TW200919722A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW200919722A
TW200919722A TW96140542A TW96140542A TW200919722A TW 200919722 A TW200919722 A TW 200919722A TW 96140542 A TW96140542 A TW 96140542A TW 96140542 A TW96140542 A TW 96140542A TW 200919722 A TW200919722 A TW 200919722A
Authority
TW
Taiwan
Prior art keywords
isolation structure
region
channel
active region
active
Prior art date
Application number
TW96140542A
Other languages
Chinese (zh)
Other versions
TWI343126B (en
Inventor
Ching-Ho Yang
Jung-Ching Chen
Shyan-Yhu Wang
Shang-Chi Wu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW96140542A priority Critical patent/TWI343126B/en
Publication of TW200919722A publication Critical patent/TW200919722A/en
Application granted granted Critical
Publication of TWI343126B publication Critical patent/TWI343126B/en

Links

Landscapes

  • Element Separation (AREA)

Abstract

A semiconductor device is provided. An isolation structure is formed in a substrate to define a first and a second active region, and a channel active region therebetween. A field implant region is formed below a portion of the isolation structure around the first, second, and channel active regions. A channel active region includes two first sides defining a channel width. The distance from each first side to a second side of a neighboring field implant region is d1. The shortest distance from a third side of each first or second active region to an extension line of each second side of the field implant region is d2. R = d1/d2, where 0. 15 ≤ R ≤ 0. 85. A gate structure covers the channel active region and extends over a portion of the isolation structure. Source/drain doped regions are formed in the first and the second active regions.

Description

200919722 /-v/v 74 24922twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種積體電路且特別是有關於—種半 導體元件。 【先前技術】200919722 /-v/v 74 24922twf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to an integrated circuit and particularly to a semiconductor element. [Prior Art]

O 金氧半元件是一種應用非常廣泛的半導體元件。當元 件曰。益縮小時’隨之縮短的通道長度會加快金氧半電晶體 的刼作速度,但因通道縮短而衍生的短通道效應(Sh〇rt Channel Effect)也會日益嚴重。根據電場=電壓/長度的公 式’若施加的電壓林’而電晶義通道長度驗,則通 逗内電子的能I將會藉由電場加速而提升,進而使得崩潰 (Electmal Breakdown)的情形增加;電場的強度增加, 也會使得通道⑽電子能量提高,同樣會產生電崩潰的現 象。 -般南壓7L件其崩潰電壓會較早發生。這是因為靠近 汲極區邊絲蚊紐_ (PGtential C丽ding)現象較 ,發生’以致於崩潰電壓不易提高。習知的高壓S件主要 疋利用1¾雜構㈣成’來增減彳錄^極區㈣極之間的 距離^崎低通道_橫向電場。此外,在隔離結構下 方形成%植人區也可以麵通道阻絕⑽麵^聊) 元件崩潰電壓之效果。 # 圖1為考重孟氧半元件的咅,J面示意圖。請參照圖1, ^提升元件崩潰電壓。通常,會在隔離結構102下方形 、禮入區112。然而,由於所形成的場植人區丨12通常 200919722 υΜ〇υ-^υυ/-υυ 74 24922twf.doc/n 不僅僅位於隔離結構102下方,還會向上延伸而與通道區 104緊鄰。當金氧半元件應用於高壓時,基底1〇〇與閘極 124之間的壓差較大,當達到一定的壓差時,通道區1〇4 將反轉。所形成之反轉層與場植入區112會形成1>1^接面, 而造成嚴重的漏電流。 【發明内容】 本發明就是在提供一種半導體元件,其具有足夠高的 崩潰電壓以及低的漏電流。 本發明提出一種半導體元件,其包括隔離結構、場植 入區、閘極結構以及源極/汲極摻雜區。隔離結構位於基底 中,於基底中定義出第一主動區與第二主動區與以及位於 其兩者之間的通道主動區,這一些主動區之間以隔離結構 相隔開。場植入區位於第一主動區、第二主動區以及通道 =動區周圍的部分隔離結構下方,其中通道主動區具有界 疋其通道寬度之二個第-邊緣,各第—邊緣與其相鄰之場 植入區之第二邊緣相隔一間距以,且各第一主動區與各第 一主動區的之第二邊緣與場植入區之第二邊緣延伸線之間 具有最短的距離為d2,R=dl/d2,其巾〇15你〇 85。閉 極結構覆蓋通道絲區並延伸至部分隔離結構上方。源極/ 汲極摻雜區分別位於第一主動區與第二主動區中。 依照本發明實施例所述,上述之半導體元件中, 〇.26<R<〇.52 ° 。依照本發明實施例所述,上述之半導體元件中,場入 區所植人之摻質的導電型與該麵彳織極摻雜區者相不 200919722 /-vw74 24922twf.doc/n 同。 依照本發明實施例所述,上述之半導體元件中,半導 體元件包括P型金氧半元件。 依照本發明實施例所述,上述之半導體元件中,p型 金氧半元件包括P型高壓元件。 依照本發明實施例所述,上述之半導體元件中,場植 入區所植入之摻質為N型。 依照本發明實施例所述,上述之半導體元件中,半導 體元件包括N型金氧半元件。 依知' 本發明實施例所述’上述之半導體元件中,N型 金氧半元件包括N型高壓元件。 依,¾本發明實施例所述,上述之半導體元件中,場植 入區所植入之摻質為p型。 依照本發明實施例所述,上述之半導體元件中,場植O The gold oxide half element is a widely used semiconductor component. When the component is defective. When the benefits are reduced, the shortened channel length will accelerate the speed of the MOS transistor, but the short channel effect (Sh〇rt Channel Effect) derived from the channel shortening will become more and more serious. According to the electric field=voltage/length formula 'if the applied voltage forest' and the electro-crystal channel length test, the energy I of the electrons in the pass-through will be boosted by the electric field acceleration, thereby increasing the situation of the collapse (Electmal Breakdown); The increase in the strength of the electric field also increases the electron energy of the channel (10), which also causes an electrical collapse. - The average voltage of 7L pieces will occur earlier. This is because the phenomenon of PGtling C ding near the bungee area is relatively high, so that the breakdown voltage is not easy to increase. The conventional high-voltage S-pieces mainly use the 13⁄4 hybrid structure (four) to increase or decrease the distance between the poles (four) poles and the low-channel _ transverse electric field. In addition, the formation of the % implanted area below the isolation structure can also block the effect of the component breakdown voltage. # Figure 1 is a schematic diagram of the J-face of the 孟 孟 孟 半 half element. Please refer to Figure 1, ^ lifting component breakdown voltage. Typically, a square, gift zone 112 will be placed under the isolation structure 102. However, since the field implant region 12 is generally formed, 200919722 υΜ〇υ-^υυ/-υυ 74 24922twf.doc/n is not only located below the isolation structure 102, but also extends upwardly adjacent to the channel region 104. When the gold-oxide half element is applied to the high voltage, the pressure difference between the substrate 1 〇〇 and the gate 124 is large, and when a certain pressure difference is reached, the channel region 1 〇 4 will be reversed. The resulting inversion layer and field implant region 112 form a > 1 junction, causing severe leakage current. SUMMARY OF THE INVENTION The present invention is directed to a semiconductor device having a sufficiently high breakdown voltage and a low leakage current. The present invention provides a semiconductor device including an isolation structure, a field implant region, a gate structure, and a source/drain doping region. The isolation structure is located in the substrate, and defines a first active region and a second active region and a channel active region between the two in the substrate, the active regions being separated by an isolation structure. The field implanted region is located below the first active region, the second active region, and a portion of the isolation structure around the channel=moving region, wherein the channel active region has two first-edges bounded by the channel width, and each of the first edges is adjacent thereto The second edge of the field implant region is spaced apart by a distance, and the shortest distance between each of the first active region and the second edge of each first active region and the second edge extension of the field implant region is d2 , R = dl / d2, its frame 15 you 〇 85. The closed-pole structure covers the channel filament region and extends over a portion of the isolation structure. The source/drain doping regions are respectively located in the first active region and the second active region. According to an embodiment of the invention, in the above semiconductor device, 26.26 < R < 〇. 52 °. According to the embodiment of the present invention, in the above semiconductor device, the conductivity type of the dopant implanted in the field entrance region is the same as that of the surface germanium-doped region. According to an embodiment of the invention, in the above semiconductor device, the semiconductor element comprises a P-type gold oxide half element. According to an embodiment of the invention, in the above semiconductor device, the p-type metal oxide half element includes a P-type high voltage element. According to an embodiment of the invention, in the above semiconductor device, the dopant implanted in the field implant region is N-type. According to an embodiment of the invention, in the above semiconductor device, the semiconductor element comprises an N-type gold oxide half element. According to the present invention, in the above semiconductor element, the N-type metal oxide half element includes an N-type high voltage element. According to the embodiment of the invention, in the above semiconductor device, the dopant implanted in the field implant region is p-type. According to the embodiment of the invention, in the above semiconductor component, field planting

入區圍繞於第一主動區、第二主動區以及通道主動區周圍 的部分隔離結構下方。 依本發明實施例所述,上述之半導體元件中 場植=區之内的隔離結構包括第一、第二與第三隔離結 =。弟-隔離結構’環繞於第—主動區周圍。第二隔離結 t環繞於第二絲區爛。第三隔離結構,位於通道主 動區之第一邊緣周圍。 一依照本發明實施例所述,上述之半導體元件 隔離結構與第二隔離結構突出於通道主動區。 依照本發明實施例所述,上述之半導體元件中,第一 200919722 UMCD-2007-0074 24922twf.doc/nThe ingress area surrounds the first active area, the second active area, and a portion of the isolation structure around the active area of the channel. According to an embodiment of the invention, the isolation structure within the field region of the semiconductor device includes first, second, and third isolation junctions. The brother-isolation structure is surrounded by the first active area. The second isolation junction t is rotten around the second filament region. The third isolation structure is located around the first edge of the active area of the channel. According to an embodiment of the invention, the semiconductor device isolation structure and the second isolation structure protrude from the active region of the channel. According to an embodiment of the invention, among the above semiconductor components, the first 200919722 UMCD-2007-0074 24922twf.doc/n

Rl離結構以及第二隔離結構麵道絲區大致共邊界。 依照本發明實施例所述,上述之半導體元件中,通道 主動區突出於第-隔離結構與第二隔離結構。 依照本發明實施例所述,上述之半導體元件中,第三 P高離結構包覆通道主動區中突出於第—隔離 離結構之部分的邊緣。 再,、禾Rl is substantially co-bounded from the structure and the surface area of the second isolation structure. According to an embodiment of the invention, in the above semiconductor device, the channel active region protrudes from the first isolation structure and the second isolation structure. According to an embodiment of the invention, in the semiconductor device, the third P-high is away from the edge of the portion of the first isolation structure in the active region of the structure-clad channel. Again, Wo

依照本發明實施例所述 結構包括淺溝渠隔離結構。 依照本發明實施例所述 結構包括場氧化層。 上述之半導體元件中,隔離 上述之半導體元件中,隔離 本發明之半導體元件具有足夠高的崩潰電麼以及低的 漏電流。 “為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。The structure in accordance with an embodiment of the invention includes a shallow trench isolation structure. The structure in accordance with an embodiment of the invention includes a field oxide layer. In the above semiconductor element, among the above-described semiconductor elements, the semiconductor element of the present invention is isolated to have a sufficiently high breakdown current and a low leakage current. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention.

【實施方式】 圖2A至2B疋依A?、本發明實施例所纟會示之一種半導 體元件的製造方法的流程剖面示意圖。圖3A至3B是依照 本發明實施例所繪示之一種半導體元件的製造方法之流程 的上視圖。圖4A至4B是依照本發明另一實施例所繪示之 一種半導體元件的製造方法之流程的上視圖。圖5A至5B 是依照本發明又一實施例所繪示之一種半導體元件的製造 方法之流程的上視圖。 請參照圖2A與3A’本發明之半導體元件的製造方法 200919722 —w,74 24922twf.d〇c/n 是在基底200中形成隔離結構202並於部分的隔離結構 202的下方形成場植入區212。基底2〇〇例如是半導體基底 如矽基底,或半導體化合物基底,抑或是絕緣層上有矽(^〇ι) 基底。隔離結構202在基底200之中定義出通道主動區 204、位於其兩侧之主動區2〇6與主動區2〇8、以及主動區 210 ’這些主動區204、206、208以及210彼此之間以隔離 結構202相隔開。隔離結構2〇2可以採用淺溝渠隔離製程 Γ' 以形成淺溝渠隔離結構,或是採用局部區域氧化法以形成 場乳化層。 場植入區212環繞於通道主動區204以及主動區200 與208之周圍以及主動區21〇之周圍。圍繞於通道主動區 204周圍之場植入區212與圍繞在主動區2〇6與2〇8周圍 之場植入區212均未延伸到通道主動區2〇4以及主動區 206與208周圍的隔離結構202下方,而具有間距。特別 是,通道主動區具204具有界定通道寬度W之兩個第一邊 % 緣204a,各第一邊緣204a與其相鄰之場植入區212之第 〆 一邊緣212a相隔間距dl。主動區206與208之邊緣206a、 208a與場植入區212之第二邊緣212a之延伸線L·之間最 短的距離為d2。間距dl的範圍可以依據實際的需要而改 變。R為間距dl與距離d2之間的比例,R=dl/d2。圖6 是依據本發明實施例所繪示之PM〇S之比例R與崩潰電壓 以及比例與餘和電流減少(saturati〇n current dr〇p)之百分率 的關係圖。當R小於0.15時’通道主動區與離子植入區之 間的間距dl過小,崩潰電壓將會過低。當R大於〇 85時, 200919722 uml:u-/uu/-uu74 24922twf.doc/n 通道主動區與離子植入區之間的間距dl過大,通道寬度 W太窄,飽和電流將會過低而影響元件的操作特性。在二 實施例中,R=dl/d2’其中0.154^0.85。在另—實施例中, R=dl/d2,其中 〇.26SR^0.52。 為達到0.15SR^0.85 ’隔離結構202與場植入區212 之形狀與位置關係可以具有各種可能的變化,以下舉三實 施例來說明之。 、 圖3A至3B是依照本發明實施例所繪示之一種半導 體元件的製造方法之流程的上視圖。圖4A至4B是依照本 發明另一實施例所繪示之一種半導體元件的製造方法之流 程的上視圖。圖5A至5B是依照本發明又一實施例所繪示 之一種半導體元件的製造方法之流程的上視圖。 請參照圖3A,在一實施例中,是藉由通道主動區2〇4 之寬度W的内縮來達成保留間距dl之目的。更具體地說, 場植入區212之内的隔離結構202可包括隔離結構214、 216、218。隔離結構216與218分別環繞於主動區206與 208周圍且突出於通道主動區204。隔離結構214則位於通 道主動區204之邊緣204a周圍,其介於隔離結構216與 218之間。 請參照圖4A,在另一實施例中,通道主動區204之 寬度W大致維持不變,其與主動區206與208周圍之隔離 結構202之邊界大致相同,藉由場植入區212在對應於通 道主動區204之邊緣204a形成凹口 220來達成保留間距 dl之目的。更具體地說,場植入區212之内的隔離結構202 200919722 , 24922twf.doc/n 可包括隔離結構214、216、218。隔離結構216與218分 別環繞於主動區206與208周圍,且與通道主動區2〇4大 致共邊界。隔離結構214則位於通道主動區204之邊緣 204a周圍,其突出於隔離結構216、218且位於凹口 22〇 之内。 請參照圖5A,在又一實施例中,通道主動區2〇4之 寬度W較寬,其突出於主動區206與208周圍之隔離結構 202之邊界,而藉由場植入區212在對應於通道主動區204 之邊緣204a及204b處形成凹口 222來達成保留間距di 之目的。更具體地說,場植入區212之内的隔離結構202 可包括隔離結構214、216、218。隔離結構216與218分 別環繞於主動區206與208周圍,但使得通道主動區2〇4 突出於隔離結構216與218。隔離結構214則是位於隔離 結構216與218之外,其包覆通道主動區2〇4中突出於隔 離結構216與隔離結構218之部分的邊緣2〇4a及2〇牝且 位於凹口 222之内。[Embodiment] Figs. 2A to 2B are schematic cross-sectional views showing a method of manufacturing a semiconductor device according to an embodiment of the present invention. 3A through 3B are top views of a flow of a method of fabricating a semiconductor device in accordance with an embodiment of the present invention. 4A through 4B are top views of a flow of a method of fabricating a semiconductor device in accordance with another embodiment of the present invention. 5A through 5B are top views of a flow of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention. Referring to FIGS. 2A and 3A', a method of fabricating a semiconductor device of the present invention 200919722 - w, 74 24922 twf.d〇c/n is to form an isolation structure 202 in a substrate 200 and form a field implant region under a portion of the isolation structure 202. 212. The substrate 2 is, for example, a semiconductor substrate such as a germanium substrate, or a semiconductor compound substrate, or a germanium (?) substrate on the insulating layer. The isolation structure 202 defines a channel active region 204, active regions 2〇6 and active regions 2〇8 on both sides thereof, and active regions 210′ among the substrates 200. The active regions 204, 206, 208, and 210 are mutually They are separated by an isolation structure 202. The isolation structure 2〇2 may be formed by a shallow trench isolation process Γ' to form a shallow trench isolation structure, or a partial area oxidation method to form a field emulsion layer. The field implant region 212 surrounds the channel active region 204 and the periphery of the active regions 200 and 208 and the active region 21A. The field implant region 212 surrounding the channel active region 204 and the field implant region 212 surrounding the active regions 2〇6 and 2〇8 do not extend to the channel active region 2〇4 and the active regions 206 and 208. The isolation structure 202 is underneath with a spacing. In particular, the channel active zone 204 has two first edge % edges 204a defining a channel width W, each first edge 204a being spaced apart from the first edge 212a of the adjacent field implant zone 212 by a distance d1. The shortest distance between the edges 206a, 208a of the active regions 206 and 208 and the extended line L. of the second edge 212a of the field implant region 212 is d2. The range of the spacing dl can be changed according to actual needs. R is the ratio between the spacing dl and the distance d2, R = dl / d2. Figure 6 is a graph showing the relationship between the ratio R of the PM 〇S and the breakdown voltage and the ratio of the ratio to the residual current (减少) of the PM 〇 S according to an embodiment of the invention. When R is less than 0.15, the pitch dl between the channel active region and the ion implantation region is too small, and the breakdown voltage will be too low. When R is greater than 〇85, 200919722 uml:u-/uu/-uu74 24922twf.doc/n The spacing dl between the active region of the channel and the ion implantation region is too large, the channel width W is too narrow, and the saturation current will be too low. Affect the operational characteristics of the component. In the second embodiment, R = dl / d2' where 0.154 + 0.85. In another embodiment, R = dl / d2, where 〇.26SR^0.52. To achieve the shape and positional relationship of the 0.15 SR^0.85' isolation structure 202 and the field implant region 212, there are various possible variations, which are illustrated by the following three embodiments. 3A through 3B are top views of the flow of a method of fabricating a semiconductor device in accordance with an embodiment of the present invention. 4A through 4B are top views of processes of a method of fabricating a semiconductor device in accordance with another embodiment of the present invention. 5A through 5B are top views of a flow of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention. Referring to FIG. 3A, in an embodiment, the purpose of retaining the spacing dl is achieved by the retraction of the width W of the channel active region 2〇4. More specifically, the isolation structure 202 within the field implant region 212 can include isolation structures 214, 216, 218. Isolation structures 216 and 218 surround and extend beyond active regions 206 and 208, respectively. Isolation structure 214 is then located around edge 204a of channel active region 204 between isolation structures 216 and 218. Referring to FIG. 4A, in another embodiment, the width W of the channel active region 204 remains substantially the same, which is substantially the same as the boundary of the isolation structure 202 around the active regions 206 and 208, and corresponds to the field implant region 212. A notch 220 is formed at the edge 204a of the channel active region 204 for the purpose of maintaining the spacing dl. More specifically, isolation structures 202 200919722, 24922 twf.doc/n within field implant region 212 may include isolation structures 214, 216, 218. Isolation structures 216 and 218 surround the active regions 206 and 208, respectively, and generally have a common boundary with the channel active regions 2〇4. Isolation structure 214 is then located around edge 204a of channel active region 204, which protrudes from isolation structures 216, 218 and is located within recess 22'. Referring to FIG. 5A, in another embodiment, the width W of the channel active region 2〇4 is wider, which protrudes from the boundary of the isolation structure 202 around the active regions 206 and 208, and corresponds to the field implant region 212. A notch 222 is formed at the edges 204a and 204b of the channel active region 204 for the purpose of maintaining the spacing di. More specifically, the isolation structure 202 within the field implant region 212 can include isolation structures 214, 216, 218. Isolation structures 216 and 218 surround the active regions 206 and 208, respectively, but cause channel active regions 2〇4 to protrude from isolation structures 216 and 218. The isolation structure 214 is located outside the isolation structures 216 and 218, and the edges 2〇4a and 2〇牝 of the cladding channel active region 2〇4 protruding from the portions of the isolation structure 216 and the isolation structure 218 are located at the recess 222. Inside.

^ 場植入區212所植入之摻質可以是p型也可以是N 型。N型摻質例如是磷或砷。P型摻質例如是硼。場植入 區212所植入之摻質的導電型與後續形成之摻雜區23〇、 232者相異。當所形成的元件為;^型通道金氧半元件時,The dopant implanted in the field implant region 212 may be either p-type or N-type. The N-type dopant is, for example, phosphorus or arsenic. The P-type dopant is, for example, boron. The conductivity type of the dopant implanted in the field implant region 212 is different from the subsequently formed doped regions 23A, 232. When the formed component is a ^ channel gold oxide half component,

- 場植入區212所植入之摻質為P型。當所形成的元件為P 型通道金氧半元件時,場植入區212所植入之掺質㈣ _ S。場植人區212可以_離子植人法來形成之。當隔離 結構202是以淺溝渠隔離法來形成時,場植入區212的形 200919722 —-----74 24922tw£d〇C/n 在形成淺溝渠之後,填人絕緣層之前,先在基 植入成罩幕層’接著,進行離子植Α製程以形成場 是:===之。當隔離結構2°2 可以弁來占罢Ϊ 來成琢植入區212的形成方法 後再進二 =氧植入製程,移除罩幕層’之 Γ ϋ 極社構1 2Β、3Β、4Β、5Β ’在基底200形成開 至ΐ周圍的隔ii=222,通道主動區204上並延伸 化的間極介二ί方。閘極結構224可包括圖案 t# 226 ^^-4^ ^圖案化的閘極導電層228。閘極介 氧化梦杨、氮氧化榻介電 法。閘極導心3法:如是熱氧化法或是化學氣相沈積 是摻雜矽、未i雜矽之:質包括以石峨礎的材料,例如 之-。當閘極導,之2多晶矽或未摻雜多晶矽之其中 石夕咬多曰料層材貝為捧雜石夕或摻雜多晶石夕時,在 金屬層所構成。:化電層是由摻雜多晶矽層與矽化 物,耐火金屬例如如f耐火金屬之石夕化 鉛、銘與該些金屬的合金 =、m 電材料層之後,經由微影與層與閘極導 案化的閘極介電層226盘 二圖木化以升/成圖 其後,在主動區2;8=2電層228。 以及21〇中形成摻雜區230、 12 200919722 〜74 24922twf.doc/n 232、234,以完成半導體元件2〇之製作。推雜區现、攻、 234的形Μ法可以採麟子植人法將摻質植人 206、施以及中。當所形成之半導 、= 234元=2區230' 232可做為源極㈣區二= 了做為^取區(pick up region)。當半導體元件加 件,例如是N型高壓元件時,摻雜區23〇、 232中的摻質為N型。N型掺_如是碟或坤。 =20為P型通道金氧半稀,例如p型高壓元田 摻雜區230、232中的摻質為p型。p型推質例如是:。 在本發明之上述實施例中,將通道主動區周圍 結構下方不形成場植人區而留有—比例範圍之間距” 本發明0.15迦0.85之規則,由於〇.15或,因此,在^ 區不會形成PN接面,可以提升崩潰電壓, ^逼 另一方面,由於驗85,因此,可控制適當的飽和電電1 流,。 、々在本發明之上述實施例中,可以改變通道主動區的L、兩 道寬度及/或是場植人㈣位置,以使得通道主動^圍^ =離結構下方留有間距,因此,其在應用時具有非常言的 雖然本發明已以實施例揭露如上’然其並非用以限a 本發明’任何熟習此技藝者,在不脫離本發明之精神^ 圍内,當可作些許之更動與潤飾,因此本發明之保護& 當視後附之申請專利範圍所界定者為準。 巳 【圖式簡單說明】 圖1為一種金氧半元件的剖面示意圖。 13 200919722 一〜以一^, vv74 24922twf.doc/n 圖2A至2B是依照本發明實施例所繪示之一種半導 體元件的製造方法之流程的剖面示意圖。 圖3A至3B是依照本發明實施例所繪示之一種半導 體元件的製造方法之流程的上視圖。 圖4A至4B是依照本發明另一實施例所繪示之一種 半導體元件的製造方法之流程的上視圖。 圖5A至5B是依照本發明又一實施例所繪示之一種 半導體元件的製造方法之流程的上視圖。 圖6是依據本發明實施例所繪示之一種PMOS之距離 比例R與崩潰電壓以及比例與飽和電流減少百分率的關係 圖。 【主要元件符號說明】 20 :半導體元件 202、214、216、218 :隔離結構 204 :通道主動區 204a、204b、206a、208a、212a :邊緣 206、208、210 :主動區 212 .場植入區 220、222 :凹口 224 :閘極結構 226 :閘極介電層 228 :閘極導電層 230、232、234 :摻雜區 W:通道寬度 dl、d2 :間距 14- The implant implanted in the field implant region 212 is P-type. When the formed component is a P-type channel MOS half-element, the dopant (4) _ S implanted in the field implant region 212. The field implanting area 212 can be formed by the ionic implant method. When the isolation structure 202 is formed by shallow trench isolation, the shape of the field implant region 212 200919722 —----74 24922 tw £ d 〇 C/n after forming the shallow trench, before filling the insulating layer, first The substrate is implanted into a mask layer. Next, an ion implantation process is performed to form a field: ===. When the isolation structure 2°2 can be used to form the implantation method of the implanted area 212, the second method of the implantation process is performed, and the mask layer is removed. ϋ 社 社 社 社 社 社 社 社 社 社 社 1 1 1 1 1 5Β 'The base 200 is formed to open to the periphery of the crucible ii=222, and the channel active region 204 is extended and interposed. The gate structure 224 can include a patterned gate conductive layer 228 patterned t# 226 ^^-4^. Gate dielectric oxidized Mengyang, nitrogen oxide bed dielectric method. Gate conduction method 3: If it is thermal oxidation or chemical vapor deposition, it is doped with yttrium, which is a material based on stone foundation, such as -. When the gate is conducted, the polycrystalline silicon or the undoped polycrystalline silicon is composed of a metal layer. The chemical layer is composed of a doped polysilicon layer and a bismuth compound, a refractory metal such as a refractory metal such as a refractory metal, an alloy of the metal, and an electrical layer of the metal, via a lithography layer and a gate. The guided gate dielectric layer 226 is patterned to rise/map, and then in the active region 2; 8 = 2 electrical layer 228. And doping regions 230, 12 200919722 to 74 24922twf.doc/n 232, 234 are formed in 21 , to complete the fabrication of the semiconductor device 2 . The method of cultivating the area, attacking, and 234 can be adopted by the lining method to implant the human 206, the application and the middle. When the formed semiconducting, = 234 yuan = 2 zone 230' 232 can be used as the source (four) zone two = as a pick up region. When the semiconductor component is added, for example, an N-type high voltage device, the dopant in the doped regions 23A, 232 is N-type. N type doping _ such as dish or Kun. = 20 is a P-type channel of gold oxide semi-dilute, for example, the dopant in the p-type high voltage field doping regions 230, 232 is p-type. The p-type push substance is, for example: In the above embodiment of the present invention, the field implanted area is not formed under the structure around the active area of the channel, and the distance between the proportional ranges is left. "The rule of 0.15 plus 0.85 of the present invention is due to 〇.15 or, therefore, in the area The PN junction is not formed, and the breakdown voltage can be increased. On the other hand, due to the inspection 85, an appropriate saturation electric current can be controlled. In the above embodiment of the present invention, the active region of the channel can be changed. L, two widths and / or field implants (four) position, so that the channel active ^ ^ = leaving a gap below the structure, therefore, it is very useful in the application, although the invention has been disclosed by way of example 'It is not intended to limit the invention to the present invention. Any modifications and refinements may be made without departing from the spirit of the invention. Therefore, the present invention is protected & The definition of the patent scope shall prevail. 巳 [Simplified description of the drawings] Figure 1 is a schematic cross-sectional view of a gold-oxide half element. 13 200919722 One to one, vv74 24922twf.doc / n Figures 2A to 2B are implemented in accordance with the present invention Example 3A to 3B are top views of a flow of a method of fabricating a semiconductor device in accordance with an embodiment of the present invention. FIGS. 4A through 4B are diagrams showing another embodiment of the present invention. Figure 5A to Figure 5B are top views of a flow of a method of fabricating a semiconductor device in accordance with still another embodiment of the present invention. Figure 6 is a diagram of a process for fabricating a semiconductor device in accordance with another embodiment of the present invention. A ratio of the ratio R of the PMOS and the breakdown voltage and the percentage of the saturation current reduction shown in the embodiment. [Main component symbol description] 20: Semiconductor component 202, 214, 216, 218: isolation structure 204: channel active Regions 204a, 204b, 206a, 208a, 212a: edges 206, 208, 210: active regions 212. Field implant regions 220, 222: recess 224: gate structure 226: gate dielectric layer 228: gate conductive layer 230, 232, 234: doped area W: channel width dl, d2: spacing 14

Claims (1)

200919722 -----^. . 74 24922twf. doc/n 十、申請專利範圍: 1·一種半導體元件,包括: —隔離結構位於一基底中,於該基底中定義出一第一 主動區與一第二主動區與位於其彼此之間的一通道主動 區’其彼此之間以該隔離結構相隔開; —場植入區位於該第一主動區、該第二主動區以及該 通道主動區周圍的部分該隔離結構下方,其中該通道主動 區具有界定其通道寬度之二第—邊緣,各該第—邊緣與其 相鄰之該場植入區之一第二邊緣相隔一間距dl,且各該第 一主動區與各該第二主動區的之一第三邊緣與該場植入區 之該第二邊緣延伸線之間具有最短的距離為d2,R = dl/d2,其中 0.15紐幺〇.85 ; —閘極結構覆蓋該通道絲區觀伸至部分該隔離结 構上方;以及 二源極/汲極摻雜區分別位於該第一主動區盥該 主動區中。 /'π200919722 -----^. . 74 24922twf. doc/n X. Patent Application Range: 1. A semiconductor component comprising: - an isolation structure is located in a substrate, wherein a first active region and a a second active region and a channel active region between each other are separated from each other by the isolation structure; the field implant region is located around the first active region, the second active region, and the active region of the channel a portion of the isolation structure, wherein the channel active region has two first edges defining a channel width, and each of the first edges is spaced apart from a second edge of the adjacent one of the field implant regions by a distance d1 The shortest distance between the third active edge of the first active region and each of the second active regions and the second edge extending line of the field implant region is d2, R = dl/d2, wherein 0.15 New Zealand .85; a gate structure covering the channel region extends over a portion of the isolation structure; and a source/drain doping region is located in the first active region 盥 the active region. /'π 2. 如t料利範㈣丨柄述之半導 0.26此〇·52。 τ ,、丁 3. 如中請專利範圍第丨項所述之半導體元件,其中該 :相=所植人之摻質的導電型與該些源極/汲極摻雜區 半導4體範圍第1項所述之半導體元件,其中該 牛V體7〇件包括ρ型金氧半元件。 5.如申請專利範圍第4項所述之半導體元件,其中該 15 200919722 ---------—74 24922twf.doc/n P型金氧半元件包括P型高壓元件。 6. 如申請專利範圍第4項所述之半導體元件,其中該 場植入區所植入之換質為N型。 7. 如申請專利範圍第1項所述之半導體元件,其中該 半導體元件包括N型金氧半元件。 8. 如申請專利範圍第7項所述之半導體元件,其中該 N型金氧半元件包括n型高壓元件。 9. 如申請專利範圍第7項所述之 場植入區所植入之摻質為p型。 干八甲肩 %Λ0.如申請專利範圍第1項所述之半導體元件,其中 圍繞於該第一主動區、該第二主動區以及該通 ^動區周m的部分該隔離結構下方。 位於;請專利範圍第1項所述之半導體科,其中 位於該%植~入區之内的該隔離結構包括: —隔離結構,環繞於該第一主動區周圍; :::隔離結構’環繞於該第二主動區周圍;以及 緣周圍。離結構,位於該通道主動區之該些第一邊 12. 中該第一 區。 13. 中該第一 致共邊界 2請專·圍第11項所述之半導體元件,其 ^ 、、、。構與該第二隔離結構突出於該通道主動 如申請專利範圍第11項所述之半導體 隔離結構以及該第二隔離結構與該通道主動區^ 16 200919722 ______ . . . . 74 24922twf.doc/n 14. 如申請專利範圍第11項所述之半導體元件,其 中該通道主動區突出於該第一隔離結構與該第二隔離結 構。 15. 如申請專利範圍第14項所述之半導體元件,其 中該第三隔離結構包覆突出於該第一隔離結構與該第二隔 離結構之該通道主動區的邊緣。 16. 如申請專利範圍第1項所述之半導體元件,其中 該隔離結構包括淺溝渠隔離結構。 17. 如申請專利範圍第1項所述之半導體元件,其中 該隔離結構包括場氧化層。2. If the material is in the range of (Four), the semi-guided 0.26 is 〇·52. The semiconductor component of the above-mentioned patent scope, wherein: the phase = the conductivity type of the implanted dopant and the source/drain doped region semi-conductive body range The semiconductor device according to item 1, wherein the bovine V body 7 element comprises a p-type gold oxide half element. 5. The semiconductor component of claim 4, wherein the 15 200919722 --------- 74 24922 twf.doc/n P-type gold-oxygen half component comprises a P-type high voltage component. 6. The semiconductor component of claim 4, wherein the field implanted region is implanted with an N-type. 7. The semiconductor component of claim 1, wherein the semiconductor component comprises an N-type gold oxide half component. 8. The semiconductor component of claim 7, wherein the N-type gold-oxide half component comprises an n-type high voltage component. 9. The dopant implanted in the field implant area as described in claim 7 is p-type. The semiconductor component of claim 1, wherein the first active region, the second active region, and a portion of the peripheral region m of the communication region are below the isolation structure. The semiconductor unit of claim 1, wherein the isolation structure located within the % implant-in area comprises: - an isolation structure surrounding the first active area; ::: an isolation structure surrounding Around the second active zone; and around the edge. Off-structure, located in the first side of the active area of the channel 12. 13. In the first common boundary 2, please refer to the semiconductor components described in Item 11, ^, ,, . And the second isolation structure protrudes from the channel, and the semiconductor isolation structure as described in claim 11 and the second isolation structure and the active region of the channel are included in the channel active area ^ 16 200919722 ______ . . . 74 24922twf.doc/n 14. The semiconductor component of claim 11, wherein the channel active region protrudes from the first isolation structure and the second isolation structure. 15. The semiconductor component of claim 14, wherein the third isolation structure is overlaid on an edge of the active region of the first isolation structure and the second isolation structure. 16. The semiconductor component of claim 1, wherein the isolation structure comprises a shallow trench isolation structure. 17. The semiconductor component of claim 1, wherein the isolation structure comprises a field oxide layer. 1717
TW96140542A 2007-10-29 2007-10-29 Semiconductor device TWI343126B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96140542A TWI343126B (en) 2007-10-29 2007-10-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96140542A TWI343126B (en) 2007-10-29 2007-10-29 Semiconductor device

Publications (2)

Publication Number Publication Date
TW200919722A true TW200919722A (en) 2009-05-01
TWI343126B TWI343126B (en) 2011-06-01

Family

ID=44727201

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140542A TWI343126B (en) 2007-10-29 2007-10-29 Semiconductor device

Country Status (1)

Country Link
TW (1) TWI343126B (en)

Also Published As

Publication number Publication date
TWI343126B (en) 2011-06-01

Similar Documents

Publication Publication Date Title
US7741659B2 (en) Semiconductor device
CN104934472B (en) FINFET structures and its manufacture method
TWI606498B (en) Semiconductor devices having fin structures and fabrication methods thereof
JP2005094012A (en) Method of manufacturing dmos transistor on semiconductor substrate
US20160276476A1 (en) Ldmos device and fabrication method thereof
JP2008535213A (en) Method for manufacturing a semiconductor device having a buried doped region
WO2012009928A1 (en) Ldmos device with multi-layer super-junction structure
JP2008199029A (en) Semiconductor device and method of manufacturing the same
JP2011071232A (en) Semiconductor device and method of fabricating the same
CN117153888B (en) Semiconductor device and method for manufacturing the same
TWI624065B (en) Double diffused metal oxide semiconductor device and manufacturing method thereof
TWI673880B (en) Laterally diffused metal oxide semiconductor device
TWI401801B (en) Ldmos device having increased punch-through voltage and method for making same
KR100906557B1 (en) Semiconductor Device and Method for manufacturing the same
TW200919722A (en) Semiconductor device
CN106548943A (en) Transistor and forming method thereof
TWI548090B (en) Semiconductor device and method of fabricating the same
TWI422036B (en) High voltage device and manufacturing method thereof
JP2009266868A (en) Mosfet and manufacturing method of mosfet
JP2007123519A (en) Semiconductor device and method for manufacturing the same
TWI798825B (en) Manufacturing method of semiconductor device
WO2009157040A1 (en) Semiconductor device and process for producing the semiconductor device
TWI525825B (en) Lateral diffused semiconductor device and fabrications thereof
TWI512977B (en) Double diffused drain metal-oxide-semiconductor devices with floating poly thereon and methods of manufacturing the same
JP5266738B2 (en) Manufacturing method of trench gate type semiconductor device