200919786 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種光電組件,其具有一種保護器本體, 藉以排除過(over)電壓。 【先前技術】 DE 10 2004 025 610 A1中已知一種具有電流擴散層之 光電組件。 【發明內容】 本發明所要解決的課題在於提供一種光電組件,其包 括一種對過電壓具有保護作用的元件。本發明的另一課題 是提供另一種光電組件,其相對於靜電荷具有保護作用或 對靜電荷所造成的損傷具有保護作用。 提供一種光電組件,其包括一種導電的基板,此基板 具有一覆蓋側和一底側’其中該覆蓋側是與第一接觸區相 連接且該底側是與極性相反的第二接觸區相連接。在此二 個接觸區之間一種可發光的ρη·接面配置在該基板的覆蓋 側上。此外,該光電組件具有一種保護器本體以排除過電 壓,該保護器本體在電性上是與該ρη-接面並聯。 該覆蓋側和底側的槪念是與該組件的主側有關,其中 該覆蓋側是與一安裝面相遠離的主側,且該底側是與一安 裝面相面對的此側。光由ρη-接面向外由光電組件的覆蓋側 發出。光電組件的一主側包括該光電組件的一區域,此區 域存在於基板之與該安裝面相遠離-或相面對的此側上。 有利的方式是在唯一的光電組件中整合一種對靜電荷 200919786 的保護功能’因此不需額外的措施即可在光電組件的製造 或輸送中保護該光電組件使不受過電壓所影響,其中在製 程中或輸送過程中例如摩擦靜電力會造成一種靜電充電現 象。例如’具有向外伸出的終端之其它保護器不需安裝在 該光電組件上或不需安裝在多個承載著光電組件的電荷載 體上。此外’光電組件在其整個操作期間可受到保護使不 受過電壓所影響。 又’在上述光電組件中的一些措施已不需要,這些措 施例如在光電組件中加入二極體構件、齊納二極體、反向 並聯的靜電放電-保護二極體、由電容器或變阻器所構成的 並聯電路,其會使構件變貴、複雜化且造成該構件有較高 的易受干擾性。 本發明人已確定:在電子式二極體形式的構件上亦可 在pn-接面上在截止方向中存在很小的預電流(pre-current) 或偏壓,其可使相對應的光電組件之總靜電-強度臨限 (threshold)値下降。此種偏壓例如在隨機式預充電時發生 於靜電場中或高頻交變電場中,或發生於靜電放電-測試裝 置之數T( 10 12)歐姆的絕緣電阻上。 依據上述光電阻件之一實施形式,在pn-接面上達成― 種單純的歐姆並聯,其可位於大約1 k歐姆和1 T歐姆之範 圍中。此種歐姆並聯以一種含有電阻材料(其電阻値在上述 範圍中)之保護器來達成。有利的方式是,在並聯時光電組 件之電性和光學特性不受影響。同時,該光電組件可藉由 已設定的構成而簡易且成本有利地製成。 200919786 上述的實施形式是在pn_接面上形成歐姆並聯,但該保 護器本體亦可另外具有一種變阻器特性曲線及/或一種不 對稱形式或整流器形式的特性曲線。 依據光電組件之一實施形式,該保護器本體至少一部 份配置在該光電組件之一結構溝中,該結構溝較佳是到達 該pn-接面。結構溝例如包括一種溝,其可存在於一種共用 的基板晶圓之個別的光電組件之間。依據另一實施形式, 該結構溝是一種特殊的埋置於-或蝕刻貫穿於該光電組件 中的凹入區,其用來安裝該保護器。 依據另一種形式,該保護器包括一種以層來作成的區 域。此區域可在光電組件之上側-或覆蓋側之整個結構上延 伸且覆蓋該整個結構或只施加在該覆蓋側之一部份上。光 電組件之覆蓋側之結構例如可包括多個接觸區或接觸層或 包括該pn-接面之至少一部份。該保護器之層狀的區域可藉 由沈積法(例如’ CVD或PVD)來產生。該區域可濺鍍、蒸 鍍、噴鍍在光電組件的覆蓋側上或藉由一種旋塗(Spin_on) 過程而施加在該覆蓋側上。此方法之優點在於可產生特別 薄的層’其不會顯著地影響光電組件的操作功能。這些層 只需少量的保護器材料’其由於成本原因而較佳。 依據一實施形式’該保護器本體具有至少一區域,此 區域至少一部份伸入至該基板中或直至該pn_接面之負充 電的此側(η-側)。該保護器本體例如可以銷(pin)形來形 成。因此’影響該光電組件的靜電放電保護特性的偏壓可 排除至該pn-接面之n-側或排除至基板中。於是,該偏壓 200919786 不會在該pn-接面之截止方向中傳導而是在該pn-接面之半 傳導方向中傳導至基板中。已聚集的電荷由該處受到控制 而經由該pn-接面,以藉由該pn-接面之半傳導的特性而又 流出至正充電的此側,此時該光電組件未受損,特別是該 光電組件的半傳導的各部份未受損。 該保護器本體較佳是具有一以層來作成的區域和至少 一以銷(pi η)來作成的區域。於是,上述的電荷可首先聚集 在該層上且然後經由至少一銷狀的區域而排出至該基板的 內部中。 較佳是該保護器本體之銷狀的至少一區域具有一種伸 入至基板中且朝向該基板的內部而逐漸變細的形式。因 此’至少一銷狀的區域具有一較小的體積,其可承載著電 荷’其中相對應的電荷可隨著較小的電阻而排出至基板的 內部中。 該保護器本體較佳是包括以下的材料或合金中的至少 一種:銀,鈾’銅。另一方式是該保護器本體可具有一變 阻器特性曲線或一P T C -材料或熱敏電阻材料。若該保護器 本體具有一種變阻器特性曲線,則其較佳是包括氧化鋅、 氧化錳、氧化鉻或氧化鉍。若該保護器本體具有一種PTC-材料’則此Ρ τ c -材料較佳是半導電性的多晶陶瓷,例如, 鋇鈦酸鹽。 依據一種實施形式,該保護器本體特別是在層狀的區 域中具有一透明的導電氧化物(TC0)。此種可透光的特性是 有利的,以便使該Ρ η _接面所發出的光儘可能不被吸收地或 200919786 儘可能不反射地向外照射。 該保護器本體亦可以是一種在光電組件的覆蓋側上以 微影方式產生的平板電容器’其包括至少二個相反極性的 平面電極,二個電極之間配置一種介電質。此介電質較佳 是一種電容器陶瓷或一種含有塑料的材料。 此外,該保護器可藉由一種輕微導電的透明湊注物來 形成,此澆注物的一部份包圍著該光電組件且此澆注物的 至少一部份在電性上是與該pn-接面相連接。 依據一種實施形式’該保護器包括另一向外伸出的終 端,以便將寄生電荷直接且儘可能低歐姆地由光電組件的 電路中導出。此終端可與該保護器之其餘的區域相連接, 即,可與該保護器之層狀的區域或銷狀的區域相連接。 光電組件之第一接觸區存在於或形成於光電組件的覆 蓋側上,此第一接觸區可另外具有一形成在基板的底側上 的接觸區。第一接觸區之此一位於底側上的區域較佳是藉 由一接觸通孔而與第一接觸區之位於基板之覆蓋側上的區 域相連接。該接觸通孔因此通過該基板且在電性上是與該 基板相隔開。第一接觸區因此具有I-形的形式,藉由I-形 之較短的腳部,可使該基板之周圍在幾何上被包夾著。 依據一種實施形式,第一接觸區在基板的底側上以及 沿著該接觸通孔都與基板在電性上相隔絕;這可藉由一種 絕緣用的中間層來達成。 較佳是將該保護器以透明的接觸層的形式而配置在第 一接觸區和該pn-接面之間且與該接觸區和該pn-接面在電 200919786 性上相連接。此接觸層因此較佳是具有一種較第一接 之接觸面還大的面積,且此接觸層儘可能完全覆蓋一: 摻雜的基板上的pn -接面或p -摻雜的層。 作爲pn -接面,可理解的是指電子或電洞經由光電 之η-摻雜的區域和p_摻雜的區域之間的截止區的接面 中該P-摻雜的區域可包括一個或多個磊晶層且n_摻雜 域可包含該基板。 光電組件較佳是以氮化物-化合物半導體爲主’其 前情況下是指,一種活性的磊晶-層序列或此種層序列 少一層包含氮化物-111 - V -化合物半導體材料’較 AlnGamln^.mN,其中 〇 $ n S 1 , 〇 S S 1 且 n + m S 1。医 此材料未必含有上述形式之以數學所表示之準確的組 反之,其可具有一種或多種摻雜物質以及其它成份’ 成份基本上不會改變此AUGamlnmN材料之物理特 然而,爲了簡單之故,上述形式只含有晶格(Al,Ga,I 之主要成份,這些主要成份之一部份亦可由小量的其 質來取代。 依據另一實施形式,上述光電組件以磷化物-化合 導體爲主,其在目前情況下是指,一種活性的磊晶-層 或此種層序列之至少一層包含磷化物-ιπ-ν-化合物半 材料,較佳是 AlnGamIn卜n.mP,其中OSnSl,〇 ^ m ^ n + m g 1。因此,此材料未必含有上述形式之以數學所 之準確的組成。反之,其可具有一種或多種摻雜物質 其它成份,這些成份基本上不會改變此材料之物理特 觸區 組件 ,其 的區 在目 之至 佳是 丨此, 成。 這些 性。 η, Ν) 它物 物半 序列 導體 ;1且 表示 以及 性。 -10- 200919786 然而,爲了簡單之故,上述形式只含有晶格(Al,Ga, In, p) 之主要成份,這些主要成份之一部份亦可由小量的其它物 質來取代。 上述光電組件的基板較佳是η-摻雜且含有以下材料中 的一種:碳化矽,矽,藍寶石(Al2〇3)。在基板上形成一種 較佳是Ρ-摻雜的磊晶-層序列,其中ρη-接面存在於該基板 和該層序列之間的界面上。該ρ-摻雜的層序列以及η-摻雜 的基板情況需要時可包括其它的中間層而形成一種具有電 致發光特性的晶片。 上述物件以下將依據各實施例和圖式來詳述。 【實施方式】 第1圖顯示一種具有LED-晶片之組件,其用作光電組 件且具有已整合的針對過電壓的保護功能,該保護功能特 別是針對較小的偏壓,其可在該光電組件製造、輸送或測 試時發生。一種ρη-接面6形成在ρ-摻雜的磊晶層6a和n-摻雜的基板1之間的邊界區中,其中至少一磊晶層施加在 該基板1之遠離一安裝面之主面上。該磊晶層6a是與基板 —起形成一 LED-晶片。在該磊晶層6a上又施加一保護器7 之透明的層狀區域7a,其可完全覆蓋該磊晶層6a°該保護 器7之層狀的區域7a較佳是包括一透明的導電氧化物(例 如,TCO)。該保護器7之層狀的區域7a因此用來將寄生電 荷排除且用來使第一接觸區可與ρη-接面相接觸。該保護器 7之銷狀的區域7b由該保護器7之層狀的區域7a開始而 經由該磊晶層6a以伸入至該基板中。這些銷狀的區域可類 -11- 200919786 似於栓而以任意的橫向間距互相隔開來存在著且具有 的直徑或形式。特別是設有多種直徑固定的銷狀以及 基板而使直徑逐漸變小的銷狀。 LED -晶片以相反極性的接觸區4和5來形成,其 一接觸區形成在LED -晶片之覆蓋側2上,第一接觸區 一種橫向延伸的層狀的區域4a,其上側至少一部份覆 保護器7之層狀的區域7 a。以類似的方式,第一接觸 之一層狀的區域4 b設置在該L E D -晶片之底側3上, 在該區域4b和基板1之下側之間配置一隔離層8。第 觸區之配置在該覆蓋側2和該底側3上的分別成爲層 區域4a和4b互相之間藉由第一接觸區之接觸通孔區〕 而相連接。此區域4c經由該基板1以及覆蓋側上已施 幕晶層和該保護器7之層狀的區域7 a而延伸。一種隔 8使該接觸通孔區域4c和該第一區域之配置在LED-晶 底側上之層狀的區域4b都和該基板隔開。 第一接觸區以及其全部的區域4a,4b和4c整體 成I -形,其中覆蓋側和底側上的各接觸區4 a和4 b形 形之較短的腳部,且該接觸通孔區域4 c形成I -形之較 腰部。第一接觸區較佳是充正電。 在基板的下側上或L E D -晶片之底側3上施加另一 於第一接觸區爲反極性的接觸區5。因此,該接觸區 以是一種接觸墊,其充負電。 藉由第一接觸區之正接觸面-和另一接觸區之正 面存在於LED-晶片-或光電組件之底側上,則上述的 不同 朝向 中第 具有 蓋該 區4 此時 一接 狀的 或4c 加的 離層 片之 上形 成I-長的 相對 5可 接觸 構造 200919786 允許該光電組件可在一電路板上進行一種表面安裝,特別 是允許一種覆晶(F 1 i p - c h i p)-安裝。 LED-晶片及其接觸區和保護器所形成的配置可至少在 其遠離一電路板之外表面上設有一作爲另一保護器用的澆 注物9 ’其具有輕微的導電性。此澆注物9使該Led -晶片 受到保護以使不受外界所作用的機械負載或環境所影響, 且此澆注物9亦可用作電性保護器。該保護器7之以層形 式而形成在該幕晶層6a上的區域7a是與此澆注物9相連 接’使二種到達光電組件中的寄生電荷可一起排除至基板 1中或向外排出。 第2圖不同於第丨圖且顯示出一接觸區配置,其中第 一接觸區4以導線接合區的形式而在覆蓋側上施加在LED_ 晶片上。以導線接合區的形式而形成的第一接觸區4因此 包括一長形導線構成的向外延伸的終端以及一平面區域, 其施加成該保護器7之以層的形式而形成的區域7a。第一 接觸區形成正極且另一接觸區5形成負極,其中該另一接 觸區以平面形式配置在LED-晶片之底側3上且可在下側上 完全覆蓋該基板1。該保護器7具有與第1圖所示者相同 的構造和功能。依據本實施形式,該第一接觸區以導線接 合區的形式來形成,該LED-晶片在上側上可設有一種輕微 導電的澆注物。 第3圖顯示第1圖之多個光電組件,其具有一種晶圓 1 a形式的共用的基板丨。此晶圓1 &可對應於光電組件之橫 向尺寸之規則的距離以藉由一種切鋸片1 1來切割。在二個 -13- 200919786 相鄰的組件之間可存在一種結構溝丨0,其底部是由該晶圓 la之覆蓋側的暴露的主面來界定。在此一區域中除了晶圓 的上表面之外’未存在其它的結構。此區域可以一保護器 7來塡充或塗佈一種可排除電荷的材料。特別是該晶圓的 上側除了個別的組件之第一接觸區4之接觸面之外可設有 一可排除電荷的材料。在光電組件被切割之後,各光電組 件在覆蓋側上具有一位於最上側之可排除電荷的終端層。 在此種情況下,該保護器可使用一種透明的導電材料。 f 【圖式簡單說明】 第1圖 光電組件之縱切面圖,其顯示出一覆晶-接觸 配置和一電性保護器。 第2圖 光電組件之縱切面圖,其顯示出一導線接合 區(作爲覆蓋側的接觸區)和一電性保護器。 第3圖一種包含光電組件的晶圓的縱切面圖。 t主要元件符號說明】 1 基板 2 覆蓋側 3 底側 4 第一接觸區 4a,4b 第一接觸區之區域 4c 第一接觸區之接觸通孔 5 第二接觸區 6 pn-接面 6a P-摻雜的磊晶層 -14- 200919786 7 保 護 器 本 體 7a 保 護 器 本 體 之 層 狀 的 is 域 7b 保 護 器 本 體 之 銷 狀 的 1E 域 8 隔 離 層 9 澆 注 物 10 結 構 溝 11 切 鋸 片 /200919786 IX. Description of the Invention: [Technical Field] The present invention relates to an optoelectronic component having a protector body for eliminating overvoltage. A prior art optoelectronic component having a current spreading layer is known from DE 10 2004 025 610 A1. SUMMARY OF THE INVENTION An object of the present invention is to provide an optoelectronic component comprising an element having a protective effect on an overvoltage. Another object of the present invention is to provide another photovoltaic module which has a protective effect against electrostatic charges or a damage caused by static charges. An optoelectronic component is provided comprising an electrically conductive substrate having a cover side and a bottom side 'where the cover side is connected to the first contact area and the bottom side is connected to the second contact area of opposite polarity . An illuminable ρη junction between the two contact regions is disposed on the cover side of the substrate. In addition, the optoelectronic component has a protector body to eliminate overvoltage, the protector body being electrically connected in parallel with the ρη-junction. The covering side and the bottom side are related to the main side of the assembly, wherein the covering side is the main side away from a mounting surface, and the bottom side is the side facing a mounting surface. The light is emitted from the covered side of the optoelectronic component by the pn-connection. A major side of the optoelectronic component includes a region of the optoelectronic component that is present on the side of the substrate that is spaced apart from or facing the mounting surface. An advantageous way is to integrate a protection function for the electrostatic charge 200919786 in the only optoelectronic component 'so that no additional measures can be taken to protect the optoelectronic component from overvoltage during the manufacture or transport of the optoelectronic component, in the process For example, frictional electrostatic forces during or during transport can cause an electrostatic charging phenomenon. For example, other protectors having outwardly projecting terminals need not be mounted on the optoelectronic component or mounted on a plurality of electrical loads carrying optoelectronic components. In addition, the optoelectronic component can be protected from overvoltage during its entire operation. Moreover, some measures in the above-mentioned optoelectronic components are not required, such as adding a diode member, a Zener diode, an anti-parallel electrostatic discharge-protecting diode, a capacitor or a varistor in the photovoltaic module. The parallel circuit is constructed, which makes the component expensive, complicated, and causes the component to be highly susceptible to interference. The inventors have determined that in the form of an electronic diode, there may also be a small pre-current or bias in the cut-off direction on the pn-junction, which allows the corresponding optoelectronics to be made The total static-strength threshold of the component is reduced. Such a bias voltage occurs, for example, in an electrostatic field or a high frequency alternating electric field during random precharging, or on an insulation resistance of the number T (10 12) ohms of the electrostatic discharge-testing device. According to one embodiment of the above-mentioned photo resistor, a simple ohmic parallel connection is achieved on the pn- junction, which can be in the range of approximately 1 k ohm and 1 T ohm. This ohmic parallel connection is achieved with a protector containing a resistive material whose resistance 値 is in the above range. Advantageously, the electrical and optical properties of the optoelectronic component are not affected when in parallel. At the same time, the optoelectronic component can be produced simply and cost-effectively by the established configuration. 200919786 The above embodiment is to form an ohmic parallel connection on the pn_ junction, but the protector body can additionally have a varistor characteristic curve and/or a characteristic form in the form of an asymmetry or a rectifier. According to one embodiment of the optoelectronic component, at least a portion of the protector body is disposed in a structural trench of the optoelectronic component, and the trench preferably reaches the pn-junction. The structural trenches, for example, include a trench that can exist between individual optoelectronic components of a common substrate wafer. According to another embodiment, the trench is a special recessed region that is buried or etched through the optoelectronic component for mounting the protector. According to another form, the protector includes an area made of layers. This region may extend over the entire structure of the upper side or the covered side of the optoelectronic component and cover the entire structure or only one portion of the cover side. The structure of the cover side of the optoelectronic component may, for example, comprise a plurality of contact or contact layers or at least a portion of the pn-junction. The layered regions of the protector can be created by deposition methods such as 'CVD or PVD. The region can be sputtered, vapor deposited, sputtered onto the cover side of the optoelectronic component or applied to the cover side by a spin-on process. The advantage of this method is that a particularly thin layer can be produced which does not significantly affect the operational function of the optoelectronic component. These layers require only a small amount of protector material' which is preferred for cost reasons. According to an embodiment, the protector body has at least one region, at least a portion of which extends into the substrate or to the side (n-side) of the negative charge of the pn junction. The protector body can be formed, for example, in the shape of a pin. Therefore, the bias voltage that affects the electrostatic discharge protection characteristics of the photovoltaic module can be excluded to the n-side of the pn-junction or excluded into the substrate. Thus, the bias voltage 200919786 is not conducted in the cut-off direction of the pn-junction but is conducted into the substrate in the half-conducting direction of the pn-junction. The accumulated charge is controlled by the pn- junction to flow out to the side of the positive charge by the semi-conducting property of the pn-junction, at which time the photovoltaic module is not damaged, in particular It is the semi-conducting portions of the photovoltaic module that are not damaged. Preferably, the protector body has a region made of a layer and at least one region made of a pin (pi η). Thus, the above charges may first be collected on the layer and then discharged into the interior of the substrate via at least one pin-shaped region. Preferably, at least one of the pin-shaped regions of the protector body has a form that projects into the substrate and tapers toward the interior of the substrate. Therefore, at least one pin-shaped region has a small volume which can carry a charge, wherein the corresponding charge can be discharged into the interior of the substrate with a small electrical resistance. The protector body preferably comprises at least one of the following materials or alloys: silver, uranium 'copper. Alternatively, the protector body can have a varistor characteristic or a P T C - material or thermistor material. If the protector body has a varistor characteristic, it preferably comprises zinc oxide, manganese oxide, chromium oxide or cerium oxide. If the protector body has a PTC-material', the Ρτ c - material is preferably a semiconductive polycrystalline ceramic, for example, strontium titanate. According to one embodiment, the protector body has a transparent conductive oxide (TC0), in particular in the layered region. Such a permeable characteristic is advantageous in order to illuminate the light emitted by the η _ junction as far as possible from the absorption or 200919786 as far as possible without reflection. The protector body can also be a plate capacitor that is lithographically produced on the cover side of the optoelectronic component. It includes at least two planar electrodes of opposite polarity with a dielectric disposed between the electrodes. The dielectric is preferably a capacitor ceramic or a material containing plastic. In addition, the protector can be formed by a slightly conductive transparent adhesive, a portion of the cast surrounds the optoelectronic component and at least a portion of the cast is electrically connected to the pn- Face connection. According to one embodiment, the protector comprises a further outwardly projecting terminal for directing the parasitic charge directly and as lowly ohmically as possible from the circuitry of the optoelectronic component. The terminal can be connected to the rest of the protector, i.e., to the layered or pin-shaped area of the protector. A first contact region of the optoelectronic component is present or formed on the cover side of the optoelectronic component, and the first contact zone may additionally have a contact region formed on the bottom side of the substrate. The region of the first contact region on the bottom side is preferably connected to the region of the first contact region on the covered side of the substrate by a contact via. The contact vias thus pass through the substrate and are electrically separated from the substrate. The first contact zone thus has the form of an I-shape whereby the periphery of the substrate is geometrically sandwiched by the shorter leg of the I-shape. According to one embodiment, the first contact region is electrically isolated from the substrate on the underside of the substrate and along the contact via; this can be achieved by an intermediate layer for insulation. Preferably, the protector is disposed in the form of a transparent contact layer between the first contact region and the pn-junction and is electrically connected to the contact region and the pn-junction. The contact layer therefore preferably has a larger area than the first contact surface, and the contact layer covers as much as possible: a pn-junction or a p-doped layer on the doped substrate. As a pn junction, it is understood that the P-doped region in the junction of the electron or hole via the photo-n-doped region and the p-doped region in the cut-off region may include one Or a plurality of epitaxial layers and the n-doped domains may comprise the substrate. The optoelectronic component is preferably a nitride-compound semiconductor. In the former case, an active epitaxial layer sequence or such a layer sequence contains one layer of a nitride-111 - V-compound semiconductor material than AlnGamln. ^.mN, where 〇$ n S 1 , 〇SS 1 and n + m S 1 . The material does not necessarily contain the exact set of mathematical forms indicated above, but may have one or more dopants and other components. The composition does not substantially alter the physical properties of the AUGamlnmN material. For simplicity, The above form only contains the main components of the crystal lattice (Al, Ga, I, and part of these main components can also be replaced by a small amount of its substance. According to another embodiment, the above-mentioned photovoltaic module is mainly composed of a phosphide-combination conductor. In the present case, it means that an active epitaxial layer or at least one layer of such a layer sequence comprises a phosphide-ιπ-ν-compound half material, preferably AlnGamInb n.mP, wherein OSnSl, 〇^ m ^ n + mg 1. Therefore, the material does not necessarily contain the mathematically accurate composition of the above form. Instead, it may have one or more other components of the dopant, which do not substantially alter the physical properties of the material. The contact zone component, the zone of which is in the best of its kind, is formed. These properties. η, Ν) its object half-sequence conductor; 1 and representation and sex. -10- 200919786 However, for the sake of simplicity, the above form contains only the main components of the crystal lattice (Al, Ga, In, p), and part of these main components can also be replaced by a small amount of other substances. The substrate of the above photovoltaic module is preferably n-doped and contains one of the following materials: tantalum carbide, niobium, sapphire (Al2〇3). A preferably ytterbium-doped epitaxial layer sequence is formed on the substrate, wherein the ρη-junction is present at the interface between the substrate and the layer sequence. The p-doped layer sequence and the η-doped substrate may include other intermediate layers as needed to form a wafer having electroluminescent properties. The above items will be described in detail below in accordance with various embodiments and drawings. [Embodiment] Fig. 1 shows an assembly having an LED-chip which is used as an optoelectronic component and has an integrated protection function for overvoltage, in particular for a small bias voltage, which can be used in the optoelectronic Occurs when components are manufactured, transported, or tested. A ρη-junction 6 is formed in a boundary region between the p-doped epitaxial layer 6a and the n-doped substrate 1, wherein at least one epitaxial layer is applied to the substrate 1 away from a mounting surface On the surface. The epitaxial layer 6a forms an LED-wafer together with the substrate. A transparent layered region 7a of the protector 7 is applied to the epitaxial layer 6a, which completely covers the epitaxial layer 6a. The layered region 7a of the protector 7 preferably comprises a transparent conductive oxide. (for example, TCO). The layered region 7a of the protector 7 is thus used to exclude parasitic charges and to allow the first contact region to be in contact with the ρη-junction. The pin-shaped region 7b of the protector 7 starts from the layered region 7a of the protector 7 and extends into the substrate via the epitaxial layer 6a. These pin-shaped regions can exist and have a diameter or form similar to the plugs and spaced apart from each other at any lateral spacing. In particular, a pin shape in which a plurality of diameters are fixed and a substrate are formed to gradually reduce the diameter. The LED-wafer is formed with contact regions 4 and 5 of opposite polarities, one contact region of which is formed on the cover side 2 of the LED-wafer, the first contact region being a laterally extending layered region 4a having at least a portion on its upper side The layered region 7 a of the protector 7 is covered. In a similar manner, a layered region 4b of the first contact is disposed on the bottom side 3 of the L E D - wafer, and an isolation layer 8 is disposed between the region 4b and the lower side of the substrate 1. The arrangement of the first contact regions on the cover side 2 and the bottom side 3 as the layer regions 4a and 4b, respectively, are connected to each other by the contact via region of the first contact region. This region 4c extends via the substrate 1 and the layered region 7a of the protective layer 7 on the cover side. A spacer 8 separates the contact via region 4c and the layered region 4b of the first region disposed on the LED-crystal bottom side from the substrate. The first contact region and all of its regions 4a, 4b and 4c are integrally formed in an I-shape, wherein the contact portions 4a and 4b on the side and bottom sides are shorter legs, and the contact vias The area 4c forms an I-shaped waist portion. The first contact zone is preferably positively charged. Another contact region 5 having a reverse polarity to the first contact region is applied on the underside of the substrate or on the bottom side 3 of the L E D - wafer. Therefore, the contact area is a contact pad which is negatively charged. By the positive contact surface of the first contact region and the front surface of the other contact region being present on the bottom side of the LED-wafer or the optoelectronic component, the different orientations described above have the cover region 4 at this time Or forming an I-long relative 5 contactable configuration over the 4c plus spacer layer 200919786 allows the optoelectronic component to be surface mounted on a circuit board, in particular allowing a flip chip (F1 ip - chip) mounting . The arrangement of the LED-wafer and its contact area and protector can be provided with a deposit 9' as a further protector at least on its outer surface away from a circuit board, which has a slight electrical conductivity. This potting 9 protects the Led-wafer from mechanical loads or environments that are not subject to external influences, and the potting 9 can also be used as an electrical protector. The region 7a of the protector 7 formed in a layer form on the curtain layer 6a is connected to the potting material 9 so that the parasitic charges in the two arriving photovoltaic modules can be excluded together into the substrate 1 or discharged outward. . Figure 2 differs from the second drawing and shows a contact area configuration in which the first contact area 4 is applied to the LED_ wafer on the cover side in the form of a wire bond area. The first contact region 4 formed in the form of a wire bond region thus comprises an outwardly extending terminal end formed by an elongated wire and a planar region which is applied as a region 7a of the protector 7 in the form of a layer. The first contact region forms a positive electrode and the other contact region 5 forms a negative electrode, wherein the other contact region is arranged in a planar form on the bottom side 3 of the LED-wafer and can completely cover the substrate 1 on the underside. This protector 7 has the same configuration and function as those shown in Fig. 1. According to this embodiment, the first contact zone is formed in the form of a wire bond zone, and the LED-wafer can be provided with a slightly electrically conductive potting on the upper side. Figure 3 shows a plurality of optoelectronic components of Figure 1 having a common substrate 形式 in the form of a wafer 1 a. The wafer 1 & can be cut to a regular distance corresponding to the lateral dimension of the optoelectronic component to be cut by a saw blade 11. There may be a structural trench 0 between two adjacent components of -13-200919786, the bottom of which is defined by the exposed major faces of the covered side of the wafer la. There are no other structures in this region other than the upper surface of the wafer. This region can be filled or coated with a protector 7 to remove a chargeable material. In particular, the upper side of the wafer may be provided with a charge-removing material in addition to the contact surface of the first contact region 4 of the individual components. After the optoelectronic component is diced, each optoelectronic component has a terminal layer on the overlying side that is free of charge on the overlying side. In this case, the protector can use a transparent conductive material. f [Simple diagram of the diagram] Figure 1 Longitudinal section of the optoelectronic component, showing a flip-chip contact configuration and an electrical protector. Fig. 2 is a longitudinal sectional view of the photovoltaic module showing a wire bonding region (a contact region as a cover side) and an electrical protector. Figure 3 is a longitudinal cross-sectional view of a wafer containing optoelectronic components. t main component symbol description] 1 substrate 2 cover side 3 bottom side 4 first contact area 4a, 4b area of the first contact area 4c contact hole 5 of the first contact area second contact area 6 pn- junction 6a P- Doped epitaxial layer-14- 200919786 7 Protector body 7a Layered is domain of protector body 7b Pin-shaped 1E domain of protector body 8 Isolation layer 9 Casting 10 Structural groove 11 Cutting saw blade /