TW200917325A - Excimer lamps - Google Patents

Excimer lamps Download PDF

Info

Publication number
TW200917325A
TW200917325A TW97131729A TW97131729A TW200917325A TW 200917325 A TW200917325 A TW 200917325A TW 97131729 A TW97131729 A TW 97131729A TW 97131729 A TW97131729 A TW 97131729A TW 200917325 A TW200917325 A TW 200917325A
Authority
TW
Taiwan
Prior art keywords
particles
cerium oxide
alumina particles
excimer lamp
discharge
Prior art date
Application number
TW97131729A
Other languages
Chinese (zh)
Other versions
TWI399786B (en
Inventor
Shigeki Fujisawa
Yukihiro Morimoto
Original Assignee
Ushio Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Electric Inc filed Critical Ushio Electric Inc
Publication of TW200917325A publication Critical patent/TW200917325A/en
Application granted granted Critical
Publication of TWI399786B publication Critical patent/TWI399786B/en

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

To avoid a decline in the reflectivity of an ultraviolet reflection film caused by lighting for an extended period of time and providing a uniform illuminance an excimer lamp has a silica glass discharge vessel with electrodes on opposite sides of the discharge vessel, wherein excimer discharge is generated in the discharge space of the discharge vessel, wherein an ultraviolet reflection film made of silica particles and alumina particles is formed on a surface exposed to the discharge space and wherein the mean particle diameter of silica particles is at least 0.67 times as large as the mean particle diameter of the alumina particles. The alumina particles in the ultraviolet reflection film preferably constitute at least 5 wt % and more preferably at least 10 wt % of the sum of silica particles and alumina particles.

Description

200917325 九、發明說明 【發明所屬之技術領域】 本發明是關於具備二氧化矽玻璃 介設有形成該放電容器的二氧化矽玻 電極所成,而在上述放電容器的內部 分子燈。 【先前技術】 近年來,開發了例如藉由將波長 外光照射在金屬,玻璃及其他材料所 由該真空紫外光及由此所生成的臭氧 體的技術,例如除去附著於被處理體 質的洗淨處理技術,或在被處理體的 化膜形成處理技術,而被實用化。 作爲照射真空紫外光的裝置,用 形成準分子分子,而將利用從該準分 準分子燈具備作爲光源者,在此種準 效率地放射更高強度的紫外線,實施 具體上,例如參照第4圖加以說 紫外線的二氧化矽玻璃所成的放電容 器5 1的內側與外側分別設有電極5 5 5〇中,在曝露於放電容器51的放電 紫外線反射膜2 0,而作爲紫外線反射 子所成者,及僅由氧化鋁粒子所成者 所成的放電容器,在 璃的狀態下設有一對 發生準分子放電的準 200nm以下的真空紫 成的被處理體,而藉 的作用來處理被處理 的表面的有機污染物 表面形成氧化膜的氧 例如藉由準分子放電 子分子所放射的光的 分子燈中,爲了更有 很多嘗試。 明:記載著具備透射 器51,而在該放電容 ,56所成的準分子燈 空間S的表面,形成 膜,僅由二氧化ί夕粒 被例示於實施例(參 -4- 200917325 照專利文獻1 ) 在該準分子燈50中’在放電容器51的一部分,形成 有藉由未形成有紫外線反射膜20進行出射在放電空間S 內所發生的紫外線的光出射部5 8。 依照此種構成的準分子燈5 0,在被曝露於放電容器 51的放電空間S的表面,藉由設有紫外線反射膜,在設 有紫外線反射膜的領域中,發生在放電空間S內的紫外線 藉由紫外線反射膜被反射之故,因而不會入射至二氧化矽 玻璃’而在構成光出射部5 8的領域中,紫外線透射二氧 化矽玻璃被放射至外部之故,因而基本上,有效地可利用 在放電空間S內所發生的紫外線,而且可將構成光出射部 5 8以外的領域的二氧化矽玻璃的紫外線失真所致的損壞抑 制成較小,而可防止發生裂痕的情形。 專利文獻:曰本專利第3 5 8 02 3 3號公報 【發明內容】 然而,在具備如上述的紫外線反射膜的準分子燈中, 判明會發生放電容器的軸方向的照度分布成爲不均勻的問 題。 本發明是依據如上事項所創作者’其目的在於提供即 使長時間被點燈時,也把紫外線反射膜的反射率降低的程 度被抑制較小,而且在放電容器的軸方向可得到均勻的照 度分布的準分子燈。 本發明的準分子燈,屬於具備備有放電空間的二氧化 -5- 200917325 矽玻璃所構成的放電容器’在介設有形成該放電容器的二 氧化矽玻璃的狀態下設有一對電極所成’而在上述放電容 器的放電空間內發生準分子放電的準分子燈,其特徵爲: 在曝露於上述放電容器的放電空間的表面,形成有二 氧化矽粒子與氧化鋁粒子所形成的紫外線反射膜, 上述二氧化矽粒子是其中心粒徑爲上述氧化鋁粒子的 中心粒徑的〇 _ 6 7倍以上的大小者。 本發明的準分子燈,紫外線反射膜的氧化鋁粒子的含 有比率,是上述二氧化矽粒子與氧化鋁粒子的合計的 5以1%以上較佳,10\¥1°/。以上更佳。 依照本發明的準分子燈,紫外線反射膜是藉由二氧化 矽粒子與氧化鋁粒子所形成,藉由二氧化矽粒子是對於氧 化錦粒子的中心粒徑具有特定特定大小的中心粒徑者,即 使長時間被點燈時,也不會使得粒界消失而被維持之故, 因而有效率地可擴散反射真空紫外光而可維持初期反射率 ’而且可將依二氧化矽粒子與氧化鋁粒子的比重差所致的 質量差控制在一定範圍內之故,因而可將形成紫外線反射 膜之際被調整的分散液的二氧化砂粒子與氧化銘粒子的流 動性作成整齊的結果,就可紫外線反射膜作成均勻地分散 著二氧化矽粒子與氧化鋁粒子的狀態者,而放電容器對於 軸方向可得到均勻的照度分布。 【實施方式】 1第圖是表示本發明的準分子燈的一側的構成的槪略 -6 - 200917325 的說明用斷面圖,(a )是表示沿著放電容器的長度 的斷面的橫斷面圖,(b )是表示(a )的A-A線斷面 該準分子燈1 0是具備兩端被氣密地封閉而形成 電空間S的斷面矩形狀的中空長狀的放電容器1 1, 該放電容器Η的內部,作爲放電用氣體,例如被封 氣氣體,或混合Μ與氯的氣體。 放電容器Η是由良好地透射真空紫外光的二氧 玻璃,例如合成石英玻璃所成,具有作爲介質的功能 在放電容器1 1的長邊面的外表面,配置一對格 電極,亦即,相對向配置著作爲高電壓饋電電極的功 一方電極1 5及功能作爲接地電極的另一方電極1 6朝 方向延伸,藉由此,作成在一對電極1 5,16間介設 爲介質的功能的放電容器1 1的狀態。 此種電極是例如藉由將金屬所成的電極材料糊膏 於放電容器1 1,或是藉由照片印刷可形成。 在該準分子燈1 0中,當點燈電力被供應於一方 極1 5,則經由功能作爲介質的放電容器1 1的壁而在 極15,16間生成放電,藉由此,形成有準分子分子 且從該準分子分子產生真空紫外光所放射的準分子放 惟爲了有效率地利用藉由該準分子放電所發生的真空 光,二氧化矽粒子與氧化鋁粒子所形成的紫外線反射; 設於放電容器11的內表面。在此,作爲放電用氣體 氙氣體時,則放出在波長172nm具有峰値的真空紫外 而作爲放電用氣體使用混合氟與氯的氣體時,則放射· 方向 圖。 有放 而在 入有 化矽 〇 子狀 能的 長度 有作 塗佈 的電 兩電 ,而 電, 紫外 I 20 使用 線, 在波 200917325 長175nm具有峰値的真空紫外線。 紫外線反射膜2 0是例如對應於放電容器1丨的長邊面 的功能作爲高電壓饋電電極的一方電極15的內表面領域 與連續於該領域的短邊面的內表面領域的一部分全面所形 成,而在對應於放電容器1 1的長邊面的功能作爲接地電 極的另一方電極1 6的內表面領域,藉由未形成有紫外線 反射膜2 0來構成光出射部(孔徑部)1 8。 紫外線反射膜20的膜厚是例如10〜ΙΟΟμιη較佳。 紫外線反射膜20是二氧化矽粒子及氧化鋁粒子本體 具有備有高折射率的真空紫外光透射性者之故,因而到達 至二氧化矽粒子或氧化鋁粒子的真空紫外光的一部分在粒 子表面被反射,同時其他的一部分折射而被入射至粒子內 部,又被入射於粒子內部的大部分光被透射(一部分被吸 收),而再出射之際被折射的具有重複產生此種反射與折 射的「擴散反射」的功能。 又,紫外線反射膜20是由二氧化矽粒子與氧化鋁粒 子所構成,亦即藉由陶瓷所構成,具有不會發生不純氣體 ,又耐於放電的特性。 構成紫外線反射膜20的二氧化矽粒子’是例如可使 用將二氧化矽玻璃粉末狀地作成細粒子者等。 二氧化矽粒子是如下地被定義的粒子徑爲例如 0 · 0 1〜2 0 μ m的範圍內者,中心粒徑(數平均粒子徑的峰値 )爲如0.1〜ΐΟμηι者較佳,更佳爲0·3〜3Mm者。 又,具有中心粒徑的二氧化矽粒子的比率爲50%以上 200917325 較佳。 構成紫外線反射膜20的氧化鋁粒子是如下地被定義 的粒子徑爲例如0.1〜ΙΟμιη的範圍內者,中心粒徑(數平 均粒子徑的峰値)爲如0.1〜3 μιη者較佳’更佳爲〇·3~1μηι 者。 又,具有中心粒徑的氧化鋁粒子的比率爲50%以上較 佳。 構成紫外線反射膜20的二氧化矽粒子及氧化鋁粒子 的「粒子徑」,是指將紫外線反射膜20對於其表面朝垂 直方向切剖時的切剖面的厚度方向的大約中間位置作爲觀 察範圍,藉由掃描型電子顯微鏡(SEM )取得擴大投影像 ,而以一定方向的兩條平行線隔著該擴大投影像的任意粒 子時的該平行線的間隔的弗雷特(Feret's )直徑。 如第2 ( a )圖所示地,具體上,在以單獨存在著大約 球狀的粒子A及具有粉碎粒子形狀的粒子B等的粒子時, 將以朝著一定方向[(例如紫外線反射膜2 0的厚度方向( γ軸方向))延伸的兩條平行線隔著該粒子時的該平行線 的間隔作爲粒徑DA、DB。 又,針對於具有出發材料的粒子經熔融所接合的形狀 的粒子C,如第2 ( b )圖所示地’針對於被判別爲出發材 料的粒子C 1、C 2的部分的各該球狀部分,測定以朝一定 方向[例如紫外線反射膜2 0的厚度方向(Y軸方向)]延伸 的2條平線相夾時的該平行線的間隔,將此作爲該粒子的 粒徑 D C 1,D C 2。 200917325 構成紫外線反射膜20的二氧化矽粒子及氧化鋁粒子 的「中心粒子」,是指將針對於如上述所得到的各粒子的 粒子徑的最大値與最小値的粒子徑的範圍,例如以〇 . 1 μπι 的範圍分成複數區分,例如區分成的15區分,屬於各個 區分的粒子個數(度數)成爲最大的區分的中心値。 二氧化矽粒子及氧化鋁粒子是藉由具有與真空紫外光 的波長相同程度的上述範圍的粒子徑者,有效率地可擴散 反射真空紫外光。 在以上,含有於上述準分子燈10的紫外線反射膜20 的氧化鋁粒子的比率,是二氧化矽粒子與氧化鋁粒子的合 計的 5 wt%以上,70wt%以下較佳,又,1 〇wt%以上, 70wt%以上更佳。藉由此,即使長時間被點燈時,也可將 紫外線反射膜20的反射率的降低程度抑制成較小,而可 將準分子燈1 〇的放電容器1 1的軸方向的照度分布實質上 仍可維持在點燈初期時的狀態。 含有於上述準分子燈1 〇的紫外線反射膜20的二氧化 矽粒子,是使用其中心粒徑爲氧化鋁粒子的中心粒徑的 〇 . 6 7倍以上的大小者,較佳爲使用氧化鋁粒子的中心粒徑 的〇 · 6 7倍以上,1 0倍以上的大小者。 紫外線反射膜是如下述地’例如可藉由「流下法」所 形成,惟二氧化砂粒子與氧化銘粒子的比重不相同之故, 因而傾斜放電容器而澄乾過多的塗敷液(分散液)之際, 比重輕的二氧化矽粒子是留在上端,而比重重的氧化鋁粒 子是偏在下端的狀態下附著於放電容器,若仍以該狀態下 -10- 200917325 乾燥,燒成塗敷液以形成紫外線反射膜時,則會產生二氧 化矽粒子與氧化鋁粒子的濃度坡度。因此,將二氧化矽粒 子的中心粒徑,對於氧化鋁粒子的粒徑的中心徑,藉由二 氧化矽粒子的中心粒徑作成一定範圍內的大小,而將依二 氧化矽粒子與氧化鋁粒子的比重差所致的質量差可控制在 一定範圍,可將分散液的二氧化矽粒子與氧化鋁粒子的流 動作成整齊,而均勻地可分散二氧化矽粒子與氧化鋁粒子 0 此種紫外線反射膜20是例如稱爲「流下法」的方法 ’就可形成。亦即,在具有組合水與PEO樹脂(聚乙烯氧 化物)的黏性的溶劑,混合二氧化矽粒子及氧化鋁粒子來 調配分散液,藉由將該分散液流進放電容器1 1內,附著 於放電容器1 1的內表面的所定領域之後,利用乾燥,燒 成’把水與PEO樹脂予以蒸發,就可形成紫外線反射膜 2 〇。在此,燒成溫度是例如作成5 0 0〜1 1 0 0 °C。 即使紫外線反射膜爲例如藉由流下法所形成時,則紫 外線反射膜的二氧化矽粒子與氧化鋁粒子的中心粒徑比, 也作成出發材料的粒子狀態的中心粒徑比被保持的狀態, 惟例如在二氧化矽所形成的基材上形成紫外線反射膜後, 從基材剝落該紫外線反射膜,而藉由表示於以下的方法, 利用測定二氧化矽粒子與氧化鋁粒子的各該粒子徑,被確 認。 二氧化矽粒子的粒子徑的測定,是將從基材所剝落的 紫外線反射膜,放進例如8 5 %磷酸與9 7 %硫酸的混酸中, -11 - 200917325 而在微波加熱爐進行溶解氧化鋁粒子,取出加溫該溶解液 使之蒸發所留下的二氧化矽粒子,以純水進行洗淨,經乾 燥之後,依據上述的方法,利用SEM可進行測定。 又,氧化鋁粒子的粒子徑的測定,是將從基材所剝落 的紫外線反射膜,使用例如47%氟化氫酸進行溶解二氧化 矽粒子,取出加溫該溶解液使之蒸發二氧化矽粒子與氟化 氫酸所留下的氧化鋁粒子,以純水進行洗淨,經乾燥之後 ,依據上述的方法,利用S Ε Μ可進行測定。 形成紫外線反射膜20之際所用的二氧化矽粒子及氧, 化鋁粒子的製造,是都可利用固相法,液相法,氣相法的 任何方法’惟在此些中,由確實地可得到亞微細粒,微米 尺寸的粒子’以氣相法,尤其是化學蒸鍍法(CVD )較佳 〇 具體上,例如二氧化矽粒子是藉由將氯化矽與氧在 9 00~1 000 °C予以反應,而氧化鋁粒子是藉由將原料的氯化 鋁與氧在1 000〜1 200 °c予以加熱反應,就可加以合成,而 粒子徑是藉由控制原料濃度,反應場的壓力,反應溫度就 可調整。 一般’在準分子燈眾知隨著準分子放電,就發生電漿 ’惟在如上述的構成的準分子燈中,電漿成爲大約直角地 入射於紫外線反射膜而施以作用之故,因而紫外線反射膜 的溫度會局部地急激地被上昇,於紫外線反射膜僅爲如二 氧化矽粒子所成者,則藉由電漿的熱,使得二氧化矽粒子 被熔融而會消失粒界之故,因而無法擴散反射真空紫外光 -12- 200917325 而降低反射率。 然而’紫外線反射膜20爲由二氧化矽粒 粒子所構成’而二氧化矽粒子是其中心粒徑對 子的中心粒徑具有一定範圍內的大小者,藉由此 述構成的準分子燈丨0,即使被曝露在依電漿所致 其有比二氧化矽粒子還高融點的紫外線反射膜是 融之故,因而以粒子彼此間結合著互相地鄰接的 粒子與氧化鋁粒子被防止而被維持著粒界,因此 間被點燈時’也有效率地可擴散反射真空紫外光 射率的降低程度抑制成較小,而且在形成紫外線 際所調配的分散液中,依二氧化矽粒子與氧化鋁 重差所致的質量差被補償成爲控制在一定範圍內 而可將二氧化矽粒子與氧化鋁粒子的流動性作成 ,因而二氧化矽粒子與氧化鋁粒子以均勻地被分 下可形成紫外線反射膜,而放電容器對於軸方向 如流下法以形成紫外線反射膜時的傾斜方向)可 的照度分布。 又,氧化鋁粒子是具有比二氧化矽粒子還高 故,因而與僅由二氧化矽粒子所形成的紫外線反 較,可得到高反射率。 又,藉由在被曝露在產生準分子發光的放電 放電容器11的內表面形成有紫外線反射膜2 〇, 空間S內的真空紫外線隨著入射於光出射部1 8 域的二氧化矽玻璃的紫外線失真所致的損傷予以 與氧化銘 •氧化銘粒 ,依照上 :的熱時, 也不會熔 二氧化矽 即使長時 而可將反 反射膜之 粒子的比 的狀態, 整齊之故 散的狀態 (藉由例 得到均勻 折射率之 射膜相比 空間S的 可將放電 以下的領 減小,而 -13- 200917325 可防止發生裂痕。 以下’將爲了確認本發明的效果所進行的實施例加以 說明。 (實驗例1 ) 依照第1圖的構成’製作紫外線反射膜的二氧化矽粒 子的中心粒徑D1與紫外線反射膜的中心粒徑D2的比 D 1 /D2除了依照下述表1所變更以外是具有同—構成的8 種類的準分子燈。各準分子燈的基本構成是如下所述。 (準分子燈的構成) 放電容器的尺寸是1 0x40x900mm,厚度爲3mm者。 被封入在放電容器內的放電用氣體是氙氣體,而其封 入量是50kPa 高電壓供應電極及接地電極的尺寸是30x800mm。 準分子燈的發光長度是8 00nm。 構成紫外線反射膜的二氧化矽粒子,是具有中心粒徑 的粒子比率爲50%者。而氧化鋁粒子,是具有中心粒徑的 粒子比率爲5 〇 %者。 在此,二氧化矽粒子及氧化鋁粒子的粒子徑的測定’ 是使用日本日立製電場放射型掃描電子顯微鏡^ S4 1 00」 ,將加壓電壓作爲20kV,而將擴大投影像的觀察效率’ 粒子徑爲〇.1~1μηι的粒子作爲20000倍’而粒子徑爲 1〜1 0 μ m的粒子作爲2 0 0 0倍所進行。 -14- 200917325 紫外線反射膜是藉由流下法,將燒成溫度作爲1 1 0 0 °c 所得到者,其膜厚是30μιη,而氧化鋁粒子的含有比率爲 10wt% 0 針對於各準分子燈,在電極間的電壓成爲1 OkV的條 件下,藉由連續點燈準分子燈1小時以上使之穩定動作狀 態之後,在對於光出射方向距3 mm的位置的發光部間的 放電容器對於管軸方向的每隔1 Omm間隔的位置上,測定 波長1 72nm的氙準分子光的照度,而調查利用[(最小照 度/最大照度)]x ( % )所表示的相對照度分布。將結 果表示於下述表1。 [表1] 二氧化ϊ 夕粒子 _ 氧化鋁粒了 中心粒徑比 D1/D2 相對照度分布 [%] 粒子徑的範圍 Γμπιΐ 中心粒徑 粒子徑的範圍 iuml 中心粒徑 D2[ujti]_ 準分子燈1 0.1-10 3.0 0.3 10.0 84.2 準分子燈2 0.1 〜8 1.5 〜1 0.3 5.00 86.0 準分子燈3 0.1-5 1.0 -·-—P*l^l 0.3 3.33 83.6 準分子燈4 0.1-2 0.5 -— — -—〇.1〜1 0.3 1.67 80.0 準分子燈5 0·1 〜1 0.3 ----^1-1 0.3 1.00 78.3 準分子燈6 0.05-0.5 0.2 ^〜1 0.3 0.67 73.4 準分子燈7 0.01-0.2 0.1 、、〜1 0.3 0.33 68.3 準分子燈8 0.01~0.2 0.1 — — —L 0.4 0.25 66.9 準分子燈的相對照度分布是作爲製品的規格被要求爲 70%以上’惟由以上的結果,作爲二氧化矽粒子,依照其 中心粒徑爲混合著氧化鋁粒子的中心粒徑的〇.67倍以上 -15- 200917325 者而形成有紫外線反射膜的準分子燈1〜6,可將相對照度 分布作爲70 %以上,而被確認爲對管軸方向可得到均勻的 照度分布。 (實驗例2 ) 製作除了將發光度作爲1 600mm以外,具有與在實驗 例1所使用者同一的構成的紫外線反射膜的二氧化矽粒子 的中心粒徑D1與中心粒徑D2之比D1/D2依照下述表2 所變更的8種類的準分子燈,進行與實驗例1同樣的實驗 ,調查各準分子燈的相對照度分布。將結果表示於下述表 1。 [表2] 二氧化矽、 拉子 氧化鋁粒子 中心粒徑比 D1/D2 相對照度分布 [%] 粒子徑的範圍 Γμηιΐ 中心粒徑 ϋΙΓμηι] 粒子徑的範圍 _ 中心粒徑 D2「pml 準分子燈9 0_1 〜10 3.0 0.1-1 0.3 10.0 83.6 準分子燈10 0.1 〜8 1.5 0.1-1 0.3 5.00 83.5 準分子燈11 0·1 〜5 1.0 0.1-1 0.3 3.33 81.8 準分子燈12 0.1-2 0.5 0.1 〜1 0.3 1.67 80.6 準分子燈13 0.1-1 0.3 0.1-1 0.3 1.00 79.3 準分子燈14 0.05-0.5 0.2 0.1-1 0.3 0.67 72.1 準分子燈15 0.01^0.2 0.1 0.1-1 0.3 0.33 65.1 準分子燈16 0.01-0.2 0.1 0.1-1 0.4 0.25 64.0 由以上結果,與準分子燈的發光長的大小無關’作爲 二氧化矽粒子’依照其中心粒徑爲調配著氧化鋁粒子的中 -16- 200917325 心粒徑的0 · 6 7倍以上者而形成有紫外線反射膜的準分子 燈9〜1 4,可將相對照度分布成爲70%以上,而被確認爲對 管軸方向可得到均勻的照度分布。 (實驗例3 ) 由中心粒徑(D 1 )爲0 · 3 μ m的二氧化矽粒子,及中心 粒徑(D2)爲0.3μιη的氧化鋁粒子(Dl/D2=1.00)所形成 ,藉由將氧化鋁粒子的含有比率被變更爲0 wt%,1 Owt%, 3 3 wt%,5 0 wt%的紫外線反射膜以3 Ο μπι膜厚形成於平板狀 的二氧化矽玻璃製基材上,進行製作4種類的試驗片。 又,針封於各試驗片’測定將紫外線反射膜被加熱在 1 00 0°C時[在第3圖以一點鏈線所表示的直線(1 )],及被 加熱在1 3 0 0 °C時[在第3圖以虛線所表示的直線(2 )]的 各該的波長1 7 0 nm的光的反射光強度。將結果表示於第3 圖。在此,紫外線反射膜的加熱溫度的1 0 0 0 °C,是相當於 形成紫外線反射膜之際的燒成溫度的溫度,而1 3 0 0 r是相 當於電漿作用於紫外線反射膜時的加熱溫度的溫度。 反射光強度的測定是使用ACTON RESEARCH所製的 「VM-5〇2」’首先,針對於未具有紫外線反射膜的基材 ,取得各波長的散射光的基準値,設置形成有紫外線反射 膜的試驗片,針對於各波長測定散射光,將藉由此所得到 的各該測定値,以各波長的基準値(未具有紫外線反射膜 的基材的測定)進行除算,得到反射光強度,藉由從各種 測定結果抽出特定波長的測定値,而得到波長1 7〇nm的光 -17- 200917325 的反射光強度。 由表示於第3圖的結果可明瞭,紫外線反射膜的氧化 鋁粒子的含有比率爲〇wt%時,亦即,在未含有氧化鋁粒 子時,表示被加熱在1〇〇〇 °C時的反射光強度是0.03以上 的高値,而被加熱在1 3 00°C時,則反射光強度會大幅度地 降低至大約〇. 〇 1。由此,在實際的準分子燈,電漿接觸紫 外線反射膜的部位,反射光強度局部地降低,使得準分子 燈的照度分布成爲不均勻,當準分子燈長時間被點燈時, 則假設電漿接觸紫外線反射膜全體,而降低反射率者。 一方面,確認了藉由添加氧化鋁粒子,依熱所致的反 射率降低是徐徐地被抑制。具體地加以說明如下,在添加 氧化鋁粒子1 〇wt%者,被加熱在1 ooo°c時的反射光強度比 僅由二氧化矽粒子所成者的反射光強度還低,例如成爲降 低成0.023,惟被加熱在1 300°C時,則反射光強度是比未 添加氧化鋁粒子時還高爲0 · 0 1 7,確認了可將依熱所致的 紫外線反射膜的反射率降低抑制大約70%。 如此,隨著增加氧化鋁粒子的含有比率’可將依熱所 致的紫外線反射膜的反射率降低的程度抑制成較小’例如 在添加氧化鋁粒子5 0 wt%者’則被加熱在1 〇 〇 〇 °C時的反射 光強度,及被加熱在1 3 0 0 °c時的反射光強度成爲一致’確 認了可將依熱所致的紫外線反射膜的反射率降低加以抑制 (實驗例4) 18- 200917325 除了在實驗例3中從Owt%—直到10wt%爲止的範圍 內適當地變更氧化鋁粒子的含有比率以外是與實驗例3同 樣,藉由將紫外線反射膜以膜厚30μιη形成在平板狀的二 氧化矽製基材上來製作複數種試驗片,針對於此所得到的 各該試驗片,作成與實驗例3同樣,將紫外線反射膜加熱 在1 000°C時及加熱在1 3 00°C時的測定各該的波長170nm 的光的反射光強度,藉由此針對於紫外線反射膜的氧化鋁 粒子的含有量的影響加以調查。將結果表示於下述表3, 在此,氧化鋁粒子的含有比率爲〇wt%時及氧化鋁粒子的 含有比率爲1 Owt%時的結果,是在上述實驗例3所得到者 [表3] 紫外線反 射膜的加熱 溫度[°c ] 波長170nm的光的反射光強度(a.u.) 氧化鋁粒子的含有比率[wt%l 0 1 5 10 1000 0.03 1 0.0280 0.023 5 0.023 1300 0.010 0.012 0.016 0.017 由表示於實驗例4的結果可明瞭,在添加氧化鋁粒子 1 wt%者’被加熱在1 0 0 〇 °C時的反射光強度比僅由二氧化 砂粒子所形成者的反射光強度還低,又,在被加熱在1300 °C時,反射光強度是比未添加氧化鋁粒子時還高至0.012 者’惟可將依熱所致的紫外線反射膜的反射率降低僅抑制 大約3 2 %。 -19- 200917325 對於此,在添加氧化鋁粒子5wt%者,被: °c時的反射光強度比僅由二氧化矽粒子所形成 度還低,例如成爲降低成0.0235 ’惟被加熱在 反射光強度是比未添加氧化鋁粒子時還高至 了可將依熱所致的紫外線反射膜的反射率的降 6 8%。 因此,在實際的準分子燈中,藉由紫外線 氧化鋁粒子5 wt%以上者,即使準分子燈長時 得紫外線反射膜曝露於電漿的熱時,也可抑制 子熔融所致的反射率降低,依照形成有此種紫 的準分子燈,假想可長時間的期間確實地維持 向可得到均匀的照度分布的狀態者。 如此,藉由使得紫外線反射膜添加氧化鋁 以上者,假想更確實地得到上述效果者。 以上,針對於本發明的實施形態加以說明 是並不被限定於上述實施形態者,可施加各種 本發明是並不被限定於上述構成的準分子 適用於如第4圖所示的雙重管構造的準分子燈 5圖所示的所謂「四方型」的準分子燈。 如第4圖所示的準分子燈5 0,是具有二氧 所形成的圓筒狀外側管5 2,及在該外側管5 2 軸所配置的具有比該外側管5 2的內徑還小的 二氧化矽玻璃管所形成的圓筒狀內側管5 3 ’外 內側管5 3在兩端部被熔融接合而在外側管5 2 加熱在 1 0 0 0 1白勺反射光強 13〇〇t 時, 0-016,確認 低抑制大約 反射膜添加 間被點燈使 二氧化矽粒 外線反射膜 對於管軸方 粒子 1 0 w t % ,惟本發明 變更。 燈者,也可 ,或是如第 化矽玻璃管 內沿著其管 外徑的例如 .側管52與 與內側管5 3 -20- 200917325 之間具備形成有環狀放電空間s所成的雙重管構造的放電 容器51,例如金屬所形成的一方的電極(高電壓供應電極 )55密接設於內側管53的內周面’而且例如由金屬綱等 的導電性材料所形成的另一方的電極5 6密接設於外側管 52的外周面’而在放電空間S內,例如塡充有藉由氙氣 體等準分子放電形成準分子分子的放電用氣體所構成。 在此種構成的準分子燈5 0中,例如在放電容器5 1的 內側管5 3的內表面的所有空間設有上述紫外線反射膜2 0 ,而且在外側管5 2的內表面’除了形成光出射部5 8的一 部分的領域以外設有二氧化矽粒子與氧化鋁粒子所形成的 紫外線反射膜20。 又,表示於第5圖的準分子燈40是例如具備合成二 氧化矽玻璃所成的斷面長方形的放電容器4 1所成,而金 屬所成的一對外側電極4 5 ’ 4 5配設於放電容器4 1的互相 相對向的外表面成爲朝放電容器41的管軸方向延伸,而 且放電用氣體的例如氙氣體被塡充於放電容器41內。在 第5圖中,符號4 2是排氣管’而符號4 3是如鋇所形成的 吸氣劑。 在此種構成的準分子燈40中,對應於放電容器41的 內表面的各個外側電極4 5,4 5的領域及連續於此些領域 的一方的內面領域的所有領域,設有上述紫外線反射膜2 0 ,而藉由未設有紫外線反射膜20以形成光出射部44。 【圖式簡單說明】 -21 - 200917325 第1圖是表示本發明的準分子燈一例子的構成 說明用斷面圖’ (a)是表示沿著放電容器的長度 斷面的斷面圖,(b)是表示(a)的A-A線斷面圖 第2圖是表示用於說明二氧化矽粒子及氧化鋁 粒子徑的定義的說明圖。 第3圖是表示以〇〜5 0 wt%的範圍進行變化實驗 準分子燈的含有於紫外線反射膜的氧化鋁粒子的比 反射光強度的圖表。 第4圖是表示本發明的準分子燈的其他例子的 略的說明用斷面圖’ (a)是表示沿著放電容器的 向的斷面的橫斷面圖’ (b)是表示(a)的a-A線 〇 第5圖是表示本發明的準分子燈的另一例子的 略的說明用斷面圖’ (a)是表示沿著放電容器的 向的斷面的斷面圖’ (b)是表示依垂直於(a)的 平面的斷面的斷面圖。 【主要元件符號說明】 1 0 :準分子燈,1 1 :放電容器’丨5 ••一方的電 電壓供應電極),1 6 ··另一方的電極(接地電極) U ·_光出射部(孔徑部)’ 20 ··紫外線反射膜,3〇 容器,3 1 :支撐台,35 :紫外線照度計,4〇 :準分 41:放電容器,42:排氣管’ 43:吸氣劑,44 :光 ,45 :外側電極,5〇 :準分子燈,5卜放電容器, 槪略的 方向的 〇 粒子的 例3的 率時的 構成槪 長度方 斷面圖 構成槪 長度方 紙面的 極(高 ) =鋁製 子燈, 出射部 52 :外 -22- 200917325 側管, ,5 6: 5 3 :內側管,5 5 : —方的電極(高電壓供應電極) 另一方的電極,5 8 :光出射部,S :放電空間。 -23-BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal molecular lamp in which the above-described discharge vessel is provided with a ceria glass electrode in which the chopper glass is formed. [Prior Art] In recent years, for example, a technique of irradiating light outside the wavelength to the metal, glass, and other materials by the vacuum ultraviolet light and the ozone body generated therefrom, for example, to remove the adhesion to the treated body, has been developed. The net treatment technique or the chemical film formation treatment technique of the object to be processed is put to practical use. As a device for irradiating vacuum ultraviolet light, an excimer molecule is formed, and a light source having a higher intensity is emitted from the quasi-qualitomer lamp as a light source. Specifically, for example, reference is made to the fourth. It is to be noted that the inner side and the outer side of the discharge vessel 51 formed by the ultraviolet ray oxide glass are respectively provided with an electrode 5 5 5 ,, and the discharge ultraviolet ray reflection film 20 exposed to the discharge vessel 51 is used as an ultraviolet reflector. In the case of a glass, a discharge vessel made of only alumina particles is provided with a pair of objects of a vacuum purple color of quasi-molecular discharge of 200 nm or less in the state of the glass, and the effect is to be treated. The surface of the organic contaminant on the surface of the treatment forms oxygen in the oxide film, for example, in a molecular lamp that emits light by excimer electron-releasing molecules, in order to make more attempts. Ming: It is described that the transmissive device 51 is provided, and a film is formed on the surface of the excimer lamp space S formed by the discharge capacitor 56, and only the dioxide is exemplified in the embodiment (see -4-200917325 patent) In the excimer lamp 50, a part of the discharge vessel 51 is formed with a light-emitting portion 58 that emits ultraviolet light generated in the discharge space S without forming the ultraviolet-ray reflection film 20. The excimer lamp 50 having such a configuration is formed in the discharge space S in the field in which the ultraviolet ray reflection film is provided on the surface of the discharge space S exposed to the discharge vessel 51 by providing the ultraviolet ray reflection film. Since the ultraviolet ray is reflected by the ultraviolet ray reflection film, it is not incident on the erbium sulphide glass, and in the field constituting the light exit portion 580, the ultraviolet ray transmitting cerium oxide glass is radiated to the outside, and thus, basically, It is possible to effectively utilize the ultraviolet rays generated in the discharge space S, and it is possible to suppress the damage caused by the ultraviolet ray distortion of the cerium oxide glass constituting the field other than the light exit portion 58 to be small, and to prevent the occurrence of cracks. . However, in the excimer lamp having the ultraviolet ray reflection film as described above, it has been found that the illuminance distribution in the axial direction of the discharge vessel becomes uneven. problem. The present invention has been made in view of the above circumstances, and its object is to provide that the degree of reduction of the reflectance of the ultraviolet-ray reflective film is suppressed to a small extent even when it is lit for a long time, and uniform illumination can be obtained in the axial direction of the discharge vessel. Distributed excimer lamps. The excimer lamp of the present invention belongs to a discharge vessel comprising a bismuth oxide--5-200917325 bismuth glass having a discharge space, and is provided with a pair of electrodes in a state in which cerium oxide glass forming the discharge vessel is interposed. An excimer lamp in which excimer discharge occurs in a discharge space of the discharge vessel, characterized in that: ultraviolet radiation formed by cerium oxide particles and alumina particles is formed on a surface of a discharge space exposed to the discharge vessel In the film, the cerium oxide particles have a size in which the center particle diameter is 〇_67 or more of the central particle diameter of the alumina particles. In the excimer lamp of the present invention, the content of the alumina particles in the ultraviolet-ray reflective film is preferably 1% or more, and 10% to 1% by weight of the total of the cerium oxide particles and the alumina particles. The above is better. According to the excimer lamp of the present invention, the ultraviolet ray reflection film is formed by cerium oxide particles and alumina particles, and the cerium oxide particles are a central particle diameter having a specific specific size for the central particle diameter of the oxidized cerium particles. Even if it is lit for a long time, it will not cause the grain boundary to disappear and be maintained. Therefore, the vacuum ultraviolet light can be efficiently diffused and reflected to maintain the initial reflectance, and the cerium oxide particles and the alumina particles can be maintained. The difference in mass due to the difference in specific gravity is controlled within a certain range, so that the fluidity of the silica sand particles and the oxidized crystal particles of the dispersion liquid adjusted at the time of forming the ultraviolet ray reflection film can be neatly sterilized. The reflective film is formed to uniformly disperse the state of the cerium oxide particles and the alumina particles, and the discharge vessel can obtain a uniform illuminance distribution for the axial direction. [Embodiment] FIG. 1 is a cross-sectional view showing the configuration of one side of the excimer lamp of the present invention, and (a) is a cross-sectional view showing the length along the length of the discharge vessel. In the cross-sectional view, (b) is a cross-sectional view taken along the line AA of (a). The excimer lamp 10 is a hollow-shaped discharge vessel 1 having a rectangular cross section in which both ends are hermetically sealed to form an electric space S. 1. The inside of the discharge vessel , is used as a discharge gas, for example, a gas to be sealed, or a gas mixed with ruthenium and chlorine. The discharge vessel Η is made of a dioxygen glass that transmits vacuum ultraviolet light well, such as synthetic quartz glass, and has a function as a medium on the outer surface of the long side surface of the discharge vessel 1 1 , and is provided with a pair of grid electrodes, that is, The work side electrode 15 that is a high voltage feed electrode and the other electrode 16 that functions as a ground electrode extend in a direction, thereby forming a medium between the pair of electrodes 15 and 16. The state of the function of the discharge vessel 1 1. Such an electrode is formed, for example, by pasting an electrode material made of a metal on the discharge vessel 1 or by photo printing. In the excimer lamp 10, when the lighting power is supplied to the one pole 15 , a discharge is generated between the poles 15 and 16 via the wall of the discharge vessel 1 1 functioning as a medium, thereby forming a standard Molecular molecules and excimer molecules emitted from the excimer molecules to generate vacuum ultraviolet light in order to efficiently utilize the vacuum light generated by the excimer discharge, and the ultraviolet rays formed by the ceria particles and the alumina particles; It is provided on the inner surface of the discharge vessel 11. Here, when the gas for discharge is helium gas, a vacuum ultraviolet having a peak 波长 at a wavelength of 172 nm is released, and when a gas containing fluorine and chlorine is used as a gas for discharge, the radiation pattern is obtained. There is an electric charge that is applied to the length of the pupation, and the electric, ultraviolet I 20 uses a line, and the wave has a peak 値 vacuum of 175 nm at 200917325. The ultraviolet ray reflection film 20 is, for example, a function corresponding to the long side surface of the discharge vessel 1 作为 as a part of the inner surface area of one electrode 15 of the high voltage feed electrode and the inner surface area of the short side surface continuous with the field. In the field of the inner surface of the other electrode 16 which functions as the ground electrode of the long side surface of the discharge vessel 11, the light exit portion (aperture portion) is constituted by the ultraviolet reflection film 20 not being formed. 8. The film thickness of the ultraviolet ray reflection film 20 is preferably, for example, 10 to ΙΟΟμηη. The ultraviolet ray reflection film 20 is a ruthenium dioxide particle and an alumina particle body having a vacuum ultraviolet light transmittance having a high refractive index, so that a part of the vacuum ultraviolet light reaching the cerium oxide particle or the aluminum oxide particle is on the particle surface. Reflected while the other part is refracted and incident on the inside of the particle, and most of the light incident on the inside of the particle is transmitted (a part of which is absorbed), and is refraction at the time of re-emission to have such refraction and refraction. The function of "diffusion reflection". Further, the ultraviolet ray reflection film 20 is composed of cerium oxide particles and alumina particles, that is, it is composed of ceramics, and has characteristics of not generating an impurity gas and being resistant to discharge. The cerium oxide particles constituting the ultraviolet ray reflection film 20 are, for example, those in which the cerium oxide glass is powdered into fine particles. The cerium oxide particles are defined such that the particle diameter is in the range of, for example, 0·0 1 to 2 0 μ m, and the center particle diameter (peak 数 of the number average particle diameter) is preferably 0.1 to ΐΟμηι, and more preferably. Good for 0·3~3Mm. Further, the ratio of the ceria particles having a central particle diameter is 50% or more. 200917325 is preferred. The alumina particles constituting the ultraviolet ray reflection film 20 are in the range of, for example, 0.1 to ΙΟμηη, and the center particle diameter (peak 数 of the number average particle diameter) is preferably 0.1 to 3 μm. Jia Wei·3~1μηι. Further, the ratio of the alumina particles having the central particle diameter is preferably 50% or more. The "particle diameter" of the cerium oxide particles and the alumina particles constituting the ultraviolet ray reflection film 20 is an observation range in which the ultraviolet ray reflection film 20 is approximately the middle in the thickness direction of the cross section when the surface is cut in the vertical direction. The expanded projection image is obtained by a scanning electron microscope (SEM), and the Freit's diameter of the parallel line when the arbitrary particles of the projection image are expanded by two parallel lines in a certain direction. As shown in Fig. 2(a), in particular, when particles such as approximately spherical particles A and particles B having a shape of pulverized particles are present alone, they are oriented in a certain direction [(for example, an ultraviolet reflecting film) The interval between the parallel lines when the two parallel lines extending in the thickness direction of the 20 (the γ-axis direction) are interposed therebetween is the particle diameters DA and DB. Further, the particles C having a shape in which the particles having the starting material are joined by melting are as described in the second (b) diagram for each of the portions of the particles C 1 and C 2 determined as the starting materials. The interval of the parallel lines when the two flat lines extending in a certain direction (for example, the thickness direction of the ultraviolet reflecting film 20 (Y-axis direction)) are sandwiched, and the particle diameter DC 1 is taken as the particle diameter. , DC 2. 200917325 The "central particles" of the cerium oxide particles and the alumina particles constituting the ultraviolet ray reflection film 20 are ranges of the particle diameters of the maximum 値 and the minimum 粒子 of the particle diameters of the respective particles obtained as described above, for example, 1. The range of 1 μπι is divided into plural numbers, for example, 15 divisions are divided into groups, and the number of particles (degrees) belonging to each division becomes the center of the largest division. The cerium oxide particles and the alumina particles are efficiently diffused and reflected by the vacuum ultraviolet light by having a particle diameter within the above range which is the same as the wavelength of the vacuum ultraviolet light. In the above, the ratio of the alumina particles contained in the ultraviolet ray reflection film 20 of the excimer lamp 10 is preferably 5 wt% or more and 70 wt% or less of the total of the cerium oxide particles and the alumina particles, and further, 1 〇 wt More than 70% by weight, more preferably 70% by weight or more. Thereby, even when the lamp is turned on for a long time, the degree of reduction in the reflectance of the ultraviolet ray reflection film 20 can be suppressed to be small, and the illuminance distribution in the axial direction of the discharge vessel 1 1 of the excimer lamp 1 can be substantially The state at the beginning of lighting can still be maintained. The cerium oxide particles contained in the ultraviolet ray reflection film 20 of the excimer lamp 1 是 are preferably those having a center particle diameter of 中心 67 7 or more of the central particle diameter of the alumina particles, preferably alumina. The particle diameter of the center of the particle is 6·6 7 times or more, and 10 times or more. The ultraviolet ray reflection film is formed by, for example, a "flow down method", except that the specific gravity of the sulphur dioxide particles and the oxidized granules are different, so that the coating liquid is slanted and the excess coating liquid is dispersed (dispersion liquid) When the cerium oxide particles having a small specific gravity are left at the upper end, the alumina particles having a heavy specific gravity are attached to the discharge vessel in a state of being biased at the lower end, and if they are still dried in this state, -10-200917325, the firing coating is applied. When the liquid forms an ultraviolet reflecting film, the concentration gradient of the cerium oxide particles and the alumina particles is generated. Therefore, the center particle diameter of the cerium oxide particles and the center diameter of the particle diameter of the alumina particles are made to have a size within a certain range by the central particle diameter of the cerium oxide particles, and the cerium oxide-containing particles and the alumina are used. The difference in mass due to the difference in specific gravity of the particles can be controlled within a certain range, and the flow of the cerium oxide particles of the dispersion and the particles of the alumina particles can be aligned, and the cerium oxide particles and the alumina particles can be uniformly dispersed. The reflective film 20 can be formed, for example, as a method called "flow down method". That is, in a viscous solvent having a combination of water and a PEO resin (polyethylene oxide), the cerium oxide particles and the alumina particles are mixed to prepare a dispersion, and the dispersion is introduced into the discharge vessel 1 1 , After adhering to a predetermined area of the inner surface of the discharge vessel 1 1 , the ultraviolet ray is formed by drying and firing the water and the PEO resin to form an ultraviolet ray reflection film 2 〇. Here, the firing temperature is, for example, 5 0 0 to 1 1 0 0 °C. When the ultraviolet ray reflection film is formed by, for example, a downflow method, the ratio of the center particle diameter of the cerium oxide particles of the ultraviolet ray reflection film to the alumina particles is also maintained as a state in which the center particle diameter of the particle state of the starting material is maintained. For example, after the ultraviolet ray reflection film is formed on the substrate formed of ruthenium dioxide, the ultraviolet ray reflection film is peeled off from the substrate, and the particles of the cerium oxide particles and the alumina particles are measured by the following method. The path is confirmed. The particle diameter of the cerium oxide particles is measured by dissolving the ultraviolet ray-removing film which is peeled off from the substrate into a mixed acid of, for example, 85% phosphoric acid and 97% sulfuric acid, -11 - 200917325, and performing dissolution oxidation in a microwave heating furnace. The aluminum particles are taken out and the cerium oxide particles left by heating the solution to be evaporated are washed with pure water, dried, and then measured by SEM according to the above method. Further, the measurement of the particle diameter of the alumina particles is an ultraviolet ray reflection film which is peeled off from the substrate, and the cerium oxide particles are dissolved by using, for example, 47% hydrogen fluoride acid, and the solution is heated and evaporated to evaporate the cerium oxide particles. The alumina particles left by the hydrogen fluoride acid are washed with pure water, dried, and then measured by S Ε 依据 according to the above method. The cerium oxide particles and oxygen used in the formation of the ultraviolet ray reflection film 20, and the production of the aluminum granules can be any method using a solid phase method, a liquid phase method, or a gas phase method, but in these cases, Submicron particles, micron-sized particles can be obtained by gas phase method, especially chemical vapor deposition (CVD). Specifically, for example, cerium oxide particles are obtained by using cerium chloride and oxygen at 900 to 1 The reaction is carried out at 000 ° C, and the alumina particles are synthesized by heating the raw material aluminum chloride with oxygen at 1 000 to 1 200 ° C, and the particle diameter is controlled by the concentration of the raw material, the reaction field. The pressure and reaction temperature can be adjusted. Generally, in the excimer lamp, it is known that the plasma is generated as the excimer discharges. However, in the excimer lamp having the above configuration, the plasma is incident on the ultraviolet reflective film at a right angle and acts. The temperature of the ultraviolet ray reflection film is locally raised rapidly. When the ultraviolet ray reflection film is only composed of particles such as cerium oxide particles, the cerium oxide particles are melted by the heat of the plasma, and the grain boundary disappears. Therefore, it is impossible to diffuse and reflect the vacuum ultraviolet light -12-200917325 and reduce the reflectance. However, the 'ultraviolet-reflecting film 20 is composed of cerium oxide particles' and the cerium oxide particles have a size within a certain range of the central particle diameter of the center particle diameter pair, and the excimer lamp 构成 constructed as described above 0, even if it is exposed to the ultraviolet ray-reflecting film which has a higher melting point than the cerium oxide particles due to the plasma, the particles and the alumina particles which are adjacent to each other are prevented from being bonded to each other by the particles. It is maintained at the grain boundary, so when it is lighted, it is also effective to diffuse and reflect the degree of reduction of the vacuum ultraviolet light transmittance, and it is suppressed to a small extent, and in the dispersion liquid formed by the formation of ultraviolet rays, the cerium oxide particles and The difference in mass due to the difference in alumina is compensated to be controlled within a certain range, and the fluidity of the cerium oxide particles and the alumina particles can be made, so that the cerium oxide particles and the alumina particles can be uniformly divided to form The illuminance distribution of the ultraviolet ray reflective film and the discharge direction of the discharge vessel for the axial direction such as the downward direction when the ultraviolet ray reflection film is formed. Further, since the alumina particles are higher than the cerium oxide particles, they are highly reflective with ultraviolet rays formed only by the cerium oxide particles. Further, by forming the ultraviolet reflecting film 2 〇 on the inner surface of the discharge discharge vessel 11 which is exposed to excimer light emission, the vacuum ultraviolet ray in the space S follows the cerium oxide glass incident on the light emitting portion 18 field. The damage caused by ultraviolet distortion is oxidized and oxidized. According to the above heat, the state of the ratio of the particles of the antireflection film can be fused even if the cerium oxide is not melted for a long time. In the state (the film having a uniform refractive index is obtained by the example, the space below the discharge S can be reduced, and -13-200917325 can prevent the occurrence of cracks. The following will be made to confirm the effect of the present invention. (Experimental Example 1) The ratio D 1 /D2 of the center particle diameter D1 of the cerium oxide particle which forms the ultraviolet ray reflection film and the center particle diameter D2 of the ultraviolet ray reflection film according to the configuration of Fig. 1 is in accordance with Table 1 below. In addition to the change, there are eight types of excimer lamps having the same configuration. The basic configuration of each excimer lamp is as follows: (Configuration of excimer lamp) The size of the discharge vessel is 10×40×900 mm, and the thickness is The discharge gas enclosed in the discharge vessel is helium gas, and the enclosed amount is 50 kPa. The size of the high voltage supply electrode and the ground electrode is 30 x 800 mm. The emission length of the excimer lamp is 800 nm. The cerium oxide particles are those having a central particle diameter of 50%, and the alumina particles are those having a central particle diameter of 5 〇%. Here, cerium oxide particles and particles of alumina particles The measurement of the diameter is performed by using a Hitachi electric field emission type scanning electron microscope ^S4 00", and the pressure of the pressurized voltage is 20 kV, and the observation efficiency of the expanded projection image is 20,000 times the particle diameter of 〇.1 to 1 μηι. 'The particles having a particle diameter of 1 to 10 μm are taken as 200 times. -14- 200917325 The ultraviolet reflecting film is obtained by the downflow method and the firing temperature is 1 1 0 0 °c. The film thickness is 30 μm, and the content ratio of the alumina particles is 10 wt%. 0 For each excimer lamp, it is stabilized by continuously lighting the excimer lamp for 1 hour or more under the condition that the voltage between the electrodes becomes 1 OkV. After the state, the illuminance of the xenon excimer light having a wavelength of 1 to 72 nm was measured at a position of every 10 mm in the tube axis direction at the position of the discharge vessel between the light-emitting portions at a position of 3 mm in the light emission direction. [(Minimum illuminance/maximum illuminance)]] The relative illuminance distribution represented by x (%). The results are shown in Table 1 below. [Table 1] cerium oxide cerium particles _ alumina particles have a central particle size ratio D1/D2 Contrast distribution [%] Particle diameter range Γμπιΐ Center particle diameter range iuml Center particle size D2[ujti]_ Excimer lamp 1 0.1-10 3.0 0.3 10.0 84.2 Excimer lamp 2 0.1 〜8 1.5 〜1 0.3 5.00 86.0 Excimer lamp 3 0.1-5 1.0 -·--P*l^l 0.3 3.33 83.6 Excimer lamp 4 0.1-2 0.5 -- - - -〇.1~1 0.3 1.67 80.0 Excimer lamp 5 0·1 ~ 1 0.3 ----^1-1 0.3 1.00 78.3 Excimer lamp 6 0.05-0.5 0.2 ^~1 0.3 0.67 73.4 Excimer lamp 7 0.01-0.2 0.1 ,, ~1 0.3 0.33 68.3 Excimer lamp 8 0.01~0.2 0.1 — — — L 0.4 0.25 66.9 The relative illuminance distribution of the excimer lamp is required to be 70% or more as the specification of the product. As a result of the above, as the cerium oxide particles, the excimer lamps 1 to 6 having the ultraviolet ray reflection film are formed in accordance with the center particle diameter of 中心.67 times or more and -15 to 200917325 in which the central particle diameter of the alumina particles is mixed. The relative illuminance distribution can be made 70% or more, and it is confirmed that a uniform illuminance distribution can be obtained for the tube axis direction. (Experimental Example 2) A ratio D1/ of the center particle diameter D1 and the center particle diameter D2 of the cerium oxide particles having the ultraviolet ray reflection film having the same configuration as that of the user of Experimental Example 1 except for the luminosity of 1 600 mm was prepared. D2 The same experiment as in Experimental Example 1 was carried out in accordance with the eight types of excimer lamps changed in Table 2 below, and the relative illuminance distribution of each excimer lamp was examined. The results are shown in Table 1 below. [Table 2] Ceria alumina, pull alumina particle center particle size ratio D1/D2 phase contrast distribution [%] particle diameter range Γμηιΐ center particle size ϋΙΓμηι] particle diameter range _ center particle size D2 "pml excimer lamp 9 0_1 ~10 3.0 0.1-1 0.3 10.0 83.6 Excimer lamp 10 0.1 〜8 1.5 0.1-1 0.3 5.00 83.5 Excimer lamp 11 0·1 ~5 1.0 0.1-1 0.3 3.33 81.8 Excimer lamp 12 0.1-2 0.5 0.1 ~1 0.3 1.67 80.6 Excimer lamp 13 0.1-1 0.3 0.1-1 0.3 1.00 79.3 Excimer lamp 14 0.05-0.5 0.2 0.1-1 0.3 0.67 72.1 Excimer lamp 15 0.01^0.2 0.1 0.1-1 0.3 0.33 65.1 Excimer lamp 16 0.01-0.2 0.1 0.1-1 0.4 0.25 64.0 From the above results, regardless of the size of the luminescence length of the excimer lamp, 'as a cerium oxide particle', according to its central particle size, the middle-16-200917325 heart with alumina particles The excimer lamps 9 to 14 in which the ultraviolet ray reflection film is formed, which has a particle diameter of 0. 6 7 or more, can have a phase contrast distribution of 70% or more, and it is confirmed that a uniform illuminance distribution can be obtained in the tube axis direction. (Experimental Example 3) Dioxane having a center particle diameter (D 1 ) of 0 · 3 μ m The cerium particles and the alumina particles (D1/D2=1.00) having a center particle diameter (D2) of 0.3 μm were formed by changing the content ratio of the alumina particles to 0 wt%, 1 Owt%, 3 3 wt. %, 50% by weight of the ultraviolet-ray reflective film was formed on a flat plate of a ceria glass substrate by a film thickness of 3 Ο μπι, and four types of test pieces were produced. The reflective film is heated at 100 °C [the straight line (1) indicated by the dotted line in Fig. 3], and is heated at 1300 °C [indicated by the dotted line in Fig. 3] The intensity of the reflected light of the light of the wavelength (1) of the straight line (2) is shown in Fig. 3. Here, the heating temperature of the ultraviolet reflecting film is 100 ° C, which is equivalent to the formation. The temperature of the firing temperature at the time of the ultraviolet ray reflection film, and 1 1300 is the temperature corresponding to the heating temperature when the plasma acts on the ultraviolet ray reflection film. The intensity of the reflected light is measured by "VM-" manufactured by ACTON RESEARCH. 5〇2"' First, for a substrate that does not have an ultraviolet-ray reflective film, a reference 値 of scattered light of each wavelength is obtained. The test piece in which the ultraviolet ray reflection film was formed was measured for each wavelength, and the measurement enthalpy obtained by this was measured by the reference enthalpy of each wavelength (measurement of the base material not having the ultraviolet ray reflection film). The intensity of the reflected light was obtained, and the intensity of the reflected light of the light of 17 〇 nm was obtained by extracting the measurement 特定 of the specific wavelength from various measurement results. As is clear from the results shown in Fig. 3, when the content ratio of the alumina particles of the ultraviolet-ray reflective film is 〇wt%, that is, when the alumina particles are not contained, it means that when heated at 1 °C, The reflected light intensity is a high enthalpy of 0.03 or more, and when heated at 1 300 ° C, the intensity of the reflected light is greatly reduced to about 〇. 〇1. Therefore, in the actual excimer lamp, where the plasma contacts the ultraviolet reflecting film, the intensity of the reflected light is locally lowered, so that the illuminance distribution of the excimer lamp becomes uneven, and when the excimer lamp is lit for a long time, it is assumed The plasma is in contact with the entire ultraviolet reflecting film, and the reflectance is lowered. On the other hand, it was confirmed that by adding alumina particles, the decrease in reflectance by heat was slowly suppressed. Specifically, as described below, when the alumina particles are added in an amount of 1% by weight, the intensity of the reflected light when heated at 1 ooo °c is lower than that of the reflected light having only the cerium oxide particles, for example, it is lowered. 0.023, when heated at 1 300 ° C, the reflected light intensity is higher than 0 - 0 1 7 when no alumina particles are added. It is confirmed that the reflectance of the ultraviolet reflective film due to heat can be reduced. About 70%. Thus, as the content ratio of the alumina particles is increased, the degree of decrease in the reflectance of the ultraviolet ray-reflecting film by heat can be suppressed to be smaller, for example, when 50% of the alumina particles are added, the temperature is heated to 1 The intensity of the reflected light at 〇〇〇 ° C and the intensity of the reflected light when heated at 130 ° C were consistent. It was confirmed that the reflectance of the ultraviolet ray reflection film due to heat can be reduced (Experimental Example) 4) 18-200917325 In the same manner as in Experimental Example 3, except that the content ratio of the alumina particles was appropriately changed in the range from 0 wt% to 10 wt% in Experimental Example 3, the ultraviolet reflective film was formed to have a film thickness of 30 μm. A plurality of test pieces were produced on a flat plate of ruthenium dioxide substrate, and each of the test pieces obtained in this manner was prepared in the same manner as in Experimental Example 3, and the ultraviolet ray reflection film was heated at 1 000 ° C and heated at 1 The intensity of the reflected light of the light having a wavelength of 170 nm at 300 ° C was measured at 300 ° C, and the influence of the content of the alumina particles on the ultraviolet ray reflection film was investigated. The results are shown in the following Table 3. Here, when the content ratio of the alumina particles is 〇wt% and the content ratio of the alumina particles is 10% by weight, the results obtained in the above Experimental Example 3 [Table 3 ] Heating temperature of ultraviolet reflecting film [°c ] Reflected light intensity of light of wavelength 170nm (au) Content ratio of alumina particles [wt%l 0 1 5 10 1000 0.03 1 0.0280 0.023 5 0.023 1300 0.010 0.012 0.016 0.017 As is clear from the results of Experimental Example 4, the intensity of reflected light when 1 wt% of alumina particles were added was heated at 100 ° C, and the intensity of reflected light was lower than that of those formed only by silica sand particles. Further, when heated at 1300 ° C, the intensity of the reflected light was higher than 0.012 when no alumina particles were added. However, the decrease in the reflectance of the ultraviolet-ray reflective film by heat was only suppressed by about 32%. -19- 200917325 For this reason, when 5 wt% of alumina particles are added, the intensity of reflected light at °C is lower than that formed only by cerium oxide particles, for example, it is reduced to 0.0235' but is heated in reflected light. The strength is higher than that when the alumina particles are not added, and the reflectance of the ultraviolet reflective film due to heat can be lowered by 6 8%. Therefore, in an actual excimer lamp, by the ultraviolet light oxide particles of 5 wt% or more, the reflectance due to the sub-melting can be suppressed even when the ultraviolet light-reflecting film is exposed to the heat of the plasma when the excimer lamp is long. According to the excimer lamp in which such a purple color is formed, it is assumed that the state in which a uniform illuminance distribution can be obtained can be surely maintained for a long period of time. As described above, by adding the alumina or the like to the ultraviolet ray reflection film, it is assumed that the above effects are obtained more reliably. As described above, the embodiment of the present invention is not limited to the above embodiment, and various types of the present invention can be applied. The excimer which is not limited to the above configuration is applied to the double tube structure as shown in Fig. 4 . The excimer lamp 5 shows a so-called "quadruple type" excimer lamp. The excimer lamp 50 shown in Fig. 4 is a cylindrical outer tube 52 formed of dioxane, and is disposed on the outer tube 5 2 axis and has an inner diameter smaller than the outer tube 5 2 The cylindrical inner tube 5 3 'the outer inner tube 5 3 formed by the small ceria glass tube is fusion-bonded at both ends and is heated at the outer tube 5 2 at a reflected light intensity of 13 〇 13 〇 At 〇t, 0-016, it was confirmed that the low suppression was caused by the addition of the reflective film addition lamp so that the cerium oxide outer-line reflection film was 10 wt% with respect to the tube-axis particle, but the present invention was modified. The lamp holder may also be formed, for example, by forming an annular discharge space s between the side tube 52 and the inner tube 5 3 -20- 200917325 along the outer diameter of the tube in the first glass tube. The discharge vessel 51 of the double pipe structure, for example, one electrode (high voltage supply electrode) 55 formed of a metal is closely attached to the inner circumferential surface ' of the inner tube 53 and is formed of, for example, a metal material or the like. The electrode 56 is closely attached to the outer peripheral surface ' of the outer tube 52, and is formed in the discharge space S, for example, by a discharge gas that forms excimer molecules by excimer discharge such as helium gas. In the excimer lamp 50 of such a configuration, for example, the ultraviolet ray reflection film 20 is provided in all spaces on the inner surface of the inner tube 5 3 of the discharge vessel 5 1 , and the inner surface ' of the outer tube 520 is formed except The ultraviolet reflecting film 20 formed of the cerium oxide particles and the alumina particles is provided outside the field of a part of the light emitting portion 58. Further, the excimer lamp 40 shown in Fig. 5 is formed, for example, by a discharge vessel 4 1 having a rectangular cross section formed of synthetic cerium oxide glass, and a pair of outer electrodes 4 5 ' 4 5 made of metal are disposed. The outer surfaces of the discharge vessel 41 facing each other extend toward the tube axis direction of the discharge vessel 41, and for example, helium gas of the discharge gas is filled in the discharge vessel 41. In Fig. 5, reference numeral 4 2 is an exhaust pipe' and reference numeral 4 3 is a getter formed as a crucible. In the excimer lamp 40 having such a configuration, the ultraviolet rays are provided in the fields of the respective outer electrodes 45, 45 corresponding to the inner surface of the discharge vessel 41 and in all fields of the inner surface of one of the fields continuously. The reflection film 20 is formed by forming the light exit portion 44 without providing the ultraviolet reflection film 20. [Brief Description of the Drawings] - 21 - 200917325 Fig. 1 is a cross-sectional view showing the configuration of an example of the excimer lamp of the present invention. (a) is a cross-sectional view showing a length along the length of the discharge vessel. b) is a cross-sectional view taken along line AA of (a). FIG. 2 is an explanatory view for explaining the definition of the diameter of the cerium oxide particles and the alumina particles. Fig. 3 is a graph showing the specific reflected light intensity of the alumina particles contained in the ultraviolet-ray reflective film of the excimer lamp in the range of 〇 to 50% by weight. Fig. 4 is a cross-sectional view showing another example of the excimer lamp of the present invention. (a) is a cross-sectional view showing a cross section along the direction of the discharge vessel. (b) is a view (a) Fig. 5 is a cross-sectional view showing another example of the excimer lamp of the present invention. (a) is a sectional view showing a section along the direction of the discharge vessel (b) Is a cross-sectional view showing a section perpendicular to the plane perpendicular to (a). [Description of main component symbols] 1 0 : Excimer lamp, 1 1 : discharge capacitor '丨5 •• one of the electric voltage supply electrodes), 1 6 ··the other electrode (ground electrode) U ·_Light output part ( Aperture section) ' 20 ··UV reflective film, 3 〇 container, 3 1 : support table, 35 : ultraviolet illuminometer, 4 〇: standard 41: discharge vessel, 42: exhaust pipe ' 43: getter, 44 : light, 45: outer electrode, 5 〇: excimer lamp, 5 watt discharge capacitor, 〇 的 的 的 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例 例) = aluminum sub-lamp, exit section 52: outer-22- 200917325 side tube, , 5 6: 5 3 : inner tube, 5 5 : - square electrode (high voltage supply electrode) the other electrode, 5 8 : Light exit, S: discharge space. -twenty three-

Claims (1)

200917325 十、申請專利範圍 1 . 一種準分子燈,屬於具備備有放電空間的二氧化砍 玻璃所構成的放電容器,在介設有形成該放電容器的二氧 化矽玻璃的狀態下設有一對電極所成,而在上述放電容器 的放電空間內發生準分子放電的準分子燈,其特徵爲: 在曝露於上述放電容器的放電空間的表面,形成有二 氧化矽粒子與氧化鋁粒子所形成的紫外線反射膜, 上述二氧化矽粒子是其中心粒徑爲上述氧化鋁粒子的 中心粒徑的0.6 7倍以上的大小者。 2 ·如申請專利範圍第1項所述的準分子燈,其中,紫 外線反射膜的氧化鋁粒子的含有比率,是上述二氧化矽粒 子與氧化鋁粒子的合計的5wt%以上。 3 .如申請專利範圍第1項所述的準分子燈,其中,紫 外線反射膜的氧化鋁粒子的含有比率’是上述二氧化矽粒 子與氧化鋁粒子的合計的1 0wt%以上。 -24-200917325 X. Patent application scope 1. An excimer lamp belonging to a discharge vessel comprising a oxidized chopped glass provided with a discharge space, and a pair of electrodes provided in a state in which ceria glass forming the discharge vessel is interposed An excimer lamp in which excimer discharge occurs in a discharge space of the discharge vessel, characterized in that: a surface formed by cerium oxide particles and alumina particles is formed on a surface of a discharge space exposed to the discharge vessel In the ultraviolet ray-reflecting film, the cerium oxide particles have a central particle diameter of 0.67 times or more of the central particle diameter of the alumina particles. The excimer lamp according to the first aspect of the invention, wherein the content of the alumina particles of the ultraviolet ray reflective film is 5% by weight or more based on the total of the cerium oxide particles and the alumina particles. The excimer lamp according to the first aspect of the invention, wherein the content ratio of the alumina particles of the ultraviolet ray reflective film is 10% by weight or more based on the total of the cerium oxide particles and the alumina particles. -twenty four-
TW97131729A 2007-10-10 2008-08-20 Excimer lamp TWI399786B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007264275 2007-10-10
JP2008177792A JP5092950B2 (en) 2007-10-10 2008-07-08 Excimer lamp

Publications (2)

Publication Number Publication Date
TW200917325A true TW200917325A (en) 2009-04-16
TWI399786B TWI399786B (en) 2013-06-21

Family

ID=40572149

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97131729A TWI399786B (en) 2007-10-10 2008-08-20 Excimer lamp

Country Status (4)

Country Link
JP (1) JP5092950B2 (en)
CN (1) CN101409206B (en)
AT (1) ATE511700T1 (en)
TW (1) TWI399786B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278648B2 (en) * 2007-12-11 2013-09-04 ウシオ電機株式会社 Excimer lamp
JP5293430B2 (en) * 2009-06-11 2013-09-18 ウシオ電機株式会社 Excimer lamp
CN106098531A (en) * 2016-06-23 2016-11-09 卜弘昊 A kind of narrow ripple ultraviolet source discharge lamp
CN105957799A (en) * 2016-06-23 2016-09-21 卜弘昊 High-power vacuum ultraviolet discharge lamp
CN105977131A (en) * 2016-06-23 2016-09-28 卜弘昊 High-frequency excitation medium electric-discharge lamp

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263244A (en) * 1975-11-20 1977-05-25 Matsushita Electronics Corp Method of coating lighttscattering film onto inner surface of tube valve
JPS57172653A (en) * 1981-04-16 1982-10-23 Tokyo Shibaura Electric Co Method of forming scattering film of bulb
JPH09153344A (en) * 1995-11-30 1997-06-10 Toshiba Lighting & Technol Corp Fluorescent lamp and lighting system
JP3580233B2 (en) * 2000-09-19 2004-10-20 ウシオ電機株式会社 Dielectric barrier discharge lamp device
US7563512B2 (en) * 2004-08-23 2009-07-21 Heraeus Quarzglas Gmbh & Co. Kg Component with a reflector layer and method for producing the same
TWM269431U (en) * 2004-11-11 2005-07-01 C Sun Mfg Ltd Structure of ultraviolet lamp tube with low infrared illumination
KR20080002851A (en) * 2005-04-22 2008-01-04 호야 칸데오 옵트로닉스 가부시키가이샤 Excimer lamp
KR100850299B1 (en) * 2005-07-29 2008-08-04 가부시키가이샤 지에스 유아사 코포레이션 Uv lamp and uv irradiation unit
JP4857939B2 (en) * 2006-06-19 2012-01-18 ウシオ電機株式会社 Discharge lamp
JP4788534B2 (en) * 2006-09-07 2011-10-05 ウシオ電機株式会社 Excimer lamp

Also Published As

Publication number Publication date
JP5092950B2 (en) 2012-12-05
TWI399786B (en) 2013-06-21
CN101409206B (en) 2012-09-05
JP2009110927A (en) 2009-05-21
CN101409206A (en) 2009-04-15
ATE511700T1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
TWI416583B (en) Excimer lamp
US8164239B2 (en) Excimer lamps
TW200917325A (en) Excimer lamps
TWI428954B (en) Excimer lamp
TW200952031A (en) Excimer-Lampe
TWI421902B (en) Excimer lamp
TWI423297B (en) Excimer lamp
JP2009099579A (en) Excimer lamp light irradiation device
US6414423B2 (en) Fluorescent lamp with holder made of resin
CN110006007A (en) A kind of illuminator of visible purple light
TWI434321B (en) Excimer lamp
JP2009199845A (en) Excimer lamp
JP5035121B2 (en) Excimer lamp
JP3439749B2 (en) Light emitting device
RU2529014C2 (en) Vacuum valve radiating in ultraviolet range of spectrum
JP2003007207A (en) Manufacturing method of luminescent device, manufacturing method of backlight for flat display and luminescent device
TW201400763A (en) Long arc type discharge lamp