WO2019225526A1 - Rf tag antenna, rf tag and rf tag with conductor - Google Patents

Rf tag antenna, rf tag and rf tag with conductor Download PDF

Info

Publication number
WO2019225526A1
WO2019225526A1 PCT/JP2019/019826 JP2019019826W WO2019225526A1 WO 2019225526 A1 WO2019225526 A1 WO 2019225526A1 JP 2019019826 W JP2019019826 W JP 2019019826W WO 2019225526 A1 WO2019225526 A1 WO 2019225526A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
tag
insulating base
ground
unit
Prior art date
Application number
PCT/JP2019/019826
Other languages
French (fr)
Japanese (ja)
Inventor
詩朗 杉村
Original Assignee
株式会社フェニックスソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フェニックスソリューション filed Critical 株式会社フェニックスソリューション
Priority to JP2020521215A priority Critical patent/JP6998086B2/en
Publication of WO2019225526A1 publication Critical patent/WO2019225526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to an RF tag antenna, an RF tag, and an RF tag with a conductor.
  • RFID Radio Frequency Identification
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-253700 discloses a wireless communication device that facilitates attachment of a radiation conductor and a ground conductor and improves connection reliability between conductors, a manufacturing method thereof, and wireless communication A metal article with a device is disclosed.
  • a wireless communication device described in Patent Document 1 includes a dielectric block having a first main surface and a second main surface facing the first main surface, and a radiation conductor provided on the first main surface of the dielectric block; , A ground conductor provided on the second main surface of the dielectric block, a wireless IC element for processing a high-frequency signal, a feed conductor for connecting the radiation conductor and the ground conductor, and a short-circuit conductor for connecting the radiation conductor and the ground conductor
  • a radio communication device including an inverted F-type antenna including at least a radiation conductor, a ground conductor, a feeding conductor, and a short-circuit conductor, each of which is configured as a flat metal conductor.
  • the radiation conductor portion is disposed on the first main surface of the dielectric block, the ground conductor portion is disposed on the second main surface of the dielectric block, and the feeding terminal portion is mainly on the side surface of the dielectric block. It is location, in which short-circuiting conductor portions are mainly disposed on a side surface of the dielectric block.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-124696 discloses a communication system that requires an ultra-wideband and small antenna device such as a Broadband-PAN (Personal Area Network) using UWB (Ultra Wide Band) technology. Discloses a low-profile wideband antenna apparatus that can also be used in Japan.
  • UWB Ultra Wide Band
  • the wideband antenna device described in Patent Document 2 is a wideband antenna device including a conductive ground plane and a radiating conductor plate that are disposed so that at least a part of each is opposed to each other, and the conductive ground plane and the radiating conductor.
  • a magnetic material having a relative magnetic permeability of greater than 1 and approximately 8 or less is interposed between the plates.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-110585 discloses a thin antenna for reading an RFID tag that is used for radio waves in the UHF band and that can perform good communication even when attached to a metal member. Yes.
  • a thin antenna tire described in Patent Document 3 includes a magnetic sheet, an antenna portion disposed on one surface of the magnetic sheet, and a conductor ground plane disposed on the other surface of the magnetic sheet, and the magnetic sheet When viewed in the thickness direction, the antenna section and the conductor ground plane are arranged so that at least a part thereof overlaps, and the thickness of the magnetic sheet is 200 ⁇ m or more and 600 ⁇ m or less.
  • Prior Document 1 discloses an inverted-F type RF tag antenna. However, there is a problem that long-distance reading cannot be performed even if a dielectric is used.
  • Patent Documents 2 and 3 since the structure is complicated such as feeding using a coaxial line or a strip line, there is a problem that the manufacturing cost increases, and furthermore, it is difficult to adjust the resonance frequency according to the application. There was a problem.
  • the resonance frequency shifts and hinders communication, or there is a problem that communication is not possible when radio waves are irradiated on the back surface of the RF tag installation surface.
  • Patent Document 1 discloses a metal article with a wireless communication device, but there is a problem that the direction of directivity is limited and reading cannot be performed easily.
  • the main object of the present invention is to provide an RF tag antenna, an RF tag, and an RF tag with a conductor, which are omnidirectional, so-called omnidirectional and have a long communication distance.
  • An RF tag antenna is an RF tag antenna to which an IC chip is attached, and has a thickness between a first surface, a second surface formed opposite to the first surface, a first surface, and a second surface.
  • An insulating base material having a flat plate-like antenna portion provided on the first surface, a flat plate-like ground portion provided on the second surface and disposed opposite to the antenna portion, and the antenna portion and the ground portion.
  • the first and second antenna portions are included, and the ground portion includes a first ground portion and a second ground portion that are long in the orthogonal direction.
  • the antenna portion is formed in a so-called L shape by the first antenna portion and the second antenna portion.
  • the ground portion is formed in a so-called L shape by the first ground portion and the second ground portion.
  • An L-shaped antenna portion is formed on the first surface of the insulating base, and an L-shaped ground portion is formed on the second surface of the insulating base at a position facing the antenna portion. Therefore, since the planes of polarization of the electromagnetic waves radiated from the first antenna unit and the second antenna unit are orthogonal to each other, the omnidirectional omnidirectionality between the RF tag and the reader is obtained by using the RF tag antenna of the present invention. Communication becomes possible. In other words, the antenna characteristics can be improved by extending the antenna in two directions. Therefore, the RF tag including the RF tag antenna can stably communicate with the reading device regardless of the orientation of the antenna.
  • An RF tag antenna is the RF tag antenna according to one aspect, wherein the inductor pattern portion includes at least a short-circuit portion and a power feeding portion, and the capacitor portion includes at least an antenna portion, a ground portion, and an insulating base.
  • a resonance circuit that resonates in the frequency band of the radio wave transmitted from the reading device is configured.
  • a resonant circuit is formed by the inductor pattern portion, the capacitor portion, and the electrostatic capacity inside the IC chip.
  • the inductor pattern portion is formed by cutting out a flat plate, it is possible to reduce the thickness.
  • An RF tag antenna according to a third aspect of the present invention is the RF tag antenna according to any one of the second aspect of the present invention, wherein the insulating base has an L-shape having a first insulating base and a second insulating base.
  • the first and second antenna parts of the antenna part formed in an L-shape are provided on the first surfaces of the first insulating base and the second insulating base, respectively.
  • the first ground portion and the second ground portion of the L-shaped ground portion are respectively provided on the second surface of the second insulating base material, and the short-circuit portion is provided on the side surface of the corner portion of the insulating base material. May be.
  • each member is formed in an L shape and has a wide range of radiation directivity. It can be.
  • a capacitor is constituted by the insulating base, the antenna portion, and the ground portion. Furthermore, the antenna portion and the ground portion are connected via a short-circuit portion provided on the side surface of the corner portion of the insulating base material. With such a configuration, the RF tag antenna can be easily manufactured and can be thinned.
  • An RF tag antenna according to a fourth aspect of the present invention is the RF tag antenna according to any one of the third aspect to the third aspect of the present invention, wherein the power feeding unit includes a first power feeding unit and a second power feeding unit connected to the short circuit unit.
  • the first power supply unit and the second power supply unit may be configured to connect the IC chip between the first power supply unit and the second power supply unit.
  • the short-circuit portion and the power feeding portion can be formed of continuous conductive members, the short-circuit portion and the power feeding portion can be easily formed, and the thickness of the tag can be reduced.
  • a resonance circuit is formed by the inductor pattern unit, the capacitance inside the IC chip, and the insulating base material, and is omnidirectional. RF tags can be formed.
  • An RF tag antenna according to a fifth aspect of the present invention is the RF tag antenna according to any one of the fourth aspect of the present invention, wherein a notch portion is formed between the antenna portion and the short-circuit portion, and a power feeding portion is provided in the notch portion. It may be formed.
  • a thin and compact RF tag can be constructed.
  • the inductor pattern portion is formed by cutting out a flat plate, it is possible to reduce the thickness.
  • An RF tag antenna according to a sixth aspect of the present invention is the RF tag antenna according to any one of the fifth aspect, wherein a slit is formed between the first antenna portion and the second antenna portion, and the slit is notched. It may communicate with the part.
  • the slit formed between the first antenna portion and the second antenna portion can cause the slit-side end portions of the first antenna portion and the second antenna portion to act as an inductance component.
  • the impedance of the antenna portion and the IC chip can be matched.
  • An RF tag antenna according to a seventh aspect of the present invention is the RF tag antenna according to any one of the sixth aspect to the sixth aspect of the present invention, wherein the set internal area is between the short-circuit portion and the first and second feeding portions. A space region having a gap may be formed.
  • the impedance of the inductor pattern portion can be made constant by setting the internal area of the inductor pattern portion constituted by at least the short-circuit portion, the first power feeding portion, and the second power feeding portion.
  • An RF tag antenna according to an eighth aspect of the present invention is the RF tag antenna according to any one of the seventh aspect to the seventh aspect of the present invention, wherein the antenna portion and the ground portion are formed in a flat plate-like shape formed in an X shape in plan view. It is configured by bending the member, providing one conductive element body adjacent to the conductive member on the first surface of the insulating base material, and providing the other conductive element body adjacent to the conductive member on the second surface of the insulating base material. May be.
  • the antenna portion and the ground portion can be formed by simply bending and sticking the X-shaped flat conductive member to the insulating base material, the manufacturing is extremely simple and the manufacturing cost is low.
  • An RF tag antenna according to a ninth aspect is the RF tag antenna according to any one of the eighth aspect to the eighth aspect, wherein the first antenna portion and the second antenna portion are formed from a rectangular plate-like conductive member, The first ground part and the second ground part may be formed of a rectangular plate-like conductive member.
  • the antenna part and the ground part can be manufactured very easily, and a small RF tag having stable omnidirectionality can be manufactured.
  • An RF tag antenna according to a tenth aspect of the present invention is the RF tag antenna according to any one of the ninth aspect to the ninth aspect, wherein the insulating base material is made of a dielectric.
  • the insulating base material is made of a dielectric, it is possible to realize a small RF tag having omnidirectionality of several millimeters in all directions.
  • An RF tag antenna according to an eleventh aspect of the present invention is the RF tag antenna according to any one of the ninth aspect to the ninth aspect, wherein the insulating base material is made of polystyrene foam.
  • the insulating substrate is made of expanded polystyrene, an RF tag having a size of several centimeters can be realized.
  • similar to air can be used by using a polystyrene foam.
  • the opening part of an antenna part and a ground part can be taken large.
  • An RF tag antenna according to a twelfth aspect of the present invention is the RF tag antenna according to any one of the eleventh aspects of the present invention, wherein the insulating base material has a dielectric constant on the first surface side and a dielectric constant on the second surface side. And may be different from each other.
  • the dielectric constant on the first surface side and the dielectric constant on the second surface side are different from each other, it is effective for obtaining the size or opening area of the plate-like conductive member on each surface side.
  • An RF tag antenna according to a thirteenth invention is the RF tag antenna according to any one of the twelfth inventions from one aspect, wherein the insulating base is reduced in diameter from the first surface side toward the second surface side.
  • One or a plurality of holes having different diameters or different diameters may be formed.
  • the insulating base material is formed with one or a plurality of holes having the same diameter or different diameters from the first surface side toward the second surface side. This is effective for obtaining the size or opening area of the conductive member.
  • adjustment of the dielectric constant can be handled by processing the insulating base material.
  • An RF tag antenna according to a fourteenth aspect of the present invention is the RF tag antenna according to any one of the thirteenth aspect of the present invention, wherein the dielectric constant on the first surface side is greater than the dielectric constant on the second surface side. May be formed to be smaller.
  • the dielectric constant on the second surface side is larger than the dielectric constant on the first surface side. Even if the opening area is not changed, it is relatively large with respect to the ground side, so that the communication distance with the reader can be increased without increasing the size of the RF tag antenna.
  • An RF tag antenna according to a fifteenth aspect of the present invention is the RF tag antenna according to any one of the fourteenth aspect of the present invention, wherein the insulating base material forms a polystyrene foam layer on the first surface side, and the second surface side. Alternatively, a layer having a high dielectric constant may be formed.
  • the dielectric constant on the second surface side is larger than the dielectric constant on the first surface side. Even if the opening area is not changed, it is relatively large with respect to the ground side, so that the communication distance with the reader can be increased without increasing the size of the RF tag antenna.
  • An RF tag includes the RF tag antenna according to any one of claims 1 to 15 and an IC chip provided on the RF tag antenna.
  • a resonance circuit is formed by the inductor pattern portion, the capacitance inside the IC chip and the insulating base material, and the communication distance can be extended, and the IC chip is placed on the metal member. You can also. Further, an omnidirectional omni-directional RF tag can be formed.
  • an RF tag includes an RF tag antenna according to any one of claims 1 to 15, an IC chip provided on the RF tag antenna, and a ground portion of the RF tag antenna, directly or electrically. And a conductor connected through a capacitor.
  • a resonant circuit is formed by the inductor pattern portion, the capacitance inside the IC chip, and the insulating base material. Furthermore, a conductor can be used as an antenna. Further, an omnidirectional omni-directional RF tag can be formed.
  • FIG. 3 is a detailed explanatory view showing a main part of the RF tag antenna of FIG.
  • FIG. 1 is a schematic perspective view showing an example of the RF tag 100 according to the present embodiment
  • FIG. 2 is a schematic development view showing an example of the RF tag antenna 110 of the RF tag 100.
  • the RF tag 100 includes an RF tag antenna 110, an insulating base 140, and an IC chip 500.
  • the RF tag antenna 110 includes an antenna unit 120, a ground unit 130, an inductor pattern unit 150, a short circuit unit 160, and a power feeding unit 170.
  • the antenna unit 120 includes a first antenna unit 121 and a second antenna unit 122, and the ground unit 130 includes a first ground unit 131 and a second ground unit 132.
  • the first antenna part 121 and the second antenna part 122 are made of a rectangular planar conductive member.
  • the first antenna unit 121 has a long side and a short side.
  • the long side of the second antenna unit 122 is provided in a direction orthogonal to the long side of the first antenna unit 121. That is, the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are in a state of 90 degrees (right angle, orthogonal).
  • the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are orthogonal or L-shaped mainly refers to a case of 90 degrees.
  • the present invention is not limited to the state of 90 degrees, and includes the case where the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are provided in a range of 60 degrees to 120 degrees. That is, even when the first antenna unit 121 and the second antenna unit 122 are L-shaped or close to L-shaped, they are included in the L-shaped or orthogonal shape in this specification.
  • the RF tag 100 shown in FIG. 1 may be entirely or partially wrapped by a sheet member 600 (see FIG. 4). Hereinafter, each part will be described.
  • the insulating base material 140 is formed in an L shape and has a first insulating base material 141 and a second insulating base material 142.
  • the first antenna portion 121 and the second antenna portion 122 of the antenna portion 120 that are also formed in an L shape are provided on the first surfaces of the first insulating base material 141 and the second insulating base material 142, respectively.
  • a first ground portion 131 and a second ground portion 132 of the ground portion 130 that are also formed in an L shape are provided on the second surfaces of the base material 141 and the second insulating base material 142, respectively.
  • angular part of the insulating base material 140 is notched, and the short circuit part 160 is provided in the side surface of this corner
  • the insulating base material 140 is made of polystyrene foam. Originally, it is most preferable to use air instead of the insulating base material, but maintenance of a predetermined distance between the first antenna portion 121 and the first ground portion 131, the second antenna portion 122 and the second ground portion 132 and prevention of contact are prevented. Therefore, it is preferable to use a polystyrene foam having 90% or more air.
  • the spatial distance between the first antenna part 121 and the first ground part 131, the second antenna part 122 and the second ground part 132 can be kept constant by the insulating base material 140.
  • the opening areas of the first antenna unit 121, the first ground unit 131, the second antenna unit 122, and the second ground unit 132 are reduced, and the communication distance is reduced.
  • the RF tag 100 can be reduced in size.
  • the opening area of the antenna unit 120 and the ground unit 130 can be maintained large, and the communication distance can be increased. Can extend from several meters to tens of meters.
  • the thickness of the insulating base material 140 made of expanded polystyrene is desirably in the range of 0.5 mm or more and 3 mm or less.
  • the insulating base material 140 is made of foamed polystyrene, but is not limited to this, and may be an insulating material such as polyethylene, polyimide, thin foam (bola), or the like. Other foams or materials having the following may be used.
  • the insulating base 140 is composed of one member. However, the present invention is not limited to this, and the insulating base 140 according to the present invention is formed using a plurality of insulating bases. May be.
  • the planar shape of the first surface and the second surface of the insulating base 140 is substantially the same as that of the antenna portion 120 and the ground portion 130, but is not limited to this, and the insulating base is not limited thereto.
  • the planar shape of 140 may be larger than the sizes of the antenna unit 120 and the ground unit 130.
  • a flat insulating substrate 140 can be used. In that case, there is a region where the L-shaped antenna unit 120 is provided on the first surface of the insulating base 140 and the antenna unit 120 is not provided on the same first surface. Similarly, an L-shaped ground portion 130 is provided on the second surface of the insulating base material 140, and there is a region where the ground portion 130 is not provided on the same second surface.
  • the shape of the insulating substrate 140 may be a cubic shape.
  • the antenna part 120 which is continuous over the three surfaces of the first corner of the cubic-shaped insulating base is provided, and the three corners of the second corner facing or adjacent to the first corner.
  • a continuous ground portion 130 may be provided.
  • the RF tag antenna 110 uses a polystyrene foam as the insulating base material 140 of the RF tag antenna 110. Therefore, an opening area of a certain size can be ensured, and the plate shape The sensitivity of the antenna can be improved.
  • the case where the polystyrene foam is used as the insulating base material 140 has been described, but a dielectric may be used.
  • the dielectric may be resin, ceramic, paper, or the like.
  • the insulating substrate 140 may be in a foamed shape, may have one or more cavities, and may be made of a composite material in which different materials are mixed or laminated.
  • FIG. 3 is a detailed explanatory view showing a main part of the RF tag antenna 110 shown in FIG.
  • the antenna unit 120 includes a first antenna unit 121 and a second antenna unit 122 that are long in the orthogonal direction. That is, the second antenna unit 122 extends in a direction orthogonal to the extending direction of the first antenna unit 121.
  • the first antenna unit 121 is formed of a rectangular plate-shaped conductive member, and the first antenna unit 121 includes a side 921, a side 922, a side 923, a side 924, a side 925, a side 926, It consists of a region surrounded by 927.
  • the second antenna portion 122 is formed of a rectangular plate-shaped conductive member, and the second antenna portion 122 is surrounded by a side 931, a side 932, a side 933, a side 934, a side 935, a side 936, and a side 937. Consists of regions.
  • the length of the extending direction of the 1st antenna part 121 and the 2nd antenna part 122 can be made the same. That is, the size of the 1st antenna part 121 and the 2nd antenna part 122 can be made the same.
  • the sum of the lengths of the side 921, the side 922, the side 923, the side 924, the side 925, the side 926, and the side 927 is defined as a value T1.
  • the total of the lengths of the side 931, the side 932, the side 933, the side 934, the side 935, the side 936, and the side 937 is defined as a value T2.
  • the values T1 and T2 correspond to any one of ⁇ / 4, ⁇ / 2, 3 ⁇ / 4, and 5 ⁇ / 8 when the wavelength ⁇ (lambda) of the radio wave is used. Designed to.
  • the values T1 and T2 are designed to be half the wavelength ⁇ of the frequency to be used.
  • the wavelength ⁇ can be calculated by the propagation speed (light speed (c)) / frequency (F).
  • the propagation speed (light speed (c)) is 300 Mm / s
  • the length of each side is adjusted so that the values T1 and T2 are 163 mm. Since the values T1 and T2 are approximate values, the numerical values of the values T1 and T2 themselves may have an error of around ⁇ 5%. This is because the reading distance of the RF tag 100 is shortened, but can be adapted to the specification by adjustment.
  • first antenna portion 121 and second antenna portion 122 are made of an aluminum metal thin film.
  • the thin film in this embodiment is formed with a thickness of 3 ⁇ m or more and 35 ⁇ m or less.
  • the first antenna unit 121 and the second antenna unit 122 are formed by a technique such as etching or pattern printing.
  • the first antenna unit 121 and the second antenna unit 122 may be provided directly on the first surface of the insulating base 140, or the first antenna unit 121 and the second antenna unit formed of a conductive material on a resin film. 122 may be provided on the first surface of the insulating base material 140 by sticking it to the insulating base material 140 using an adhesive or the like.
  • the ground portion 130 includes a first ground portion 131 and a second ground portion 132 that are long in the orthogonal direction. That is, the second ground part 132 extends in a direction orthogonal to the extending direction of the first ground part 131.
  • the first ground portion 131 and the second ground portion 132 are made of an aluminum metal thin film.
  • the thin film in this embodiment is formed with a thickness of 3 ⁇ m or more and 35 ⁇ m or less.
  • the first ground part 131 and the second ground part 132 are formed of a rectangular plate-like conductive member.
  • the lengths of the first ground part 131 and the second ground part 132 in the extending direction can be the same. That is, the sizes of the first ground part 131 and the second ground part 132 can be the same.
  • the first ground part 131 and the second ground part 132 are formed by a technique such as etching or pattern printing.
  • the first ground part 131 and the second ground part 132 may be provided directly on the second surface of the insulating base 140, or the first ground part 131 and the second ground part formed of a conductive material on a resin film.
  • 132 may be provided on the second surface of the insulating base 140 by sticking the insulating base 140 to the insulating base 140 using an adhesive or the like.
  • the antenna unit 120 and the ground unit 130 are formed by bending a flat plate-shaped conductive member formed in an X shape in a plan view into a U shape along two mountain fold lines shown in FIG. 3.
  • One conductive element adjacent to the conductive member can be provided on the first surface of the insulating base 140, and the other conductive element adjacent to the conductive member can be provided on the second surface of the insulating base 140.
  • an L-shaped antenna portion 120 is formed by one pair of conductive element bodies
  • an L-shaped ground portion 130 is formed by the other pair of conductive element bodies.
  • One conductive element body and the other conductive element body are formed substantially symmetrically.
  • a region between the two mountain fold lines shown in FIG. 3 is arranged on the side surface of the corner of the insulating base 140.
  • a short-circuit portion 160 that connects the antenna portion 120 and the ground portion 130 is formed on the side surface of the insulating base 140.
  • a power feeding portion 170 and an inductor pattern portion 150 described below are formed in an intersecting region where one conductive element body and the other conductive element body intersect.
  • the power feeding unit 170 is provided on the first surface of the insulating base 140 and configured to feed power to the IC chip 500. That is, a notch portion 180 is formed between the antenna unit 120 and the short-circuit portion 160, and a power feeding portion 170 is formed in the notch portion 180.
  • the power feeding unit 170 includes a first power feeding unit 171 and a second power feeding unit 172 connected to the short circuit unit 160.
  • the first power feeding unit 171 and the second power feeding unit 172 are formed in an L shape with a relatively thin line pattern, and the leading ends of the first power feeding unit 171 and the second power feeding unit 172 face each other.
  • a gap is formed between the tip portions of the second power feeding unit 172.
  • the IC chip 500 is disposed in the gap, and the IC chip 500 is electrically connected to the first power feeding unit 171 and the second power feeding unit 172.
  • a space region having a set internal area S is formed in a region surrounded by the short-circuit portion 160, the first power feeding portion 171, and the second power feeding portion 172.
  • a slit 124 is formed between the first antenna part 121 and the second antenna part 122, and the slit 124 communicates with the notch part 180 (and the space region S).
  • the inductor pattern unit 150 includes at least a short-circuit unit 160 and a power feeding unit 170. That is, the power feeding unit 170 also serves as a part of the inductor pattern unit 150. With this configuration, the configuration of the inductor pattern unit 150 can be simplified.
  • the capacitor C includes at least the antenna unit 120, the ground unit 130, and the insulating base 140.
  • the inductor pattern unit 150 and the capacitor C constitute a resonance circuit that resonates in the frequency band of a radio wave transmitted from a reading device (not shown). Details of the inductor pattern section 150 are as follows.
  • the inductor pattern portion 150 includes edges of the short-circuit portion 160 and the power feeding portion 170, and includes a side 151, a side 152, a side 153, a side 154, a side 155, a side 156, a side 157, a side 158, 159, side 160, and side 161.
  • the inductor pattern portion 150 has a shape in which a space between the side 153 and the side 159 that are part of a ring-shaped circuit is cut out. That is, specifically, it consists of a C shape of an alphabetic character.
  • the inductor pattern unit 150 has a region (internal area S) surrounded by the sides 154, 155, 156, 157, and 158, as shown in FIG.
  • the inductor pattern part 150 demonstrated the case where it cuts between the edge
  • inductor pattern portion 150 is made of an aluminum metal thin film.
  • the thin film in this embodiment is formed with a thickness of 3 ⁇ m or more and 35 ⁇ m or less.
  • the inductor pattern portion 150 is formed by a technique such as etching or pattern printing. Moreover, it can form also by sticking the resin film in which the electroconductive pattern was formed to the insulating base material 140 with an adhesive agent.
  • the impedance of the inductor pattern portion 150 can be made constant by the internal area S of the inductor pattern portion 150. Thereby, impedance matching between the antenna unit 120 and the processing circuit of the IC chip 500 can be achieved.
  • the IC chip 500 is disposed on the upper surface side of the RF tag antenna 110 (on the same plane as the first antenna unit 121 and the second antenna unit 122). The IC chip 500 operates based on radio waves received by the antenna unit 120 of the RF tag antenna 110.
  • the IC chip 500 first rectifies a part of the carrier wave transmitted from the reading device, and generates a power supply voltage necessary for the IC chip 500 itself to operate. Then, the IC chip 500 operates a non-volatile memory in which the control logic circuit in the IC chip 500, the unique information of the product, and the like are stored, according to the generated power supply voltage. Further, the IC chip 500 operates a communication circuit or the like for transmitting / receiving data to / from the reading device.
  • FIG. 4 is a schematic partial cross-sectional view showing a state in which the sheet member 600 is provided on the RF tag 100 of FIGS. 1 to 3. As shown in FIG. 4, the RF tag 100 may be surrounded by a sheet member 600.
  • the sheet member 600 is mainly made of an insulating resin sheet such as polyethylene terephthalate. In addition to polyethylene terephthalate, one or a plurality of insulating materials or resins such as polyimide and polyvinyl chloride may be used as the sheet member 600.
  • the sheet member 600 is for protecting the antenna unit 120 and the ground unit 130 provided on the first surface and the second surface of the insulating base 140 from the outside. Therefore, the thickness of the sheet member 600 is preferably several micrometers or more and several hundred micrometers or less, and more preferably about several tens of micrometers. In the present embodiment, the sheet member 600 is provided. However, the present invention is not limited to this, and the sheet member 600 may not be provided, and the antenna unit 120 and the ground unit 130 are protected using another insulating coating process. You may make it do. Further, the sheet member 600 may be provided separately in the first antenna part 121 and the second antenna part 122.
  • FIG. 5 is a schematic cross-sectional view showing an example in which the RF tag 100 shown in FIG. 4 is attached to the conductive member 900.
  • the RF tag 100 is attached to the conductive member 900 with a conductive adhesive or an adhesive layer 450 or the like.
  • the conductive member 900 is made of a conductive metal plate. Specifically, it has an arbitrary metal part such as a metal box, a box including a metal plate, a case, a box including a metal member, or a case.
  • the conductive adhesive or the adhesive layer 450 is used.
  • the conductive adhesive or the adhesive layer 450 is not limited thereto, and any conductive material such as double-sided tape, solder, one-component or two-component epoxy resin, or the like is used.
  • An adhesive may be used.
  • the RF tag 100 and the conductive member 900 are indirectly electrically connected, the RF tag 100 may be attached to the conductive member 900 using an insulating adhesive or an adhesive layer.
  • FIG. 6 is a schematic diagram illustrating an example of an equivalent circuit of the RF tag 100 and the conductive member 900.
  • the inductor pattern L of the inductor pattern unit 150 and the capacitor Cb composed of the internal capacitance of the IC chip 500 are connected in parallel to each other.
  • the inductor pattern L and the IC chip 500 constitute a resonance circuit that resonates in the frequency band of the radio wave transmitted from the reading device.
  • the resonance frequency f [Hz] of this resonance circuit is given by equation (1).
  • the value of the resonance frequency f is set so as to be included in the frequency band of the radio wave transmitted from the reading device.
  • L a inductance of the inductor pattern L
  • C b equivalent capacitance inside the IC chip 500.
  • some IC chips 500 include capacitors therein, and the IC chip 500 has a stray capacitance. Therefore, when setting the resonance frequency f of the resonant circuit, which utilizes the equivalent capacitance C b of the IC chip 500. That is, the resonant circuit has the inductor pattern L inductance, and the interior of the equivalent capacitance C b and considering the set resonance frequency f of the IC chip 500.
  • Cb for example, a capacitance value published as one of specifications of an IC chip to be used can be used.
  • the resonance frequency f of the resonance circuit can be accurately set in the frequency band of radio waves. As a result, the reading performance of the RF tag 100 can be further improved. Further, the power supply voltage generated by the IC chip 500 can be further increased.
  • the conductive member 900 can be capacitively coupled to the RF tag 100 via the insulating base material 140. That is, the insulating base material 140 has a role of a capacitor. As a result, since the conductive member 900 can be used in the same manner as the antenna unit 120, the radio wave of the reading device can be received from either the front surface side or the back surface side of the conductive member 900.
  • conductive member 900 may be made of a metal plate.
  • the term “conductor” is typically exemplified by electrical conductivity and metal, as in a general dictionary sense. However, the “conductor” is not limited to metal, and may be, for example, a human body, vegetation, water, ground, or the like.
  • FIGS. 7 and 8 are schematic diagrams showing the results of the reading experiment of the RF tag 100 described with reference to FIGS.
  • a plurality of electromagnetic fields including at least orthogonal directions can be formed around the RF tag 100.
  • the RF tag 100 is attached to the spherical conductor as shown in FIG. 7B has been described in FIG. 5, a large plurality of electromagnetic fields are formed. be able to. That is, the directivity in all directions can be enhanced. It can be seen from FIG. 7 that the radiation directivity is nearly omnidirectional in all directions. Therefore, stable communication with the reading device is possible regardless of the orientation of the tag. Therefore, even when a plurality of products with tags are packed in a random orientation, communication with the tags of each product is possible.
  • FIG. 8 shows an XY plane, a YZ plane, and a ZX when the first antenna portion and the second antenna portion of the RF tag according to the embodiment of the present invention for a vertical wave and a horizontal wave of 921 MHz are arranged on the X axis and the Y axis.
  • the radiation directivity in the plane is shown. From FIG. 8, even in the vertical wave, radiation could be confirmed in all of the YZ plane, ZX plane, and XY plane. Furthermore, it was possible to confirm radiation on the XY plane even with horizontal waves. From the above, it was found that the RF tag 100 according to the present embodiment can be read from all directions.
  • FIG. 9 is a schematic view showing another example of the insulating base material 140.
  • the insulating base material 140 may be formed of a laminate of a polystyrene foam material 145 and a resin material 146.
  • the size lengths of both the polystyrene foam material 145 and the resin material 146 are designed to be the same.
  • the wavelength ⁇ 1 is calculated assuming that the relative dielectric constant ⁇ a of the expanded polystyrene material 145 is 1.0 and the frequency is 900 MHz.
  • the resin material 146 may be ceramic, paper, or the like.
  • the RF tag 100 can be the same as the state in which the RF tag 100 is attached to the conductor 900, and the RF tag 100 having a sufficient communication distance corresponding to metal or nonmetal can be realized.
  • FIG. 10 is a schematic cross-sectional view showing still another example of the insulating base material 140.
  • the insulating base 140 has a front surface 141 and a back surface 142.
  • one or a plurality of holes 143 whose diameter decreases from the front surface 141 toward the back surface 142 are provided.
  • the hole 143 is not limited to the one continuously reducing in diameter, but includes one having a diameter reduced stepwise.
  • the hole 143 has a stepped shape or a conical shape.
  • the hole 143 is not limited thereto, and is a cylinder, a rectangular tube, or an elliptical tube that does not penetrate from the front surface 141 to the back surface 142.
  • it may be a conical cylinder, a pyramid cylinder, or an elliptical cone cylinder that does not penetrate from the front surface 141 to the back surface 142 or penetrates.
  • the shape may change from the front surface 141 toward the back surface 142.
  • the front surface 141 side may be a star-shaped hole, and the cross section of the hole may be circular toward the back surface 142 side.
  • the diameter of the hole 143 has demonstrated about the same case, it is not limited to this, It may be the same and may differ.
  • the RF tag 100 that has a sufficient non-metallic communication distance.
  • the size of the plate-like conductive member on each side can be reduced, or the opening area can be made larger than the actual product.
  • adjustment of the dielectric constant can be handled by processing the insulating base material. That is, even if the size of the plate-like conductive member on each side is reduced, the performance is apparently the same as the state where the plate-like conductive member is enlarged, and the product can be downsized. Further, even if the opening area is reduced, the performance is apparently the same as when the opening area is increased, and the product can be reduced in size.
  • the RF tag 100 and the conductive member 900 can use the conductive member 900 as the antenna unit 120 and have a large opening area, the sensitivity of the RF tag 100 can be improved. .
  • the conductive member 900 can be used as the antenna unit 120, reading from the back surface of the conductive member 900 on which the RF tag 100 is provided is possible.
  • the IC chip 500 corresponds to an “IC chip”
  • the RF tag antenna 110 corresponds to an “RF tag antenna”
  • the inductor pattern portion 150 corresponds to an “inductor pattern portion”
  • the notch portion 180 corresponds to “
  • the antenna portion 120, the first antenna portion 121, and the second antenna portion 122 correspond to the “antenna portion”
  • the ground portion 130, the first ground portion 131, and the second ground portion 132 correspond to the “ground portion”.
  • the surface 141 corresponds to the “first surface”
  • the back surface 142 corresponds to the “second surface”
  • the insulating base 140 corresponds to the “insulating base”
  • the values T and T2 are Corresponding to “peripheral length of antenna part”
  • resin material 146 corresponds to “dielectric”
  • foamed polystyrene material 145 foamed polystyrene corresponds to “foamed polystyrene”
  • hole 143 is “one or more”.
  • the RF tag 100 corresponds to the “RF tag”
  • the conductive member 900 corresponds to the “conductor”
  • the conductive member 900 and the RF tag 100 correspond to the “RF tag with conductor”. To do.

Abstract

[Problem] To provide an RF tag antenna, an RF tag, and an RF tag with a conductor that are omnidirectional and nondirectional, and have a long communication distance. [Solution] An RF tag antenna 100 to which an IC chip 500 is attached comprises: an insulating base material 140 having a first surface, a second surface formed opposite to the first surface, and a thickness between the first surface and the second surface; a flat plate-like antenna part 120 provided on the first surface; a flat plate-like ground part 130 provided on the second surface and disposed opposite to the antenna part 120, a short-circuit part 160 provided so as to electrically short-circuit between the antenna part 120 and the ground part 130; and a power supply part 170 provided on the first surface and configured to supply power to the IC chip 500. The antenna part 120 includes a first antenna part 121 and a second antenna part 122 that are disposed to extend in directions orthogonal to each other, and the ground part 130 includes a first ground part 131 and a second ground part 132 that are disposed to extend in directions orthogonal to each other.

Description

RFタグアンテナ、RFタグおよび導電体付きRFタグRF tag antenna, RF tag, and RF tag with conductor
 本発明は、RFタグアンテナ、RFタグおよび導電体付きRFタグに関する。 The present invention relates to an RF tag antenna, an RF tag, and an RF tag with a conductor.
 近年、製品や部品等の在庫管理、物流管理等を行う管理システムにおいて、RFID(Radio Frequency Identification)技術が利用されている。このRFID技術を用いたシステムでは、RFタグとリーダライタ(以下、読取装置という。)との間で無線通信が行われ、RFタグに記憶される識別情報等が読取装置により読み取られる。 In recent years, RFID (Radio Frequency Identification) technology has been used in management systems that perform inventory management, logistics management, and the like of products and parts. In a system using this RFID technology, wireless communication is performed between an RF tag and a reader / writer (hereinafter referred to as a reader), and identification information stored in the RF tag is read by the reader.
 例えば、特許文献1(特開2012-253700号公報)には、放射導体やグランド導体の取付けを容易なものとし、導体間の接続信頼性の向上を図る無線通信デバイス、その製造方法及び無線通信デバイス付き金属物品について開示されている。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-253700) discloses a wireless communication device that facilitates attachment of a radiation conductor and a ground conductor and improves connection reliability between conductors, a manufacturing method thereof, and wireless communication A metal article with a device is disclosed.
 特許文献1に記載の無線通信デバイスは、第1主面及び該第1主面と対向する第2主面を有する誘電体ブロックと、誘電体ブロックの第1主面に設けられた放射導体と、誘電体ブロックの第2主面に設けられたグランド導体と、高周波信号を処理する無線IC素子と放射導体及びグランド導体とを接続する給電導体と、放射導体とグランド導体とを接続する短絡導体とを含んで構成される逆F型アンテナを備えた無線通信デバイスであって、少なくとも放射導体、グランド導体、給電導体及び短絡導体は、それぞれ平板状をなす金属導体として構成されており、金属導体は、放射導体部分が誘電体ブロックの第1主面に配置され、グランド導体部分が誘電体ブロックの第2主面に配置され、給電端子部分が主として誘電体ブロックの側面に配置され、短絡導体部分が主として誘電体ブロックの側面に配置されているものである。 A wireless communication device described in Patent Document 1 includes a dielectric block having a first main surface and a second main surface facing the first main surface, and a radiation conductor provided on the first main surface of the dielectric block; , A ground conductor provided on the second main surface of the dielectric block, a wireless IC element for processing a high-frequency signal, a feed conductor for connecting the radiation conductor and the ground conductor, and a short-circuit conductor for connecting the radiation conductor and the ground conductor A radio communication device including an inverted F-type antenna including at least a radiation conductor, a ground conductor, a feeding conductor, and a short-circuit conductor, each of which is configured as a flat metal conductor. The radiation conductor portion is disposed on the first main surface of the dielectric block, the ground conductor portion is disposed on the second main surface of the dielectric block, and the feeding terminal portion is mainly on the side surface of the dielectric block. It is location, in which short-circuiting conductor portions are mainly disposed on a side surface of the dielectric block.
 特許文献2(特開2007-124696号公報)には、UWB(Ultra Wide Band)技術を利用したBroadband-PAN(Personal Area Network)などの、超広帯域かつ小型なアンテナ装置が必要とされる通信システムにおいても利用可能な低背位化した広帯域アンテナ装置について開示されている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-124696) discloses a communication system that requires an ultra-wideband and small antenna device such as a Broadband-PAN (Personal Area Network) using UWB (Ultra Wide Band) technology. Discloses a low-profile wideband antenna apparatus that can also be used in Japan.
 特許文献2に記載の広帯域アンテナ装置においては、少なくともその一部が互いに対向するように配設された導体地板と放射導体板とを備えた広帯域アンテナ装置であって、前記導体地板と前記放射導体板との間に、使用無線周波数における比透磁率が1より大きく概ね8以下となる磁性体を介在させるものである。 The wideband antenna device described in Patent Document 2 is a wideband antenna device including a conductive ground plane and a radiating conductor plate that are disposed so that at least a part of each is opposed to each other, and the conductive ground plane and the radiating conductor. A magnetic material having a relative magnetic permeability of greater than 1 and approximately 8 or less is interposed between the plates.
 特許文献3(特開2013-110685公報)には、UHF帯の電波で用いられ、金属部材に取り付けられていても通信を良好に行うことができるRFIDタグの読み取り用の薄型アンテナについて開示されている。 Patent Document 3 (Japanese Patent Laid-Open No. 2013-110585) discloses a thin antenna for reading an RFID tag that is used for radio waves in the UHF band and that can perform good communication even when attached to a metal member. Yes.
 特許文献3に記載の薄型アンテナタイヤは、磁性シートと、磁性シートの一方の面上に配置されたアンテナ部と、磁性シートの他方の面上に配置された導体地板と、を備え、磁性シートの厚さ方向に見たときに、アンテナ部および導体地板は少なくとも一部が重なるように配置され、磁性シートの厚さが200μm以上600μm以下である。 A thin antenna tire described in Patent Document 3 includes a magnetic sheet, an antenna portion disposed on one surface of the magnetic sheet, and a conductor ground plane disposed on the other surface of the magnetic sheet, and the magnetic sheet When viewed in the thickness direction, the antenna section and the conductor ground plane are arranged so that at least a part thereof overlaps, and the thickness of the magnetic sheet is 200 μm or more and 600 μm or less.
特開2012-253700号公報JP 2012-253700 A 特開2007-124696号公報JP 2007-124696 A 特開2013-110685号公報JP 2013-110585 A
 先行文献1には、逆F型のRFタグアンテナについて開示されている。しかしながら、誘電体を用いても長距離の読取を行うことができないという問題がある。 Prior Document 1 discloses an inverted-F type RF tag antenna. However, there is a problem that long-distance reading cannot be performed even if a dielectric is used.
 また、特許文献2および3においては、同軸線路またはストリップ線路を用いて給電するなど構造が複雑なため、製造コストが嵩むという問題、さらには、用途に応じて共振周波数を調節することが難しいという問題があった。
 また、RFタグを導体に近づけると共振周波数がずれてしまい通信に支障が出るという問題、またはRFタグ設置面の裏面に電波を照射した場合には通信できないという問題もあった。
Further, in Patent Documents 2 and 3, since the structure is complicated such as feeding using a coaxial line or a strip line, there is a problem that the manufacturing cost increases, and furthermore, it is difficult to adjust the resonance frequency according to the application. There was a problem.
In addition, when the RF tag is brought close to the conductor, there is a problem that the resonance frequency shifts and hinders communication, or there is a problem that communication is not possible when radio waves are irradiated on the back surface of the RF tag installation surface.
 さらに、特許文献1においては、無線通信デバイスを付した金属物品が開示されているが、指向性の方向が限定されており、容易に読取を行うことができないという問題があった。 Furthermore, Patent Document 1 discloses a metal article with a wireless communication device, but there is a problem that the direction of directivity is limited and reading cannot be performed easily.
 本発明の主な目的は、全方位、いわゆる無指向性および通信距離の長いRFタグアンテナ、RFタグおよび導電体付きRFタグを提供することである。 The main object of the present invention is to provide an RF tag antenna, an RF tag, and an RF tag with a conductor, which are omnidirectional, so-called omnidirectional and have a long communication distance.
(1)
 一局面に従うRFタグアンテナは、ICチップを取り付けるRFタグアンテナであって、第1面、第1面に対向して形成された第2面、第1面および第2面との間に厚みを有する絶縁基材と、第1面に設けられた平板状からなるアンテナ部と、第2面に設けられアンテナ部と対向して配置された平板状からなるグランド部と、アンテナ部およびグランド部の間を電気的に短絡するよう設けられた短絡部と、第1面に設けられICチップに給電するよう構成された給電部と、を含み、アンテナ部は、それぞれ直交する方向に長く配置された第1アンテナ部および第2アンテナ部を含み、グランド部は、それぞれ直交する方向に長く配置された第1グランド部および第2グランド部を含むものである。
(1)
An RF tag antenna according to one aspect is an RF tag antenna to which an IC chip is attached, and has a thickness between a first surface, a second surface formed opposite to the first surface, a first surface, and a second surface. An insulating base material having a flat plate-like antenna portion provided on the first surface, a flat plate-like ground portion provided on the second surface and disposed opposite to the antenna portion, and the antenna portion and the ground portion. Including a short-circuit portion provided to electrically short-circuit the gap and a power-feed portion provided on the first surface and configured to feed power to the IC chip, and the antenna portions are arranged long in the orthogonal directions, respectively. The first and second antenna portions are included, and the ground portion includes a first ground portion and a second ground portion that are long in the orthogonal direction.
 アンテナ部は第1アンテナ部および第2アンテナ部によって、いわゆるL字形状で形成される。また、グランド部は第1グランド部および第2グランド部によって、いわゆるL字形状で形成される。そして、L字形状のアンテナ部が絶縁基材の第1面に形成され、このアンテナ部に対向する位置において絶縁基材の第2面にL字形状のグランド部が形成される。
 よって、第1アンテナ部と第2アンテナ部とが放射する電磁波の偏波面が互いに直交するので、本発明のRFタグアンテナを利用することにより、RFタグと読取装置との全方位の無指向性の通信が可能となる。すなわち、アンテナを2方向に延在させることで、アンテナ特性を向上させることができる。従って、RFタグアンテナを備えたRFタグは、アンテナの向きによらず、読取装置との安定した通信が可能である。
The antenna portion is formed in a so-called L shape by the first antenna portion and the second antenna portion. The ground portion is formed in a so-called L shape by the first ground portion and the second ground portion. An L-shaped antenna portion is formed on the first surface of the insulating base, and an L-shaped ground portion is formed on the second surface of the insulating base at a position facing the antenna portion.
Therefore, since the planes of polarization of the electromagnetic waves radiated from the first antenna unit and the second antenna unit are orthogonal to each other, the omnidirectional omnidirectionality between the RF tag and the reader is obtained by using the RF tag antenna of the present invention. Communication becomes possible. In other words, the antenna characteristics can be improved by extending the antenna in two directions. Therefore, the RF tag including the RF tag antenna can stably communicate with the reading device regardless of the orientation of the antenna.
(2)
 第2の発明にかかるRFタグアンテナは、一局面に従うRFタグアンテナにおいて、少なくとも短絡部および給電部により構成されるインダクタパターン部と、少なくともアンテナ部、グランド部および絶縁基材により構成されるコンデンサ部と、により、読取装置から送信された電波の周波数帯域で共振する共振回路が構成されるものである。
 この場合、インダクタパターン部にICチップを設けることにより、インダクタパターン部と、上記コンデンサ部と、ICチップの内部の静電容量とにより共振回路が形成される。また、インダクタパターン部は、平板を切欠くことにより形成されるため、薄型化を実現することができる。
(2)
An RF tag antenna according to a second aspect of the present invention is the RF tag antenna according to one aspect, wherein the inductor pattern portion includes at least a short-circuit portion and a power feeding portion, and the capacitor portion includes at least an antenna portion, a ground portion, and an insulating base. Thus, a resonance circuit that resonates in the frequency band of the radio wave transmitted from the reading device is configured.
In this case, by providing an IC chip in the inductor pattern portion, a resonant circuit is formed by the inductor pattern portion, the capacitor portion, and the electrostatic capacity inside the IC chip. In addition, since the inductor pattern portion is formed by cutting out a flat plate, it is possible to reduce the thickness.
(3)
 第3の発明にかかるRFタグアンテナは、一の局面から第2の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は第1絶縁基材と第2絶縁基材とを有するL字状に形成され、第1絶縁基材および第2絶縁基材の第1面に、L字状に形成されたアンテナ部の第1アンテナ部および第2アンテナ部がそれぞれ設けられ、第1絶縁基材および第2絶縁基材の第2面に、L字状に形成されたグランド部の第1グランド部および第2グランド部がそれぞれ設けられ、絶縁基材の角部の側面に短絡部が設けられてもよい。
(3)
An RF tag antenna according to a third aspect of the present invention is the RF tag antenna according to any one of the second aspect of the present invention, wherein the insulating base has an L-shape having a first insulating base and a second insulating base. The first and second antenna parts of the antenna part formed in an L-shape are provided on the first surfaces of the first insulating base and the second insulating base, respectively. The first ground portion and the second ground portion of the L-shaped ground portion are respectively provided on the second surface of the second insulating base material, and the short-circuit portion is provided on the side surface of the corner portion of the insulating base material. May be.
 この場合、L字状に形成された絶縁基材の第1面にアンテナ部が設けられ、第2面にグランド部が設けられるので、各部材がL字状に形成され広い範囲の放射指向性とすることができる。しかも、絶縁基材、アンテナ部およびグランド部によってコンデンサが構成される。さらに、絶縁基材の角部の側面に設けられた短絡部を介してアンテナ部とグランド部とが接続される。このような構成により、RFタグアンテナの製造が容易でまた薄型化を実現することができる。 In this case, since the antenna portion is provided on the first surface of the insulating base formed in an L shape and the ground portion is provided on the second surface, each member is formed in an L shape and has a wide range of radiation directivity. It can be. In addition, a capacitor is constituted by the insulating base, the antenna portion, and the ground portion. Furthermore, the antenna portion and the ground portion are connected via a short-circuit portion provided on the side surface of the corner portion of the insulating base material. With such a configuration, the RF tag antenna can be easily manufactured and can be thinned.
(4)
 第4の発明にかかるRFタグアンテナは、一の局面から第3の発明のいずれかにかかるRFタグアンテナにおいて、給電部は、短絡部に接続された第1給電部および第2給電部を有し、第1給電部および第2給電部は、第1給電部および第2給電部間にICチップを接続するよう構成されていてもよい。
(4)
An RF tag antenna according to a fourth aspect of the present invention is the RF tag antenna according to any one of the third aspect to the third aspect of the present invention, wherein the power feeding unit includes a first power feeding unit and a second power feeding unit connected to the short circuit unit. The first power supply unit and the second power supply unit may be configured to connect the IC chip between the first power supply unit and the second power supply unit.
 この場合、短絡部および給電部を、連続する導電性部材から構成することができるので、短絡部および給電部の形成が容易であり、またタグの厚みを薄形とすることができる。しかも、第1給電部および第2給電部の間にICチップを架け渡すことにより、インダクタパターン部と、ICチップの内部の静電容量および絶縁基材とにより共振回路が形成され、無指向性のRFタグを形成することができる。 In this case, since the short-circuit portion and the power feeding portion can be formed of continuous conductive members, the short-circuit portion and the power feeding portion can be easily formed, and the thickness of the tag can be reduced. In addition, when the IC chip is bridged between the first power supply unit and the second power supply unit, a resonance circuit is formed by the inductor pattern unit, the capacitance inside the IC chip, and the insulating base material, and is omnidirectional. RF tags can be formed.
(5)
 第5の発明にかかるRFタグアンテナは、一の局面から第4の発明のいずれかにかかるRFタグアンテナにおいて、アンテナ部と短絡部との間に切欠部が形成され、切欠部内に給電部が形成されていてもよい。
(5)
An RF tag antenna according to a fifth aspect of the present invention is the RF tag antenna according to any one of the fourth aspect of the present invention, wherein a notch portion is formed between the antenna portion and the short-circuit portion, and a power feeding portion is provided in the notch portion. It may be formed.
 この場合、薄形でコンパクトなRFタグを構築することができる。また、インダクタパターン部は、平板を切欠くことにより形成されるため、薄型化を実現することができる。 In this case, a thin and compact RF tag can be constructed. In addition, since the inductor pattern portion is formed by cutting out a flat plate, it is possible to reduce the thickness.
(6)
 第6の発明にかかるRFタグアンテナは、一の局面から第5の発明のいずれかにかかるRFタグアンテナにおいて、第1アンテナ部と第2アンテナ部との間にスリットが形成され、スリットが切欠部と連通していてもよい。
(6)
An RF tag antenna according to a sixth aspect of the present invention is the RF tag antenna according to any one of the fifth aspect, wherein a slit is formed between the first antenna portion and the second antenna portion, and the slit is notched. It may communicate with the part.
 この場合、第1アンテナ部と第2アンテナ部との間に形成されたスリットにより、第1アンテナ部および第2アンテナ部のスリット側端部をインダクタンス成分として作用させることができ、このインダクタンス成分によってアンテナ部とICチップのインピーダンスを整合させることができる。 In this case, the slit formed between the first antenna portion and the second antenna portion can cause the slit-side end portions of the first antenna portion and the second antenna portion to act as an inductance component. The impedance of the antenna portion and the IC chip can be matched.
(7)
 第7の発明にかかるRFタグアンテナは、一の局面から第6の発明のいずれかにかかるRFタグアンテナにおいて、短絡部と第1給電部および第2給電部との間に、設定の内部面積を有する空間領域が形成されていてもよい。
(7)
An RF tag antenna according to a seventh aspect of the present invention is the RF tag antenna according to any one of the sixth aspect to the sixth aspect of the present invention, wherein the set internal area is between the short-circuit portion and the first and second feeding portions. A space region having a gap may be formed.
 この場合、少なくとも短絡部と第1給電部および第2給電部によって構成されるインダクタパターン部の内部面積が設定されることにより、インダクタパターン部のインピーダンスを一定にすることができる。 In this case, the impedance of the inductor pattern portion can be made constant by setting the internal area of the inductor pattern portion constituted by at least the short-circuit portion, the first power feeding portion, and the second power feeding portion.
(8)
 第8の発明にかかるRFタグアンテナは、一の局面から第7の発明のいずれかにかかるRFタグアンテナにおいて、アンテナ部およびグランド部は、平面視でX字状に形成された平板状の導電部材を折り曲げ、導電部材の隣接する一方の導電素体を絶縁基材の第1面に設け、導電部材の隣接する他方の導電素体を絶縁基材の第2面に設けることにより構成されていてもよい。
(8)
An RF tag antenna according to an eighth aspect of the present invention is the RF tag antenna according to any one of the seventh aspect to the seventh aspect of the present invention, wherein the antenna portion and the ground portion are formed in a flat plate-like shape formed in an X shape in plan view. It is configured by bending the member, providing one conductive element body adjacent to the conductive member on the first surface of the insulating base material, and providing the other conductive element body adjacent to the conductive member on the second surface of the insulating base material. May be.
 この場合、X字状の平板状導電部材を折り曲げ、絶縁基材に貼着するだけでアンテナ部とグランド部を形成することができるので、製造が極めて簡単で製造コストも安価となる。 In this case, since the antenna portion and the ground portion can be formed by simply bending and sticking the X-shaped flat conductive member to the insulating base material, the manufacturing is extremely simple and the manufacturing cost is low.
(9)
 第9の発明にかかるRFタグアンテナは、一の局面から第8の発明のいずれかにかかるRFタグアンテナにおいて、第1アンテナ部および第2アンテナ部は矩形状の板状導電部材から形成され、第1グランド部および前記第2グランド部は矩形状の板状導電部材から形成されていてもよい。
(9)
An RF tag antenna according to a ninth aspect is the RF tag antenna according to any one of the eighth aspect to the eighth aspect, wherein the first antenna portion and the second antenna portion are formed from a rectangular plate-like conductive member, The first ground part and the second ground part may be formed of a rectangular plate-like conductive member.
 この場合、アンテナ部およびグランド部の製造が極めて容易で、しかも安定した無指向性を持つ小型RFタグを製造することができる。 In this case, the antenna part and the ground part can be manufactured very easily, and a small RF tag having stable omnidirectionality can be manufactured.
(10)
 第10の発明にかかるRFタグアンテナは、一の局面から第9の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、誘電体からなってもよい。
(10)
An RF tag antenna according to a tenth aspect of the present invention is the RF tag antenna according to any one of the ninth aspect to the ninth aspect, wherein the insulating base material is made of a dielectric.
 この場合、絶縁基材が誘電体からなるので、数ミリサイズの全方位の無指向性を持つ小型RFタグを実現することができる。 In this case, since the insulating base material is made of a dielectric, it is possible to realize a small RF tag having omnidirectionality of several millimeters in all directions.
(11)
 第11の発明にかかるRFタグアンテナは、一の局面から第9の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、発泡スチロールからなってもよい。
(11)
An RF tag antenna according to an eleventh aspect of the present invention is the RF tag antenna according to any one of the ninth aspect to the ninth aspect, wherein the insulating base material is made of polystyrene foam.
 この場合、絶縁基材は、発泡スチロールからなるので、数センチメートルサイズのRFタグを実現することができる。また、発泡スチロールを用いることで、空気に近い絶縁基材を用いることができる。
 また、アンテナ部とグランド部との開口部を大きく取ることができる。
In this case, since the insulating substrate is made of expanded polystyrene, an RF tag having a size of several centimeters can be realized. Moreover, the insulating base material close | similar to air can be used by using a polystyrene foam.
Moreover, the opening part of an antenna part and a ground part can be taken large.
(12)
 第12の発明にかかるRFタグアンテナは、一の局面から第11の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、第1面側における誘電率と、第2面側における誘電率とが互いに異なってもよい。
(12)
An RF tag antenna according to a twelfth aspect of the present invention is the RF tag antenna according to any one of the eleventh aspects of the present invention, wherein the insulating base material has a dielectric constant on the first surface side and a dielectric constant on the second surface side. And may be different from each other.
 この場合、第1面側における誘電率と、第2面側における誘電率とが互いに異なるので、各面側の板状導電部材の大きさ、または開口面積を得るのに有効である。 In this case, since the dielectric constant on the first surface side and the dielectric constant on the second surface side are different from each other, it is effective for obtaining the size or opening area of the plate-like conductive member on each surface side.
(13)
 第13の発明にかかるRFタグアンテナは、一の局面から第12の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、第1面側から第2面側に向けて縮径する同径または異径の1または複数の穴が形成されてもよい。
(13)
An RF tag antenna according to a thirteenth invention is the RF tag antenna according to any one of the twelfth inventions from one aspect, wherein the insulating base is reduced in diameter from the first surface side toward the second surface side. One or a plurality of holes having different diameters or different diameters may be formed.
 この場合、絶縁基材は、第1面側から第2面側に向けて縮径する同径または異径の1または複数の穴が形成されるので、誘電率の違いにより各面側の板状導電部材の大きさ、または開口面積を得るのに有効である。また、誘電率の調整を絶縁基材の加工で対応することができる。 In this case, the insulating base material is formed with one or a plurality of holes having the same diameter or different diameters from the first surface side toward the second surface side. This is effective for obtaining the size or opening area of the conductive member. In addition, adjustment of the dielectric constant can be handled by processing the insulating base material.
(14)
 第14の発明にかかるRFタグアンテナは、一の局面から第13の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、第1面側における誘電率が第2面側における誘電率よりも小さくなるよう形成されてもよい。
(14)
An RF tag antenna according to a fourteenth aspect of the present invention is the RF tag antenna according to any one of the thirteenth aspect of the present invention, wherein the dielectric constant on the first surface side is greater than the dielectric constant on the second surface side. May be formed to be smaller.
 この場合、使用態様に応じて第1面側をアンテナ部、第2面側をグランド部とした場合、第2面側の誘電率を第1面側の誘電率より大きくしたことにより、アンテナ側の開口面積を変化させなくても、グランド側に対して相対的に大きくなるので、RFタグアンテナのサイズを大きくすることなく、読取装置との間の通信距離をのばすことができる。 In this case, when the first surface side is the antenna portion and the second surface side is the ground portion according to the usage mode, the dielectric constant on the second surface side is larger than the dielectric constant on the first surface side. Even if the opening area is not changed, it is relatively large with respect to the ground side, so that the communication distance with the reader can be increased without increasing the size of the RF tag antenna.
(15)
 第15の発明にかかるRFタグアンテナは、一の局面から第14の発明のいずれかにかかるRFタグアンテナにおいて、絶縁基材は、第1面側に発泡スチロールの層を形成し、第2面側に誘電率の高い層を形成してもよい。
(15)
An RF tag antenna according to a fifteenth aspect of the present invention is the RF tag antenna according to any one of the fourteenth aspect of the present invention, wherein the insulating base material forms a polystyrene foam layer on the first surface side, and the second surface side. Alternatively, a layer having a high dielectric constant may be formed.
 この場合、使用態様に応じて第1面側をアンテナ部、第2面側をグランド部とした場合、第2面側の誘電率を第1面側の誘電率より大きくしたことにより、アンテナ側の開口面積を変化させなくても、グランド側に対して相対的に大きくなるので、RFタグアンテナのサイズを大きくすることなく、読取装置との間の通信距離をのばすことができる。 In this case, when the first surface side is the antenna portion and the second surface side is the ground portion according to the usage mode, the dielectric constant on the second surface side is larger than the dielectric constant on the first surface side. Even if the opening area is not changed, it is relatively large with respect to the ground side, so that the communication distance with the reader can be increased without increasing the size of the RF tag antenna.
(16)
 他の局面にかかるRFタグは、請求項1から15のいずれかに記載のRFタグアンテナと、RFタグアンテナに設けられたICチップと、を含むものである。
(16)
An RF tag according to another aspect includes the RF tag antenna according to any one of claims 1 to 15 and an IC chip provided on the RF tag antenna.
 この場合、ICチップを設けることにより、インダクタパターン部と、ICチップの内部の静電容量および絶縁基材とにより共振回路が形成され通信距離をのばすことができるとともに、金属部材に載置することもできる。
 また、全方位の無指向性のRFタグを形成することができる。
In this case, by providing the IC chip, a resonance circuit is formed by the inductor pattern portion, the capacitance inside the IC chip and the insulating base material, and the communication distance can be extended, and the IC chip is placed on the metal member. You can also.
Further, an omnidirectional omni-directional RF tag can be formed.
(17)
 さらに他の局面にかかるRFタグは、請求項1から15のいずれかに記載のRFタグアンテナと、RFタグアンテナに設けられたICチップと、RFタグアンテナのグランド部と、直接電気的にあるいは容量を介して接続された導電体と、を含むものである。
(17)
Further, an RF tag according to another aspect includes an RF tag antenna according to any one of claims 1 to 15, an IC chip provided on the RF tag antenna, and a ground portion of the RF tag antenna, directly or electrically. And a conductor connected through a capacitor.
 この場合、ICチップを設けることにより、インダクタパターン部と、ICチップの内部の静電容量および絶縁基材とにより共振回路が形成される。さらに、導電体をアンテナとして利用することができる。
 また、全方位の無指向性のRFタグを形成することができる。
In this case, by providing the IC chip, a resonant circuit is formed by the inductor pattern portion, the capacitance inside the IC chip, and the insulating base material. Furthermore, a conductor can be used as an antenna.
Further, an omnidirectional omni-directional RF tag can be formed.
RFタグの一例を示す模式的斜視図である。It is a typical perspective view which shows an example of RF tag. RFタグ用アンテナの一例を示す模式的展開図である。It is a typical development view showing an example of an antenna for RF tag. 図2のRFタグ用アンテナの要部を示す詳細説明図である。FIG. 3 is a detailed explanatory view showing a main part of the RF tag antenna of FIG. RFタグにシート部材を設けた状態を示す模式的断面図である。It is typical sectional drawing which shows the state which provided the sheet | seat member in RF tag. RFタグを導電性部材に貼着した例を示す模式的断面図である。It is typical sectional drawing which shows the example which affixed RF tag to the electroconductive member. RFタグおよび導電性部材の等価回路の一例を示す模式図である。It is a schematic diagram which shows an example of the equivalent circuit of RF tag and an electroconductive member. RFタグの読取実験の結果を示す模式図である。It is a schematic diagram which shows the result of the reading experiment of RF tag. RFタグの放射パターンを示す模式図である。It is a schematic diagram which shows the radiation pattern of RF tag. 絶縁基材の他の例を示す模式図である。It is a schematic diagram which shows the other example of an insulating base material. 絶縁基材のさらに他の例を示す模式的断面図である。It is a typical sectional view showing other examples of an insulating substrate.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付す。また、同符号の場合には、それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰り返さないものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Moreover, in the case of the same code | symbol, those names and functions are also the same. Therefore, detailed description thereof will not be repeated.
[本実施の形態]
 図1は、本実施の形態にかかるRFタグ100の一例を示す模式的斜視図であり、図2は、RFタグ100のRFタグアンテナ110の一例を示す模式的展開図である。
[This embodiment]
FIG. 1 is a schematic perspective view showing an example of the RF tag 100 according to the present embodiment, and FIG. 2 is a schematic development view showing an example of the RF tag antenna 110 of the RF tag 100.
 図1および図2に示すように、本発明にかかるRFタグ100は、RFタグアンテナ110、絶縁基材140、およびICチップ500を含む。
 RFタグアンテナ110は、アンテナ部120、グランド部130、インダクタパターン部150、短絡部160および給電部170を含む。
 アンテナ部120は、第1アンテナ部121、第2アンテナ部122を含み、グランド部130は、第1グランド部131、第2グランド部132を含む。
As shown in FIGS. 1 and 2, the RF tag 100 according to the present invention includes an RF tag antenna 110, an insulating base 140, and an IC chip 500.
The RF tag antenna 110 includes an antenna unit 120, a ground unit 130, an inductor pattern unit 150, a short circuit unit 160, and a power feeding unit 170.
The antenna unit 120 includes a first antenna unit 121 and a second antenna unit 122, and the ground unit 130 includes a first ground unit 131 and a second ground unit 132.
 第1アンテナ部121および第2アンテナ部122は、矩形状の平面状導電部材からなる。第1アンテナ部121は、長辺と短辺とを有する。また、第2アンテナ部122の長辺は、第1アンテナ部121の長辺と直交する方向に設けられる。すなわち、第1アンテナ部121の延在方向と、第2アンテナ部122の延在方向とは、90度(直角、直交)の状態である。 The first antenna part 121 and the second antenna part 122 are made of a rectangular planar conductive member. The first antenna unit 121 has a long side and a short side. The long side of the second antenna unit 122 is provided in a direction orthogonal to the long side of the first antenna unit 121. That is, the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are in a state of 90 degrees (right angle, orthogonal).
 なお、本実施の形態においては、第1アンテナ部121の延在方向および第2アンテナ部122の延在方向が直交する、またはL字状、とは、主に90度の場合を言う。しかしながら、90度の状態のみに限定されず、第1アンテナ部121の延在方向と第2アンテナ部122の延在方向とが、60度以上120度以下の範囲で設けられる場合も含むものとする。すなわち、第1アンテナ部121および第2アンテナ部122がL字状、またはL字状に近い場合も、本明細書ではL字状または直交に含めるものとする。 In the present embodiment, the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are orthogonal or L-shaped mainly refers to a case of 90 degrees. However, the present invention is not limited to the state of 90 degrees, and includes the case where the extending direction of the first antenna unit 121 and the extending direction of the second antenna unit 122 are provided in a range of 60 degrees to 120 degrees. That is, even when the first antenna unit 121 and the second antenna unit 122 are L-shaped or close to L-shaped, they are included in the L-shaped or orthogonal shape in this specification.
 なお、図1に示すRFタグ100は、シート部材600(図4参照)により全体または一部が包装されていてもよい。以下、各部について説明を行う。 Note that the RF tag 100 shown in FIG. 1 may be entirely or partially wrapped by a sheet member 600 (see FIG. 4). Hereinafter, each part will be described.
(絶縁基材140)
 本実施の形態においては、絶縁基材140はL字状に形成されており、第1絶縁基材141と第2絶縁基材142とを有する。第1絶縁基材141および第2絶縁基材142の第1面に、同じくL字状に形成されたアンテナ部120の第1アンテナ部121および第2アンテナ部122がそれぞれ設けられ、第1絶縁基材141および第2絶縁基材142の第2面に、同じくL字状に形成されたグランド部130の第1グランド部131および第2グランド部132がそれぞれ設けられている。さらに、絶縁基材140の角部は切欠されており、この角部の側面に短絡部160が設けられている。
(Insulating base material 140)
In the present embodiment, the insulating base material 140 is formed in an L shape and has a first insulating base material 141 and a second insulating base material 142. The first antenna portion 121 and the second antenna portion 122 of the antenna portion 120 that are also formed in an L shape are provided on the first surfaces of the first insulating base material 141 and the second insulating base material 142, respectively. A first ground portion 131 and a second ground portion 132 of the ground portion 130 that are also formed in an L shape are provided on the second surfaces of the base material 141 and the second insulating base material 142, respectively. Furthermore, the corner | angular part of the insulating base material 140 is notched, and the short circuit part 160 is provided in the side surface of this corner | angular part.
 また、本実施の形態においては、絶縁基材140は、発泡スチロールからなる。本来は、絶縁基材の代わりに空気を用いることが最も好ましいが、第1アンテナ部121および第1グランド部131、第2アンテナ部122および第2グランド部132の所定の間隔維持および接触を防止するため、90%以上空気を有する発泡スチロールを利用することが好ましい。 Further, in the present embodiment, the insulating base material 140 is made of polystyrene foam. Originally, it is most preferable to use air instead of the insulating base material, but maintenance of a predetermined distance between the first antenna portion 121 and the first ground portion 131, the second antenna portion 122 and the second ground portion 132 and prevention of contact are prevented. Therefore, it is preferable to use a polystyrene foam having 90% or more air.
 その結果、第1アンテナ部121および第1グランド部131、第2アンテナ部122および第2グランド部132の空間距離を絶縁基材140によって一定に維持することができる。また、絶縁基材140の比誘電率は1%以上20%以下の範囲内であることが望ましい。
 また、絶縁基材140としてセラミックを用いた場合には、第1アンテナ部121および第1グランド部131、第2アンテナ部122および第2グランド部132の開口面積が小さくなり、通信距離が低減されるが、RFタグ100を小型化することができる。
As a result, the spatial distance between the first antenna part 121 and the first ground part 131, the second antenna part 122 and the second ground part 132 can be kept constant by the insulating base material 140. In addition, it is desirable that the relative dielectric constant of the insulating base material 140 be in the range of 1% to 20%.
When ceramic is used as the insulating base 140, the opening areas of the first antenna unit 121, the first ground unit 131, the second antenna unit 122, and the second ground unit 132 are reduced, and the communication distance is reduced. However, the RF tag 100 can be reduced in size.
 一方、絶縁基材140として発泡スチロール等の比誘電率が1%以上5%以下の材質を用いた場合には、アンテナ部120およびグランド部130の開口面積を大きく維持することができ、通信距離を数メートルから数十メートルまでのばすことができる。 On the other hand, when a material having a relative dielectric constant of 1% or more and 5% or less such as styrene foam is used as the insulating base 140, the opening area of the antenna unit 120 and the ground unit 130 can be maintained large, and the communication distance can be increased. Can extend from several meters to tens of meters.
 なお、発泡スチロールからなる絶縁基材140の厚みは、0.5mm以上3mm以下の範囲であることが望ましい。
 なお、本実施の形態において絶縁基材140は、発泡スチロールからなることとしているが、これに限定されず、絶縁体であればよく、ポリエチレン、ポリイミド、薄物発泡体(ボラ―ラ)等、絶縁性を有する他の発泡体または素材を用いてもよい。
 また、本実施の形態においては、絶縁基材140が一つの部材からなることとしているが、これに限定されず、複数の絶縁基材を用いて、本発明にかかる絶縁基材140を形成してもよい。
In addition, the thickness of the insulating base material 140 made of expanded polystyrene is desirably in the range of 0.5 mm or more and 3 mm or less.
In this embodiment, the insulating base material 140 is made of foamed polystyrene, but is not limited to this, and may be an insulating material such as polyethylene, polyimide, thin foam (bola), or the like. Other foams or materials having the following may be used.
In the present embodiment, the insulating base 140 is composed of one member. However, the present invention is not limited to this, and the insulating base 140 according to the present invention is formed using a plurality of insulating bases. May be.
 また、本実施の形態においては、絶縁基材140の第1面および第2面の平面形状は、アンテナ部120およびグランド部130とほぼ同じ形状としているが、これに限定されず、絶縁基材140の平面形状はアンテナ部120およびグランド部130のサイズより大きくてもよい。 In the present embodiment, the planar shape of the first surface and the second surface of the insulating base 140 is substantially the same as that of the antenna portion 120 and the ground portion 130, but is not limited to this, and the insulating base is not limited thereto. The planar shape of 140 may be larger than the sizes of the antenna unit 120 and the ground unit 130.
 例えば、平板状の絶縁基材140を使用することもできる。その場合は、絶縁基材140の第1面にL字形状のアンテナ部120が設けられ、同じ第1面にアンテナ部120が設けられていない領域が存在する。同様に、絶縁基材140の第2面にL字形状のグランド部130が設けられ、同じ第2面にグランド部130が設けられていない領域が存在する。
 絶縁基材140の形状は立方体形状であってもよい。例えば、立方体形状の絶縁基材の第1の角部の3面に亘って連続するアンテナ部120が設けられ、第1の角部に対向しまたは隣接する第2の角部の3面に亘って連続するグランド部130が設けられていてもよい。
For example, a flat insulating substrate 140 can be used. In that case, there is a region where the L-shaped antenna unit 120 is provided on the first surface of the insulating base 140 and the antenna unit 120 is not provided on the same first surface. Similarly, an L-shaped ground portion 130 is provided on the second surface of the insulating base material 140, and there is a region where the ground portion 130 is not provided on the same second surface.
The shape of the insulating substrate 140 may be a cubic shape. For example, the antenna part 120 which is continuous over the three surfaces of the first corner of the cubic-shaped insulating base is provided, and the three corners of the second corner facing or adjacent to the first corner. A continuous ground portion 130 may be provided.
 以上のように、本実施の形態にかかるRFタグアンテナ110は、RFタグアンテナ110の絶縁基材140として発泡スチロールを用いているため、ある程度の大きさの開口面積を確保することができ、板状アンテナの感度向上を図ることができる。 As described above, the RF tag antenna 110 according to the present embodiment uses a polystyrene foam as the insulating base material 140 of the RF tag antenna 110. Therefore, an opening area of a certain size can be ensured, and the plate shape The sensitivity of the antenna can be improved.
 なお、上記の実施の形態においては、絶縁基材140として発泡スチロールを用いる場合について説明したが、誘電体を用いてもよい。例えば、誘電体として、樹脂、セラミック、紙等であってもよい。さらに、絶縁基材140は、発泡形状でもよく、空洞が1または多数形成されていてもよく、異種の材質が混合または積層された複合材料からなってもよい。 In the above embodiment, the case where the polystyrene foam is used as the insulating base material 140 has been described, but a dielectric may be used. For example, the dielectric may be resin, ceramic, paper, or the like. Furthermore, the insulating substrate 140 may be in a foamed shape, may have one or more cavities, and may be made of a composite material in which different materials are mixed or laminated.
 図3は、図2に示したRFタグアンテナ110の要部を示す詳細説明図である。 FIG. 3 is a detailed explanatory view showing a main part of the RF tag antenna 110 shown in FIG.
(アンテナ部120)
 アンテナ部120は、それぞれ直交する方向に長く配置された第1アンテナ部121および第2アンテナ部122を含む。すなわち、第2アンテナ部122は、第1アンテナ部121の延在方向に対して直交する方向に延在する。
 図3に示すように、第1アンテナ部121は矩形状の板状導電部材から形成され、第1アンテナ部121は、辺921、辺922、辺923、辺924、辺925、辺926、辺927により囲まれた領域からなる。
 また、第2アンテナ部122は矩形状の板状導電部材から形成され、第2アンテナ部122は、辺931、辺932、辺933、辺934、辺935、辺936、辺937により囲まれた領域からなる。
 第1アンテナ部121と第2アンテナ部122の延存方向の長さは同一とすることができる。つまり、第1アンテナ部121と第2アンテナ部122のサイズは同一とすることができる。
(Antenna part 120)
The antenna unit 120 includes a first antenna unit 121 and a second antenna unit 122 that are long in the orthogonal direction. That is, the second antenna unit 122 extends in a direction orthogonal to the extending direction of the first antenna unit 121.
As shown in FIG. 3, the first antenna unit 121 is formed of a rectangular plate-shaped conductive member, and the first antenna unit 121 includes a side 921, a side 922, a side 923, a side 924, a side 925, a side 926, It consists of a region surrounded by 927.
The second antenna portion 122 is formed of a rectangular plate-shaped conductive member, and the second antenna portion 122 is surrounded by a side 931, a side 932, a side 933, a side 934, a side 935, a side 936, and a side 937. Consists of regions.
The length of the extending direction of the 1st antenna part 121 and the 2nd antenna part 122 can be made the same. That is, the size of the 1st antenna part 121 and the 2nd antenna part 122 can be made the same.
 ここで、説明のために、辺921、辺922、辺923、辺924、辺925、辺926、辺927の長さの合計を値T1とする。
 また、辺931、辺932、辺933、辺934、辺935、辺936、辺937の長さの合計を値T2とする。
Here, for the sake of explanation, the sum of the lengths of the side 921, the side 922, the side 923, the side 924, the side 925, the side 926, and the side 927 is defined as a value T1.
Further, the total of the lengths of the side 931, the side 932, the side 933, the side 934, the side 935, the side 936, and the side 937 is defined as a value T2.
 本実施の形態において、当該値T1、値T2は、電波の波長λ(ラムダ)を用いた場合、λ/4、λ/2、3λ/4、5λ/8のいずれか1つに該当するように設計されている。 In the present embodiment, the values T1 and T2 correspond to any one of λ / 4, λ / 2, 3λ / 4, and 5λ / 8 when the wavelength λ (lambda) of the radio wave is used. Designed to.
 本実施の形態において、値T1、値T2は、使用する周波数の波長λの半分の長さに設計した。波長λは、伝搬速度(光速(c))/周波数(F)により算出できる。
 具体的に周波数が920MHzの場合、伝搬速度(光速(c))を300Mm/sとし、値Tは、値T=(300÷920MHz)/2≒163mmとなる。
 この場合、値T1およびT2が163mmとなるように各辺の長さを調整する。なお、当該値T1およびT2は近似値であるので、値T1およびT2の数値自体が±5%前後の誤差を有してもよい。RFタグ100の読取距離が短くなるが、調整により仕様に適応させることができるからである。
In the present embodiment, the values T1 and T2 are designed to be half the wavelength λ of the frequency to be used. The wavelength λ can be calculated by the propagation speed (light speed (c)) / frequency (F).
Specifically, when the frequency is 920 MHz, the propagation speed (light speed (c)) is 300 Mm / s, and the value T is T = (300 ÷ 920 MHz) / 2≈163 mm.
In this case, the length of each side is adjusted so that the values T1 and T2 are 163 mm. Since the values T1 and T2 are approximate values, the numerical values of the values T1 and T2 themselves may have an error of around ± 5%. This is because the reading distance of the RF tag 100 is shortened, but can be adapted to the specification by adjustment.
 また、本実施の形態において、第1アンテナ部121および第2アンテナ部122は、アルミニウムの金属薄膜からなる。一般的に本実施の形態における薄膜は3μm以上35μm以下の厚みから形成される。
 第1アンテナ部121および第2アンテナ部122は、エッチングまたはパターン印刷等の手法によって形成される。
In the present embodiment, first antenna portion 121 and second antenna portion 122 are made of an aluminum metal thin film. Generally, the thin film in this embodiment is formed with a thickness of 3 μm or more and 35 μm or less.
The first antenna unit 121 and the second antenna unit 122 are formed by a technique such as etching or pattern printing.
 第1アンテナ部121および第2アンテナ部122は、絶縁基材140の第1面に直接設けてもよく、あるいは樹脂フィルム上に導電性材料によって形成された第1アンテナ部121および第2アンテナ部122を絶縁基材140に接着剤などを用いて貼着することで絶縁基材140の第1面に設けるようにしてもよい。 The first antenna unit 121 and the second antenna unit 122 may be provided directly on the first surface of the insulating base 140, or the first antenna unit 121 and the second antenna unit formed of a conductive material on a resin film. 122 may be provided on the first surface of the insulating base material 140 by sticking it to the insulating base material 140 using an adhesive or the like.
(グランド部130)
 グランド部130は、それぞれ直交する方向に長く配置された第1グランド部131および第2グランド部132を含む。すなわち、第2グランド部132は、第1グランド部131の延在方向に対して直交する方向に延在する。
 図2に示すように、第1グランド部131および第2グランド部132は、アルミニウムの金属薄膜からなる。一般的に本実施の形態における薄膜は3μm以上35μm以下の厚みから形成される。
(Ground part 130)
The ground portion 130 includes a first ground portion 131 and a second ground portion 132 that are long in the orthogonal direction. That is, the second ground part 132 extends in a direction orthogonal to the extending direction of the first ground part 131.
As shown in FIG. 2, the first ground portion 131 and the second ground portion 132 are made of an aluminum metal thin film. Generally, the thin film in this embodiment is formed with a thickness of 3 μm or more and 35 μm or less.
 第1グランド部131および第2グランド部132は矩形状の板状導電部材から形成されている。
 第1グランド部131と第2グランド部132の延存方向の長さは同一とすることができる。つまり、第1グランド部131と第2グランド部132のサイズは同一とすることができる。
 第1グランド部131および第2グランド部132は、エッチングまたはパターン印刷等の手法によって形成される。
 第1グランド部131および第2グランド部132は、絶縁基材140の第2面に直接設けてもよく、あるいは樹脂フィルム上に導電性材料によって形成された第1グランド部131および第2グランド部132を絶縁基材140に接着剤などを用いて貼着することで絶縁基材140の第2面に設けるようにしてもよい。
The first ground part 131 and the second ground part 132 are formed of a rectangular plate-like conductive member.
The lengths of the first ground part 131 and the second ground part 132 in the extending direction can be the same. That is, the sizes of the first ground part 131 and the second ground part 132 can be the same.
The first ground part 131 and the second ground part 132 are formed by a technique such as etching or pattern printing.
The first ground part 131 and the second ground part 132 may be provided directly on the second surface of the insulating base 140, or the first ground part 131 and the second ground part formed of a conductive material on a resin film. Alternatively, 132 may be provided on the second surface of the insulating base 140 by sticking the insulating base 140 to the insulating base 140 using an adhesive or the like.
 図2に示すように、アンテナ部120およびグランド部130は、平面視でX字状に形成された平板状の導電部材を、図3に示す2つの山折線に沿ってコ字状に折り曲げ、導電部材の隣接する一方の導電素体を絶縁基材140の第1面に設け、導電部材の隣接する他方の導電素体を絶縁基材140の第2面に設けることにより構成することができる。
 この場合、一方の1対の導電素体によってL字状のアンテナ部120が形成され、他方の1対の導電素体によってL字状のグランド部130が形成される。一方の導電素体と他方の導電素体とはほぼ対称に形成されている。
As shown in FIG. 2, the antenna unit 120 and the ground unit 130 are formed by bending a flat plate-shaped conductive member formed in an X shape in a plan view into a U shape along two mountain fold lines shown in FIG. 3. One conductive element adjacent to the conductive member can be provided on the first surface of the insulating base 140, and the other conductive element adjacent to the conductive member can be provided on the second surface of the insulating base 140. .
In this case, an L-shaped antenna portion 120 is formed by one pair of conductive element bodies, and an L-shaped ground portion 130 is formed by the other pair of conductive element bodies. One conductive element body and the other conductive element body are formed substantially symmetrically.
 導電部材を絶縁基材140の面に沿って折り曲げると、図3に示す2つの山折線の間の領域が絶縁基材140の角部の側面に配置される。この絶縁基材140の側面に、アンテナ部120とグランド部130とを接続する短絡部160が形成される。
 一方の導電素体と他方の導電素体とが交差する交差領域に、以下に説明する給電部170およびインダクタパターン部150が形成されている。
When the conductive member is bent along the surface of the insulating base 140, a region between the two mountain fold lines shown in FIG. 3 is arranged on the side surface of the corner of the insulating base 140. A short-circuit portion 160 that connects the antenna portion 120 and the ground portion 130 is formed on the side surface of the insulating base 140.
A power feeding portion 170 and an inductor pattern portion 150 described below are formed in an intersecting region where one conductive element body and the other conductive element body intersect.
(給電部170)
 給電部170は、絶縁基材140の第1面に設けられICチップ500に給電するよう構成されている。
 すなわち、アンテナ部120と短絡部160との間に切欠部180が形成され、切欠部180内に給電部170が形成されている。給電部170は、短絡部160に接続された第1給電部171および第2給電部172を有する。第1給電部171および第2給電部172は比較的細線のパターンにてL字状に形成され、第1給電部171と第2給電部172の先端部は互いに向かい合い、第1給電部171と第2給電部172の先端部の間に空隙部が形成されている。この空隙部にICチップ500が配置され、ICチップ500は第1給電部171および第2給電部172に電気的に接続されている。
(Power supply unit 170)
The power feeding unit 170 is provided on the first surface of the insulating base 140 and configured to feed power to the IC chip 500.
That is, a notch portion 180 is formed between the antenna unit 120 and the short-circuit portion 160, and a power feeding portion 170 is formed in the notch portion 180. The power feeding unit 170 includes a first power feeding unit 171 and a second power feeding unit 172 connected to the short circuit unit 160. The first power feeding unit 171 and the second power feeding unit 172 are formed in an L shape with a relatively thin line pattern, and the leading ends of the first power feeding unit 171 and the second power feeding unit 172 face each other. A gap is formed between the tip portions of the second power feeding unit 172. The IC chip 500 is disposed in the gap, and the IC chip 500 is electrically connected to the first power feeding unit 171 and the second power feeding unit 172.
 そして、短絡部160と第1給電部171および第2給電部172とで囲まれる領域に、設定の内部面積Sを有する空間領域が形成されている。
 第1アンテナ部121と第2アンテナ部122との間にスリット124が形成され、スリット124は切欠部180(および空間領域S)と連通している。
A space region having a set internal area S is formed in a region surrounded by the short-circuit portion 160, the first power feeding portion 171, and the second power feeding portion 172.
A slit 124 is formed between the first antenna part 121 and the second antenna part 122, and the slit 124 communicates with the notch part 180 (and the space region S).
(インダクタパターン部150)
 インダクタパターン部150は、少なくとも短絡部160および給電部170により構成される。すなわち、給電部170はインダクタパターン部150の一部を兼用している。この構成によりインダクタパターン部150の構成を簡略化することができる。
(Inductor pattern 150)
The inductor pattern unit 150 includes at least a short-circuit unit 160 and a power feeding unit 170. That is, the power feeding unit 170 also serves as a part of the inductor pattern unit 150. With this configuration, the configuration of the inductor pattern unit 150 can be simplified.
 コンデンサCは、少なくともアンテナ部120、グランド部130および絶縁基材140により構成される。これらのインダクタパターン部150とコンデンサCとにより、読取装置(図示せず)から送信された電波の周波数帯域で共振する共振回路が構成される。インダクタパターン部150の詳細は以下のとおりである。 The capacitor C includes at least the antenna unit 120, the ground unit 130, and the insulating base 140. The inductor pattern unit 150 and the capacitor C constitute a resonance circuit that resonates in the frequency band of a radio wave transmitted from a reading device (not shown). Details of the inductor pattern section 150 are as follows.
 図3に示すように、インダクタパターン部150は、短絡部160および給電部170の縁からなり、辺151、辺152、辺153、辺154、辺155、辺156、辺157、辺158、辺159、辺160、辺161からなる。インダクタパターン部150は、環形状の回路の一部である辺153、辺159との間を切欠いた形状からなる。すなわち、具体的には、アルファベット文字のC形状からなる。 As shown in FIG. 3, the inductor pattern portion 150 includes edges of the short-circuit portion 160 and the power feeding portion 170, and includes a side 151, a side 152, a side 153, a side 154, a side 155, a side 156, a side 157, a side 158, 159, side 160, and side 161. The inductor pattern portion 150 has a shape in which a space between the side 153 and the side 159 that are part of a ring-shaped circuit is cut out. That is, specifically, it consists of a C shape of an alphabetic character.
 すなわち、インダクタパターン部150は、図3に示すように、辺154、辺155、辺156、辺157、辺158により囲まれた領域(内部面積S)を有する。
 なお、インダクタパターン部150は、辺153と辺159との間を切欠く場合について説明したが、これに限定されず、辺153と辺159との間に絶縁部を形成してもよい。
That is, the inductor pattern unit 150 has a region (internal area S) surrounded by the sides 154, 155, 156, 157, and 158, as shown in FIG.
In addition, although the inductor pattern part 150 demonstrated the case where it cuts between the edge | side 153 and the edge | side 159, it is not limited to this, You may form an insulating part between the edge | side 153 and the edge | side 159.
 本実施の形態において、インダクタパターン部150は、アルミニウムの金属薄膜からなる。一般的に本実施の形態における薄膜は3μm以上35μm以下の厚みから形成される。
 インダクタパターン部150は、エッチングまたはパターン印刷等の手法によって形成される。また、導電性パターンが形成された樹脂フィルムを絶縁基材140に接着剤などで貼着することによっても形成することができる。
In the present embodiment, inductor pattern portion 150 is made of an aluminum metal thin film. Generally, the thin film in this embodiment is formed with a thickness of 3 μm or more and 35 μm or less.
The inductor pattern portion 150 is formed by a technique such as etching or pattern printing. Moreover, it can form also by sticking the resin film in which the electroconductive pattern was formed to the insulating base material 140 with an adhesive agent.
 本実施の形態において、インダクタパターン部150の内部面積Sにより、インダクタパターン部150のインピーダンスを一定にすることができる。
 これにより、アンテナ部120とICチップ500の処理回路との間のインピーダンス整合をとることができる。
In the present embodiment, the impedance of the inductor pattern portion 150 can be made constant by the internal area S of the inductor pattern portion 150.
Thereby, impedance matching between the antenna unit 120 and the processing circuit of the IC chip 500 can be achieved.
(ICチップ500)
 ICチップ500は、RFタグアンテナ110の上面側(第1アンテナ部121、第2アンテナ部122と同一平面上)に配置されている。ICチップ500は、RFタグアンテナ110のアンテナ部120が受信した電波に基づいて動作する。
(IC chip 500)
The IC chip 500 is disposed on the upper surface side of the RF tag antenna 110 (on the same plane as the first antenna unit 121 and the second antenna unit 122). The IC chip 500 operates based on radio waves received by the antenna unit 120 of the RF tag antenna 110.
 具体的に本実施の形態にかかるICチップ500は、まず、読取装置から送信される搬送波の一部を整流して、ICチップ500自身が動作するために必要な電源電圧を生成する。そして、ICチップ500は、生成した電源電圧によって、ICチップ500内の制御用の論理回路、商品の固有情報等が格納された不揮発性メモリを動作させる。
 また、ICチップ500は、読取装置との間でデータの送受信を行うための通信回路等を動作させる。
Specifically, the IC chip 500 according to the present embodiment first rectifies a part of the carrier wave transmitted from the reading device, and generates a power supply voltage necessary for the IC chip 500 itself to operate. Then, the IC chip 500 operates a non-volatile memory in which the control logic circuit in the IC chip 500, the unique information of the product, and the like are stored, according to the generated power supply voltage.
Further, the IC chip 500 operates a communication circuit or the like for transmitting / receiving data to / from the reading device.
(シート部材600)
 図4は、図1から図3のRFタグ100にシート部材600を設けた状態を示す模式的一部断面図である。
 図4に示すように、RFタグ100は、その周囲をシート部材600に包まれていても良い。
 シート部材600は、主にポリエチレンテレフタレートなどの絶縁性樹脂シートからなる。なお、ポリエチレンテレフタレートの他に、シート部材600としてポリイミド、ポリ塩化ビニル等の絶縁性のある素材または樹脂を1種または複数種用いてもよい。
(Sheet member 600)
FIG. 4 is a schematic partial cross-sectional view showing a state in which the sheet member 600 is provided on the RF tag 100 of FIGS. 1 to 3.
As shown in FIG. 4, the RF tag 100 may be surrounded by a sheet member 600.
The sheet member 600 is mainly made of an insulating resin sheet such as polyethylene terephthalate. In addition to polyethylene terephthalate, one or a plurality of insulating materials or resins such as polyimide and polyvinyl chloride may be used as the sheet member 600.
 シート部材600は、絶縁基材140の第1面および第2面に設けられたアンテナ部120およびグランド部130を外部から保護するためのものである。そのため、シート部材600の厚みは、数マイクロメートル以上数百マイクロメートル以下であることが好ましく、数十マイクロメートル程度の厚みであることがより好ましい。
 本実施の形態においては、シート部材600を設けることとしているが、これに限定されず、シート部材600を設けなくてもよく、他の絶縁被膜処理を用いてアンテナ部120およびグランド部130を保護するようにしてもよい。
 また、第1アンテナ部121と第2アンテナ部122とにおいてシート部材600を別々に設けてもよい。
The sheet member 600 is for protecting the antenna unit 120 and the ground unit 130 provided on the first surface and the second surface of the insulating base 140 from the outside. Therefore, the thickness of the sheet member 600 is preferably several micrometers or more and several hundred micrometers or less, and more preferably about several tens of micrometers.
In the present embodiment, the sheet member 600 is provided. However, the present invention is not limited to this, and the sheet member 600 may not be provided, and the antenna unit 120 and the ground unit 130 are protected using another insulating coating process. You may make it do.
Further, the sheet member 600 may be provided separately in the first antenna part 121 and the second antenna part 122.
(RFタグアンテナ110、ICチップ500および導電性部材900)
 図5は、図4に示したRFタグ100を導電性部材900に貼着した例を示す模式的断面図である。
(RF tag antenna 110, IC chip 500 and conductive member 900)
FIG. 5 is a schematic cross-sectional view showing an example in which the RF tag 100 shown in FIG. 4 is attached to the conductive member 900.
 図5に示すように、RFタグ100は、導電性接着剤または接着層450等により導電性部材900に貼着される。本実施の形態において導電性部材900は、導電性の金属板からなる。具体的には、金属製の箱、金属板を含む箱、ケース、金属部材を含む箱、ケース、等、任意の金属部位を有するものである。 As shown in FIG. 5, the RF tag 100 is attached to the conductive member 900 with a conductive adhesive or an adhesive layer 450 or the like. In the present embodiment, the conductive member 900 is made of a conductive metal plate. Specifically, it has an arbitrary metal part such as a metal box, a box including a metal plate, a case, a box including a metal member, or a case.
 なお、図5においては、導電性接着剤または接着層450を用いることとしているが、これに限定されず、両面テープ、はんだ、1液性または2液性のエポキシ樹脂等の任意の導電性の接着材であってもよい。
 また、RFタグ100と導電性部材900とを間接的に電気接続する場合は、絶縁性接着剤または接着層を用いてRFタグ100を導電性部材900に貼着するようにしてもよい。
In FIG. 5, the conductive adhesive or the adhesive layer 450 is used. However, the conductive adhesive or the adhesive layer 450 is not limited thereto, and any conductive material such as double-sided tape, solder, one-component or two-component epoxy resin, or the like is used. An adhesive may be used.
Further, when the RF tag 100 and the conductive member 900 are indirectly electrically connected, the RF tag 100 may be attached to the conductive member 900 using an insulating adhesive or an adhesive layer.
 図6は、RFタグ100および導電性部材900の等価回路の一例を示す模式図である。 FIG. 6 is a schematic diagram illustrating an example of an equivalent circuit of the RF tag 100 and the conductive member 900.
 図6に示すように、RFタグ100および導電性部材900の等価回路は、インダクタパターン部150のインダクタパターンLと、ICチップ500の内部容量からなるコンデンサCbと、は互いに並列接続されている。インダクタパターンLおよびICチップ500は、読取装置から送信される電波の周波数帯域で共振する共振回路を構成する。
 この共振回路の共振周波数f[Hz]は、式(1)により与えられる。共振周波数fの値は、読取装置から送信される電波の周波数帯域に含まれるように設定される。
As shown in FIG. 6, in the equivalent circuit of the RF tag 100 and the conductive member 900, the inductor pattern L of the inductor pattern unit 150 and the capacitor Cb composed of the internal capacitance of the IC chip 500 are connected in parallel to each other. The inductor pattern L and the IC chip 500 constitute a resonance circuit that resonates in the frequency band of the radio wave transmitted from the reading device.
The resonance frequency f [Hz] of this resonance circuit is given by equation (1). The value of the resonance frequency f is set so as to be included in the frequency band of the radio wave transmitted from the reading device.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、L:インダクタパターンLのインダクタンス、C:ICチップ500内部の等価容量を意味する。 In the formula (1), L a : inductance of the inductor pattern L, C b : equivalent capacitance inside the IC chip 500.
 ここで、ICチップ500には、内部にコンデンサを含むものがあり、また、ICチップ500は浮遊容量を有する。そのため、共振回路の共振周波数fを設定する場合、ICチップ500内部の等価容量Cを利用したものである。
 すなわち、共振回路は、インダクタパターンLのインダクタンス、およびICチップ500の内部の等価容量Cを考慮して設定された共振周波数fを有する。なお、Cとしては、例えば、使用するICチップの仕様諸元の一つとして公表されている静電容量値を用いることができる。
Here, some IC chips 500 include capacitors therein, and the IC chip 500 has a stray capacitance. Therefore, when setting the resonance frequency f of the resonant circuit, which utilizes the equivalent capacitance C b of the IC chip 500.
That is, the resonant circuit has the inductor pattern L inductance, and the interior of the equivalent capacitance C b and considering the set resonance frequency f of the IC chip 500. In addition, as Cb , for example, a capacitance value published as one of specifications of an IC chip to be used can be used.
 上記のように、ICチップ500内部の等価容量Cを利用することで、新たなコンデンサを設ける必要がなくなる。また、共振回路の共振周波数fを、電波の周波数帯域に精度良く設定することができる。その結果、RFタグ100の読み取り性能をさらに向上させることができる。また、ICチップ500が生成する電源電圧をさらに高くすることができる。 As described above, by using the equivalent capacitance C b of the IC chip 500, there is no need to provide a new capacitor. In addition, the resonance frequency f of the resonance circuit can be accurately set in the frequency band of radio waves. As a result, the reading performance of the RF tag 100 can be further improved. Further, the power supply voltage generated by the IC chip 500 can be further increased.
 また、図6に示すように、導電性部材900は、絶縁基材140を介してRFタグ100と容量結合している状態にすることができる。すなわち、絶縁基材140がコンデンサの役割を有する。
 その結果、導電性部材900をアンテナ部120と同様に用いることができるので、導電性部材900の表面側および裏面側のいずれからでも読取装置の電波を受信することができる。
Further, as shown in FIG. 6, the conductive member 900 can be capacitively coupled to the RF tag 100 via the insulating base material 140. That is, the insulating base material 140 has a role of a capacitor.
As a result, since the conductive member 900 can be used in the same manner as the antenna unit 120, the radio wave of the reading device can be received from either the front surface side or the back surface side of the conductive member 900.
 なお、本実施の形態においては、RFタグ100の第1グランド部131および第2グランド部132と導電性部材900との間にシート部材600が介在される場合について説明したが、また、電気的に直接接続または間接的に接続されていればよい。
 さらに、本実施の形態において、導電性部材900は、金属板からなってもよい。なお、本願において「導体」とは、一般的な辞書的意味と同様に、電気の伝導率、金属が典型的な例である。ただし、「導体」は、金属に限定されるものではなく、例えば人体、草木、水、地面などであってもよい。
In the present embodiment, the case where the sheet member 600 is interposed between the first ground portion 131 and the second ground portion 132 of the RF tag 100 and the conductive member 900 has been described. It is only necessary to be directly or indirectly connected to.
Furthermore, in the present embodiment, conductive member 900 may be made of a metal plate. In the present application, the term “conductor” is typically exemplified by electrical conductivity and metal, as in a general dictionary sense. However, the “conductor” is not limited to metal, and may be, for example, a human body, vegetation, water, ground, or the like.
 図7および図8は、図1から図6において説明したRFタグ100の読取実験の結果を示す模式図である。 7 and 8 are schematic diagrams showing the results of the reading experiment of the RF tag 100 described with reference to FIGS.
 図7(A)に示すように、RFタグ100の周囲には、少なくとも直交する方向を含む複数の電磁界を形成することができる。
 また、図5において導電性部材900に貼着した場合について説明したが、図7(B)に示すように、RFタグ100を球状導電体に貼着した場合、大きく複数の電磁界を形成することができる。すなわち、全方位の指向性を高めることができる。
 図7から、全方位的に無指向に近い放射指向性を有していることがわかる。よって、タグの向きによらず、読取装置との安定した通信が可能である。従って、タグが付けられた複数の商品がランダムな向きで荷詰めされたような場合でも、各商品のタグと通信することができる。
As shown in FIG. 7A, a plurality of electromagnetic fields including at least orthogonal directions can be formed around the RF tag 100.
Further, although the case where the RF tag 100 is attached to the spherical conductor as shown in FIG. 7B has been described in FIG. 5, a large plurality of electromagnetic fields are formed. be able to. That is, the directivity in all directions can be enhanced.
It can be seen from FIG. 7 that the radiation directivity is nearly omnidirectional in all directions. Therefore, stable communication with the reading device is possible regardless of the orientation of the tag. Therefore, even when a plurality of products with tags are packed in a random orientation, communication with the tags of each product is possible.
 次いで、図8に示すように、RFタグ100の放射パターンを示す。
 図8は、921MHzの垂直波および水平波に対する本発明の実施形態に係るRFタグの第1アンテナ部と第2アンテナ部をX軸、Y軸に配置したときの、XY平面、YZ平面、ZX平面における放射指向性を示している。
 図8から、垂直波でも、Y―Z面、Z―X面、X-Y面の全てにおいて、放射を確認できた。さらに、水平波でも、X-Y面の放射を確認することができた。以上のことから、本実施の形態にかかるRFタグ100は、全方向から読み取ることができることがわかった。
Next, as shown in FIG. 8, the radiation pattern of the RF tag 100 is shown.
FIG. 8 shows an XY plane, a YZ plane, and a ZX when the first antenna portion and the second antenna portion of the RF tag according to the embodiment of the present invention for a vertical wave and a horizontal wave of 921 MHz are arranged on the X axis and the Y axis. The radiation directivity in the plane is shown.
From FIG. 8, even in the vertical wave, radiation could be confirmed in all of the YZ plane, ZX plane, and XY plane. Furthermore, it was possible to confirm radiation on the XY plane even with horizontal waves. From the above, it was found that the RF tag 100 according to the present embodiment can be read from all directions.
(他の絶縁基材)
 図9は、絶縁基材140の他の例を示す模式図である。
(Other insulating base materials)
FIG. 9 is a schematic view showing another example of the insulating base material 140.
 図9に示すように、絶縁基材140は、発泡スチロール素材145および樹脂素材146の積層体からなってもよい。本実施の形態においては、発泡スチロール素材145および樹脂素材146の両者のサイズ長は同一に設計した。 As shown in FIG. 9, the insulating base material 140 may be formed of a laminate of a polystyrene foam material 145 and a resin material 146. In the present embodiment, the size lengths of both the polystyrene foam material 145 and the resin material 146 are designed to be the same.
 具体的に、発泡スチロール素材145においては、発泡スチロール素材145の比誘電率εa=1.0、周波数900MHzとして波長λ1を算出する。
 その結果、発泡スチロール素材145に貼着したアンテナ部120は、誘電率に影響されないため、波長λ1は、λ1=(300/920MHz)/12 ≒333mmとなる。
Specifically, in the expanded polystyrene material 145, the wavelength λ1 is calculated assuming that the relative dielectric constant εa of the expanded polystyrene material 145 is 1.0 and the frequency is 900 MHz.
As a result, since the antenna unit 120 attached to the polystyrene foam material 145 is not affected by the dielectric constant, the wavelength λ1 is λ1 = (300/920 MHz) / 1 2 ≈333 mm.
 一方、樹脂素材146においては、樹脂素材146の比誘電率εb=5.0、周波数900MHz、伝搬速度300Mm/sとして波長λ2を算出する。
 その結果、樹脂素材146において、波長λ2は、λ2=(300/920MHz)/52 ≒149mmとなる。
 なお、樹脂素材146は、セラミック、紙、等であってもよい。
On the other hand, for the resin material 146, the wavelength λ2 is calculated as the relative dielectric constant εb = 5.0 of the resin material 146, the frequency of 900 MHz, and the propagation speed of 300 Mm / s.
As a result, in the resin material 146, the wavelength λ2 is λ2 = (300/920 MHz) / 5 2 ≈149 mm.
The resin material 146 may be ceramic, paper, or the like.
 ここで、第1アンテナ部121または第2アンテナ部122の値T1、値T2は、それぞれ333mmであるため、333/149≒2.23倍長い波長の402MHzで共振することとなる。
 つまり、見かけ上744mmの第1グランド部131、第2グランド部132が形成されたものと同じになる。
 その結果、導電体900にRFタグ100を取り付ける状態と同じにすることができ、金属対応または非金属対応の通信距離を充分に有するRFタグ100を実現させることができる。
Here, since the value T1 and the value T2 of the first antenna unit 121 or the second antenna unit 122 are 333 mm, respectively, resonance occurs at 402 MHz with a wavelength 333 / 149≈2.23 times longer.
That is, it is the same as that in which the first ground portion 131 and the second ground portion 132 having an apparent size of 744 mm are formed.
As a result, the RF tag 100 can be the same as the state in which the RF tag 100 is attached to the conductor 900, and the RF tag 100 having a sufficient communication distance corresponding to metal or nonmetal can be realized.
(さらに他の絶縁基材)
 図10は、絶縁基材140のさらに他の例を示す模式的断面図である。
(Further other insulating base materials)
FIG. 10 is a schematic cross-sectional view showing still another example of the insulating base material 140.
 図10に示すように、絶縁基材140は、表面141、裏面142を有する。
 また、表面141から裏面142に向かって縮径する、1または複数の穴143を有する。ここで、穴143は、連続して縮径するものに限定されず、階段状で縮径されるものも含まれる。
As shown in FIG. 10, the insulating base 140 has a front surface 141 and a back surface 142.
In addition, one or a plurality of holes 143 whose diameter decreases from the front surface 141 toward the back surface 142 are provided. Here, the hole 143 is not limited to the one continuously reducing in diameter, but includes one having a diameter reduced stepwise.
 本実施の形態において穴143は、階段状または円錐状である場合について説明しているが、これに限定されず、表面141から裏面142まで貫通していない円筒、角筒、楕円筒であってもよく、表面141から裏面142まで貫通していない、または貫通した円錐筒、角錐筒、楕円錐筒であってもよい。
 さらに、表面141から裏面142に向かって形状が変化するものであってもよい。例えば、表面141側においては、星型の穴であり、裏面142側に向かって穴の断面が円形になってもよい。
 また、図9においては、穴143の径は、同じ場合について説明を行っているが、これに限定されず、同じであってもよく、異なるものであってもよい。
In this embodiment, the case where the hole 143 has a stepped shape or a conical shape is described. However, the hole 143 is not limited thereto, and is a cylinder, a rectangular tube, or an elliptical tube that does not penetrate from the front surface 141 to the back surface 142. Alternatively, it may be a conical cylinder, a pyramid cylinder, or an elliptical cone cylinder that does not penetrate from the front surface 141 to the back surface 142 or penetrates.
Further, the shape may change from the front surface 141 toward the back surface 142. For example, the front surface 141 side may be a star-shaped hole, and the cross section of the hole may be circular toward the back surface 142 side.
Moreover, in FIG. 9, although the diameter of the hole 143 has demonstrated about the same case, it is not limited to this, It may be the same and may differ.
 以上のように、表面141側および裏面側142の比誘電率を変化させることにより、見かけ上、所定よりも長い第1グランド部131および第2グランド部132を形成することとなるため、金属対応または非金属対応の通信距離を充分に有するRFタグ100を実現させることができる。
 また、誘電率の違いにより、各面側の板状導電部材の大きさを小さくすることができ、または、開口面積を実製品よりも大きくすることができる。また、誘電率の調整を絶縁基材の加工で対応することができる。
 すなわち、各面側の板状導電部材の大きさを小さくしても、性能を見かけ上板状導電部材を大きくした状態と同じとなり、製品の小型化を実現することができる。また、開口面積を小さくしても、性能を見かけ上開口面積を大きくした状態と同じとなり、製品の小型化を実現することができる。
As described above, by changing the relative permittivity of the front surface 141 side and the back surface side 142, the first ground portion 131 and the second ground portion 132 that are apparently longer than the predetermined are formed. Alternatively, it is possible to realize the RF tag 100 that has a sufficient non-metallic communication distance.
Further, due to the difference in dielectric constant, the size of the plate-like conductive member on each side can be reduced, or the opening area can be made larger than the actual product. In addition, adjustment of the dielectric constant can be handled by processing the insulating base material.
That is, even if the size of the plate-like conductive member on each side is reduced, the performance is apparently the same as the state where the plate-like conductive member is enlarged, and the product can be downsized. Further, even if the opening area is reduced, the performance is apparently the same as when the opening area is increased, and the product can be reduced in size.
 以上により、RFタグ100および導電性部材900は、導電性部材900をアンテナ部120として利用することができるとともに、大きな開口面積を有することができるので、RFタグ100の感度を向上させることができる。 As described above, since the RF tag 100 and the conductive member 900 can use the conductive member 900 as the antenna unit 120 and have a large opening area, the sensitivity of the RF tag 100 can be improved. .
 また、導電性部材900をアンテナ部120として利用することができるので、導電性部材900のRFタグ100を設けた面の裏側からも読取装置による読み取りが可能となる。 Further, since the conductive member 900 can be used as the antenna unit 120, reading from the back surface of the conductive member 900 on which the RF tag 100 is provided is possible.
 本発明においては、ICチップ500が『ICチップ』に相当し、RFタグアンテナ110が『RFタグアンテナ』に相当し、インダクタパターン部150が『インダクタパターン部』に相当し、切欠部180が『切り欠き部』に相当し、アンテナ部120、第1アンテナ部121、第2アンテナ部122が『アンテナ部』に相当し、グランド部130、第1グランド部131、第2グランド部132が『グランド部』に相当し、表面141が『第1面』に相当し、裏面142が『第2面』に相当し、絶縁基材140が『絶縁基材』に相当し、値T,値T2が『アンテナ部の周囲長さ』に相当し、樹脂素材146が『誘電体』に相当し、発泡スチロール素材145、発泡スチロールが『発泡スチロール』に相当し、穴143が『1または複数の穴』に相当し、RFタグ100が『RFタグ』に相当し、導電性部材900が『導電体』に相当し、導電性部材900およびRFタグ100が『導電体付きRFタグ』に相当する。 In the present invention, the IC chip 500 corresponds to an “IC chip”, the RF tag antenna 110 corresponds to an “RF tag antenna”, the inductor pattern portion 150 corresponds to an “inductor pattern portion”, and the notch portion 180 corresponds to “ The antenna portion 120, the first antenna portion 121, and the second antenna portion 122 correspond to the “antenna portion”, and the ground portion 130, the first ground portion 131, and the second ground portion 132 correspond to the “ground portion”. The surface 141 corresponds to the “first surface”, the back surface 142 corresponds to the “second surface”, the insulating base 140 corresponds to the “insulating base”, and the values T and T2 are Corresponding to “peripheral length of antenna part”, resin material 146 corresponds to “dielectric”, foamed polystyrene material 145, foamed polystyrene corresponds to “foamed polystyrene”, and hole 143 is “one or more”. The RF tag 100 corresponds to the “RF tag”, the conductive member 900 corresponds to the “conductor”, and the conductive member 900 and the RF tag 100 correspond to the “RF tag with conductor”. To do.
 本発明の好ましい一実施の形態は上記の通りであるが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされることは理解されよう。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。 The preferred embodiment of the present invention is as described above, but the present invention is not limited thereto. It will be understood that various other embodiments may be made without departing from the spirit and scope of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention.
 100 RFタグ
 110 RFタグアンテナ
 120 アンテナ部
 121 第1アンテナ部
 122 第2アンテナ部
 130 グランド部
 131 第1グランド部
 132 第2グランド部
 140 絶縁基材
 141 表面
 142 裏面
 143 穴
 145 発泡スチロール素材
 146 樹脂素材
 150 インダクタパターン部
 170 給電部
 180 切り欠き部
 500 ICチップ
 900 導電性部材,導電体
 T1、T2 値
 
 
 
 
DESCRIPTION OF SYMBOLS 100 RF tag 110 RF tag antenna 120 Antenna part 121 1st antenna part 122 2nd antenna part 130 Ground part 131 1st ground part 132 2nd ground part 140 Insulation base material 141 Surface 142 Back surface 143 Hole 145 Styrofoam material 146 Resin material 150 Inductor pattern portion 170 Power feeding portion 180 Notch portion 500 IC chip 900 Conductive member, conductor T1, T2 value


Claims (17)

  1.  ICチップを取り付けるRFタグアンテナであって、
     第1面、前記第1面に対向して形成された第2面、前記第1面および前記第2面との間に厚みを有する絶縁基材と、
     前記第1面に設けられた平板状からなるアンテナ部と、
     前記第2面に設けられ前記アンテナ部と対向して配置された平板状からなるグランド部と、
     前記アンテナ部および前記グランド部の間を電気的に短絡するよう設けられた短絡部と、
     前記第1面に設けられ前記ICチップに給電するよう構成された給電部と、を含み、
     前記アンテナ部は、それぞれ直交する方向に長く配置された第1アンテナ部および第2アンテナ部を含み、
     前記グランド部は、それぞれ直交する方向に長く配置された第1グランド部および第2グランド部を含む、RFタグアンテナ。
    An RF tag antenna to which an IC chip is attached,
    A first surface, a second surface formed to face the first surface, an insulating substrate having a thickness between the first surface and the second surface;
    An antenna portion having a flat plate shape provided on the first surface;
    A flat ground portion provided on the second surface and disposed opposite to the antenna portion;
    A short-circuit portion provided to electrically short-circuit between the antenna portion and the ground portion;
    A power supply unit provided on the first surface and configured to supply power to the IC chip,
    The antenna unit includes a first antenna unit and a second antenna unit that are disposed long in directions orthogonal to each other,
    The RF tag antenna, wherein the ground part includes a first ground part and a second ground part that are long in the orthogonal direction.
  2.  少なくとも前記短絡部および前記給電部により構成されるインダクタパターン部と、
     少なくとも前記アンテナ部、前記グランド部および前記絶縁基材により構成されるコンデンサ部と、により、読取装置から送信された電波の周波数帯域で共振する共振回路が構成される、請求項1に記載のRFタグアンテナ。
    An inductor pattern portion constituted by at least the short-circuit portion and the power feeding portion;
    2. The RF according to claim 1, wherein a resonance circuit that resonates in a frequency band of a radio wave transmitted from a reading device is configured by at least the antenna unit, the ground unit, and the capacitor unit including the insulating base. Tag antenna.
  3.  前記絶縁基材は第1絶縁基材と第2絶縁基材とを有するL字状に形成され、
     前記第1絶縁基材および前記第2絶縁基材の前記第1面に、L字状に形成された前記アンテナ部の前記第1アンテナ部および前記第2アンテナ部がそれぞれ設けられ、
     前記第1絶縁基材および前記第2絶縁基材の前記第2面に、L字状に形成された前記グランド部の前記第1グランド部および前記第2グランド部がそれぞれ設けられ、
     前記絶縁基材の角部の側面に前記短絡部が設けられている、請求項1または2に記載のRFタグアンテナ。
    The insulating base is formed in an L shape having a first insulating base and a second insulating base,
    The first antenna part and the second antenna part of the antenna part formed in an L shape are respectively provided on the first surface of the first insulating base and the second insulating base,
    The first ground part and the second ground part of the ground part formed in an L shape are respectively provided on the second surface of the first insulating base and the second insulating base,
    The RF tag antenna according to claim 1, wherein the short-circuit portion is provided on a side surface of a corner portion of the insulating base material.
  4.  前記給電部は、前記短絡部に接続された第1給電部および第2給電部を有し、前記第1給電部および前記第2給電部は、前記第1給電部および前記第2給電部間に前記ICチップを接続するよう構成されている、請求項1から3のいずれか1項に記載のRFタグアンテナ。 The power feeding unit includes a first power feeding unit and a second power feeding unit connected to the short-circuit unit, and the first power feeding unit and the second power feeding unit are between the first power feeding unit and the second power feeding unit. The RF tag antenna according to any one of claims 1 to 3, wherein the RF chip antenna is configured to connect the IC chip to each other.
  5.  前記アンテナ部と前記短絡部との間に切欠部が形成され、前記切欠部内に前記給電部が形成されている、請求項1から4のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 4, wherein a notch portion is formed between the antenna portion and the short-circuit portion, and the feeding portion is formed in the notch portion.
  6.  前記第1アンテナ部と前記第2アンテナ部との間にスリットが形成され、前記スリットが前記切欠部と連通している、請求項1から5のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 5, wherein a slit is formed between the first antenna part and the second antenna part, and the slit communicates with the notch part.
  7.  前記短絡部と前記第1給電部および前記第2給電部との間に、設定の内部面積を有する空間領域が形成されている、請求項1から6のいずれか1項に記載のRFタグアンテナ。 7. The RF tag antenna according to claim 1, wherein a space region having a set internal area is formed between the short-circuit portion, the first feeding portion, and the second feeding portion. .
  8.  前記アンテナ部および前記グランド部は、平面視でX字状に形成された平板状の導電部材を折り曲げ、前記導電部材の隣接する一方の導電素体を前記絶縁基材の前記第1面に設け、前記導電部材の隣接する他方の導電素体を前記絶縁基材の前記第2面に設けることにより構成されている、請求項1から7のいずれか1項に記載のRFタグアンテナ。 The antenna part and the ground part bend a flat conductive member formed in an X shape in plan view, and provide one conductive element body adjacent to the conductive member on the first surface of the insulating base. The RF tag antenna according to claim 1, wherein the other conductive element body adjacent to the conductive member is provided on the second surface of the insulating base material.
  9.  前記第1アンテナ部および前記第2アンテナ部は矩形状の板状導電部材から形成され、前記第1グランド部および前記第2グランド部は矩形状の板状導電部材から形成されている、請求項1から8のいずれか1項に記載のRFタグアンテナ。 The first antenna part and the second antenna part are formed from a rectangular plate-shaped conductive member, and the first ground part and the second ground part are formed from a rectangular plate-shaped conductive member. The RF tag antenna according to any one of 1 to 8.
  10.  前記絶縁基材は、誘電体からなる、請求項1から9のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 9, wherein the insulating base is made of a dielectric.
  11.  前記絶縁基材は、発泡スチロールからなる、請求項1から9のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 9, wherein the insulating substrate is made of polystyrene foam.
  12.  前記絶縁基材は、前記第1面側における誘電率と、前記第2面側における誘電率とが互いに異なる、請求項1から11のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 11, wherein the insulating base material has a dielectric constant on the first surface side and a dielectric constant on the second surface side different from each other.
  13.  前記絶縁基材は、前記第1面側から前記第2面側に向けて縮径する同径または異径の1または複数の穴が形成された、請求項1から12のいずれか1項に記載のRFタグアンテナ。 The insulating base material according to any one of claims 1 to 12, wherein one or a plurality of holes having the same diameter or different diameters which are reduced in diameter from the first surface side toward the second surface side are formed. The described RF tag antenna.
  14.  前記絶縁基材は、前記第1面側における誘電率が前記第2面側における誘電率よりも小さくなるよう形成された、請求項1から13のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 13, wherein the insulating base is formed so that a dielectric constant on the first surface side is smaller than a dielectric constant on the second surface side.
  15.  前記絶縁基材は、前記第1面側に発泡スチロールの層を形成し、前記第2面側に誘電率の高い層を形成した、請求項1から14のいずれか1項に記載のRFタグアンテナ。 The RF tag antenna according to any one of claims 1 to 14, wherein the insulating base material has a layer of polystyrene foam formed on the first surface side and a layer having a high dielectric constant formed on the second surface side. .
  16.  請求項1から15のいずれか1項に記載のRFタグアンテナと、
     前記RFタグアンテナに設けられたICチップと、を含むRFタグ。
    An RF tag antenna according to any one of claims 1 to 15,
    An RF tag including an IC chip provided on the RF tag antenna.
  17.  請求項1から15のいずれかに記載のRFタグアンテナと、
     前記RFタグアンテナに設けられたICチップと、
     前記RFタグアンテナのグランド部と、直接電気的にあるいは容量を介して接続された導電体と、を含む、導電体付きRFタグ。
     
    An RF tag antenna according to any one of claims 1 to 15,
    An IC chip provided on the RF tag antenna;
    An RF tag with a conductor, comprising: a ground portion of the RF tag antenna; and a conductor connected directly or through a capacitor.
PCT/JP2019/019826 2018-05-24 2019-05-20 Rf tag antenna, rf tag and rf tag with conductor WO2019225526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521215A JP6998086B2 (en) 2018-05-24 2019-05-20 RF tag Antenna, RF tag and RF tag with conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-100017 2018-05-24
JP2018100017 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225526A1 true WO2019225526A1 (en) 2019-11-28

Family

ID=68616917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019826 WO2019225526A1 (en) 2018-05-24 2019-05-20 Rf tag antenna, rf tag and rf tag with conductor

Country Status (2)

Country Link
JP (1) JP6998086B2 (en)
WO (1) WO2019225526A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347511A (en) * 1992-06-15 1993-12-27 Kyocera Corp Planar antenna
JPH11312923A (en) * 1998-02-24 1999-11-09 Murata Mfg Co Ltd Antenna system and radio to device using the same
JP2001119232A (en) * 1999-10-21 2001-04-27 Yokowo Co Ltd Planar antenna for circularly polarized wave
JP2001156532A (en) * 1999-11-29 2001-06-08 Toshiba Corp Antenna, and portable terminal provided with the same
JP2010171507A (en) * 2009-01-20 2010-08-05 Furukawa Electric Co Ltd:The In-vehicle composite antenna
JP2011521513A (en) * 2008-04-16 2011-07-21 ソニー エリクソン モバイル コミュニケーションズ, エービー Antenna assembly, printed wiring board and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151944A (en) 2000-11-09 2002-05-24 Tohken Co Ltd Master station antenna for rf id system
JP4536775B2 (en) 2005-04-01 2010-09-01 富士通フロンテック株式会社 Metal-compatible RFID tag and RFID tag portion thereof
JPWO2013172349A1 (en) 2012-05-14 2016-01-12 日立化成株式会社 Antenna sheet for non-contact charging device and charging device using the sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347511A (en) * 1992-06-15 1993-12-27 Kyocera Corp Planar antenna
JPH11312923A (en) * 1998-02-24 1999-11-09 Murata Mfg Co Ltd Antenna system and radio to device using the same
JP2001119232A (en) * 1999-10-21 2001-04-27 Yokowo Co Ltd Planar antenna for circularly polarized wave
JP2001156532A (en) * 1999-11-29 2001-06-08 Toshiba Corp Antenna, and portable terminal provided with the same
JP2011521513A (en) * 2008-04-16 2011-07-21 ソニー エリクソン モバイル コミュニケーションズ, エービー Antenna assembly, printed wiring board and apparatus
JP2010171507A (en) * 2009-01-20 2010-08-05 Furukawa Electric Co Ltd:The In-vehicle composite antenna

Also Published As

Publication number Publication date
JP6998086B2 (en) 2022-01-18
JPWO2019225526A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP4452865B2 (en) Wireless IC tag device and RFID system
KR100960210B1 (en) Rfid tag and manufacturing method thereof
US7446727B2 (en) Cross dipole antenna and tag using the same
US7633445B2 (en) Radio frequency identification tag and antenna for radio frequency identification tag
US8279125B2 (en) Compact circular polarized monopole and slot UHF RFID antenna systems and methods
EP2173009B1 (en) Wireless tag and method for manufacturing the same
US8360328B2 (en) RFID tag
JPWO2006064540A1 (en) Antenna and contactless tag
US20080122628A1 (en) RFID tag antenna and RFID tag
KR20060103425A (en) Security tag with three dimensional antenna array made from flat stock and fabrication method thereof
JP2008187601A (en) Rfid tag
JP2007208536A (en) Folded dipole antenna and tag using the same
US9317798B2 (en) Inverted F antenna system and RFID device having same
JP2005149298A (en) Radio tag, article provided with the same, and rfid system
JP5828249B2 (en) Non-contact IC label
US11055595B2 (en) Method, system, and apparatus for broadband and multi-frequency antennas for RFID devices formed by folding a planar structure
WO2019225526A1 (en) Rf tag antenna, rf tag and rf tag with conductor
KR20090056198A (en) Antenna
JP5630499B2 (en) Antenna apparatus and wireless communication device
US20130043315A1 (en) RFID tag with open-cavity antenna structure
JP6975475B2 (en) RF tag Antenna, RF tag, RF tag with conductor
KR20080042252A (en) Rfid antenna and rfid tag
JP2017092536A (en) Antenna device and RFID tag
WO2014103025A1 (en) Wireless ic tag apparatus
JP5092600B2 (en) Wireless IC device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807054

Country of ref document: EP

Kind code of ref document: A1