity and direction relative to the motor (such as the motor 211 旋 1 1 〇 〇 〇 〇 The dice are shown, but it should be recognized that the motor 211 〇: two: the early rotor / the number of rotors, including but not limited to the γ-suitable structural arrangement of any of the exemplary embodiments of the 17th, the stator 2 ^ axis structure. In an embodiment, the stator may be a core stator, but in the case of a 21-pulse 21 200922107 iron support 2110B. In an alternative embodiment, the rotor may include any ferromagnetic interaction with the stator 2110S. The stator 2110S may comprise any suitable winding capable of controlling the position of the rotor 2u 〇 R in the χ γ plane and/or the Ζ direction. In alternative embodiments, the winding may be of any suitable construction. The stator 2110S and the rotor magnet 2110 Μ The interaction between the two can produce a force that passively suspends the rotor 2110R. The levitation force can be generated by a curved flux curve, which can be generated by the offset of the rotor magnet edge relative to the stator edge, which is National Provisional Patent Application No. 6〇/946,687, Agent Volume No.: 390P〇12913-US(-#l), title “Automatic Mechanical Drives with Maglev Spindle Bearings”, application expired June 27, 2007, here The reference is generally cited as a reference. In an alternative embodiment, the levitation force can be generated in any suitable manner. The feedback system 21 of the exemplary embodiment includes a plurality of read heads 213A and a scale 2120. The read head 2i30 Any suitable form may be utilized including, but not limited to, non-contact optical, capacitive, inductive, and magnetic readheads. The readheads in alternative embodiments may be contact readheads. These readheads may Placed in any suitable position on the motor to maintain the read head 213 固 in the alternative embodiment. The read head 213M may have any suitable relationship for 3 lands. It will be appreciated that in alternative embodiments The read head 2130 is positioned, disposed, and/or separated from the rotor 2u〇R and the stator 2n〇s. For example, the magnetic interaction between the read head 2U0 and the rotor 2U0R and the stator 2u〇s does not change the read head 2130. The reading provided. The headers 213〇T are communicatively coupled to any suitable processor's processors are arranged to receive the output signals of the read head 2m, and 22 200922107 processes the signals as described below to determine the position of the rotor 2; The header 2130 can communicate with the device 2160 by any suitable wired or wireless connection, including but not limited to wide area, network, local area network, Bluetooth, red line 'radio frequency or any other suitable connection mode. In various embodiments, the read head (4) may include one or a sensed state 500 or the sensor system 15A described above. The scale 2U0 can be any suitable scale including, but not limited to, an absolute or incremental scale for use with the readhead described above. Although the figure shows only a standard ^', in alternative embodiments any suitable number of scales can be used. As a non-limiting example, in each of the alternative embodiments, each of the read heads (10) may have its own scale, and in other alternative implementations, some of the readings share the same ruler's other The read heads share different scales. In an exemplary embodiment, the scale 212 can be dried or attached to the rotor 2110R. In other non-standard embodiments, the scale 2120 can be embedded in the rotor 211101, for example, by machining, by any other suitable manufacturing process. In the alternative embodiment, the 'scale 212' can be used to connect the magnetic piece to the rotor and the magnetic piece extending radially from the rotor. In other alternative embodiments, the scale can be of any suitable construction. The scale 212〇 can be set, and the scale 212〇 on the scale can be arranged so that the read head can detect the eccentricity and/or rotation of the rotor u〇R, as will be described in detail below. In the alternative implementation, the scales on the scale can be arranged in any way. As can be seen from Figure 17, the feedback system 2100 can be used in any suitable ring including, but not limited to, a vacuum, an atmospheric environment, or a controlled atmosphere environment. In a twin real field, the motor can wrap the domain boundary 214G, which allows the rotor 23 200922107 2110R to operate in a vacuum while the stator 2110S operates in an atmospheric environment. In an alternate embodiment, each stator and rotor may operate in any suitable environment, which may be the same or different from one another. Boundary 2140 can be made of any suitable material that can be used in a vacuum environment, or a material that can be inserted into a magnetic field without causing a short circuit in the flux or from heat generated by eddy currents and magnetic interactions. The boundary can also be connected to suitable heat exchange equipment (such as passive or active heat exchange equipment) to minimize the temperature of the drive components. In one embodiment, if the read head 2130 is an optical read head 2130, the boundary may include an optical viewpoint to support the read head 2130 to read the scale 2120 if the read head 2130 is capacitive, inductive, or magnet ( As with the Hall sensor, there is no viewpoint associated with the read head 2130. Figure 18 is a schematic illustration of a feedback system based on an exemplary embodiment. In the exemplary embodiment shown in FIG. 18, the feedback system 2100 includes three read heads 2130A-2130C, but in alternative embodiments, the feedback system 21〇〇 may contain more or less than three reads. Take the lead. The read heads 2130A-2130C shown in the figures are generally arranged equidistantly around the stator 21 i 〇 s so that the read heads are radially directed toward the scale 2120. In alternative embodiments, the read heads 2130A-2130C may be arranged around the rotor 2110S in any suitable predetermined spaced arrangement and may be located in any suitable orientation relative to the scale 212'. In an exemplary embodiment, each read head 2l3A_2i3〇c can be set to provide a distance between the point on the scale 212〇 that each readhead is viewing and the source so of the scale 212〇 (eg, , dB, dC) location information. For example, this information can be used to determine the eccentricity and orientation of the rotor 2llGiM for the stator 2 problem. In an alternative embodiment + 'read (4) 213 〇 A_213 〇 c, any suitable information can be provided to determine the eccentricity and orientation of the rotor 2110R relative to the stator 2110S. The distances dA, dB, dC shown in Fig. 18 extend in a clockwise direction, but in alternative embodiments, these distances may be in a counterclockwise direction depending on the direction of rotation of the rotor 2110R. Figure 19, which illustrates the use of tangential position measurements from four readheads 2230A-2230D to determine the eccentricity and orientation of rotor 2110R, in accordance with an exemplary embodiment. However, the exemplary equations described below corresponding to the four readheads 2230A-2230D can be employed on any suitable number of readheads to determine the eccentricity and rotational position of the rotor 2110R. It will be appreciated that during operation of the motor 2110, the rotor 2110R can deflect the first center C of rotation to the second center C1 of rotation. For example, such deviations may be due to radial and/or axial loads applied to the rotor. The feedback system 2100'' can be set to calculate the deviation and direction of rotation of the rotor 2110R. In the exemplary position determination described below, it is assumed that the distances d 1 - d4 increase in the counterclockwise direction as the rotor 2110R rotates. However, in an alternative embodiment, it is assumed that the distance dl-d4 is increased in the clockwise direction as the rotor 2110R rotates, and the equations described below are appropriately modified. As a non-limiting example, in the present exemplary embodiment, the eccentricity or deviation of the center point C can be calculated using the following equation: x0 = rcos[(c?2 -) / (2r)] (100) Λ = rcos [(c/3 - dx) / {2r)] (101) where xG and yQ refer to x and y of the eccentric component of the rotor 211, respectively. It is known from the above-mentioned 25 200922107 measurement that the eccentric distance XG can be calculated from the angle corresponding to the read head 22 and the 22 tangentially. Again, you can root ==30C and 223. A is measured along the tangential line. (4) Length 22 corresponds to the corresponding eccentric distance of 3V. The following equation can be used to calculate the rotation of the rotor. * Position: (102) (103) (104) θ\ ~di /r-asin(>/ 〇//-) ~d2 /r—Ίπ/2 + asin(x0 /r) r~n + asin(_y〇/ r) θ4 =d4/r-;r/2-asin〇. /r) (105) 4 θ〇=Σ^/4=(^ι +d2 +d3 +i/4)/(4r)-3^-/4 (l〇6) where θ〇 is the rotor 2110R direction. Θι_θ4 refers to the four corners formed between the read heads 2230A-2230D and the source SO of the scale 2120, respectively. Rod C. The four distances formed between the source so and the read heads 2230A_2230D are represented as Mountains-4. The radius of the ruler 2120 is indicated by the symbol Γ. The above equation can be used to calculate the precise position of the rotor 2110R in the Χ-Υ plane (e.g., eccentricity) and the angular orientation ❷ of the rotor 211〇R relative to any desired reference point. . 〃In other cases, the eccentricity of the rotor and the approximation of the direction of rotation Θ0 can be determined without calculating the trigonometric function. The position approximation can be calculated by the following equation: (107) x〇= -(d2 -d4 - τζτ) / 2 = (i/4 -d2 + nr) / 2 = ~(d2 -di~^)/2 = (dx -d3+ 7tr) / 2 26 (108) (109) 200922107 (HO) dll) (112) (113) θ\ ~y0)/r θ2 =(^2 ~3nr/2 + x〇)/r θ3 =Κ ~^ + y0)/r ^4 =(ί/4 -nr/2-x〇)/r 4 -2^/4=(^ +d2 +d3 +ά4)/(^)-3π/4

八中θ〇、θι-θ4、(1^4和r所指的含義同上。 )的上二^偏心(如XQ和y。)和旋轉方向“ 墟一 ""11還可以彳吏用其他的通過切線位置測量濟 確疋偏心和旋轉方向的方法。 • 述實把例提供了無需侵人轉子工作的隔離環境中,也無 離環境中使用電子設傷或感測器,就可確㈣子旋_ •技術。在一個實施例中,可使用單標尺來確定絕對位置和 上述實施例亦提供一個具有獨特排列的感測器系統,一個 鐵磁元件、—個磁源及可生成均㈣《度線的磁感測器,以 更使感測器置於磁源周圍的執道結構中。 A上述實施例亦提供—個麵機_线,該純包括用於 確定電動機轉子偏心和旋轉位置的獨特結構和技術。 應知上面說明只是針對所舉示的實施例。具有經驗和技術 2人員可在此公_實施例中制定各種方案和修I因此,這 些實施例旨在涵蓋所有此類方案、修改以及在附加權利要求範 27 200922107 圍内的變化。 【圖式簡單說明】 圖1Α和1Β所示為適用於執行公開的實施例的示範電動 機的原理圖; 圖2所示為可採用示範性實施例的示範自動機械輸送; 圖3所不為可採用示範性實施例的示範基板處理裝置; 圖4所示為使用示範性實施例的無軸承電動機的原理圖; 圖5所示為基於公開的實施例的示祕感機制; 圖6所示為類似於圖5傳感機制的磁路; 圖7所示為示範增量標尺; 圖8所示為其他示範感阕器系統實施例; 圖9Α和9Β所示為附加的增量標尺示範性實施例; 圖10所示為格雷碼模式; 圖11所示為用於指示絕對位置的單標尺示範,· 圖12所示為示範感測器的輸出變化; 圖13所示為含位於同一直徑上多標尺的示範性實施例; 圖14所不為多感測器系統; 圖15所示為適用於與介紹的實施例配合使用的其他示範 ;測器系統, 圖16所示為在磁性元件周圍排列磁感測器的 圖17所示為包含示範性實施例各方面的傳動部件. 圖是根據示範性實施舰計的回饋系統的簡圖。’ 圖19疋根據示範性實施顺計的回饋系統的簡圖。 28 200922107 【主要元件符號說明】 10 電動機 11 轉子. 12、 15繞組 14 定子 25 電流放大Is 27 處理器 30 換向功能元件 35 電流環功能元件 105 前半部件 110 隔離部件 115 磁帶 120 前端自動機械手臂 125 處理模組 162 前軸定位器 170 控制器 178 記憶體 195 處理基板 200 自動輸送機械 210 上臂 220 前臂 230 末端作用器 240 驅動部件 420 永久磁體 425 鐵支撐物 29Eight θ 〇, θι-θ4, (1^4 and r refer to the same as above.) The upper two eccentricities (such as XQ and y.) and the direction of rotation "Xuyi" ""11 can also be used Other methods for measuring the eccentricity and direction of rotation through tangential position. • Describe the example in an isolated environment that does not require intrusion into the rotor, or use an electronic design or sensor in the environment. (d) Spins_Technology. In one embodiment, a single scale can be used to determine the absolute position and the above embodiment also provides a sensor system with a unique arrangement, a ferromagnetic component, a magnetic source, and a achievable (d) "Magnetic sensor of the grading line, so that the sensor is placed in the obstruction structure around the magnetic source. A. The above embodiment also provides a uni-machine line, which is used to determine the rotor eccentricity of the motor and Unique Structures and Techniques for Rotating Positions It should be understood that the above description is directed only to the illustrated embodiments. Those skilled in the art and in the art can formulate various aspects and modifications in this embodiment, therefore, these embodiments are intended to cover all Such programs, modifications, and additions BRIEF DESCRIPTION OF THE DRAWINGS Variations of the invention are shown in FIGS. 1A and 1B are schematic diagrams of an exemplary motor suitable for use in performing the disclosed embodiments; FIG. 2 illustrates an exemplary embodiment that may be employed. Automated mechanical transport; FIG. 3 is not an exemplary substrate processing apparatus that may employ an exemplary embodiment; FIG. 4 is a schematic diagram of a bearingless motor using an exemplary embodiment; FIG. 5 is a view based on the disclosed embodiment. Figure 6 shows a magnetic circuit similar to the sensing mechanism of Figure 5; Figure 7 shows an exemplary incremental scale; Figure 8 shows an alternative exemplary sensor system embodiment; Figure 9 and 9 Shown as an additional incremental scale exemplary embodiment; Figure 10 shows the Gray code mode; Figure 11 shows a single scale demonstration for indicating the absolute position, and Figure 12 shows the output change of the exemplary sensor; Figure 13 shows an exemplary embodiment with multiple scales on the same diameter; Figure 14 is not a multi-sensor system; Figure 15 shows another example suitable for use with the described embodiment; Figure 16 shows the magnetic Figure 17 showing the arrangement of the magnetic sensors around the components is a transmission component incorporating aspects of the exemplary embodiment. The figure is a simplified diagram of a feedback system in accordance with an exemplary implementation of the ship. Figure 19A 28 200922107 [Description of main components] 10 Motor 11 rotor. 12, 15 winding 14 stator 25 current amplification Is 27 processor 30 commutation function 35 current loop function 105 front half part 110 isolation part 115 tape 120 Front-end robot arm 125 Process module 162 Front-axis positioner 170 Controller 178 Memory 195 Processing substrate 200 Automatic conveying mechanism 210 Upper arm 220 Forearm 230 End effector 240 Drive unit 420 Permanent magnet 425 Iron support 29

Claims (1)

200922107 十、申請專利範圍: 1. 一種感測裝置,包括: 一個磁源; 一個磁通感測器; 一個安裝有磁源和磁通感測器的感測器支持物, 及感測器三者之間形成磁路,並經感測器支持物返回磁源。 、2.如請求们之感測裝置,其中該磁通感測器提供以根據 磁源和鐵磁目標間的距離而變的磁通密度成比例的輸出。 、其^將磁源和磁通感測器予以排列,使在彻、、鐵磁體200922107 X. Patent application scope: 1. A sensing device comprising: a magnetic source; a magnetic flux sensor; a sensor support with a magnetic source and a magnetic flux sensor, and a sensor three A magnetic circuit is formed between the two and returns to the magnetic source via the sensor support. 2. A sensing device as claimed, wherein the flux sensor provides an output proportional to the magnetic flux density as a function of the distance between the magnetic source and the ferromagnetic target. , the magnetic source and the flux sensor are arranged to make the magnet, the ferromagnet 磁鐵。 一或多個電磁 4.如明求項1之感測裝置,其中該磁源包括 5.如請求項1之感測裝置, 個Hall效應感測器。 其中該磁通感測器包括一或多 6.如請求項1之感測裝置 個磁敏感測器。 其中該磁通感測器包括一或多 7.如請求項1之感測裝置 其中該磁鐵體包括一電抗電動 30 200922107 機元件而該磁通感測器包括一與該磁源及該反應電動機元件 間之距離成比例一輸出端。 8. 如請求項1之感測褒置’進一步包括一連接於標示有鐵 磁體的絕對位置之磁鐵體的第一標尺。 9. 如請求項8之感測裝置,其中該磁琿感測器可檢測由第 一標尺引起的各種磁通密度變化,並可輸出標示所測量的鐵磁 體絕對位置的信號。 10. 如請求項8之感測裝置,其中該第一標尺為絕對數字尺 度。 11. 如請求項10之感測裝置,其中該絕對數字尺度為單軌 道格雷碼尺度。 12. 如明求項8之感測裝置,其中該磁通感測器可輸出連續 測得的鐵磁體絕對位置間的内插位置。 13_如請求項8之感測裝置,進一步包括:連接到鐵磁體標 示第一標尺間隔内鐵磁體增量位置的第二標尺,其中磁通感測 器可檢測由第一和第二標尺引起的磁通密度變化,並輸出標示 已測量的鐵磁體絕對位置的信號,該位置由絕對和增量標尺引 起的磁通密度變化組合而來。 31 200922107 兩%磁源和 量樑尺的整 14.如請求項13之感測裝置’進—步包括至少 磁感測器,其中每對磁源和磁感測器均有一個與增 數間距數對應的中心距》 15.如請求項13之感測裝置,進一步包括至少兩辦磁、原和 磁感測器,其中每對磁源和磁感測器均有一個與婵I姆 “ 、曰夏彳示尺的分 數間距數對應的中心距。 16·如請求項13之感測裝置,進一步包括至少兩對磁源和 磁感測器,其中每對磁源和磁感測器均配有一個與增量伊、尺的 1/4間距相等的對應間距。 17·如請求項13之感測裝置,進一步包括至少兩對磁源和 磁感測器’相應感測器和磁源的排列要使其感測器的組合輸出 包含正交計數。 18. 如請求項13之感測裝置,其中該磁感測器和磁源沿著 至少與第一或第二標尺節距其中之一平行的方向進行定位。 19. 如請求項13之感測裝置,其中該磁感測器和磁源沿著 至少與第一或第二標尺節距其中之一垂直的方向進行定位。 20. —種測量電抗電動機元件位置的裝置,包括: 32 200922107 連接到電抗元件、確定電抗元件絕對位置的第一標尺;第 一感測器系統設定用來讀取第一標尺; 連接到電抗元件、確定第一標尺間隔内的電抗元件增量位 置的第二標尺; 第一感測Is系統設定用來讀取第二標尺; 連接到電抗元件、用來測量電抗電動機元件和磁源之間間 距的第三標尺。 . 第二感測器系統設定用來讀取第三標尺;以及 連接到第一、第二和第三感測器系統,用於標示來自第 一、第二和第三感測器系統輸出組合的電抗電動機元件測量位 置的電路》 21. 如請求項20的裝置,第三標尺與第一標尺組合,第— 感測器用於讀取第三標尺。 22. 如請求項20的裝置,第三標尺與第二標尺組合,第二 感測器用於讀取第三標尺。 23. 如請求項20中的裝置,進一步包括一個用來封裝環境 以及環境内電抗元件的外殼’這裏第一、第二、第三感測器無 需浸入外殼内部即可讀取第一、第二和第三標尺。 24. —種感測器系統,包括: 一個磁源; 33 200922107 一個外接磁源的鐵磁元件; 多個排列在鐵磁元件對稱軸周圍的磁感測器, 其中,定向磁源時要使磁化方向與鐵磁元件的對稱轴平 行,而且 鐵磁元件的開口面向鐵磁體,以便測量鐵磁體的位置。 25. 如請求項24的感測器系統,磁源為圓柱形。 26. 如請求項24的感測器系統,鐵磁元件為杯形。 27. 如請求項24的感測器系統,鐵磁元件為圓柱形β 28. 如請求項24的感測器系統’磁感測器按軌道結構進行 排列。 29. 如請求項24的感測器系統’磁感測器相對於鐵磁元件 和磁源間的磁通密度線的取向進行交錯排列。 30. 如請求項24的感測器系統,磁感測器成對排列,每— 對都相對於鐵磁元件和磁源之間的磁通密度線取向進行交替 排列,其中每個感測器設定用來提供具有至少一個雜訊免疫的 差分輸出。 31. 如請求項24的感測器系統’進一步包括連接到鐵礤 34 200922107 體、標示鐵磁體絕對位置的第一標尺。 32. 如請求項31的感測器系統’磁感測器可檢測由第一秋 尺引起的磁通密度變化,並可輸出標示所測量的鐵磁體絕對位 置的信號。 33. 如請求項31的感測器系統,第一標尺為絕對數字尺度。 34. 如請求項31的感測器系統,磁感測器可輸出連續測量 的鐵磁體絕對位置間的内插位置。 35 ·如請求項31的感測器系統,進一步包括: 連接到鐵磁體、標示第一標尺間隔内鐵磁體增量位置的第 —4® C7 · —* ·Τ?Γ> /X., 其中磁感測器可檢測由第一和第二標尺引起的磁通密度 變化,並可輸出標示鐵磁體測量位置的信號,該測量位置由絕 對和增量標尺引起的磁通密度變化組合而來。 36.—種無軸承電動機,包括: 一個磁懸浮轉子; 一個定子;和 一感測裝置,包括: 一個磁源; 一個磁感測器;和 35 200922107 一個裝有磁源和磁感測器的感測器支持物, 其中磁源和磁感測器係配置成一個從磁源到轉子,從轉 子到感測器,及通過感測器支持物返回磁源的磁路。 37. 如請求項36的無軸承電動機,其中該磁感測器包括一 個與磁通密度變化成正比的輸出,該磁通密度的變化依賴於磁 源和轉子之間的距離。 38. 如請求項37的無軸承電動機,進一步包括與轉子連 接、用於標示轉子絕對位置的絕對標尺。 39. 如請求項38的無軸承電動機,其中該磁感測器可檢測 由絕對標尺引起的磁通密度變化,並可輸出標示所測量的轉子 絕對位置的信號。 40. 如請求項38的無軸承電動機,其中該絕對標尺為絕對 數字尺度。 41. 如請求項38的無軸承電動機,其中該磁感測器可輸出 連續測量的轉子絕對位置間的内插位置。 42. 如請求項38的無軸承電動機,進一步包括: 連接到轉子、標示絕對標尺間隔内轉子增量位置的增量標 尺; 36 200922107 其中磁感測器可檢測由絕對和增量標尺引起的磁通密度 變化,並可輸出標示轉子測量位置的信號,該測量位置由絕對 和增量標尺引起的磁通密度變化組合而來。 43. 如請求項42的無軸承電動機,進一步包括: 一個用來封裝環境以及環境内磁懸浮轉子的外殼,這裏感 利器系統無需侵入該外殼内部即可讀取絕對和增量標尺。 44. 一種無軸承電動機,包括: 一個磁懸浮轉子; 一個定子;以及 一個位置回饋系統包括: 一個磁源; 一個外接磁源的鐵磁元件; 多個排列在鐵磁元件對稱轴周圍的磁感測器, 其中定向磁源時要使磁化方向與鐵磁元件的對稱軸平 行,以及 鐵磁元件的開口面向鐵磁體,以便測量轉子的位置。 45. —種測量電抗電動機元件位置的方法,包括: 安裝磁源和磁感測器到感測器支持物上; 形成一個從磁源到電抗電動機元件、從電抗電動機元件再 到感測器,並通過感測器支持物返回磁源的磁路; 輸出來自磁感測器、與磁通密度變化成正比的信號,該磁 37 200922107 的距離 通密度的變化依賴於磁源和電抗電動機元件之間 46.如請求項45的方法,進一步包括: 利用磁路來讀取連接到電抗電動機 ^ 切獨兀*件、標不電抗電動機 70件絕對位置的絕對標尺;以及 利用磁感測器檢測由絕對標尺引. ψ φ ^ ^ 5丨起的磁通密度變化,並輸 出才示不電抗電動機元件絕對測量位置的信號。 47·如請求項46的方法,絕對標尺為絕對數字尺度。 48. 如請求項46的方法,進—牛— ν包括利用磁感測器輸出連 續測里的電抗電動機元件絕對位置間的内插位置。 49. 如請求項46的方法,進一步包括: 利用磁感測器讀取連接到電抗 pa ^ ^ ^ 电玩電動機兀件、標示絕對標尺 間^内電抗電動機元件增量位置的增量標尺.以及 化測器檢測由絕對和增量標丁尺引起的磁通密度變 :和St抗電動機元件測量位置的信號,該位置由絕 對和增里標尺51起的磁通密度變化組合而來。 50. 如請求項46的方法,推— 陪雜冰B余 步包括無需侵入電抗元件的 離Up ’即可讀取絕對和相對增量尺度。 51. 一種測量電抗電動機元件位置的方法,包括: 38 200922107 使用標示電抗元件絕對位置的絕對數字尺度測量電抗電 動機元件的第一位置;以及 通過測量間隔内的模擬變化,在絕對數字尺度内插入第二 位置。 52. 如請求項51的方法,進一步包括無需侵入封裝電抗元 件的隔離外殼内部即可測量第一位置。· 53. 如請求項51的方法,絕對數字尺度連接到電抗元件上。 54. 如請求項51的方法,絕對數字尺度為單軌道格雷碼尺 度。 55. 如請求項51的方法,進一步包括使用磁源和感測器來 測量第一位置。 56. —種具有轉子和定子的電動機回饋系統,該回饋系統 包括·’ 一個圍繞轉子的框架; 至少一個位於轉子上的尺度; 位於框架上的多個讀取頭;讀取頭設定根據尺度平移測量 來確定切線位置;以及 一個與讀取頭連接的處理器;該處理器設置用來根據切線 位置測量確定轉子相對於參考框架的偏心和旋轉位置。 39 200922107 57. 如請求項56的回饋系統,多個讀取頭間大體等距離排 列。 58. 如請求項56的回饋系統,多個讀取頭包含光學、磁學、 感應或電容讀取頭。 59. 如請求項56的回饋系統,多個讀取頭至少包含三個讀 取頭。 60. 如請求項56的回饋系統,處理器設置為同時確定轉子 的偏心和旋轉位置。magnet. One or more electromagnetics. The sensing device of claim 1, wherein the magnetic source comprises 5. the sensing device of claim 1, the Hall effect sensor. Wherein the flux sensor comprises one or more 6. The sensing device of claim 1 is a magnetic sensor. Wherein the magnetic flux sensor comprises one or more. 7. The sensing device of claim 1, wherein the magnet body comprises a reactive electric 30 200922107 machine component, and the magnetic flux sensor comprises a magnetic source and the reaction motor The distance between the components is proportional to the output. 8. The sensing device of claim 1 further comprising a first scale coupled to the magnet body indicating the absolute position of the ferromagnetic body. 9. The sensing device of claim 8, wherein the magnetic susceptor sensor detects various magnetic flux density changes caused by the first scale and outputs a signal indicative of the measured absolute position of the ferromagnetic body. 10. The sensing device of claim 8, wherein the first scale is an absolute digital scale. 11. The sensing device of claim 10, wherein the absolute digital scale is a single track Gray code scale. 12. The sensing device of claim 8, wherein the flux sensor outputs a continuously measured interpolated position between the absolute positions of the ferromagnetic bodies. 13_ The sensing device of claim 8, further comprising: a second scale connected to the ferromagnet indicating the incremental position of the ferromagnet within the first scale interval, wherein the flux sensor is detectable by the first and second scales The flux density changes and outputs a signal indicative of the measured absolute position of the ferromagnetic body, which is a combination of changes in flux density caused by the absolute and incremental scales. 31 200922107 The two-dimensional magnetic source and the measuring beam of the whole 14. The sensing device of claim 13 includes at least a magnetic sensor, wherein each pair of magnetic source and magnetic sensor has a spacing from the incrementing 15. The corresponding center distance. 15. The sensing device of claim 13, further comprising at least two magnetic, original and magnetic sensors, wherein each pair of magnetic source and magnetic sensor has a 婵I The center distance corresponding to the number of fractional pitches of the ruler. The sensing device of claim 13, further comprising at least two pairs of magnetic sources and magnetic sensors, wherein each pair of magnetic sources and magnetic sensors are provided There is a corresponding spacing equal to the 1/4 pitch of the incremental I and the ruler. 17. The sensing device of claim 13, further comprising at least two pairs of magnetic sources and a magnetic sensor 'corresponding to the sensor and the magnetic source The arrangement is such that the combined output of the sensor comprises a quadrature count. 18. The sensing device of claim 13, wherein the magnetic sensor and the magnetic source are along at least one of a pitch of the first or second scale Positioning in a parallel direction. 19. The sensing device of claim 13, wherein the magnetic sensing And positioning the magnetic source in a direction at least perpendicular to one of the first or second scale pitches. 20. A device for measuring the position of a reactance motor component, comprising: 32 200922107 connecting to the reactance component, determining the absolute position of the reactance component a first scale; the first sensor system is configured to read the first scale; the second scale connected to the reactance element to determine the incremental position of the reactance element in the first scale interval; the first sensing Is system setting To read the second scale; connected to the reactance element, a third scale for measuring the spacing between the reactance motor element and the magnetic source. The second sensor system is configured to read the third scale; and connected to the first Second and third sensor systems for indicating the measured position of the reactance motor component from the combined output of the first, second and third sensor systems. 21. Apparatus as claimed in claim 20, third scale In combination with the first scale, the first sensor is used to read the third scale. 22. As claimed in claim 20, the third scale is combined with the second scale and the second sensor is used for reading. The third scale. 23. The device of claim 20, further comprising a housing for encapsulating the environment and the reactive components in the environment. Here, the first, second, and third sensors can be read without immersing the inside of the housing. 1. A second and a third scale. 24. A sensor system comprising: a magnetic source; 33 200922107 a ferromagnetic element of an external magnetic source; a plurality of magnetic sensors arranged around the axis of symmetry of the ferromagnetic element Wherein, the magnetic source is oriented such that the direction of magnetization is parallel to the axis of symmetry of the ferromagnetic element, and the opening of the ferromagnetic element faces the ferromagnetic body to measure the position of the ferromagnetic body. 25. The sensor system of claim 24, magnetic The source is cylindrical. 26. The sensor system of claim 24, wherein the ferromagnetic component is cup shaped. 27. The sensor system of claim 24, wherein the ferromagnetic component is cylindrical β. 28. The sensor system of claim 24, the magnetic sensor, is arranged in a track configuration. 29. The sensor system ' magnetic sensor of claim 24 is staggered with respect to the orientation of the flux density lines between the ferromagnetic element and the magnetic source. 30. The sensor system of claim 24, wherein the magnetic sensors are arranged in pairs, each pair being alternately arranged with respect to a magnetic flux density line orientation between the ferromagnetic element and the magnetic source, wherein each sensor Set to provide a differential output with at least one noise immunity. 31. The sensor system of claim 24, further comprising a first scale coupled to the shovel 34 200922107 body, indicating the absolute position of the ferromagnetic body. 32. The sensor system ' magnetic sensor of claim 31 detects a change in magnetic flux density caused by the first autumn gauge and can output a signal indicative of the measured absolute position of the ferromagnetic body. 33. The sensor system of claim 31, wherein the first scale is an absolute digital scale. 34. The sensor system of claim 31, wherein the magnetic sensor outputs an interpolated position between the absolute positions of the ferromagnetic bodies that are continuously measured. 35. The sensor system of claim 31, further comprising: a 4th C7 · —* ·Τ?Γ> /X., connected to the ferromagnet, indicating the incremental position of the ferromagnet within the first scale interval, wherein The magnetic sensor can detect changes in magnetic flux density caused by the first and second scales and can output a signal indicative of the ferromagnetic measurement position, the measurement position being combined by a change in magnetic flux density caused by the absolute and incremental scales. 36. A bearingless motor comprising: a magnetically suspended rotor; a stator; and a sensing device comprising: a magnetic source; a magnetic sensor; and 35 200922107 a sense of being equipped with a magnetic source and a magnetic sensor The detector support, wherein the magnetic source and the magnetic sensor are configured as a magnetic circuit from the magnetic source to the rotor, from the rotor to the sensor, and back to the magnetic source through the sensor support. 37. The bearingless motor of claim 36, wherein the magnetic sensor includes an output proportional to a change in magnetic flux density, the change in magnetic flux density being dependent on a distance between the magnetic source and the rotor. 38. The bearingless motor of claim 37, further comprising an absolute scale coupled to the rotor for indicating the absolute position of the rotor. 39. The bearingless motor of claim 38, wherein the magnetic sensor detects a change in magnetic flux density caused by the absolute scale and outputs a signal indicative of the measured absolute position of the rotor. 40. The bearingless motor of claim 38, wherein the absolute scale is an absolute digital scale. 41. The bearingless motor of claim 38, wherein the magnetic sensor outputs an interpolated position between the absolute positions of the rotors that are continuously measured. 42. The bearingless motor of claim 38, further comprising: an incremental scale coupled to the rotor, indicating an incremental position of the rotor within an absolute scale interval; 36 200922107 wherein the magnetic sensor detects magnetic caused by the absolute and incremental scales The pass density varies and a signal indicative of the position of the rotor measurement can be output, which is a combination of changes in flux density caused by the absolute and incremental scales. 43. The bearingless motor of claim 42, further comprising: a housing for encapsulating the environment and the magnetically suspended rotor within the environment, wherein the sensor system can read the absolute and incremental scales without invading the interior of the housing. 44. A bearingless motor comprising: a magnetic levitation rotor; a stator; and a position feedback system comprising: a magnetic source; a ferromagnetic component external to the magnetic source; and a plurality of magnetic sensing arrangements around the axis of symmetry of the ferromagnetic component The orientation of the magnetic source is such that the direction of magnetization is parallel to the axis of symmetry of the ferromagnetic element, and the opening of the ferromagnetic element faces the ferromagnetic body to measure the position of the rotor. 45. A method of measuring the position of a reactance motor component, comprising: mounting a magnetic source and a magnetic sensor onto a sensor support; forming a source from the magnetic source to the reactance motor component, from the reactance motor component to the sensor, And returning the magnetic circuit of the magnetic source through the sensor support; outputting a signal from the magnetic sensor proportional to the change of the magnetic flux density, the change of the distance pass density of the magnetic wave 37 200922107 depends on the magnetic source and the reactance motor component The method of claim 45, further comprising: utilizing a magnetic circuit to read an absolute scale connected to the reactance motor, the absolute position of the non-reacting motor 70; and detecting by the magnetic sensor The absolute scale leads to a change in the magnetic flux density of ψ φ ^ ^ 5 , and the output shows the signal that the absolute measurement position of the motor component is not reacted. 47. The method of claim 46, wherein the absolute scale is an absolute numerical scale. 48. The method of claim 46, wherein the invoking - ν comprises using an electromagnetic sensor to output an interpolated position between the absolute positions of the reactive motor components in the continuous measurement. 49. The method of claim 46, further comprising: using a magnetic sensor to read an incremental scale connected to the reactance pa ^ ^ ^ gaming motor component, indicating the incremental position of the inner reactance motor component between the absolute scales. The detector detects the change in magnetic flux density caused by the absolute and incremental scales: and the signal of the position at which the St is resistant to the motor component, which is combined by the change in the magnetic flux density from the absolute and increased scale 51. 50. As in the method of claim 46, the push-to-ice B-step includes reading the absolute and relative incremental scales without going into the Up' of the reactance element. 51. A method of measuring the position of a reactance motor component, comprising: 38 200922107 measuring a first position of a reactance motor component using an absolute digital scale indicating the absolute position of the reactance component; and inserting the first digital scale by analog variation within the measurement interval Two locations. 52. The method of claim 51, further comprising measuring the first location without invading the interior of the isolation enclosure of the packaged reactive component. 53. As in the method of claim 51, the absolute digital scale is connected to the reactance element. 54. As in the method of claim 51, the absolute digital scale is a single-track Gray code scale. 55. The method of claim 51, further comprising measuring the first location using a magnetic source and a sensor. 56. A motor feedback system having a rotor and a stator, the feedback system comprising: a frame surrounding the rotor; at least one dimension on the rotor; a plurality of readheads located on the frame; the readhead setting is translated according to the scale Measuring to determine a tangential position; and a processor coupled to the readhead; the processor being configured to determine an eccentricity and rotational position of the rotor relative to the reference frame based on the tangential position measurement. 39 200922107 57. As in the feedback system of claim 56, the plurality of read heads are arranged substantially equidistantly. 58. The feedback system of claim 56, wherein the plurality of readheads comprise optical, magnetic, inductive or capacitive read heads. 59. The feedback system of claim 56, wherein the plurality of read heads comprise at least three read heads. 60. The feedback system of claim 56, the processor being arranged to simultaneously determine the eccentricity and rotational position of the rotor.
TW097124038A 2007-06-27 2008-06-27 Position feedback for self bearing motor TWI491168B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94668607P 2007-06-27 2007-06-27

Publications (2)

Publication Number Publication Date
TW200922107A true TW200922107A (en) 2009-05-16
TWI491168B TWI491168B (en) 2015-07-01

Family

ID=44728089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097124038A TWI491168B (en) 2007-06-27 2008-06-27 Position feedback for self bearing motor

Country Status (1)

Country Link
TW (1) TWI491168B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501537B (en) * 2013-10-30 2015-09-21 Method for controlling digital dual loop of magnetic levitation system
TWI815781B (en) * 2022-05-24 2023-09-11 日商日機裝股份有限公司 Motor bearing wear monitoring device, method for adjusting motor bearing wear monitoring device, and program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4659991A (en) * 1983-03-31 1987-04-21 Ndt Technologies, Inc. Method and apparatus for magnetically inspecting elongated objects for structural defects
US4922197A (en) * 1988-08-01 1990-05-01 Eaton Corporation High resolution proximity detector employing magnetoresistive sensor disposed within a pressure resistant enclosure
US4992733A (en) * 1989-11-17 1991-02-12 Visi-Trak Corporation Position sensing transducer having a circular magnet with an integral flux distorting member and two magnetic field sensors
WO1992012438A1 (en) * 1990-12-28 1992-07-23 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
US6909281B2 (en) * 2002-07-03 2005-06-21 Fisher Controls International Llc Position sensor using a compound magnetic flux source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI501537B (en) * 2013-10-30 2015-09-21 Method for controlling digital dual loop of magnetic levitation system
TWI815781B (en) * 2022-05-24 2023-09-11 日商日機裝股份有限公司 Motor bearing wear monitoring device, method for adjusting motor bearing wear monitoring device, and program

Also Published As

Publication number Publication date
TWI491168B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5416104B2 (en) Position feedback for self-bearing motors
US11110598B2 (en) Compact direct drive spindle
KR101426877B1 (en) Rotation angle detection device, rotary machine, and rotation angle detection method
JP6130987B2 (en) Robot drive with magnetic spindle bearing
CN107135667B (en) Position feedback for sealed environments
WO2007055135A1 (en) Magnetic encoder device
JP2004251831A (en) Rotary angle detector
TW200922107A (en) Position feedback for self bearing motor
JP2011257432A (en) Position detector and linear driving apparatus
JP2009276262A (en) Position detector and linear drive device
CN109211272A (en) Angle transducer constant multiplier measurement method is tilted using the speed change tilt momenttum wheel of Space Rotating torque
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
CN114649985A (en) Method for determining jitter
JP2020153980A (en) System for determining at least one rotation parameter of rotating member
JP5007922B2 (en) Magnetic encoder device
Wang et al. Recent Patents on Magnetic Encoder and its use in Rotating Mechanism
TW201534445A (en) Sealed robot drive
CN117375474A (en) Position compensation method, device, medium, encoder and control system
JP2008014671A (en) Magnetic encoder device