200920965 九、發明說明: 【發明所屬之技術領域3 技術領域 本發明係有關於一用於結構體之地震隔離裝置、一用 5 於設置該地震隔離裝置之方法以及一地震隔離元件。 本發明主張2007年10月26日申請之日本專利申請案第 2007-279148號之優先權,且其内容在此完全加入作為參 考。 t先前技術3 10 發明背景 以往,在如建築物、橋樑、高架道路及高架軌道等結 構體中,已有一種放置在一如結構體之建築物骨架等上部 與一如建築物之地基等下部之間的地震隔離裝置,藉此緩 衝當暴露於如當地震發生時之大量能量時,該上部相對該 15 下部之振動。例如,以下專利文獻1至3已揭露一種在該上 部與該下部之間組合一隔離器及一緩衝機構的地震隔離裝 置。 在前述地震隔離裝置中,由多數交替堆疊金屬板與多 數板狀彈性體製成之隔離器係設置在該上部與該下部之間 20 且固定在它們兩者上。該上部透過該隔離器被該下部支 持,且一緩衝機構具有多數由一彈性塑膠材料製成之地震 隔離元件(彎曲元件)。前述多數地震隔離元件有規則地放置 在該隔離器附近(例如,以一徑向方式),且該等地震隔離元 件被獨立地固定,詳而言之,其一端固定在於該上部而另 5 200920965 一端固定於該下部。在該緩衝機構中,當大量能量作用在 一結構體上,且因此該上部在一水平方向上相對該下部振 動時,例如,當發生地震時,地震隔離元件進行塑性變形 以吸收該地震能量。換言之,進入該上部之能量會被吸收, 5 使得該等地震隔離元件可進行塑性變形。 專利文獻1:日本專利第3533110號 專利文獻2:日本專利第3543004號 專利文獻3 :日本未審查專利申請案,第一次公開第 2004-340301號 10 【發明内容】 發明之詳細說明 發明欲解決之問題 在前述習知地震隔離裝置中,作為地震隔離元件之彎 曲元件放置成與振動方向平行,以獲得最高之能量吸收效 15 率。因此,假設能量由所有方向進入該地震隔離裝置,則 希望即使該能量由某特殊方向進入時,亦可得到一相等之 地震隔離效能。因此,在設計一地震隔離元件時,必須作 非常詳細之評估。此外,由於前述評估,對該地震隔離元 件之形狀會有特殊之限制,且該地震隔離元件必須依據這 20 些限制準確地製造,以提供一預定形狀。 因此,在該習知地震隔離裝置中,在設計階段與在製 造階段均需要大量人力,導致製造成本增加。 本發明已有鑒於前述情形作成,且其目的係提供一在 設計階段與在製造階段均具有較高生產效率及較低之製造 200920965 成本的用於結構體之地震隔離裝置、一用於設置該裝置之 方法以及一地震隔離元件。 為了達成前述目的,本發明提供一種用於緩衝一結構 體之上部相對該結構體之下部之振動的地震隔離裝置。該 5 地震隔離裝置具有多數U形地震隔離元件、一第一結合板、 及一第二結合板。該地震隔離元件之一端固定於該第一結 合板上,且該地震隔離元件之另一端固定於該第二結合板 上。某些前述多數地震隔離元件係朝一預定方向放置在該 第一結合板與該第二結合板之間,而其他前述多數地震隔 10 離元件則朝一與該預定方向相反之方向放置在該第一結合 板與該第二結合板之間。 在本發明之地震隔離裝置中,該地震隔離元件之兩端 可以螺栓分別固定於該第一結合板與該第二結合板。每一 個螺栓可設置在一將該地震隔離元件之一端固定於該第一 15 結合板之部份處及一將該地震隔離元件之另一端固定於該 第二結合板之部份處,或者可多數地設置在各個部份處。 例如,可使用三個螺栓來進行固定,且各螺栓最好設置成 位於一三角形之頂點處。此外,該地震隔離元件之兩端可 分別焊接於該第一結合板與該第二結合板。 20 在本發明之地震隔離裝置中,在該第一結合板與該第 二結合板上分別形成有多數凹部,且該地震隔離元件之一 端或另一端嵌入該等凹部,然後,該地震隔離元件之兩端 可分別嵌入且固定於該第一結合板與該第二結合板。 本發明之地震隔離裝置可包括一隔離器,且該隔離器 7 200920965 ”有夕數又錯堆疊之金屬板與板狀彈性體,並且該隔離器 最好放置在該上部與該下部之間。 本發明提供—種用於設置-地震隔離裝置之方法,且 該地震隔離裝置具有_可固定於_結構體之下部之第一結 合板、—可固定於相對該下部之結構體之上部的第二結合 板、及多數於該第—結合板與該第二結合板之間分別固定 於該第-結合板與該第二結合板且朝—骸方向與一與該 5 10 預定方向減之方向放置在該下部與該上部上。這設置方 法包括一將該地震隔離裝置設置在該下部上,使得該等地 震離7〇件沿該上部至該下部之預先設定振動方向定位的 步驟、-將該地震隔離裝置固定於該下部之步驟、一將該 上部設置在該地震隔«置上之步驟、及-將該地震隔離 裝置固定於該上部之步驟。 本發明提供一種地震隔離元件,該地震隔離元件放置 在一上部與—下部之間’藉此利用其自身之塑性變形緩衝 在預先》又疋方向上產生之該上部至該下部的振動。這地 震隔離元件形成為-U形且沿著縣之預歧定方向放置 在該上部與該下部之間,且其—端狀於該下部並且其另 —端固定於該上部。 、 &在本發明中,當例如地震等大量能量作用在包括一上 4與-下部之結構體上,藉此使該上部相對該下部於一放 地震隔離元件之方向上振動時,該等地震隔離元件 進订塑性變形並於—端遠離另一端之方向上移動,藉此消 W入该上部之能量。因此’緩衝該上部之振動。 20 200920965 依據本發明,一振動進入之方向被預先設定,且該等 地震隔離元件係放置成可沿著該設定方向定位,如此可有 效地緩衝在該設定方向上產生之上部的振動。換言之,在 本發明中,由於並未假設能量由所有方向進入,而是假設 5 能量僅由一特定方向進入,所以與一習知情形不同地,不 必對設計該等地震隔離元件進行詳細評估。此外,由於未 對該等地震隔離元件之形狀賦予特殊限制,因此不必提高 該等地震隔離元件之切削準確性至一習知地震隔離元件的 ;: 程度。 10 發明效果 本發明之地震隔離裝置之生產效率在設計階段與在製 造階段兩者均可提高,且因此製造成本較低。 圖式簡單說明 第1圖是一立體圖,顯示本發明之一地震隔離裝置。 15 第2圖是一側平面圖,顯示本發明之地震隔離裝置。 第3圖是一沿著第2圖中之線III-III所截取之橫截面 I 圖,顯示本發明之地震隔離裝置。 第4圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第一示範變化例。 20 第5圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第二示範變化例。 第6圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第三示範變化例。 第7圖是一立體圖,顯示一用於將設置在本發明之地震 200920965 隔離裝置上之地震隔離元件固定至一結合板之方法的第一 示範變化例。 第8圖是一立體圖,顯示一用於將設置在本發明之地震 隔離裝置上之地震隔離元件固定至一結合板之方法的第二 5 示範變化例。 第9圖是一立體圖,顯示本發明之地震隔離裝置的一示 範變化例。 第10圖是一平面圖,顯示本發明之地震隔離裝置的示 範變化例。 10 【實施方式】 實施發明之最佳態樣 以下將參照第1至10圖說明本發明之地震隔離裝置的 數個實施例。 如第1圖至第3圖所示,此實施例之地震隔離裝置1具有 15 八個地震隔離元件10、一第一結合板20及一第二結合板 30,且各地震隔離元件10之一端11固定在該第一結合板20 上,而各地震隔離元件10之另一端12則固定在該第二結合 板30上。 該地震隔離元件10是一窄桿狀鋼製品且在其中間部份 20 彎曲而在由側邊觀看時,形成一U形。寬度大於其他部份之 托架部份13與14分別設在該地震隔離元件10之兩成對端 上,且該地震隔離元件10在除了該等托架部份13與14以外 之部份均具有類似尺寸。該等托架部份13與14設置成互相 平行,且兩貫穿孔(圖未示)分別形成在該等托架部份13與14 10 200920965 處。 該第一結合板20是一厚度均一之矩形鋼板,且各地震 隔離元件10之一端11透過一螺栓40固定在上表面。該螺栓 40螺入之一螺孔(圖未示)形成在該第一結合板20之上表 5 面,且多數埋入一結構體之下部以將此實施例之地震隔離 裝置1固定於該下部的螺樁21直立地設置在該第一結合板 20之下表面。 該第二結合板30亦是一厚度均一之矩形鋼板,且各地 '震隔離元件10之另一端12透過一螺栓40固定在該下表面。 10 該螺栓40螺入之一螺孔(圖未示)形成在該第二結合板30之 下表面,且多數埋入一結構體之上部以將此實施例之地震 隔離裝置1固定於該上部的螺樁31直立地設置在該第二結 合板30之上表面。 八個地震隔離元件10之四個地震隔離元件10A等距地 15 沿該第一結合板20之一側邊20a放置且亦朝向一垂直於該 側邊20a之方向,並且一端11藉該側邊20a透過該螺栓40固 、 定於該第一結合板20之上表面。此外,這四個地震隔離元 件10A等距地沿該第二結合板30之一側邊30a放置且亦朝向 一垂直於該側邊30a之方向,並且另一端12藉該側邊30a透 20 過該螺栓40固定於該第二結合板30之下表面。 八個地震隔離元件10之四個地震隔離元件10 B等距地 沿該第一結合板20之另一側邊20b,即,沿著平行於四個地 震隔離元件10A所固定之側邊20a的另一側邊20b放置且亦 朝向一垂直於該側邊20b之方向,並且一端11藉該側邊20b 11 200920965 透過該螺栓40固定於該第一結合板20之上表面。此外,這 四個地震隔離元件10 B等距地沿該第二結合板3 0之一側邊 30b,即,沿著平行於四個地震隔離元件10A所固定之側邊 30a的另一側邊30b放置且亦朝向一垂直於該側邊30b之方 5 向,並且另一端12藉該側邊30b透過該螺栓40固定於該第二 結合板30之下表面。 前述四個地震隔離元件10 A與另外四個地震隔離元件 10 B固定在該第一結合板2 0與該第二結合板3 0上,且該等地 震隔離元件10A配置成使得該等地震隔離元件10A之彎曲 10 部份由該第一結合板20與該第二結合板30之間朝一預定方 向突出。該等地震隔離元件10B配置成使得該地震隔離元件 10 B之彎曲部份由該第一結合板2 0與該第二結合板3 0之間 朝一與該預定方向相反之方向突出,換言之,該等地震隔 離元件10A放置在一由第2圖中之雙箭頭X所示之正向上, 15 而該等地震隔離元件10B則放置在由該雙箭頭X所示之負 向上。該第一結合板20與該第二結合板30係放置成使得四 側邊在由上方觀看時均互相對齊。 前述地震隔離裝置1係依據以下步驟設置在如一建築 物骨架等上部A與如一在該結構體中之地基等下部B之間。 20 例如,在欲放置在一橋墩上之橋樑樑架等結構體中, 該上部A至該下部B之振動方向被預先設定。依據這設定, 首先,將該地震隔離裝置1放置在該下部B上,使得該等地 震隔離元件10A與10B沿著該上部A之預先設定振動方向 (由第2圖中之雙箭頭X所示之雙向(正/負)方向)定位。如前 12 200920965 所述,該等螺樁21直立地設置在該地震隔離裝置1中之第一 結合板20的下表面上,且該地震隔離裝置1以該等螺樁21埋 入該下部B之方式固定於該下部B。此外,雖然未顯示,該 等螺樁21結合至設置在該下部B内之補強鋼,藉此,該地震 5 隔離裝置1可更強固地結合於該下部B。 接著,將該上部A放置在該地震隔離裝置1上。如前所 述,該等螺樁31直立地設置在該地震隔離裝置1中之第二結 合板30的上表面上,且該地震隔離裝置1以該等螺樁31埋入 該上部A之方式固定於該上部A。此外,雖然未顯示,該等 10 螺樁31結合至設置在該上部A内之補強鋼,藉此,該地震隔 離裝置1可更強固地結合於該上部A。 如前所述,該地震隔離裝置1設置在該上部A與該下部 A之間。當如地震等大量能量作用在包括該上部A與該下部 B之結構體上,且藉此使該上部A相對該下部B朝一放置該 15 等地震隔離元件10之方向(由第2圖中之雙箭頭X所示之雙 向(正/負)方向)振動時,該等地震隔離元件10進行塑性變 形,以朝一端11遠離另一端12之方向移動,藉此消耗進入 該上部A之能量。因此,可緩衝該上部A之振動。 依據該地震隔離裝置1,振動進入之方向被預先設定, 20 且該等地震隔離元件10被放置成可沿著該設定方向(由第2 圖中之雙箭頭X所示之雙向(正/負)方向)定位,藉此可有效 緩衝在該設定方向中產生之該上部A的振動。換言之,由於 未假設能量由所有方向進入該上部A,而是假設能量僅由一 特定方向進入,所以與一習知情形不同,不必在設計該地 13 200920965 震隔離 元件ίο時進行詳細評估。 隔離兀件10之形狀賦予特殊限 隔離元件10之切削準確性至— 。此外,由於未對該等地震 制,因此不必提高該等地震 —習知地震隔離元件的程度。 該地晨隔離裝L之生產效率在設計階段與在製 kP白段1¾者均可提高’且因此觀震隔離裝置丨之製造成本 較低。 第4圖顯不一設置在本發明之地震隔離裝置1上之地震200920965 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a seismic isolation device for a structure, a method for providing the seismic isolation device, and a seismic isolation element. The present invention claims priority to Japanese Patent Application No. 2007-279148, filed on Jan. 26,,,,,,,, BACKGROUND OF THE INVENTION In the past, in structures such as buildings, bridges, elevated roads, and elevated rails, there has been a place such as a building skeleton such as a structure and a lower portion such as a foundation of a building. The seismic isolation device between them thereby buffering the vibration of the upper portion relative to the lower portion of the 15 when exposed to a large amount of energy, such as when an earthquake occurs. For example, the following Patent Documents 1 to 3 have disclosed a seismic isolation device in which an isolator and a buffer mechanism are combined between the upper portion and the lower portion. In the foregoing seismic isolation device, an isolator made of a plurality of alternately stacked metal plates and a plurality of plate-like elastic bodies is disposed between the upper portion and the lower portion 20 and fixed to both of them. The upper portion is supported by the lower portion through the isolator, and a buffer mechanism has a plurality of seismic isolation members (bending members) made of an elastic plastic material. The plurality of seismic isolation elements are regularly placed adjacent to the isolator (eg, in a radial manner), and the seismic isolation elements are independently fixed, in particular, one end of which is fixed to the upper portion and the other 5 200920965 One end is fixed to the lower portion. In the buffer mechanism, when a large amount of energy acts on a structure, and thus the upper portion vibrates in a horizontal direction relative to the lower portion, for example, when an earthquake occurs, the seismic isolation element is plastically deformed to absorb the seismic energy. In other words, the energy entering the upper portion is absorbed, 5 making the seismic isolation elements plastically deformable. Patent Document 1: Japanese Patent No. 3533110 Patent Document 2: Japanese Patent No. 3,354,004 Patent Document 3: Japanese Unexamined Patent Application Publication No. Publication No. No. No. No. No. No. No. No. Problem In the aforementioned conventional seismic isolation device, the bending element as the seismic isolation element is placed in parallel with the vibration direction to obtain the highest energy absorption efficiency. Therefore, assuming that energy enters the seismic isolation device from all directions, it is desirable to obtain an equal seismic isolation performance even when the energy enters from a particular direction. Therefore, when designing a seismic isolation component, a very detailed assessment must be made. Moreover, due to the foregoing evaluation, the shape of the seismic isolation element is particularly limited, and the seismic isolation element must be accurately fabricated in accordance with these 20 limits to provide a predetermined shape. Therefore, in the conventional seismic isolation device, a large amount of labor is required both in the design phase and in the manufacturing phase, resulting in an increase in manufacturing cost. The present invention has been made in view of the foregoing circumstances, and an object thereof is to provide a seismic isolation device for a structure having a high production efficiency at a design stage and a manufacturing stage, and a low manufacturing cost of 200920965, A method of apparatus and a seismic isolation element. In order to achieve the foregoing objects, the present invention provides a seismic isolation device for buffering vibrations above an upper portion of a structure relative to a lower portion of the structure. The 5 seismic isolation device has a plurality of U-shaped seismic isolation elements, a first bonding plate, and a second bonding plate. One end of the seismic isolation element is fixed to the first bonding plate, and the other end of the seismic isolation element is fixed to the second bonding plate. Some of the plurality of seismic isolation elements are disposed between the first bonding plate and the second bonding plate in a predetermined direction, and the other plurality of seismic isolation elements are disposed in the first direction opposite to the predetermined direction. Between the bonding plate and the second bonding plate. In the seismic isolation device of the present invention, both ends of the seismic isolation element may be respectively fixed to the first bonding plate and the second bonding plate by bolts. Each bolt may be disposed at a portion of the seismic isolation element fixed to the first 15 bonding plate and a portion of the seismic isolation component fixed to the second bonding plate, or Most of them are set at various parts. For example, three bolts can be used for fixing, and each bolt is preferably placed at the apex of a triangle. In addition, both ends of the seismic isolation element may be respectively soldered to the first bonding board and the second bonding board. In the seismic isolation device of the present invention, a plurality of recesses are respectively formed on the first bonding plate and the second bonding plate, and one or the other end of the seismic isolation element is embedded in the concave portions, and then the seismic isolation element is Both ends can be respectively embedded and fixed to the first bonding board and the second bonding board. The seismic isolation device of the present invention may include an isolator, and the isolator 7 200920965 "has a metal plate and a plate-like elastic body that are stacked in a wrong manner, and the separator is preferably placed between the upper portion and the lower portion. The present invention provides a method for providing a seismic isolation device, and the seismic isolation device has a first bonding plate that can be fixed to a lower portion of the structural body, and can be fixed to an upper portion of the structural body opposite to the lower portion. a second bonding plate, and a plurality of the first bonding plate and the second bonding plate are respectively fixed to the first bonding plate and the second bonding plate, and are opposite to a direction of the 骸 and a direction opposite to the predetermined direction of the 5 10 Placed on the lower portion and the upper portion. The method of setting includes a step of positioning the seismic isolation device on the lower portion such that the earthquake is positioned from the upper portion to the lower predetermined vibration direction of the lower portion, a step of fixing the seismic isolation device to the lower portion, a step of disposing the upper portion on the seismic isolation, and a step of fixing the seismic isolation device to the upper portion. The present invention provides a ground Seismic isolation element, the seismic isolation element is placed between an upper portion and a lower portion to thereby dampen the vibration of the upper portion to the lower portion in the forward direction and the lower portion by its own plastic deformation. The seismic isolation element is formed as a U-shaped and placed between the upper portion and the lower portion in a pre-discriminating direction of the county, and which is end-shaped to the lower portion and whose other end is fixed to the upper portion. In the present invention, for example, when When a large amount of energy such as an earthquake acts on a structure including an upper 4 and a lower portion, thereby causing the upper portion to vibrate in a direction relative to the lower portion of the seismic isolation element, the seismic isolation elements are plastically deformed and - The end moves away from the other end, thereby dissipating the energy into the upper portion. Therefore, the vibration of the upper portion is buffered. 20 200920965 According to the present invention, a direction of vibration entry is preset, and the seismic isolation elements are placed. The positioning can be positioned along the set direction, so that the vibration of the upper portion is effectively buffered in the set direction. In other words, in the present invention, since the energy is not assumed Directional entry, but assumes that 5 energy enters only in a particular direction, so unlike a conventional case, it is not necessary to make a detailed assessment of the design of such seismic isolation elements. Furthermore, since the shape of the seismic isolation elements is not given Special limitations, so it is not necessary to increase the cutting accuracy of the seismic isolation elements to a conventional seismic isolation element;: degree. 10 Effect of the invention The production efficiency of the seismic isolation device of the present invention can be both at the design stage and at the manufacturing stage. Figure 1 is a perspective view showing a seismic isolation device of the present invention. 15 Figure 2 is a side plan view showing the seismic isolation device of the present invention. A seismic isolation device of the present invention is shown in cross section I taken along line III-III in Figure 2. Figure 4 is a perspective view showing a seismic isolation element disposed on the seismic isolation device of the present invention. The first exemplary variation. Figure 5 is a perspective view showing a second exemplary variation of a seismic isolation element disposed on the seismic isolation apparatus of the present invention. Fig. 6 is a perspective view showing a third exemplary variation of a seismic isolation element provided on the seismic isolator of the present invention. Fig. 7 is a perspective view showing a first exemplary variation of a method for fixing a seismic isolation element provided on an isolation device of the present invention 200920965 to a bonding plate. Figure 8 is a perspective view showing a second exemplary variation of a method for fixing a seismic isolation member provided on a seismic isolation device of the present invention to a bonded plate. Figure 9 is a perspective view showing an exemplary variation of the seismic isolation device of the present invention. Figure 10 is a plan view showing an exemplary variation of the seismic isolation device of the present invention. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION Several embodiments of the seismic isolation device of the present invention will be described below with reference to Figs. As shown in FIG. 1 to FIG. 3, the seismic isolation device 1 of this embodiment has 15 seismic isolation elements 10, a first bonding plate 20, and a second bonding plate 30, and one end of each seismic isolation element 10 11 is fixed on the first bonding board 20, and the other end 12 of each seismic isolation element 10 is fixed on the second bonding board 30. The seismic isolation element 10 is a narrow rod-shaped steel product and is bent at its intermediate portion 20 to form a U-shape when viewed from the side. The bracket portions 13 and 14 having a width greater than the other portions are respectively disposed on the two opposite ends of the seismic isolation element 10, and the seismic isolation element 10 is in portions other than the bracket portions 13 and 14. Has a similar size. The bracket portions 13 and 14 are disposed to be parallel to each other, and two through holes (not shown) are formed at the bracket portions 13 and 14 10 200920965, respectively. The first bonding plate 20 is a rectangular steel plate of uniform thickness, and one end 11 of each seismic isolation element 10 is fixed to the upper surface by a bolt 40. The bolt 40 is screwed into a screw hole (not shown) formed on the surface 5 of the first bonding plate 20, and is mostly embedded in a lower portion of the structure to fix the seismic isolation device 1 of the embodiment. The lower stud 21 is erected on the lower surface of the first binding plate 20. The second bonding plate 30 is also a rectangular steel plate of uniform thickness, and the other end 12 of the seismic isolation element 10 is fixed to the lower surface by a bolt 40. 10 a screw hole (not shown) of the bolt 40 is formed on the lower surface of the second joint plate 30, and a plurality of the upper portion of the structure is embedded in the upper portion of the structure to fix the seismic isolation device 1 of the embodiment to the upper portion. The studs 31 are erected on the upper surface of the second bonding plate 30. The four seismic isolation elements 10A of the eight seismic isolation elements 10 are equally spaced 15 along one of the side edges 20a of the first bonding plate 20 and also toward a direction perpendicular to the side edges 20a, and the one end 11 is borrowed from the side edges The bolt 20 is fixed to the upper surface of the first joint plate 20 through the bolt 40. In addition, the four seismic isolation elements 10A are equally spaced along one side edge 30a of the second bonding plate 30 and also face a direction perpendicular to the side edges 30a, and the other end 12 is permeable to the side edges 30a. The bolt 40 is fixed to the lower surface of the second bonding plate 30. The four seismic isolation elements 10 B of the eight seismic isolation elements 10 are equidistantly along the other side 20b of the first bonding plate 20, i.e., along the side 20a that is parallel to the four seismic isolation elements 10A. The other side 20b is placed and also oriented in a direction perpendicular to the side edge 20b, and the one end 11 is fixed to the upper surface of the first bonding board 20 through the bolt 40 by the side edge 20b 11 200920965. Furthermore, the four seismic isolation elements 10 B are equidistantly along one of the side edges 30b of the second bonding plate 30, i.e., along the other side of the side 30a that is parallel to the four seismic isolation elements 10A. The 30b is placed and also faces a direction perpendicular to the side of the side edge 30b, and the other end 12 is fixed to the lower surface of the second bonding plate 30 through the bolt 40 by the side edge 30b. The foregoing four seismic isolation elements 10 A and four other seismic isolation elements 10 B are fixed on the first bonding plate 20 and the second bonding plate 30, and the seismic isolation elements 10A are configured to isolate the seismic isolation. The curved portion 10 of the element 10A protrudes from the first bonding plate 20 and the second bonding plate 30 in a predetermined direction. The seismic isolation element 10B is configured such that a curved portion of the seismic isolation element 10 B protrudes from the first bonding plate 20 and the second bonding plate 30 in a direction opposite to the predetermined direction, in other words, The seismic isolation element 10A is placed in the forward direction indicated by the double arrow X in Fig. 2, and the seismic isolation elements 10B are placed in the negative direction indicated by the double arrow X. The first bonding plate 20 and the second bonding plate 30 are placed such that the four sides are aligned with each other when viewed from above. The foregoing seismic isolation device 1 is disposed between an upper portion A such as a building skeleton and a lower portion B such as a foundation in the structural body in accordance with the following steps. 20 For example, in a structure such as a bridge beam to be placed on a pier, the vibration directions of the upper portion A to the lower portion B are set in advance. According to this setting, first, the seismic isolation device 1 is placed on the lower portion B such that the seismic isolation elements 10A and 10B are along the predetermined vibration direction of the upper portion A (shown by the double arrow X in FIG. 2). Bidirectional (positive/negative) direction positioning. The screw piles 21 are erected on the lower surface of the first bonding plate 20 in the seismic isolation device 1 as described in the above 12 200920965, and the seismic isolation device 1 is embedded in the lower portion B with the screw piles 21 The manner is fixed to the lower portion B. Further, although not shown, the studs 21 are coupled to the reinforcing steel disposed in the lower portion B, whereby the seismic 5 isolating device 1 can be more strongly coupled to the lower portion B. Next, the upper portion A is placed on the seismic isolation device 1. As described above, the studs 31 are erected on the upper surface of the second bonding plate 30 in the seismic isolation device 1 and the seismic isolation device 1 is embedded in the upper portion A by the studs 31. Fixed to the upper part A. Further, although not shown, the 10 studs 31 are joined to the reinforcing steel disposed in the upper portion A, whereby the seismic isolation device 1 can be more strongly coupled to the upper portion A. As previously mentioned, the seismic isolation device 1 is disposed between the upper portion A and the lower portion A. When a large amount of energy such as an earthquake acts on the structure including the upper portion A and the lower portion B, and thereby the upper portion A faces the lower portion B toward the direction of the seismic isolation element 10 such as the 15 (by the second figure) When the two-way (positive/negative) direction indicated by the double arrow X vibrates, the seismic isolation elements 10 are plastically deformed to move toward the one end 11 away from the other end 12, thereby consuming energy entering the upper portion A. Therefore, the vibration of the upper portion A can be buffered. According to the seismic isolation device 1, the direction of vibration entry is preset, 20 and the seismic isolation elements 10 are placed along the set direction (bidirectional (positive/negative) indicated by the double arrow X in Fig. 2 Positioning), whereby the vibration of the upper portion A generated in the set direction can be effectively buffered. In other words, since it is not assumed that energy enters the upper portion A from all directions, but that energy is only entered by a specific direction, unlike a conventional case, it is not necessary to perform detailed evaluation when designing the ground isolation component ίο. The shape of the spacer element 10 imparts a special limit to the cutting accuracy of the spacer element 10 to -. Moreover, since there is no such seismic system, it is not necessary to increase the extent of such seismic-known seismic isolation elements. The production efficiency of the morning isolation device L can be increased in both the design stage and the in-process kP white section, and thus the manufacturing cost of the seismic isolation device is low. Fig. 4 shows an earthquake which is disposed on the seismic isolation device 1 of the present invention
震隔離元件50具有一用以讓一螺栓40通過一設置在一端之 10托架部份51的貫穿孔53、及一用以讓一螺栓40通過設置在 另一端之把架部份52的貫穿孔54。該地震隔離元件50利用 一螺栓40固定於該第一結合板20,且利用一螺栓40類似地 固定於該第二結合板30。 在前述地震隔離元件50中,如果各使用一螺栓40作為 15該結合板20與30之固定裝置,則該等結合板20與30會以一 較低之強度固定。但是,當多數振動於一與該預先設定方 向不同之方向作用在該地震隔離裝置1上時,其優點是該螺 栓比較不會鬆脫。此外,該等地震隔離裝置1係由較少數目 之組件構成,因此可以減少製造成本。 20 第5圖顯示一設置在本發明之地震隔離裝置上之地震 隔離元件的第二示範變化例。一作為第二示範變化例之地 震隔離元件60具有用以讓嫘栓40通過一設置在一端處之托 架部份61且位於一三角形之三頂點處的三個貫穿孔63 ’且 亦具有用以讓螺栓40通過一設置在另一端處之托架部份62 14 200920965 的三個貫穿孔64。該地震隔離元件60利用三個螺栓40固定 在該第一結合板20上,且類似地利用三個螺栓40固定在該 第二結合板30上。 在前述地震隔離元件60中,螺栓40之數目增加而作為 5 該等結合板20與30之固定裝置,藉此可以更強固地固定該 等結合板20與30。此外,該等螺栓40係設置成可位定一三 角形之頂點處,因此,當振動於一除了該設定方向以外之 方向作用在該地震隔離裝置1上時,其優點是相較於該等結 合板利用兩螺栓固定之情形,比較不會鬆脫,且該等螺栓 10 之數目增加以減少各螺栓之尺寸。 第6圖顯示設置在該地震隔離裝置1上之地震隔離元件 之第三示範變化例。在設置於一作為第三示範變化例之地 震隔離元件70兩端之托架部份71與72處,未形成用以讓一 螺栓通過之貫穿孔。接著,該等托架部份之其中一者,即, 15 該托架部份71,藉焊接固定於該第一結合板20。此外,雖 然未顯示,另一托架部份72藉焊接固定於該第二結合板 I 30。在該托架部份71(或該托架部份72)與該第一結合板 20(或該第二結合板30)之間形成有多數焊珠73。 - 在前述地震隔離元件70中,可以更強固地固定該等結 20 合板20與30。此外,該地震隔離裝置1係由較少數目之組件 構成,因此可減少製造成本。 第7圖是一用於將該地震隔離元件10固定至該地震隔 離裝置1中之第一結合板20(第二結合板30)上之方法的第一 示範變化例。在該第一示範變化例中,一用以嵌合一設置 15 200920965 在該地震隔離元件10之一端11上之托架部份13的埋頭孔 (對應於本發明之凹部)22形成在固定該地震隔離元件10之 該第一結合板20之側面上。接著,將該地震隔離元件10嵌 入該埋頭孔22,且一螺栓40可通過一形成在該托架部份13 5 處之貫穿孔15,並且透過該螺栓40固定於該第一結合板20 上。此外,雖然未顯示,設置在該地震隔離元件10之另一 端上之托架部份14亦嵌入一形成在該第二結合板30上之埋 頭孔,且螺栓40可通過一形成在該托架部份14上之貫穿孔 16,並且透過該螺栓40固定於該第二結合板30上。 10 在前述地震隔離裝置1中,該地震隔離元件10之一托架 部份13嵌入形成在該第一結合板20中之埋頭孔22,且接著 它們兩者互相固定在一起,如此可更強固地將該地震隔離 元件10固定在該第一結合板20上。類似地,該地震隔離元 件10之另一托架部份14嵌入一形成在該第二結合板30中之 15 埋頭孔,且接著它們兩者互相固定在一起,如此可更強固 地將該地震隔離元件10固定在該第二結合板30上。此外, 在該地震隔離元件10上產生之力的一部份可以藉作用在該 托架部份與該埋頭孔間之接觸表面之承載壓力而直接傳遞 至該第一結合板20,藉此減少由該螺栓40保持之力。因此, 20 可以減少該螺栓40的直徑,或減少該等螺栓40之數目。 第8圖是一立體圖,顯示一用於在該地震隔離裝置1中 將該地震隔離元件10固定至該第一結合板20(或該第二結 合板30)之方法的第二示範變化例。在該第二示範變化例 中,一U形輔助構件23藉焊接或其他裝置固定在固定有該地 16 200920965 震隔離元件1 〇之該第一結合板20之側面上。一對應於該第 —示範變化例之埋頭孔22的凹部24係由在該輔助構件23内 側之側面與該第一結合板20之側面形成,且係暴露成可被 該輔助構件23内側之側面包圍。接著,該地震隔離元件10 之一托架部份13嵌入該凹部24且透過該螺栓40固定在該第 —結合板20上。此外,雖然未顯示,設置在該地震隔離元 件10之另一端12處的托架部份14亦嵌入一形成在該第二結 合板30上且透過該螺栓40固定在該第二結合板3〇上的凹 部。 在前述地震隔離裝置1中,該地震隔離元件1〇亦可更強 固地固定在該第一結合板2〇上且固定在該第二結合板3〇 上。此外,由該螺栓40保持之力減少,且可因此得到類似 於前述之效果。 又,在前述實施例中,僅假設第2圖中之χ方向(雙向(正 /負)方向)作為該結構體之上部的振動方向’且沿這方向放 置多數地震隔離元件。但是,如第9圖與第1〇圖所示,可以 假設多數方向,例如,該χ方向(雙向(正/負)方向)與垂直於 4Χ方向之Υ方向(雙向(正/負)方向),作為該結構體之上部 的振動方肖„羊而§之,第9圖與第1Q圖所示之地震隔離裝 置101具有人個地震隔離元件1G、—第—結合板丨观一第 σ板13G ’且各地震隔離元件1G之一端丨丨固定在該第一 、、,° 口板120上’而各地震隔離元件10之另-端12則固定在該 第二結合板130上。 6亥第-結合板120是—厚度均—之矩形織,且各地震 17 200920965 隔離元件10之一端11透過一螺栓40固定在上表面。該螺栓 4 0螺入之一螺孔(圖未示)形成在該第一結合板12 0之上表 面,且多數螺樁21直立地設置在該第一結合板120之下表 面。 5 該第二結合板130亦是一厚度均一之矩形鋼板,且各地 震隔離元件10之另一端12透過一螺栓40固定在該下表面。 該螺栓40螺入之一螺孔(圖未示)形成在該第二結合板130之 下表面,且多數螺樁31直立地設置在該第二結合板130之上 表面。 10 八個地震隔離元件10之兩個地震隔離元件10C等距地 沿該第一結合板120之一側邊120a放置且亦朝向一垂直於 該側邊120a之方向,並且一端11藉該側邊120a透過該螺栓 40固定於該第一結合板120之上表面。此外,這兩個地震隔 離元件10C等距地沿該第二結合板130之一側邊130a放置且 15 亦朝向一垂直於該側邊130a之方向,並且另一端12藉該側 邊130a透過該螺栓40固定於該第二結合板130之下表面。 八個地震隔離元件10之與前述兩構件不同之其他兩個 地震隔離元件10 D等距地沿一與該等地震隔離元件10 C所 固定之側邊120a相鄰的側邊120b放置,且亦朝向一垂直於 20 該側邊120b之方向,並且一端11藉該侧邊120b透過該螺栓 40固定於該第一結合板120之上表面。此外,這兩個地震隔 離元件10 D等距地沿一與該地震隔離元件10 C所固定之側 邊130a相鄰的側邊130b,且亦朝向一垂直於該側邊130b之 方向,並且另一端12藉該側邊130b透過該螺栓40固定於該 18 200920965 第二結合板130之下表面。 八個地震隔離元件10之與前述兩構件不同之其他兩個 地震隔離元件10E等距地沿一與該等地震隔離元件10D所 固定之側邊120b相鄰的側邊120c放置,且亦朝向一垂直於 5 該側邊120c之方向,並且一端11藉該側邊120c透過該螺栓 40固定於該第一結合板120之上表面。此外,這兩個地震隔 離元件10 E等距地沿一與該地震隔離元件10 D所固定之側 邊130b相鄰的側邊130c,且亦朝向一垂直於該側邊130c之 方向,並且另一端12藉該側邊130c透過該螺栓40固定於該 10 第二結合板130之下表面。 八個地震隔離元件10之剩餘兩個地震隔離元件10F等 距地沿一與該等地震隔離元件10E所固定之側邊120c相鄰 的側邊120d放置,且亦朝向一垂直於該側邊120d之方向, 並且一端11藉該側邊120d透過該螺栓40固定於該第一結合 15 板120之上表面。此外,這兩個地震隔離元件10F等距地沿 一與該地震隔離元件10E所固定之側邊130c相鄰的側邊 130d,且亦朝向一垂直於該側邊130d之方向,並且另一端 12藉該側邊130d透過該螺栓40固定於該第二結合板130之 下表面。 20 這兩個地震隔離元件10C與其他兩個地震隔離元件 10E固定在該第一結合板120與該第二結合板130上,且該等 地震隔離元件10 C係配置成使該等地震隔離元件10 C之彎 曲部份朝一方向(即,朝第10圖中之雙箭頭X所示之一正向) 由該第一結合板120與該第二結合板130之間突出。該等地 19 200920965 震隔離元件10E係配置成使得該等地震隔離元件10E之彎曲 部份朝一與該等地震隔離元件10C之方向相反之方向(即, 朝第10圖中之雙箭頭X所示之一負向)由該第一結合板120 與該第二結合板130之間突出。 5 此外,這兩地震隔離元件10D與其他兩個地震隔離元件 10F亦固定在該第一結合板120與該第二結合板130上,且該 等地震隔離元件10 D係配置成使該等地震隔離元件10 D之 彎曲部份朝一方向(即,朝第10圖中之雙箭頭Y所示之一正 向)由該第一結合板120與該第二結合板130之間突出。該等 10 地震隔離元件10F係配置成使得該等地震隔離元件10F之彎 曲部份朝一與該等地震隔離元件10D之方向相反之方向 (即,朝第10圖中之雙箭頭Y所示之一負向)由該第一結合板 120與該第二結合板130之間突出。 該第一結合板12 0與該第二結合板13 0係放置成使得四 15 側邊在由上方觀看時均互相對齊。 依據該地震隔離裝置101,振動進入之方向被預先設 定,且該等地震隔離元件101被放置成可沿著前述兩設定方 向(由第10圖中之雙箭頭X所示之方向與雙箭頭Y所示之方 向)定位,藉此可有效緩衝在前述兩設定方向中產生之該上 20 部的振動。換言之,由於未假設能量由所有方向進入該上 部,而是假設能量僅由一特定方向進入,所以與一習知情 形不同,不必在設計該地震隔離元件10時進行詳細評估。 此外,由於未對該等地震隔離元件10之形狀賦予特殊限 制,因此不必提高該等地震隔離元件10之切削準確性至一 20 200920965 習知地震隔離元件的程度。 因此,該地震隔離裝置101可在設計階段與在製造階段 兩者均具有較高生產效率,且因此該地震隔離裝置101之製 造成本較低。 5 到目前為止,已進行了本發明之較佳實施例的說明, . 但是,本發明不限於此。在一不偏離本發明之要旨之範圍 内,本發明可對構造進行增加、省略與取代與其他修改。 本發明不受限於前述說明,且僅受限於以下申請專利範圍 之範疇。 10 例如,在前述實施例中,該地震隔離裝置設置在該下 部且接著固定在該下部上。然後,將該上部設置在地震隔 離裝置上,且將該地震隔離裝置固定於該上部。但是,用 於設置本發明之地震隔離裝置之方法可僅包括一將該地震 隔離裝置設置在該下部上,使得該等地震隔離元件沿著該 15 上部至該下部之一預先設定振動方向定位的步驟;一將該 地震隔離裝置固定至該下部上之步驟;一將該上部設置在 I / 該地震隔離裝置上之步驟;及一將該地震隔離裝置固定於 該上部之步驟。因此,執行各前述步驟之順序不限於前述 - 順序。 . 20 此外,本發明之地震隔離裝置不僅放置在一如建築 物、橋樑、高架道路及高架軌道等結構體中之一地基(一下 部)及一建築物骨架(一上部)之間,並且亦放置在構成前述 結構體之構件之間。該地震隔離裝置可以放置在,例如, 一構成一建築物之地板與一放置在該地板上之蓋板間。在 21 200920965 這例子中,該地震隔離裝置吸收作用在該蓋板上之能量, 而非作用在該結構體之建築骨架上之能量。類似地,它亦 可放置在一構成一橋樑之橋墩與一放置在該橋墩上之橋樑 樑架之間。 5 工業可利用性 本發明係有關於一種用於緩衝一結構體之上部相對該 結構體之下部的地震隔離裝置,該地震隔離裝置包括多數U 形地震隔離元件、一第一結合板、及一第二結合板,且該 地震隔離元件之一端固定在該第一結合板上,而該地震隔 10 離元件之另一端固定在該第二結合板上。某些前述多數地 震隔離元件係朝一預定方向放置在該第一結合板與該第二 結合板之間,而其他前述多數地震隔離元件則朝一與該預 定方向相反之方向放置在該第一結合板與該第二結合板之 間。 15 依據本發明,該地震隔離裝置之生產效率在設計階段 與在製造階段兩者均可提高,且因此該地震隔離裝置之製 造成本較低。The seismic isolation element 50 has a through hole 53 for allowing a bolt 40 to pass through a bracket portion 51 disposed at one end, and a through hole for allowing a bolt 40 to pass through the frame portion 52 disposed at the other end. Hole 54. The seismic isolation element 50 is fixed to the first bonding plate 20 by a bolt 40, and is similarly fixed to the second bonding plate 30 by a bolt 40. In the foregoing seismic isolation element 50, if a bolt 40 is used as the fixing means for the bonding plates 20 and 30, the bonding plates 20 and 30 are fixed at a lower strength. However, when a plurality of vibrations act on the seismic isolation device 1 in a direction different from the predetermined direction, there is an advantage in that the bolts are relatively loose. Moreover, the seismic isolation devices 1 are constructed of a smaller number of components, thereby reducing manufacturing costs. Figure 5 shows a second exemplary variation of a seismic isolation element disposed on the seismic isolation device of the present invention. A seismic isolation element 60 as a second exemplary variation has three through-holes 63' for allowing the tamper 40 to pass through a bracket portion 61 disposed at one end and located at three vertices of a triangle. The bolt 40 is passed through three through holes 64 of the bracket portion 62 14 200920965 disposed at the other end. The seismic isolation element 60 is secured to the first bond plate 20 by three bolts 40 and is similarly secured to the second bond plate 30 by three bolts 40. In the aforementioned seismic isolation element 60, the number of bolts 40 is increased to serve as a fixing means for the bonding plates 20 and 30, whereby the bonding plates 20 and 30 can be more firmly fixed. In addition, the bolts 40 are arranged to be positioned at the apex of a triangle, so that when vibrating in a direction other than the set direction acts on the seismic isolation device 1, the advantage is that compared to the combination When the plates are fixed by two bolts, they are not loosened, and the number of the bolts 10 is increased to reduce the size of each bolt. Figure 6 shows a third exemplary variation of the seismic isolation element disposed on the seismic isolation device 1. At the bracket portions 71 and 72 provided at both ends of the seismic isolation member 70 as the third exemplary modification, a through hole for allowing a bolt to pass is not formed. Then, one of the bracket portions, that is, the bracket portion 71, is fixed to the first coupling plate 20 by welding. Further, although not shown, the other bracket portion 72 is fixed to the second coupling plate I 30 by welding. A plurality of solder beads 73 are formed between the bracket portion 71 (or the bracket portion 72) and the first coupling plate 20 (or the second coupling plate 30). - In the aforementioned seismic isolation element 70, the junction plates 20 and 30 can be more firmly fixed. Further, the seismic isolation device 1 is composed of a small number of components, so that the manufacturing cost can be reduced. Figure 7 is a first exemplary variation of a method for securing the seismic isolation element 10 to the first bonding plate 20 (second bonding plate 30) in the seismic isolation device 1. In the first exemplary variation, a counterbore (corresponding to the recess of the present invention) 22 for fitting a bracket portion 13 of the 200920965 at one end 11 of the seismic isolator element 10 is formed to fix the The side of the first bonding plate 20 of the seismic isolation element 10 is on the side. Next, the seismic isolation element 10 is embedded in the counterbore 22, and a bolt 40 is passed through a through hole 15 formed in the bracket portion 13 5 and fixed to the first bonding plate 20 through the bolt 40. . In addition, although not shown, the bracket portion 14 disposed on the other end of the seismic isolation element 10 is also embedded in a counterbore formed in the second bonding plate 30, and the bolt 40 can be formed in the bracket through The through hole 16 in the portion 14 is fixed to the second bonding plate 30 through the bolt 40. In the foregoing seismic isolation device 1, a bracket portion 13 of the seismic isolation element 10 is embedded in a counterbore 22 formed in the first coupling plate 20, and then the two are fixed to each other, so that it can be stronger The seismic isolation element 10 is fixed to the first bonding plate 20. Similarly, the other bracket portion 14 of the seismic isolation element 10 is embedded in a countersunk hole formed in the second bonding plate 30, and then the two are fixed to each other, so that the earthquake can be stronger The spacer element 10 is fixed to the second bonding board 30. In addition, a portion of the force generated on the seismic isolation element 10 can be directly transmitted to the first bonding plate 20 by the bearing pressure acting on the contact surface between the bracket portion and the countersink, thereby reducing The force held by the bolt 40. Thus, 20 can reduce the diameter of the bolt 40 or reduce the number of such bolts 40. Figure 8 is a perspective view showing a second exemplary variation of a method for fixing the seismic isolation element 10 to the first bonding plate 20 (or the second bonding plate 30) in the seismic isolation device 1. In the second exemplary modification, a U-shaped auxiliary member 23 is fixed by welding or other means to the side of the first bonding plate 20 to which the ground isolation member 1 is attached. A recess 24 corresponding to the counterbore 22 of the first exemplary variation is formed by the side of the inner side of the auxiliary member 23 and the side of the first coupling plate 20, and is exposed to the side of the inner side of the auxiliary member 23. Surrounded. Next, a bracket portion 13 of the seismic isolation element 10 is embedded in the recess 24 and fixed to the first bonding plate 20 through the bolt 40. In addition, although not shown, the bracket portion 14 disposed at the other end 12 of the seismic isolation element 10 is also embedded in the second coupling plate 30 and fixed to the second bonding plate 3 through the bolt 40. The upper part of the recess. In the seismic isolation device 1 described above, the seismic isolation element 1 can also be more firmly fixed to the first bonding plate 2A and fixed to the second bonding plate 3A. Further, the force held by the bolt 40 is reduced, and thus an effect similar to the foregoing can be obtained. Further, in the foregoing embodiment, only the χ direction (bidirectional (positive/negative) direction) in Fig. 2 is assumed as the vibration direction ' of the upper portion of the structure, and a large number of seismic isolation elements are placed in this direction. However, as shown in Fig. 9 and Fig. 1, it can be assumed that most directions, for example, the χ direction (bidirectional (positive/negative) direction) and the 垂直 direction perpendicular to the 4 Χ direction (bidirectional (positive/negative) direction) As the vibration square of the upper part of the structure, the seismic isolation device 101 shown in FIG. 9 and FIG. 1Q has a seismic isolation element 1G, a first combination plate, a σ 第 第 plate 13G' and one end of each seismic isolation element 1G is fixed on the first, and the mouth plate 120' and the other end 12 of each seismic isolation element 10 is fixed on the second bonding plate 130. The first-bonding plate 120 is a rectangular woven fabric of uniform thickness, and each of the earthquakes 17 200920965 has one end 11 of the spacer member 10 fixed to the upper surface through a bolt 40. The bolt 40 is screwed into a screw hole (not shown). On the upper surface of the first bonding plate 120, and a plurality of studs 21 are erected on the lower surface of the first bonding plate 120. The second bonding plate 130 is also a rectangular steel plate of uniform thickness, and each earthquake The other end 12 of the spacer member 10 is fixed to the lower surface by a bolt 40. The bolt 40 screw holes (not shown) are formed on the lower surface of the second bonding plate 130, and a plurality of studs 31 are disposed upright on the upper surface of the second bonding plate 130. 10 Eight seismic isolation elements 10 The two seismic isolation elements 10C are disposed equidistantly along one side 120a of the first bonding plate 120 and also face a direction perpendicular to the side 120a, and the one end 11 is fixed to the side 120a through the bolt 40. The upper surface of the first bonding plate 120. Further, the two seismic isolation elements 10C are equally spaced along one side 130a of the second bonding plate 130 and 15 also faces a direction perpendicular to the side 130a, and The other end 12 is fixed to the lower surface of the second bonding board 130 through the bolts 40 by the side edges 130a. The other two seismic isolation elements 10 D of the eight seismic isolation elements 10 are different from the two components. The side 120b adjacent to the side 120a to which the seismic isolation element 10C is fixed is placed, and also faces a direction perpendicular to the side 120b of the 20, and the end 11 is fixed to the side 120b through the bolt 40. The upper surface of the first bonding plate 120. Further, The two seismic isolation elements 10 D are equidistantly along a side 130b adjacent the side 130a to which the seismic isolation element 10 C is fixed, and also toward a direction perpendicular to the side 130b, and the other end 12 The side edge 130b is fixed to the lower surface of the second bonding plate 130 by the bolt 40. The other two seismic isolation elements 10E of the eight seismic isolation elements 10 different from the foregoing two components are equidistantly along the same. The side 120c adjacent to the side 120b fixed by the seismic isolation element 10D is placed, and is also oriented in a direction perpendicular to the side 120c, and the end 11 is fixed to the first through the side 120c through the bolt 40. The upper surface of the plate 120 is bonded. In addition, the two seismic isolation elements 10 E are equidistantly along a side 130c adjacent to the side 130b to which the seismic isolation element 10 D is fixed, and also toward a direction perpendicular to the side 130c, and One end 12 is fixed to the lower surface of the 10 second bonding plate 130 through the bolt 40 by the side edge 130c. The remaining two seismic isolation elements 10F of the eight seismic isolation elements 10 are equally spaced along a side 120d adjacent the side 120c to which the seismic isolation elements 10E are secured, and are also oriented perpendicular to the side 120d. In the direction, the one end 11 is fixed to the upper surface of the first joint 15 plate 120 through the bolt 40 by the side edge 120d. In addition, the two seismic isolation elements 10F are equidistantly along a side 130d adjacent to the side 130c to which the seismic isolation element 10E is fixed, and also toward a direction perpendicular to the side 130d, and the other end 12 The side edge 130d is fixed to the lower surface of the second bonding plate 130 through the bolt 40. 20 the two seismic isolation elements 10C and the other two seismic isolation elements 10E are fixed on the first bonding plate 120 and the second bonding plate 130, and the seismic isolation elements 10 C are configured to make the seismic isolation components The curved portion of 10 C protrudes in a direction (i.e., forward toward one of the double arrows X in Fig. 10) from between the first coupling plate 120 and the second coupling plate 130. The ground 19 200920965 seismic isolation elements 10E are configured such that the curved portions of the seismic isolation elements 10E are oriented in a direction opposite to the direction of the seismic isolation elements 10C (ie, as indicated by the double arrow X in FIG. 10) One of the negative directions protrudes from between the first bonding plate 120 and the second bonding plate 130. In addition, the two seismic isolation elements 10D and the other two seismic isolation elements 10F are also fixed on the first bonding plate 120 and the second bonding plate 130, and the seismic isolation elements 10 D are configured to make the earthquakes The curved portion of the spacer member 10 D protrudes from the first bonding plate 120 and the second bonding plate 130 in a direction (i.e., toward one of the double arrows Y shown in FIG. 10). The 10 seismic isolation elements 10F are configured such that the curved portions of the seismic isolation elements 10F are oriented in a direction opposite to the direction of the seismic isolation elements 10D (ie, toward one of the double arrows Y in FIG. 10). Negative) protrudes between the first bonding plate 120 and the second bonding plate 130. The first bonding plate 120 and the second bonding plate 130 are placed such that the four 15 sides are aligned with each other when viewed from above. According to the seismic isolation device 101, the direction of vibration entry is preset, and the seismic isolation elements 101 are placed along the two set directions (the direction indicated by the double arrow X in FIG. 10 and the double arrow Y). Positioned in the direction shown, whereby the vibration of the upper 20 portions generated in the two setting directions can be effectively buffered. In other words, since it is not assumed that energy enters the upper portion from all directions, but that energy is only entered by a specific direction, unlike a conventional case, it is not necessary to perform detailed evaluation when designing the seismic isolation element 10. Moreover, since the shape of the seismic isolation elements 10 is not specifically limited, it is not necessary to increase the cutting accuracy of the seismic isolation elements 10 to the extent of the conventional seismic isolation elements. Therefore, the seismic isolation device 101 can have higher production efficiency both in the design phase and in the manufacturing phase, and thus the seismic isolation device 101 is less expensive. 5 Description of the preferred embodiments of the present invention has been made so far. However, the present invention is not limited thereto. The invention may be modified, omitted, substituted, and otherwise modified within the scope of the invention. The invention is not limited by the foregoing description, and is only limited by the scope of the following claims. 10 For example, in the foregoing embodiment, the seismic isolation device is disposed at the lower portion and then fixed to the lower portion. Then, the upper portion is placed on the seismic isolation device, and the seismic isolation device is fixed to the upper portion. However, the method for providing the seismic isolation device of the present invention may include only arranging the seismic isolation device on the lower portion such that the seismic isolation elements are positioned in a predetermined vibration direction along one of the upper portion to the lower portion of the 15 a step of fixing the seismic isolation device to the lower portion; a step of disposing the upper portion on the I/the seismic isolation device; and a step of fixing the seismic isolation device to the upper portion. Therefore, the order in which the respective steps are performed is not limited to the foregoing - order. In addition, the seismic isolation device of the present invention is not only placed between a foundation (a lower portion) and a building skeleton (an upper portion) of a structure such as a building, a bridge, an elevated road, and an elevated rail, and It is placed between the members constituting the aforementioned structure. The seismic isolation device can be placed, for example, between a floor forming a building and a cover panel placed on the floor. In the example of 21 200920965, the seismic isolation device absorbs the energy acting on the cover, rather than the energy acting on the building skeleton of the structure. Similarly, it can also be placed between a pier that forms a bridge and a bridge that is placed on the pier. 5 INDUSTRIAL APPLICABILITY The present invention relates to a seismic isolation device for buffering an upper portion of a structure relative to a lower portion of the structure, the seismic isolation device comprising a plurality of U-shaped seismic isolation elements, a first bonding plate, and a a second bonding board, and one end of the seismic isolation element is fixed on the first bonding board, and the seismic isolation 10 is fixed on the second bonding board from the other end of the component. Some of the plurality of seismic isolation elements are disposed between the first bonding plate and the second bonding plate in a predetermined direction, and the other plurality of seismic isolation elements are placed on the first bonding plate in a direction opposite to the predetermined direction. Between the second bonding plate. According to the present invention, the production efficiency of the seismic isolation device can be improved both in the design phase and in the manufacturing phase, and thus the seismic isolation device is less expensive to manufacture.
【圖式簡單說明:J 第1圖是一立體圖,顯示本發明之一地震隔離裝置。 20 第2圖是一側平面圖,顯示本發明之地震隔離裝置。 第3圖是一沿著第2圖中之線III-III所截取之橫截面 圖,顯示本發明之地震隔離裝置。 第4圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第一示範變化例。 22 200920965 第5圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第二示範變化例。 第6圖是一立體圖,顯示一設置在本發明之地震隔離裝 置上之地震隔離元件的第三示範變化例。 5 第7圖是一立體圖,顯示一用於將設置在本發明之地震 隔離裝置上之地震隔離元件固定至一結合板之方法的第一 示範變化例。 第8圖是一立體圖,顯示一用於將設置在本發明之地震 隔離裝置上之地震隔離元件固定至一結合板之方法的第二 10 示範變化例。 第9圖是一立體圖,顯示本發明之地震隔離裝置的一示 範變化例。 第10圖是一平面圖,顯示本發明之地震隔離裝置的示 範變化例。 15 【主要元件符號說明】 1...地震隔離裝置 21…螺樁 10,10A-10F…地震隔離元件 22___埋頭孔 11…一端 23...輔助才冓件 12...另一端 24·..凹部 13,14...托架部份 30…第二結合板 15...貫穿孔 30a...—側邊 20…第一結合板 30b...另一側邊 20a…一側邊 31…螺樁 20b...另一側邊 40…螺栓 23 200920965 50...地震隔離元件 101...地震隔離裝置 51,52...托架部份 120…第一結合板 53,54...貫穿孔 120a-120d...—側邊 60...地震隔離元件 130…第二結合板 61,62...托架部份 130a-130d...—側邊 63,64...貫穿孔 A...上部 70...地震隔離元件 B...下部 71.72.. .托架部份 73.. .焊珠 Χ,Υ...方向 24BRIEF DESCRIPTION OF THE DRAWINGS: Fig. 1 is a perspective view showing a seismic isolation device of the present invention. 20 Fig. 2 is a side plan view showing the seismic isolation device of the present invention. Fig. 3 is a cross-sectional view taken along line III-III in Fig. 2 showing the seismic isolation device of the present invention. Figure 4 is a perspective view showing a first exemplary variation of a seismic isolation element disposed on the seismic isolation device of the present invention. 22 200920965 Figure 5 is a perspective view showing a second exemplary variation of a seismic isolation element disposed on the seismic isolation device of the present invention. Fig. 6 is a perspective view showing a third exemplary variation of a seismic isolation element provided on the seismic isolator of the present invention. 5 Fig. 7 is a perspective view showing a first exemplary variation of a method for fixing a seismic isolation element provided on a seismic isolation device of the present invention to a bonded plate. Figure 8 is a perspective view showing a second exemplary variation of a method for fixing a seismic isolation member provided on a seismic isolation device of the present invention to a bonding plate. Figure 9 is a perspective view showing an exemplary variation of the seismic isolation device of the present invention. Figure 10 is a plan view showing an exemplary variation of the seismic isolation device of the present invention. 15 [Main component symbol description] 1...Seismic isolation device 21...Snail pile 10,10A-10F...Seismic isolation element 22___ countersink 11...one end 23...auxiliary component 12...other end 24· .. recesses 13, 14 ... bracket portion 30 ... second joint plate 15 ... through hole 30a ... - side 20 ... first joint plate 30 b ... the other side 20 a ... side Side 31...stud pile 20b...other side 40...bolt 23 200920965 50...seismic isolation element 101...seismic isolation device 51,52...bracket portion 120...first bonding plate 53, 54...through holes 120a-120d...-side 60...seismic isolation element 130...second bonding plate 61,62...bracket portion 130a-130d...-side 63,64 ...through hole A...upper 70...seismic isolation element B...lower part 71.72..bracket part 73...welding bead,Υ...direction 24