TW200909852A - Endoscope and apparatus using the same - Google Patents

Endoscope and apparatus using the same Download PDF

Info

Publication number
TW200909852A
TW200909852A TW96132532A TW96132532A TW200909852A TW 200909852 A TW200909852 A TW 200909852A TW 96132532 A TW96132532 A TW 96132532A TW 96132532 A TW96132532 A TW 96132532A TW 200909852 A TW200909852 A TW 200909852A
Authority
TW
Taiwan
Prior art keywords
lens
internal
satisfies
group
image
Prior art date
Application number
TW96132532A
Other languages
Chinese (zh)
Other versions
TWI337262B (en
Inventor
Chun-Ling Lin
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96132532A priority Critical patent/TWI337262B/en
Publication of TW200909852A publication Critical patent/TW200909852A/en
Application granted granted Critical
Publication of TWI337262B publication Critical patent/TWI337262B/en

Links

Landscapes

  • Lenses (AREA)

Abstract

An endoscope includes a negative first lens group and a positive second lens group in this order from an object side to an image side. The negative first lens group includes a negative first lens. The negative first lens has a refractive index greater than 1.8. The endoscope satisfies the following conditions: -35 < f12/f < -10, 3.5 < f14/f < 3.9, wherein f designates a system focal length of the endoscope, f12 designates an effective focal length of the negative first lens group, and f14 designates an effective focal length of the positive second lens group. Moreover, an apparatus using the endoscope described above is provided.

Description

200909852 九、發明說明: .【發明所屬之技術領域】 本發明涉及内視鏡頭以及使用該内視鏡頭之内視鏡裴 置。 i 【先前技術】 内視鏡裝置主要被應用於工業和醫療領域。 工業用内視鏡裝置主要包括鏡頭,光纖,以及目視器, 其中,鏡頭和目視器分設於光纖之兩㈣。當操作者檢修機 器内之構件或者電路板時,可以不拆卸機器,而將鏡頭連 同,分光纖伸入機器内部。藉由目視器觀察由該鏡頭攝取 之影像,進行觀測診斷作業,待發現異常而需要進一步 修作業時,再拆卸機器,以提高維修、檢測作業之方便ς、。 醫療用内視鏡裝置近年已提出—種結構輕小之膠囊型 置’該膠囊型内視鏡裝置主要包括電源模組、照明模組、 二組以及鏡頭模組。電源模組用於向照明模組和通訊 =且提供能量’照日讀㈣於照轉囊㈣之體腔部位, 料Μ射光線。鏡賴_於攝料界物體發 使用去t i付卵像訊號,通訊模組用於發送圖像訊號。 由口服該膠囊型内視鏡裝置,首先由鏡頭模組獲 特定部位之圖像晝面,得到圖像訊號,然後通 之:::署例如無線發射方式將圖像訊號發送給身體附近 …以在身體外部顯示圖像晝面,方便後續檢測。 業心視鏡及醫療用内視鏡,鏡頭模組一方面 而要硯察到大視場角範圍内物體之晝面,另一方面,需要 200909852 具備較佳之畫面成像品質,以供精確判斷具體機件或者體 .腔部位之狀態特徵。然而,目前尚未有既能在大視場角下 .取像,又具備較好成像品質之内視鏡頭以及使用該内視鏡 頭之工業用内視鏡裝置和醫療用内視鏡裝置。 【發明内容】 有鑒於此’有必要提供一種較大視場角度和較佳成像 品質之内視鏡頭。 還有必要提供一種使用該内視鏡頭之内視鏡裝置。 一種内視鏡頭,從物方一側到像方一側依次包括具有 負光焦度之第一透鏡群組和具有正光焦度之第二透鏡群 組’第-透鏡群組包括—個具有負光焦度之第一透鏡,該 内視鏡頭滿;l如下條件公式:_35&lt;/i2//&lt;_1G,3 5&lt;/i4//&lt;3 9 矛〜&gt;1二8其中’ /表示該内視鏡頭之系統焦距,八2和仏 分,別表示該第-透鏡群組和第二透鏡群組之有效焦距,〜 表示該第一透鏡之折射率係數。 -種内視鏡裝置’包括内視鏡頭,電源模組,照明模 組’影像處理模組以及無線發射模組,該電賴組分別電 性連接該照明模組,影像處理模_無線發射模組,該内 視鏡頭攝取外界晝面,該影像處理模組將外界晝面轉換成 電訊號’該無線發射模組接收該電訊號,並將該電訊號調 製成電磁波,該内視鏡頭從物方一側到像方一側依次包括 具有負光焦度之第-透鏡群組和具有正光焦度之第二透鏡 群組、,第-透鏡群組包括—個具有負光焦度之第一透鏡, 該内視鏡頭滿足如下條件公式:_35&lt;/i2//&lt;_i〇, DA&quot; 200909852 和:…,其中,/表示該内視鏡頭之系統焦距,/12 .?/14刀別表示該第—透鏡群組和第二透鏡群組之有效隹 •距,〜表示該第一透鏡之折射率係數。 …、 由土=鏡頭以及使用該内視鏡頭之内視鏡裝置,藉 :二遠條件公式之内視鏡頭攝取外界物體之晝面,直 角度至少在139°以上,同時具有較佳之成像:質,、 【實施方式】 a 以下藉由具體實施例配合所附圖式之詳細說明, 易瞭解本發明之目的、技術内容、特點及其所達成之功田效。 请參閱圖1,-種膠囊型内視鏡I置⑽,1 類似於曰常使用之口服膠囊,主要用於攝取體腔内特定部 位之圖像晝面,並將該圖像晝面提供給檢測人員作參考。 ,内視鏡裝置⑽包括内視鏡頭1G,影像處理模組20,益 線·發射模組3 〇,電源模组4 〇以及照明模組5 〇。電源㈣ 4 〇分別電性連接影像處理模組2 〇,無線發射模組卯以及 照明齡50。電源模組4Q可以是微型電池用於提供影 像處理拉組2G,無線發射模組3()以及照日月模組正常工 作所需之能量。照明模組5G可以是微型之發光二極體,位 於内視鏡頭1〇之兩側,用於照射内視鏡裳置周圍之物 體’使周圍之物體發出内視鏡頭1()可以接收之光線。影像 處理模組烈包括感測部22(例如CCD,CM0S感測器) 和電路處理部24。感測部22藉由光電轉換過程,將由内 視鏡頭10攝取之光線轉換成電訊號,電路處理部接收 電减’進彳亍A/D轉換,編喝等將電訊號處理成圖像訊號。 200909852 無線發射模組30電性連接影像處理模組2〇,用於接收電 .路處理。卩24傳遞而來之®像訊號,並將圖像訊號調變成可 •以發射之電磁波訊號。藉由無線接收裝置(圖未示出)接 收該電磁波訊號,對電磁波訊號進行解調變,經内部電路 處理’即可在例如CRT,LCD等顯示裝置上顯示體腔内特 定部位被攝取到之圖像,以供檢測人員作為參考。 清參閱圖2 ’内視鏡頭1〇被設置成一種固定焦距鏡 頭,以滿足内視鏡裝置小封裝體積之需求。内視鏡頭 =包括若干球面透鏡和㈣面透鏡,並藉由該等透鏡模 2攝取外界物體晝面。以物方平面16和像方平面㈣ 二考’内視鏡頭ίο于該物方平面16和像方平面18之間依 ^括第-透鏡群組12和第二透鏡群組14。第—透鏡群 =12具有負光焦度’主要用於接收較大角度範圍入射之光 =心内視鏡頭1G之系統焦距為,,[透鏡群组η 距為/12’第—透鏡群組12和内視鏡頭 間取好滿足條件公式(1 ): ~35&lt;/l2//&lt;-10 ( 1 ) 公式(1 )用於限制篦一读於 以收取大角度入射之光線:二具有較小之焦距’ t角度達139。’但/12// &gt;_1G則會使鏡片過度彎曲, ;力f大之像散場曲和高階像差,而且曲率半徑小之 透鏡加工相對較為困難。 透魏群組14具有正光焦度,主制於接收經第— 透鏡鮮組之光線,並將該光線彙㈣像平面18上。假設第 200909852 一透鏡群組14之有效焦距為y14,第二透鏡群組I*和内視 ,鏡頭10系統之間最好滿足條件公式(2): 3·5&lt;/ΐ4//&lt;3.9 (2) 公式(2 )用於限制第二透鏡群組14,使鏡頭設計儘 星接近运心系統’從而使經第一透鏡群組入射之光線有效 彙聚到CCD或者CMOS影像感測裝置之感測表面上,也 即像平面18上,提升光線之利用效率。此外,為了適當之 平衡光焦度和控制總長度,限定此合理之範圍。 第一透鏡群組12從物方平面16 —侧開始,依次包括 第一透鏡122、第二透鏡124以及第三透鏡126。第一透鏡 122與第二透鏡124為彎月形凹透鏡,其凸面彎向物方平 面16,具有負光焦度,以最大限度之接收從外界入射之光 線。第一透鏡122和第二透鏡124被設置成非球面透鏡, 以·提供較小之球面像差。第一、第二透鏡122、124由方程 定其非球面形,其中,C為曲面頂點處曲率半徑之倒數, Κ為圓錐係數,Α4、Αό、As、Α10分別為非球面係數,γ 為曲面上之點距離光軸之高度,父為曲面上之點在光軸上 之投影距離曲面頂點之轴上距離。第三透鏡126為球面雙 凸透鏡,具有正光焦度,其可以進一步平衡入射光線經過 第一透鏡122與第二透鏡124所產生之球面像差和畸變像 差,提高成像品質。 第二透鏡群組14從物方平面16 —側開始,依次包括 第四透鏡142、第五透鏡W4、第六透鏡146以及第七透鏡 200909852 148。第四透鏡142為球面雙凹透鏡,具有負光焦度。第五 透鏡144為球面彎凸透鏡,其凸面彎向像方平面18,具有 正光焦度。第六透鏡146為球面雙凸透鏡,具有正光焦度。 第七透鏡148為球面彎月形凹透鏡’其凸面彎向像方平面 18,具有負光焦度。為了有效降低内視鏡頭之系統色差, 第四透鏡142、第五透鏡144、第六透鏡146 ⑽中至少有-片鏡片之阿貝係數大於6〇。 透鏡 假設第一透鏡122靠近物方平面16 一侧之透鏡表面之 有效通光孔之直徑為乃1,第一透鏡122之折射率係數為 »1 ’為了使内視鏡頭1〇具有較小之系統體積,第—透鏡 122之通光孔徑A和第一透鏡群組12之有效焦距八2之間 最好滿足條件公式(3),第一透鏡122之折射率〜滿足條 件公式(4 ): • -〇.5&lt; Dxlf12 &lt;-〇.2 (3) «ι&gt;1.8 (4) 公式(3 )設置&gt;_〇.5可以使鏡片具有較小之有 …效通光孔徑,從而該内視鏡頭1〇尺寸較小,但2 -則會使内視鏡頭1〇廣角特性變差,因此限定在此範圍内。 公式(4)設置&gt;1.8可以有效增加收取光線之角度。 假設鏡頭總長度為Γ7Χ,為兼顧内視鏡頭10之總長 度,内視鏡頭10最好進一步滿足條件公式(5): 〇.〇5&lt; f/TTL &lt;0.1 (5) 設置//J7X &lt;0.1,可以有效縮短鏡頭之長度,但//m &lt;0.05時’則會產生較大之高階像差,進而使成像品質降 200909852 低。 該内視鏡頭10還包括一光闌13。光闌13較佳地被設 置成關於物方16和像方18對稱,也即該光闌13分別與物 方16和像方18間隔設置數目基本相同之透鏡模組。例如, 該光闌13位於第三透鏡126和第四透鏡142之間,以限制 通過該内視鏡頭10之光線之通量。 内視鏡頭10各光學元件第一實施方式之光學參數如 圖3A所示,其中非球面之第一透鏡122和第二透鏡124, 其圓錐係數K以及非球面係數A#、A。八8、Αι〇如圖3b 所示,從而可以確定非球面之面形。 由圖3A所示内視鏡頭10各光學元件第一實施方式之 貝料,如曲率半徑、厚度、折射率等,利用焦距計算公式 可計算求得第一透鏡122之有效焦距/12為_7 2946111111,第 透鏡群、、且14之有效焦距為。内視鏡頭 ,土統焦距/為〇.48mm,鏡頭總長度為7 imm。容易200909852 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an internal view lens and an endoscope device using the same. i [Prior Art] Endoscope devices are mainly used in industrial and medical fields. The industrial endoscope device mainly includes a lens, an optical fiber, and a visual device, wherein the lens and the visual device are respectively disposed on two (four) optical fibers. When the operator overhauls the components or boards in the machine, the lens can be connected without the machine being disassembled, and the fiber is inserted into the machine. Observing the image taken by the lens by the visual device, and performing observation and diagnosis work. When it is necessary to further repair the work after the abnormality is found, the machine is disassembled to improve the convenience of maintenance and inspection. Medical endoscope devices have been proposed in recent years - a capsule type with a light structure. The capsule endoscope device mainly includes a power module, a lighting module, two groups, and a lens module. The power module is used to provide illumination to the lighting module and communication and to read (4) the body cavity of the sac (4). Mirror _ _ in the object of the object of the use of the use of t i to pay the image signal, the communication module is used to send image signals. By taking the capsule endoscope device orally, the image module of the specific part is obtained by the lens module first, and the image signal is obtained, and then: the::, for example, the wireless transmission method transmits the image signal to the vicinity of the body... The image is displayed outside the body for subsequent detection. On-the-spot vision mirrors and medical endoscopes, on the one hand, the lens module needs to observe the surface of the object within a large angle of view. On the other hand, it needs 200909852 to have better image quality for accurate judgment. State characteristics of the machine or body. However, there is currently no internal view lens capable of taking images at a large angle of view, and having an excellent image quality, and an industrial endoscope device and a medical endoscope device using the endoscope. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an internal view lens with a large field of view angle and better imaging quality. It is also necessary to provide an endoscope device using the intraocular lens. An intraocular lens includes a first lens group having a negative refractive power and a second lens group having a positive refractive power from a side of the object side to the side of the image side. The first lens group includes a negative The first lens of the power, the internal lens is full; l the following conditional formula: _35 &lt; / ii / / &lt; _1G, 3 5 &lt; / i4 / / &lt; 3 9 spear ~ &gt; 1 2 8 where ' / Indicates the focal length of the system of the internal lens, 八 2 and 仏, not the effective focal length of the first lens group and the second lens group, and 〜 indicates the refractive index coefficient of the first lens. The endoscope device includes an internal view lens, a power module, a lighting module, an image processing module and a wireless transmitting module. The electric circuit group is electrically connected to the lighting module, and the image processing module _ wireless transmitting mode The image processing module converts the external surface into an electrical signal. The wireless transmitting module receives the electrical signal and modulates the electrical signal into an electromagnetic wave. The side from side to image side includes a first lens group having a negative power and a second lens group having a positive power, and the first lens group includes a first one having a negative power Lens, the internal lens satisfies the following conditional formula: _35&lt;/i2//&lt;_i〇, DA&quot; 200909852 and :..., where / indicates the focal length of the system of the internal lens, /12 .?/14 The effective 隹 distance of the first lens group and the second lens group, 〜 indicates the refractive index coefficient of the first lens. ..., by the soil = lens and the endoscope device using the inner lens, by the two-dimensional conditional formula, the inner view lens picks up the outer surface of the external object, the straight angle is at least 139 ° or more, and has better imaging quality: [Embodiment] The following is a detailed description of the specific embodiments with reference to the detailed description of the drawings, and it is easy to understand the object, the technical content, the features, and the merits of the invention. Please refer to Figure 1, a capsule type endoscope I (10), 1 similar to the oral capsule used in the body, mainly used to take images of specific parts of the body cavity, and provide the image to the detection Personnel for reference. The endoscope device (10) includes an interior lens 1G, an image processing module 20, a benefit line, a transmitting module 3, a power module 4, and a lighting module 5. Power supply (4) 4 〇 Electrically connected to the image processing module 2 〇, wireless transmitter module 卯 and lighting age 50. The power module 4Q may be a micro battery for providing the image processing pull group 2G, the wireless transmitting module 3 (), and the energy required for the normal operation of the sun and moon modules. The illumination module 5G may be a miniature light-emitting diode, located on both sides of the inner-view lens 1 ,, for illuminating the object around the endoscope's skirting 'to make the surrounding object emit light that the inner-view lens 1 () can receive . The image processing module includes a sensing unit 22 (e.g., a CCD, a CMOS sensor) and a circuit processing unit 24. The sensing unit 22 converts the light taken by the inside lens 10 into an electric signal by a photoelectric conversion process, and the circuit processing unit receives the electric subtraction A/D conversion, and the electric signal is processed into an image signal. 200909852 The wireless transmitting module 30 is electrically connected to the image processing module 2〇 for receiving electrical processing. The 像24 transmits the signal like the signal, and the image signal is modulated into an electromagnetic wave signal that can be transmitted. The electromagnetic wave receiving device (not shown) receives the electromagnetic wave signal, demodulates the electromagnetic wave signal, and processes the internal electromagnetic circuit to display a specific portion of the body cavity to be captured on a display device such as a CRT or an LCD. Like, for the tester as a reference. Referring to Figure 2, the 'inside view lens 1' is set to a fixed focal length lens to meet the small package size of the endoscope device. The inner view lens includes a plurality of spherical lenses and (four) face lenses, and the outer surface of the outer object is taken by the lens molds 2. The object-plane 16 and the image-side plane (4) are used to refer to the first lens group 12 and the second lens group 14 between the object plane 16 and the image plane 18. The first lens group = 12 has a negative power 'mainly used to receive a large angle range of incident light = the system focal length of the intracardiac lens 1G is, [the lens group η distance is /12' first lens group 12 and the internal view lens are taken to satisfy the conditional formula (1): ~35&lt;/l2//&lt;-10 (1) Formula (1) is used to limit the reading of light at a large angle of incidence: The smaller focal length 't angle is 139. 'But /12//gt;_1G will make the lens excessively curved; the force f is large and the high-order aberration, and the lens with a small radius of curvature is relatively difficult to process. The transmissive group 14 has a positive power, which is mainly for receiving the light passing through the first group of lenses, and converges the light on the image plane 18. Assuming that the effective focal length of a lens group 14 is y14, the second lens group I* and the inner lens, the lens 10 system preferably satisfies the conditional formula (2): 3·5&lt;/ΐ4//&lt;3.9 (2) Equation (2) is used to limit the second lens group 14 so that the lens is designed to be close to the centering system' so that the light incident through the first lens group is effectively concentrated to the CCD or CMOS image sensing device. On the surface of the measurement, that is, on the image plane 18, the utilization efficiency of the light is improved. In addition, this reasonable range is limited in order to properly balance the power and control the total length. The first lens group 12 includes a first lens 122, a second lens 124, and a third lens 126 in this order from the side of the object plane 16 . The first lens 122 and the second lens 124 are meniscus concave lenses whose convex surface is curved toward the object plane 16 and has a negative power to receive the light incident from the outside to the maximum extent. The first lens 122 and the second lens 124 are arranged as aspherical lenses to provide a small spherical aberration. The first and second lenses 122 and 124 are determined by an aspherical shape, wherein C is the reciprocal of the radius of curvature at the apex of the curved surface, Κ is a conic coefficient, Α4, Αό, As, and Α10 are aspherical coefficients, respectively, and γ is a curved surface. The point above is the height from the optical axis, and the parent is the distance from the point on the surface of the curve on the optical axis from the axis of the apex of the surface. The third lens 126 is a spherical lenticular lens having positive refractive power, which can further balance the spherical aberration and distortion aberration generated by the incident light rays passing through the first lens 122 and the second lens 124 to improve the imaging quality. The second lens group 14 includes, from the object side plane 16 side, a fourth lens 142, a fifth lens W4, a sixth lens 146, and a seventh lens 200909852 148. The fourth lens 142 is a spherical biconcave lens having a negative refractive power. The fifth lens 144 is a spherical convex lens whose convex surface is curved toward the image plane 18 and has a positive power. The sixth lens 146 is a spherical lenticular lens having positive power. The seventh lens 148 is a spherical meniscus concave lens' whose convex surface is curved toward the image plane 18 and has a negative refractive power. In order to effectively reduce the system chromatic aberration of the intraocular lens, at least one of the fourth lens 142, the fifth lens 144, and the sixth lens 146 (10) has an Abbe's coefficient greater than 6 〇. The lens assumes that the diameter of the effective light-passing hole of the lens surface of the first lens 122 near the object plane 16 side is 1, and the refractive index coefficient of the first lens 122 is »1 ' in order to make the inner lens 1〇 smaller. The system volume preferably satisfies conditional formula (3) between the clear aperture A of the first lens 122 and the effective focal length 八 of the first lens group 12, and the refractive index of the first lens 122 satisfies the conditional formula (4): • -〇.5&lt; Dxlf12 &lt;-〇.2 (3) «ι&gt;1.8 (4) Formula (3) Setting &gt;_〇.5 allows the lens to have a smaller effective aperture, so that The size of the internal lens 1 较小 is small, but 2 - will make the wide-angle characteristics of the internal lens 1 变 worse, so it is limited to this range. Equation (4) setting &gt; 1.8 can effectively increase the angle of light collection. Assuming that the total length of the lens is Γ7Χ, in order to balance the total length of the inner lens 10, the inner lens 10 preferably further satisfies the conditional formula (5): 〇.〇5&lt;f/TTL &lt;0.1 (5) setting // J7X &lt;; 0.1, can effectively shorten the length of the lens, but / / m &lt; 0.05 when 'will produce large higher-order aberrations, which will make the imaging quality lower than 200089852. The inner lens 10 further includes a diaphragm 13. The aperture 13 is preferably arranged to be symmetrical with respect to the object side 16 and the image side 18, i.e., the aperture 13 is spaced apart from the object side 16 and the image side 18 by a substantially identical number of lens modules. For example, the aperture 13 is positioned between the third lens 126 and the fourth lens 142 to limit the flux of light passing through the intraocular lens 10. The optical parameters of the first embodiment of each optical element of the inner lens 10 are as shown in Fig. 3A, wherein the aspherical first lens 122 and the second lens 124 have a conic coefficient K and aspheric coefficients A#, A. Eight 8, Αι〇 as shown in Figure 3b, so that the aspherical shape can be determined. The bead of the first embodiment of the optical element of the internal lens 10 shown in FIG. 3A, such as the radius of curvature, the thickness, the refractive index, etc., can be calculated by using the focal length calculation formula to obtain the effective focal length of the first lens 122 / 12 is _7 2946111111, the effective focal length of the lens group, and 14 is . The internal lens, the focal length of the earth system is 〇.48mm, and the total length of the lens is 7 imm. easily

十算得到 /4=^5.331,/14//= 3.711,^//^=-0.4798,//77X 0.067’分別滿足該廣角透鏡1〇之成像條件公式(ο」、 〈u//&lt; 1〇 ’ 公式(2) 35&lt;α4/,&lt;3·9,公式(〈乃 1仏 2 Α 式(5 ) 0.05&lt; //77Χ &lt;〇·ΐ。其中,第一透鏡 122 ^射率係數〜=1•謹,滿足公式⑷wi&gt;18 規144知结 條件公!&quot;透鏡146之阿貝係數均大於60。在滿足上述 差滿式之第二實施方式之内視鏡頭10,其產生之各種像 /浐:视鏡裴置之成像要求,如以下實驗結果所示。 月參閱圖5A第一實施方式之廣角透鏡1〇之縱向球面 11 200909852 像差圖’縱軸表示通光孔徑大小,橫軸表示縱向球面像差 •數值。在各縱向球面像差圖中,分別為針對g線(綠 .350nm),d 線 〇值 55〇nm),c 線 u值 7〇〇nm)而觀察到 之在不同通光孔徑下所對應之縱向球面像差值。其中,g 線產生之縱向球面像差值在(也14麵,—請随)範圍内, d線產生之縱向球面像差值在(_〇 〇4mm,〇 〇2mm )範圍内, c線產生之縱向球面像差值在(〇 〇〇mm,〇 〇6mm)範圍内。 總體而言,第一實施方式之廣角透鏡1〇對可見光產生之縱 向球面像差值在(-0.20mm,0.20mm)範_,滿足内視鏡 裝置大角度成像要求。 請參閱圖5B和5C第一實施方式之廣角透鏡1〇之像 散場曲(field curvature)圖和畸變(dist〇rti〇n)圖,圖中 縱軸表示像點距離内視鏡頭1〇中心光軸之高度。在全視場 角.度Μ為149.72°之範圍内產生之子午場曲值和弧矢場曲 值均在(-1mm,1mm )範圍内,最大畸變率在(_ 2〇%,2〇%) 内’滿足内視鏡裝置大角度成像要求。 内視鏡頭10各光學元件第二實施方式之光學參數如 圖4A所示’其中非球面之第一透鏡122和第二透鏡124, 其圓錐係數K以及非球面係數八4、A6、A8、A10如圖4B 戶斤示。 由圖4A所示内視鏡頭1〇各光學元件第二實施方式之 育料’可計算求得第一透鏡122之有效焦距,12為 -16.4351mm ’第二透鏡群組14之有效焦距八4為 1.8290mm。内視鏡頭1〇之系統焦距/為0 50nlm,鏡頭總 12 200909852 長度 2TI 為 7.12mm。容易計算得到 /12//=_32.778,yi4//= • 3.648,/^//^==-0.2072,//77^= 0 070,分別滿足該廣角透 .鏡10之成像條件公式(U _35&lt;/i2//&lt;-10,公式(2) 3.5&lt; /14//&lt;3.9,公式(3)-0.5(/^//^ &lt;-〇.2 和公式(5)0·05&lt;//Τ7Χ &lt;0.1。其中,第一透鏡m之折射率係數〜=1·8135,滿足 Α式(4)/201.8,第五透鏡144和第六透鏡146之阿貝係 數均大於60。在滿足上述條件公式之第二實施方式之内視 鏡頭10,其產生之各種像差滿足内視鏡裝置之成像要求, 如以下實驗結果所示。 請參閱圖6A第一實施方式之廣角透鏡1〇之縱向球面 像差圖’其中’ g線產生之縱向球面像差值在 (-〇.12mm,-0.〇6mm)範圍内,d線產生之縱向球面像差值 在(-0.02mm,0.06mm)範圍内,〇線產生之縱向球面像差 值在(0.04mm,0.08mm)範圍内。總體而言,第一實施方 式之廣角透鏡10對可見光產生之縱向球面像差值在 (-〇.2〇mm,〇.2〇mm)範圍内,滿足内視鏡裝置大角度成像 ί 要求。 ' 請參閱圖6Β和6C第一實施方式之廣角透鏡1〇之像 -散場曲圖和畸變圖。在全視場角度如為139.2。之範圍内產 生之子午場曲值和弧矢場曲值均在(-lmm,lmm)範圍内, 最大畸變率在(—20%,20%)内,滿足内視鏡裝置大角度 成像要求。 上述内視鏡頭10以及使用該内視鏡頭之内視鏡裝 置,至少藉由成像條件公式-35&lt;/12//&lt;-i〇,3.5&lt;yi4/y&lt;3 9 13 200909852 和,&gt;1.8,可使視場角度至少達到139。以上, •較好之成像品質。進-步藉由條件公式_〇5&lt; 、兼1 .和o.owrm,使内視鏡頭1〇和内視鏡裝= 有較小之體積和長度。 υ具 綜上所述,丰發明符合發明專利要件,麦依 利申請。惟,以上該者僅為本發明之較佳實=出專 悉本案技藝之人士,在援依本案創作 :凡熟 或變化,皆應包含於以下申靖: &lt;等效修舞 !3被設置位於第—透鏡群彳_内°例如,光閑 逐鲵鮮組12相鄰透鐘掇 第二透鏡群組14相_ @ # n ,見拉、、且之間,或者 料⑽組之間,或者沒有光闌13。 14 200909852 【圖式簡單說明】 圖1為内視鏡裝置之模組示意圖。 圖2為圖1所示之内視鏡頭之光學元件示意圖。 圖3A為圖2所不之第一實施方式之内視鏡頭之光學 參數。 圖3B為圖2所示之第一實施方式之内視鏡頭之非球 面係數。 參數 圖4A為圖2所示之第二實施方式之内視鏡頭之光學 之内視鏡頭之非球 圖4B為圖2所示之第二實施方式 面係數。 圖5A為圖2所示之第一音# 士 4 球面像差目。 #實&amp;方式之内視鏡頭之縱向 内視鏡頭之像散 ,圖5B為圖2所示之第一實施方式之 場曲圖。 圖5C為圖2所示一 圖 圖 弟一實加方式之内視鏡頭之畸變 圖6A為圖2所示之一给 球面像差圖 圖6B為圖2所 侩兰園„ 卑一貝知方式之内視鏡頭之縱向 場曲圖。 _ ' —只…々八^内視鏡頭之像散 圖6C為圖。一 圖2所不之第二實施方式之 不之第二實施方式之 内視鏡頭之畸變 15 200909852 【主要元件符號說明】 内視鏡裝置 100 第二透鏡群組 14 内視鏡頭 10 第一透鏡 122 影像處理模組 20 第二透鏡 124 無線發射模組 30 第三透鏡 126 電源核組 40 第四透鏡 142 照明模組 50 第五透鏡 144 第一透鏡群組 12 第六透鏡 146 光闌 13 第七透鏡 148 16Ten calculations get /4=^5.331, /14//= 3.711, ^//^=-0.4798, //77X 0.067' respectively satisfy the imaging condition formula of the wide-angle lens 1 (ο", <u//&lt; 1〇' Formula (2) 35&lt;α4/, &lt;3·9, Formula (<乃1仏2 Α Formula (5) 0.05&lt; //77Χ &lt;〇·ΐ. Among them, the first lens 122 Rate coefficient ~=1• ,, satisfying the formula (4) wi>18 gauge 144 knowing the condition of the public!&quot;The Abbe coefficient of the lens 146 is greater than 60. The inner view lens 10 of the second embodiment satisfying the above-described differential full form, Various image/浐 generated: imaging requirements of the mirror, as shown in the following experimental results. See Figure 5A for the wide-angle lens 1 of the first embodiment of the first embodiment of the lens 1 200909852 aberration axis 'vertical axis' indicates the clear aperture The size and horizontal axis represent the longitudinal spherical aberration value. In each longitudinal spherical aberration diagram, for the g line (green.350nm), the d line 〇 value is 55〇nm), and the c line u value is 7〇〇nm) The longitudinal spherical aberration values corresponding to the different apertures are observed. Wherein, the longitudinal spherical aberration value produced by the g-line is in the range of (also 14 faces, - please follow), and the longitudinal spherical aberration value generated by the d-line is in the range of (_〇〇4 mm, 〇〇2 mm), and the c-line is generated. The longitudinal spherical aberration value is in the range of (〇〇〇mm, 〇〇6mm). In general, the wide-angle lens 1 of the first embodiment has a longitudinal spherical aberration value for visible light (-0.20 mm, 0.20 mm), which satisfies the requirements of the wide-angle imaging of the endoscope device. Referring to the astigmatism field curvature diagram and the distortion (dist〇rti〇n) diagram of the wide-angle lens 1 第一 of the first embodiment of FIGS. 5B and 5C, the vertical axis represents the image point distance from the inner lens 1 〇 central light The height of the shaft. The meridional curvature and the sagittal field curvature generated in the range of full field angle Μ149.72° are in the range of (-1mm, 1mm), and the maximum distortion rate is (_ 2〇%, 2〇%). Internal 'satisfy the large angle imaging requirements of endoscopic devices. The optical parameters of the second embodiment of the optical elements of the inner lens 10 are as shown in FIG. 4A, wherein the aspherical first lens 122 and the second lens 124 have a conic coefficient K and an aspheric coefficient of eight 4, A6, A8, A10 is shown in Figure 4B. The effective focal length of the first lens 122 can be calculated from the interior lens 1 of the second embodiment of the optical element shown in FIG. 4A, and the effective focal length of the first lens 122 is 12 - 16.4351 mm. It is 1.8290mm. The system focal length of the internal lens 1〇 is 0 50nlm, the total lens 12 200909852 length 2TI is 7.12mm. It is easy to calculate /12//=_32.778, yi4//= • 3.648, /^//^==-0.2072, //77^= 0 070, which respectively satisfy the imaging condition formula of the wide-angle lens 10 ( U _35&lt;/i2//&lt;-10, formula (2) 3.5&lt;/14//&lt;3.9, formula (3)-0.5 (/^//^ &lt;-〇.2 and formula (5) 0·05&lt;//Τ7Χ &lt;0.1, wherein the refractive index coefficient of the first lens m is =1·8135, which satisfies the formula (4)/201.8, and the Abbe coefficients of the fifth lens 144 and the sixth lens 146 are both More than 60. In the internal view lens 10 of the second embodiment satisfying the above conditional formula, various aberrations generated satisfy the imaging requirements of the endoscope device, as shown by the following experimental results. Please refer to FIG. 6A for the first embodiment. The longitudinal spherical aberration diagram of the wide-angle lens 1〇's longitudinal spherical aberration produced by the 'g line is in the range of (-〇.12mm, -0.16mm), and the longitudinal spherical aberration value produced by the d-line is (- In the range of 0.02 mm, 0.06 mm), the longitudinal spherical aberration value generated by the 〇 line is in the range of (0.04 mm, 0.08 mm). In general, the longitudinal spherical aberration value of the wide-angle lens 10 of the first embodiment for visible light In (-〇.2〇mm,〇.2〇mm) Inside, it satisfies the requirements of the wide-angle imaging of the endoscope device. 'Please refer to the image of the wide-angle lens 1〇-scatter field curve and distortion diagram of the first embodiment of Figs. 6A and 6C. The full field of view angle is 139.2. The internal meridional field curvature and the sagittal field curvature are both in the range of (-lmm, lmm), and the maximum distortion rate is within (-20%, 20%), which satisfies the requirements of the wide-angle imaging of the endoscope device. The lens 10 and the endoscope device using the inner lens are at least by the imaging condition formula -35 &lt;/12//&lt;-i〇, 3.5&lt;yi4/y&lt;3 9 13 200909852 and, &gt; 1.8, Can make the field of view angle at least 139. Above, • Better imaging quality. Step-by-step conditional formula _〇5&lt;, both 1 and o.owrm, make the internal lens 1〇 and the endoscope mounted = There is a small volume and length. In summary, the invention is in line with the invention patent requirements, and Mai Yili applied. However, the above is only the better of the present invention = the person who knows the skill of the case, Created according to this case: Any familiar or changed, it should be included in the following Shen Jing: &lt;Equivalent Xiu Dance! 3 is set in the first lens彳_内° For example, the light idle group 12 is adjacent to the second lens group 14 phase _ @ # n , see between the pull, and between, or between the feed (10) groups, or there is no stop 13 . 14 200909852 [Simple description of the diagram] Figure 1 is a schematic diagram of the module of the endoscope device. 2 is a schematic view of the optical components of the intraocular lens shown in FIG. 1. Fig. 3A is an optical parameter of the intraocular lens of the first embodiment of Fig. 2; Fig. 3B is an aspherical coefficient of the intraocular lens of the first embodiment shown in Fig. 2. 4A is an aspherical view of the optical internal lens of the second embodiment shown in Fig. 2. Fig. 4B is a second embodiment of the surface coefficient shown in Fig. 2. Fig. 5A is a first spherical surface of the spherical surface shown in Fig. 2. The astigmatism of the internal view lens of the #real &amp; aspect view lens, and Fig. 5B is the field curvature diagram of the first embodiment shown in Fig. 2. FIG. 5C is a diagram showing the distortion of the internal view lens of FIG. 2, FIG. 6A is a diagram showing spherical aberration of FIG. 2, FIG. 6B is a schematic diagram of the blue orchid of FIG. The longitudinal field curvature of the internal view lens. _ '-only... 々8^ astigmatism lens astigmatism diagram 6C is a picture. A second embodiment of the second embodiment is not the second embodiment of the internal view lens Distortion 15 200909852 [Main component symbol description] Endoscope device 100 Second lens group 14 Internal lens 10 First lens 122 Image processing module 20 Second lens 124 Wireless transmitting module 30 Third lens 126 Power core group 40 fourth lens 142 illumination module 50 fifth lens 144 first lens group 12 sixth lens 146 aperture 13 seventh lens 148 16

Claims (1)

200909852 十、申請專利範圍 .h :::視鏡頭,從物方一側到像方— .貞光焦度之第-透鏡群師具有正光 括j 透於,二個具有負光焦度之第-_35:;、:於·该内視鏡頭滿足如下條件公式: 12/&lt;- 0 ’ 3.5&lt;/14//&lt;3·9 和 ,苴中 焦距’…4分別表示該第: 二透鏡群組之有效焦距,…表示該第〜 遗1¾之折射率係數。 2.如申請專利範圍第&quot;員所述之 錢群組從該第-透鏡到像方-侧還依次包括且二 =度之第二透鏡和具有正光焦度之第三透鏡,該第 1鏡和第二透鏡為向物方—側凸起之非球面彎月形 ,凹透鏡,該第三透鏡為球面雙凸透鏡。 17 200909852 5. 如申請專利範圍第1項所述之内視鏡頭,其中該内視 鏡頭滿足條件公式_0.5&lt; IV/12 &lt;-0.2,其中,Α表示 該第一透鏡靠近物方一側透鏡表面之有效通光孔之直 徑。 6. 如申請專利範圍第1項所述之内視鏡頭,其中該内視 鏡頭滿足條件公式0.05&lt;//Γ7Χ &lt;0.1,其中,TTL表示 内視鏡頭系統之總長度。 7. 如申請專利範圍第1項所述之内視鏡頭,其中該内視 鏡頭滿足條件公式2ω &gt;139。’其中ω表示該内視鏡頭 之半視場角。 8. 如申請專利範圍第1項所述之内視鏡頭,其中該内視 鏡頭還包括一光闌’該光闌位於該第三透鏡和第四透 鏡之間。 9_· 一種内視鏡裝置,包括内視鏡頭,電源模組,照明模 組,影像處理模組以及無線發射模組,該電源模組分 別電性連接該照明模組,影像處理模組和無線發射模 組,該内視鏡頭攝取外界晝面,該影像處理模組將外 界晝面轉換成電訊號,該無線發射模組接收該電訊 號,並將該電訊號調製成電磁波,其改良在於:該内 視鏡頭從物方一側到像方一侧依次包括具有負光焦度 之第一透鏡群組和具有正光焦度之第二透鏡群組’,、= 第一透鏡群組包括一個具有負光焦度之第—透鏡,該 内視鏡頭滿足如下條件公式:_35&lt;八以&lt;_1〇,3 5〈八^ &lt;3.9和其中,;表示該内視鏡頭之系統焦距4, 18 200909852 mr別r該第—透鏡群組和帛二透鏡群組之 -如:請專利範圍第9項所述之内視鏡二中該第 第一透鏡到像方—側還依次:括具有 第一;;^ 透鏡和具有正光焦度之第三透鏡,該 ;一透鏡和弟二透鏡為向物方-側凸起之非球面彎月 /凹透鏡,該第三透鏡為球面雙凸透鏡。 11.如申凊專利範圍第9項所述之内視鏡裝置,其中該第 二透鏡群組從物方—側到像方―側依次包括具有負光 =度之第四透鏡,具有正光焦度之第五透鏡和第六透 鏡、,具有負光焦度之第七透鏡,該第四透鏡為球面雙 凹透鏡°亥第五透鏡為向像方一側凸起之球面彎凸透 鏡’该第六透鏡為球面雙凸透鏡,該第七透鏡為向像 .方一側凸起之球面彎月形凹透鏡。 12 如申請專利範圍第η項所述之内視鏡裝置,其中該第 四透鏡、第五透鏡、第六透鏡和第七透鏡中至少—個 透鏡之阿貝係數大於60。 13.如申請專利範圍第9項所述之内視鏡裝置,其中該内 視鏡頭滿足條件公式·0 5&lt;仏仏2 &lt;_〇 2,其中,h表 示該第一透鏡靠近物方一側透鏡表面之有效通光孔之 直徑。 14.如申請專利範圍第9項所述之内視鏡裝置,其中該内 視鏡頭滿足條件公式0.05(//77^ &lt;〇.1,其中,Γ7Ζ表 示内視鏡頭系統之總長度。 19 200909852 15.如申請專利範圍第9項所述之内視鏡裝置,其中該内 視鏡頭滿足條件公式2ω &gt;139°,其中ω表示該内視鏡 頭之半視場角。 20200909852 X. Patent application scope.h :::Viewing lens, from the side of the object to the image side. - The first lens of the lens - the lens group has a positive light, and the other has a negative power - _35:;,: The inner lens satisfies the following conditional formula: 12/&lt;- 0 '3.5&lt;/14//&lt;3·9 and, 苴 focal length '...4 respectively denote the first: two lenses The effective focal length of the group, ... indicates the refractive index coefficient of the first to last 13⁄4. 2. The money group described in the patent application scope &quot; from the first lens to the image side-side also includes a second lens of two degrees and a third lens having positive power, the first The mirror and the second lens are aspherical meniscus convex toward the object side, and the concave lens is a spherical lenticular lens. The invention relates to an internal view lens according to claim 1, wherein the internal lens satisfies the conditional formula _0.5 &lt; IV/12 &lt;-0.2, wherein Α indicates that the first lens is close to the object side The diameter of the effective light-passing aperture on the side of the side lens. 6. The intraocular lens of claim 1, wherein the internal lens satisfies the conditional formula 0.05 &lt;//Γ7Χ &lt;0.1, wherein TTL represents the total length of the internal lens system. 7. The intraocular lens of claim 1, wherein the internal lens satisfies the conditional formula 2ω &gt; 139. Where ω represents the half angle of view of the intraocular lens. 8. The intraocular lens of claim 1, wherein the internal lens further comprises a diaphragm 该 between the third lens and the fourth lens. 9_· An endoscope device comprising an internal view lens, a power module, a lighting module, an image processing module and a wireless transmitting module, wherein the power module is electrically connected to the lighting module, the image processing module and the wireless a transmitting module that takes in an external image. The image processing module converts the external surface into an electrical signal. The wireless transmitting module receives the electrical signal and modulates the electrical signal into an electromagnetic wave. The improvement is as follows: The inside-view lens includes, in order from the object side to the image side, a first lens group having a negative power and a second lens group having a positive power, and the first lens group includes one The lens of the negative power, the internal lens satisfies the following conditional formula: _35 &lt; eight to &lt;_1〇, 3 5 < eight ^ &lt; 3.9 and therein; represents the focal length of the system of the internal lens 4, 18 200909852 mr don't use the lens group and the second lens group - for example, please refer to the first lens to the image side of the endoscope 2 according to the scope of claim 9 in the patent: One;;^ lens and third with positive power Mirror, the; brother, and a second lens is a lens toward the object side - the side from meniscus aspheric / concave lens, the third lens is a spherical biconvex lens. 11. The endoscope device of claim 9, wherein the second lens group includes a fourth lens having a negative light=degree from the object side-side to the image side side, having a positive focus a fifth lens and a sixth lens, a seventh lens having a negative power, the fourth lens is a spherical biconcave lens, and the fifth lens is a spherical convex lens that is convex toward the image side. The lens is a spherical lenticular lens, and the seventh lens is a spherical meniscus concave lens that is convex toward the image side. The endoscope device according to claim n, wherein at least one of the fourth lens, the fifth lens, the sixth lens and the seventh lens has an Abbe's coefficient greater than 60. 13. The endoscope device of claim 9, wherein the intraocular lens satisfies a conditional formula of 0&lt; 仏仏 2 &lt; _ 〇 2, wherein h represents the first lens is close to the object side The diameter of the effective light-passing aperture on the side of the side lens. 14. The endoscope device of claim 9, wherein the internal lens satisfies a conditional formula of 0.05 (//77^ &lt; 〇.1, wherein Γ7Ζ represents the total length of the internal lens system. 19 The endoscope device of claim 9, wherein the intraocular lens satisfies the conditional formula 2ω &gt; 139°, where ω represents a half angle of view of the intraocular lens.
TW96132532A 2007-08-31 2007-08-31 Endoscope and apparatus using the same TWI337262B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96132532A TWI337262B (en) 2007-08-31 2007-08-31 Endoscope and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96132532A TWI337262B (en) 2007-08-31 2007-08-31 Endoscope and apparatus using the same

Publications (2)

Publication Number Publication Date
TW200909852A true TW200909852A (en) 2009-03-01
TWI337262B TWI337262B (en) 2011-02-11

Family

ID=44724161

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96132532A TWI337262B (en) 2007-08-31 2007-08-31 Endoscope and apparatus using the same

Country Status (1)

Country Link
TW (1) TWI337262B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416165B (en) * 2010-11-05 2013-11-21 Hon Hai Prec Ind Co Ltd Super-wide-angle lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI804795B (en) 2021-01-07 2023-06-11 光芒光學股份有限公司 Optical lens and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI416165B (en) * 2010-11-05 2013-11-21 Hon Hai Prec Ind Co Ltd Super-wide-angle lens

Also Published As

Publication number Publication date
TWI337262B (en) 2011-02-11

Similar Documents

Publication Publication Date Title
CN100582855C (en) Endoscopy lens and endoscopy device
US10898061B2 (en) Endoscope magnification optical system, endoscope, and endoscope system
CN102414597B (en) Objective lens and endoscope device
TWI487944B (en) Optical imaging lens assembly
JP4717383B2 (en) Endoscopic imaging unit and method for assembling the same
JP5370109B2 (en) Imaging lens and imaging apparatus
JP5601924B2 (en) Endoscope variable magnification optical system and endoscope
TWI576630B (en) Optical image lens assembly, image capturing device and electronic device
TW201248187A (en) Single focus optical image capturing system
WO2011148822A1 (en) Image formation optical system and image pickup device
TW201116847A (en) Image-capturing lens assembly
JP2010526342A (en) Color correction optical system
JP5274728B2 (en) Endoscope objective optical system
CN109640788A (en) The wide-angle pupil repeater of fundus camera based on mobile phone
TW201736897A (en) Optical lens assembly, image capturing apparatus and electronic device
JP2009136387A (en) Imaging lens and capsule endoscope
JP2009300797A (en) Imaging lens and capsule type endoscope
JP6873741B2 (en) Imaging device
CN100464207C (en) Upper digestive tract electronic endoscope objective lens
TW200909852A (en) Endoscope and apparatus using the same
CN116300044A (en) Endoscope objective zooming optical system
JP2011242610A (en) Photographic lens, and inspection device including the same
JP2009300796A (en) Imaging lens and capsule type endoscope
CN101507596B (en) Electric endoscope lens
CN104076502A (en) Handheld electronic industrial endoscope

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees