TW200913377A - RFID tag and method for manufacturing RFID tag - Google Patents

RFID tag and method for manufacturing RFID tag Download PDF

Info

Publication number
TW200913377A
TW200913377A TW097128394A TW97128394A TW200913377A TW 200913377 A TW200913377 A TW 200913377A TW 097128394 A TW097128394 A TW 097128394A TW 97128394 A TW97128394 A TW 97128394A TW 200913377 A TW200913377 A TW 200913377A
Authority
TW
Taiwan
Prior art keywords
radio frequency
frequency identification
identification tag
resonator
pattern
Prior art date
Application number
TW097128394A
Other languages
Chinese (zh)
Other versions
TWI418089B (en
Inventor
Manabu Kai
Toru Maniwa
Takashi Yamagajo
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2007/064548 external-priority patent/WO2009013817A1/en
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to TW097128394A priority Critical patent/TWI418089B/en
Publication of TW200913377A publication Critical patent/TW200913377A/en
Application granted granted Critical
Publication of TWI418089B publication Critical patent/TWI418089B/en

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

A wireless tag corresponding to metal having a wider passband (frequency to communication distance) characteristic than before is realized. The wireless tag comprises a first oscillator pattern (21) having a chip connection portion (211) to which a chip is connected and an inductance portion (212) for adjusting impedance match with the chip and a second oscillator pattern (22) to which power is supplied by electromagnetic induction combination via the inductance portion (212).

Description

200913377 九、發明說明: I:發明所届技術領域]1 發明領域 本發明係有關於一種無線射頻識別標籤及其製造方 5 法。前述無線射頻識別標籤可作為諸如可貼附於金屬上之 對應金屬之無線射頻識別標籤而使用。 c先前技術3 發明背景 RFID(Radio Frequency Identification)系統已知為無線 10通訊系統之一。該RF1D系統一般具有無線射頻識別標籤(亦 稱為RHD標籤)與讀寫(RW)裝置,而由RW裝置對無線射頻 識別標籤藉無線通訊而進行資訊讀寫。 無線射頻識別標籤則已知分為可藉無線射頻識別標籤 本身所内設之電源而動作之類型(稱為主動式標籤),以及以 15來自RW裝置之接收電波為驅動電力而動作之類型(稱為被 動式標籤)。 使用被動式標籤之RFID系統之無線射頻識別標藏,係 以來自RW裝置之無線訊號為驅動電力,而使内設之1(:及 LSI等積體電路動作’以進行對應接收無線訊號(控制訊號) 20之各種處理。由無線射頻識別標籤對RW裝置發送時,則利 用前述接收無線訊號之反射波而進行之。即,以該反射波 揭帶標籤ID及前述各種處理之結果等資訊,而對RW裝置進 行發送。 另’ RFID系統可利用各種頻帶,但最近較受矚目者則 200913377 為UHF頻帶(860MHz〜960MHz)。UHF頻帶與既有之 13·56ΜΗζ帶及2.45GHz帶相較,其通訊距離較長。歐洲使 用868MHz、美國使用915MHz、日本則使用953MHz左右之 頻率。UHF頻帶之無線射頻識別標籤(以下亦簡稱為「標籤」) 5 之通机距離亦受標籤内使用之1C晶片及LSI等積體電路之 性能影響,但約為3〜5 m。又,RW裝置之輸出約為i瓦特(w) 左右。 另,習知之無線射頻識別標籤則有諸如後述之專利文 獻1及專利文獻2所揭露者。 1〇 糊文獻1中揭露了具有由地板之預定端邊切成預定 形狀而形成之切口部,藉僅將切口部構成回折構造,即可 降低阻抗,即便不設置阻抗轉換電路等其它電路,亦可整 合於5〇Ω之供電線路,並簡化構造,而實現成本降低之平 面天線。 15 ^ …外锕頰識別標籤中天線 阻抗降低並達成頻帶擴大為目的, 张接Λ、 阳於包含一對天線圖形200913377 IX. INSTRUCTIONS: I: Technical Field of the Invention] 1 Field of the Invention The present invention relates to a radio frequency identification tag and a method of manufacturing the same. The aforementioned radio frequency identification tag can be used as a radio frequency identification tag such as a corresponding metal attachable to a metal. c Prior Art 3 Background of the Invention The RFID (Radio Frequency Identification) system is known as one of the wireless 10 communication systems. The RF1D system generally has a radio frequency identification tag (also referred to as an RHD tag) and a read/write (RW) device, and the RW device reads and writes information to the radio frequency identification tag by wireless communication. The radio frequency identification tag is known to be of a type that can be operated by a power source built in the radio frequency identification tag itself (referred to as an active tag), and a type that operates with 15 received wave waves from the RW device as driving power. For passive tags). The radio frequency identification tag of the RFID system using the passive tag uses the wireless signal from the RW device as the driving power, and the built-in 1 (: and the integrated circuit such as the LSI operates to perform the corresponding receiving wireless signal (control signal) When the radio frequency identification tag is transmitted to the RW device, the reflected wave of the received wireless signal is used, that is, the information such as the tag ID and the results of the various processes are removed by the reflected wave. The RW device is transmitted. The 'RFID system can use various frequency bands, but recently the more popular ones are 200913377 for the UHF band (860MHz~960MHz). The UHF band is compared with the existing 13·56 band and 2.45GHz band. The communication distance is long. 868MHz is used in Europe, 915MHz is used in the United States, and 953MHz is used in Japan. The radio frequency identification tag (hereinafter also referred to as "tag") of the UHF band is also used by the 1C chip used in the tag. And the performance impact of integrated circuits such as LSI, but about 3 to 5 m. Moreover, the output of the RW device is about i watt (w). Also, the conventional radio frequency identification The signature is disclosed in Patent Document 1 and Patent Document 2, which will be described later. 1 Patent Document 1 discloses a slit portion formed by cutting a predetermined end edge of a floor into a predetermined shape, by which only the slit portion constitutes a folded structure. The impedance can be reduced, and even if other circuits such as an impedance conversion circuit are not provided, it can be integrated into a 5 Ω power supply line, and the configuration is simplified, and a planar antenna with reduced cost is realized. 15 ^ ... Antenna impedance in the cheek identification tag For the purpose of reducing and achieving the expansion of the frequency band, Zhang Jie and Yang include a pair of antenna patterns.

斤構成之平面天線及與該平面天線之供電點連接之1C 之無線射頻識別標籤中,使構成平 ” 曰 八緣之天線圖形相對 於供電點側之端部,形成距供電點 ^^,^ ^ m 乂碾匈之端部之圖形寬 度較大之面圖形,而達成平面天線 镅宮、^ b 鴻帚擴大(涵蓋89MHz ^¾),並使與平面天線鄰接而形 平而妥綠 補助圖形形成具有與 卞卸天線之一天線圖形相同面積 低天線阻抗。 ㈣形而非線狀,以降 而’假定用於貼附紙箱及塑膠上 <〜般片狀之無線射 20 200913377 頻識別標籤具有200MHz左右之通過頻寬,故可涵蓋歐洲、 美國、日本之所有使用頻率。然而,可貼附於金屬上之對應 金屬之標籤之通過頻帶則極小,僅存在各國之專用設計者。 舉例言之,第16圖所示之形狀之平面天線具有第15圖 5所示之頻率對通訊距離特性時,若使中心頻率與美國(us) 之使用頻率一致,則兩側之歐洲(EU)及日本(Jp)之使用頻率 之通sfl距離將極度縮小。若使中心頻率與歐洲或日本之使 用頻率一致,則亦相同,其外之地區之使用頻率之通訊距 離將極度縮小。又,即便於同一國内使用,若將標籤貼附 10於曲面上,或標籤之構成要素之介電體基板(墊片基板)之介 電係數(er)或厚度⑴改變’則頻率特性將生偏差,故通訊 距離將縮小。 因此’具有可完全涵蓋歐洲、美國、日本之使用頻率之 寬頻帶之頻率特性’並可貼附於金屬上之標籤即備受期待。 15 上述之對應金屬之標籤多使用貼片天線,但為實現頻 帶擴大’則可考量諸如排列大小不同之複數貼片天線之技 術。後述之非專利文獻1雖非用KRFID標籤,但記載有其例。 依據該非專利文獻1,將貼片天線複數排列於同一平面 時’如其第1圖所示,為避免貼片天線彼此之干擾,須至少 20間隔半波長(〇.5 A )而排列兩貼片天線。 專利文獻1 :特開2006-140735號公報 專利文獻2 :特開2006-109396號公報 非專利文獻 1 : Desai, B.;Gupta, S.、,,Dual-band microstrip patch antenna^ ' Microwave, Antenna, Propagation 200913377 and EMC Technologies for Wireless Communications, 2005. MAPE 2005. IEEE International Symposium on Volume 1,8-12 Aug. 2005 Page(s) : 180-184 Vol.l 【發明内容:J 5 發明揭示 發明欲解決之問題 然而,UHF頻帶之RFID標籤中,半波長之間隔相當於 約17cm,故RFID標籤將過於巨大,而不實用。不對應金屬 之一般RFID標籤雖依廠商不同而有各式各樣,但約為 10 l〇〇mmx20mm左右之大小。期能抑制其大小而為上述之相 同程度,且使頻率特性儘可能地均_,而可完全涵蓋歐洲、 美國、日本之使用頻率。 如以往般單純排列貼片天線時,至少須間隔半波長左 右,若兩貼片天線過近,則貼片天線將彼此干擾,而使中 15心頻率附近之通訊距離極度縮小,造成問題。 另’刖述之專利文獻1及專利文獻2所揭露之技術皆未 假定金屬為標籤之貼附對象,故無法解決上述問題。 本發明之目的之-即在提供一種具有優於過去之寬頻 帶之通過頻帶(頻率對通訊距離)特性之對應金屬之無線射 20 頻識別標籤。 _另T限於上述目的,後述之實施發明之較佳形態所 示之各構造所導出之作用效果無法藉習知技術而達成,亦 可加以定義為其它目的。 用以欲解決問題之手段 200913377 舉例言之,可使用以下之無線射頻識別標籤。 (1) 即,可使用一種無線射頻識別標籤,包含有:第1 共振器圖形,具有與晶片連接之晶片連接部及可調整與前 述晶片之阻抗匹配之電感部;及,第2共振器圖形,係藉經 5 由前述電感部之電磁感應耦合而接受供電者。 (2) 其中,前述第1及第2共振器圖形亦可分別具有方形 之導體圖形,且在同一面上並列設置。 (3) 又,前述同一面亦可為介電體基板之一面。 (4) 進而,前述介電體基板之另一面上亦可設有反射層。 10 (5)又,前述電感部宜於前述第1共振器圖形之局部設置 槽孔而形成者。 (6) 進而,前述第1及第2共振器圖形之相互並行之方向 之電長度宜為不同。 (7) 舉例言之,前述第1共振器圖形之與前述第2共振器 15 圖形並行之方向之長度宜大於前述第2共振器圖形之長度。 (8) 又,前述第1及第2共振器圖形亦可於貼附在介電體 基板之樹脂製基板之一面上之片狀構件上,由導電性材料 所形成。 (9) 進而,前述無線射頻識別標籤亦可設有覆蓋第1及第 20 2共振器圖形之樹脂材料。 (10) 又,前述晶片連接部亦可連接於前述晶片。 (11) 進而,前述第1及第2共振器圖形亦可透過介電體而 貼附於金屬上。 (12) 又,前述介電體基板之另一面之包含與前述第1及 9 200913377 第2共振器圖形對向之領域之部分,亦可設有導體圖形,且 前述導體圖形與前述第1及第2共振器圖形亦可藉通過前述 介電體基板之一側面之路徑而電性連接。 (13) 進而,前述一側面上亦可設有電性連接前述導體圖 5 形與前述第1及第2共振器圖形之側面導體。 (14) 又,前述側面導體亦可為金屬鍍敷物或導電性之片 狀構件。 (15) 進而,前述側面導體與前述導體圖形及前述第1及 第2共振器圖形之一者或兩者亦可一體形成。 10 (16)又,前述導體圖形亦可為與前述第1及第2共振器圖 形共通之共振器圖形。 (17) 進而,亦可具有可藉經由前述電感部之電磁感應耦 合而接受供電之第3共振器圖形,在包含前述第1及第2共振 器圖形之面上,前述第2及第3共振器圖形亦可設於以前述 15 第1共振器圖形為中心之對稱位置上。 (18) 又,前述第3共振器圖形亦可具有小於前述第1及第 2共振器圖形之電長度的電長度。 (19) 進而,亦可設有整體覆蓋前述第1及第2共振器圖形 與前述導體圖形之樹脂材料。 20 (20)又,無線射頻識別標籤之製造方法亦可使用以下步 驟:於可覆蓋定出介電體基板之長向之周長之4面中,與前 述長向對向之前述介電體基板之側面之一面以外之3面之 片狀構件的相當於前述介電體基板之一面及側面之領域, 形成具有與晶片連接之晶片連接部及可調整與前述晶片之 10 200913377 阻抗匹配之電感部之第1共振器圖形、及可藉經由前述電感 部之電磁感應耦合而接受供電之第2共振器圖形,並且於前 述片狀構件之相當於前述介電體基板之另一面之領域,形 成可與前述各共振器圖形電性連通之導體圖形;將前述片 5 狀構件纏繞於前述介電體基板上而加以固定,以使前述第1 及第2共振器圖形位於前述介電體基板之一面上,且前述導 體圖形位於前述介電體基板之另一面上。 (21)其中,前述介電體基板上亦可設有前述纏繞時之前 述片狀構件之定位用導引構件。 10 發明效果 依據上述之本發明,即可實現具有優於過去之寬頻帶 之通過頻帶(頻率對通訊距離)特性之對應金屬之無線射頻 識別標籤。 圖式簡單說明 15 第1圖係顯示一實施例之無線射頻識別標籤之構造之 模式立體圖。 第2圖係顯示第1圖所示之無線射頻識別標籤之通訊距 離特性之一例之圖表。 第3圖係顯示第1圖所示之無線射頻識別標籤之反射特 20 性之一例之圖表。 第4圖係顯示第1圖所示之無線射頻識別標籤之增益特 性之一例之圖表。 第5圖係顯示第1圖所示之無線射頻識別標籤之晶片阻 抗與天線阻抗之史密斯圖。 11 200913377 第6圖係顯示無線射頻識別標 與晶片之 電路之一例者。 圖係°兒明第1圖所示之無線射頻識別標籤之動作之 模式平面圖。 /第8圖係顯不第18|所示之無線射頻識別標籤之天線圖 ^之&向性(第1圖中ZY面及ZX面之相關指向性)者。 第9圖係顯示第1圖所示之無線射頻識別標籤之墊片之 "电係數或厚度改變後之各通訊距離特性之一例之圖表。 第圖係顯示第1圖所示之無線射頻識別標籤之墊片之 10尺寸(主要為厚度)改變後之各通訊距離特性之一例之圖表。 第11圖係顯示第1圖所示之無線射頻識別標籤之尺寸 (主要為寬度)改變後之各通訊距離特性之一例之圖表。 第12圖係顯示第1圖所示之無線射頻識別標籤之墊片之 尺寸(主要為厚度)改變後之各通訊距離特性之一例之圖表。 15 第13圖係說明第1圖所示之無線射頻識別標籤之製造 方法之一例之模式圖。 第14圖係說明第1圖所示之無線射頻識別標籤之製造 方法之一例之模式圖。 第15圖係顯示習知之無線射頻識別標籤之通訊距離特 20 性之一例之圖表。 第16圖係顯示習知之無線射頻識別標籤之外觀之模式 立體圖。 第Π圖係局部透視而顯示變形例之無線射頻識別標载 之模式立體圖。 12 200913377 第18圖係顯示第17圖所示之無線射頻識別標籤之晶片 阻抗與天線阻抗之史密斯圖。 第19圖係顯示第17圖所示之無線射頻識別標籤之通訊 距離特性之一例之圖表。 5 第20圖係顯示第17圖所示之無線射頻識別標籤之增益 特性之一例之圖表 第21圖係顯示第17圖所示之無線射頻識別標籤之反射 特性之一例之圖表。 第22圖係說明第17圖所示之無線射頻識別標籤之動作 10 之模式立體圖。 第23圖(1)〜(3)係說明第17圖所示之無線射頻識別標籤 之製造方法之一例者。 第24圖(1)〜(3)係說明第17圖所示之無線射頻識別標藏 之製造方法之他例者。 15 第25圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第26圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第27圖係局部透視而顯示第17圖所示之無線射頻識別 20 標籤之變形例之模式立體圖。 第28圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第29圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 13 200913377 第30圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第31圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 5 第32圖係顯示第31圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 第33圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第34圖係顯示第33圖所示之無線射頻識別標籤之頻率 10 對通訊距離特性之一例者。 第3 5圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第36圖係顯示第35圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 15 第3 7圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第38圖係顯示第37圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 第3 9圖係局部透視而顯示第1圖所示之無線射頻識別 20 標籤之變形例之模式立體圖。 第4 0圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第41圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 14 200913377 【貧施方式】 用以實施發明之最佳形態 [A] —實施例 第1圖係顯示一實施例之無線射頻識別標籤之構造之 5模式立體圖,該第!圖所示之無線射頻識別標鐵係假定用於 貼附金屬(metal)4者,厚度t=5mm,相對介電係數£ r=4,介 電損耗tan5=0.001之平板狀之介電體墊片(介電體基板η 之一面(第1圖中表面)上,形成有天線圖形2(21,22)。 匕介電體墊片(以下亦簡稱為「墊片」”之另—面(第碉 ίο中背面)上,宜設置金屬製之反射構件(reflecter)3,而可於 無線射頻識別標籤之貼附對象物為非金屬時,亦維持同等 之特性。當然’亦可不設置該反射構件3。 天線圖形2包含有第1圖之X軸方向之長度u=9〇mm之 帶狀(方形)之第1導體圖形21,以及x軸方向之長度 15 L2=86mm之帶狀(方形)之第2導體圖形22,兩者於墊片1上 朝第1圖之Y軸方向間隔2mm而設置。 第1導體圖形21具有共振頻率fl之共振器圖形之功 能,第2導體圖形22具有大於共振頻率fl之共振頻率Ω之共 振器圖形之功能。又,天線圖形2之γ軸方向之長度(寬度) 20 包含前述2mm之間隔在内而為27mm。因此,第1圖所示之 塾片1之尺寸至少為長90mmx寬27mmx厚⑴5mm。 在此’無線射頻識別標籤之天線圖形2須與無線射頻識 別標籤内所使用之1C晶片及LSI等積體電路(以下亦稱為晶 片)進行阻抗匹配。晶片則如諸如第6圖之右側所示,可以 15 200913377 並聯之電容成分Cep及並聯之電阻成分Rcp代表之。其值雖 依廠商不同而有異’但Ccp=lpF(微微法拉)左右,⑽ Ω〜200〇〇〇0 因此,可與該晶片整合之天線等效電路一如第6圖之左 5側所示,可以與電容成分Cep共振之並聯電感成分Lap以及 與電阻成分Rep相同程度之並聯電阻Rap代表之。 即’天線圖形2必須包含電感成分Lap與放射電阻成分 Rap。然’此並不限於對應金屬之無線射頻識別標籤,而係 RFID之無線射頻識別標籤均共通之條件。 10 因此,第1導體圖形21形成有可連接1C晶片及LSI等積 體電路(以下亦稱為晶片)之晶片連接部(供電點)211,以及 電感部212。 上述電感部212宜於第1導體圖形21之局部形成X軸方 向之長度S2之槽孔(Y軸方向之長度(寬度)在第1圖中為 15 2mm)而構成’以節省空間。當然,除設置槽孔以外,亦可 代以自晶片連接部211設置環狀線路等其它方法,而對第1 導體圖形賦予(形成)同等之電感成分。 另,改變前述槽孔之全長(環長),即可調整電感值。即, 可調整與晶片阻抗之整合。舉例言之,若延長前述電感長 20 S2,即可增大電感。 進而,第1導體圖形21包含電感部212,故宜較第2導體 圖形22更為延長X轴方向之長度,以獲得不同共振頻率fl、 f2(fl<f2)。此時,亦可改變一部分之墊片丨之介電係數,而 延長第1導體圖形21之電長度。 16 200913377 具有上述構造之無線射頻識別標籤中,第1導體圖形21 之電感部212可發揮以下3種功能。 (1) 用於與晶片整合之電感 (2) 對第1導體圖形21直接供電 5 (3)對第2導體圖形22進行電磁搞合供電 舉例&之,如第7圖所示,一旦由供電點211對第丨導體 圖形21供電,則電流將如箭號所示,對電感部212大量流入 (电感部212之電流分布綿密),故就第2導體圖形22而言,該 。1^刀(電感部212)係作為電源而動作。即,電感部212與第2 1〇導體圖形22雖未直接連接(間隔了 2mm),但可藉電磁感應耦 合而經電感部212進行電磁耦合供電。 以往,若如此間隔2mm而近接配置貼片天線,則將彼 此干擾,並使天線性能劣化,故原本視為不宜,但如此利 用電感部212之電磁感應耦合,即可將電感部212視為第2導 15 體圖形22之電源。 因此,若兩共振器圖形21,22距離過大,則兩者之耦合 度將減弱,而將使對第2導體圖形22之供電不充分,並難以 放射電波。 即,將各共振器圖形21,22近接配置以使電感部212可 20被視為第2導體圖形22之電源,即可將天線圖形2整體設計 成更小。 換言之’設置電感部212(槽孔)之位置宜為可適當進行 對第1導體圖形21之直接供電,以及對第2導體圖形22之電 磁耦合供電之位置。舉例言之’可為由第1導體圖形21之長 17 200913377 ° 向)中心偏移之位置,而以設於第1圖所示之端部 近旁為更佳。 以下,# 就本例中之無線射頻識別標籤之特性,顯示使 用3次元電秘 电罐場模擬器之計算結果。 5 首先 ,以第3圖顯示晶片與天線圖形2之反射特性 )弋表縱轴之S11愈接近〇,反射量愈高,值愈小(負), 整δ度愈向,天線圖形2之輸入功率愈可輕易傳導至晶片連 接部211 (即晶片)。 以上之計算例係設定晶片之電容成分Ccp=i 4垆,電阻 1〇 成分RCP=400Q。電感長S2(在此為S2=20mm、23mm、25mm 之3種)之不同,將使整合之程度改變,但可知具有不同頻 率fl,f2之2共振點。 共振頻率Π、f2之值分別可藉共振器圖形21之長度In the radio frequency identification tag of the 1C, which is connected to the power supply point of the planar antenna, the antenna pattern constituting the flat edge is formed at a distance from the power supply point. ^ m 乂 乂 之 之 之 之 之 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈 匈Forming a low antenna impedance with the same area as the antenna pattern of one of the unloading antennas. (4) Shape rather than linear, to lower the 'assumed to attach to the carton and plastic on the ~-like sheet of wireless shot 20 200913377 frequency identification tag has The transmission bandwidth of about 200MHz can cover all frequency of use in Europe, the United States, and Japan. However, the passband of the label of the corresponding metal that can be attached to the metal is extremely small, and only exists for the exclusive designer of each country. When the planar antenna of the shape shown in Fig. 16 has the frequency-to-communication distance characteristic shown in Fig. 15, if the center frequency is consistent with the frequency of use of the US (us), the sides are Europe. The sfl distance of the frequency of use of EU) and Japan (Jp) will be extremely reduced. If the center frequency is consistent with the frequency of use in Europe or Japan, the communication distance of the frequency of use outside the region will be extremely reduced. Even if it is used in the same country, if the label is attached to the curved surface, or the dielectric constant (er) or thickness (1) of the dielectric substrate (pad substrate) of the constituent elements of the label is changed, the frequency characteristic will be born. Since the deviation is small, the communication distance will be reduced. Therefore, the label having a frequency characteristic that can completely cover the frequency of use in Europe, the United States, and Japan can be attached to the metal. In the case of using a patch antenna, a technique of a plurality of patch antennas having different arrangement sizes can be considered in order to realize the band expansion. Non-patent document 1 described later does not use a KRFID tag, but an example is described. When the patch antennas are arranged in the same plane, as shown in the first figure, in order to avoid interference between the patch antennas, at least 20 wavelengths (〇.5 A ) are arranged at intervals of two. Patent Document 1: JP-A-2006-140735, JP-A-2006-109396, Non-Patent Document 1: Desai, B.; Gupta, S.,,, Dual-band microstrip patch antenna^ 'Microwave, Antenna, Propagation 200913377 and EMC Technologies for Wireless Communications, 2005. MAPE 2005. IEEE International Symposium on Volume 1, 8-12 Aug. 2005 Page(s): 180-184 Vol.l [Summary: J 5 Invention The problem to be solved by the invention is disclosed. However, in the RFID tag of the UHF band, the half-wavelength interval is equivalent to about 17 cm, so the RFID tag will be too large and not practical. A general RFID tag that does not correspond to a metal has various types depending on the manufacturer, but is about 10 l〇〇mm x 20 mm or so. The period can be suppressed to the same extent as described above, and the frequency characteristics are as uniform as possible, and the frequency of use in Europe, the United States, and Japan can be completely covered. If the patch antennas are simply arranged in the past, they must be separated by at least half a wavelength. If the two patch antennas are too close, the patch antennas will interfere with each other, and the communication distance near the center frequency of the center 15 is extremely reduced, causing a problem. The techniques disclosed in Patent Document 1 and Patent Document 2, which are not described in detail, do not assume that the metal is the object to which the label is attached, and thus the above problem cannot be solved. It is an object of the present invention to provide a wireless radio frequency identification tag having a corresponding metal having a passband (frequency to communication distance) characteristic of a wider band in the past. The other T is limited to the above-described object, and the effects derived by the respective structures shown in the preferred embodiments of the invention described below cannot be achieved by the prior art, and can be defined for other purposes. Means to solve the problem 200913377 For example, the following radio frequency identification tags can be used. (1) That is, a radio frequency identification tag can be used, comprising: a first resonator pattern having a wafer connection portion connected to the wafer and an inductance portion adjustable to match impedance of the wafer; and a second resonator pattern The power supply is received by the electromagnetic induction coupling of the inductor portion. (2) The first and second resonator patterns may each have a square conductor pattern and are arranged side by side on the same surface. (3) Further, the same surface may be one surface of the dielectric substrate. (4) Further, a reflective layer may be provided on the other surface of the dielectric substrate. (5) Further, the inductor portion is preferably formed by providing a slot in a portion of the first resonator pattern. (6) Further, the electrical lengths of the first and second resonator patterns in the mutually parallel directions are preferably different. (7) For example, the length of the first resonator pattern in the direction parallel to the pattern of the second resonator 15 is preferably larger than the length of the second resonator pattern. (8) Further, the first and second resonator patterns may be formed of a conductive material on a sheet member attached to one surface of a resin substrate of the dielectric substrate. (9) Further, the radio frequency identification tag may be provided with a resin material covering the first and second resonator patterns. (10) Further, the wafer connecting portion may be connected to the wafer. (11) Further, the first and second resonator patterns may be attached to the metal through the dielectric. (12) Further, the other surface of the dielectric substrate may include a conductor pattern in a portion of the field opposite to the first and second 200913377 second resonator patterns, and the conductor pattern and the first The second resonator pattern may be electrically connected by a path passing through one side surface of the dielectric substrate. (13) Further, the one side surface may be provided with a side conductor electrically connected to the conductor pattern 5 and the first and second resonator patterns. (14) Further, the side conductor may be a metal plating material or a conductive sheet member. (15) Further, the side conductor may be formed integrally with one or both of the conductor pattern and the first and second resonator patterns. (16) Further, the conductor pattern may be a resonator pattern common to the first and second resonator patterns. (17) Further, a third resonator pattern that can be supplied with power via electromagnetic induction coupling of the inductance portion may be provided, and the second and third resonances may be provided on a surface including the first and second resonator patterns The pattern may also be provided at a symmetrical position centering on the 15th first resonator pattern. (18) Further, the third resonator pattern may have an electrical length smaller than an electrical length of the first and second resonator patterns. (19) Further, a resin material that entirely covers the first and second resonator patterns and the conductor pattern may be provided. 20 (20) Further, in the method of manufacturing the RFID tag, the method may be as follows: in the four sides of the circumferential direction of the long direction of the dielectric substrate, the dielectric substrate opposite to the long direction The surface of the three-sided sheet member other than one of the side faces corresponds to one of the surface and the side surface of the dielectric substrate, and a chip connection portion connected to the wafer and an inductance portion that can be matched with the impedance of the wafer 10 200913377 are formed. a first resonator pattern and a second resonator pattern that can be supplied with power via electromagnetic induction coupling of the inductor portion, and are formed in a field corresponding to the other surface of the dielectric substrate of the sheet member a conductor pattern electrically connected to each of the resonator patterns; the sheet-like member is wound around the dielectric substrate and fixed so that the first and second resonator patterns are located on one side of the dielectric substrate And the conductor pattern is located on the other surface of the dielectric substrate. (21) The positioning guide member for the sheet member described above at the time of winding may be provided on the dielectric substrate. Advantageous Effects of Invention According to the present invention described above, it is possible to realize a radio frequency identification tag having a corresponding metal having a passing band (frequency to communication distance) characteristic of a wide band in the past. BRIEF DESCRIPTION OF THE DRAWINGS 15 Fig. 1 is a perspective view showing the construction of a radio frequency identification tag of an embodiment. Fig. 2 is a diagram showing an example of the communication distance characteristics of the radio frequency identification tag shown in Fig. 1. Fig. 3 is a diagram showing an example of the reflection characteristics of the radio frequency identification tag shown in Fig. 1. Fig. 4 is a diagram showing an example of the gain characteristics of the radio frequency identification tag shown in Fig. 1. Figure 5 is a Smith chart showing the wafer impedance and antenna impedance of the RFID tag shown in Figure 1. 11 200913377 Figure 6 shows an example of a circuit for a radio frequency identification tag and a chip. The figure is a schematic plan view of the action of the RFID tag shown in Fig. 1. / Fig. 8 shows the antenna diagram of the radio frequency identification tag shown in Fig. 18|and the directionality (the relative directivity of the ZY plane and the ZX plane in Fig. 1). Fig. 9 is a graph showing an example of the communication width characteristics of the spacer of the radio frequency identification tag shown in Fig. 1 and the respective communication distance characteristics after the thickness change. The figure is a graph showing an example of the respective communication distance characteristics after the size (mainly thickness) of the spacer of the radio frequency identification tag shown in Fig. 1 is changed. Fig. 11 is a graph showing an example of the respective communication distance characteristics after the size (mainly width) of the radio frequency identification tag shown in Fig. 1 is changed. Fig. 12 is a graph showing an example of the respective communication distance characteristics after the size (mainly thickness) of the spacer of the radio frequency identification tag shown in Fig. 1 is changed. 15 Fig. 13 is a schematic view showing an example of a method of manufacturing a radio frequency identification tag shown in Fig. 1. Fig. 14 is a schematic view showing an example of a method of manufacturing a radio frequency identification tag shown in Fig. 1. Fig. 15 is a diagram showing an example of a communication distance characteristic of a conventional radio frequency identification tag. Figure 16 is a perspective view showing the appearance of a conventional radio frequency identification tag. The figure is a partial perspective view showing a mode perspective view of the radio frequency identification tag of the modified example. 12 200913377 Figure 18 shows the Smith chart of the wafer impedance and antenna impedance of the RFID tag shown in Figure 17. Fig. 19 is a diagram showing an example of the communication distance characteristics of the radio frequency identification tag shown in Fig. 17. 5 Fig. 20 is a diagram showing an example of the gain characteristics of the radio frequency identification tag shown in Fig. 17. Fig. 21 is a diagram showing an example of the reflection characteristic of the radio frequency identification tag shown in Fig. 17. Fig. 22 is a schematic perspective view showing the action 10 of the radio frequency identification tag shown in Fig. 17. Fig. 23 (1) to (3) show an example of a method of manufacturing a radio frequency identification tag shown in Fig. 17. Fig. 24 (1) to (3) show other examples of the method of manufacturing the radio frequency identification tag shown in Fig. 17. 15 Fig. 25 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 26 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 27 is a perspective view showing a modification of the radio frequency identification (20) tag shown in Fig. 17 in a partial perspective view. Fig. 28 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 29 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. 13 200913377 Fig. 30 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 31 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. 5 Figure 32 shows an example of the frequency-to-communication distance characteristics of the RFID tag shown in Figure 31. Fig. 33 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 34 is a diagram showing the frequency-to-communication distance characteristic of the radio frequency identification tag shown in Fig. 33. Fig. 35 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. Figure 36 shows an example of the frequency-to-communication distance characteristics of the radio frequency identification tag shown in Fig. 35. 15 Fig. 37 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. Fig. 38 is a view showing an example of the frequency-to-communication distance characteristic of the radio frequency identification tag shown in Fig. 37. Fig. 39 is a perspective view showing a modification of the radio frequency identification 20 tag shown in Fig. 1 in partial perspective. Fig. 40 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. Fig. 41 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. 14 200913377 [Last mode] The best mode for carrying out the invention [A] - Embodiment Fig. 1 is a schematic view showing a configuration of a radio frequency identification tag of an embodiment, which is a mode of the mode! The radio frequency identification standard shown in the figure is assumed to be used for attaching metal 4, thickness t=5mm, relative dielectric constant £ r=4, dielectric loss tan5=0.001 flat dielectric insulator pad The antenna pattern 2 (21, 22) is formed on one of the dielectric substrates η (the surface in Fig. 1). The other surface of the dielectric spacer (hereinafter also referred to as "shims") ( On the back side of the 碉ίο, it is preferable to provide a reflector 3 made of metal, and the same property can be maintained when the object to be attached to the RFID tag is non-metallic. Of course, the reflection can be omitted. Member 3. The antenna pattern 2 includes a strip-shaped (square) first conductor pattern 21 having a length u = 9 〇 mm in the X-axis direction of Fig. 1 and a strip shape in the x-axis direction of 15 L2 = 86 mm (square) The second conductor pattern 22 is provided on the spacer 1 at a distance of 2 mm in the Y-axis direction of the first figure. The first conductor pattern 21 has a function of a resonator pattern having a resonance frequency fl, and the second conductor pattern 22 has a function The function of the resonator pattern larger than the resonance frequency Ω of the resonance frequency fl. Further, the γ-axis direction of the antenna pattern 2 The degree (width) 20 is 27 mm including the interval of 2 mm. Therefore, the size of the cymbal 1 shown in Fig. 1 is at least 90 mm long and 27 mm wide (1) 5 mm thick. Here, the antenna pattern 2 of the RFID tag is required. The impedance matching is performed on an integrated circuit (hereinafter also referred to as a wafer) such as a 1C chip and an LSI used in the radio frequency identification tag. The chip is as shown on the right side of FIG. 6, and can be connected in parallel with the capacitor component Cep and parallel in 200913377. The resistance component Rcp represents it. The value varies depending on the manufacturer, but Ccp=lpF (picofarad) is around (10) Ω~200〇〇〇0. Therefore, the antenna equivalent circuit integrated with the chip is as 6 is shown on the left side of the figure, and can be represented by a parallel inductance component Lap that resonates with the capacitance component Cep and a parallel resistance ratio Rap that is the same as the resistance component Rep. That is, the antenna pattern 2 must include the inductance component Lap and the radiation resistance component Rap. However, this is not limited to the radio frequency identification tag of the corresponding metal, but the RFID radio frequency identification tag is common to all conditions. 10 Therefore, the first conductor pattern 21 is formed with a connectable 1C chip and LS. a chip connecting portion (power feeding point) 211 of an integrated circuit (hereinafter also referred to as a wafer) and an inductor portion 212. The inductor portion 212 is preferably formed in a slot of a length S2 in the X-axis direction in a portion of the first conductor pattern 21. (The length (width) in the Y-axis direction is 15 2 mm in the first drawing and is configured to save space. Of course, in addition to the slot, other methods such as providing a loop line from the wafer connecting portion 211 may be employed. The same inductance component is applied (formed) to the first conductor pattern. The inductance value can be adjusted by changing the total length (ring length) of the slot. That is, the integration with the wafer impedance can be adjusted. For example, if the length of the aforementioned inductor is 20 S2, the inductance can be increased. Further, since the first conductor pattern 21 includes the inductance portion 212, it is preferable to extend the length in the X-axis direction from the second conductor pattern 22 to obtain different resonance frequencies fl and f2 (fl < f2). At this time, the dielectric constant of the portion of the spacer 丨 can be changed, and the electrical length of the first conductor pattern 21 can be lengthened. 16 200913377 In the radio frequency identification tag having the above configuration, the inductance portion 212 of the first conductor pattern 21 can perform the following three functions. (1) Inductor for integration with the chip (2) Direct power supply to the first conductor pattern 21 (3) Electromagnetic coupling power supply for the second conductor pattern 22, as shown in Fig. 7, once When the feed point 211 supplies power to the second conductor pattern 21, the current flows as shown by the arrow, and the inductance portion 212 flows in a large amount (the current distribution of the inductance portion 212 is dense), so that the second conductor pattern 22 is used. The 1^ knife (inductor unit 212) operates as a power source. In other words, the inductor portion 212 and the second conductor pattern 22 are not directly connected (interval 2 mm apart), but they can be electromagnetically coupled and supplied via the inductor portion 212 by electromagnetic induction coupling. Conventionally, if the patch antennas are arranged in close proximity and the patch antennas are arranged in close proximity, the antenna performance is deteriorated, which is considered to be unfavorable. However, the inductance portion 212 can be regarded as the first by the electromagnetic induction coupling of the inductor portion 212. 2 lead 15 body graphic 22 power supply. Therefore, if the distance between the two resonator patterns 21, 22 is too large, the degree of coupling between the two will be weakened, and the power supply to the second conductor pattern 22 will be insufficient, and it is difficult to radiate electric waves. That is, the resonator patterns 21, 22 are arranged in close proximity so that the inductance portion 212 can be regarded as the power source of the second conductor pattern 22, so that the entire antenna pattern 2 can be designed to be smaller. In other words, the position of the inductor portion 212 (slot) is preferably a position at which direct power supply to the first conductor pattern 21 and electromagnetic coupling of the second conductor pattern 22 can be appropriately performed. For example, the position of the first conductor pattern 21 may be shifted from the center of the length of the first conductor pattern 21, and it is more preferable to provide the vicinity of the end portion shown in Fig. 1. In the following, # for the characteristics of the radio frequency identification tag in this example, the calculation result using the 3-dimensional electric cell tank simulator is displayed. 5 First, the reflection characteristics of the wafer and the antenna pattern 2 are shown in Fig. 3. The closer the S11 of the vertical axis of the table is, the higher the reflection amount is, the smaller the value is (negative), the more the entire δ degree is, the input of the antenna pattern 2 The more power is easily transferred to the wafer connection portion 211 (i.e., the wafer). The above calculation example sets the capacitance component Ccp=i 4垆 of the wafer, and the resistance 1〇 component RCP=400Q. The difference in inductance length S2 (here, three types of S2 = 20 mm, 23 mm, and 25 mm) changes the degree of integration, but it is known that there are two resonance points of different frequencies fl, f2. The values of the resonant frequencies Π and f2 can be taken from the length of the resonator pattern 21, respectively.

Ll、共振器圖形22之長度L2加以控制(調整)。舉例言之, 务延長L1 ’則共振頻率π將降低’若縮短L2,則共振頻率 Q將提高而改變(轉移)。即,可調整無線射頻識別標籤之通 過頻寬。另,就天線增益而言,如第4圖所示,在涵蓋歐洲、 美國、日本之各使用頻率之頻帶内,相對於頻率而大致為 固定。 20 λ» 氣 T、上所述,可計算通訊距離特性,並加以例示於第2 圖。如該第2圖所示,設電感長S2=23mm時,在涵蓋歐洲、 美國、日本之各使用頻率之頻帶中,顯示了最一致之特性。 另,通訊距離係第丨圖中Z軸方向之通訊距離,計算條件如 下:RW裝置之天線(RW天線):9dBi之圓形極化波、尺…天 18 200913377 線之輸出:27dBm(0.5W)、晶片之動作電力:一9dBm。 其次,第5圖顯示了使用頻率由700MHz改變為 1200MHz時之史密斯圖上之天線阻抗軌跡。史密斯圖上, 對天線阻抗成對稱之點(即晶片阻抗之複數共輛)為天線阻 5抗之最佳點’其周邊之天線阻抗軌跡宜形成較小圓形。第5 圖中’阻抗軌跡在最佳點之周邊旋轉2次,而可知具有頻率 fl(860MHz)及f2(1000MHz)之2共振點。另,第8圖則顯示本 例之天線圖形2之指向性(第1圖之ZY面及ζχ面之相關指向 性)。 10 如上所述,依據本實施例之無線射頻識別標籤,可實 現具有可涵蓋歐洲、美國、日本之各使用頻率之寬頻帶之 通過頻帶特性之對應金屬之無線射頻識別標籤,故可實現 可維持在各國之共通通訊距離之對應金屬之無線射頻識別 標籤。 15 又,由於可使通過頻帶特性之頻帶擴大,故舉例言之, 即便將無線射頻識別標籤貼附於圓瓶等曲面上,墊片1之介 電係數及厚度因製造誤差而有不同,而使通過頻帶之頻率 特性偏向高頻側或低頻側,若事先設計成較可涵蓋歐洲' 美國、日本之各使用頻率之頻寬更寬頻,即可常保安定之 20特性(通訊距離)。 舉例言之,第9圖顯示了製造誤差之相關計算結果。以 墊片1之介電係數er=4.〇、墊片i之厚度t=5mm為基準,即 便因製造誤差’而使介電係數er=4.2或厚度1=5 2咖時, 亦可大致將歐洲、美國、日本之通訊距離保持—定。 19 200913377 又,第10圖中顯示了使墊片1之寬度(第1圖之X軸方 向)(即天線圖形2之寬度)固定為14mm,其厚度t=3mm、 4mm、5mm、10mm而改變時之計算結果。由該第10圖可知, 厚度t愈大,在涵蓋歐洲、美國、日本之各使用頻率之頻帶 5 中,愈出現通訊距離增長之傾向。但,t=10mm時,無線射 頻識別標籤之厚度過大,而不實用。反之,若減薄至t=3mm 程度,與他值相較,雖通訊距離縮小,但可確保應用上無 問題之通訊距離,故可實現薄型標籤。 進而,第11圖顯示了以第1圖所示之墊片1之尺寸(長 10 90mmx寬27mmx厚⑴5mm)為基準,而改變塾片1之長度 (90mm)及寬度(27mm)時之計算結果。由該第11圖可知,即 便寬度縮小至14mm,在涵蓋歐洲、美國、日本之各使用頻 率之頻帶中,通訊距離之劣化亦較少。 又,第12圖顯示了以第1圖所示之墊片1之尺寸(長 15 90mm X寬27mm X厚⑴5mm)為基準,而將寬度固定為 27mm,並改變長度(90mm)及厚度t(5mm)時之計算結果。由 該第12圖可知,即便寬度較大而為27mm,故即便減薄厚度 t(3mm),在涵蓋歐洲、美國、曰本之各使用頻率之頻帶中, 亦可維持3m以上之通訊距離。 20 如上所述,由於可視需要而變更設計墊片1之介電係數 及尺寸(無線射頻識別標籤之尺寸),故可理解已說明之尺 寸、墊片1之介電係數ε r、尺寸等之值僅為例示。 (製造方法) 其次,上述之本例之無線射頻識別標籤則如第13圖之 20 200913377 模式性顯示’可將於薄片或紙張等片狀構件上印刷銅 (Cu)、銀(Ag)、鋁(A1)等導電性材料等而形成有天線圖形 2(共振器圖形21,22)之天線圖形片2〇,以及同樣於薄片或紙 張等片狀構件上印刷Cu、Ag、A1等而形成有反射板3之反 5射片(片狀反射構件)30’藉黏著劑黏著或積層加工等方法對 ABS樹脂製之塾片1加以一體化而製造。 又,如第14圖之模式性顯示,若以諸如聚胺酯樹脂片 (片狀樹脂材)23覆蓋天線圖形片2〇之兩面,則可補強乃至保 護天線圖形2,故可實現環境耐性之提羿。 10 另’當然可能於墊片1之一面上設置銅箔板(貼附等), 並藉該銅箔板之液體蝕刻而形成天線圖形2(共振器圖形21, 22)。 [B] 其它 另,前述之例中,雖以2個共振器圖形21,22構成天線 15圖形2 ’但亦可以3個以上之共振器圖形構成之。舉例言之, 如依據第35〜38圖之後述,除共振器圖形21,22以外,亦可 ( 進而夾置諸如第1共振器圖形21而朝第1共振器圖形22之相 反側構成另一共振器圖形24,而構成具有3共振點。即,共 振器圖形數並不限於2個,係不言自明。 20 又,各共振器圖形21,22之形狀(面形)不限於方形。舉 例言之,如第39圖之後述,亦可分別形成楔形,而互異地 鄰接配置。此時,可使天線圖形2之寬度(第1圖之γ轴方向) 更為縮小。 [C] 第1變形例 21 200913377 第17圖係局部透視而顯示第1變形例之無線射頻識別 籤模式立體圖,該第17圖所示之無線射頻識別標籤則 例不地於介電體墊片(以T亦稱為介電體塊)10〇之一面(第 17圖之Z軸方向之—面)上,形成有天線圖形2〇〇(2〇1,2〇2)。 5又;丨毛體塊100之另一面上,則形成有導體圖形300。 介電體塾片1〇〇可使用相對介電係數er=2〜4程度之介 電體基板或樹脂。其可舉ρρ(聚丙婦)、(丙稀—丁二稀 苯乙烯共聚樹脂)' PC(聚破酸醋)、pBT(聚對苯二甲酸二 丁Μ、PPS(聚苯硫趟)、舰〖(聚二喊酮)等為例。但,並 10 不限於其等。 "電體塊100之尺寸雖依使用之頻率及相對介電係數 ε r而不同,但諸如UHF頻帶(86〇〜96〇μΗζ)、ε户3卜介電 損耗tan(5=0·001時,則為長5〇mmx寬30mmx厚⑴4_左 右。即,與帛1圖所例示之無線射頻識別標籤相較,χ軸方 15 向之長度尺寸約為一半。 天線圖形200包含諸如朝介電體塊1〇〇之長向(第丨了圖 之X軸方向)延伸之帶狀(方形)之第}導體圖形2〇1,以及與該 第1導體圖形201在Υ轴方向上鄰接之帶狀(方形)之第2導體 圖形202。 20 該等導體圖形201,2〇2宜配置成可輕易進行電磁感應 耦合。其一例係於第17圖中,於介電體塊1〇〇上朝第17圖之 Υ軸方向間隔諸如3mm而平行設有導體圖形2〇丨,2〇2。 , 。弟1 導體圖形201之X轴方向之長度L1為諸如45mm,第2導體圖 形202之X軸方向之長度L2則為諸如43mm。 22 200913377 其次,本例中,第1導體圖形201具有共振頻率fl之共 振器圖形之功能,第2導體圖形202具有大於共振頻率打之 共振頻率f2之共振器圖形之功能。又,天線圖形2〇〇之γ轴 方向之長度(寬度)包含前述3mm之間隔在内而為諸如 5 27mm。 導體圖形300例示地為第1共振器圖形201及第2共振器 圖形202之面積以上,且,具有小於介電體塊1〇〇之χγ平面 之面積之面積。舉例言之,導體圖形3〇〇具有可覆蓋天線圖 形200整體之程度之尺寸,諸如45mmx27mm程度之面積, 10而具有對第1共振器圖形201與第2共振器圖形202共通之共 振器圖形之功能。另,第1共振器圖形2(H、第2共振器圖形 202及共振器圖形3〇〇亦可分別記為第1共振器2〇1、第2共振 器202及共通共振器3〇〇。 因此’第1及第2共振器201,202分別藉設於介電體塊 15 100之一側面上之導體圖形(側面導體)204及205,而與共通 共振器300電性連接❶即,共通共振器(導體圖形)3〇〇與第i 及第2共振器201、202係藉經由介電體塊1〇〇之一侧面之路 徑而電性連接。 換言之,2個帶狀之導體圖形2〇1, 202(包含側面導體 20 204, 205)係由介電體塊1〇〇之前述另一面(背面)之共通共振 器300經由介電體塊1〇〇之長向之—側面而朝前述一面(表 面)延伸。由側面(Y軸方向)觀察上述之無線射頻識別標籤 時,可知導體圖形留下介電體塊1〇〇之長向之一側面而以環 狀(半環)存在於介電體塊1〇〇。 23 200913377 因此,形成於介電體塊100之該等導體圖形2〇1〜2〇5若 展開顯示,則具有第23及24圖之(1)所示之形狀。另,側面 導體204及205亦可一體形成於共振器圖形2〇i, 與導體 圖形300之一者或兩者。又,導體圖形2〇1〜2〇5可例示地分 5別藉鍍金或鍍銅而形成。又’側面導體204、205亦可例示 地使用銅或鋁製之導電性貼帶(片狀構件)。 本例中’無線射頻識別標籤之天線圖形2〇〇亦將與無線 射頻識別標籤内所使用之1C晶片及LSI等積體電路(以下亦 稱為晶片)進行阻抗匹配。晶片則如第6圖之例示,可以並 10聯之電容成分Cep與並聯之電阻成分RCp代表之。例示而 言,Ccp= 1 pF(微微法拉)左右(諸如 1 _4PF),Rcp=200 Ω 〜20000 Ω(諸如400Ω)。 因此,可與上述晶片整合之天線等效電路如第6圖之例 示,可以與電容成分Cep共振之並聯電感成分Lap以及與電 15 阻成分Rep同程度之並聯電阻Rap代表之。即,天線圖形2〇〇 要求具有電感成分Lap與放射電阻成分Rap。 因此,第1共振器圖形201形成有可連接前述晶片之晶 片連接部(供電點)211。又,該第1共振器圖形201亦設有於 X軸方向上具有長邊(長度S2)之槽孔部212。該槽孔部212具 20有電感長S2之電感部之功能。 該電感部(槽孔部)212可設定成可與前述晶片進行阻抗 匹配之適當尺寸。舉例言之,如第22圖之例示,第2(第1) 共振器202(201)、側面導體205(204)及共通共振器300之長度 (箭號500所代表之電長度)宜為使用頻率之半波長(1/2λ)。 24 200913377 該;ι/2共振長則受使用頻率f、相對介電係數“之影響。 其次,本例中,電感部212具有以下3種功能。 (1) 用於與曰曰片整合(消除晶片之電容成分)之電感。 (2) 對第1共振器圖形21直接供電。 5 (3)對第2共振器圖形22之電磁耦合供電。 舉例έ之,如第22圖所示,一旦由供電點211對第1共 振器圖形201供電,則電流將如箭號4〇〇所示,大量流入電 感部212(電感部212之電流分布綿密),故電感部212對於第2 共振器圖形202可作為電源而動作。即,電感部212與第2共 1〇振态圖形202雖未直接連接,但可藉電磁感應耦合而經電感 部212進行電磁耦合而供電。 因此,即便共振器圖形2〇1,2〇2彼此如此接近而排列, 藉有效利用電感部212,即可將第丨共振器圖形2〇1視為第2 共振器圖形202之電源。故而,一旦各共振器圖形2〇1, 2〇2 15之間隔過大,則電磁耦合度將減弱,而使對第2共振器圖形 202之供電不足,且難以放射電波。 即,本例中,將各共振器圖形2〇1,2〇2近接配置,而使 電感部212可被視為第2共振器圖形202之電源,即可將天線 圖形200整體設計成更小。 20 因此,設置電感部2丨2(槽孔)之位置宜為可適當進行對 第1共振器圖形201之直接供電,以及對第2共振器圖形2〇2 之電磁耦合供電之位置。舉例言之,可為由第丨共振器圖形 201之長向(X軸方向)中心偏移之位置,而以設於第17圖所 例示之端部近旁為更佳。 25 200913377 以下,就上述第1變形例之無線射頻識別標籤之特性, 顯不使用3次几電磁場模擬器之計算(模擬)結果之一例。 另,本杈擬中,第2共振器圖形22之尺寸設為χ軸方向之電 感長S2=l 8mmxY輛方向之電感寬=2 5mm。 5 首先,以第21圖顯示晶片與天線圖形200之反射特性 (S11)。縱軸之S11愈接近〇,反射量愈高,值愈小(負),整 合度愈咼,天線圖形200之輸入功率愈可輕易傳導至晶片連 接部211(即晶片)。 以上之3十算例係設定晶片之電容成分cCf)=i 4pF,電阻 10成分。電感長S2之不同,將使整合之程度改變, 但可知具有不同頻率fl,f2之2共振點。 共振頻率Π,f2之值分別可藉共振器圖形21之長度 L1、共振器圖形22之長度L2加以控制(調整卜舉例言之, 若延長L1,則共振頻率fl將降低,若縮短以,則共振頻率 15 Ώ將提高而改變(轉移)。即,可調整無線射頻識別標籤之通 過頻寬。 就天線增益而言’如第20圖之例示,在涵蓋歐洲(eu)、 美國(US)、曰本(JP)之各使用頻率(諸如eu=868MHz, US=915MHz ’ JP=953MHz)之頻帶内,相對於頻率而大致控 2〇 制在實用上無問題之範圍内。 綜上所述’可計算通訊距離(read range)特性,並加以 例示於第19圖。如該第19圖之例示,在涵蓋Eu、us、吓之 各使用頻率之頻帶中’可獲得實用上無問題之通訊距離特 性。另,此之所謂通訊距離係指第17圖中z軸方向之通訊距 26 200913377 離,計算條件如下:RW裝置之天線(RW天線):9dBi之圓形 極化波、RW天線之輸出:27dBm(0.5W)、晶片之動作電力: -9dBm。 其次’第18圖顯示了使用頻率由70〇mhz改變為 5 1200MHz時之史密斯圖上之天線阻抗軌跡。史密斯圖上, 對天線阻抗成對稱之點(即晶片阻抗之複數共軛)為天線阻 抗之最佳點,其周邊之天線阻抗軌跡宜形成較小圓形。第 18圖中,阻抗軌跡在最佳點之周邊旋轉2次,而可知具有2 共振點。另,第18圖中,並分別例示美國(us)之使用頻率、 10歐洲(EU)之使用頻率、日本(jp)之使用頻率為出、、fJ。 則顯示本例之天線圖形2之指向性(第丨圖之ζγ面及ζχ 面之相關指向性)。 如上所述,依據本變形例之無線射頻識別標籤,可獲 得與上述之實施例相同之作用效果,並可使X轴方向之長度 15減為約一半,故可使可涵蓋Eu ' US、JP之使用頻率而無實 用上問題之寬頻帶之無線射頻識別標籤,進而小型化。 即,可實現在EU、US、JP之任一使用頻帶中皆具有實 用上充分之通訊距離特性之對應金屬之標籤。因此,即便 貼附於曲面上,介電體塊1〇〇之相對介電係數及厚度有誤 20 差,亦可痛保安定之通訊距離特性。又,可於介電體塊 之兩面上形成半波長(λ/2)共振狀態,故可實現極小型之無 線射頻識別標籤。 (製造方法) 其次,上述之第1變形例之無線射頻識別標籤可依諸如 27 200913377 第23圖之例不而製造。如第μ圖之⑴之例示,可將於薄片 或紙張等片狀構件(導體圖形片)20A上印刷銅(Cu)、銀 (Ag)、鋁(A1)等導電性材料等而形成導體圖形2〇 1,2〇2, 3⑻。 在此,片狀構件2〇A例示地具有可覆蓋除定出介電體塊 5 1〇〇之長向(X軸方向)之周長之4面中與前述長向對向之介 電體塊100之側面之一以外之3個面之尺寸。 其次’於相當於片狀構件20A之前述3個面中對向之一 面及側面之領域,形成導體圖形201(晶片連接部211及電感 部212)與導體圖形202。另,於相當於片狀構件2〇a之介電 10體塊1〇〇之另一面(3個面中之最後一面)之領域,形成與各共 振器201,202電性連通之導體圖形3〇〇。 形成有該等導體圖形201,202, 300之片狀構件2〇A,則 對第23圖之(2)所例示之塑膠等介電體塊1〇〇纏繞而黏著。此 時,導體圖形201及202之一部分則對位而分別位於介電體 15塊之側面上。因此,前述一部分具有侧面導體204及205 之功能,而如第23圖之(3)之例示,可製造上述第1變形例之 無線射頻識別標藏。 另,如第24圖之(2)之例示,介電體塊1〇〇亦可設置導引 部(定位構件)110。藉此,即可輕易進行前述纏繞時之導體 2〇圖形片20A對介電體塊1〇〇之對位作業(防止位置偏差)。導 引部110可藉配合導體圖形片20A之尺寸切削介電體塊1〇〇 之表面等而形成,亦可於介電體塊1 〇〇之周緣上個別設置作 為導引部110之構件而形成。 依據第23及24圖所例示之製造方法,即可更輕易製造 28 200913377 第1變形例之無線射頻識別標籤,亦可於短時間内大量製造 廉價之無線射頻識別標籤。 此外’亦可於介電體塊100之兩面及一侧面上分別設置 銅4板(貼附等)’並藉銅箔板之液體蝕刻而個別形成任一或 5複數(包含全部)之各導體圖形201〜205。又,側面導體204 及205之任一者或兩者亦可藉金屬鍍敷物或作為第25及27 圖所例示之導電性貼帶,而與導體圖形201(204)及202(205) 電性連接。 又’如第26圖之例示,亦可以樹脂6〇〇覆蓋保護無線射 1〇頻識別標籤(各共振器201,202, 203)整體(但,亦可為局部)。 因此,可防止外力對無線射頻識別標籤造成損傷、裝設無線 射頻識別標籤之對象之損傷,而實現環境耐性之提昇。 另,樹脂600可使用諸如PP(聚丙烯)、ABS(丙烯—丁 二烯一苯乙烯共聚樹脂)、pC(聚碳酸酯)、PBT(聚對苯二甲 15酸二丁酯)、PPS(聚苯硫醚)、PEEK(聚二醚酮)等。 [D]第2變形例 上述之共振器圖形201,202, 300無須於介電體塊1〇〇之 表面上具有四角形狀。舉例言之,如第28圖之例示,亦可 以由與介電體塊100之長邊平行之方向僅偏移預定角度之 2〇方向為X轴,而使第1及第2共振器圖形201,202延伸於與該 X軸方向平行之方向上。 此則相當於第23及24圖中已說明之製造方法中,對介 電體塊100纏繞導體圖形片20A時,朝非與介電體塊之長 邊平行之方向偏移而進行纏繞,並切除多餘之導體圖形2〇j" 29 200913377 202, 300後者。第28圖之例中,共振器圖形202呈三角形。 又’電感部212並不限於槽孔形狀。舉例言之,如第29 圖之例示,亦可為延長供電線213而與晶片(晶片連接部211) 連接之電感形狀。進而,如第29及30圖之例示,晶片連接 5部211亦可設於接近第2共振器202之側。如此,即可使形成 一定厚度之晶片搭載部分位於無線射頻識別標籤之中央 側,舉例言之’具有製造天線捲圈時之捲圈平衡較佳之優點。 又,如第31圖之例示,亦可於介電體塊1〇〇之一面上, 夾置第1共振器圖形201而追加設置第3共振器圖形(第3共 10振器)203。此時,宜於以第1共振器圖形2〇1為中心之對稱 位置上,設置第2及第3共振器202, 203。第3共振器203亦可 藉侧面導體206而與設於介電體塊1〇〇之另一面上之共通共 振器300電性連接。 即,3個帶狀之共振器圖形201,202, 203(包含側面導體 15 204〜206)係自介電體塊100之另一面(背面)之共通共振器 300經由介電體塊100之一側面而朝一面(表面)延伸。 此時之無線射頻識別標籤則如第3 2圖之頻率對通訊距 離特性所例示,可具有對應3個共振器2〇1〜203之3種片振頻 率fl、f2、Ο。因此,可擴大可利用之頻帶。 2〇 又,如第33圖之例示,在X軸方向上,第3共振器203 之長度亦可設成與其它共振器201, 202之長度不同之長 度。舉例言之’若將第3共振器2〇3之X軸方向之長度(電長 度)設成小於(一半程度)其它共振器2〇1, 202之長度(電長 度)’則如第34圖之頻率對通訊距離特性所例示,亦町實現 3〇 200913377 對應UHF頻帶與2.45MHz帶兩者之無線射頻識別標籤。即, 調整第3共振器203之長度,即可調整無線射頻識別標籤之 使用頻率。 另,第31〜34圖所例示之變形(第3共振器之附加、第3 5共振器之x軸方向之長度調整)則如第35〜38圖之例示,亦可 分別適用於第1實施例之無線射頻識別標籤。但,第35圖及 第37圖中,24代表第3導體(共振器)圖形,而可與第丨及第2 導體圖形21,22共同形成天線圖形22。又,如第39-41圖之 f 例示,第28〜30圖所例示之變形亦可分別適用於第丨實施例 10 之無線射頻識別標籤。 又,上述之例中,雖使共振器圖形2〇3對各共振器圖形 201,202(或201〜203)為共通者,但亦可為個別分開者。此 時,將2個(或3個)必要長度之帶狀之導體圖形形成於片狀構 件20A,並纏繞於介電體塊1〇〇之長向之周圍3面上,即可更 15 輕易地製造無線射頻識別標籤。 產業上之利用可能性 I 如以上之詳細說明,依據上述之無線射頻識別標籤, 可提供具有優於過去之寬頻之通過頻帶(頻率對通訊距離) 特性之對應金屬之無線射頻識別標籤,故極為適用於無線 20 通訊技術範嘴、物品之生產、庫存、流通管理、p〇s系統、 保安系統等技術範疇。 【圖式簡單說《明】 第1圖係顯示一實施例之無線射頻識別標籤之構造之 模式立體圖。 31 200913377 第2圖係顯示第1圖所示之無線射頻識別標籤之通气距 離特性之一例之圖表。 第3圖係顯示第1圖所示之無線射頻識別標籤之反射特 性之一例之圖表。 5 第4圖係顯示第1圖所示之無線射頻識別標籤之増只特 性之一例之圖表。 第5圖係顯示第1圖所示之無線射頻識別標籤之晶片随 抗與天線阻抗之史密斯圖。 第6圖係顯示無線射頻識別標籤之天線與晶片之等气 10 電路之一例者。 第7圖係說明第1圖所示之無線射頻識別標籤之動作之 模式平面圖。 第8圖係顯示第1圖所示之無線射頻識別標籤之天線圖 形之指向性(第1圖中zy面及zx面之相關指向性)者。 15 第9圖係顯示第1圖所示之無線射頻識別標籤之墊片之 介電係數或厚度改變後之各通訊距離特性之一例之圖表。 第10圖係顯示第1圖所示之無線射頻識別標籤之塾片之 尺寸(主要為厚度)改變後之各通訊距離特性之一例之圖表。 第11圖係顯示第1圖所示之無線射頻識別標籤之尺寸 20 (主要為寬度)改變後之各通訊距離特性之一例之圖表。 第12圖係顯示第1圖所示之無線射頻識別標籤之墊片之 尺寸(主要為厚度)改變後之各通訊距離特性之一例之圖表。 第13圖係說明第1圖所示之無線射頻識別標籤之製造 方法之一例之模式圖。 32 200913377 第14圖係說明第1圖所示之無線射頻識別標籤之製造 方法之一例之模式圖。 第15圖係顯示習知之無線射頻識別標籤之通訊距離特 性之一例之圖表。 5 第16圖係顯示習知之無線射頻識別標籤之外觀之模式 立體圖。 第17圖係局部透視而顯示變形例之無線射頻識別標籤 之模式立體圖。 弟18圖係顯不弟17圖所不之無線射頻識別標戴之晶片 10 阻抗與天線阻抗之史密斯圖。 第19圖係顯示第17圖所示之無線射頻識別標籤之通訊 距離特性之一例之圖表。 第20圖係顯示第17圖所示之無線射頻識別標籤之增益 特性之一例之圖表 15 第21圖係顯示第17圖所示之無線射頻識別標籤之反射 特性之一例之圖表。 第22圖係說明第17圖所示之無線射頻識別標籤之動作 之模式立體圖。 第23圖(1)〜(3)係說明第17圖所示之無線射頻識別標籤 20 之製造方法之一例者。 第24圖(1)〜(3)係說明第17圖所示之無線射頻識別標籤 之製造方法之他例者。 第25圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 33 200913377 第26圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第27圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 5 第28圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第29圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第30圖係局部透視而顯示第17圖所示之無線射頻識別 10 標籤之變形例之模式立體圖。 第31圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第32圖係顯示第31圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 15 第33圖係局部透視而顯示第17圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第34圖係顯示第33圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 第3 5圖係局部透視而顯示第1圖所示之無線射頻識別 20 標藏之變形例之模式立體圖。 第36圖係顯示第35圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 第37圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 34 200913377 第38圖係顯示第37圖所示之無線射頻識別標籤之頻率 對通訊距離特性之一例者。 第3 9圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 5 第40圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 第41圖係局部透視而顯示第1圖所示之無線射頻識別 標籤之變形例之模式立體圖。 【主要元件符號說明】 1···介電體墊片 202···第2導體圖形 2···天線圖形 203…第3共振器圖形 3…反射構件、反射板 204, 205…導體圖形、側面導體 4…金屬 206…側面導體 20…天線圖形片 211…晶片連接部 20A···片狀構件 212…電感部、槽孔部 21…第1導體圖形 213…供電線 22···第2導體圖形 300…導體圖形、共通共振器 23…聚胺酯樹脂片 400…箭號 24…共振器圖形 500…箭號 30…反射片 600…樹脂 100…介電體塊 S2…電感長 110···導引部 fl,f2…頻率 200···天線圖形 L1,L2…長度 20卜··第1導體圖形 t…厚度 35L1 and the length L2 of the resonator pattern 22 are controlled (adjusted). For example, if L1' is extended, the resonance frequency π will decrease. If L2 is shortened, the resonance frequency Q will increase and change (transfer). That is, the pass bandwidth of the radio frequency identification tag can be adjusted. Further, as shown in Fig. 4, the antenna gain is substantially constant with respect to frequency in a frequency band covering the frequencies of use in Europe, the United States, and Japan. 20 λ» Gas T, described above, the communication distance characteristics can be calculated and illustrated in Figure 2. As shown in Fig. 2, when the inductance length S2 = 23 mm, the most consistent characteristics are shown in the frequency bands covering the respective frequencies of use in Europe, the United States, and Japan. In addition, the communication distance is the communication distance in the Z-axis direction in the figure. The calculation conditions are as follows: Antenna of RW device (RW antenna): Circular polarized wave of 9dBi, ruler... Day 18 200913377 Line output: 27dBm (0.5W ), the operating power of the chip: a 9dBm. Second, Figure 5 shows the antenna impedance trace on the Smith chart when the frequency of use changes from 700 MHz to 1200 MHz. On the Smith chart, the point at which the impedance of the antenna is symmetrical (i.e., the complex number of the impedance of the wafer) is the optimum point of the impedance of the antenna. The antenna impedance trajectory around the antenna should preferably form a small circle. In Fig. 5, the 'impedance trajectory is rotated twice around the optimum point, and it is known that there are two resonance points of the frequency fl (860 MHz) and f2 (1000 MHz). In addition, Fig. 8 shows the directivity of the antenna pattern 2 of this example (the relative directivity of the ZY plane and the pupil plane of Fig. 1). 10 As described above, according to the radio frequency identification tag of the present embodiment, the radio frequency identification tag having the corresponding metal of the pass band characteristic covering the wide frequency band of each frequency of use in Europe, the United States, and Japan can be realized, so that the radio frequency identification tag can be maintained. The radio frequency identification tag of the corresponding metal in the common communication distance of each country. Further, since the frequency band of the pass band characteristic can be expanded, for example, even if the radio frequency identification tag is attached to a curved surface such as a round bottle, the dielectric constant and thickness of the spacer 1 differ depending on manufacturing errors. If the frequency characteristic of the passband is biased to the high-frequency side or the low-frequency side, if it is designed to be wider than the bandwidth of the frequencies used in Europe, the United States, and Japan, it is possible to secure 20 characteristics (communication distance). For example, Figure 9 shows the results of the calculation of the manufacturing error. When the dielectric constant er=4. Keep the communication distances of Europe, the United States, and Japan in place. 19 200913377 Moreover, in Fig. 10, the width (the X-axis direction of Fig. 1) of the spacer 1 (i.e., the width of the antenna pattern 2) is fixed to 14 mm, and the thickness t = 3 mm, 4 mm, 5 mm, 10 mm is changed. The result of the calculation. As can be seen from Fig. 10, the larger the thickness t, the more the communication distance tends to increase in the frequency band 5 covering the frequencies of use in Europe, the United States, and Japan. However, when t = 10 mm, the thickness of the radio frequency identification tag is too large to be practical. On the other hand, if the thickness is reduced to t = 3 mm, the communication distance is reduced, but the communication distance without problems is ensured, so that a thin label can be realized. Further, Fig. 11 shows the calculation result when the length (90 mm) and the width (27 mm) of the cymbal sheet 1 are changed based on the size of the spacer 1 shown in Fig. 1 (length 10 90 mm x width 27 mm x thickness (1) 5 mm). . As can be seen from Fig. 11, even if the width is reduced to 14 mm, the communication distance is less deteriorated in the frequency bands covering the frequency of use in Europe, the United States, and Japan. Further, Fig. 12 shows that the width of the spacer 1 shown in Fig. 1 (length 15 90 mm X width 27 mm X thickness (1) 5 mm) is fixed, and the width is fixed to 27 mm, and the length (90 mm) and thickness t (... 5mm) calculation results. As can be seen from Fig. 12, even if the width is large, it is 27 mm. Therefore, even if the thickness t (3 mm) is reduced, a communication distance of 3 m or more can be maintained in a frequency band covering the frequencies of use in Europe, the United States, and the transcript. 20 As described above, since the dielectric constant and size (the size of the radio frequency identification tag) of the design spacer 1 are changed as needed, the size, the dielectric constant ε r of the spacer 1, the size, and the like can be understood. Values are for illustration only. (Manufacturing method) Next, the above-mentioned radio frequency identification tag of the present example is as shown in Fig. 13 20 200913377 mode display 'printing copper (Cu), silver (Ag), aluminum on a sheet member such as a sheet or paper. An antenna pattern sheet 2A in which the antenna pattern 2 (resonator patterns 21, 22) are formed, such as a conductive material (A1), and Cu, Ag, A1, etc. are printed on a sheet member such as a sheet or a sheet of paper. The anti-five sheet (sheet-like reflecting member) 30' of the reflecting plate 3 is produced by integrating the sheet 1 made of ABS resin by adhesion or lamination. Further, as schematically shown in Fig. 14, if the two sides of the antenna pattern sheet 2 are covered with, for example, a polyurethane resin sheet (sheet-like resin material) 23, the antenna pattern 2 can be reinforced or even protected, so that environmental resistance can be improved. . 10 Further, it is of course possible to provide a copper foil plate (attachment or the like) on one side of the spacer 1, and to form an antenna pattern 2 (resonator pattern 21, 22) by liquid etching of the copper foil plate. [B] Others In the above example, the two resonator patterns 21, 22 constitute the antenna 15 pattern 2', but three or more resonator patterns may be used. For example, as described later in FIGS. 35 to 38, in addition to the resonator patterns 21, 22, it is also possible to interpose (such as the first resonator pattern 21 and the opposite side of the first resonator pattern 22 to constitute another The resonator pattern 24 has a resonance point of three. That is, the number of resonator patterns is not limited to two, and it is self-explanatory. 20 Further, the shape (face shape) of each of the resonator patterns 21 and 22 is not limited to a square shape. As will be described later in Fig. 39, the wedge shape may be formed separately and arranged adjacent to each other. In this case, the width of the antenna pattern 2 (the γ-axis direction of Fig. 1) can be further reduced. [C] First modification 21 200913377 Fig. 17 is a perspective view showing a radio frequency identification sign mode of the first modification, and the radio frequency identification tag shown in Fig. 17 is not a dielectric spacer (also referred to as T). On the one side of the electric block (the surface in the Z-axis direction of Fig. 17), an antenna pattern 2〇〇(2〇1, 2〇2) is formed. 5 again; the other side of the body block 100 Above, a conductor pattern 300 is formed. The dielectric sheet 1 〇〇 can use a relative dielectric coefficient er=2~4 a dielectric substrate or a resin, which may be ρρ (polypropylene), (acrylic-butadiene styrene copolymer resin) 'PC (poly vinegar), pBT (polybutylene terephthalate, PPS (polyphenyl sulfonium), ship 〖 (poly ketone), etc. as an example. However, 10 is not limited to it. "The size of the electric block 100 depends on the frequency of use and the relative dielectric coefficient ε r Different, but such as UHF band (86〇~96〇μΗζ), ε3 3 dielectric loss tan (5=0·001, then length 5〇mmx width 30mmx thickness (1)4_. That is, with 帛1 map The length of the illustrated radio frequency identification tag is about half of that of the radio frequency identification tag. The antenna pattern 200 includes, for example, a long direction toward the dielectric block 1 (the X-axis direction of the figure). a strip-shaped (square) conductor pattern 2〇1 and a strip-shaped (square) second conductor pattern 202 adjacent to the first conductor pattern 201 in the z-axis direction. 20 The conductor patterns 201, 2〇 2 should be configured to be easily electromagnetically inductively coupled. An example of this is in Figure 17, which is spaced about 3 mm from the dielectric block 1〇〇 in the x-axis direction of Figure 17 The conductor pattern 2〇丨, 2〇2 is provided in parallel, and the length L1 of the conductor pattern 201 in the X-axis direction is, for example, 45 mm, and the length L2 of the second conductor pattern 202 in the X-axis direction is, for example, 43 mm. 22 200913377 Next, in this example, the first conductor pattern 201 has a function of a resonator pattern having a resonance frequency fl, and the second conductor pattern 202 has a function of a resonator pattern larger than the resonance frequency f2 of the resonance frequency. Further, the antenna pattern 2〇〇 The length (width) of the γ-axis direction is, for example, 5 27 mm including the interval of 3 mm described above. The conductor pattern 300 is exemplarily the area of the first resonator pattern 201 and the second resonator pattern 202, and has an area smaller than the area of the χ γ plane of the dielectric block 1 。. For example, the conductor pattern 3 has a size that covers the entirety of the antenna pattern 200, such as an area of about 45 mm x 27 mm, and has a resonator pattern common to the first resonator pattern 201 and the second resonator pattern 202. Features. Further, the first resonator pattern 2 (H, the second resonator pattern 202, and the resonator pattern 3A) may be referred to as a first resonator 2'1, a second resonator 202, and a common resonator 3'', respectively. Therefore, the first and second resonators 201 and 202 are electrically connected to the common resonator 300 by the conductor patterns (side conductors) 204 and 205 on one side of the dielectric block 15 100, respectively. The resonator (conductor pattern) 3〇〇 and the i-th and second resonators 201 and 202 are electrically connected via a path on one side of the dielectric block 1〇〇. In other words, two strip-shaped conductor patterns 2 〇 1, 202 (including the side conductors 20 204 , 205 ) is a common resonator 300 of the other side (back side) of the dielectric block 1 经由 via the long side of the dielectric block 1 — When the above-mentioned one surface (surface) is observed, when the above-mentioned radio frequency identification tag is viewed from the side (Y-axis direction), it is understood that the conductor pattern leaves one side of the long direction of the dielectric block 1〇〇 and exists in a ring shape (half ring). In the dielectric block 1〇〇. 23 200913377 Therefore, the conductor patterns 2〇1~2〇5 formed in the dielectric block 100 are expanded. The shape shown in (1) of Figures 23 and 24 is also provided. The side conductors 204 and 205 may be integrally formed in the resonator pattern 2〇i, and one or both of the conductor patterns 300. The conductor patterns 2〇1 to 2〇5 can be formed by gold plating or copper plating, and the side conductors 204 and 205 can also be exemplarily used as conductive tapes (sheet members) made of copper or aluminum. In this example, the antenna pattern of the RFID tag will be impedance matched with the integrated circuit such as the 1C chip and LSI used in the RFID tag (hereinafter also referred to as the wafer). The wafer is shown in Figure 6. For example, the capacitance component Cep and the parallel resistance component RCp can be represented. For example, Ccp = 1 pF (picofarad) (such as 1 _4PF), Rcp = 200 Ω ~ 20000 Ω (such as 400 Ω) Therefore, the antenna equivalent circuit integrated with the above-mentioned wafer is exemplified as shown in FIG. 6, and can be represented by a parallel inductance component Lap which resonates with the capacitance component Cep and a parallel resistance ratio Rap which is equal to the electric resistance component Rep. Figure 2〇〇 requires the inductance component Lap and put Therefore, the first resonator pattern 201 is formed with a wafer connection portion (power supply point) 211 to which the wafer can be connected. Further, the first resonator pattern 201 is also provided with a long side (length) in the X-axis direction. S2) The slot portion 212. The slot portion 212 has a function of an inductance portion having an inductance length S2. The inductor portion (slot portion) 212 can be set to an appropriate size for impedance matching with the wafer. As shown in FIG. 22, the lengths of the second (first) resonator 202 (201), the side conductors 205 (204), and the common resonator 300 (the electrical length represented by the arrow 500) should be the frequency of use. Half wavelength (1/2λ). 24 200913377 The ι/2 resonance length is affected by the frequency of use f and the relative dielectric coefficient. Secondly, in this example, the inductor section 212 has the following three functions: (1) For integration with the cymbal (elimination) Inductance of the capacitance component of the wafer (2) Direct power supply to the first resonator pattern 21. 5 (3) Electromagnetic coupling of the second resonator pattern 22. For example, as shown in Fig. 22, once When the feed point 211 supplies power to the first resonator pattern 201, the current flows as shown by the arrow 4 ,, and a large amount flows into the inductor portion 212 (the current distribution of the inductor portion 212 is dense), so the inductor portion 212 for the second resonator pattern 202 The inductor unit 212 and the second common mode 202 are not directly connected, but can be electromagnetically coupled by the inductance unit 212 by electromagnetic induction coupling. Therefore, even the resonator pattern 2 is provided. 〇1, 2〇2 are arranged so close to each other, and by effectively utilizing the inductance portion 212, the second resonator pattern 2〇1 can be regarded as the power source of the second resonator pattern 202. Therefore, once each resonator pattern 2〇 1, 2 〇 2 15 interval is too large, the electromagnetic coupling will be weakened On the other hand, the power supply to the second resonator pattern 202 is insufficient, and it is difficult to radiate radio waves. In this example, the resonator patterns 2〇1 and 2〇2 are arranged in close proximity, and the inductance unit 212 can be regarded as the second. The power supply of the resonator pattern 202 can design the antenna pattern 200 as a whole to be smaller. 20 Therefore, the position of the inductor portion 2丨2 (slot) should be appropriately supplied to the first resonator pattern 201. And a position at which the electromagnetic coupling of the second resonator pattern 2〇2 is supplied. For example, it may be a position shifted by the center of the long axis (X-axis direction) of the second resonator pattern 201, and is set at the 17th. The vicinity of the end portion illustrated in the figure is more preferable. 25 200913377 Hereinafter, an example of the calculation (simulation) result of the three-time electromagnetic field simulator using the characteristics of the radio frequency identification tag according to the first modification described above is shown. In the simulation, the size of the second resonator pattern 22 is set to the inductance length of the x-axis direction S2 = 18 mm x Y the inductance width of the vehicle direction = 2 5 mm. 5 First, the reflection characteristics of the wafer and the antenna pattern 200 are shown in Fig. 21 ( S11). The closer the S11 of the vertical axis is to 〇, the higher the amount of reflection, The smaller the value (negative), the more integrated, the easier the input power of the antenna pattern 200 can be transmitted to the wafer connection portion 211 (ie, the wafer). The above 30 examples set the capacitance component of the chip cCf)=i 4pF, The resistance 10 component. The difference in inductance length S2 will change the degree of integration, but it can be seen that there are two resonance points of different frequencies fl, f2. The resonance frequency Π, the value of f2 can be obtained by the length L1 of the resonator pattern 21, respectively. The length L2 of the pattern 22 is controlled (adjustment example), if the length L1 is extended, the resonance frequency fl will decrease, and if shortened, the resonance frequency 15 Ώ will increase and change (transfer). That is, the pass bandwidth of the radio frequency identification tag can be adjusted. As far as the antenna gain is concerned, as illustrated in Fig. 20, the frequency bands (including eu = 868 MHz, US = 915 MHz ' JP = 953 MHz) covering European (eu), US (US), and 曰 (JP) are used. In the meantime, the control is generally in the range of practically no problem with respect to the frequency. In summary, the read range characteristics can be calculated and illustrated in Fig. 19. As exemplified in Fig. 19, a practically problem-free communication distance characteristic can be obtained in a frequency band covering the frequencies of use of Eu, us, and scare. In addition, the so-called communication distance refers to the communication distance of 26 200913377 in the z-axis direction in Fig. 17, and the calculation conditions are as follows: antenna of RW device (RW antenna): circular polarized wave of 9dBi, output of RW antenna: 27dBm (0.5W), the operating power of the chip: -9dBm. Next, Figure 18 shows the antenna impedance trajectory on the Smith chart when the frequency of use changes from 70〇mhz to 5 1200MHz. On the Smith chart, the point at which the impedance of the antenna is symmetrical (ie, the complex conjugate of the impedance of the wafer) is the optimum point of the antenna impedance, and the antenna impedance trajectory around it should be formed into a small circle. In Fig. 18, the impedance trajectory is rotated twice around the optimum point, and it is known that it has 2 resonance points. In addition, in Fig. 18, the frequency of use of the United States (us), the frequency of use of 10 European (EU), the frequency of use of Japan (jp), and fJ are respectively illustrated. The directivity of the antenna pattern 2 of this example is shown (the directionality of the ζ γ plane and the ζχ plane of the second figure). As described above, according to the radio frequency identification tag of the present modification, the same effects as those of the above-described embodiment can be obtained, and the length 15 of the X-axis direction can be reduced to about half, so that Eu 'US, JP can be covered. A wide-band radio frequency identification tag that uses frequency without practical problems is further miniaturized. That is, it is possible to realize a label of a corresponding metal having a practically sufficient communication distance characteristic in any of the use bands of EU, US, and JP. Therefore, even if it is attached to a curved surface, the relative dielectric constant and thickness of the dielectric block 1 are incorrectly 20, and the communication distance characteristic can be ensured by the security. Further, a half-wavelength (λ/2) resonance state can be formed on both sides of the dielectric block, so that a very small radio frequency identification tag can be realized. (Manufacturing Method) Next, the radio frequency identification tag according to the first modification described above can be manufactured according to the example of Fig. 23 of 2009 2009377. As exemplified in (1) of FIG. 1, a conductive material such as copper (Cu), silver (Ag), or aluminum (A1) can be printed on a sheet member (conductor pattern sheet) 20A such as a sheet or a sheet of paper to form a conductor pattern. 2〇1,2〇2, 3(8). Here, the sheet member 2A is exemplarily provided with the dielectric block 100 which is covered with the long-direction opposite to the circumferential direction of the long direction (X-axis direction) of the dielectric block 51. The dimensions of the three faces other than one of the sides. Next, the conductor pattern 201 (wafer connecting portion 211 and the inductance portion 212) and the conductor pattern 202 are formed in a field corresponding to one of the three faces of the sheet member 20A. Further, in the field of the other side (the last one of the three faces) of the dielectric 10 block 1 corresponding to the sheet member 2A, a conductor pattern 3 electrically connected to each of the resonators 201, 202 is formed. Hey. The sheet member 2A having the conductor patterns 201, 202, and 300 is wound and adhered to the dielectric block 1 such as plastic exemplified in Fig. 23 (2). At this time, one of the conductor patterns 201 and 202 is aligned and positioned on the side of the dielectric body 15 block. Therefore, the aforementioned portion has the function of the side conductors 204 and 205, and as exemplified in (3) of Fig. 23, the radio frequency identification tag of the first modification described above can be manufactured. Further, as exemplified in (2) of Fig. 24, the dielectric block 1A may be provided with a guiding portion (positioning member) 110. Thereby, the alignment operation (prevention of positional deviation) of the conductor 2 〇 pattern piece 20A to the dielectric block 1 前述 at the time of the winding can be easily performed. The guiding portion 110 may be formed by cutting the surface of the dielectric block 1A or the like in accordance with the size of the conductor pattern piece 20A, or may be separately provided as a member of the guiding portion 110 on the periphery of the dielectric block 1? form. According to the manufacturing method illustrated in Figs. 23 and 24, it is possible to more easily manufacture the radio frequency identification tag of the first modification 28 200913377, and to mass-produce a cheap radio frequency identification tag in a short time. In addition, a copper plate (attachment, etc.) may be provided on both sides and one side of the dielectric block 100, and each of the conductors of any one or five plural (including all) may be individually formed by liquid etching of the copper foil plate. Graphics 201 to 205. Further, either or both of the side conductors 204 and 205 may be electrically connected to the conductor patterns 201 (204) and 202 (205) by metal plating or as a conductive tape exemplified in FIGS. 25 and 27. connection. Further, as exemplified in Fig. 26, the resin 6 〇〇 may be covered to protect the entire radio frequency identification tag (each of the resonators 201, 202, 203) (but may be partial). Therefore, it is possible to prevent the damage of the radio frequency identification tag caused by the external force and the damage of the object to which the radio frequency identification tag is mounted, thereby achieving an improvement in environmental tolerance. Further, the resin 600 may be used, for example, PP (polypropylene), ABS (propylene-butadiene-styrene copolymer resin), pC (polycarbonate), PBT (polybutylene terephthalate), PPS ( Polyphenylene sulfide), PEEK (polydiether ketone), and the like. [D] Second Modification The above resonator patterns 201, 202, 300 do not need to have a square shape on the surface of the dielectric block 1A. For example, as exemplified in FIG. 28, the first and second resonator patterns 201, 202 may be made by shifting the direction parallel to the long side of the dielectric block 100 by only a predetermined angle. It extends in a direction parallel to the X-axis direction. This is equivalent to the manufacturing method described in FIGS. 23 and 24, in which the conductor pattern piece 20A is wound around the dielectric block 100, and is wound in a direction parallel to the long side of the dielectric block, and is wound. Excavate the excess conductor pattern 2〇j" 29 200913377 202, 300 the latter. In the example of Fig. 28, the resonator pattern 202 has a triangular shape. Further, the inductance portion 212 is not limited to the shape of the slot. For example, as exemplified in FIG. 29, the inductance shape connected to the wafer (wafer connecting portion 211) may be extended to extend the power supply line 213. Further, as exemplified in Figs. 29 and 30, the wafer connection 5 portion 211 may be provided on the side close to the second resonator 202. Thus, the wafer-mounting portion forming a certain thickness can be located on the center side of the radio frequency identification tag, and the advantage of the winding balance when manufacturing the antenna coil is exemplified. Further, as exemplified in Fig. 31, a third resonator pattern 201 (third resonator) 203 may be additionally provided on one surface of the dielectric block 1A with the first resonator pattern 201 interposed therebetween. In this case, it is preferable to provide the second and third resonators 202 and 203 at symmetrical positions centering on the first resonator pattern 2〇1. The third resonator 203 can also be electrically connected to the common resonator 300 provided on the other surface of the dielectric block 1 by the side conductor 206. That is, the three strip-shaped resonator patterns 201, 202, 203 (including the side conductors 15 204 to 206) are the common resonator 300 from the other side (back surface) of the dielectric block 100 via one of the dielectric blocks 100 The side extends toward one side (surface). The radio frequency identification tag at this time is exemplified by the frequency versus communication distance characteristic of Fig. 3, and may have three kinds of chip frequency frequencies fl, f2, Ο corresponding to the three resonators 2〇1 to 203. Therefore, the available frequency band can be expanded. Further, as exemplified in Fig. 33, the length of the third resonator 203 may be set to be different from the lengths of the other resonators 201, 202 in the X-axis direction. For example, if the length (electric length) of the X-axis direction of the third resonator 2〇3 is set to be less than (half the extent) the length (electric length) of the other resonators 2〇1, 202 is as shown in FIG. The frequency is exemplified by the communication distance characteristics, and the same frequency is achieved by the 3〇200913377 corresponding to the UHF band and the 2.45MHz band. That is, by adjusting the length of the third resonator 203, the frequency of use of the radio frequency identification tag can be adjusted. Further, the deformations exemplified in FIGS. 31 to 34 (addition of the third resonator and length adjustment of the third resonator in the x-axis direction) are exemplified in FIGS. 35 to 38, and may be applied to the first embodiment, respectively. For example, a radio frequency identification tag. However, in Figs. 35 and 37, 24 represents a third conductor (resonator) pattern, and the antenna pattern 22 can be formed together with the second and second conductor patterns 21, 22. Further, as exemplified in FIG. 39-41, the variants illustrated in FIGS. 28 to 30 can also be applied to the radio frequency identification tag of the tenth embodiment, respectively. Further, in the above example, the resonator pattern 2〇3 is common to the resonator patterns 201, 202 (or 201 to 203), but may be separate. At this time, two (or three) strip-shaped conductor patterns of a necessary length are formed on the sheet-like member 20A, and wound around the three sides of the long direction of the dielectric block 1〇〇, which is even easier. Manufacturing radio frequency identification tags. Industrial Applicability I As described above, according to the above-mentioned radio frequency identification tag, it is possible to provide a radio frequency identification tag having a corresponding metal having a passband (frequency-to-communication distance) characteristic of the past broadband. It is applicable to the technical fields of wireless 20 communication technology, mouthpiece, production, inventory, circulation management, p〇s system, security system and so on. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view showing the construction of a radio frequency identification tag of an embodiment. 31 200913377 Fig. 2 is a graph showing an example of the ventilation distance characteristics of the radio frequency identification tag shown in Fig. 1. Fig. 3 is a diagram showing an example of the reflection characteristics of the radio frequency identification tag shown in Fig. 1. 5 Figure 4 is a diagram showing one of the characteristics of the radio frequency identification tag shown in Figure 1. Figure 5 is a Smith chart showing the wafer impedance and antenna impedance of the RFID tag shown in Figure 1. Fig. 6 is a diagram showing an example of an antenna 10 and a chip of a radio frequency identification tag. Fig. 7 is a schematic plan view showing the operation of the radio frequency identification tag shown in Fig. 1. Fig. 8 is a view showing the directivity of the antenna pattern of the radio frequency identification tag shown in Fig. 1 (the directionality of the zy plane and the zx plane in Fig. 1). 15 Fig. 9 is a graph showing an example of the communication distance characteristics of the spacer of the radio frequency identification tag shown in Fig. 1 after the change in the dielectric constant or thickness. Fig. 10 is a graph showing an example of the respective communication distance characteristics after the size (mainly thickness) of the radiograph of the radio frequency identification tag shown in Fig. 1 is changed. Fig. 11 is a graph showing an example of the respective communication distance characteristics after the size 20 (mainly width) of the radio frequency identification tag shown in Fig. 1. Fig. 12 is a graph showing an example of the respective communication distance characteristics after the size (mainly thickness) of the spacer of the radio frequency identification tag shown in Fig. 1 is changed. Fig. 13 is a schematic view showing an example of a method of manufacturing a radio frequency identification tag shown in Fig. 1. 32 200913377 Fig. 14 is a schematic view showing an example of a method of manufacturing a radio frequency identification tag shown in Fig. 1. Fig. 15 is a diagram showing an example of the communication distance characteristics of a conventional radio frequency identification tag. 5 Figure 16 is a perspective view showing the appearance of a conventional RFID tag. Fig. 17 is a perspective view showing a mode of a radio frequency identification tag of a modification in partial perspective. Brother 18 shows the chip of the radio frequency identification standard that is not shown in Figure 17. 10 Smith chart of impedance and antenna impedance. Fig. 19 is a diagram showing an example of the communication distance characteristics of the radio frequency identification tag shown in Fig. 17. Fig. 20 is a diagram showing an example of the gain characteristics of the radio frequency identification tag shown in Fig. 17. Fig. 21 is a diagram showing an example of the reflection characteristics of the radio frequency identification tag shown in Fig. 17. Fig. 22 is a perspective view showing the operation of the radio frequency identification tag shown in Fig. 17. Fig. 23 (1) to (3) show an example of a method of manufacturing the radio frequency identification tag 20 shown in Fig. 17. Fig. 24 (1) to (3) show other examples of the method of manufacturing the radio frequency identification tag shown in Fig. 17. Fig. 25 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. 33 200913377 Fig. 26 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 27 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. 5 Fig. 28 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 29 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 30 is a perspective view showing a modification of the radio frequency identification 10 tag shown in Fig. 17 in partial perspective. Fig. 31 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 32 is a view showing an example of the frequency-to-communication distance characteristic of the radio frequency identification tag shown in Fig. 31. Fig. 33 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 17 in partial perspective. Fig. 34 is a view showing an example of the frequency-to-communication distance characteristic of the radio frequency identification tag shown in Fig. 33. Fig. 35 is a perspective view showing a modification of the radio frequency identification 20 shown in Fig. 1 in a partial perspective view. Figure 36 shows an example of the frequency-to-communication distance characteristics of the radio frequency identification tag shown in Fig. 35. Fig. 37 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. 34 200913377 Figure 38 shows an example of the frequency-to-communication distance characteristics of the RFID tag shown in Figure 37. Fig. 39 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. 5 Fig. 40 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. Fig. 41 is a perspective view showing a modification of the radio frequency identification tag shown in Fig. 1 in partial perspective. [Description of main component symbols] 1··· dielectric spacer 202···second conductor pattern 2···antenna pattern 203...third resonator pattern 3...reflecting member, reflecting plate 204, 205...conductor pattern, Side conductor 4...metal 206...side conductor 20...antenna pattern piece 211...wafer connection part 20A·... piece element 212...inductance part, slot part 21...first conductor pattern 213...power supply line 22··· 2nd Conductor pattern 300...conductor pattern, common resonator 23...polyurethane resin sheet 400...arrow 24...resonator pattern 500...arrow 30...reflector 600...resin 100...dielectric block S2...inductance length 110··· Leading portion fl, f2...frequency 200···antenna pattern L1, L2...length 20 b··first conductor pattern t...thickness 35

Claims (1)

200913377 十、申請專利範圍: 1. 一種無線射頻識別標籤,包含有: 第1共振器圖形,具有與晶片連接之晶片連接部及 可調整與前述晶片之阻抗匹配之電感部;及 第2共振器圖形,係藉經由前述電感部之電磁感應 耦合而接受供電者。 2. 如申請專利範圍第1項之無線射頻識別標籤,其中前述 第1及第2共振器圖形分別具有方形之導體圖形,且在同 一面上並列設置。 3. 如申請專利範圍第2項之無線射頻識別標籤,其中前述 同一面係介電體基板之一面。 4. 如申請專利範圍第3項之無線射頻識別標籤,其中前述 介電體基板之另一面上設有反射層。 5. 如申請專利範圍第1至4項中任一項之無線射頻識別標 籤,其中前述電感部係於前述第1共振器圖形之局部設 置槽孔而形成者。 6. 如申請專利範圍第2項之無線射頻識別標籤,其中前述 第1及第2共振器圖形之相互並行之方向之電長度不同。 7. 如申請專利範圍第6項之無線射頻識別標籤,其中前述 第1共振器圖形之與前述第2共振器圖形並行之方向之 長度大於前述第2共振器圖形之長度。 8. 如申請專利範圍第1至7項中任一項之無線射頻識別標 籤,其中前述第1及第2共振器圖形係於貼附在介電體基 板之樹脂製基板之一面上之片狀構件上,由導電性材料 36 200913377 所形成者。 9. 如申請專利範圍第1至8項中任一項之無線射頻識別標 籤,其中設有覆蓋第1及第2共振器圖形之樹脂材料。 10. 如申請專利範圍第1至9項中任一項之無線射頻識別標 籤,其中前述晶片連接部連接於前述晶片。 11. 如申請專利範圍第1至1〇項中任一項之無線射頻識別標 籤,其中前述第1及第2共振器圖形係透過介電體而貼附 於金屬上。 12. 如申請專利範圍第3項之無線射頻識別標籤,其中前述 介電體基板之另一面之包含與前述第1及第2共振器圖 形對向之領域之部分,設有導體圖形, 前述導體圖形與前述第1及第2共振器圖形係藉通 過前述介電體基板之一側面之路徑而電性連接。 13. 如申請專利範圍第12項之無線射頻識別標籤,其中前述 一側面上設有電性連接前述導體圖形與前述第1及第2 共振器圖形之側面導體。 14. 如申請專利範圍第13項之無線射頻識別標籤,其中前述 側面導體係金屬鍍敷物或導電性之片狀構件。 15. 如申請專利範圍第13或14項之無線射頻識別標籤,其中 前述側面導體與前述導體圖形以及前述第1及第2共振 器圖形之一者或兩者一體形成。 16. 如申請專利範圍第12至15項中任一項之無線射頻識別 標籤,其中前述導體圖形係與前述第1及第2共振器圖形 共通之共振器圖形。 37 200913377 17. 如申請專利範圍第16項之無線射頻識別標籤,更具有可 藉經由前述電感部之電磁感應耦合而接受供電之第3共 振器圖形, 在包含前述第1及第2共振器圖形之面上,前述第2 及第3共振器圖形設於以前述第1共振器圖形為中心之 對稱位置上。 18. 如申請專利範圍第17項之無線射頻識別標籤,其中前述 第3共振器圖形具有小於前述第1及第2共振器圖形之電 長度的電長度。 19. 如申請專利範圍第12至18項中任一項之無線射頻識別 標籤,其中設有整體覆蓋前述第1及第2共振器圖形與前 述導體圖形之樹脂材料。 20. —種無線射頻識別標籤之製造方法,包含以下步驟: 於可覆蓋定出介電體基板之長向之周長之4面中, 與前述長向對向之前述介電體基板之側面之一面以外 之3面之片狀構件的相當於前述介電體基板之一面及側 面之領域,形成具有與晶片連接之晶片連接部及可調整 與前述晶片之阻抗匹配之電感部之第1共振器圖形、及 可藉經由前述電感部之電磁感應耦合而接受供電之第2 共振器圖形,並且於前述片狀構件之相當於前述介電體 基板之另一面之領域,形成可與前述各共振器圖形電性 連通之導體圖形;及 將前述片狀構件纏繞固定於前述介電體基板上,以 使前述第1及第2共振器圖形位於前述介電體基板之一面 38 200913377 上,且前述導體圖形位於前述介電體基板之另一面上。 21·如申請專利範圍第20項之無線射頻識別標籤之製造方 法,其中前述介電體基板上設有前述纏繞時之前述片狀 構件之定位用導引構件。 f 39200913377 X. Patent Application Range: 1. A radio frequency identification tag comprising: a first resonator pattern having a wafer connection portion connected to the wafer and an inductance portion adjustable to match impedance of the wafer; and a second resonator The pattern is received by the power supplier via electromagnetic induction coupling of the inductor portion. 2. The radio frequency identification tag of claim 1, wherein the first and second resonator patterns respectively have square conductor patterns and are arranged side by side on the same surface. 3. The radio frequency identification tag of claim 2, wherein the same surface is a surface of the dielectric substrate. 4. The radio frequency identification tag of claim 3, wherein the other surface of the dielectric substrate is provided with a reflective layer. 5. The radio frequency identification tag according to any one of claims 1 to 4, wherein the inductive portion is formed by providing a slot in a portion of the first resonator pattern. 6. The radio frequency identification tag of claim 2, wherein the first and second resonator patterns have different electrical lengths in mutually parallel directions. 7. The radio frequency identification tag of claim 6, wherein a length of the first resonator pattern in a direction parallel to the second resonator pattern is greater than a length of the second resonator pattern. 8. The radio frequency identification tag according to any one of claims 1 to 7, wherein the first and second resonator patterns are in a sheet shape attached to one surface of a resin substrate of the dielectric substrate. The member is formed of a conductive material 36 200913377. 9. A radio frequency identification tag according to any one of claims 1 to 8, wherein a resin material covering the first and second resonator patterns is provided. 10. The radio frequency identification tag of any one of claims 1 to 9, wherein the aforementioned wafer connection portion is connected to the aforementioned wafer. 11. The radio frequency identification tag of any one of claims 1 to 1, wherein the first and second resonator patterns are attached to the metal through a dielectric. 12. The radio frequency identification tag of claim 3, wherein the other surface of the dielectric substrate includes a conductor pattern and a conductor included in a region opposite to the first and second resonator patterns. The pattern and the first and second resonator patterns are electrically connected by a path passing through one side surface of the dielectric substrate. 13. The radio frequency identification tag of claim 12, wherein the one side surface is provided with a side conductor electrically connecting the conductor pattern and the first and second resonator patterns. 14. The radio frequency identification tag of claim 13, wherein the side guiding system is a metal plating or a conductive sheet member. 15. The radio frequency identification tag of claim 13 or 14, wherein the side conductor is integrally formed with one or both of the conductor pattern and the first and second resonator patterns. The radio frequency identification tag according to any one of claims 12 to 15, wherein the conductor pattern is a resonator pattern common to the first and second resonator patterns. 37 200913377 17. The radio frequency identification tag of claim 16 further includes a third resonator pattern that can be powered by electromagnetic induction coupling through the inductive portion, including the first and second resonator patterns On the front surface, the second and third resonator patterns are provided at symmetrical positions centering on the first resonator pattern. 18. The radio frequency identification tag of claim 17, wherein the third resonator pattern has an electrical length that is less than an electrical length of the first and second resonator patterns. The radio frequency identification tag according to any one of claims 12 to 18, wherein a resin material integrally covering the first and second resonator patterns and the conductor pattern is provided. 20. A method of manufacturing a radio frequency identification tag, comprising the steps of: covering one side of a front surface of the dielectric substrate opposite to the long direction of four sides of a circumferential direction of the longitudinal direction of the dielectric substrate; A first resonator pattern having a wafer connection portion connected to the wafer and an inductance portion matching the impedance of the wafer is formed in a field corresponding to one surface and a side surface of the dielectric substrate on the other three surface sheet members And a second resonator pattern that can receive power supply by electromagnetic induction coupling of the inductor portion, and a resonator pattern that can be formed with the other surface of the sheet member corresponding to the dielectric substrate a conductive pattern of the conductor; and winding and fixing the sheet member on the dielectric substrate such that the first and second resonator patterns are located on one surface 38 200913377 of the dielectric substrate, and the conductor pattern Located on the other side of the dielectric substrate. The method of manufacturing a radio frequency identification tag according to claim 20, wherein the dielectric substrate is provided with a positioning guide member for the sheet member at the time of winding. f 39
TW097128394A 2007-07-25 2008-07-25 Rfid tag and method for manufacturing rfid tag TWI418089B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097128394A TWI418089B (en) 2007-07-25 2008-07-25 Rfid tag and method for manufacturing rfid tag

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2007/064548 WO2009013817A1 (en) 2007-07-25 2007-07-25 Wireless tag
TW96127077 2007-07-25
TW097128394A TWI418089B (en) 2007-07-25 2008-07-25 Rfid tag and method for manufacturing rfid tag

Publications (2)

Publication Number Publication Date
TW200913377A true TW200913377A (en) 2009-03-16
TWI418089B TWI418089B (en) 2013-12-01

Family

ID=44725140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097128394A TWI418089B (en) 2007-07-25 2008-07-25 Rfid tag and method for manufacturing rfid tag

Country Status (1)

Country Link
TW (1) TWI418089B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453935B1 (en) 2012-01-03 2013-06-04 Southern Taiwan University Broadband RFID label (TAG) antenna for metal
US8556185B2 (en) 2010-05-28 2013-10-15 China Steel Corporation RFID tag having capacitive load
TWI479735B (en) * 2011-11-16 2015-04-01

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758405B2 (en) * 2001-12-19 2004-07-06 3M Innovative Properties Company Article with retroreflective and radio frequency-responsive features
JP2005198168A (en) * 2004-01-09 2005-07-21 Toppan Forms Co Ltd Non-contact information recording medium and label using same
JP4653440B2 (en) * 2004-08-13 2011-03-16 富士通株式会社 RFID tag and manufacturing method thereof
DE602004024602D1 (en) * 2004-12-14 2010-01-21 Fujitsu Ltd ANTENNA AND NON-CONTACT BRAND
JP2007150868A (en) * 2005-11-29 2007-06-14 Renesas Technology Corp Electronic equipment and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556185B2 (en) 2010-05-28 2013-10-15 China Steel Corporation RFID tag having capacitive load
US8561912B2 (en) 2010-05-28 2013-10-22 China Steel Corporation RFID tag having capacitive load
TWI421775B (en) * 2010-05-28 2014-01-01 China Steel Corp Wireless identification tag with capacitive load
TWI479735B (en) * 2011-11-16 2015-04-01
US8453935B1 (en) 2012-01-03 2013-06-04 Southern Taiwan University Broadband RFID label (TAG) antenna for metal

Also Published As

Publication number Publication date
TWI418089B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
KR101070980B1 (en) Wireless tag and method for manufacturing the same
KR101012528B1 (en) Rfid tag
JP6465109B2 (en) Multi-antenna and radio apparatus including the same
KR100960210B1 (en) Rfid tag and manufacturing method thereof
US9905919B2 (en) Antenna, antenna device, and wireless device
EP1895620B1 (en) Rfid tag antenna and rfid tag
WO2010049984A1 (en) Wireless communication apparatus
KR20080098412A (en) Rfid tag, method for manufacturing rfid tag and method for arranging rfid tag
WO2007029296A1 (en) Rf tag and method for manufacturing rf tag
US8740093B2 (en) Radio IC device and radio communication terminal
JP5094630B2 (en) IC tag
US7583235B2 (en) Folded dipole loop antenna having matching circuit integrally formed therein
TW200913377A (en) RFID tag and method for manufacturing RFID tag
US20090295650A1 (en) Antenna device and wireless communication device
JP5310552B2 (en) Wireless tag and manufacturing method thereof
WO2014103025A1 (en) Wireless ic tag apparatus
JP5328803B2 (en) Wireless communication device
JP4479765B2 (en) RFID tag
WO2019225526A1 (en) Rf tag antenna, rf tag and rf tag with conductor
JP5803289B2 (en) Non-contact IC label and information identification system
JP5708193B2 (en) Antenna device
Andrenko et al. Planar CP RFID R/W antennas based on EM Coupling