200911685 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種複合薄膜及其製備方法,尤其涉及一 種奈米碳管複合薄膜及其製備方法。 【先前技術】 從1991年日本科學家iijima首次發現奈米碳管 (Carbon Nanotube,CNT)以來,以奈米碳管為代表的奈 米材料以其獨特的結構和性質引起了人們極大的關注。近 幾年來,隨著奈米碳管及奈米材料研究的不斷深入,其廣 闊的應用前景不_現出來。如,由於奈織管所轉的 獨特的電磁學、光學、力學、化學等性能,大量有關其在 場發射電子源、感測H、新型光學材料、軟鐵磁材料等領 域的應用研究不斷被報導。 特別地’奈米石炭管與其他材料例如金屬、半導體或者 ,合物等的複合可以實現材料的優勢互補或加強。奈米碳 管具有較大的長徑比和中空的結構,具有優異的:學^ 能,可作為-種超級纖維,對複合材料起到增強作用。此 外,奈米碳管具有優異的導熱性能,利用奈米碳 性錢該複合材料具有良好的熱傳導性。然而,太二 除了具有優異的導熱性能外’其也具有良好的導;性 故奈米碳管與其他材料例如金屬、半導體或者聚= 形成的複合材料也具有優異的導電性能。 、斤 奈米碳管複合材料的製備方法通常有原位取〜 液共混法和«共混法。奈米碳管複合薄_ =碳管= 200911685 合材料實際應用的-種重要形式。奈米碳管複合薄膜一般 通過絲網印刷法、_甩塗法、含糾料_法或者液相 化學沈積法來形成。所形成的奈米碳管複合薄膜具有敏密 性好和均勻分散性好的優點。 然而,先前的奈米碳管複合薄膜的製備方法較為複 雜,且,所製備的奈米碳管複合薄膜一般為單層結構,且 奈米碳管係沿各個方向隨機分佈在奈米碳管複合薄膜中。 這樣奈米碳管在奈米碳管複合薄膜中分散不均勻,致使得 到的奈米碳管複合薄膜機械強度和韌性較差,容易破裂, 影響了奈米碳管複合薄膜的熱學性能和電學性能。通過對 奈米碳管進行化學改性後製備的奈米碳管複合薄膜(請參 見,Surface resistivity and rheological behaviors of200911685 IX. Description of the Invention: [Technical Field] The present invention relates to a composite film and a preparation method thereof, and more particularly to a carbon nanotube composite film and a preparation method thereof. [Prior Art] Since the Japanese scientist iijima first discovered the carbon nanotube (CNT) in 1991, the nanomaterial represented by the carbon nanotube has attracted great attention due to its unique structure and properties. In recent years, with the deepening of research on carbon nanotubes and nanomaterials, its broad application prospects are not emerging. For example, due to the unique electromagnetic, optical, mechanical, and chemical properties of the Nylon tube, a large number of applications related to its field emission electron source, sensing H, new optical materials, soft ferromagnetic materials, etc. have been reported. . In particular, the composite of nanocarboniferous tubes with other materials such as metals, semiconductors, or the like can achieve complementary or enhanced advantages of the materials. The carbon nanotubes have a large aspect ratio and a hollow structure, and have excellent performance: they can be used as a kind of super fiber to enhance the composite material. In addition, the carbon nanotubes have excellent thermal conductivity, and the composite has good thermal conductivity by utilizing nanocarbon. However, in addition to its excellent thermal conductivity, Tai 2 also has a good conductivity; so the carbon nanotubes and other materials such as metal, semiconductor or poly-formed composites also have excellent electrical conductivity. The preparation method of the carbon nanotube composite material usually has the in-situ-liquid blending method and the «blending method. Nano carbon tube composite thin _ = carbon tube = 200911685 The practical application of the material - an important form. The carbon nanotube composite film is generally formed by a screen printing method, a smear coating method, a material containing method, or a liquid phase chemical deposition method. The formed carbon nanotube composite film has the advantages of good sensitivity and good uniform dispersion. However, the preparation method of the prior carbon nanotube composite film is complicated, and the prepared carbon nanotube composite film generally has a single layer structure, and the carbon nanotubes are randomly distributed in various directions in the carbon nanotube composite. In the film. Thus, the carbon nanotubes are unevenly dispersed in the carbon nanotube composite film, so that the nano carbon nanotube composite film has poor mechanical strength and toughness and is easily broken, which affects the thermal and electrical properties of the carbon nanotube composite film. A carbon nanotube composite film prepared by chemically modifying a carbon nanotube (see, Surface resistivity and rheological behaviors of
carboxylated multiwall carbon nanotube-filled PET composite fi lm,Dae Ho Shin,Journal of Appl ied P〇lymerCarboxylated multiwall carbon nanotube-filled PET composite fi lm, Dae Ho Shin, Journal of Appl ied P〇lymer
Science,V 99n3,p900-904(2006)),雖然電學性能有所 &咼,然,由於要在加熱的條件下進行,從而限制了與奈 米碳管複合的材料的類型。 因此,提供一種具有良好機械強度及韌性的奈米碳管 複合薄膜及其製備方法實為必要。 【發明内容】 一種奈米碳管複合薄膜’包括:多個奈米破管和一基 體材料,進一步的,上述的奈米碳管複合薄膜為—多層奈 米碳管複合薄膜,包括至少一奈米碳管層和至少—基體材 料層,上述的奈米碳管層為由上述的多個奈米碳管組成的 200911685 自支撐結構,且上述的多個奈米碳管基本平行於基體材料 層。該奈米碳管層通過凡德瓦爾力與基體材料層緊密結 合。該奈米碳管複合薄膜中奈米碳管為沿各向同性或一固 定方向取向或不同方向取向排列。 上述的奈米碳管層的厚度為i微米至i毫米,上述的 基體材料層中的基體材料可選自金屬材料、金屬氧化物材 料、半導體材料及聚合物材料中的一種。Science, V 99n3, p900-904 (2006)), although the electrical properties are & 咼, however, due to the heating conditions, thus limiting the type of material composited with the carbon nanotubes. Therefore, it is necessary to provide a carbon nanotube composite film having good mechanical strength and toughness and a preparation method thereof. SUMMARY OF THE INVENTION A carbon nanotube composite film includes: a plurality of nanotubes and a matrix material. Further, the above carbon nanotube composite film is a multilayer carbon nanotube composite film, including at least one nanometer. a carbon nanotube layer and at least a base material layer, wherein the carbon nanotube layer is a 200911685 self-supporting structure composed of the plurality of carbon nanotubes described above, and the plurality of carbon nanotubes are substantially parallel to the base material layer . The carbon nanotube layer is tightly bonded to the base material layer by van der Waals force. In the carbon nanotube composite film, the carbon nanotubes are oriented in an isotropic or fixed direction or in different directions. The above-mentioned carbon nanotube layer has a thickness of from i micrometer to i millimeter, and the base material in the above-mentioned base material layer may be selected from one of a metal material, a metal oxide material, a semiconductor material, and a polymer material.
-種奈求碳管複合薄膜的製備方法,包括以下步驟: 提供-奈枝管_形成於—基底;將—絲材料層覆蓋 社述的奈米碳管陣列上,及通過—施屋裝置播壓上述= 盍有基體材料層的奈米;’從而得到奈米碳管複合 薄膜。 口 上述的奈米碳管陣列的高度大於100微米。 上述的施壓裝置為一壓頭。 上述擠壓覆蓋有基體材料層的奈米碳管陣列的過程- a method for preparing a carbon tube composite film, comprising the steps of: providing - a nebula tube - formed on a substrate; a layer of a silk material covering the carbon nanotube array of the society, and passing the pressure through the housekeeping device The above = 奈 has a nano layer of a base material layer; ' thereby obtaining a carbon nanotube composite film. The height of the above carbon nanotube array is greater than 100 microns. The above pressure applying device is an indenter. The above process of extruding a carbon nanotube array covered with a layer of a base material
=平面_沿垂直於上述奈米碳管陣列生 向擠壓。 J =鐘覆財基斷觸的奈米妓㈣的過程為 知用滾軸狀壓頭沿某—固定方向碾壓。 上述擠壓覆蓋有基體材料層的奈米碳管 採用滾軸狀壓頭沿不同方向碾壓。 ⑽“為 複人彳將另—基體材料層覆蓋在所述的奈采碳管 壓二:ί ’通過上述奈米碳管複合薄臈製備方法中的施 裝置祕上述覆蓋有基體材料層的奈米碳管複合薄膜, 8 200911685 =得到—多層奈米碳管複合薄膜。也可將所述的奈米碳 …复& 4獏覆蓋在另-奈米碳管陣列上,通過上述奈米碳 :複。j膜製備方法中的施屋裝置擠墨上述覆蓋有奈米碳 =合賴的奈米碳管陣列’從而得到—多層奈米碳管複 δ涛膜。 與先前技術相比較,所述的奈米碳管複合薄膜係採用 置,直接施祕力于奈米碳管陣列和基體材料層形 層複合薄膜,因此其製備方法較為簡單。且,依據 =壓力方式的不同’可控制奈米碳管複合薄膜中奈米碳 官為沿各向同性或-固定方向取向或不同方向取向排列。 另外,由於奈米碳管陣列中奈米碳管生長均句,因而卿 f =米麟複合_巾的奈米碳料散料,使得該奈 米石反官複合薄膜具有較好的機械強度和拿刃性。 【實施方式】 膜及:3=附圖料_本技術方案奈Μ管複合薄 請參閱圖1,本技術方案第—實施例提供了一種夺米 碳管複合馳10,該奈米碳管複合_ 10為-個雙層結 構’包括.-基體㈣層12和—奈米碳 碳管層14為由多個奈米碳管組成的自支撐結構,且多= 米碳官平彳了於紐材制12。該奈米碳f 奸 瓦爾力與基體材料層12緊密έ士人。 曰 Ik凡 1…平瑞該雙層奈米碳管薄膜 紅各向同性或-固定方向取向或不同方向 取向排列。 I乂个丨』乃Γ7 9 200911685 上述的奈米碳管層14厚度為1微米至1毫米,上述的 雙層奈米碳管複合薄膜10的厚度為5微米至1毫米,上述 基體材料層12中的基體材料可選自金屬材料、金屬氧化物 材料、半導體材料及聚合物材料中的—種。 請參閱圖2’本技術方案第一實施例提供了一種製備 上述雙層奈米竣管複合薄膜10的方法,具體包括以下步 驟: 步驟一:提供一奈米碳管陣列形成於一基底,優選地, 該陣列為超順排奈米碳管陣列。 本實施例中,奈米碳管陣列的製備方法採用化學氣相 沈積法,其具體步驟包括:(a)提供—平整基底,該基底 可選用P型或N型石夕基底,或選用形成有氧化層的石夕基底, 本實施例優選為採用4英寸的石夕基底;(b)在基絲面均 勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷 (Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形 成有催化歸的·基底在·。c〜_。⑶空氣中退火約3〇分 鐘〜90分鐘;⑷將處理基底置於反應爐巾,在保護 氣體環境下加_ 5GGt〜74G°c,然後通人碳職體反應 約5分鐘〜30分鐘,生長得到奈米碳管陣列,其高度大於 微米米碳管_為多健此平行域直於基底 又==¼ g形成的純奈米碳管陣列。該奈米碳管陣列 ㈣Ϊ面積基本相同。通過上述控制生長條件,該超 财基本不含有㈣,如無定_或殘留 的催化劑金屬顆粒等。 200911685 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 質較活潑的礙氫化合物,本實施例優選的碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為 氬氣。 可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法。本實施例提供的奈米碳管陣列為單壁奈米碳管 陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。 步驟二:將一基體材料層12覆蓋在上述的奈米碳管陣 列上。 本實施例中’該基體材料層12中的基體材料可選自金 屬材料、金屬氧化物材料、半導體材料及聚合物材料中的 一種。其中金屬材料可以係銀、銦、金、銅等金屬中的— 種;金屬氧化物材料可以係銦錫氧化物、氧化鎂、二氧化 鈦等金屬氧化物中的一種;半導體材料可以係砷化鎵、砷 化銘、硫化紹、硫化鎵等半導體材料中的一種;聚合物材 料可以係共軛(導電)聚合物、熱敏/壓敏聚合物、環氧樹脂 等聚合物材料中的—種。本實施例中優選的基體材料層12 為銅治。該基體材料層12與奈米碳管陣列面積基本相同, 將述基體材料層12覆蓋在上述的奈米碳管陣列上,由於 奈米妷官具有很好的粘性,故上述基體材料層12可以比較 牢固地粘附在奈米碳管上。 步驟三:擠壓上述覆蓋有基體材料層12的奈米碳管陣 列’從而得到—個雙層奈米碳管複合薄膜1G。 上述擠壓覆蓋有基體材料層12的奈米碳管陣列的過 11 200911685 程係通過一施壓裝置進行的。 該施壓裝置施加-定的壓力於上述覆蓋有基體材料層 12的奈米碳管陣列上。在施壓的過程中,奈米碳管陣列丄 壓^的作用下會與生長的基底分離,從秘成由多個奈米 石反官組成的具有自支撐結構的奈米碳管層14,且多個奈米 石反g基本上與基體材料層12平行。其中,奈米碳管層= 與上述基體材料層12之間通過凡德瓦爾力緊密結合。本實 施例中,施壓裝置為-壓頭,壓頭表面光滑,壓頭的形狀 及擠壓方向決定製備的奈米碳管層14巾奈米碳管的排列 方式。具體地’當制平面壓頭沿垂直於上述奈米石炭管陣 列生長的基底的方向擠壓時,可獲得奈米碳管沿各向同性 排列的奈米碳管層14 ;當採用滾軸狀壓頭沿某一固定方向 碾壓時,可獲得奈米碳管沿該固定方向取向排列的奈米碳 官層14 ;當採用滾軸狀壓頭沿不同方向碾壓時,可獲得奈 米碳管沿不同方向取向排列的奈米碳管層14。 可以理解,·當採用上述不同方式擠壓覆蓋有基體材料 層12的奈米碳管陣列時,奈米碳管陣列會在壓力的作用下 傾倒,並與相鄰的奈米碳管陣列通過凡德瓦爾力相互吸 引、連接形成由多個奈米碳管組成的且具有自支撐結構的 奈米碳管層14。多個奈米碳管與基體材料層12基本平行 並沿各向同性或一固定方向取向或不同方向取向排列。另 外,在壓力的作用下,奈米碳管陣列會與生長的基底分離, 從而使得雙層奈米碳管複合薄膜1〇容易與基底脫離。 本技術領域技術人員應用白,上述奈米碳管陣列的傾 12 200911685 倒紅度(傾角)與壓力的大小有關,壓力越大,傾角越大。 製備的雙層奈米碳管複合薄膜10的厚度取決於奈米碳管 陣列的高度、基體材料層12的厚度及壓力大小。奈米碳管 陣列的咼度越大、基體材料層12越厚而施加的壓力越小, 則製備的雙層奈米;ς炭管複合薄膜1〇的厚度越大;反之,奈 米碳管陣列的高度越小、基體材料層1 2越薄而施加的壓力 越大,則製備的雙層奈米碳管複合薄膜1〇的厚度越小。 π參閱圖3,本技術方案第二實施例提供了一種三層 奈米奴官複合薄膜2〇,該三層奈米碳管複合薄膜2〇與本 技術方案第一實施的雙層奈米碳管複合薄膜10的結構基 本相同。其區別在於’該三層奈米碳管複合薄膜2〇包括一 奈米石厌官層24、第一基體材料層22和第二基體材料層26。 所述奈来碳管層24設置在所述第一基體材料層22和第二 基體材料層26之間,且該奈米碳管層24通過凡德瓦爾力 分別與第一基體材料層22和第二基體材料層π緊密結 合。上述的奈米碳管層24為由多個奈米碳管組成的自支撐 結構’且多個奈米碳管基本平行於第一基體材料層22和第 二基體材料層26。其中,第一基體材料層22和第二基體 材料層26中的基體材料可以相同也可以不同。本實施例中 優選的第一基體材料層22和第二基體材料層26均為銅 泊。該二層奈米碳管複合薄膜20中奈米碳管為沿各向同性 或一固疋方向取向或不同方向取向排列。 本技術方案第二實施例提供了一種製備上述三層奈米 碳管複合薄膜20的方法,具體包括以下步驟: 13 200911685 步驟一:採用本技術方案第一實施例提供的方法製備 一個雙層奈米碳管複合薄膜28。該雙層奈米碳管複合薄膜 28包括一奈米碳管層24和第二基體材料層26,其中該奈 米碳管層24和第二基體材料層26通過凡德瓦爾力緊密結 合0 步驟二:將第一基體材料層22覆蓋在上述奈米碳管層 24上,通過本技術方案第一實施例提供的施壓裝置擠壓上 述覆蓋有第一基體材料層22的雙層奈米碳管複合薄膜 28 ’使得第一基體材料層22通過凡德瓦爾力與奈米碳管層 24緊密結合’從而得到一個三層奈米碳管複合薄膜2〇。 請參閱圖4’本技術方案第三實施例提供了一種三層 奈米碳管複合薄膜30,該三層奈米碳管複合薄膜30與本 技術方案第一實施的雙層奈米碳管複合薄膜10的結構基 本相同。其區別在於,該三層奈米碳管複合薄膜3〇包括— 基體材料層34、第一奈米碳管層32和第二奈米碳管層36。 所述基體材料層.34設置在所述第一奈米碳管層32和第二 奈米碳管層36之間,且基體材料層34通過凡德瓦爾力分 別與第一奈米碳管層32和第二奈米碳管層36緊密結合。 所述的第一奈米碳管層32和第二奈米碳管層36為由多個 奈米碳管組成的自支撐結構,多個奈米碳管基本平行於基 體材料層34。該三層奈米碳管複合薄膜30奈米碳管為沿 各向同性或一固定方向取向或不同方向取向排列。其中第 —奈米碳管層32和第二奈米碳管層36中的奈米碳管排列 方式可以相同也可以不同。 14 200911685 本技術方案第三實施例提供了一種製備上述三層奈米 複管複合薄膜30的方法’具體包括以下步驟: 步驟一:採用本技術方案第—實施例提供的方法製備 一個雙層奈米碳管複合薄膜38。該雙層奈米碳管複合薄膜 38包括第一奈米碳管層32和一基體材料層34,其中該第 一奈米峡管層32和基體材料層34通過凡德瓦爾力緊密結 合。 步驟二:將上述雙層奈米碳管複合薄膜38覆蓋在另一 奈米石炭管_上’通過本技術方案第—實施例提供的施壓 裝置播壓上賴i有雙層奈米碳管複合薄膜38的奈米石炭 f陣列’使得雙層奈米碳管複合薄膜38中的基體材料層 34通過凡德瓦爾力與第二奈米碳管層36緊密結合,從而 得到一個三層奈米碳管複合薄膜3〇。 凊參閱圖5,本技術方案第四實施例提供了一種三層 奈求碳官複合薄膜40,該三層奈求碳管複合薄膜4〇與本 技術方案第—實,_雙層奈米碳管複合薄膜10的結構基 本相同。其區別在於,該三層奈米碳管複合薄膜4〇包括— 基體材料層46、第-奈米碳管層42和第二奈純管層私。 所述第二奈錢管層44 ^置在所述基體材料層仙和第— 不米碳g層42之間,且該基體材料層通過凡德瓦爾力 與第二奈米碳管層44緊密結合,第—奈米碳管層42通過 凡德瓦爾力與第二奈米碳管層44緊密結合。上述的第一奈 米石反官層42和第二奈米碳管層44為由多個奈米碳管組成 的自支撐結構,多個奈米碳管基本平行於紐材料層仙。 15 200911685 =三f奈米碳管複合_4G巾奈米碳管為沿各向同性或 固疋方向取向或不同方向取向排列。其中第—奈来碳管 層42和第二奈米碳管層44巾的奈米碳管排列方式 同也可以不同。 相 山—本技術方案第四實施例提供了一種製備上述三層奈米 石反笞複合薄膜4〇的方法,具體包括以下步驟: 步驟一:採用本技術方案第一實施例提供的方法製備 一個雙層奈米碳管複合細48。該雙層奈米碳管複合薄膜 48包括-基體材料層46和第二奈米碳管層44,其中該基 體材料層46和第二奈米碳管層44通過凡德瓦爾力緊密結 合。 一步驟二:將上述雙層奈米碳管複合薄膜48覆蓋在另一 奈米碳管陣列上,通過本技術方案第—實施例提供的施壓 裝置缝上述覆蓋有雙層奈米碳管複合賴48的奈来碳 官陣列’使得雙層奈米碳管複合薄膜48中的第二奈米碳管 層44通過凡德瓦爾力與第一奈米碳管層42緊密結合,從 而得到—個三層奈米碳管複合薄膜40。 可以理解,根據實際的需要,可以製備多層奈米碳管 複合薄膜,包括多個奈米碳管層和多個基體材料層,其中 奈米碳管層可以連續重疊放置,通過凡德瓦爾力與基體材 料層緊密結合。 本實施例奈米碳管複合薄膜採用施壓裝置,直接施加 壓力於覆蓋有基體材料層的奈米碳管陣列,因此其製備方 法較為簡單。且’施加壓力方式的不同,可控制奈米碳管 16 200911685 複合薄膜中奈米碳管為沿各向同性或—固定方向或不同方 向擇優取向排列。再有’由於奈来碳管陣列中奈来碳管生 長均勻’因而所製備的奈米碳管複合薄财的奈米碳管分 散均勻’使得該奈米碳管複合薄膜具有較好的機械強度和 韌性。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不忐以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案第—實施例的雙層奈米碳營複合薄 膜的結構示意圖。 圖2係本技術方案第—實施例的雙層奈米碳警複合薄 膜的製備方法的流程示意圖。 圖3係本技術方案第二實施例的三層奈米碳管複合薄 膜的結構意圖。 圖4係本技術方案第三實施例的三層奈米碳營複合薄 膜的結構意圖。 圖5係本技術方案第四實施例的三層奈米碳警複合薄 膜的結構意圖。 17 200911685 【主要元件符號說明】 雙層奈米碳管複合薄膜 1 0, 28, 38, 48 基體材料層 12, 34, 46 奈米碳管層 14, 24 三層奈米碳管複合薄膜 20, 30, 40 第一基體材料層 22 第二基體材料層 26 第一奈米碳管層 32, 42 第二奈米碳管層 36, 44 18= Plane_ is extruded perpendicular to the array of carbon nanotubes described above. J = The process of the nano-twist (four) of the clock-covered break is known to be rolled in a certain fixed direction with a roller-shaped indenter. The above-mentioned carbon nanotubes covered with a layer of the base material are rolled in different directions by a roller-shaped indenter. (10) "For the renminbi, the other layer of the base material is covered by the carbon nanotubes of the na[iota], and the pressure of the substrate is covered by the above-mentioned nanocarbon tube composite thin crucible. Carbon nanotube composite film, 8 200911685 = obtained - multi-layered carbon nanotube composite film. The nano carbon ... complex & 4 貘 can also be coated on another carbon nanotube array through the above-mentioned nanocarbon The apparatus for preparing a film of j is squeezing the above-mentioned nanocarbon tube array covered with nano carbon=relying to obtain a multi-layered carbon nanotube complex δ octa membrane. Compared with the prior art, The carbon nanotube composite film described above adopts a direct application force to the carbon nanotube array and the layer material layer composite film of the base material, so the preparation method thereof is relatively simple, and the control method can be controlled according to the different pressure modes. The carbon nanotubes in the carbon nanotube composite film are oriented in an isotropic or -fixed orientation or in different directions. In addition, since the carbon nanotubes in the carbon nanotube array grow in a uniform sentence, the Qing f = Mi Lin compound _ towel nano carbon material bulk material, making the nai The smectite composite film has good mechanical strength and sharpness. [Embodiment] Membrane and: 3 = drawing material _ the technical solution of the navel tube composite thin, please refer to FIG. 1 , the first embodiment of the technical solution Provided is a carbon nanotube composite chi 10, the carbon nanotube composite _ 10 is a double layer structure 'including. - base (four) layer 12 and - carbon carbon tube layer 14 is composed of a plurality of carbon nanotubes The composition of the self-supporting structure, and more = m carbon official level smashed in the New Zealand system 12. The nano carbon f volcanic force and the base material layer 12 close to the gentleman. 曰Ik Fan 1...Ping Rui the double layer Nai The carbon nanotube film is red isotropic or - fixed direction or oriented in different directions. I 乂 丨 Γ Γ 7 9 200911685 The above carbon nanotube layer 14 has a thickness of 1 micron to 1 mm, the above double layer of nano The carbon tube composite film 10 has a thickness of 5 μm to 1 mm, and the base material in the base material layer 12 may be selected from the group consisting of a metal material, a metal oxide material, a semiconductor material, and a polymer material. The first embodiment of the technical solution provides a preparation of the above double-layer nano-tube composite The method of the film 10 specifically includes the following steps: Step 1: providing a carbon nanotube array formed on a substrate, preferably, the array is a super-sequential carbon nanotube array. In this embodiment, the carbon nanotube array The preparation method adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be a P-type or N-type Shi Xi substrate, or a Shi Xi substrate formed with an oxide layer, this embodiment Preferably, a 4-inch stone base is used; (b) a catalyst layer is uniformly formed on the base surface, and the catalyst layer material may be selected from iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof. (c) The above-mentioned substrate formed by catalysis is in the .c~_. (3) Annealing in air for about 3 minutes to 90 minutes; (4) placing the treated substrate in a reaction towel, adding in a protective gas atmosphere _ 5GGt~74G°c, then pass the carbon body reaction for about 5 minutes to 30 minutes, and grow to obtain a carbon nanotube array whose height is larger than the micrometer carbon tube _ is more healthy. This parallel field is straighter than the base and ==1⁄4 g An array of pure carbon nanotubes formed. The carbon nanotube array (4) has substantially the same area. By controlling the growth conditions as described above, the super-capacity does not substantially contain (iv), such as amorphous or residual catalyst metal particles. In this embodiment, the carbon source gas may be a chemically active hydrogen barrier compound such as acetylene, ethylene or decane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas is argon. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above production method. The carbon nanotube array provided in this embodiment is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. Step 2: A layer of the base material 12 is overlaid on the above array of carbon nanotubes. The base material in the base material layer 12 in this embodiment may be selected from one of a metal material, a metal oxide material, a semiconductor material, and a polymer material. The metal material may be a metal such as silver, indium, gold or copper; the metal oxide material may be one of a metal oxide such as indium tin oxide, magnesium oxide or titanium dioxide; the semiconductor material may be gallium arsenide, One of semiconductor materials such as arsenic, sulfuric acid, and gallium sulfide; the polymer material may be a polymer material such as a conjugated (conductive) polymer, a heat sensitive/pressure sensitive polymer, or an epoxy resin. The preferred base material layer 12 in this embodiment is copper. The base material layer 12 and the carbon nanotube array area are substantially the same, and the base material layer 12 is covered on the above-mentioned carbon nanotube array. Since the nano-layer has a good viscosity, the base material layer 12 can be More firmly adhered to the carbon nanotubes. Step 3: extruding the above-mentioned carbon nanotube array covered with the base material layer 12 to obtain a double-layered carbon nanotube composite film 1G. The above-described extrusion of the carbon nanotube array covered with the base material layer 12 is carried out by a pressure applying device. The pressure applying means applies a predetermined pressure to the above-described carbon nanotube array covered with the base material layer 12. During the pressing process, the carbon nanotube array is separated from the growing substrate by the action of the pressure, and the carbon nanotube layer 14 having a self-supporting structure composed of a plurality of nano-stones is used. And the plurality of nano-stone anti-g are substantially parallel to the base material layer 12. Among them, the carbon nanotube layer = is tightly bonded to the above-mentioned base material layer 12 by van der Waals force. In this embodiment, the pressing device is an indenter, the surface of the indenter is smooth, and the shape and direction of the indenter determine the arrangement of the carbon nanotube layer 14 of the prepared carbon nanotube layer. Specifically, when the planar indenter is extruded in a direction perpendicular to the substrate in which the nanocarboniferous tube array is grown, the carbon nanotubes 14 are arranged along the isotropic outer carbon nanotube layer 14; When the indenter is rolled in a certain fixed direction, the nano carbon layer 14 in which the carbon nanotubes are aligned in the fixed direction can be obtained; when the roller indenter is rolled in different directions, the nanocarbon can be obtained. The nanotubes 14 are aligned in different directions. It can be understood that when the carbon nanotube array covered with the base material layer 12 is extruded in the above different manner, the carbon nanotube array is poured under the pressure and passed through the adjacent carbon nanotube array. Devalli attracts and joins each other to form a carbon nanotube layer 14 composed of a plurality of carbon nanotubes and having a self-supporting structure. The plurality of carbon nanotubes are substantially parallel to the substrate layer 12 and are oriented in an isotropic or a fixed orientation or in a different orientation. In addition, under the action of pressure, the carbon nanotube array is separated from the grown substrate, so that the double-layered carbon nanotube composite film is easily detached from the substrate. Those skilled in the art apply white, and the tilting degree (inclination angle) of the above-mentioned carbon nanotube array is related to the magnitude of the pressure. The greater the pressure, the larger the inclination angle. The thickness of the prepared double-layered carbon nanotube composite film 10 depends on the height of the carbon nanotube array, the thickness of the base material layer 12, and the pressure. The greater the twist of the carbon nanotube array, the thicker the base material layer 12 is, the smaller the pressure is applied, and the double-layered nanometer prepared; the thicker the tantalum carbon composite film has a larger thickness; otherwise, the carbon nanotubes The smaller the height of the array, the thinner the base material layer 12 and the higher the pressure applied, the smaller the thickness of the prepared double-layered carbon nanotube composite film 1 。. π Referring to FIG. 3, a second embodiment of the present invention provides a three-layer nano slave composite film 2〇, the three-layer carbon nanotube composite film 2〇 and the double-layer nano carbon of the first embodiment of the present technical solution. The structure of the tube composite film 10 is substantially the same. The difference is that the three-layered carbon nanotube composite film 2 includes a nano-stone barrier layer 24, a first base material layer 22, and a second base material layer 26. The carbon nanotube layer 24 is disposed between the first base material layer 22 and the second base material layer 26, and the carbon nanotube layer 24 passes through the van der Waals force and the first base material layer 22, respectively. The second base material layer π is tightly bonded. The carbon nanotube layer 24 described above is a self-supporting structure ' composed of a plurality of carbon nanotubes and the plurality of carbon nanotubes are substantially parallel to the first base material layer 22 and the second base material layer 26. The base material in the first base material layer 22 and the second base material layer 26 may be the same or different. The first base material layer 22 and the second base material layer 26 which are preferred in this embodiment are all copper. The carbon nanotubes in the two-layered carbon nanotube composite film 20 are oriented in an isotropic or solid-solid direction or in different directions. The second embodiment of the present invention provides a method for preparing the above three-layered carbon nanotube composite film 20, which specifically includes the following steps: 13 200911685 Step 1: Preparing a double-layered na[iota] using the method provided in the first embodiment of the technical solution Carbon tube composite film 28. The double-layered carbon nanotube composite film 28 includes a carbon nanotube layer 24 and a second matrix material layer 26, wherein the carbon nanotube layer 24 and the second matrix material layer 26 are closely combined by the van der Waals force. Second, the first base material layer 22 is covered on the carbon nanotube layer 24, and the double-layered nanocarbon covered with the first base material layer 22 is extruded by the pressing device provided by the first embodiment of the present technical solution. The tube composite film 28' is such that the first base material layer 22 is tightly bonded to the carbon nanotube layer 24 by the van der Waals force to obtain a three-layered carbon nanotube composite film. Please refer to FIG. 4'. The third embodiment of the present invention provides a three-layer carbon nanotube composite film 30, which is combined with the double-layer carbon nanotube of the first embodiment of the present technical solution. The structure of the film 10 is substantially the same. The difference is that the three-layered carbon nanotube composite film 3 includes a base material layer 34, a first carbon nanotube layer 32, and a second carbon nanotube layer 36. The base material layer .34 is disposed between the first carbon nanotube layer 32 and the second carbon nanotube layer 36, and the base material layer 34 passes through the van der Waals force and the first carbon nanotube layer, respectively. 32 and the second carbon nanotube layer 36 are tightly bonded. The first carbon nanotube layer 32 and the second carbon nanotube layer 36 are self-supporting structures composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are substantially parallel to the matrix material layer 34. The three-layered carbon nanotube composite film 30 carbon nanotubes are oriented in an isotropic or a fixed orientation or in different directions. The arrangement of the carbon nanotubes in the first carbon nanotube layer 32 and the second carbon nanotube layer 36 may be the same or different. 14 200911685 The third embodiment of the present invention provides a method for preparing the above three-layered nanocomposite composite film 30, which specifically includes the following steps: Step 1: Preparing a double-layered naphthalene by the method provided in the first embodiment of the technical solution Carbon tube composite film 38. The double-layered carbon nanotube composite film 38 includes a first carbon nanotube layer 32 and a base material layer 34, wherein the first nano-gorge layer 32 and the base material layer 34 are tightly bonded by van der Waals force. Step 2: Covering the double-layered carbon nanotube composite film 38 on another nano-carboniferous tube_on the pressure device provided by the pressure-providing device provided in the first embodiment of the present technical solution, the double-layered carbon nanotube The nano-carboniferous f array of the composite film 38 causes the matrix material layer 34 in the double-layered carbon nanotube composite film 38 to be tightly bonded to the second carbon nanotube layer 36 by the van der Waals force, thereby obtaining a three-layered nanometer. Carbon tube composite film 3〇. Referring to FIG. 5, a fourth embodiment of the present invention provides a three-layer carbon-composite composite film 40, which is a carbon nanotube composite film of the present invention, and the first embodiment of the present invention. The structure of the tube composite film 10 is substantially the same. The difference is that the three-layered carbon nanotube composite film 4 includes a base material layer 46, a first-carbon nanotube layer 42, and a second nano-tube layer. The second money tube layer 44 is disposed between the base material layer and the first-meter carbon layer 42, and the base material layer is closely coupled to the second carbon nanotube layer 44 by van der Waals force In combination, the first carbon nanotube layer 42 is tightly bonded to the second carbon nanotube layer 44 by the van der Waals force. The first nano-reverse layer 42 and the second carbon nanotube layer 44 described above are self-supporting structures composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are substantially parallel to the layer of the new material. 15 200911685 = three f carbon nanotube composite _4G towel carbon nanotubes are oriented in an isotropic or solid direction or in different directions. The arrangement of the carbon nanotubes of the first-nine carbon tube layer 42 and the second carbon nanotube layer 44 may also be different. The fourth embodiment of the present invention provides a method for preparing the above three-layered nano-small reverse ruthenium composite film, specifically comprising the following steps: Step 1: preparing a method by using the method provided in the first embodiment of the technical solution Double-layered carbon nanotube composite fine 48. The double-layered carbon nanotube composite film 48 includes a base material layer 46 and a second carbon nanotube layer 44, wherein the base material layer 46 and the second carbon nanotube layer 44 are tightly bonded by a van der Waals force. Step 2: The double-layered carbon nanotube composite film 48 is covered on another carbon nanotube array, and the double-layered carbon nanotube composite is covered by the pressure device provided by the first embodiment of the present technical solution. The Nailai carbon official array of Lai 48 makes the second carbon nanotube layer 44 in the double-layered carbon nanotube composite film 48 tightly bonded to the first carbon nanotube layer 42 by the van der Waals force, thereby obtaining one Three-layer carbon nanotube composite film 40. It can be understood that, according to actual needs, a multi-layered carbon nanotube composite film can be prepared, including a plurality of carbon nanotube layers and a plurality of base material layers, wherein the carbon nanotube layers can be continuously overlapped by Van der Waals force and The base material layer is tightly bonded. In the carbon nanotube composite film of the present embodiment, a pressure applying device is directly applied to the carbon nanotube array covered with the substrate material layer, so that the preparation method is relatively simple. And the difference in the way of applying pressure can control the carbon nanotubes. In the composite film of 200911685, the carbon nanotubes are arranged in an isotropic or fixed direction or in a different orientation. In addition, due to the uniform growth of the carbon nanotubes in the carbon nanotube array, the carbon nanotubes prepared by the thin carbon nanotubes are uniformly dispersed, which makes the carbon nanotube composite film have good mechanical strength. And resilience. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is limited thereto. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a double-layer nanocarbon camp composite film according to a first embodiment of the present technical solution. Fig. 2 is a flow chart showing the preparation method of the double-layer nano carbon police composite film of the first embodiment of the present technical solution. Fig. 3 is a structural view of a three-layered carbon nanotube composite film of a second embodiment of the present technical solution. Fig. 4 is a structural view of a three-layer nanocarbon camp composite film of a third embodiment of the present technical solution. Fig. 5 is a structural view of a three-layer nano carbon police composite film according to a fourth embodiment of the present technical solution. 17 200911685 [Description of main components] Double-layered carbon nanotube composite film 1 0, 28, 38, 48 Base material layer 12, 34, 46 Carbon nanotube layer 14, 24 Three-layer carbon nanotube composite film 20, 30, 40 first base material layer 22 second base material layer 26 first carbon nanotube layer 32, 42 second carbon nanotube layer 36, 44 18