TW200912338A - CMOS process compatible MEMS probe card - Google Patents
CMOS process compatible MEMS probe card Download PDFInfo
- Publication number
- TW200912338A TW200912338A TW96133175A TW96133175A TW200912338A TW 200912338 A TW200912338 A TW 200912338A TW 96133175 A TW96133175 A TW 96133175A TW 96133175 A TW96133175 A TW 96133175A TW 200912338 A TW200912338 A TW 200912338A
- Authority
- TW
- Taiwan
- Prior art keywords
- probe
- wafer
- card
- integrated circuit
- design
- Prior art date
Links
Landscapes
- Measuring Leads Or Probes (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
200912338 九、發明說明: 【發明所屬之技術領域】 本發明係有關探針卡的製作方法,特別是指一種探針模組製作 的方法,利用標準CM〇s製程技術設計探針與空間轉換結構,並結 麵與研紐術製作凸塊絲探铜,最後讀機電技術钱 刻完成探針的懸浮與貫穿孔。 〇 【先前技術】 在料體製造技術日益精進並進人奈料代之下,晶#體積縮 -i自然‘墊’亦隨之縮小,探針設備與探針卡是否能快速且 準麵與銲墊接觸,便成為晶圓檢測技術未來的重點發展方向。 在降低測試成本的考量下,有效縮減測試時間,也是各業者所 U 持二追求的發展方向,因此增加同時測試的晶粒數(Multi-DUT)亦 疋探針卡廠商努力發展的目標。依據不同類型的產品,由於其⑽ 數的不同’可同時進行㈣測試的晶粒顆數也有所不同。 因為矛貝體電路(Integrated Circuit, 1C)體積越來越小、功能越來 (強I/O腳數越來越多,IC銲塾排列方式也由邊緣排列方式變成 矩陣式兩密度排列,使得傳統懸臂式探針卡(CantileverProbe Card) 不放現κ所需’單位面積無法置入更多探針’取而代之採用垂 直方式排列鱗方式’因此高密度垂直式探針卡(ffigh 200912338200912338 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for fabricating a probe card, and more particularly to a method for fabricating a probe module, which uses a standard CM〇s process technology to design a probe and a space conversion structure. And the knot and the research and the new technique to make the bump wire copper, and finally read the electromechanical technology to complete the suspension and through hole of the probe. 〇[Prior Art] Under the increasingly advanced and in-depth manufacturing technology of the material body, the crystal shrinkage-i natural 'pad' is also reduced, and the probe device and the probe card can be quickly and accurately surfaced and welded. Pad contact has become a key development direction for wafer inspection technology in the future. Under the consideration of reducing the cost of testing, effectively reducing the test time is also the development direction pursued by various industry players. Therefore, increasing the number of chips (Multi-DUT) tested at the same time is also the goal of probe card manufacturers. Depending on the type of product, the number of grains that can be tested simultaneously (4) varies depending on the number of (10). Because the integrated circuit (1C) is getting smaller and smaller, and the function is getting more and more (the number of strong I/O pins is increasing, the IC soldering arrangement is also changed from the edge arrangement to the matrix two-density arrangement, The traditional cantilever probe card (CantileverProbe Card) does not release κ required 'unit area can not be placed more probes' instead of vertical arrangement of scales' so high-density vertical probe card (ffigh 200912338
Verbal Probe Card)的需求面因而展露。探針卡依積體電路接腳 I/O銲墊分_方式而麵差異,錄針方式可區分為懸臂式 與垂直式探針卡兩種形式。而未來探針卡發展的4大方向: 卄u、、’田化·從半導體廠自2〇〇1年推出微米製程, 雜在2GG4年跨人9G奈米,細年更跨人65奈米的極 冰-人微米製程中,晶圓探針卡的微距探針,自是符合ic發The demand side of the Verbal Probe Card is thus revealed. The probe card is divided into the cantilever type and the vertical type probe card according to the difference between the I/O pad and the I/O pad. In the future, the four major directions for the development of probe cards: 卄u,, 'Tianhua·From the semiconductor factory, the micron process was launched in 2001, mixed in 2GG4 years, 9G nanometers, and 65nm in the next year. In the extreme ice-human micron process, the macro probe of the wafer probe card is self-compliant.
展趨勢。 X 2’同步夕功此.系統單晶片(s〇c)已是半導體發展的趨勢, 高積集、高承載IC逐漸成為半導體的主流,未來忙的功 5將更加複雜’包括邏輯、記題、類比等魏區塊將完 全集中於同-顆晶片,相對使晶圓偵測技術困難度提高。 3. 適用晶圓級封裳:在IC逐漸邁向覆晶(FlipChip)與晶圓 級封裝(WaferLevelpackage)的技術層次,未來在晶圓針 測即能將良好晶粒篩選,將是最關鍵技術。 4. 通訊晶片用探針:通訊是持續擴大的明星產業,其中通訊 晶片最重要的是射頻Ic在測試技術上,因其使用電流較 低,外接線路的阻抗,容易影響訊號傳輸,因此,針測卡 線路的設計與製造精密度都是開發射頻IC測試的關鍵。 至於揼針卡的結構設計方面,目前國内外半導體晶片測試仍 有以%氧細旨m定探針方絲作滅制,其伽為探針可依電 極板位置騎配置’以及探針可機㈣直师行錄圍較大, 200912338 可以石隹保每-探針與電極板之間有良好的電性接觸。另外,每— 根探針在垂直方向均可以做定位的難,方便翻於高低不I致 的電極板上,因此可以適用於晶片系統化的測試。此外,若有产 針損壞時可以進行侧的探針更換,而不需更換整_試模組; 但其缺點為高頻元件在測朗程中產生的電性以及機械雜訊會影 響整個測試結果,並且對於微小間距之電極板無法進行針測。所 (、以利用微機電技術製作之微探針可以克服上述缺點,尤其是使用 在通訊高頻“測試與雌具有小間距電極板之晶片測試,以及 考量批量製造的成本縮減。 . 目刖微機電技術發展的先進(advanced)微探針卡形式主要如 下所示,例如:1997年Yanwei Zhang等人[參考γ. Zhang,γ.Exhibition trend. X 2 'synchronization Xigong this. System single-chip (s〇c) has become the trend of semiconductor development, high-accumulation, high-capacity IC has gradually become the mainstream of semiconductors, the future busy work 5 will be more complicated 'including logic, record The analogy and other Wei block will be completely concentrated on the same wafer, which makes the wafer detection technology more difficult. 3. Applicable wafer level sealing: As the IC gradually moves to the technical level of FlipChip and Wafer Levelpackage, it will be the most critical technology in the future. . 4. Probes for communication chips: Communication is a star industry that continues to expand. The most important part of communication chips is RF Ic. Because of its low current usage, the impedance of external circuits is easy to affect signal transmission. Therefore, the pin The design and manufacturing precision of the card line is the key to developing RF IC testing. As for the structural design of the 揼 card, at present, the semiconductor wafer test at home and abroad still uses the % oxygen to determine the probe square wire, and the gamma probe can be configured according to the position of the electrode plate and the probe can be used. (4) The direct division of the division is large, 200912338. There is good electrical contact between the probe and the electrode plate. In addition, each probe can be positioned in the vertical direction, and it is easy to turn over the electrode plate without the high and low, so it can be applied to the system test of the wafer. In addition, if the needle is damaged, the side probe can be replaced without replacing the whole test module; but the disadvantage is that the electrical and mechanical noise generated by the high frequency component in the measurement process will affect the whole test. As a result, needle measurement was not possible for the electrode plates of minute pitch. The micro-probes made by using micro-electromechanical technology can overcome the above shortcomings, especially in the communication high-frequency "test and female wafer test with small pitch electrode plate, and consider the cost reduction of mass production." The advanced microprobe cards in the development of electromechanical technology are mainly as follows, for example: Yanwei Zhang et al., 1997 [Ref. γ. Zhang, γ.
Zhang, D. Worsham, D. Morrow, and R. B. Marcus, New MEMS Wafer Pr〇be Card,» MEMS^97, Nagoya, Japan, Jan, 1997, pp. 〇 邪5—399·]利用微機電技術製作出雙層(bimorph)金屬薄膜邊緣形 式微探針矩陣結構,其測試原理主要是利用雙層鋁薄膜中間加以 製作一層加熱器,藉由施加電壓產生高溫方式使微探針變形,並 且利用變形時的出平面結構量測位於晶片上的電極板或凸塊 (bUmpS) °當其微懸臂樑在長度(300〜500μπ〇與寬度(40〜60μπ〇的情 況下’施給加熱器電源約有50mW時’微懸臂樑會有約150μιη的位移 距邊,而其探針結構與金屬電極的接觸電阻(contact resistance) 小於1Ω。其中,因為此機械結構可以致動而達到在同平面待測電 200912338 極的接觸,可以減少電極板高低不同時所帶來的量測困擾,然而 其缺點是必須增加額外__路,反而使電路佈雜計上增加 困難度與複雜,另-方面’使用高溫加熱的方法致動微探耻 會影響afl號1測上的解析度與可靠度。 2000年Ito Takahiro等人[參考h Takahir〇, R.如财如,e.Zhang, D. Worsham, D. Morrow, and RB Marcus, New MEMS Wafer Pr〇be Card,» MEMS^97, Nagoya, Japan, Jan, 1997, pp. 〇邪5-399·] using MEMS technology to produce Bimorph metal film edge form micro-probe matrix structure, the test principle is mainly to use a double-layer aluminum film to make a layer of heater, the high-frequency way to deform the micro-probe by applying voltage, and use the deformation The planar structure measures the electrode plate or bump (bUmpS) located on the wafer. When the microcantilever is in the length (300~500μπ〇 and the width (40~60μπ〇), the heater power supply is about 50mW. 'The microcantilever has a displacement distance of about 150μηη, and its contact structure and metal electrode have a contact resistance of less than 1Ω. Among them, because this mechanical structure can be actuated to reach the same plane to be tested 200912338 pole The contact can reduce the measurement trouble caused by the height of the electrode plate. However, the disadvantage is that extra __ road must be added, which makes the circuit layout increase difficulty and complexity, and the other side uses high temperature. The method of heating to activate the micro-shadow will affect the resolution and reliability of the afl number 1. Into Takahiro et al. 2000 [Ref. h Takahir〇, R. 如财如, e.
Higurashi,“Fabrication Of Micro IC Probe For LSI Testing,,, 〇 Sensors and Actuators A, V〇l. 8〇, 2000, pp. 126-131. 用SOI晶片技術製作出微小弧形(arch_shaped beam)的積體電路 (IC)探針。其尺寸小於3斷8_ ’間距為謂μιη,接觸電阻為G. 5ω。 其使㈣牲層的技術搭配薄膜沈積技術,最制用魏製程的方 式加強其結構_性,以製作完成之微探針,可以做為大型積體 電路(LSI)量測。 2000年Dong-Seok Lee等人[參考D· s. Lee,j γ park,D κHigurashi, "Fabrication Of Micro IC Probe For LSI Testing,,, 〇Sensors and Actuators A, V〇l. 8〇, 2000, pp. 126-131. Using the SOI wafer technology to create a product of a small arc (arch_shaped beam) Body circuit (IC) probe. Its size is less than 3 breaks 8_ 'the spacing is called μιη, the contact resistance is G. 5ω. It makes (4) the technology of the layer with the film deposition technology, the most used Wei process to strengthen its structure _ Sex, the finished micro-probe can be used as a large integrated circuit (LSI) measurement. 2000 Dong-Seok Lee et al. [Reference D· s. Lee, j γ park, D κ
Kim, and J. H. Lee,“Fabrication Of A Bump-Type Si Probe,,Kim, and J. H. Lee, "Fabrication Of A Bump-Type Si Probe,,
Microprocesses and Nanotechnology Conference, Tokyo, Japan, July 2000, pp. 76 - 77.]也利用SOI晶片與石夕餘刻技術,製作出探針頭約 35μηι’懸臂樑約15μηι’而形變位移約可達到80|1111的微探針結構。 其結構設計可以縮短探針頭與量測儀器間,訊號連接的距離,進 而於高頻量測時達到訊號不失真,同時達到成本降低的優點。 2〇01 年Robert B. Marcus 等人[參考R· B. Marcus, ‘‘A New 10 200912338Microprocesses and Nanotechnology Conference, Tokyo, Japan, July 2000, pp. 76 - 77.] Using SOI wafers and Shi Xi's engraving technology, the probe head is made about 35μηι' cantilever beam about 15μηι′ and the deformation displacement is about 80. |1111 microprobe structure. The structure design can shorten the distance between the probe head and the measuring instrument and the signal connection, so that the signal is not distorted during the high-frequency measurement, and the cost is reduced. 2〇01 Robert B. Marcus et al [Ref. R. B. Marcus, ‘‘A New 10 200912338
Coiled Microspring Contact Technology;5 2001 Electronic Components and Technology Conference, St. Petersburg, Florida, June 2001,pp. 1227 - 1232·]則提出一個新穎的接觸技術(c〇ntact technology),作者使用捲曲式結構來做為接觸待測物的電極。其做 法是利用雙層金屬(Cu,Cr)的殘留應力,搭配犧牲層,再經過退火 處理(400〜900)°C造成懸臂樑捲曲。根據其實驗結果,在捲曲直徑 60μηι的結構下,可承受負載5〇mN並產生ΙΟμηι的彈性壓縮形變位 p 、 1 移。 20〇2年Bong-Hwan Kim等人[參考Β. Η. Kim,S. Park, B. Lee,J. H. Lee, Β. G. Min, S. D. Choi, D. I. Cho, and K. Chun, 4tA Novel MEMS Silicon Probe Card," MEMSO2, Las, Vegas, Nevada, January 2002, pp. 368 - 371.]利用(100)單晶矽晶片製作三維微探針結構,利 用微機電技術的面型微加工以及體型微加工,做出間距小於 Q 7(Vm ’接觸力量為Ug的微探針陣列。而其微探針結構做適當的佈 局與設計可搭配自動化測試設備(Automatic Test Equipment)應用 於晶片級(wafer lever)測試。 2002年Kenichi Kataoka 等人[參考K. Kataoka,S. Kawamura,T. Itoh, T. Suga,K. Ishikawa,and Η· Honma,“Low Contact-Force AndCoiled Microspring Contact Technology; 5 2001 Electronic Components and Technology Conference, St. Petersburg, Florida, June 2001, pp. 1227 - 1232 ·] proposes a novel contact technology (c〇ntact technology), the author uses a crimped structure to do To contact the electrode of the analyte. The method is to use the residual stress of the two-layer metal (Cu, Cr), with the sacrificial layer, and then annealed (400~900) °C to cause the cantilever beam to curl. According to the experimental results, under the structure of the crimp diameter of 60 μm, the load can be subjected to a load of 5 〇 mN and the elastic compression deformation position p and 1 of the ΙΟμηι can be generated. 20〇2 years Bong-Hwan Kim et al. [Ref. Β. Η. Kim, S. Park, B. Lee, JH Lee, Β. G. Min, SD Choi, DI Cho, and K. Chun, 4tA Novel MEMS Silicon Probe Card," MEMSO2, Las, Vegas, Nevada, January 2002, pp. 368 - 371.] Fabrication of three-dimensional microprobe structures using (100) single crystal germanium wafers, surface micromachining using microelectromechanical technology and bulk micro Machining, making micro-probe arrays with a pitch less than Q 7 (Vm 'contact force Ug.) The micro-probe structure can be properly laid out and designed with automatic test equipment for wafer level (wafer lever) Test. Kenichi Kataoka et al. 2002 [Ref. K. Kataoka, S. Kawamura, T. Itoh, T. Suga, K. Ishikawa, and Η· Honma, "Low Contact-Force And
Compliant MEMS Probe Card Utilizing Fritting Contact,M MEMSO2, Las,Vegas, Nevada,January 2002, pp_ 364-367.]利用兩道電錄鎳製 程配合犧牲層方式,利用電鑄過程中產生殘留應力,使電鑄懸臂 200912338 樑產生出平面的變形。其優點為電鑄鎳探針與鋁電極間有很好的 表面接觸特性,相較於其他金屬材料,鎳有較低的接觸電阻,因 此可以提升訊號量測上的可靠度。Compliant MEMS Probe Card Utilizing Fritting Contact, M MEMSO2, Las, Vegas, Nevada, January 2002, pp_ 364-367.] Using two electro-recording nickel processes in combination with a sacrificial layer to create residual stress during electroforming, enabling electroforming Cantilever 200912338 The beam produces a flat deformation. The advantage is that the electroformed nickel probe has good surface contact characteristics with the aluminum electrode, and the nickel has a lower contact resistance than other metal materials, thereby improving the reliability of the signal measurement.
2003年Y_ghak CHO等人[參考Υ· Ch0, T. Kuki, γ Fukma,H2003 Y_ghak CHO et al [Ref. Ch Ch, T. Kuki, γ Fukma, H
Fujita,and Β. Kim,“ Si_Based Micro Probe Card With Sharp Kmfe-Edged Tips Combined Metal Deposition,” Actuators and 〇 Microsystems, 12th International Conference, Boston, Massachusetts, Vol.l,June 2003, PP. 774 _ 777 .]利用KOH非等向性蝕刻的方式在 單晶碎晶片上製作具有尖端(tip)凹洞的懸臂樑,再以金屬沈積你 W,Au)方式製作探針頭’作者以此製作流程做出陣列式間距小於 40μηι的微探針卡。而其優點在於它的探針頭能將金屬電極表面的 絕緣氧化層給刺穿,使探針頭與電極板接觸效果增加進而降低接 觸電阻,達到良好的訊號針測結果。 2004^Sang-Jun Park ^ H. Kim, S. J. Park, K. Chun,Fujita, and Β. Kim, "Si_Based Micro Probe Card With Sharp Kmfe-Edged Tips Combined Metal Deposition," Actuators and 〇Microsystems, 12th International Conference, Boston, Massachusetts, Vol.l, June 2003, PP. 774 _ 777 .] Using a KOH anisotropic etch to fabricate a cantilever beam with a tip recess on a single-crystal shredded wafer, and then deposit the probe head by metal deposition, you can make an array by this fabrication process. Microprobe cards with a pitch of less than 40 μm. The advantage is that the probe head can pierce the insulating oxide layer on the surface of the metal electrode, so that the contact effect between the probe head and the electrode plate is increased, thereby reducing the contact resistance and achieving good signal pinning results. 2004^Sang-Jun Park ^ H. Kim, S. J. Park, K. Chun,
D. I. Cho, W. K. Park, T. U. Jun,and S. Yun,“a Fine pitch MEMSD. I. Cho, W. K. Park, T. U. Jun, and S. Yun, “a Fine pitch MEMS
Probe Unit For Flat Panel Display As Manufacturing MEMS Application,» Sensors and Actuators A, Vol A, March 2004, pp. 46-52·]提出了針對電腦液晶顯示器面板TFT(thin_fiim tmnsist〇r)-LCD(liqUid crystal displays)、電漿電視(pDp)及平面電視 (FDP)製作出葉片型式的微探針,用於測量各種顯示器驅動ic及面 板本身品質測驗。 12 200912338 2004年K. Kataoka [參考K. Kataoka,T. Itoh,K. Incme,and τProbe Unit For Flat Panel Display As Manufacturing MEMS Application,» Sensors and Actuators A, Vol A, March 2004, pp. 46-52·] proposed for computer LCD panel TFT (thin_fiim tmnsist〇r)-LCD (liqUid crystal displays ), plasma television (pDp) and flat panel television (FDP) produce blade-type microprobes for measuring various display driver ic and panel quality tests. 12 200912338 K. Kataoka, 2004 [Ref. K. Kataoka, T. Itoh, K. Incme, and τ
Suga, «Multi-Layer Electroplated Micro-Spring Array For MEMS Probe Card;5 MEMSO4, Maastricht, The Netherlands, January 2004, pp. 733 - 736.]提出多層膜電鑄彈簧式的微探針陣列,作者利用電 鑄鎳技術,製作七層鎳薄膜的S形三維彈簧結構,此微彈簧探針結 構可以在10mN下連續接觸測試10000次以上,其優點除了可以將 微彈黃結構直接與電路板製作在一起外,因其變形位移的方向為 ( 垂直方向,當探針與待測電極接觸時不會有左右方向的移動,也 比較不會大面積的刮傷電極表面而造成損壞。 2005 年Si-Hyung Lee與Bruce C. Kim[參考Si-Hyung Lee, and Bruce C. Kim,“Curled micro-cantilevers using benzocyclobutene polymer and Mo for wafer level probing,Sensors and Actuators A,Suga, «Multi-Layer Electroplated Micro-Spring Array For MEMS Probe Card; 5 MEMSO4, Maastricht, The Netherlands, January 2004, pp. 733 - 736.] Multilayer Membrane Electroformed Spring-Type Microprobe Arrays, Authors Cast nickel technology, the S-shaped three-dimensional spring structure of seven-layer nickel film, the micro-spring probe structure can be continuously contacted and tested more than 10,000 times at 10mN. The advantage is that the micro-elastic yellow structure can be directly fabricated with the circuit board. Because the direction of its deformation displacement is (vertical direction, when the probe is in contact with the electrode to be tested, there will be no movement in the left and right direction, and it will not damage the electrode surface in a large area.) Si-Hyung Lee, 2005 With Bruce C. Kim [Ref. Si-Hyung Lee, and Bruce C. Kim, "Curled micro-cantilevers using benzocyclobutene polymer and Mo for wafer level probing, Sensors and Actuators A,
Vol. 121,2005, p.p. 472-479.]於Sensors and Actuators期刊上發表一 (j 篇利用BCBandMo layers製作翹曲的懸臂樑晶圓及測試探針。其 主要是利用Mo layers與BCB layers兩者的應力關係造成結構捲 曲。但由於此一探針結構也是雙層的薄膜結構,在實際使用於探 針卡時,因機台振動的影響,較容易會產生結構脫層與損壞。 2005 年Young-Min Kim[參考Young-Min Kim, Ho-Cheol Yoon, and Jong-Hyun Lee, "Silicon Micro-probe Card Using Porous Silicon Micromachining Technology,” ETRI Journal, Vol. 27,Number 4, August 2005,p.p. 433-438.]提出了利用KOH蝕刻與退火處理 13 並不是一件 〇Vol. 121, 2005, pp 472-479.] published in the Journal of Sensors and Actuators (j) Cantilever beam and test probes made using BCBandMo layers. They mainly use both Mo layers and BCB layers. The stress relationship causes the structure to curl. However, since this probe structure is also a two-layer film structure, when it is actually used in a probe card, structural delamination and damage are more likely to occur due to the vibration of the machine. -Min Kim [Review Young-Min Kim, Ho-Cheol Yoon, and Jong-Hyun Lee, "Silicon Micro-probe Card Using Porous Silicon Micromachining Technology," ETRI Journal, Vol. 27, Number 4, August 2005, pp 433 -438.] proposed to use KOH etching and annealing treatment 13 is not a flaw
G 200912338 ―純卿⑽)來製作微探針結構。其結構規格為長 购m、厚度5興,而此時最高位移魏量介細脚,接觸電 阻小細。但因此微探針結構需使脚〇c高溫設備進行退火處 理’在此-製程巾要很精準㈣微結構位移變形量, 容易的製程。 綜合上述所參相_外參考讀,可以得知枷微機電製 程所製作的微探針卡,無論是细體型微加卫、面型微加工或是 LIGA技術&疋下—個半導體世代不可或缺的測試元件,而可以 f 高頻、日m«m以及批量製造的做法更是可崎低成本 符&日守婷所趨。但是上述的微機電技術製作的微探針卡基本上幾 乎以懸臂式為主,不易實現垂直探針卡的魏;另外基本上並非 使用CMOS製程來完成,不易内建被動元件與電路,被動元件仍需 要於印刷電路板上實現;再者小轉大的空間轉脑也不易實現; 因此本發明提鷄的設計與製造浦,無論半導體技術如何 演進’以微機電製作的矩陣式微探針卡皆可以有效的進行搭配, 尤其以微機電製作的微結構可以與電路做整合,因此可以提高探 針卡的優點,諸如尺寸設計變小、訊號量測功能加大以及可靠度 的增加’這些實現系統與晶片整合(System On Chip)的技術,是一 般傳統組裝式探針所無法比擬的。 14 200912338 【發明内容】 本發明結合懸臂式探針卡與_電植針卡的優點,具有更 高的探針密度,隨著雜配置方式採用矩_或同時進行多顆κ 進行測試,傳_臂式探·術_無法克服,因此,垂直式探 針卡的優勢漸漸展露。然而,目前垂直式探針卡的探針製侧J 抽拉製程或組裝料,精度與雜控制上油難,本翻導入有 、限元素倾進行探針外型輯,並且再使用微機電餘技術,透 過微影、f鑄與研磨技術進行高產量、高精度的凸塊探針,完成 探針卡製作。故本發明整個設計與製程所具有的特色與優點如下: ⑴利用標準CMOS製程以及電鑄凸塊(Bump)製作垂直探針,同時 利用CMOS的多層内連線(interc〇nnecti〇n)完成小轉大的佈線, 甚至内含測試電路。 (2) CMOS探針晶片的標準化,可藉由後製程來決定探針的位置, 提供不同節距的陣列CM0S探針晶片,使用時可依照客戶需 ⑶利用標準CM0S製程以及電鑄鎳錄凸塊與獨特的精密研磨技 術製作垂直探針,可改善傳統懸臂式探針排針的問題,可大幅 小棟針的間隙(P itch)。。 (4)將探針與小轉大空間轉換器(印%£加一體成形於 MOS掩針晶片,並以覆晶錫球(s〇】der Bump)於晶片背面直接 與探針卡之印刷電路板(PCB)直接接合,大幅提升整個探針卡 共面度至l〇um以下,領先國際水準之15_2〇um。 15 200912338 (5) 利用〜®的魏材作為探針結構的一部份,提升過去文獻僅 以凸塊或金屬層為探針的受力能力無法達到數克以上的接觸 力。 (6) «IIC口又3十凡成後,ic設計人員可同步設計出測試用的㈤⑽罙 針晶片,利用CMOS探針晶片測試1(:,可A幅縮短封裝測試的 時間與步驟。 【實施方式】 Ο 本發明乃是—種探針卡,如圖1所示,主要係由-CMOS探 針晶片33 (以下簡稱探針晶片)與連接測試儀器用的印刷電路板 32接合而成’該探針晶片33主要特徵為使用標準⑽&圓製程 技術設計製作懸臂式探針結構,使得探針陣列與空間轉換器 (咖糾贿fGrmer)—體成型,如圖2所示,以⑻的探針陣 η為例,4空間轉換||具小轉Α的魏,係细刪製程的内 連線佈局(lnterconnection)納入探針空間轉換的連接線路,該連 接線路從㈣雜固定端向外紐緒針晶U的邊緣鮮塾 於懸臂式探針的自由端設有凸塊作為探針職探頭,並 大出於揼針晶片33;晶圓背面藉由微機電後製裎加工貫穿孔 =針晶片33的邊緣聰pad)2,並填人導電材料%後,使探 士’晶片33背面具有錫球。請注意本發明探針晶片烈實施方式雖 口圖2所示,以5X5的探針陣列】為例,但並不以此為限,圖中 16 200912338 的探針可以更小、更密。 種佈局,可以是中間勤=_峨探編33上探針的各 20,可以是陣列式21。 對探針頭19,可以是四周環繞式 制^人ιΐτ個新$CMGS探針卡的製造過程,是由數個主要的 其=是_製程、微_、簡易研磨製程 '、、’、帛的縣與設備先行說明如下: CMOS 台積電所提供㉛概〔则⑽_製程 {不乂此為限)’進行探針結構的設計、c觀探 3.〜圖4.)與外部連結電路的規劃。 、' U疋使用正光阻、負光阻、Polyimide(聚亞醯胺)等旋塗 於基材的表面’並利用光罩或網片加以曝光後顯影出定義的凸塊 12結構。 从电鑛衣私疋利用具有電源供應器、鐘液槽、加熱器、溫控 回饋衣置#電錢設備組合而成’其可絲製造出多層凸塊丨2的主 體結構。 簡易研磨製程是利用具有研磨墊、研磨液、晶圓載具、研磨 液擾掉幫浦等研磨設備組合而成,其可用來平坦化電鍍後均勻度 以及粗链度差的凸塊12結構,使其具有共面度良好以及表面粗糙 度小的特性。 17 200912338 蝕刻製程係指將貫穿孔(vias)13與多餘的石夕基材4,利用 DRIE或ICP等乾勤j方式,去除的製程。有時亦可指濕飯刻製程。 [製造程式】 步驟1:使用標準半導體製程例如台積電2p4MCM〇s〇.35um 製程,來設計凸塊12探針與電路佈線(參考圖3與圖4)。 步驟2:將下線完成後的晶圓(圖5⑻),利用微電禱技術製作銅 或金屬凸塊12探針結構’並加以研磨,提升其共面度,保留其厚 光阻3(圖5(b))。 ' 在承載晶圓37上塗佈一層黏著層38與探針晶圓39 接合(圖5(c))。 步驟4:利用研磨技術將矽基材4磨薄(圖5(d))。 步驟5:在探針晶圓39背面鋪上高分子材料15,再利用準分 子uv雷射將要蝕刻開孔的地方定義出來,作為下一步要蝕 刻貫穿孔(vias)13的遮罩16 (圖5(e))。 步驟6:使用ICP蝕刻一小部份_孔17(圖5(切。 步驟7:將高分子材料15去除,重新鋪上一層高分子材料15, 再利用準分子UV雷射將要_開孔的地方定義出來,作為下一 步icp要蝕刻貫穿孔(vias)13與多餘的石夕基材4的遮罩ls (圖制)。 18 200912338 5⑻f驟8:仙1CP餘刻貫穿孔(ViaS)13與多餘的石夕基材4 (圖 步驟9:再利用DRIE钕刻不需要的〇撕7,製作出探針的離 步驟ίο:利用網印技術將貫穿孔(vias)13填滿錫球材料 (S〇lder)l4 ’並迴銲成錫球。另外為了使貫穿孔⑽邮的内壁能有 絕緣的材料,以減対基材4的半導體躲對傳輸喊(尤其是高 頻)的漏電流幹擾,可使用高分子化學氣相沈積系統(p〇lymer Deposition System (PDS))例如廠牌與型號:pDS2〇1()對内壁表 面沈積聚對二曱苯(P〇ly-para_xylylene ;簡稱卿le岭除此之外, 其他沈積絕緣層的方法也可以,例如原子層沈積(at〇mic layer ._。如應)CALir)使用氧化鱗導電陶变(alumi麵〇xide n〇n-C〇ndUCt1Ve ceramic),電漿化學氣相沈積四乙基二氧化矽 (tetraethyl silicon dioxide) ("PECVDTE0S”),以及鈍化層 披復(Bosch passivation coating)。再者對於更小的貫穿孔13, 也可使用無電解電鍍鎳來填滿貫穿孔13(圖5(D)。、 步驟11:利用晶圓切割機,將探針晶9 7一 CJ 切割並取下。 步驟12:利用覆晶技術,將上述完成的探針晶# %與印刷電 路板32、结合後分離承載晶片並移除厚光阻3,完成探針卡的製作 步驟(圖5(k),未顯示印刷電路板32於圖中),探針卡組合圖參 見圖1。 上述所提出的新方法與技術,對於探針卡的測試積體電路晶 片’其設計可以根據功能積體電路(IC)設計而同步完成,目的在於 19 200912338 測試該功能積體電路(ic),包括探針陣列的設計;空間轉換器G 200912338 ―Pure (10)) to make the microprobe structure. Its structural specifications are long-term purchase m and thickness 5, while the highest displacement is fine and the contact resistance is small. However, the microprobe structure needs to be annealed for the high temperature equipment of the ankle c. Here, the process towel is very precise (4) the displacement of the microstructure is easily deformed, and the process is easy. Based on the above-mentioned reference _ external reference reading, you can know the micro-probe card made by 枷 机电 micro-electromechanical process, whether it is fine-type micro-addition, surface micro-machining or LIGA technology & 疋下—a semiconductor generation can not The lack of test components, but f high frequency, day m « m and mass manufacturing practices are more favorable to the low-cost & However, the micro-probe card made by the above micro-electromechanical technology is basically a cantilever type, which is difficult to realize the vertical probe card; in addition, it is basically not completed by using a CMOS process, and it is difficult to build a passive component and a circuit, and a passive component. It still needs to be realized on the printed circuit board; it is not easy to realize the small-turning space to turn the brain; therefore, the design and manufacture of the chicken of the present invention, regardless of how the semiconductor technology evolves, the micro-electro-probes fabricated by the micro-electromechanical It can be effectively matched, especially the micro-electromechanical microstructure can be integrated with the circuit, so the advantages of the probe card can be improved, such as smaller size design, increased signal measurement function and increased reliability. The technology of System On Chip is unmatched by conventional assembly probes. 14 200912338 SUMMARY OF THE INVENTION The present invention combines the advantages of a cantilever probe card and a _ electro-acupuncture card card, and has a higher probe density, and uses a moment _ or a plurality of κ at the same time to perform a test with a hybrid configuration. The arm probe technique cannot be overcome, so the advantages of the vertical probe card are gradually revealed. However, at present, the probe side J drawing process or the assembly material of the vertical probe card is difficult to be oiled with precision and miscellaneous control, and the lead element is introduced into the probe type, and the micro-electromechanical residual is used again. Technology, through the lithography, f casting and grinding technology for high-yield, high-precision bump probes, to complete the probe card production. Therefore, the features and advantages of the entire design and process of the present invention are as follows: (1) The vertical probe is fabricated by using a standard CMOS process and an electroformed bump (Bump), and the CMOS multilayer interconnect (interc〇nnecti〇n) is used to complete the small probe. Turn the wiring, even the test circuit. (2) Standardization of CMOS probe wafers, the position of the probe can be determined by the post-process, and the array CM0S probe wafers with different pitches can be provided. When used, the standard CM0S process and electroformed nickel can be used according to customer requirements. The block and the unique precision grinding technology make vertical probes, which can improve the problem of the traditional cantilever probe pin header, and can greatly reduce the gap of the pin. . (4) The probe and the small-to-large space converter (printed into the MOS masking chip and printed with a tin-plated solder ball (s) der Bump) directly on the back side of the wafer with the printed circuit of the probe card The board (PCB) is directly joined to greatly enhance the coplanarity of the entire probe card to less than l〇um, leading the international level of 15_2〇um. 15 200912338 (5) Using the ~® Wei material as part of the probe structure, To improve the past literature, the force of the bump or the metal layer as the probe cannot reach the contact force of several grams or more. (6) «The IIC port is 3, and the ic designer can design the test (5) (10).罙 晶片 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The CMOS probe wafer 33 (hereinafter referred to as the probe wafer) is joined to the printed circuit board 32 for connecting the test instrument. The probe wafer 33 is mainly characterized by designing a cantilever probe structure using standard (10) & round process technology, so that Probe array and space converter (cafe bribe fGrmer) - body As shown in FIG. 2, taking the probe array η of (8) as an example, the 4-space conversion || has a small transition, and the internal connection layout (lnterconnection) of the fine-cut process is included in the connection space of the probe space conversion. The connecting line is provided with a bump from the (four) miscellaneous fixed end to the edge of the U-shaped needle crystal U. The free end of the cantilever probe is provided as a probe probe, and is mostly from the needle chip 33; After the micro-electromechanical processing, the through hole = the edge of the needle wafer 33, and the conductive material % is filled, so that the solderer's wafer 33 has a solder ball on the back surface. Please note that the probe wafer of the present invention is strongly implemented. As shown in Figure 2, the 5X5 probe array is taken as an example, but it is not limited to this. In the figure, the probe of 16200912338 can be smaller and denser. The layout can be intermediate. Each of the 20 probes on the 33 can be array type 21. For the probe head 19, it can be a manufacturing process of a new $CMGS probe card surrounded by a wrapper, which is composed of several main ones = yes _ Process, micro_, simple grinding process ',, ', and the county and equipment are described as follows: CMOS TSMC provides Almost the ⑽_ [Yi in this process is not limited to {) 'probe designed structure, c s perspective 3.~ FIG. 4) with an external circuit connected to the planning. , 'U疋 uses a positive photoresist, a negative photoresist, a polyimide (polyimide) or the like spin-coated on the surface of the substrate' and is exposed by a photomask or a mesh to develop a defined bump 12 structure. From the electric mine, the main structure of the multi-layered bump 丨2 is manufactured by using a combination of a power supply, a clock tank, a heater, and a temperature-controlled feedback device. The simple polishing process is a combination of a polishing device having a polishing pad, a polishing liquid, a wafer carrier, and a polishing liquid to disturb the pump, which can be used to planarize the uniformity after plating and the structure of the bump 12 having a poor thickness. It has the characteristics of good coplanarity and small surface roughness. 17 200912338 Etching process refers to the process of removing the vias 13 and the excess Shixia substrate 4 by means of DRIE or ICP. Sometimes it can also be referred to as wet cooking process. [Manufacturing Program] Step 1: Design the bump 12 probe and circuit wiring using a standard semiconductor process such as TSMC 2p4MCM〇s.35um process (refer to Figure 3 and Figure 4). Step 2: After the finished wafer is off-line (Fig. 5(8)), the copper or metal bump 12 probe structure is fabricated by micro-electric prayer technique and ground to enhance its coplanarity and retain its thick photoresist 3 (Fig. 5). (b)). Applying an adhesive layer 38 to the carrier wafer 37 is bonded to the probe wafer 39 (Fig. 5(c)). Step 4: The crucible substrate 4 is thinned by a grinding technique (Fig. 5(d)). Step 5: Laying the polymer material 15 on the back surface of the probe wafer 39, and then defining the place where the opening is to be etched by using an excimer uv laser as a mask 16 for etching the vias 13 in the next step (Fig. 5(e)). Step 6: Etch a small portion of the hole 17 using ICP (Fig. 5 (cut. Step 7: remove the polymer material 15, re-lay a layer of polymer material 15, and then use an excimer UV laser to open the hole) The place is defined as the next icp to etch the vias 13 and the masks of the excess Shixia substrate 4 ls (graphic system). 18 200912338 5(8)fStep 8: Xian 1CP Remnant Through Hole (ViaS) 13 and Excess Shixia Substrate 4 (Figure 9: Reuse DRIE to engrave the unwanted tears 7 to make the probe away from the step ίο: Use the screen printing technique to fill the vias 13 with the solder ball material ( S〇lder)l4 'and re-weld into a solder ball. In addition, in order to make the inner wall of the through hole (10) can be insulated, the semiconductor hiding of the substrate 4 can be reduced to the leakage current of the transmission shunt (especially high frequency). P高分子lymer Deposition System (PDS), such as the brand and model: pDS2〇1(), can be used to deposit poly(p-phenylene) on the inner wall surface (P〇ly-para_xylylene; In addition to this, other methods of depositing an insulating layer may also be performed, for example, atomic layer deposition (at 〇 mic layer . Oxidized scale conductive ceramics (alumi surface xide n〇nC〇ndUCt1Ve ceramic), plasma chemical vapor deposition of tetraethyl silicon dioxide ("PECVDTE0S"), and passivation layer coating (Bosch passivation) Further, for the smaller through hole 13, the electroless nickel plating may be used to fill the through hole 13 (Fig. 5(D). Step 11: using a wafer cutter, the probe crystal 9 7 CJ is cut and removed. Step 12: Using the flip chip technology, the above-mentioned completed probe crystal #% is combined with the printed circuit board 32, and then the carrier wafer is separated and the thick photoresist 3 is removed to complete the probe card manufacturing step ( Figure 5 (k), the printed circuit board 32 is not shown in the figure), and the probe card assembly diagram is shown in Figure 1. The new method and technique proposed above, for the probe card test integrated circuit chip 'design can be based on Functional integrated circuit (IC) design and synchronization completed, the purpose is to test the functional integrated circuit (ic), including the design of the probe array, 19 200912338; space converter
Cspace tmnsformer)的設計,具有小轉大的佈線,乃是利用CMOS 的多層内連線(interconnection)完成。此測試積體電路晶片,其設 計所需要的佈局可以同時與功能IC的佈局,設置於同一批次的光 罩上,以同時下線取得,也可以與功能1C的佈局分開下線取得。 其理由是本發明的方法是以CMOS相容的方式設計,而且其探針的 尺寸也與功能積體電路(IC)的銲墊0ad)尺寸相近,有關尺寸相容性 〇 這一部份可由下列三個實施例得知。 [實施例一]懸臂式探針結構 一般而言,細節距懸臂式探針結構使用於LCD驅動1C的測試 基本上由於LCD Ic祕墊_)2上沉_是金凸塊(㈣The design of Cspace tmnsformer), with small turns and large wiring, is done using CMOS multilayer interconnects. For the test integrated circuit chip, the layout required for the design can be simultaneously set with the layout of the functional IC on the same batch of reticle to be taken offline, or separately from the layout of the function 1C. The reason is that the method of the present invention is designed in a CMOS compatible manner, and the size of the probe is also similar to the size of the pad 0ad of the functional integrated circuit (IC), and the dimensional compatibility can be The following three examples are known. [Embodiment 1] Cantilever probe structure In general, the fine pitch cantilever probe structure is used for the LCD driver 1C test. Basically, the LCD Ic pad _) 2 sinks _ is a gold bump ((4)
Bump) ’因此懸臂式探針的受力範圍為%左右,主要是避免施 力過大將金凸塊表層刮傷’所以將模擬的力量設定為⑽n施來 做模擬。 首先,考量TSMC .35 2Ρ4Μ的製程限制,可用來當作薄膜結 構的材料有氧化石夕、⑪、氮化梦、銘等。其中,以氮化秒、氧化 石夕,取佳選擇材料(因揚氏係數及降伏強度均比其餘較佳)。而且, 考1將來LCD的料_間距會越來越小,制 ^七陣及咖來模擬喋懸臂長度方面選取^^爪、 1.4mm、l.6mm、Umn^2mm。然而,光憑薄膜來支撐是不 20 200912338 夠的’在設計上保留部分的矽(厚度分別為53μηι、63μηι、73μηι及 83μιη) ’來加強支撐懸臂的強度。 經過模擬軟體的分析的結果(如圖6(a)〜6(c)),當探針量測點的 位移需為75.9μηι,而寬度設為20μηι時: a•若矽厚度53μιη、長度可選擇1mm b·若石夕厚度63μιη、長度可選擇1.2mm c. 若矽厚度73μηι、長度可選擇1.4mm d. 若矽厚度83μηι、長度可選擇l.6mm 較為符合規格要求,且其最大應力也不會超過材料本身的降伏應 力。但隨著LCD的解析度越高、製程線寬越小,其銲墊2數量將 會越小且越靠近,應用此製程方法可將每隻懸臂的寬度和間距任 意的調整。當寬度變窄時,只需調整其長度或蝕刻矽基材4的厚 度,便很輕易的達到量測應用端的需求。 例如當探針寬度為15|1111時 a•若發厚度53μηι、長度可選擇〇.95mm b. 若發厚度63μπ]、長度可選擇l lmni c. 若矽厚度73μιη、長度可選擇usmm d. 若矽厚度83μ[η、長度可選擇丨4mm [實施例二] 懸臂式探針結構可為折疊彎曲型35,以實施高密度垂直式陣 列探針卡。使用2P4M CMOS 0.35um製程,來設計凸塊12探針與 200912338 電路佈線(圖7(a)與圖7(b))。利用覆晶技術,將上述完成的晶片33 與印刷電路板32結合,完成探針卡的製作(圖1)。 [實施例三] 懸臂式探針結構可為螺旋型36,以實施高密度垂直式陣列探 針卡。使用2P4M CMOS 0.35um製程,來設計凸塊12探針與電路 佈線(圖8(a)與圖8(b))。利用覆晶技術,將上述完成的晶片33與 D 印刷電路板32結合’完成探針卡的製作(圖1)。 貫施例二與三的兩種垂直式探針結構:由於接觸點凸塊12的 共面度經過研磨後相差不多,所以將垂直式探針的受力範圍設定 • 為3g左右’並將探針接觸的力量設定為0.0294N來做模擬。 首先,仍舊以TSMC .35 2P4M的製程為例來考量其限制,該 製程可用來當作薄膜結構的材料有氧化矽、矽、氮化矽、鋁等。 〇 其中’以氣化砍、氧化砍為最佳選擇材料。若欲以探針晶片測試 功能1C為目的,考慮IC的銲墊(pad)2間距,採用探針方型面積 邊長為ΙΟΟμηι及80μιη來模擬,在寬度方面選取2〇μιη。由於光憑 薄膜來支撐是不夠的,在設計上保留部分的矽(厚度分別為2〇μπι、 ΙΟμηι及5μιη) ’來加強支撐懸臂的強度。 經過模擬軟體分析的結果(如圖9(a)〜9(c)),將安全係數定為 3,探測點的位移量定為20〜40μιη。對實施例二與三而言,若長度 ΙΟΟμιη日守· I度20μπι、砍厚度ΙΟμπι;若長度8〇μπι時:宽度ΐ6μπι、 22 200912338 石夕厚度皆能符合規格要求,且其最域力也不會超 本身的降伏應力。但隨著IC製程魏越小,其轉2數量將 小、越靠収祕躲柄,制雜财村料隻懸臂= 度和間距任意_整。當寬度變窄時,只f調整其♦ 見 基材4的厚度,便很輕易的達到量測應用端的需求/又-J矽 雖然本發明已以-較佳實施例減如上,然其並非用以限定 ΓBump) 'The force range of the cantilever probe is about %, mainly to avoid scratching the surface of the gold bump by excessive force. So set the simulated force to (10)n to simulate. First of all, consider the process limitation of TSMC .35 2Ρ4Μ, which can be used as the material of the film structure, such as oxidized stone eve, 11, nitriding dream, Ming and so on. Among them, nitriding seconds, oxidized stone eve, good choice of materials (because of the Young's coefficient and the lodging strength are better than the rest). Moreover, in the future, the material _ spacing of the LCD will be smaller and smaller, and the length of the seven-array and coffee to simulate the length of the cantilever is selected as ^^ claw, 1.4mm, l.6mm, Umn^2mm. However, the support by the film is not sufficient for the design to retain a portion of the 矽 (thickness of 53μηι, 63μηι, 73μηι, and 83μιη, respectively) to enhance the strength of the support cantilever. After the analysis of the simulated software (Fig. 6(a)~6(c)), when the displacement of the probe measuring point needs to be 75.9μηι, and the width is set to 20μηι: a• If the thickness is 53μιη, the length can be Select 1mm b·If Shishi eve thickness 63μιη, length can choose 1.2mm c. If 矽 thickness 73μηι, length can choose 1.4mm d. If 矽 thickness 83μηι, length can choose l.6mm more in line with specifications, and its maximum stress Does not exceed the material's own lodging stress. However, as the resolution of the LCD is higher and the width of the process line is smaller, the number of pads 2 will be smaller and closer. The width and spacing of each cantilever can be adjusted by applying this process. When the width is narrowed, it is easy to measure the application end by simply adjusting its length or etching the thickness of the substrate 4. For example, when the probe width is 15|1111, a• if the thickness is 53μηι, the length can be selected as 95.95mm b. If the thickness is 63μπ], the length can be selected l lmni c. If the thickness is 73μιη, the length can be selected as usmm d.矽 thickness 83μ [η, length can be selected 丨 4mm [Embodiment 2] The cantilever probe structure can be a folded curved type 35 to implement a high density vertical array probe card. Use the 2P4M CMOS 0.35um process to design the bump 12 probe and the 200912338 circuit layout (Figure 7(a) and Figure 7(b)). Using the flip chip technique, the completed wafer 33 is bonded to the printed circuit board 32 to complete the fabrication of the probe card (Fig. 1). [Embodiment 3] The cantilever probe structure may be a spiral type 36 to implement a high-density vertical array probe card. The bump 12 probe and circuit wiring were designed using a 2P4M CMOS 0.35um process (Fig. 8(a) and Fig. 8(b)). Using the flip chip technique, the completed wafer 33 is bonded to the D printed circuit board 32 to complete the fabrication of the probe card (Fig. 1). Two vertical probe structures of the second and third embodiments: since the coplanarity of the contact bumps 12 is similar after grinding, the force range of the vertical probe is set to be about 3 g. The force of the needle contact was set to 0.0294N for simulation. First, the TSMC .35 2P4M process is still taken as an example to consider its limitations. The process can be used as a material for thin film structures such as tantalum oxide, tantalum, tantalum nitride, aluminum, and the like. 〇 Among them, gasification and oxidation are the best choice materials. For the purpose of the probe wafer test function 1C, consider the pad 2 pitch of the IC, and simulate the side area of the probe to be ΙΟΟμηι and 80μηη, and select 2〇μιη in terms of width. Since it is not enough to support by the film, a part of the 矽 (thickness of 2 〇μπι, ΙΟμηι, and 5μιη) is retained in the design to enhance the strength of the support cantilever. After the results of the simulation software analysis (Fig. 9(a) to 9(c)), the safety factor is set to 3, and the displacement of the probe point is set to 20 to 40 μm. For the second and third embodiments, if the length is ΙΟΟμιη, the I degree 20μπι, the thickness is ΙΟμπι; if the length is 8〇μπι: the width ΐ6μπι, 22 200912338, the thickness of the stone can meet the specifications, and the most regional force is not Will exceed its own lodging stress. However, as the IC process is smaller, the number of transfer 2 will be smaller, and the more it will rely on the secret to hide the handle, the only miscellaneous materials will be cantilever = degree and spacing arbitrary. When the width is narrowed, only f is adjusted to see the thickness of the substrate 4, and it is easy to reach the demand of the measuring application. Although the present invention has been reduced by the above-described preferred embodiment, it is not used. To limit Γ
^發明’任何熟習此技藝者,在不脫離本翻之精神和範圍内, 备可作各種之更動與_,因此本發明之保護範圍當視後附之申 請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點 例能更明顯易懂,所附圖式之詳細說明如下:’、、 圖1.為本發明之探針卡,分別由探針晶片與印刷電路板所組成。 圖2·為本發明之CMQS垂直式探針電路佈局圖。 圖3.為本發明之CMOS 式探針魏佈局圖。 圖4.為本發明之CM〇s探針卡各種佈局方式。 圖外)至圖5⑻為本發明之CM〇s探針之製程步驟流程圖。 圖6(a)至ϋ 6_本發明實關—之細長雜針的最大應力值、 23 200912338 最大應變值、最大位移量 圖7⑻至圖7 (b)為本發明之CM0S探針實施例二的佈局上視圖與 立體圖。 0 8⑻至圖8 (b)為本發明之CMOS探針實施例三的佈局上視圖與 立體圖。 /、 最大 圖9⑻至圖9⑻為本發明之實施例二與三之垂直式探針的 應力值、最大應變值、最大位移量。The invention is to be construed as being limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features and advantages of the present invention more obvious, the detailed description of the drawings is as follows: ', Figure 1. The probe card of the present invention, respectively It consists of a probe wafer and a printed circuit board. 2 is a layout diagram of a CMQS vertical probe circuit of the present invention. Figure 3. The layout of the CMOS probe of the present invention. Figure 4. Various layouts of the CM〇s probe card of the present invention. Figure 5(8) is a flow chart showing the process steps of the CM〇s probe of the present invention. Figure 6 (a) to ϋ 6_ The present invention is the maximum stress value of the elongated needle, 23 200912338 maximum strain value, maximum displacement amount, Figure 7 (8) to Figure 7 (b) is the second embodiment of the CMOS sensor of the present invention Layout on top view with perspective view. 0 8 (8) to 8 (b) is a top view and a perspective view of a layout of a third embodiment of the CMOS probe of the present invention. /, Max. Fig. 9 (8) to Fig. 9 (8) are stress values, maximum strain values, and maximum displacement amounts of the vertical probes of the second and third embodiments of the present invention.
【主要元件符號說明】 1· 5x5之陣列探針(含凸塊) 2·小轉大時所用的pad 3. 厚光阻 4. 石夕基材⑶Substrate) 5. 金屬層(Matel) 6. 仲介窗Via (鎢金屬柱塞) 7·氧化層(Oxide) 8·多晶石夕化金屬層(n+p〇i) 9·多晶石夕化金屬層(N+p〇2) 10. 氮化層(Nitride) 11. 在印刷電路板上佈局的銅線 12·銅導柱型凸塊(COpper pilh bump) 13. DRIE或ICP蝕刻出之貫穿孔(vias) 24 200912338 14. 銲錫(Solder) 15. 高分子材料 16. 钱刻貫穿孔(vias)的遮罩 17. 使用ICP蝕刻一小部份Vias孔 18. #刻貫穿孔(vias)與多餘石夕基材的遮罩 19. 細長型探針 20. Ring 探針 21. Array 探針 22. 為Array探針的局部圖 23. 改良一型探針在單位面積10〇"mx 100//m 24. 改良二型探針在單位面積10〇"mx 100//m 25. 改良一型探針在單位面積80"m x 80/zm 26. 改良二型探針在單位面積80/zm x 80/zm 27. 下線回來後,要微電鍍的探針位置 28. 壓阻結構 29. 訊號線 30. 接 Vout 31. 接 Vin(+) 32. 印刷電路板 33. 探針晶片 34. 導電材料 25 200912338 35. 折疊彎曲型 36. 螺旋型 37. 承載晶圓(Carrier Wafer) 38. 黏著層(Adhesive Layer) 39. 探針晶圓 Γ 〇 26[Main component symbol description] 1· 5x5 array probe (including bump) 2·pad used for small turn large 3. Thick photoresist 4. Shi Xi substrate (3) Substrate) 5. Metal layer (Matel) 6. Window Via (tungsten metal plunger) 7·Oxide layer 8·Polycrystalline metal layer (n+p〇i) 9·Polycrystalline metal layer (N+p〇2) 10. Nitrogen Nitride 11. Copper wire 12·copper pilh bumps laid on a printed circuit board 13. Throughs holes (vias) etched by DRIE or ICP 24 200912338 14. Solder (Solder) 15. Polymer material 16. Mask engraved with vias 17. Use ICP to etch a small portion of Vias holes 18. #刻透孔 (vias) and the mask of the excess Shixi substrate 19. Slim type Probe 20. Ring probe 21. Array probe 22. Part of the Array probe Figure 23. Improved type 1 probe at unit area 10 〇 "mx 100//m 24. Modified type 2 probe in unit area 10〇"mx 100//m 25. Modified type 1 probe in unit area 80"mx 80/zm 26. Modified type 2 probe is returned after the line area is 80/zm x 80/zm 27. Electroplated probe position 28. Piezoresistive structure 2 9. Signal line 30. Connect Vout 31. Connect Vin(+) 32. Printed circuit board 33. Probe chip 34. Conductive material 25 200912338 35. Folded curved type 36. Spiral type 37. Carrier wafer (Carrier Wafer) 38 Adhesive Layer 39. Probe Wafer Γ 〇26
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96133175A TWI345064B (en) | 2007-09-06 | 2007-09-06 | Cmos process compatible mems probe card |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96133175A TWI345064B (en) | 2007-09-06 | 2007-09-06 | Cmos process compatible mems probe card |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200912338A true TW200912338A (en) | 2009-03-16 |
TWI345064B TWI345064B (en) | 2011-07-11 |
Family
ID=44724865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96133175A TWI345064B (en) | 2007-09-06 | 2007-09-06 | Cmos process compatible mems probe card |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI345064B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI681480B (en) * | 2018-11-21 | 2020-01-01 | 晶英科技股份有限公司 | Test needle protective sleeve structure |
TWI718938B (en) * | 2020-04-20 | 2021-02-11 | 中華精測科技股份有限公司 | Split thin-film probe card and elastic module thereof |
CN116811040A (en) * | 2023-08-26 | 2023-09-29 | 江苏鹏利芝达恩半导体有限公司 | Method, apparatus and storage medium for manufacturing ceramic rod for manufacturing vertical probe card |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111693738A (en) * | 2020-05-13 | 2020-09-22 | 中国科学院上海微系统与信息技术研究所 | Low-temperature test structure of multichannel high-frequency chip |
-
2007
- 2007-09-06 TW TW96133175A patent/TWI345064B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI681480B (en) * | 2018-11-21 | 2020-01-01 | 晶英科技股份有限公司 | Test needle protective sleeve structure |
TWI718938B (en) * | 2020-04-20 | 2021-02-11 | 中華精測科技股份有限公司 | Split thin-film probe card and elastic module thereof |
CN116811040A (en) * | 2023-08-26 | 2023-09-29 | 江苏鹏利芝达恩半导体有限公司 | Method, apparatus and storage medium for manufacturing ceramic rod for manufacturing vertical probe card |
CN116811040B (en) * | 2023-08-26 | 2023-11-10 | 江苏鹏利芝达恩半导体有限公司 | Method, apparatus and storage medium for manufacturing ceramic rod for manufacturing vertical probe card |
Also Published As
Publication number | Publication date |
---|---|
TWI345064B (en) | 2011-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI261672B (en) | Elastic micro probe and method of making same | |
TW508629B (en) | Probe card and its manufacturing method | |
KR100491453B1 (en) | Contact structure and production method thereof and probe contact assembly using same | |
TWI410648B (en) | Apparatus and method of forming a contact element on a support substrate | |
US7332921B2 (en) | Probe card and method for constructing same | |
TW200409582A (en) | Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs | |
TW200305956A (en) | A miniaturized contact spring | |
TW200806995A (en) | AC coupled parameteric test probe | |
TWI313753B (en) | Vertical probe card | |
WO2008095091A2 (en) | Structures and processes for fabrication of probe card assemblies with multi-layer interconnect | |
KR100523745B1 (en) | Microprobe and Method for Manufacturing the Same Using MEMS and Electroplating Technology | |
WO2007115053A2 (en) | Fine pitch microfabricated spring contact structure and method | |
JP2006215022A (en) | Fit-in type micro touch unit and manufacturing method therefor | |
KR100473584B1 (en) | Cantilever-type probe card and method for manufacturing the same using silicon micromachining technology | |
TW200912338A (en) | CMOS process compatible MEMS probe card | |
TW202120939A (en) | Manufacturing method for manufacturing contact probes for probe heads of electronic devices and corresponding contact probe | |
US8917106B2 (en) | Fine pitch microelectronic contact array and method of making same | |
Kim et al. | Design and fabrication of a highly manufacturable MEMS probe card for high speed testing | |
KR100827994B1 (en) | Hybrid and high strength tip structures by using binding method of different kinds of electroplating material and a manufacturing method thereof | |
KR101133407B1 (en) | A method of manufacturing for a probe and a probe device | |
TWI387754B (en) | Cmos process compatible mems probe card | |
TWI271379B (en) | Integrated probe module for LCD panel light inspection | |
KR100840765B1 (en) | Method for manufacturing probe of cantilever type | |
Wang et al. | A MEMS probe card with 2D dense-arrayed ‘hoe’-shaped metal tips | |
Wang et al. | Microcantilever probe cards with silicon and nickel composite micromachining technique for wafer-level burn-in testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |