TW200907509A - Liquid crystal panel and liquid crystal display device - Google Patents

Liquid crystal panel and liquid crystal display device Download PDF

Info

Publication number
TW200907509A
TW200907509A TW97119341A TW97119341A TW200907509A TW 200907509 A TW200907509 A TW 200907509A TW 97119341 A TW97119341 A TW 97119341A TW 97119341 A TW97119341 A TW 97119341A TW 200907509 A TW200907509 A TW 200907509A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
optical compensation
compensation layer
polarizing plate
crystal panel
Prior art date
Application number
TW97119341A
Other languages
Chinese (zh)
Inventor
Kentarou Takeda
Hiroyuki Yoshimi
Takashi Shimizu
Junichi Nagase
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW200907509A publication Critical patent/TW200907509A/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is a liquid crystal panel which can perform a colorless neutral display in all directions and has an excellent black luminance. The liquid crystal panel includes a liquid crystal cell (13), a first polarizer (14a), a second polarizer (14b), first optical compensation layers (11a, 11b), and a second optical compensation layer (12). The panel has at least two of the first optical compensation layers . The first polarizer (14a) is arranged at one side of the liquid crystal cell (13). The first optical compensation layer (11a) is arranged between the liquid crystal cell (13) and the first polarizer (14a). The second polarizer (14b) is arranged at the other side of the liquid crystal cell (13). The first optical compensation layer (11b) and the second optical compensation layer (12) are arranged between the liquid crystal cell (13) and the second polarizer (14b).; The first optical compensation layers (11a, 11b) have an Nz coefficient and a wavelength dispersion which are smaller than those of the second optical compensation layer (12).

Description

200907509 九、發明說明: 【發明所屬之技術領域3 技術領域 本發明係有關於一種液晶面板及液晶顯示裝置。 5 【先前技術】 背景技術 液晶顯示裝置(LCD)係利用液晶分子的光電特性,顯示 文字及圖像的裝置,廣泛普及於行動電話或筆記型電腦、 液晶電視等。一般,LCD内使用有於液晶單元兩側配置偏 10 光板的液晶面板,例如,常態黑底(normally black)方式中, 無施加電壓時會顯示為黑色(例如,參照專利文獻1)。習知 液晶面板的基本構造顯不於弟4圖5如圖所不*習知液晶面 板中,液晶單元13之一側(同一圖中為上側)依序配置有光學 補償層15a及偏光片14a,而液晶單元13之另一側(同一圖中 15 為下側)依序配置有光學補償層15b及偏光片14b。前述光學 補償層亦被稱為相位差層或雙折射層,且被用以改善視角 特性、改善色移、改善對比等液晶面板的光學補償。 【專利文獻1】專利第3648240號公報 【發明内容】 20 發明揭示 發明欲解決之課題 近年來,LCD不斷朝高精細化發展,且用途亦涉及多 方面。因此,LCD在尋求晝面均勻性及顯示品質方面必須 更加提昇。但是,習知液晶顯示裝置中要進行在全方位呈 5 200907509 無色偏之中性顯示是困難的,且亦需提高黑亮度。 因此,本發明之目的在於提供一種可在全方位呈無色 偏之中性顯示,且黑亮度佳的液晶面板及液晶顯示裝置。 解決課題之手段 5 為達成前述目的’本發明之液晶面板係具有液晶早 元、第1偏光片、第2偏光片、第1光學補償層及第2光學補 償層的液晶面板’ 且該液晶面板至少有兩個前述第1光學補償層, 又,前述液晶單元之一側配置有前述第1偏光片,且前 10 述液晶單元與前述第1偏光片之間配置有前述第1光學補償 層,而前述液晶單元之另一側配置有前述第2偏光片,且前 述液晶單元與前述第2偏光片之間配置有前述第1光學補償 層及前述第2光學補償層, 前述第1光學補償層及前述第2光學補償層滿足下述關 15 係式(I)及(Π):200907509 IX. Description of the Invention: TECHNICAL FIELD The present invention relates to a liquid crystal panel and a liquid crystal display device. [Background Art] A liquid crystal display device (LCD) is a device for displaying characters and images by utilizing the photoelectric characteristics of liquid crystal molecules, and is widely used in mobile phones, notebook computers, and liquid crystal televisions. In general, a liquid crystal panel in which a polarizing plate is disposed on both sides of a liquid crystal cell is used in the LCD. For example, in a normally black system, black is displayed when no voltage is applied (for example, refer to Patent Document 1). The basic structure of the conventional liquid crystal panel is not shown in FIG. 5. In the liquid crystal panel, one side of the liquid crystal cell 13 (the upper side in the same figure) is sequentially provided with the optical compensation layer 15a and the polarizer 14a. On the other side of the liquid crystal cell 13 (the lower side of 15 in the same drawing), the optical compensation layer 15b and the polarizer 14b are sequentially disposed. The aforementioned optical compensation layer is also referred to as a retardation layer or a birefringent layer, and is used to improve viewing angle characteristics, improve color shift, and improve optical compensation of liquid crystal panels such as contrast. [Patent Document 1] Patent No. 3648240 SUMMARY OF THE INVENTION [Explanation] The problem to be solved by the invention In recent years, LCDs have been continuously developed with high definition, and their uses are also involved in many aspects. Therefore, LCDs must be improved in terms of uniformity and display quality. However, in the conventional liquid crystal display device, it is difficult to perform the neutral display in the omnidirectional display, and it is also necessary to increase the black brightness. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a liquid crystal panel and a liquid crystal display device which are capable of being displayed in an all-round colorless manner and having a good black luminance. Means for Solving the Problem 5 In order to achieve the above object, a liquid crystal panel of the present invention includes a liquid crystal panel of a liquid crystal panel, a first polarizer, a second polarizer, a first optical compensation layer, and a second optical compensation layer, and the liquid crystal panel At least two of the first optical compensation layers are disposed, and the first polarizer is disposed on one side of the liquid crystal cell, and the first optical compensation layer is disposed between the first liquid crystal cell and the first polarizer. The second polarizer is disposed on the other side of the liquid crystal cell, and the first optical compensation layer and the second optical compensation layer are disposed between the liquid crystal cell and the second polarizer, and the first optical compensation layer is disposed. And the second optical compensation layer satisfies the following formula (I) and (Π):

Nz(l)<Nz(2) (I);Nz(l)<Nz(2) (I);

Wd(l)< Wd(2) (Π), Νζ(1):第1光學補償層的Νζ係數; Νζ(2):第2光學補償層的Νζ係數; 20 Wd(l):第1光學補償層的波長色散[Re(380)/Re(550)]; Wd(2):第2光學補償層的波長色散[Re(380)/Re(550)]; Νζ係婁i:=(nx-nz)/(nx-ny); nx :層的面内折射率為最大之方向(慢轴方向)的折射率; ny:在層的面内與前述nx方向垂直之方向(快轴方向)的折射 200907509 率; nz :相對於前述nx及前述ny之各方向呈垂直的層厚方向的 折射率;Wd(l)< Wd(2) (Π), Νζ(1): Νζ coefficient of the first optical compensation layer; Νζ(2): Νζ coefficient of the second optical compensation layer; 20 Wd(l): first Wavelength dispersion of the optical compensation layer [Re(380)/Re(550)]; Wd(2): wavelength dispersion of the second optical compensation layer [Re(380)/Re(550)]; Νζ system 娄i:=( Nx-nz)/(nx-ny); nx : refractive index of the layer in which the in-plane refractive index is the largest (slow axis direction); ny: direction perpendicular to the aforementioned nx direction in the plane of the layer (fast axis direction) Refraction 200907509 rate; nz: refractive index in a layer thickness direction perpendicular to each of the aforementioned nx and the aforementioned ny;

Re(A_):於波長(又)之以下述式(皿)表示之層的面内相位差 5 值;Re(A_): the in-plane phase difference of the layer represented by the following formula (dish) at the wavelength (again);

Re=(nx-ny) · d (瓜); d=層厚。 本發明之液晶顯不裝置係具有液晶面板的液晶顯不裝 置,其中前述液晶面板係本發明之液晶面板。 10 發明效果 本發明之液晶面板含有具前述特定關係之第1光學補 償層及前述第2光學補償層,而前述第1光學補償層配置於 前述液晶單元之兩側,且前述第2光學補償層配置於前述液 晶單元之一側。故,本發明之液晶面板可在全方位呈無色 15 偏之中性顯示,且黑亮度佳。因此,使用有本發明之液晶 面板的液晶顯示裝置,其畫面均勻性佳,且顯示品質亦為 rlj品質。 【實施方式3 實施發明之最佳態樣 20 在本發明之液晶面板中,前述第1光學補償層的Nz係數 以1〜2.5的範圍為佳,且以1.1〜2.3的範圍為更佳,特別是以 1.1〜2的範圍為最佳。 在本發明之液晶面板中,前述第1光學補償層之波長色 散Wd(l)宜為以下述式(IV)表示之平坦色散及以下述式(V) 7 200907509 表示之反色散的至少一種波長色散,且前述第2光學補償芦 的波長色散Wd(2)宜為以下述式(VI)表示之正色散。Re=(nx-ny) · d (melon); d=layer thickness. The liquid crystal display device of the present invention has a liquid crystal display device of a liquid crystal panel which is the liquid crystal panel of the present invention. Advantageous Effects of Invention The liquid crystal panel of the present invention includes the first optical compensation layer and the second optical compensation layer having the specific relationship described above, and the first optical compensation layer is disposed on both sides of the liquid crystal cell, and the second optical compensation layer It is disposed on one side of the aforementioned liquid crystal cell. Therefore, the liquid crystal panel of the present invention can be displayed in a neutral colorless manner in all directions, and the black brightness is good. Therefore, the liquid crystal display device using the liquid crystal panel of the present invention has a good picture uniformity and a display quality of rlj quality. [Embodiment 3] BEST MODE FOR CARRYING OUT THE INVENTION In the liquid crystal panel of the present invention, the Nz coefficient of the first optical compensation layer is preferably in the range of 1 to 2.5, and more preferably in the range of 1.1 to 2.3, particularly The range of 1.1 to 2 is the best. In the liquid crystal panel of the present invention, the wavelength dispersion Wd(1) of the first optical compensation layer is preferably a flat dispersion represented by the following formula (IV) and at least one wavelength of the inverse dispersion represented by the following formula (V) 7 200907509. The dispersion, and the wavelength dispersion Wd(2) of the second optical compensation reed is preferably a positive dispersion represented by the following formula (VI).

Wd(l) : Re(380)/Re(550)=l (IV);Wd(l) : Re(380)/Re(550)=l (IV);

Wd(l) : Re(380)/Re(550)< 1 (V); 5 Wd(2) : Re(380)/Re(550)> 1 (VI) 前述式(IV)〜(VI)的具體範圍,例如,依下述所示。 在前述式(IV)中,Re(380)/Re(550)以0.95〜1.05的範圍為 佳;在前述式(V)中’ Re(380)/Re(550)以小於0.95為佳;在 前述式(VI)中’ Re(38〇)/Re(55〇)以大於丨〇5的值為佳。 0 在前述式(IV)中,Re(380)/Re(550)以0.96〜1.04的範圍為 較佳;在前述式(V)中,Re(380)/Re(550)以小於〇_96為較 佳;在前述式(W)中,Re(380)/Re(550)以大於1.04的值為較 佳0 在前述式(W)中,Re(380)/Re(550)以0_97〜1 _〇3的範圍為 15更佳;在前述式(V)中,Re(380)/Re(550)以小於〇.97為更 佳,在别述式(VI)中,Re(380)/Re(550)以大於1.03的值為更 佳。 在本發明之液晶面板中,前述第1光學補償層宜為具有 nX>ny=nZ之關係的正A板,且前述第2光學補償層宜為具有 20 ηχ=ηΥ>ηζ之關係的負(:板。 在本&月之液晶面板的前述液晶單元與前述第2偏光 片之間,尤以從前述液晶單元側開始,以前述第2光學補償 層及Θ述第1光學補償層的順序,配置有前述第2光學補償 層及前述第1光學補償層為佳。另外,前述第1光學補償層 200907509 及前述第2光學補償層的排列順序不設限亦不受限。 在本發明之液晶面板中,亦可為至少有兩個前述第2 光學補償層,且前述液晶單元與前述第1偏光片之間亦配置 有前述第2光學補償層的構造。此時,亦可為在液晶面板的 5 前述液晶單元與前述第1偏光片之間,從前述液晶單元側開 始,以前述第2光學補償層及前述第1光學補償層的順序, 配置有前述第2光學補償層及前述第1光學補償層的構造。 另外,前述第1光學補償層及前述第2光學補償層的排列順 序不設限亦不受限。 10 在本發明之液晶面板中,配置有前述第1偏光片側宜為 目視側,且配置有前述第2偏光片側宜為背光側。 在本發明之液晶面板中’液晶配向核式宜為垂直配向 (VA)模式。 在本發明之液晶面板中,前述第1光學補償層以含有選 15 自於由降冰片烯系樹脂、纖維素系樹脂、聚酯系樹脂及聚 乙烯縮醛系樹脂所構成之群組之至少1種樹脂的相位差薄 膜為佳。 在本發明之液晶面板中,前述第2光學補償層以含有非 液晶性聚合物的相位差薄膜為佳。前述非液晶性聚合物以 20 選自於由聚醯胺、聚醯亞胺、聚酯、聚芳醚酮、聚醚酮、 聚醯胺醯亞胺及聚酯醯亞胺所構成之群組之至少1種聚合 物為佳。 接著,舉例詳細說明本發明之液晶面板及液晶顯示裝 200907509 如前述,在本發明中,折射率「nx」係層(包含薄膜、 液晶單元等,以下相同)的面内折射率為最大之方向(慢軸方 向)的折射率。折射率「ny」係在層的面内與前述nx方向垂 直之方向(快軸方向)的折射率。折射率「nz」係相對於前述 5 nx及前述ny之各方向呈垂直的層厚方向的折射率。 在本發明中,前述面内相位差值Re( λ )為例如,在23 °C下所測定的值。前述又為例如,590nm。 在本發明中,層厚方向的相位差值Rth( λ )係由下述式 所算出的。在下述式,λ為波長,且d(nm)為層厚。又,厚 10 度方向相位差值Rth(又)為例如,在23°C下所測定的值。前 述λ為例如,590nm。Wd(l) : Re(380)/Re(550)< 1 (V); 5 Wd(2) : Re(380)/Re(550)> 1 (VI) The above formula (IV)~(VI) The specific range of, for example, is as follows. In the above formula (IV), Re(380)/Re(550) is preferably in the range of 0.95 to 1.05; in the above formula (V), 'Re(380)/Re(550) is preferably less than 0.95; In the above formula (VI), 'Re(38〇)/Re(55〇) is preferably a value larger than 丨〇5. 0 In the above formula (IV), Re(380)/Re(550) is preferably in the range of 0.96 to 1.04; in the above formula (V), Re(380)/Re(550) is less than 〇_96. Preferably, in the above formula (W), Re(380)/Re(550) is preferably 0 with a value greater than 1.04. In the above formula (W), Re(380)/Re(550) is 0_97~ The range of 1 _ 〇 3 is preferably 15; in the above formula (V), Re (380) / Re (550) is preferably less than 〇.97, and in the other formula (VI), Re (380) /Re(550) is preferably a value greater than 1.03. In the liquid crystal panel of the present invention, the first optical compensation layer is preferably a positive A plate having a relationship of nX > ny = nZ, and the second optical compensation layer is preferably a negative having a relationship of 20 η χ = η Υ > η ( ( Between the liquid crystal cell and the second polarizer of the liquid crystal panel of the present & month, in particular, from the liquid crystal cell side, the second optical compensation layer and the first optical compensation layer are sequentially arranged. Preferably, the second optical compensation layer and the first optical compensation layer are disposed. The order of arrangement of the first optical compensation layer 200907509 and the second optical compensation layer is not limited, and is not limited. In the liquid crystal panel, at least two of the second optical compensation layers may be provided, and the second optical compensation layer may be disposed between the liquid crystal cell and the first polarizer. Between the liquid crystal cell of the panel 5 and the first polarizer, the second optical compensation layer and the first portion are arranged in the order of the second optical compensation layer and the first optical compensation layer from the liquid crystal cell side. 1 optical supplement The arrangement of the first optical compensation layer and the second optical compensation layer is not limited. The liquid crystal panel of the present invention is preferably provided with the first polarizer side as a visual side. Preferably, the second polarizer side is disposed on the backlight side. In the liquid crystal panel of the present invention, the liquid crystal alignment core type is preferably a vertical alignment (VA) mode. In the liquid crystal panel of the present invention, the first optical compensation layer is It is preferable to include a retardation film of at least one resin selected from the group consisting of a norbornene resin, a cellulose resin, a polyester resin, and a polyvinyl acetal resin. In the panel, the second optical compensation layer is preferably a retardation film containing a non-liquid crystalline polymer. The non-liquid crystalline polymer is selected from the group consisting of polyamine, polyimine, polyester, polyaryl ether. At least one polymer of the group consisting of a ketone, a polyether ketone, a polyamidoximine, and a polyester phthalimide is preferred. Next, a liquid crystal panel and a liquid crystal display device 200907509 of the present invention will be described in detail as described above. In the present invention The refractive index "nx" layer (including a film, a liquid crystal cell, or the like, the same applies hereinafter) has a refractive index in the direction in which the in-plane refractive index is the largest (slow axis direction). The refractive index "ny" is in the plane of the layer and the aforementioned The refractive index in the direction perpendicular to the nx direction (fast axis direction). The refractive index "nz" is a refractive index in the layer thickness direction perpendicular to the respective directions of 5 nx and ny. In the present invention, the in-plane phase The difference Re ( λ ) is, for example, a value measured at 23 ° C. The foregoing is, for example, 590 nm. In the present invention, the phase difference value Rth ( λ ) in the layer thickness direction is calculated by the following formula. In the following formula, λ is a wavelength, and d (nm) is a layer thickness. Further, a phase difference Rth (also) in the thickness direction of 10 degrees is, for example, a value measured at 23 °C. The aforementioned λ is, for example, 590 nm.

Rth(λ)=(nx-nz)xd 在本發明中,Nz係數可藉由式:Nz係數=Rth(A)/Re(;l) 算出。前述又為例如,590nm。 15 在本發明中,所謂的「nx=ny」或「ny=nz」’不僅止於 完全相同的情形,亦包含大略相同的情形。因此,例如nx=ny 的情形中,包含Re(590)小於10nm的情形。 在本發明中,「垂直」包含大略垂直的情形,而前述大 略垂直的情形係指例如,90° ±2°的範圍,且以90° ±1° 20 的範圍為佳。又,在本發明中,「平行」包含大略平行的情 形,而前述大略平行的情形係指例如,0° ±2°的範圍,且 以0° ±1°的範圍為佳。 [A.液晶面板] 本發明之液晶面板構造之一例顯示於第1圖的示意截 10 200907509 面圖。同一圖中,為了讓人容易了解,各構件的大小、比 例等,均與實際有所不同(以下的圖亦相同)。如圖所示,該 液晶面板10具有作為主要構件的液晶單元13 ;第1偏光板 14a ;第2偏光板14b ;兩個第1光學補償層11a、lib ;及第2 5 光學補償層12。前述第1偏光板14a配置於前述液晶單元13 的目視側(顯示面側,同一圖中為上側),且前述第2偏光板 14b配置於前述液晶單元13的背光側(内面側,同一圖中為 下側)。前述液晶單元13與前述第1偏光板14a之間,配置有 前述第1光學補償層11a。前述液晶單元13與前述第2偏光板 10 14b之間,從前述液晶單元13側開始,依序配置有前述第2 光學補償層12及前述第1光學補償層lib。前述第1光學補償 層11a、lib與前述第2光學補償層12的光學特性及前述兩層 之關係如前述所示,詳細情形如後述所示。前述第1偏光板 14a及前述第2偏光板14b含有偏光片,且含有為任意構件之 15 保護層,而前述保護層可使用前述第1光學補償層或前述第 2光學補償層。 前述液晶面板的各構件(光學構件)之間,可配置任意的 接著層(未圖示)或任意的光學構件(以顯示出等向性者為 佳)。形成前述接著層的材料可舉例如:以往習知的接著 20 劑、黏著劑、結合層劑等。前述接著層可為於接著物表面 形成有結合層劑層,且其上方亦形成有接著劑層的多層構 造,又,亦可為無法以肉眼辨識的薄層(亦稱為髮絲線(hair line))。 本發明之液晶面板構造之他例顯示於第2圖的示意截 11 200907509 面圖。如圖所示,前述液晶單元13與前述第1偏光板14a之 間,從液晶單元13側開始,依序配置有第2光學補償層12a 及前述第1光學補償層11a。前述液晶單元13與前述第2偏光 板14b之間,從前述液晶單元13側開始,依序配置有第2光 5 學補償層12b及前述第1光學補償層lib。除此之外,均與前 述範例之液晶面板相同。 [B.液晶單元] 前述液晶單元可舉例如,使用薄膜電晶體之主動矩陣 型者等。又,前述液晶單元亦可舉如超扭轉向列型液晶顯 10 示裝置所採用之被動矩陣型者等。 前述液晶單元,一般係藉由一對基板夾持液晶層之構 造。液晶單元構造之一例顯示於第3圖。如圖所示,本例之 液晶單元13係藉由間隔物133配置於一對基板132a與132b 之間,而形成空間,並於前述空間夾持有液晶層131。雖無 15 圖示,但前述一對基板中,一邊的基板(主動矩陣基板)設有 例如:控制液晶之光電特性的開關元件(例如,TFT)、對該 開關元件給予閘極訊號的掃描線及傳送源極訊號的訊號 線。前述一對基板中,另一邊的基板設有例如滤色器。 前述濾、色器亦可設在前述主動矩陣基板。或,例如, 20 如場序方式般使用RGB的3色光源(亦可含有更多色的光源) 作為液晶顯示裝置的照明機構時,前述濾色器亦可省略。 前述一對基板之間隔(單元間隙)可藉由例如間隔物控制。前 述單元間隙為例如,1.0〜7.0"m的範圍。各基板之接觸前 述液晶層的側設有例如由聚醯亞胺所構成之配向膜。或, 12 200907509 利用藉由例如已圖形化之透明基板所形成之邊緣電場,控 制液=分子的初期配向時,前迷配向膜亦可省略。 刚述液曰曰單TL,以折射率的關係可顯示出η,〉 的關係為佳。根據液晶配向模式的分類,前述折射率的關 5係為nZ>nX=ny的液晶單元可舉例如:^西己向(va)模式、 扭轉向列⑽你式、垂直配向裂電控雙折射(ecb)模式、光 學補償雙折射(OCB)模式等。在本發明中,前述液晶單元的 液晶配向模式特別是以前述^楔式為佳。 電场不存在之狀態的前述液晶單元的r叫)以 Η) _U〇n_範圍為佳’且以_彻〜_細細的範圍為更 佳。前述Rth⑽)可藉由例如,_液晶分子的雙折射率及 前述單元間隙來適當地設定。 前述VA模式的液晶單元在電場不存在的狀態下,會利 用電控雙折射效應,使配向成垂直排列之液晶分子相對於 15基板以法線方向的電場反應1體而言,例如特開昭 62-2誦號公報或特開平4_153621號公報所記載,常態黑 底方式時,在電場不存在的狀態下,由於液晶分子相對於 基板往法線方向配向,故使上下的偏光板垂直排列即可 得到黑色顯示。另-方面’在電場存在的狀態下藉由使 20液晶分子相對於偏光板的吸收轴,以倒_。方位的方式 動作,其透射率會變大,即可得到白色顯示。 前述VA模式的液晶單元亦可為例如,特開平11·258605 號公報所記載,藉由使用於電極形成狹縫者,或於表面形 成突起的基材,而呈多區域化者。此種液晶單元可舉例如: 13 200907509 SHARP(株)製的商品名「AS V( Advanced Super View)模 式」、同社製的商品名「CPA(Continuous Pinwheel Alignment) 模式」、富士通(株)製的商品名「MVA(Multi-domain Vertical Alignment)模式」、三星電子(株)製的商品名「pVA(Patterned 5 Vertical Alignment)模式」、同社製的商品名「EVA(Enhanced Vertical Alignment)模式」、三洋電機(株)製的商品名 「SURVIVAL(Super Ranged Viewing Vertical Alignment)模 式」等。 前述液晶單元亦可直接使用例如,搭載於市售液晶顯 10示裝置者。含有前述VA模式之液晶單元的市售液晶顯示裝 置可舉例如:SHARP(株)製液晶電視的商品名「AQUOS系 列」、SONY(株)製液晶電視的商品名r braVIA系列」、 SAMSUNG社製32V型寬液晶電視的商品名「LN32R51B」、 EIZ0(株)製液晶電視的商品名「FORIS SC26XD1」、AU 15 Optronics社製液晶電視的商品名「T460HW01」等。 [C.第1光學補償層] 也述第1光學補償層的折射率顯示出例如,nx > ny g nz 的關係。亦即,前述第1光學補償層顯示出nx>ny=nz的關 係(正單軸性)’或是顯示出nx>ny>nz的關係(負雙軸性), 20且以顯示出nx>ny=nz的關係為佳。如前述,前述第1光學 補償層的Nz係數小於前述第2光學補償層的Nz係數。前述 第1光學補償層的Nz係數的理想範圍,如前述所示。 如前述,前述第1光學補償層的波長色散…以丨)小於前 述第2光學補償層的波長色散Wd(2)。前述第丨光學補償層的 14 200907509 波長色散Wd(l)如前述般,宜為以前述式(IV)表示之平坦色 散及以前述式(V)表示之反色散的至少一種。 前述第1光學補償層可為單層,亦可為由多數層所構成 之積層物。前述第1光學補償層的厚度為例如,〇 5〜2〇〇#m 5的範圍。前述第1光學補償層之波長590nm的透射率(τ[590]) 以90%以上為佳。 前述第1光學補償層的Re(590)為例如,10nm以上,且 以5〜200nm的範圍為佳。前述第}光學補償層顯示出ηχ> ny-nz的關係時,Re(59〇)為例如,90〜190nm的範圍,且以 10 11〇〜17〇nm的範圍為佳。前述第!光學補償層顯示出nx>ny >nz的關係時,Re(59〇)為例如,70〜170nm的範圍,且以 90〜150nm的範圍為佳。 前述第1光學補償層顯示出nx > ny=nz的關係時, Re(590)與Rth(590)大略相等。此時,前述第1光學補償層以 15 滿足式:| Rth(590)-Re(590) | < l〇nm為佳。 前述第1光學補償層顯示出nx > ny > nz的關係時, ( Rth(590)大於 Re(590)。此時,Rth(590)與 Re(590)的差 (Rth(590)-Re(590))為例如,1〇〜l〇〇nm的範圍,且以2〇〜8〇nm 的範圍為佳。 20 前述第1光學補償層可使用含有例如:降冰片烯系樹 脂、纖維素系樹脂、聚酯系樹脂、聚乙烯縮醛系樹脂等熱 ' 可塑性樹脂的相位差薄膜。 首先,說明含有降冰片烯系樹脂的相位差薄膜。前述 降冰片烯系樹脂具有光彈性係數的絕對值(C [ λ ],前述又可 15 200907509 為例如590_很小的特徵。前述降冰片稀系樹脂之波長 590nm的光彈性係數的絕對值(C[59〇])以丨xiO-iV/wx 二V/N的範圍為佳。又,降冰片稀系樹脂的波長色散如 W述式(IV)所示’為平坦色散。在本發明中,「降冰片稀系 5樹脂」係指,於起始原料(單體)之—部分或全部,使用具有 降冰片烯環的降冰片稀系單體所得到之(共)聚合物。前述 「(共)聚合物」係表示均聚物或共聚合物(共聚物)。 前述降冰片烯系樹脂可使用具有降冰片稀環(降冰片 烷%内具有雙鍵結合者)的降冰片稀系單體作為起始原 10 ϋ。前述降冰片烯㈣脂,在(共)聚合物的狀態下,結構 :位内可具有亦可不具有降冰片燒環。呈⑷聚合物狀 Ρ ’且結構I位内具有降冰片燒環的降冰㈣祕脂可舉 例如:四環[4_4.12,5 17,1〇 01八 1 α ..0]六_3·烯、8-甲四環[4A12,5,丨〇 15 =·稀、"氧幾四環如2,5」7,1。順-3·稀等。呈⑷ 且結構單位内不具有降她環的降冰片稀 =^例如’使„裂解而成為5貝環之單體所得到之 、水月H前述因裂解而成為5員環之單體可舉例如:降 冰片烯、雙環戊二烯、5_苯降 20 前述降冰輯“丨㈣ ^ ^我切生物專。 無特別受限,可為隨機妓^夺,其分子的排列狀態並 還可為接枝共聚合物。力,亦可為塊狀共聚合物, 的開: = 脂可—_稀_ 行加成(共)使降冰片稀系軍體進 4别述於降冰片烯系單體的開環 16 200907509 (共)聚合物添加氫的樹脂包含於1種以上的降冰片稀系單 體與α -稀fe類、環稀類及非共概二烯類之至少一種之開王矛 共聚合物添加氫的樹脂。前述使降冰片烯系單體進行加成 (共)聚合的樹脂包含使1種以上的降冰片烯系單體與α〜烯 5烴類、環烯類及非共軛二烯類之至少一種進行加成共聚合 的樹脂。 前述於降冰片烯系單體的開環(共)聚合物添加氫的樹 脂可藉由例如,使降冰片烯系單體等進行置換反應以得到 開環(共)聚合物後,接著於前述開環(共)聚合物添加氫而 10得到。具體而言,可舉例如:特開平u-hmso號公報的段 落[0059]〜[0060]記載之方法、特開2〇〇丨_35〇〇17號公報的 [〇〇35]〜’7]記載之方法等。前述使降冰片㈣單體進行 加成(共)聚合的樹脂可藉由例如,特開昭61_2926〇丨號公報 的實施例1記載之方法而得到。 15 剛述降冰騎脂的4量平均分子量(Mw)係以由四礼 呋喃溶劑進行之膠透層析法(標準聚苯乙烯)所測定的值,= 以2_〇〜500_的範圍為佳。前述降冰片稀系樹脂的= 轉移溫度(Tg)以12〇〜17(TC的範圍為佳。只要為前述樹脂, 即可得到具有更佳的熱穩定性,且延伸性更佳的相位^ 20膜。前述玻璃轉移溫度(Tg)係依據例如,打81^7121的1^ 法所算出的值。 、C 〜含有前述降冰片稀系樹脂的相位差薄模係例如,將藉 /谷劑洗鑄法或、j:容融擠壓法使前述降冰片晞系樹听成型為 狀而得之高分子薄膜,藉由縱向單軸延伸法、橫向單輛延 17 200907509 伸法、縱橫向同時雙軸延伸法、或縱橫向逐次雙軸延伸法 延伸而製作的。從製造效率的觀點來看,前述延伸法以橫 單軸延伸法為佳。延伸前述高分子薄膜的溫度(延伸溫度 以120〜20(TC的範圍為佳。延伸前述高分子薄膜的倍率(延 5伸倍率)以1倍以上4倍以下為佳。前述延伸法可為固定端延 伸法,亦可為自由端延伸法。根據固定端延伸法,可製作 出顯示nx > ny > nz之關係的相位差薄膜。 含有前述降冰片烯系樹脂的相位差薄膜,例如,可直 接使用市售薄膜,或是,可使用對前述市售薄膜施有延伸 10處理與收縮處理之至少一種處理等的2次加工者。前述市售 的含有降冰片烯系樹脂的相位差薄膜可舉例如:JRS(株)製 的商品名「ARTON系列(ARTON FX、ARTON D)」(株)OPTES 製的商品名「ZEONOR 系列(ZEONOR ZF14、ZEONOR ZF15、ZEONORZF16)」等。 15 接著’說明含有纖維素系樹脂的相位差薄膜。 前述纖維素系樹脂宜由乙醯基及丙醯基所取代。該纖 維素系樹脂的取代度「DSac(乙醯取代度)+DSpr(丙醯取代 度)」(顯示存在於纖維素的重複單位中的3個氫氧基平均被 乙酿基或丙醯基取代多少)的下限以2以上為佳,且以2.3以 〇 上為較佳’並以2.6以上為更佳。「DSac+DSpr」的上限以3 以下為佳’且以2.9以下為較佳,並以2.8以下為更佳。藉由 使纖維素系樹脂的取代度為前述範圍,可得到具有如前述 所期望之折射率分布的相位差薄膜。 前述DSpr(丙醯取代度)的下限以1以上為佳,且以2以 18 200907509 上為較佳’並以2.5以上為更佳。DSpr的上限以3以下為佳’ 且以2.9以下為較佳,並以2.8以下為更佳。藉由使DSpr為前 述範圍’可提高對纖維素系樹脂溶劑的溶解性,且會變得 容易控制所得到之第1光學補償層的厚度。此外,藉由使 5 「DSac+DSpr」為前述範圍,且使DSpr為前述範圍,可得 到具有前述光學特性,且具有反色散之波長相依性的相位 差薄膜。 前述Dsac(乙醯取代度)及DSpr(丙醯取代度)可藉由特 開2003-315538號公報[〇〇16]〜[〇〇19]記載之方法來求出。 10 前述纖維素系樹脂亦可具有乙醯基及丙醯基以外的其 他取代基。其他取代基可舉例如:丁酸酯等酯基;烷醚基、 芳炫醚基等的醚基等。 前述纖維素系樹脂的數量平均分子量以5千〜10萬的範 圍為佳。藉由使前述數量平均分子量為前述範圍,則生產 J·生佳且機械f生強度會提高。前述數量平均分子量以1萬〜7 萬的範圍為更佳。 對乙酸基及㈣基的取代方法可採用適當的任意方 法例 乂強苛性鈉溶液處理纖維素成為驗纖維素後, 藉由預疋里的乙酸軒與丙酸針之混合物將其酿化。藉由將 20醯基部分地水解,來調整取代度 「Dsac+DSpr」。 含有纖維素系樹脂的相位差薄膜可藉由例如,以溶劑 溶解纖維素系樹脂調製出溶液後,將前述溶液塗佈於基材 上以形成塗佈膜,並乾燥前述塗佈膜來得到薄膜的方式加 以製造。刖述薄膜雖可直接使用,但為了使其展現如前述 200907509 之相位差,最好進行延伸處理。前述延伸處理與含有降冰 片烯系樹脂之相位差薄膜的延伸處理相同。又,含有纖維 素系樹脂的相位差薄膜亦可使用市售品。 接著,說明含有聚酯系樹脂的相位差薄膜。前述聚酯 5 系樹脂並無特別受限,可使用任意的適當聚酯系樹脂,但 以使用聚合具有非芳香族之環狀結構的二羧酸成分及二醇 成分所得到之具有非芳香族之環狀結構及酯基的聚酯系樹 脂為佳。前述二羧酸成分可舉例如,1,4-環己二羧酸等。前 述二羧酸成分可使用單獨1種,亦可合併2種以上使用。前 10 述二醇成分可舉例如:9,9-雙[4-(2-羥乙氧)苯]苐、1,4-環己 二曱醇等。前述二醇成分可使用單獨1種,亦可合併2種以 上使用。 前述聚酯系樹脂的固有黏度以0.2〜0.6dL/g的範圍為 佳。前述聚酯系樹脂的玻璃轉移溫度(Tg)以110〜150°C的範 15 圍為佳。只要為前述樹脂,即可得到具有更佳的熱穩定性, 且延伸性更佳的相位差薄膜。前述固有黏度可藉由例如, 後述實施例記載之方法來測定。前述玻璃轉移溫度(Tg)係 依據例如,JISK 7192的DSC法所算出的值。 含有前述聚酯系樹脂的相位差薄膜係例如,將使前述 20 聚酯系樹脂成型為片狀而得之高分子薄膜,藉由適當地選 擇延伸條件(例如,延伸溫度、延伸倍率、延伸方向等)、延 伸方法等延伸而製作的。 接著,說明含有聚乙烯縮醛系樹脂的相位差薄膜。前 述聚乙烯縮醛系樹脂並無特別受限,可使用例如專利第 20 200907509 3984277號公報的[0026]所記載之含有以下述通式(1)表示 之聚合物的樹脂。前述聚合物因分子結構中具有萘基,在 透明性、对熱性、及加工性等方面均很優異。 【化1】 cRth(λ)=(nx-nz)xd In the present invention, the Nz coefficient can be calculated by the formula: Nz coefficient = Rth(A) / Re(;l). The foregoing is again, for example, 590 nm. In the present invention, the so-called "nx = ny" or "ny = nz" does not only end in exactly the same situation, but also contains substantially the same situation. Therefore, for example, in the case of nx=ny, the case where Re(590) is less than 10 nm is included. In the present invention, "vertical" encompasses a case of being substantially vertical, and the aforementioned substantially vertical condition means, for example, a range of 90 ° ± 2 °, and preferably 90 ° ± 1 ° 20 . Further, in the present invention, "parallel" includes a substantially parallel situation, and the aforementioned substantially parallel case means, for example, a range of 0 ° ± 2 °, and preferably a range of 0 ° ± 1 °. [A. Liquid crystal panel] An example of the structure of the liquid crystal panel of the present invention is shown in the schematic drawing of Fig. 1 200907509. In the same figure, in order to make it easy to understand, the size and proportion of each component are different from the actual ones (the same applies to the following figures). As shown in the figure, the liquid crystal panel 10 has a liquid crystal cell 13 as a main member, a first polarizing plate 14a, a second polarizing plate 14b, two first optical compensation layers 11a and 11b, and a 25th optical compensation layer 12. The first polarizing plate 14a is disposed on the visual side (display surface side, upper side in the same drawing) of the liquid crystal cell 13, and the second polarizing plate 14b is disposed on the backlight side (inner surface side of the liquid crystal cell 13, in the same figure) For the lower side). The first optical compensation layer 11a is disposed between the liquid crystal cell 13 and the first polarizing plate 14a. The second optical compensation layer 12 and the first optical compensation layer lib are sequentially disposed between the liquid crystal cell 13 and the second polarizing plate 10 14b from the liquid crystal cell 13 side. The optical characteristics of the first optical compensation layers 11a and 11b and the second optical compensation layer 12 and the relationship between the two layers are as described above, and the details will be described later. The first polarizing plate 14a and the second polarizing plate 14b include a polarizing plate and include a protective layer of any member, and the protective layer may use the first optical compensation layer or the second optical compensation layer. Any of the subsequent layers (not shown) or any optical member (which is preferably an isotropic property) may be disposed between the members (optical members) of the liquid crystal panel. The material for forming the above-mentioned adhesive layer may, for example, be a conventionally used 20-component agent, an adhesive, a bonding layer or the like. The adhesive layer may be a multilayer structure in which a bonding layer layer is formed on the surface of the substrate, and an adhesive layer is formed on the upper surface thereof, or may be a thin layer (also referred to as a hair line) that cannot be recognized by the naked eye. )). A further example of the construction of the liquid crystal panel of the present invention is shown in the schematic view of Fig. 2, 200907509. As shown in the figure, between the liquid crystal cell 13 and the first polarizing plate 14a, the second optical compensation layer 12a and the first optical compensation layer 11a are arranged in this order from the liquid crystal cell 13 side. Between the liquid crystal cell 13 and the second polarizing plate 14b, the second optical compensation layer 12b and the first optical compensation layer lib are arranged in this order from the liquid crystal cell 13 side. Other than that, it is the same as the liquid crystal panel of the above-described example. [B. Liquid crystal cell] The liquid crystal cell may be, for example, an active matrix type using a thin film transistor. Further, the liquid crystal cell may be a passive matrix type used in a super twisted nematic liquid crystal display device. The liquid crystal cell is generally constructed by sandwiching a liquid crystal layer between a pair of substrates. An example of the structure of the liquid crystal cell is shown in Fig. 3. As shown in the figure, the liquid crystal cell 13 of this example is disposed between the pair of substrates 132a and 132b via the spacers 133 to form a space, and the liquid crystal layer 131 is sandwiched in the space. Although not shown in FIG. 15, one of the pair of substrates (active matrix substrate) is provided with, for example, a switching element (for example, TFT) that controls photoelectric characteristics of the liquid crystal, and a scanning line that gives a gate signal to the switching element. And the signal line that transmits the source signal. Among the pair of substrates, the other substrate is provided with, for example, a color filter. The filter and color filter may be provided on the active matrix substrate. Alternatively, for example, when the RGB three-color light source (which may also include a light source of more colors) is used as the field sequential method, the color filter may be omitted. The interval (cell gap) of the pair of substrates described above can be controlled by, for example, a spacer. The above-described cell gap is, for example, a range of 1.0 to 7.0 " m. The side of the liquid crystal layer which is in contact with each of the substrates is provided with an alignment film made of, for example, polyimide. Or, 12 200907509 When the initial alignment of the molecules = molecules is controlled by a fringe electric field formed by, for example, a patterned transparent substrate, the front alignment film may be omitted. Just referring to the liquid 曰曰 single TL, the relationship of η, 〉 can be expressed as a relationship of refractive index. According to the classification of the liquid crystal alignment mode, the liquid crystal cell of the above-mentioned refractive index is nZ> nX=ny, for example, the γ mode (va) mode, the twisted nematic (10), and the vertical alignment cracked electronically controlled birefringence. (ecb) mode, optical compensation birefringence (OCB) mode, etc. In the present invention, the liquid crystal alignment mode of the liquid crystal cell is particularly preferably the aforementioned wedge type. It is preferable that the liquid crystal cell of the liquid crystal cell in which the electric field is not present is in the range of Η) _U 〇 n_ and is preferably in the range of _ _ _ _. The above Rth (10)) can be appropriately set by, for example, the birefringence of the liquid crystal molecules and the cell gap. In the VA mode liquid crystal cell, in the state where the electric field does not exist, the electric control birefringence effect is utilized, and the liquid crystal molecules aligned in the vertical direction are reacted with the electric field in the normal direction with respect to the 15 substrate, for example, the special opening In the normal black matrix method, in the normal black matrix method, since the liquid crystal molecules are aligned in the normal direction with respect to the substrate in the state where the electric field is not present, the upper and lower polarizing plates are vertically aligned. A black display is available. The other aspect is to reverse the absorption axis of the liquid crystal molecules with respect to the polarizing plate in the state where the electric field is present. The direction of the action, the transmittance will become larger, you can get a white display. The liquid crystal cell of the VA mode described above is also disclosed in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. For example, the product name "AS V (Advanced Super View) mode", which is manufactured by SHARP Corporation, and the product name "CPA (Continuous Pinwheel Alignment)", manufactured by Fujitsu Co., Ltd., are available from Fujitsu Co., Ltd. Product name "MVA (Multi-domain Vertical Alignment) mode", product name "pVA (Patterned 5 Vertical Alignment) mode" by Samsung Electronics Co., Ltd., product name "EVA (Enhanced Vertical Alignment) mode", Sanyo The product name "SURVIVAL (Super Ranged Viewing Vertical Alignment) mode" manufactured by Electric Co., Ltd., etc. The liquid crystal cell may be used as it is, for example, in a commercially available liquid crystal display device. The commercially available liquid crystal display device including the liquid crystal cell of the VA mode, for example, the product name "AQUOS series" of a liquid crystal TV manufactured by SHARP Co., Ltd., and the product name r bra VIA series of a liquid crystal TV manufactured by SONY Co., Ltd.", manufactured by SAMSUNG Co., Ltd. The brand name "LN32R51B" of the 32V type wide liquid crystal TV, the "EIIS SC26XD1" of the LCD TV made by EIZ0 Co., Ltd., and the "T460HW01" of the LCD TV made by AU 15 Optronics Co., Ltd., etc. [C. First optical compensation layer] The refractive index of the first optical compensation layer is also shown to have a relationship of, for example, nx > ny g nz . That is, the first optical compensation layer exhibits a relationship of nx > ny = nz (positive uniaxiality) or a relationship of nx > ny > nz (negative biaxiality), 20 and shows nx > The relationship of ny=nz is better. As described above, the Nz coefficient of the first optical compensation layer is smaller than the Nz coefficient of the second optical compensation layer. The ideal range of the Nz coefficient of the first optical compensation layer is as described above. As described above, the wavelength dispersion of the first optical compensation layer is smaller than the wavelength dispersion Wd(2) of the second optical compensation layer. As described above, the wavelength dispersion Wd(l) of the second optical compensation layer is preferably at least one of a flat dispersion represented by the above formula (IV) and an inverse dispersion represented by the above formula (V). The first optical compensation layer may be a single layer or a laminate composed of a plurality of layers. The thickness of the first optical compensation layer is, for example, a range of 〇 5 to 2 〇〇 #m 5 . The transmittance (τ [590]) at a wavelength of 590 nm of the first optical compensation layer is preferably 90% or more. Re (590) of the first optical compensation layer is, for example, 10 nm or more, and preferably 5 to 200 nm. When the optical compensation layer exhibits a relationship of η χ > ny - nz, Re (59 Å) is, for example, in the range of 90 to 190 nm, and preferably in the range of 10 11 〇 to 17 〇 nm. The aforementioned! When the optical compensation layer exhibits a relationship of nx > ny > nz, Re (59 Å) is, for example, in the range of 70 to 170 nm, and preferably in the range of 90 to 150 nm. When the first optical compensation layer exhibits a relationship of nx > ny=nz, Re(590) and Rth(590) are substantially equal. In this case, the first optical compensation layer preferably satisfies the formula: | Rth(590) - Re(590) | < l〇nm. When the first optical compensation layer exhibits a relationship of nx > ny > nz, (Rth(590) is larger than Re(590). At this time, the difference between Rth(590) and Re(590) (Rth(590)- Re (590)) is, for example, in the range of 1 〇 to 1 〇〇 nm, and preferably in the range of 2 〇 to 8 〇 nm. 20 The first optical compensation layer may contain, for example, norbornene-based resin or fiber. A retardation film of a thermoplastic resin such as a resin, a polyester resin, or a polyvinyl acetal resin. First, a retardation film containing a norbornene-based resin will be described. The norbornene-based resin has a photoelastic coefficient. The absolute value (C [ λ ], the foregoing may be 15 200907509 is a characteristic of, for example, 590_. The absolute value (C[59〇]) of the photoelastic coefficient of the wavelength of 590 nm of the aforementioned norborne thin resin is 丨xiO-iV. The range of /wx two V/N is preferable. Further, the wavelength dispersion of the norbornene rare resin is as shown in the above formula (IV) as a flat dispersion. In the present invention, "norborning thin resin 5" means (co)polymerization of a norbornene rare monomer having a norbornene ring, in part or all of the starting material (monomer) The "(co)polymer" means a homopolymer or a copolymer (copolymer). The norbornene-based resin may be used in the form of a thin ring of norbornne (a double bond in a norbornane%). The borneol thin monomer is used as the starting material 10 ϋ. The above norbornene (tetra) lipid, in the state of (co)polymer, may have or may not have a norm burnt ring in the position: (4) polymer Ρ ' and In the structure I, there is a norbornene ring with ice (4). For example, four rings [4_4.12, 5 17,1〇01 eight 1 α ..0] six_3·ene, 8-a four ring [4A12,5,丨〇15=·稀,"Oxygen is a four-ring ring such as 2,5"7,1. cis-3·thin, etc. It is (4) and there is no nordazole in the structural unit. For example, a monomer obtained by cleavage into a monomer of a 5-shell ring, and a monomer having a 5-membered ring by cleavage as described above may be, for example, norbornene, dicyclopentadiene or 5-phenylene. The above-mentioned ice-collecting series "丨(四) ^ ^I cut bio-specialization. There is no special restriction, it can be random, and its molecular arrangement state can also be a graft copolymer. Force, or block copolymerization The opening of the substance: = fat can be - _ thin _ line addition (total) makes the norm thin body into the ring 4 is described in the open ring of norbornene monomer 16 200907509 (co) polymer hydrogen added resin a resin containing hydrogen added to one or more kinds of norbornene rare monomers and at least one of α-lean fe, cycloaliphatic and non-co-diene. The above-mentioned norbornene-based The resin in which the monomer is subjected to addition (co)polymerization includes addition-copolymerization of at least one of one or more kinds of norbornene-based monomers and at least one of α-ene 5 hydrocarbons, cycloolefins, and non-conjugated dienes. Resin. The resin in which hydrogen is added to the ring-opening (co)polymer of the norbornene-based monomer can be subjected to a displacement reaction by, for example, a norbornene-based monomer to obtain a ring-opened (co)polymer, followed by the aforementioned The ring-opened (co)polymer was added with hydrogen and 10 was obtained. Specifically, for example, the method described in paragraphs [0059] to [0060] of the Japanese Patent Publication No. Hei-hmso, and the [〇〇35]~'7 of the Japanese Patent Publication No. 2〇〇35〇〇17 ] The method of recording, etc. The resin which is subjected to the addition (co)polymerization of the monomer of the norbornene (tetra) can be obtained, for example, by the method described in the first embodiment of JP-A-611-2926. 15 The average molecular weight (Mw) of the ice-fed fat is the value measured by the gel permeation chromatography (standard polystyrene) by the tetrafuran solvent, = 2_〇~500_ It is better. The above-mentioned norbornene thin resin has a transfer temperature (Tg) of 12 〇 to 17 (the range of TC is preferred. As long as the above resin is obtained, a phase having better thermal stability and better extensibility can be obtained. The glass transition temperature (Tg) is a value calculated by, for example, a method of 81^7121. C, a phase difference thin mold containing the above-mentioned norbornene thin resin, for example, a borrowing/treasure agent is washed. Casting method, j: Rongrong extrusion method to make the above-mentioned norbornene tethered tree shape into a polymer film, by longitudinal uniaxial stretching method, horizontal single-car extension 17 200907509 stretching method, vertical and horizontal simultaneous double The axial stretching method or the vertical and horizontal sequential biaxial stretching method is extended. From the viewpoint of manufacturing efficiency, the stretching method is preferably a horizontal uniaxial stretching method. The temperature of the polymer film is extended (the stretching temperature is 120 〜 20 (the range of TC is preferably. The magnification of the polymer film (elongation 5 stretch ratio) is preferably 1 time or more and 4 times or less. The extension method may be a fixed end extension method or a free end extension method. Fixed end extension method, can produce display nx > ny > n A retardation film having a relationship of z. For the retardation film containing the norbornene-based resin, for example, a commercially available film may be used as it is, or at least one of stretching and shrinking treatment may be applied to the commercially available film. For the second-order processor, such as the processing, the commercially available phase-difference film containing the norbornene-based resin, for example, the product name "ARTON series (ARTON FX, ARTON D), manufactured by JRS Corporation) The product name is "ZEONOR series (ZEONOR ZF14, ZEONOR ZF15, ZEONORZF16)", etc. 15 Next, a retardation film containing a cellulose resin is described. The cellulose resin is preferably substituted with an ethyl fluorenyl group and a propyl group. The degree of substitution of the cellulose resin "DSac (acetamethylene substitution degree) + DSpr (degree of substitution of propylene)" (the three hydroxyl groups present in the repeating unit of cellulose are replaced by an ethyl or propyl group on average. The lower limit of the number is preferably 2 or more, and preferably 2.3 is preferable to ' and 2.6 or more. The upper limit of "DSac+DSpr" is preferably 3 or less and preferably 2.9 or less. More preferably 2.8 or less. By making fibers The substitution degree of the plain resin is in the above range, and a retardation film having a refractive index distribution as desired as described above can be obtained. The lower limit of DSpr (degree of substitution of propylene) is preferably 1 or more, and 2 is 18 on 200907509. Preferably, it is more preferably 2.5 or more. The upper limit of DSpr is preferably 3 or less and preferably 2.9 or less, and more preferably 2.8 or less. By setting DSpr to the above range, the cellulose system can be improved. The solubility of the resin solvent makes it easy to control the thickness of the obtained first optical compensation layer. Further, by setting 5 "DSac + DSpr" to the above range and setting DSpr to the above range, a retardation film having the aforementioned optical characteristics and having wavelength dependence of reverse dispersion can be obtained. The Dsac (degree of substitution) and DSpr (degree of substitution) can be determined by the method described in JP-A-2003-315538 [〇〇16] to [〇〇19]. The cellulose resin may have other substituents other than an ethyl fluorenyl group and a propyl fluorenyl group. Examples of the other substituent include an ester group such as butyrate; an ether group such as an alkyl ether group or an aromatic ether group; and the like. The cellulose-based resin preferably has a number average molecular weight of from 5,000 to 100,000. By setting the above-mentioned number average molecular weight to the above range, the production is excellent and the mechanical strength is improved. The number average molecular weight is preferably in the range of 10,000 to 70,000. For the substitution method of the acetic acid group and the (tetra) group, any suitable method can be used. After the cellulose is treated with a strong caustic soda solution, it is brewed by a mixture of acetic acid and propionate needles in the pre-tank. The degree of substitution "Dsac+DSpr" was adjusted by partially hydrolyzing the 20 fluorene group. The phase difference film containing a cellulose resin can be prepared by, for example, dissolving a solution of a cellulose resin in a solvent, applying the solution onto a substrate to form a coating film, and drying the coating film to obtain a film. The way to manufacture. Although the film can be used as it is, in order to exhibit the phase difference of the above-mentioned 200907509, it is preferable to carry out the stretching process. The above stretching treatment is the same as the stretching treatment of the retardation film containing the norbornene-based resin. Further, a commercially available product can also be used as the retardation film containing the cellulose resin. Next, a retardation film containing a polyester resin will be described. The polyester 5-based resin is not particularly limited, and any suitable polyester-based resin may be used. However, a non-aromatic compound obtained by polymerizing a dicarboxylic acid component having a non-aromatic cyclic structure and a diol component may be used. A polyester resin having a cyclic structure and an ester group is preferred. The dicarboxylic acid component may, for example, be 1,4-cyclohexanedicarboxylic acid or the like. The above-mentioned dicarboxylic acid component may be used alone or in combination of two or more. The diol component of the first tenth embodiment may, for example, be 9,9-bis[4-(2-hydroxyethoxy)benzene]fluorene or 1,4-cyclohexanedhenol. The diol component may be used singly or in combination of two or more. The intrinsic viscosity of the polyester resin is preferably in the range of 0.2 to 0.6 dL/g. The glass transition temperature (Tg) of the polyester resin is preferably in the range of 110 to 150 °C. As long as it is the above-mentioned resin, a retardation film which has better thermal stability and is more excellent in elongation can be obtained. The intrinsic viscosity can be measured by, for example, the method described in the examples below. The glass transition temperature (Tg) is a value calculated by, for example, the DSC method of JIS K 7192. The retardation film containing the polyester resin is, for example, a polymer film obtained by molding the above-mentioned 20 polyester resin into a sheet shape, and appropriately extending the stretching conditions (for example, elongation temperature, stretching ratio, and stretching direction) Etc., extension method, etc. are produced by extension. Next, a retardation film containing a polyvinyl acetal resin will be described. The polyethylene acetal-based resin is not particularly limited, and a resin containing a polymer represented by the following formula (1) described in [0026] of JP-A No. 20 200907509 3984277 can be used. The polymer has a naphthyl group in its molecular structure and is excellent in transparency, heat resistance, processability and the like. [chemical 1] c

前述聚合物可藉由例如,使至少2種的醛化合物及酮化 合物之至少一者與聚乙烯醇系樹脂進行縮合反應而得到。 在前述通式(1)所示之聚合物中,卜m、η之各基本單位的排 15 列順序並無特別受限,可為交替、隨機或塊狀之任何一種。 前述聚合物包含基本單位卜m、及η的聚合度總計為20以 上,且重量平均分子量大的聚合物(所謂的高聚合物),另 外,亦包含基本單位卜m、及η的聚合度總計為2以上20以 下,且重量平均分子量為數千左右的低聚合物(所謂的寡聚 20 物)。 前述通式(1)中,R1及R3分別為氫原子、鹵原子、碳原 子數1〜4的直鏈狀或分支鏈狀的烷基、或是,取代或無取代 的苯基,且前述R1及R3可相同亦可相異。 前述通式(1)中,R2、Α及Β分別為氫原子、鹵原子、碳 21 200907509 原子數1〜4的直鏈狀或分支鏈狀的烷基、碳原子數丨〜4的直 鏈狀或分支鏈狀的i化烷基、碳原子數卜4的直鏈狀或分支 鏈狀的烷氧基、烷氧羰基、醯氧基'胺基、疊氮基、硝基、 氰基或氫氧基,且前述R2、A及B可相同亦可相異。但是, 5前述R2不為氫原子。 前述通式(1)中,R4為氫原子、碳原子數1〜4的直鏈狀或 分支鏈狀的烷基、碳原子數5〜10的取代或無取代的環烷 基、取代或無取代的苯基、取代或無取代的萘基、或是, 取代或無取代的雜環基。 則述通式(1)中,R為氫原子、碳原子數1〜4的直鍵狀或 刀支鏈狀的烷基、苄基、矽基、磷酸基、醯基、苯甲醯基、 或續酿基。 含有前述聚乙烯縮醛系樹脂的相位差薄膜係例如,將 藉壓縮成型法、轉移成型法、射出成型法、擠壓成型法、 15吹氣成型法、粉末成型法、FRP成型法、溶劑澆鑄法等使前 述聚乙稀縮越系樹脂成型為片狀而得之高分子薄膜,藉由 適當地選擇延伸條件(例如,延伸溫度、延伸倍率、延伸方 向等)、延伸方法等延伸而製作的。 作為前述第1光學補償層使用的相位差薄膜,更可含有 20 任意的適當添加劑。前述添加劑可舉例如:可塑劑、熱穩 定劑、光穩定劑、潤滑劑、抗氧化劑、紫外線吸收劑、難 燃劑、著色劑、防帶電劑、相溶劑、交聯劑、增稠劑等。 相對於主成份的樹脂100重量份,前述添加劑的含有量以〇 以上10重量份以下的範圍為佳。 22 200907509 [D.第2光學補償層] 前述第2光學補償層如前述,其折射率的關係顯示出例 如,nx=ny > nz的關係(負單軸性)。又,如前述,第2光學補 償層的波長色散顯示出例如,以前述式(IV)表示之正色散。 5 前述第2光學補償層可為單層亦可為由多數層所構成之積 層物。前述第2光學補償層的厚度以0.5〜200//m的範圍為 佳。前述第2光學補償層之波長590nm的透射率(T[590])以 90%以上為佳。 前述第2光學補償層的Re(590)為例如10nm以下,且以 10 5nm以下為佳,並以3nm以下為更佳。 前述第2光學補償層的Rth(590)可視例如,液晶單元之 厚度方向的相位差值等適當地設定。前述Rth(590)為例如 100〜400nm的範圍,且以120〜350nm的範圍為佳,並以 150〜300nm的範圍為更佳。 15 前述第2光學補償層可使用例如,含有非液晶性聚合物 的相位差薄膜。 從耐熱性、耐藥品性、透明性等方面均優異,且富有 剛性的觀點來看,前述非液晶性聚合物以例如:聚醯胺、 聚醯亞胺、聚酯、聚芳醚酮、聚醚酮、聚醯胺醯亞胺、聚 20 酯醯亞胺等聚合物為佳。該等聚合物可單獨使用任何一 種,亦可使用例如,如聚芳醚酮與聚醯胺之混合物般具有 相異官能基的2種以上混合物。從高透明性、高配向性、高 延伸性的觀點來看,此種聚合物中,特別是以聚醯亞胺為 佳。 23 200907509 前述聚合物的分子量並無特別受限,例如,重量平均 分子量(Mw)以moo〜1〇〇〇 〇〇〇的範圍為佳里且以 2,000〜500,000的範圍為更佳。 1 作為前述第2光學補償層使用的相位差薄膜,更可含有 5任意的適當添加劑。前述添加劑可舉例如:可塑劑、熱穩 定劑、光穩定劑、潤滑劑、抗氧化劑、紫外線吸收劑 '、'、難 燃劑、著色劑、防帶電劑、相溶劑、交聯劑、増祠劑等。 相對於主成份的樹脂100重量份,前述添加劑的含有量以〇 以上10重量份以下的範圍為佳。 ίο [E.偏光板] 在本發明之液晶面板中,前述第1偏光板及前述第2偏 光板宜以吸收軸呈相互垂直之關係配置。如前述,針、+、够, 則地弟1 偏光板及前述第2偏光板含有偏光片,且含有為任意構件之 保護層。偏光板構造之範例顯示於第5圖之示意戴面圖。第 15 5 (A)圖所示之偏光板14係偏光片141的兩側積層有保講片 142的構造。第5(B)圖所示之偏光板14係偏光片141的一側 積層有保護層142的構造。第5(C)圖所示之偏光板係僅有偏 光片141的構造。第5(B)圖及第5(C)圖的情形中,前述第i 光學補償層及前述第2光學補償層等其他光學構件會兼具 20 保護層。前述第1偏光板及前述第2偏光板的厚度為例如 20〜300 μ m的範圍。 前述第1偏光板及前述第2偏光板的透射率為例如 30〜50%的範圍,且以35〜45%的範圍為佳,並以38〜44。/0的 範圍為更佳。前述第1偏光板及前述第2偏光板的偏光度為 24 200907509 例如99%以上,且以99.5%以上為佳,並以99.8%以上為更 佳。前述偏光度可使用例如,分光光度計(村上色彩技術研 究所(株)製的商品名「DOT-3」)來測定。前述偏光度的具 體測定方法為,在測定前述第1偏光板及前述第2偏光板的 5平行透射率(Ho)及垂直透射率(l·^)後,可藉由式:偏光度 (%)={(Η〇-Η9())/(Η()+Η9())}ι/2χ100來求出。前述平行透射率(H〇) 係使2片相同的偏光板重疊為彼此的吸收軸呈平行而作成 的平行型積層偏光板之透射率的值。前述垂直透射率(h9〇) 係使2片相同的偏光板重疊為彼此的吸收軸呈垂直而作成 10的垂直型積層偏光板之透射率的值。另外,該等透射率係 藉由JIS Z 8701(1982年版)的2度視野(C光源)進行發光度修 正後的Y值。 [E-1.偏光片] 前述第1偏光片及前述第2偏光片可由例如,延伸包含 15含有碘之聚乙烯醇系樹脂之高分子薄膜而得到。前述第1偏 光片及前述第2偏光片的碘含有量為例如j 8〜5〇重量%的 範圍’且以2.G〜4.G重量%的範圍為佳。前述第丨偏光片及前The polymer can be obtained, for example, by subjecting at least one of at least two kinds of aldehyde compounds and ketone compounds to a condensation reaction with a polyvinyl alcohol-based resin. In the polymer represented by the above formula (1), the order of the columns of the basic units of m and η is not particularly limited, and may be any of alternating, random or block. The polymer contains a polymer having a basic unit m and a total degree of polymerization of 20 or more and a weight average molecular weight (so-called high polymer), and also includes a total degree of polymerization of basic units m and η. It is a low polymer (so-called oligomeric 20) having a weight average molecular weight of about 2 or more and 20 or less. In the above formula (1), R1 and R3 each independently represent a hydrogen atom, a halogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted phenyl group, and the above R1 and R3 may be the same or different. In the above formula (1), R 2 , Α and Β are each a hydrogen atom, a halogen atom, a carbon 21 200907509, a linear or branched alkyl group having 1 to 4 atomic number, and a linear chain having a carbon number of 丨 4 . a linear or branched chain i-alkyl group, a linear or branched alkoxy group having a carbon number of 4, an alkoxycarbonyl group, a decyloxy group, an azide group, a nitro group, a cyano group or Hydroxyoxy group, and the above R2, A and B may be the same or different. However, 5 of the above R2 is not a hydrogen atom. In the above formula (1), R4 is a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 10 carbon atoms, a substitution or no Substituted phenyl, substituted or unsubstituted naphthyl, or substituted or unsubstituted heterocyclic. In the above formula (1), R is a hydrogen atom, a linear or succinated alkyl group having a carbon number of 1 to 4, a benzyl group, a fluorenyl group, a phosphoric acid group, a fluorenyl group or a benzamidine group. Or continue to brew. The retardation film containing the polyvinyl acetal resin is, for example, a compression molding method, a transfer molding method, an injection molding method, an extrusion molding method, a 15 air blowing molding method, a powder molding method, an FRP molding method, and a solvent casting method. A polymer film obtained by molding the above-mentioned polyethylene-shrinkable resin into a sheet shape by a method such as extending the stretching conditions (for example, elongation temperature, stretching ratio, extending direction, etc.), stretching method, or the like . The retardation film used as the first optical compensation layer may further contain 20 optional additives. The aforementioned additives may, for example, be a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, a UV absorber, a flame retardant, a colorant, an antistatic agent, a phase solvent, a crosslinking agent, a thickener or the like. The content of the above additive is preferably in the range of 〇 or more and 10 parts by weight or less based on 100 parts by weight of the resin of the main component. 22 200907509 [D. Second optical compensation layer] As described above, the second optical compensation layer has a relationship of refractive index of, for example, nx = ny > nz (negative uniaxiality). Further, as described above, the wavelength dispersion of the second optical compensation layer shows, for example, the positive dispersion represented by the above formula (IV). 5 The second optical compensation layer may be a single layer or a laminate composed of a plurality of layers. The thickness of the second optical compensation layer is preferably in the range of 0.5 to 200 / / m. The transmittance (T[590]) at a wavelength of 590 nm of the second optical compensation layer is preferably 90% or more. Re (590) of the second optical compensation layer is, for example, 10 nm or less, more preferably 10 5 nm or less, and still more preferably 3 nm or less. The Rth (590) of the second optical compensation layer can be appropriately set, for example, by a phase difference value in the thickness direction of the liquid crystal cell. The above Rth (590) is, for example, in the range of 100 to 400 nm, preferably in the range of 120 to 350 nm, and more preferably in the range of 150 to 300 nm. For the second optical compensation layer, for example, a retardation film containing a non-liquid crystalline polymer can be used. From the viewpoints of excellent heat resistance, chemical resistance, transparency, and the like, and having rigidity, the aforementioned non-liquid crystalline polymer is, for example, polyamine, polyimine, polyester, polyaryletherketone, poly Polymers such as ether ketone, polyamidoximine, and poly 20 oxime imine are preferred. These polymers may be used singly or in combination of, for example, two or more kinds of dissimilar functional groups such as a mixture of polyaryl ether ketone and polydecylamine. From the viewpoint of high transparency, high alignment, and high elongation, among such polymers, polyylimylene is particularly preferred. 23 200907509 The molecular weight of the above polymer is not particularly limited. For example, the weight average molecular weight (Mw) is preferably in the range of moo~1〇〇〇 且 and more preferably in the range of 2,000 to 500,000. (1) The retardation film used as the second optical compensation layer may further contain any appropriate additives. The aforementioned additives may, for example, be plasticizers, heat stabilizers, light stabilizers, lubricants, antioxidants, ultraviolet absorbers, ', flame retardants, colorants, antistatic agents, phase solvents, crosslinking agents, hydrazines. Agents, etc. The content of the above additive is preferably in the range of 〇 or more and 10 parts by weight or less based on 100 parts by weight of the resin of the main component. [E. Polarizing Plate] In the liquid crystal panel of the present invention, the first polarizing plate and the second polarizing plate are preferably arranged such that the absorption axes are perpendicular to each other. As described above, the needle, the +, and the second polarizing plate and the second polarizing plate contain the polarizing plate, and the protective layer is an optional member. An example of the configuration of the polarizing plate is shown in the schematic drawing of Fig. 5. The polarizing plate 14 shown in Fig. 15(A) is a structure in which the pad 142 is laminated on both sides of the polarizer 141. The polarizing plate 14 shown in Fig. 5(B) has a structure in which a protective layer 142 is laminated on one side of the polarizing plate 141. The polarizing plate shown in Fig. 5(C) has only the structure of the polarizing plate 141. In the case of the fifth (B) and fifth (C) drawings, the other optical members such as the i-th optical compensation layer and the second optical compensation layer have a protective layer of 20. The thickness of the first polarizing plate and the second polarizing plate is, for example, in the range of 20 to 300 μm. The transmittance of the first polarizing plate and the second polarizing plate is, for example, in the range of 30 to 50%, and preferably in the range of 35 to 45%, and is 38 to 44. The range of /0 is better. The first polarizing plate and the second polarizing plate have a degree of polarization of 24 200907509, for example, 99% or more, and preferably 99.5% or more, and more preferably 99.8% or more. The above-mentioned degree of polarization can be measured, for example, by using a spectrophotometer (trade name "DOT-3", manufactured by Murakami Color Research Laboratory Co., Ltd.). The specific measurement method of the degree of polarization is obtained by measuring the parallel transmittance (Ho) and the vertical transmittance (l·^) of the first polarizing plate and the second polarizing plate by the formula: degree of polarization (%) )={(Η〇-Η9())/(Η()+Η9())}ι/2χ100 to find. The parallel transmittance (H〇) is a value obtained by superimposing two identical polarizing plates on the transmittance of a parallel-type laminated polarizing plate in which the absorption axes of the two are parallel. The above-mentioned vertical transmittance (h9〇) is a value obtained by superimposing two identical polarizing plates on the transmittance of a vertical laminated polarizing plate in which the absorption axes of the two are perpendicular to each other and 10 is formed. Further, these transmittances are Y values after luminosity correction by a 2 degree field of view (C light source) of JIS Z 8701 (1982 edition). [E-1. Polarizer] The first polarizer and the second polarizer can be obtained, for example, by stretching a polymer film containing 15 polyvinyl alcohol-containing resin containing iodine. The iodine content of the first polarizer and the second polarizer is, for example, a range of j 8 to 5 wt% and a range of 2. G to 4. G wt%. The aforementioned third polarizer and the former

偏光片更以含有硼為佳。前 …乂王至/。tr.j祀固马佳,並 备更佳。前述第1偏光片及前述第2 。前述硼的含有量為例如〇5〜3 重量%的範圍為更佳。 量%的範圍,且以!·〇〜2·8重量%的範圍為佳,並以! 5〜。 則述聚乙烯醇系樹脂可由例如,將聚合乙烯醋系單體 25 200907509 所付到之乙烯自旨系聚合物矣化而得到。前述聚乙稀醇系樹 脂的^匕度以95.0〜99.9莫耳%的範圍為佳。藉由使用息化 ===W'樹脂,可得到耐久性更佳的偏 烯醇系樹脂的平均聚合度可視目的選擇適 5當的值。前述平均聚合度以1200〜3_的範圍為佳。前 均聚:度:依據例如,JISK 6726(1994年版)來求出。 得到含有前述聚乙稀醇系樹脂的高分子薄膜 可採用任意的適當成型加工 ^ 辑攻型加工法。刖述成型加工法可舉例 如’特開2000-315144號公報[實施則記載之方法。 1〇 ^前述聚乙烯醇系樹脂的高分子薄膜以含有可塑叫 及界面活性劑之至少一種為佳。前述可塑劑可舉例如乙1 醇或丙二醇等多疋醇。前述界面活性劑可舉例如非離子界 面活性劑等。相對於前述聚乙稀醇系樹㈣Q重量份,前述 可塑劑及财述界面活性劑的含有量以i〜j 〇重量份的範圍為 15佳。前述可塑劑及前述界面活性劑可使例如,偏光片的染 色性及延伸性更加提高。 含有前述聚乙烯醇系樹脂的高分子薄膜亦可直接使用 例如市售薄膜。前述市售的含有聚乙烯醇系樹脂的高分子 薄膜可舉例如(株)KURARAY製的商品名「Kuraray Vinyl〇n 20 Film」、T〇HCELLO(株)製的商品名「T〇hceU〇 Vinyl〇nThe polarizer is more preferably boron. Before ... 乂王至/. Tr.j is a good fit for Ma Jia and better. The first polarizer and the second. The content of the boron is preferably in the range of, for example, 5 to 3 wt% of ruthenium. The range of the amount %, and the range of !·〇~2·8 wt% is preferable, and is 5~. The polyvinyl alcohol-based resin can be obtained, for example, by deuterating the ethylene-based polymer obtained by polymerizing the vinyl vinegar monomer 25 200907509. The degree of the polyethylene glycol resin is preferably in the range of 95.0 to 99.9 mol%. By using the compound ===W' resin, the average degree of polymerization of the more excellent allyl alcohol-based resin can be selected depending on the purpose. The above average degree of polymerization is preferably in the range of 1200 to 3 mm. Pre-homogeneity: Degree: Calculated according to, for example, JIS K 6726 (1994 edition). The polymer film containing the above-mentioned polyvinyl alcohol-based resin can be obtained by any appropriate molding process. The method of the molding process can be exemplified by the method described in the Japanese Patent Publication No. 2000-315144. The polymer film of the polyvinyl alcohol-based resin preferably contains at least one of a plastic polymer and a surfactant. The aforementioned plasticizer may, for example, be a polyterpene alcohol such as ethylene alcohol or propylene glycol. The surfactant may, for example, be a nonionic surfactant or the like. The content of the plasticizer and the commercial surfactant in the range of i to j 〇 by weight is preferably 15 in terms of the Q parts by weight of the polyethylene glycol (4). The above plasticizer and the aforementioned surfactant can further improve, for example, the coloring property and the elongation of the polarizer. The polymer film containing the polyvinyl alcohol-based resin may be used as it is, for example, a commercially available film. The commercially available polymer film containing a polyvinyl alcohol resin is, for example, a product name "Kuraray Vinyl〇n 20 Film" manufactured by KURARAY Co., Ltd., and a trade name "T〇hceU〇Vinyl" manufactured by T〇HCELLO Co., Ltd. 〇n

Film」、日本合成化學工業(株)製的商品名「日合vinyl〇n Film」等。 [E-2.保護層] 前述保護層為透明,且以無色偏為佳。前述保護層的 26 200907509 面内相位差值Re(55〇)為例如〇〜1〇nm的範圍,且以〇〜的 U為k ’並以〇〜3nm的範圍為更佳。前述保護層之厚度 方向的相位差值Rth(550)為例如0〜20mn的範圍,且以 〇 1〇nm的範圍為佳’並以0〜6nm的範圍為較佳,而以〇〜3nm 5的範圍為更佳。 所述保護膜之厚度為例如20〜200 //m的範圍,且以 3〇 100/zm的範圍為佳,並以35〜95“ m的範圍為更佳。 前述保護層可使用例如纖維素系薄膜。一般作為保護 溥膜使用的纖維素系薄膜為例如,三乙醯纖維素(TAC)薄膜 10時,在厚度40#m中’厚度方向相位差值(Rth)為40ηηι左右, 算很大。對於厚度方向相位差值(Rth)很大的纖維素系薄 膜’宜施加用以減少厚度方向相位差值(Rth)的適當處理。 用以減少厚度方向相位差值(Rth)的前述處理,可採用 任意的適當處理方法。可舉例如:將塗佈有環戊酮、甲基 15 乙基_等溶劑的聚對苯二甲酸乙二酯(PET)、聚丙烯、不銹 鋼等基材黏合於一般的纖維素系薄膜並加熱乾燥(例如,以 8〇〜150°C左右進行3〜10分左右)後’剝離基材薄膜的方法; 將於環戊酮、甲基乙基酮等溶劑内溶解有降冰片烯系樹 脂、丙烯系樹脂等的溶液塗佈於一般的纖維素系薄膜並加 20 熱乾燥(例如’以80〜150°C左右進行3〜10分左右)後,剝離 塗佈薄膜的方法等。 構成纖維素系薄膜的材料宜舉二乙醯纖維素、三乙醯 纖維素(TAC)等脂肪酸取代纖維素系聚合物。一般所使用的 TAC中,乙酸取代度雖為2.8左右,但宜將乙酸取代度控制 27 200907509 為h8〜2·7,且以將丙酸取代度控制為0_1〜1為更佳,藉此, 可減少並控制厚度方向相位差值(Rth)。 藉由將鄰苯二甲酸二丁酯、對甲苯磺醯苯胺、乙醯檸 榡酸二乙酯等可塑劑添加至前述脂肪酸取代纖維素系聚合 5物,可減少並控制厚度方向相位差值(Rth)。相對於脂肪酸 取代纖維素系聚合物10〇重量份,可塑劑的添加量以4〇重量 份以下為佳,且以1〜20重量份的範圍為較佳,並以卜15重 量份的範圍為更佳。 刚述用以減少並控制厚度方向相位差值(Rth)的技術可 10 適當地搭配使用。 可滿足前述光學特性(面内相位差值!^(550)、厚度方向 向位差值Rth(550))的其他理想具體例,亦可舉丙烯酸樹脂 薄膜。該丙烯酸樹脂薄膜宜為以特開2005-314534號公報記 載之含有以下述結構式(2)表示之戊二酸酐單位的丙烯酸樹 15脂(A)作為主要成分包含在内的丙烯酸樹脂薄膜。藉由含有 以下述結構式(2)表示之戊二酸酐單位,可提高耐熱性。下 述結構式(2)中,R1、R2表示相同或相異的氫原子或碳原子 數1〜5的烷基,且以氫原子或甲基為佳,並以甲基為更佳。 【化2】 20The product name "Nikko vinyl 〇n Film" manufactured by Nippon Synthetic Chemical Industry Co., Ltd., etc. [E-2. Protective layer] The aforementioned protective layer is transparent and is preferably colorless. The in-plane retardation value Re(55〇) of the protective layer 26 200907509 is, for example, a range of 〇1 to 1 〇 nm, and U of 〇 〜 is k ′ and a range of 〇 3 3 nm is more preferable. The phase difference value Rth (550) in the thickness direction of the protective layer is, for example, in the range of 0 to 20 nm, and is preferably in the range of 〇1 〇 nm and preferably in the range of 0 to 6 nm, and 〇 〜 3 nm 5 The range is better. The thickness of the protective film is, for example, in the range of 20 to 200 //m, and preferably in the range of 3 〇 100 / zm, and more preferably in the range of 35 to 95 Å. The foregoing protective layer may use, for example, cellulose. In general, when the cellulose-based film used as the protective ruthenium film is, for example, a triacetyl cellulose (TAC) film 10, the thickness direction retardation (Rth) is about 40 ηηι in thickness 40 #m, which is very For the cellulose-based film having a large retardation phase difference (Rth), a suitable treatment for reducing the thickness direction retardation (Rth) should be applied. The foregoing treatment for reducing the thickness direction retardation (Rth) Any appropriate treatment method may be employed, and for example, a substrate coated with polyethylene terephthalate (PET) coated with a solvent such as cyclopentanone or methyl 15 ethyl group, polypropylene, or stainless steel may be bonded. A method of peeling a base film after drying and drying (for example, about 8 to 10 minutes at about 8 to 150 ° C) in a general cellulose-based film; a solvent such as cyclopentanone or methyl ethyl ketone; A solution in which a norbornene-based resin, a propylene-based resin, or the like is dissolved is applied to The cellulose-based film is heated by a heat of 20 (for example, 'about 3 to 10 minutes at about 80 to 150 ° C), and the film is peeled off. The material constituting the cellulose film is preferably diethyl hydrazine. A cellulose-based polymer such as cellulose or triacetyl cellulose (TAC) is substituted for the cellulose-based polymer. Generally, in the TAC used, the degree of substitution of acetic acid is about 2.8, but it is preferable to control the degree of substitution of acetic acid 27 200907509 to h8~2·7. And it is more preferable to control the degree of substitution of propionic acid to 0_1 to 1, whereby the thickness direction retardation value (Rth) can be reduced and controlled by using dibutyl phthalate, p-toluenesulfonyl aniline, A plasticizer such as diethyl ruthenate or a plasticizer added to the above-mentioned fatty acid-substituted cellulose-based polymer 5 can reduce and control the thickness direction retardation value (Rth), which is 10 parts by weight relative to the fatty acid-substituted cellulose-based polymer. The amount of the plasticizer to be added is preferably 4 parts by weight or less, more preferably 1 to 20 parts by weight, and more preferably 15 parts by weight. The following is for reducing and controlling the thickness direction retardation. Value (Rth) technology can be used in conjunction with 10 Other preferable examples of the optical characteristics (in-plane phase difference value φ (550), thickness direction directional difference value Rth (550)) may be satisfied, and an acrylic resin film may be used. The acrylic resin film is preferably opened. An acrylic resin film containing an acrylic resin 15 (A) having a glutaric anhydride unit represented by the following structural formula (2) as a main component, as described in JP-A-2005-314534, contains the following structural formula (2) In the following structural formula (2), R1 and R2 represent the same or different hydrogen atoms or an alkyl group having 1 to 5 carbon atoms, and are represented by a hydrogen atom or a methyl group. It is better, and the methyl group is better. [Chemical 2] 20

28 200907509 酐單位的含有比例,以20〜40重量%的範圍為佳,且以乃〜^ 重量°/Q的範圍為更佳。 月1J述丙烯酸樹脂(A),除了以前述結構式(2)表示之戊二 酸酐單位以外,亦可含有】種或2種以上任意的適當單體單 5 f。該種單體單位宜舉乙烯賴偏旨單位。前述丙稀酸樹 月曰(A)中’乙烯羧酸烷酯單位的含有比例以6〇〜8〇重量%的範 圍為佳,且以65〜75重量的範圍為更佳。 前述乙烯羧酸烷酯單位可舉例如,以下述通式(3)表示 之早位。下述通式(3)中’R3表示氫原子或碳原子數卜5的脂 ⑺肪族或脂環式破氫化合物,r4表示碳原子數卜5的脂肪族碳 氫化合物。 【化3】28 200907509 The content of the anhydride unit is preferably in the range of 20 to 40% by weight, and more preferably in the range of ~^ weight °/Q. In addition to the glutaric anhydride unit represented by the above structural formula (2), the acrylic resin (A) may contain any one or two or more kinds of appropriate monomeric monomers 5f. The monomer unit should be given a unit of ethylene. The content of the 'vinyl carboxylic acid alkyl ester unit in the acridine tree sap (A) is preferably in the range of 6 Å to 8 Å by weight, and more preferably in the range of 65 to 75 parts by weight. The above-mentioned ethylene carboxylic acid alkyl ester unit may, for example, be an early position represented by the following general formula (3). In the following general formula (3), 'R3' represents a hydrogen atom or a carbon atom number 5 of a lipid (7) aliphatic or alicyclic hydrogen perhydrogen compound, and r4 represents an aliphatic hydrocarbon having 5 carbon atoms. [化3]

15 R315 R3

h2 I c —C-H2 I c —C-

COOR4COOR4

前述丙婦酸樹脂(A)的重量平均分子量以 20 80000〜150000的範圍為佳。 月』述丙稀St樹脂薄膜中的前述丙烯酸樹脂(A)的含有 比例以60〜90重量%的範圍為佳。 月J述丙稀酸樹脂薄膜中,除了前述丙烯酸樹脂⑷以 外亦可3有1種或2種以上任意的適當成分。該種成分在 29 200907509 不損及本發明之目的的範圍 述成分可_如:前述採隸意㈣當成分。前 吸收劑、抗氧化劑、潤滑劑、=m(A以外的樹脂、紫外線 難燃劑 '晶核劑、防帶電劑、°塑劑、脫膜劑、防著色劑、 ^ 顏料、著色劑等。 則述保護層亦可在與前寺 處理層。前述表面處理可視側相反之側具有表面 面虚6 的採用適當的處理。前述表 甶處理層可舉例如:硬塗 ^ 佈處理、防帶電處理、防反射處 理(亦%為抗反射處理)、擔 Ϊ» a 、 &理(亦稱為防光眩處理)等處 理層。該等表面處理係以防+ + 10 闵它免Μ 止息面髒污或受損,或是防止 因至内螢光燈或太陽光照射 ^ α ^ 王蛩幕使得顯示畫面難以辨識 局目的而使用。一般來說, ^ ± 別迷表面處理層可使用於基底 涛膜表面黏著有用以形成前 泛从 t處理層的處理劑者。前述基 底溥膜亦可兼具前述保護芦。u B 此外,前述表面處理層亦可 為例如,於防帶電處理層上 15 造 S工積層有硬塗佈處理層的多層構 造。 前述保護層可直接使用偏1 牧风用例如,施有表面處理的市售高 分子薄膜。或是,亦可對前塊市售高分子薄膜施加任意的 表面處理後使用。施有前述擴散處理(防光眩處理)的市售薄 膜可舉例如,曰東電工(株)製的商品名「AG15〇、AGS1、 20 AGS2」等。施有前述防反射處理(抗反射處理)的市售薄膜 可舉例如,日東電工(株)製的商品名「ARS、ARC」等。施 有前述硬塗佈處理及前述防帶電處理的市售薄膜可舉例 如’ KONICA MINOLTA OPTO(株)製的商品名 「KC8UX-HA」等。施有前述防反射處理的市售薄膜可舉 30 200907509 例如,曰本油脂(株)製的商品名「Re〇L〇〇]^^、列」等。 如丽述,前述第1光學補償層及前述第2光學補償層等 其他光學構件亦可作為保護層使用。 [F·光學構件的積層] 5 前述第1偏光片及前述第1光學補償層等光學構件的積 層係例如,隔著接著層而積層的。 月'J述光學構件的接著面以施有易接著處理為佳。前述 易接著處理以塗佈樹脂材料的處理為佳。前述樹脂材料以 例如.矽系樹脂、胺基曱酸乙酯系樹脂、丙烯酸系樹脂為佳。 10藉由施加前述易接著處理,可於前述接著面形成易接著 層。前述易接著層的厚度以5〜100nm的範圍為佳,且以 10〜80nm的範圍為更佳。 前述接著層可設在相互接著之光學構件雙方,亦可設 在單方。 15 前述接著層為由黏著劑所形成之黏著劑層時,前述黏 著劑可採用任意的適當黏著劑。具體而言,前述黏著劑可 舉例如:溶劑型黏著劑、非水系乳劑型接著劑、水系黏著 劑、熱熔黏著劑等。其中,宜使用以丙烯酸系聚合物作為 基底聚合物的溶劑型黏著劑。前述黏著劑層的厚度為例如 20 1〜100/im的範圍,且以3〜50//m的範圍為佳,並以5〜30# m的範圍為更佳,特別是以1〇〜25//m的範圍為最佳。 前述接著層可為例如,藉由將含有預定比例之接著劑 的塗佈液塗佈於光學構件表面後使之乾燥所形成之接著劑 層。前述塗佈液,例如,可使用市售溶液或分散液,亦可 31 200907509 將溶劑添加至市售溶液或分散液後使用,還可將固體成分 溶解於或分散於各種溶職❹。前述接著劑可舉例如. 水溶性接著劑、乳綱接著劑、乳_接著劑、膠接著劑、 ^接著劑、糊狀接著劑 '發泡型接著劑、及受載薄膜接 =熱可塑型接著劑、熱炼融型接著劑、熱固化接著劑、 劑:、熱活性接著劑、熱封接著劑、熱硬化型接著 劑、接觸型接著劑、壓感性接著劑、聚合型接 型接著劑、溶劑活性接著μ 作業性、製品品質及經以透明性、接著性、 10 15 20 佳。前述接著劑的塗佈方^優異的水溶性接著劑為 塗佈方法可舉例如:旋塗*用任意的適當方法。前述 法、浸沾塗佈法、棒式^佈法、:筒塗佈法、流動塗佈 例如0.01〜0.15㈣的範法4 °前述接著劑層的厚度為 並以〇.。3〜。_09,的範圍為::°:02〜〇·12㈣範圍為佳’ [G_液晶顯示裝置] 本發明之液晶顯示萝 之液晶面板。本發明特徵在於含有前述本發明 晶面板以外,可為與以日顯示裝置除了含有本發明之液 :之液晶顯示裝置可為彳_面板的内面冓 畫面的透射型,亦可為 ,、、射先而看到 到畫面的反射型,還可:面板的顯示面側照射光而看 質的半透射型。4同時具有透射型歧射型兩種性 本發明之液晶顯示努 用途為例如:個人電觸餐0使用於任意的適當用途。該 ^鸯幕、筆記型電腦、影印機等辦公 32 200907509 設備;行動電話、時鐘、數位相機、個人數位助理(pDA)、 可攜式遊戲機等可攜式骏置;錄放影機、電視機、微波爐 等豕用電器;倒車監視器、汽車導航系統監視器、汽車音 響等車載設備;商店用資訊監視器等顯示設備;監視用監 5視器等保全設備;護理用監視器、醫療用監視器等護理-醫 療設備等。 本發明之液晶顯示裝置的理想用途為電視機。前述電 視機的晝面尺寸以寬17型(373mmx224mm)以上為佳,且以 寬23型(499mmx300mm)以上為較佳,並以寬32型(687mmx 10 412mm)以上為更佳。 【實施例】 接著,對於本發明之實施例,連同比較例一併說明。 另外,本發明不因下述實施例及比較例而有任何限制亦不 受限。又,各實施例及各比較例的各種特性與物性之測定 15和評估,係藉由下述方法實施的。 (1) 波長590nm之面内相位差值Re(590)及厚度方向相位 儿產值The weight average molecular weight of the above-mentioned propylene glycol resin (A) is preferably in the range of 20,800 to 150,000. The content ratio of the aforementioned acrylic resin (A) in the propylene-St resin film is preferably in the range of 60 to 90% by weight. In addition to the acrylic resin (4), one or two or more optional components may be used in the film of the acrylic resin. Such a component is in the range of 29 200907509 which does not impair the object of the present invention. The composition may be as described above. Pre-absorbent, antioxidant, lubricant, =m (resin other than A, ultraviolet flame retardant' crystal nucleating agent, antistatic agent, ° plasticizer, release agent, anti-coloring agent, pigment, colorant, etc.). The protective layer may also be appropriately treated with a surface surface defect 6 on the side opposite to the front side of the surface treatment visible side. The surface treatment layer may be, for example, a hard coating treatment or an antistatic treatment. Anti-reflection treatment (also known as anti-reflection treatment), treatment layer such as » a, & (also known as anti-glare treatment). These surface treatments are protected against + + 10 闵Dirty or damaged, or prevent the use of internal fluorescent lamps or sunlight to illuminate the surface of the screen. In general, ^ ± Do not use the surface treatment layer for the substrate The surface of the film is adhered to form a treatment agent for the front layer of the t-treated layer. The substrate film may also have the above-mentioned protective reed. u B Further, the surface treatment layer may be, for example, an anti-static treatment layer. The S-layer has a hard coating layer The protective layer may be a commercially available polymer film to which a surface treatment is applied, for example, or a surface treatment may be applied to the commercially available polymer film of the former block. The commercially available film of the above-mentioned anti-reflection treatment (anti-reflection treatment) is exemplified by the trade name "AG15〇, AGS1, 20 AGS2" manufactured by Nippon Denshi Co., Ltd. For example, the product name "ARS, ARC" manufactured by Nitto Denko Co., Ltd., and the like. The commercially available film which is subjected to the hard coating treatment and the antistatic treatment may be, for example, 'KONICA MINOLTA OPTO Co., Ltd. For example, the product name "Re〇L〇〇]^^, column, etc., manufactured by Sakamoto Oil & Fats Co., Ltd., etc., can be used as a commercially available film to which the above-mentioned anti-reflection treatment is applied. For example, the other optical members such as the first optical compensation layer and the second optical compensation layer may be used as a protective layer. [F. Layering of optical members] 5 First polarizing plate, first optical compensation layer, etc. The layering of the optical member is, for example, followed by Further, it is preferable that the bonding surface of the optical member of the month is preferably subjected to an easy-to-treat treatment. The above-described easy-to-treat treatment is preferably a treatment for coating a resin material, for example, a lanthanum resin or an amino phthalic acid. An ethylenic resin or an acrylic resin is preferred. 10 An easy-adhesion layer can be formed on the adhesive surface by the above-described easy-to-treat treatment. The thickness of the easy-adhesion layer is preferably in the range of 5 to 100 nm, and is 10 to 80 nm. The adhesive layer may be provided on both sides of the optical member that is adjacent to each other, or may be provided on one side. 15 When the adhesive layer is an adhesive layer formed of an adhesive, the adhesive may be any suitable adhesive. Agent. Specifically, the above-mentioned adhesive can be exemplified by a solvent-based adhesive, a non-aqueous emulsion-type adhesive, a water-based adhesive, a hot-melt adhesive, and the like. Among them, a solvent-based adhesive using an acrylic polymer as a base polymer is preferably used. The thickness of the adhesive layer is, for example, in the range of 20 1 to 100 / im, and preferably in the range of 3 to 50 / / m, and more preferably in the range of 5 to 30 # m, particularly 1 to 25 The range of //m is the best. The above-mentioned adhesive layer may be, for example, an adhesive layer formed by applying a coating liquid containing a predetermined ratio of an adhesive to a surface of an optical member and then drying it. For the coating liquid, for example, a commercially available solution or dispersion may be used, or 31 200907509 may be used after the solvent is added to a commercially available solution or dispersion, and the solid component may be dissolved or dispersed in various working conditions. The above-mentioned adhesive agent may, for example, be a water-soluble adhesive, a milk-based adhesive, a milk-adhesive, a rubber adhesive, a pressure-sensitive adhesive, a paste-like adhesive agent, a foaming type adhesive, and a loaded film joint = a thermoplastic moldable type. Receptive agent, hot refining type adhesive, heat curing adhesive, agent: thermal active adhesive, heat sealing adhesive, thermosetting adhesive, contact adhesive, pressure sensitive adhesive, polymeric adhesive Solvent activity followed by μ workability, product quality, and transparency, adhesion, and 10 15 20 are preferred. The water-soluble adhesive agent which is excellent in the application of the above-mentioned adhesive agent is, for example, spin coating* by any appropriate method. The above method, dip coating method, bar coating method, barrel coating method, flow coating, for example, 0.01 to 0.15 (4), the thickness of the above-mentioned adhesive layer is 〇. 3~. The range of _09 is: °: 02~〇·12 (four) is preferable. [G_Liquid Crystal Display Device] The liquid crystal display of the present invention is a liquid crystal panel. The present invention is characterized in that, in addition to the above-described crystal panel of the present invention, the liquid crystal display device of the liquid crystal display device of the present invention may be a transmissive type of the inner surface of the panel, or may be First, when you see the reflection type of the screen, you can also see the semi-transmissive type of the light that is illuminated by the display side of the panel. 4 Simultaneously having a transmissive type of projection The liquid crystal display of the present invention is used, for example, for personal electric contact 0 for any suitable use. Office curtains, notebook computers, photocopiers, etc. Office 32 200907509 equipment; mobile phones, clocks, digital cameras, personal digital assistants (pDA), portable game consoles, etc.; portable video recorders, television sets , electric appliances such as microwave ovens; reversing monitors, car navigation system monitors, car audio and other in-vehicle devices; display devices such as store information monitors; surveillance equipment such as surveillance monitors; surveillance monitors, medical monitors Equipment and other care - medical equipment. An ideal use of the liquid crystal display device of the present invention is a television set. The size of the face of the television is preferably 17 (373 mm x 224 mm) or more, and is preferably 23 (499 mm x 300 mm) or more, and more preferably 32 (688 mm x 10 412 mm) or more. [Embodiment] Next, an embodiment of the present invention will be described together with a comparative example. Further, the present invention is not limited or limited by the following examples and comparative examples. Further, the measurement and evaluation of various characteristics and physical properties of the respective examples and comparative examples were carried out by the following methods. (1) In-plane phase difference value Re (590) at a wavelength of 590 nm and thickness direction phase

Rth(590) 波長590nm之面内相位差值Re(590)及厚度方向相位差 值Rth(590)係使用王子計測機器(株)製、商σ 〇Cr名 20 「KOBRA21ADH」測定的。 (2) 色移的測定 使用ELDIM社製、商品名「EZContrastl60D」,使方位 角朝0〜360°變化,來測定極角呈60。方向的液晶顯示敦置 的色調,並描繪於xy色度圖上。另外,方位角及極角如第6 33 200907509 圖所示。 在前述色移的測定中,方位角改變時未產生色變,則 X、y的值不會產生變化。亦即,圖表會呈平坦曲線。即使 並非平坦曲線,在相對於45 、135 、225° 、315。的角 5 度分別往偏光板的軸方向改變視角(45° —0°與45。—90 ° 、135° —90。與 135° —180° 、225。—180° 與225。 —270° 、315° —270°與315° —0° )的情形下色變均相 同時(亦即,x、y的圖表以45°為中心呈對稱的情形),將僅 對某方向之顏色產生色偏(即使有色偏,亦僅止於1色的色 10偏)。雖然圖表呈平坦曲線係為最理想,但即使有色偏,如 果只有1色的話’對LCD的使用不會有實用上的問題。相對 於此,在相對於45。、135。、225。、315。的角度分別往 偏光板的軸方向改變視角(45。—0。與45。->90。、135。 — 90。與 135。—180。、225。—180。與225。->270。、 15 315° ~"270°與315° —〇。)的情形下色變均相異時(亦 即’ X、y的圖表以45。為中心呈不對稱的情形),會因視角 改變而對各種顏色產生色偏。此種色變在LCD中會造成視 角降低’成為最不理想的色變。振幅大小即為色偏的程度, X、y值越偏離偏光板之軸方向的顏色(0。、90。、180。、 2〇 27〇0、目 ϊ 夂 J則色偏會越大。因此,振幅小表示色偏會變小,是 良好的。 (3)平均黑亮度的測定 使用ELDIM社製、商品名rEzc〇ntrastl60D」,求出極 角 6 〇。 1. 方位角45° 、極角60。方位角135。、極角60°方位 34 200907509 角225° 、極角60°方位角315。的平均黑亮度。另外,方 位角及極角如第6圖所示。前述平均黑亮度低的話,黑色將 更為凝聚,故判斷為良好。 (4)固有黏度 5 聚酯系樹脂的固有黏度係以下述方法算出的。 [1 ]將聚酯系樹脂〇.25g溶解於混合溶劑使溶液濃度(〇 成為約1.00§/(1[。前述混合溶劑中,使用酚:1,1,2,2-四氯 乙院=1 : 1(重量比)。 [2] 將前述溶液冷卻至3〇乞後,使用全自動溶液黏度計 10 ((株)SENTEC製、商品名「2CH型DJ504」)測定前述溶液的 落下秒數⑴及溶劑的落下秒數(t〇)。 [3] 藉由下述式(狐)算出固有黏度。另外,下述κΗ為赫 金斯常數,採用0.33。 固有黏度(dL/g)={(l+4KH;/ sp)05-l}/(2KHC) (VH) 15 η sp=t/t〇-l t〇 :溶劑的落下秒數 t:溶液的落下秒數 KH :赫金斯常數 C :溶液濃度(g/dL) 2〇 [光學補償層] [參考例1] 藉由在150°C下將降冰片烯系薄膜(曰本ΖΕΟΝ社製、商 品名「ZEONOR」、厚度:1 〇〇 # m)往X軸方向以自由端延伸 法延伸為2倍,即製作出光學補償層(A1)。該光學補償層(A1) 35 200907509 的面内相位差值Re為85nm,且厚度方向相位差值Rth為 90nm。該光學補償層(A1)的雙折射率波長色散N顯示於第7 圖。如圖所示,該光學補償層(A1)顯示出平坦色散。由下 述降冰片烯系薄膜所得到之相位差薄膜亦顯示出平坦色 5 散。 [參考例2] 將由2,2’ -雙(3,4-二羧苯基)六氟丙烷及2,2’ -雙(三氟曱 基)-4,4’ -二胺二苯所合成之聚醯亞胺(以下述式(4)表示之 聚醯亞胺)溶解於環己酮,而得到15重量%的聚醯亞胺溶 10 液。將該聚醯亞胺溶液以20//m的厚度塗佈於PET薄膜(厚 度:50//m)。之後,在100°C下進行乾燥處理10分鐘即得到 厚度約3# m的光學補償層(A2)。將所得到之光學補償層(A2) 隔著丙烯酸系黏著劑轉移至玻璃板。該光學補償層(A2)的 面内相位差值Re為0.5nm,且厚度方向相位差值Rth為 15 121nm。該光學補償層(A2)的雙折射率波長色散PI顯示於第 7圖。如圖所示,該光學補償層(A2)顯示出正色散。另外, 由下述聚醯亞胺系樹脂所得到之相位差薄膜亦顯示出正色 散。 【化4】 20Rth (590) The in-plane phase difference value Re (590) at a wavelength of 590 nm and the thickness direction phase difference value Rth (590) were measured using a σ 〇Cr name 20 "KOBRA21ADH" manufactured by Oji Scientific Instruments Co., Ltd. (2) Measurement of color shift Using a product name "EZ Contrastl 60D" manufactured by ELDIM Co., Ltd., the azimuth angle was changed from 0 to 360 °, and the polar angle was measured to be 60. The liquid crystal in the direction shows the hue of the image and is drawn on the xy chromaticity diagram. In addition, the azimuth and polar angle are shown in Figure 6 33 200907509. In the measurement of the aforementioned color shift, when the azimuth angle is changed, no color change occurs, and the values of X and y do not change. That is, the chart will be flat. Even if it is not a flat curve, it is relative to 45, 135, 225°, 315. The angle of 5 degrees is changed to the axial direction of the polarizing plate (45° - 0° and 45. - 90 °, 135 ° - 90, and 135 ° - 180 °, 225 - 180 ° and 225 - 270 °, When the color change is the same in the case of 315°—270° and 315°—0° (that is, the graph of x and y is symmetrical about 45°), the color shift will be generated only for the color in a certain direction. (Even if there is a color shift, it only ends with a color of 10 colors). Although the graph is ideal for a flat curve, even if there is a color shift, if there is only one color, there is no practical problem with the use of the LCD. In contrast, it is relative to 45. , 135. 225. 315. The angle of view changes to the direction of the axis of the polarizing plate (45. - 0. and 45. -> 90., 135. - 90. and 135. - 180., 225. - 180. and 225. -> 270 , 15 315 ° ~ " 270 ° and 315 ° - 〇.) in the case of color change in the same time (that is, 'X, y chart is asymmetry in the center of 45." Change to produce color cast for various colors. Such a color change causes a decrease in viewing angle in the LCD, which becomes the most undesirable color change. The magnitude of the amplitude is the degree of color shift. The more the X and y values deviate from the color of the axis of the polarizing plate (0, 90, 180, 2〇27〇0, and the target ϊJ, the color shift will be larger. (3) The average black luminance is measured by using ELDIM Corporation, trade name rEzc〇ntrastl60D", and the polar angle is 6 〇. 1. Azimuth angle 45°, polar angle 60. Azimuth angle 135., polar angle 60° azimuth 34 200907509 angle 225°, polar angle 60° azimuth angle 315. The average black brightness. In addition, the azimuth and polar angle are as shown in Fig. 6. The above average black brightness is low. If the black color is more condensed, it is judged to be good. (4) Intrinsic viscosity 5 The intrinsic viscosity of the polyester resin is calculated by the following method. [1] The polyester resin 〇.25g is dissolved in a mixed solvent to make a solution. Concentration (〇 becomes about 1.00 § / (1 [. In the above mixed solvent, phenol: 1,1,2,2-tetrachloroethane = 1 : 1 (weight ratio). [2] The solution was cooled to 3 After that, the number of seconds of the solution (1) and the number of seconds of the solution were measured using a fully automatic solution viscometer 10 (manufactured by SENTEC Corporation, trade name "2CH type DJ504"). The number of seconds of the drop (t〇) of the agent. [3] The intrinsic viscosity is calculated by the following formula (fox). The following κΗ is the Huggins constant, and 0.33 is used. Intrinsic viscosity (dL/g)={(l +4KH; / sp)05-l}/(2KHC) (VH) 15 η sp=t/t〇-lt〇: number of seconds of the drop of the solvent t: number of seconds of falling of the solution KH: Huggins constant C: solution Concentration (g/dL) 2 〇 [Optical Compensation Layer] [Reference Example 1] A norbornene-based film (manufactured by Sakamoto Co., Ltd., trade name "ZEONOR", thickness: 1 〇〇#) at 150 °C m) The optical compensation layer (A1) is formed by extending to the X-axis direction by the free end extension method, and the in-plane retardation Re of the optical compensation layer (A1) 35 200907509 is 85 nm, and the thickness direction phase difference is The value Rth is 90 nm. The birefringence wavelength dispersion N of the optical compensation layer (A1) is shown in Fig. 7. As shown, the optical compensation layer (A1) exhibits flat dispersion. The norbornene-based film described below The resulting retardation film also showed a flat color dispersion. [Reference Example 2] 2,2'-bis(3,4-dicarboxyphenyl)hexafluoropropane and 2,2'-bis(trifluoroanthracene) Synthesis of 4,4'-diamine diphenyl The quinone imine (polyimine represented by the following formula (4)) is dissolved in cyclohexanone to obtain 15% by weight of a polyimine solution. The polyimine solution is 20/m. The thickness was applied to a PET film (thickness: 50 / / m), and then dried at 100 ° C for 10 minutes to obtain an optical compensation layer (A2) having a thickness of about 3 # m. The obtained optical compensation layer (A2) was transferred to a glass plate via an acrylic adhesive. The in-plane phase difference Re of the optical compensation layer (A2) was 0.5 nm, and the thickness direction phase difference Rth was 15 121 nm. The birefringence wavelength dispersion PI of the optical compensation layer (A2) is shown in Fig. 7. As shown, the optical compensation layer (A2) exhibits positive dispersion. Further, the retardation film obtained from the following polyimine-based resin also showed positive dispersion. [化4] 20

cf3 36 _ (4) 200907509 [參考例3 ] 以二氣甲烷為溶劑,溶解烷基取代度為0.1,且丙醯基 取代度為2.6,而數量平均分子量為7500的醋酸丙酸纖維素 (EASTMAN CHEMICAL社製、商品名「CAP482-20」)使固 5體成分浪度呈15%後,洗鑄至基材(PET)上使乾燥後的厚度 呈80#m,即得到薄膜。剝離前述基材後,藉由在14〇它下 用延伸機將該薄膜以自由端延伸法延伸為1_6倍,即製作出 光學補償層(A3)。該光學補償層(A3)的面内相位差值尺£為 88nm,且厚度方向相位差值Rth為95nm。該光學補償層仏3) 10的雙折射率波長色散C顯示於第7圖。如圖所示,該光學補 償層(A3)顯示出反色散。另外,下述纖維素系薄膜之相位 差缚膜亦顯不出反色散。 [參考例4] 除了在148t:下將降冰片烯系薄膜往X軸方向以固定端 15延伸法延伸為3倍以外,其餘均與參考例1相同,即製作出 光學補償層(A4)。該光學補償層(A4)的面内相位差值尺6為 79nm ’且厚度方向相位差值Rth為l〇3nm。 [參考例5] 除了以18# m的厚度塗佈聚醯亞胺溶液以外,其餘均與 〇參考例2相同,即得到厚度約2 6ym的光學補償層⑷)。將 所仔到之光學補償層(A5)隔著丙烯酸系黏著劑轉移至玻璃 板。遠光學補償層(八5)的面内相位差值R_〇_4·,且厚度 方向相位差值Rth為l〇5nm。 [參考例6] 37 200907509 除了在146°C下將降冰片烯系薄膜往χ軸方向以固定端 延伸法延伸為丨·5倍以外,其餘均與參考例1相同,即製作 出光學補償層(A6)。該光學補償層(A6)的面内相位差值5^ 為69nm ’且厚度方向相位差值Rth為118nm。 5 [參考例7] 除了在150 C下將薄膜以自由端延伸法延伸為1.45倍 以外,其餘均與參考例3相同,即製作出光學補償層(A?)。 §亥光學補償層(Α7)的面内相位差值Re為70nm,且厚度方向 相位差值Rth為l〇6nm。 10 [參考例8] 除了以10 的厚度塗佈聚醯亞胺溶液以外,其餘均與 參考例2相同,即得到厚度約14//〇1的光學補償層(A8)。將 所得到之光學補償層(A8)隔著丙烯酸系黏著劑轉移至玻璃 板。該光學補償層(A8)的面内相位差值Reg〇 5nm,且厚度 15方向相位差值Rth為60nm。 [參考例9] 除了在1451下將降冰片烯系薄膜往χ軸方向延伸為 1.3倍,且往γ軸方向延伸為丨仍倍以外,其餘均與參考例工 相同,即製作出光學補償層(A9)。該光學補償層(A9)的面 2〇内相位差值尺6為5211111,且厚度方向相位差值Rth為160nm。 [參考例10] 除了在13 8 c下將降冰片烯系薄膜往X轴方向以固定端 延伸法延伸為3倍以外,其餘均與參考例丨相同,即製作出 光學補償層(A10)。該光學補償層(A1〇)的面内相位差值1^ 38 200907509 為llOnm且厚度方向相位差值Rth為145nm。 [參考例11] 藉由在160°C下將聚碳酸酯薄膜(厚度:50//m)以自由 端延伸法延伸為丨.06倍,即製作出光學補償層(All)。該光 5學補償層(All)的面内相位差值R_u〇nm,且厚度方向相 位差值Rth為145nm。 [參考例12] 準備富士FILM社製的TAC薄膜。將該薄膜作為光學補 1償層(A12)。該光學補償層(A12)的面内相位差值尺6為1„111, 且厚度方向相位差值1^]1為6〇11111。該光學補償層(A12)的雙 折射率波長色散TAC顯示於第7圖。如圖所示,該光學補償 層(A12)顯示出反色散。另外,由下述TAC薄膜所構成之相 位差薄膜亦顯示出反色散。 [參考例13] 15 ^隔著丙烯酸系黏著劑貼著2層前述參考例12之光學補 償層(A12)。如此一來,即製作出光學補償層(Ai3)。 [參考例14] ▲由下述一魏成分及下述二醇成分合成聚醋系樹脂。 違聚s旨系樹脂的固有黏度為0 426dL/g,且玻璃轉移溫度⑽ 為30.1 c。將月||述聚酿系樹脂成型為片狀,即得到厚度1 % 心的薄膜。藉由在13穴下將前述薄膜以固定端橫延^法 延伸為2倍,即製作出光學補償層(ΑΜ)。該光學補償層⑷句 ^面内相位差值Re4l3Qnm,且厚度方向相位差值趾為 Wm。又,該光學補償層(A14)顯示出反色散的波長相依 39 200907509 性。 二羧酸成分:1,4-環己二甲酸(反式物:順式物=95 : 5) 二醇成分:9,9-雙[4-(2-羥乙氧)苯]第:1,4-環己二甲醇 (莫耳比)=80 : 20 5 [參考例15] 使8.8g的聚乙烯醇系樹脂(日本合成化學(株)製、商品 名「NH-18」(聚合度=18〇〇、皂化度=99 〇%)^1〇5〇c下乾 燥2小時後,溶解於167 2呂的二甲亞颯(E>MS〇)。接著,加 入2.98g的2-甲氧基小萘醛及〇 8〇g的對甲苯磺酸.丨水合物, 10在4〇°C下攪拌1小時。於該反應溶液加入3 18g的苯甲醛, 且在40。(:下攪拌1小時後,再加入23 60^1^二乙氧乙烷 (縮經)’並在40°C下攪拌3小時。之後,加入2.13g的三乙胺 使反應結束。將依前述所得到之粗產物&1L的甲醇進行再 沉澱。將過濾該沉澱物後所得到之聚合物溶解於四氫呋喃 15後,再次以甲醇進行再沉澱。對該沉澱物進行過濾、乾燥, 即得到ll_5g的聚合物。以ihnmr測定該聚合物的情況下, 如下述所示,具有以下述式(5)表示之重複單位,且l:m: n: 〇(莫耳比)=11 : 37 : 45 : 7。又,藉由微差掃描熱析儀測定 該聚合物的玻璃轉移溫度(Tg)的情況下,為123〇c。又,該 20聚合物的光彈性係數的絕對值(C[550])為2.4xl〇-nm2/N。 Wnmf^dmso)的測定結果: 0.8-2.3(主鏈亞甲基及縮趁部之甲基) 3.4-4.4(結合氧原子之主鏈次甲基、甲氧基之曱基、及氫氧 基) 40 200907509 4.5-5.1(縮醛部之次曱基) 5.4-5.9(苯部之次曱基) 6.4(2-曱氧萘部之次甲基) 7.1-7.5(2-曱氧萘部及苯部之芳香族質子) 5 7.7-8.8(2-甲氧萘部之芳香族質子) 【化5】Cf3 36 _ (4) 200907509 [Reference Example 3] Ethyl acetate propionate (EASTMAN) with a degree of substitution of alkyl group of 0.1 and a degree of substitution of propylene with a propylene group of 2.6 and a number average molecular weight of 7,500. Manufactured under the trade name "CAP482-20" by the company, the solid content of the solid body component was 15%, and then it was washed and cast onto a base material (PET) so that the thickness after drying was 80 #m, that is, a film was obtained. After the substrate was peeled off, the film was stretched by a free end extension method by a stretching machine at 14 Torr for 1 to 6 times to prepare an optical compensation layer (A3). The in-plane phase difference value of the optical compensation layer (A3) was 88 nm, and the thickness direction phase difference Rth was 95 nm. The birefringence wavelength dispersion C of the optical compensation layer 仏3) 10 is shown in Fig. 7. As shown, the optical compensation layer (A3) exhibits an inverse dispersion. Further, the phase difference film of the cellulose-based film described below also showed no reverse dispersion. [Reference Example 4] An optical compensation layer (A4) was produced in the same manner as in Reference Example 1 except that the norbornene-based film was stretched three times in the X-axis direction by the fixed end 15 extension method. The in-plane retardation rule 6 of the optical compensation layer (A4) was 79 nm' and the thickness direction phase difference Rth was l〇3 nm. [Reference Example 5] An optical compensation layer (4) having a thickness of about 26 μm was obtained in the same manner as in Reference Example 2 except that the polyimide reaction solution was applied at a thickness of 18 # m. The optical compensation layer (A5) which was taken up was transferred to the glass plate via an acrylic adhesive. The in-plane phase difference value R_〇_4· of the far optical compensation layer (Eight 5) is, and the thickness direction phase difference value Rth is l〇5 nm. [Reference Example 6] 37 200907509 An optical compensation layer was produced in the same manner as in Reference Example 1 except that the norbornene-based film was stretched to 丨·5 times in the z-axis direction at 146 ° C in the same manner as in Reference Example 1. (A6). The in-plane retardation value 5^ of the optical compensation layer (A6) was 69 nm' and the thickness direction retardation value Rth was 118 nm. 5 [Reference Example 7] An optical compensation layer (A?) was produced in the same manner as in Reference Example 3 except that the film was extended to 1.45 times by the free end extension method at 150 C. The in-plane phase difference Re of the optical compensation layer (Α7) is 70 nm, and the thickness direction phase difference Rth is l〇6 nm. [Reference Example 8] An optical compensation layer (A8) having a thickness of about 14 / / 〇 1 was obtained in the same manner as in Reference Example 2 except that the polyimine solution was applied at a thickness of 10. The obtained optical compensation layer (A8) was transferred to a glass plate via an acrylic adhesive. The in-plane retardation value Reg 〇 5 nm of the optical compensation layer (A8) and the phase difference Rth of the thickness 15 direction were 60 nm. [Reference Example 9] An optical compensation layer was produced in the same manner as the reference example except that the norbornene-based film was stretched 1.3 times in the z-axis direction and 丨 was multiplied in the γ-axis direction at 1451. (A9). The optical compensation layer (A9) has a phase difference ruler 6 of 5,211,111 and a thickness direction phase difference Rth of 160 nm. [Reference Example 10] An optical compensation layer (A10) was produced in the same manner as in Reference Example except that the norbornene-based film was stretched three times in the X-axis direction by the fixed end extension method at 13 8 c. The in-plane retardation value of the optical compensation layer (A1〇) is llOnm and the thickness direction phase difference Rth is 145 nm. [Reference Example 11] An optical compensation layer (All) was produced by stretching a polycarbonate film (thickness: 50 / / m) at a temperature of 160 ° C by a free end extension method to 丨.06 times. The in-plane retardation value R_u 〇 nm of the optical compensation layer (All) and the thickness direction phase difference Rth are 145 nm. [Reference Example 12] A TAC film manufactured by Fuji FILM Co., Ltd. was prepared. This film was used as an optical compensation layer (A12). The in-plane phase difference rule 6 of the optical compensation layer (A12) is 1 „111, and the thickness direction phase difference 1^]1 is 6〇11111. The birefringence wavelength dispersion TAC display of the optical compensation layer (A12) In Fig. 7, the optical compensation layer (A12) exhibits inverse dispersion as shown in the figure. Further, the retardation film composed of the following TAC film also exhibits inverse dispersion. [Reference 13] 15^ The acrylic adhesive was applied to the two layers of the optical compensation layer (A12) of the above-mentioned Reference Example 12. Thus, the optical compensation layer (Ai3) was produced. [Reference Example 14] ▲The following Wei component and the following two were produced. The alcohol component is synthesized into a polyester resin. The inherent viscosity of the resin is 0 426 dL/g, and the glass transition temperature (10) is 30.1 c. The thickness of the resin is formed into a sheet shape to obtain a thickness of 1 a film of the core. An optical compensation layer (ΑΜ) is formed by stretching the film at a fixed point by a fixed length at 13 holes. The optical compensation layer (4) has an in-plane phase difference of Re4l3Qnm. And the thickness direction phase difference toe is Wm. Further, the optical compensation layer (A14) shows the wavelength dependence of the inverse dispersion 39 20 0907509. Dicarboxylic acid component: 1,4-cyclohexanedicarboxylic acid (trans: cis = 95: 5) diol component: 9,9-bis[4-(2-hydroxyethoxy)benzene] 1,4-cyclohexanedimethanol (Morby) = 80 : 20 5 [Reference Example 15] 8.8 g of a polyvinyl alcohol-based resin (manufactured by Nippon Synthetic Chemical Co., Ltd., trade name "NH-18") (degree of polymerization = 18 〇〇, degree of saponification = 99 〇%) After drying for 2 hours at 1 〇 5 〇 c, it was dissolved in 167 2 dimethyl dimethyl hydrazine (E > MS 〇). Then, 2.98 g was added. 2-methoxy-naphthaldehyde and 〇8〇g of p-toluenesulfonic acid. Hydrazine hydrate, 10 was stirred at 4 ° C for 1 hour. To the reaction solution was added 3 18 g of benzaldehyde, and at 40. After stirring for 1 hour, additional 23 60 ^ 1 ^ diethoxyethane (shrinkage) was added and stirred at 40 ° C for 3 hours. Thereafter, 2.13 g of triethylamine was added to complete the reaction. The obtained crude product & 1 L of methanol was reprecipitated. The polymer obtained by filtering the precipitate was dissolved in tetrahydrofuran 15 and reprecipitated again with methanol. The precipitate was filtered and dried to obtain ll_5 g. Polymer. The poly is measured by ihnmr In the case of the object, as shown below, it has a repeating unit represented by the following formula (5), and l:m: n: 〇 (mr ratio) = 11 : 37 : 45 : 7. Further, by the difference When the glass transition temperature (Tg) of the polymer was measured by a scanning calorimeter, it was 123 〇c. Further, the absolute value (C [550]) of the photoelastic coefficient of the 20 polymer was 2.4 x 〇 - nm 2 / N. As a result of measurement of Wnmf^dmso): 0.8-2.3 (methylene group of main chain methylene group and condensed moiety) 3.4-4.4 (bonding hydroxymethyl group of methoxy group, methoxy group of methoxy group, and hydroxyl group) 40 200907509 4.5-5.1 (secondary sulfhydryl group) 5.4-5.9 (secondary sulfhydryl group) 6.4 (methine group of 2-oxophthalene) 7.1-7.5 (2-oxophthalene and Aromatic protons of benzene) 5 7.7-8.8 (aromatic protons of 2-methoxynaphthalene)

_ . · (5) 將前述聚合物溶解於甲基乙基酮(MEK)後,澆鑄至基 15 材(PET)上使乾燥後的厚度呈110# m,即得到聚乙烯縮醛系 薄膜。剝離前述基材後’藉由在14〇°c下用延伸機將該薄膜 往寬度方向以自由端延伸法延伸為2倍,即製作出光學補償 層(A15)。前述光學補償層(A15)具有nx>ny=nz(Nz係數 1.00)的關係,其厚度為5〇 # m,面内向位差值Re為 20 14〇nm ,且厚度方向向位差值Rth為140nm。又,該光學補 償層(A15)顯示出反色散的波長相依性。 [參考例16] 除了在14 0 C下將聚乙烯縮路系薄膜往寬度轴方向以 口疋端Hi:延伸為2倍以外’其餘均與參考例15相同,即 41 200907509 製作出光學補償層(A16)。該光學補償層(A16)具有nx>ny >nz(Nz係數=1_00)的關係,其厚度為5〇//m, 面内向位差 值1^為14〇11°1 ’且厚度方向向位差值Rth為150nm。又,該 光學補償層(A16)顯示出反色散的波長相依性。 5 [偏光板] [參考例17] 準備曰東電工杜製的偏光板、商品名r SIG1423DU」。 將該偏光板作為偏光板。 [參考例18] ° 將前述參考例1之光學補償層(A1)隔著丙烯酸系黏著 劑(厚度:20#m)貼著於前述參考例17之偏光板(m)之一 側,使前述偏光板(B1)的吸收軸與前述光學補償層(A1)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B2)。 [參考例19] 5 將前述參考例3之光學補償層(A3)隔著丙烯酸系黏著 劑(厚度:20/zm)貼著於前述參考例17之偏光板(B1)之一 側’使剞述偏光板(B1)的吸收轴與前述光學補償層(A3)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B3)。 [參考例20] 0 冑前述參考例4之光學補償層(A4)隔著㈣酸系黏著 劑(厚度:20#m)貼著於前述參考例17之偏光板之一 側,使前述偏光板(B1)的吸收軸與前述光學補償層(a4)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B4)。 [參考例21] 42 200907509 將前述參考例6之光學補償層(A6)隔著丙烯酸系黏著 劑(厚度:20# m)貼著於前述參考例17之偏光板(β1)之一 側,使前述偏光板(B1)的吸收軸與前述光學補償層(A6)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B5)。 5 [參考例22] 將前述參考例7之光學補償層(A7)隔著丙烯酸系黏著 劑(厚度:20"m)貼著於前述參考例17之偏光板(B1)之一 側’使前述偏光板(B1)的吸收軸與前述光學補償層(A7)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B6)。 10 [參考例23] 準備日東電工社製的附VA用補償板之偏光板、商品名 X-Plate(NXP)」。將該偏光板作為偏光板(B7)。 [參考例24] 將前述參考例10之光學補償層(A丨〇)隔著丙烯酸系黏 15著劑(厚度:20#m)貼著於前述參考例17之偏光板(B1)之一 側,使岫述偏光板(B1)的吸收軸與前述光學補償層(A1〇)的 延伸軸(慢軸)垂直。如此一來,即製作出偏光板(B8)。 [參考例25] 準備日東電工社製的偏光板、商品名「SEG1423」。將 20 該偏光板作為偏光板(B9)。 [參考例26] 將前述參考例2之光學補償層(A 2)隔著丙烯酸系黏著 劑(厚度:20//m)貼著於前述參考例25之偏光板(B9)之一 側。如此一來,即製作出偏光板(Bl〇)。 43 200907509 [參考例27] 將前述參考例11之光學補償層(A11)隔著丙烯酸系黏 著劑(厚度:20/zm)貼著於前述參考例17之偏光板(B1)之一 側,使前述偏光板(B1)的吸收軸與前述光學補償層(A11)的 5延伸軸(慢軸)垂直。如此一來,即製作出偏光板(B11)。 [參考例28] 將前述參考例5之光學補償層(A5)隔著丙烯酸系黏著劑(厚 度.20//m)貼著於前述參考例24之偏光板(B8)之光學補償 層(A10)側。如此一來,即製作出偏光板(B12)。 10 [參考例29] 將前述參考例5之光學補償層(a 5)隔著丙烯酸系黏著 劑(厚度:20/im)貼著於前述參考例17之偏光板(B1)之一 側,使刖述偏光板(B1)的吸收軸與前述光學補償層(A5)的延 伸軸(慢軸)垂直。如此一來,即製作出偏光板(B13)。 15 [參考例30] 將則述參考例14之光學補償層(A14)隔著丙烯酸系黏 著背K厚度· 20#m)貼著於前述參考例17之偏光板(B1)之一 側,使别述偏光板(B1)的吸收軸與前述光學補償層(ai句的 I伸軸軸)垂直。如此一來,即製作出偏光板(B23)。 20 [參考例31] 將則述參考例15之光學補償層(A15)隔著丙烯酸系黏 著劑(厚度:20#m)貼著於前述參考例口之偏光板(B1)之一 側使刚述偏光板(B1)的吸收軸與前述光學補償層(A15)的 延伸軸(慢袖)垂直。如此一來,即製作出偏光板(b24)。 44 200907509 [參考例32] 將前述參考例16之光學補償層(a i 6)隔著丙稀酸系黏 著劑(厚度:20㈣貼著於前述參相此偏光板㈢之一 側’使前述偏光板⑻)的吸收轴與前述光學補償層(Al6)的 5延伸軸(慢轴)垂直。如此-來,即製作出偏光板(b25)。 [附光學補償層之偏光板] [參考例33] 將河述參考例2之光學補償層(A2)隔著丙稀酸系黏著 厚度.20#m)貼著於前述參考例以之偏光板(間之光學 10補償層(A1)側。如此-來,即製作出附光學補償層之偏光 板(B14)。 [參考例34] 將前述參考例2之光學補償層(A2)隔著丙稀酸系黏著 1剡(厚度.20"m)貼著於前述參考例19之偏光板(B3)之光學 補償層(A3)側。如此-來,gp製作出附光學補償層之偏光 板(B15)。 [參考例35] 將前述參考例5之光學補償層(A5)隔著丙烯酸系黏著 劑(厚度:20/zm)貼著於前述參考例2〇之偏光板(B4)之光學 補償層(A4)側。如此一來,即製作出附光學補償層之偏光 板(B16)。 [參考例36] 將前述參考例5之光學補償層(A 5)隔著丙烯酸系黏著 劑(厚度:20#m)貼著於前述參考例21之偏光板(B5)之光學 45 200907509 補償層(A6)側。如此一來,即製作出附光學補償層之偏光 板(Β17) 〇 [參考例37] 將前述參考例5之光學補償層(Α5)隔著丙稀酸系毒占著 5劑(厚度:2〇//m)貼著於前述參考例π之偏光板㈣之光學 補償層⑽側。如此-來,即製作出附光學補償層之偏= 板(B18)。 [參考例38] 將前述參考例8之光學補償層(A8)隔著丙稀酸系黏著 10劑(厚度:20//m)貼著於前述參考例2〇之偏光板⑽)之光學 補償層(A4)側。如此一來,即製作出附光學補償層之偏光 板(B19)。 [參考例39] 將前述參考例8之光學補償層(A8)隔著丙烯酸系黏著 5劑(厚度:加⑼)貼著於前述參考例π之偏光板(⑽之光學 補仏層(A7)側。如此一來’即製作出附光學補償層之偏光 板(B20)。 [參考例40] 2 將珂述參考例9之光學補償層(A9)隔著丙烯酸系黏著 20劑(厚度·· 2〇/zm)貼著於前述參考例n之偏光板(B1)之一 側使絀述偏光板(B1)的吸收軸與前述光學補償層(A9)的慢 軸垂直。如此一來’即製作出附光學補償層之偏光板(B 2 i。 [參考例41] 將前述參考例13之光學補償層(A13)隔著丙烯酸系黏 46 200907509 著劑(厚度:20//m)貼著於前述參考例25之偏光板(B9)之一 側。如此一來,即製作出附光學補償層之偏光板(B22)。 [參考例42] 將前述參考例2之光學補償層(A2)隔著丙烯酸系黏著 5 劑(厚度:20//m)貼著於前述參考例30之偏光板(B23)之一 側。如此一來,即製作出附光學補償層之偏光板(B26)。 [參考例43] 將前述參考例8之光學補償層(A 8)隔著丙烯酸系黏著 劑(厚度:20//m)貼著於前述參考例30之偏光板(B23)之一 10 側。如此一來,即製作出附光學補償層之偏光板(B27)。 [參考例44] 將前述參考例2之光學補償層(A 2)隔著丙浠酸系黏著 劑(厚度:20//m)貼著於前述參考例31之偏光板(B24)之一 側。如此一來,即製作出附光學補償層之偏光板(B28)。 15 [參考例45] 將前述參考例8之光學補償層(A 8)隔著丙烯酸系黏著 劑(厚度:20//m)貼著於前述參考例31之偏光板(B24)之一 側。如此一來,即製作出附光學補償層之偏光板(B29)。 [參考例46] 20 將前述參考例2之光學補償層(A2)隔著丙烯酸系黏著 劑(厚度:20//m)貼著於前述參考例32之偏光板(B25)之一 側。如此一來,即製作出附光學補償層之偏光板(B30)。 [參考例47] 將前述參考例8之光學補償層(A 8)隔著丙烯酸系黏著 47 200907509 劑(厚度:20# m)貼著於前述參考例32之偏光板(B25)之一 側。如此一來,即製作出附光學補償層之偏光板(B31)。 [液晶單元] [參考例48] 5 從含有VA模式之液晶單元的市售液晶顯示裝置 (SONY社製、32吋液晶電視、商品名「BraVIAS2500 32」) 取出液晶面板後,將配置於液晶單元上下方的偏光板等光 學薄膜全部移除。洗淨該液晶單元之玻璃板的正反面,即 得到液晶單元(C)。 10 [液晶面板及液晶顯示裝置] (實施例1) 將前述參考例18之偏光板(B 2)隔著丙烯酸系黏著劑(厚 度:20" m)貼著於前述參考例48之液晶單元(c)的目視側, 且以光學補償層(A1)側為前述液晶單元(C)側,使前述偏光 15板(B2)的延伸軸(吸收軸)方向與前述液晶單元(C)的長邊方 向平行,接著,將前述參考例33之附光學補償層之偏光板 (B14)隔著丙烯酸系黏著劑(厚度:2Q"m)貼著於前述液晶 單元(C)的背光側’且以光學補償層(A2M料前述液晶單元 20 (C)側’使前述附光學補償層之偏光板(B14)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向#直,即得到液晶面 板㈣。此時,前述偏光板㈣的延伸軸與前述附光學=償 層之偏光板(B14)的延伸軸呈垂直。將前·“ 原先的液㈣示裝置的#光單元結合,即製作出液晶顯: 裝置(D1)。前述液晶面板(ρι)的構造顯示於下述表卜在不 48 200907509 述表1中,係以液晶面板的目視側為上,且以背光側為下而 記載之,在下述表2中亦相同。 (實施例2) 將前述參考例19之偏光板(B 3)隔著丙烯酸系黏著劑(厚 5 度:20# m)貼著於前述參考例48之液晶單元(C)的目視側, 且以光學補償層(A3)側為前述液晶單元(C)側,使前述偏光 板(B3)的延伸軸(吸收軸)方向與前述液晶單元(C)的長邊方 向平行’接著’將前述參考例34之附光學補償層之偏光板 (B15)隔著丙烯酸系黏著劑(厚度:20ym)貼著於前述液晶 10單元(C)的背光側,且以光學補償層(A2)側為前述液晶單元 (C)側’使前述附光學補償層之偏光板(B15)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向垂直,即得到液晶面 板(P2)。此時,前述偏光板(B3)的延伸軸與前述附光學補償 層之偏光板(B15)的延伸軸呈垂直。將前述液晶面板(p2)與 15原先的液晶顯示裝置的背光單元結合,即製作出液晶顯示 裝置(D2)。前述液晶面板(P2)的構造顯示於下述表1。 (實施例3) 將前述參考例20之偏光板(B4)隔著丙烯酸系黏著劑(厚 度:20 μ m)貼著於前述參考例48之液晶單元(c)的目視側, 20且以光學補償層(A4)側為前述液晶單元(C)側,使前述偏光 板(B4)的延伸軸(吸收軸)方向與前述液晶單元的長邊方 向平行,接著,將前述參考例35之附光學補償層之偏光板 (B16)隔著丙烯酸系黏著劑(厚度:2〇em)貼著於前述液晶 單元(c)的背光側’且以光學補償層(A5)側為前述液晶單元 49 200907509 (C)側’使剛述附光學補償層之偏光板(gig)的延伸轴(吸收 軸)方向與前述液晶單元(c)的長邊方向垂直,即得到液晶面 板(P3)。此時,前述偏光板(B4)的延伸軸與前述附光學補償 層之偏光板(B16)的延伸軸呈垂直。將前述液晶面板(p3)與 5原先的液晶顯示裝置的背光單元結合,即製作出液晶顯示 裝置(D3)。前述液晶面板(P3)的構造顯示於下述表1。 (實施例4) 將前述參考例21之偏光板(B5)隔著丙烯酸系黏著劑(厚 度:20//m)貼著於前述參考例48之液晶單元(c)的目視側, 10且以光學補償層(A6)側為前述液晶單元(C)側,使前述偏光 板(B5)的延伸軸(吸收軸)方向與前述液晶單元(c)的長邊方 向平行,接著,將前述參考例36之附光學補償層之偏光板 (ΒΠ)隔著丙稀酸系黏著劑(厚度:2〇//111)貼著於前述液晶 單元(c)的背光側’且以光學補償層(A5)側為前述液晶單元 15 (C)側’使前述附光學補償層之偏光板(B17)的延伸軸(吸收 軸)方向與前述液晶單元(c)的長邊方向垂直,即得到液晶面 板(P4)。此時’前述偏光板(B5)的延伸軸與前述附光學補償 層之偏光板(B17)的延伸軸呈垂直。將前述液晶面板(p4)與 原先的液晶顯示裝置的背光單元結合,即製作出液晶顯示 20裝置(D4) °前述液晶面板(P4)的構造顯示於下述表1。 (實施例5) 將前述參考例22之偏光板(B6)隔著丙烯酸系黏著劑(厚 度:20//m)貼著於前述參考例48之液晶單元⑹的目視側, 且以光學補償層(A7)側為前述液晶單元(c)側,使前述偏光 50 200907509 板(B6)的延伸軸(吸收軸)方向與前述液晶單元(c)的長邊方 向平订’接著’將前述參考例之附光學補償層之偏光板 (B18)隔著丙稀酸系黏著劑(厚度:2〇㈣貼著於前述液晶 單元(c)的背光側,且以光學補償層(A5)側為前述液晶單元 5 (C)側,使珂述附光學補償層之偏光板(B18)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向垂直,即得到液晶面 板(P5)。此時,前述偏光板⑺6)的延伸軸與前述附光學補償 層之偏光板(B18)的延伸軸呈垂直。將前述液晶面板(p5)與 原先的液晶顯示裝置的背光單元結合,即製作出液晶顯示 10裝置(D5)。前述液晶面板(P5)的構造顯示於下述表丄。 (實施例6) 將前述參考例38之附光學補償層之偏光板(B19)隔著 丙烯酸系黏著劑(厚度:2 〇 # m)貼著於前述參考例4 8之液晶 單元(c)的目視側,且以光學補償層(A8)側為前述液晶單元 15 (C)側,使前述附光學補償層之偏光板(B19)的延伸軸(吸收 軸)方向與前述液晶單元(c)的長邊方向平行,接著,將前述 參考例38之附光學補償層之偏光板(B19)隔著丙烯酸系黏 著劑(厚度:20#m)貼著於前述液晶單元(c)的背光側,且 以光學補償層(A8)側為前述液晶單元(〇側,使前述附光學 20補償層之偏光板(B19)的延伸轴(吸收軸)方向與前述液晶單 凡(C)的長邊方向垂直,即得到液晶面板(P6)。此時,前述 目視側之附光學補償層之偏光板(B19)的延伸軸與前述背 光側之附光學補償層之偏光板(B19)的延伸軸呈垂直。將前 述液晶面板(P6)與原先的液晶顯示裝置的背光單元結合,即 51 200907509 製作出液晶顯示裝置(D6)。前述液晶面板(P6)的構造顯示於 下述表1 ° (實施例7) 將前述參考例39之附光學補償層之偏光板(B2〇)隔著 5丙稀酸系黏者劑(厚度.20 // m)貼著於前述參考例48之液曰 單元(C)的目視側,且以光學補償層(A8)側為前述液晶單元 (C)側’使前述附光學補償層之偏光板(B20)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向平行,接著,將前述 參考例3 9之附光學補償層之偏光板(B20)隔著丙稀酸系黏 10著劑(厚度:20"m)貼著於前述液晶單元(〇的背光側,且 以光學補償層(A8)側為前述液晶單元(〇側,使前述附光學 補償層之偏光板(B20)的延伸軸(吸收軸)方向與前述液晶單 元(C)的長邊方向垂直,即得到液晶面板(P7)。此時,前述 目視側之附光學補償層之偏光板(B20)的延伸軸與前述背 15光側之附光學補償層之偏光板(B20)的延伸軸呈垂直。將前 述液晶面板(P 7)與原先的液晶顯示裝置的背光單元結合,即 製作出液晶顯示裝置(D7)。前述液晶面板(P7)的構造顯示於 下述表1。 (實施例8) 20 將前述參考例30之偏光板(B23)隔著丙烯酸系黏著劑 (厚度:20 "m)貼著於前述參考例48之液晶單元(〇的目視 側’且以光學補償層(A14)側為前述液晶單元(c)側,使前述 偏光板(B23)的延伸軸(吸收軸)方向與前述液晶單元(c)的 長邊方向平行,接著,將前述參考例42之附光學補償層之 52 200907509 偏光板(B26)隔著丙烯酸系黏著劑(厚度:2〇//:〇1)貼著於前 述液晶單7〇(c)m側’且以光學補償層(A2)側為前述液 晶單元(〇側’使前述附光學補償層之偏光板(B26)的延伸軸 (吸收軸)方向與前述液晶單元(c)的長邊方向垂直,即得到 5液晶面板(P8)。此時,前述偏光板(B23)的延伸軸與前述附 光學補償層之偏光板(B26)的延伸軸呈垂直。將前述液晶面 板(P8)與原先的液晶顯示裝置的背光單元結合,即製作出液 晶顯示裝置(D8)。前述液晶面板(P8)的構造顯示於下述表卜 (實施例9) 10 將前述參考例43之附光學補償層之偏光板(B27)隔著 丙烯酸系黏著劑(厚度:2 0 v m)貼著於前述參考例4 8之液晶 單元(C)的目視側,且以光學補償層(A8)側為前述液晶單元 (c)側,使前述附光學補償層之偏光板(B27)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向平行,接著,將前述 15參考例43之附光學補償層之偏光板(B27)隔著丙烯酸系黏 著劑(厚度:20/zm)貼著於前述液晶單元(c)的背光側,且 以光學補償層(A8)側為前述液晶單元(C)側,使前述附光學 補偵層之偏光板(B27)的延伸軸(吸收軸)方向與前述液晶單 元(C)的長邊方向垂直,即得到液晶面板(P9)。此時,前述 20目視側之附光學補償層之偏光板(B27)的延伸軸與前述背 光側之附光學補償層之偏光板(B27)的延伸軸呈垂直。將前 述液晶面板(P 9)與原先的液晶顯示裝置的背光單元結合,即 製作出液晶顯示裝置(D9)。前述液晶面板(P9)的構造顯示於 下述表1。 53 200907509 (實施例ίο) 將前述參考例31之偏光板(B24)隔著丙烯酸系黏著劑 (厚度:20// m)貼著於前述參考例48之液晶單元(〇的目視 側,且以光學補償層(A15)側為前述液晶單元(〇側,使前述 5偏光板(B24)的延伸軸(吸收軸)方向與前述液晶單元(C)的 長邊方向平行,接著,將前述參考例44之附光學補償層之 偏光板(B28)隔著丙烯酸系黏著劑(厚度:2〇 μ m)貼著於前 述液晶單元(C)的背光側,且以光學補償層(A2)側為前述液 晶單元(C)側,使前述附光學補償層之偏光板(B28)的延伸軸 10 (吸收軸)方向與前述液晶單元(C)的長邊方向垂直,即得到 液晶面板(P10)。此時,前述目視側之偏光板(B24)的延伸轴 與前述背光側之附光學補償層之偏光板(B28)的延伸轴呈 垂直。將前述液晶面板(P10)與原先的液晶顯示裝置的背光 單元結合,即製作出液晶顯示裝置(D10)。前述液晶面板 15 (P10)的構造顯示於下述表1。 (實施例11) 將前述參考例45之附光學補償層之偏光板(B29)隔著 丙烯酸系黏著劑(厚度:20/zm)貼著於前述參考例48之液晶 單元(C)的目視側’且以光學補償層(A8)側為前述液晶單元 20 (C)側,使前述附光學補償層之偏光板(B29)的延伸轴(吸收 軸)方向與前述液晶單元(C)的長邊方向平行,接著,將前述 參考例4 5之附光學補償層之偏光板(B 2 9)隔著丙烯酸系黏 著劑(厚度:20//m)貼著於前述液晶單元(〇的背光側,且 以光學補償層(A8)側為前述液晶單元(C)側,使前述附光學 54 200907509 補償層之偏光板(B29)的延伸軸(吸收轴)方向與前述液晶單 元(C)的長邊方向垂直’即得到液晶面板(P11)。此時,前述 目視側之附光學補償層之偏光板(B29)的延伸轴與前述背 光側之附光學補償層之偏光板(B29)的延伸軸呈垂直。將前 5述液晶面板(P11)與原先的液晶顯示裝置的背光單元結合, 即製作出液晶顯示裝置(Dl 1)。前述液晶面板(P1丨)的構造顯 示於下述表1。 (實施例12) 將前述參考例3 2之偏光板(B 2 5)隔著丙烯酸系黏著劑 10 (厚度:20 # m)貼著於前述參考例48之液晶單元(〇的目視 側,且以光學補償層(A16)側為前述液晶單元(c)側,使前述 偏光板(B 2 5)的延伸軸(吸收軸)方向與前述液晶單元(c)的 長邊方向平行’接著,將前述參考例46之附光學補償層之 偏光板(B30)隔著丙烯酸系黏著劑(厚度:2〇"m)w著於前 15述液晶單兀的背光側,且以光學補償層(A2)侧為前述液 晶單元(c)側’使前述附光學補償層之偏光板(B3〇)的延伸軸 (吸收軸)方向與前述液晶單元(c)的長邊方向垂直,即得到 液晶面板(P12)。此時’前述目視側之偏光板⑺25)的延伸軸 與珂述背光側之附光學補償層之偏光板(B 3 〇)的延伸軸呈 20垂直。將岫述液晶面板(pi2)與原先的液晶顯示裝置的背光 單元結合,即製作出液晶顯示裝置(D12)。前述液晶面板 (P12)的構造顯示於下述表i。 (實施例13) 將前述參考例47之附光學補償層之偏光板(B31)隔著 55 200907509 丙烯酸系黏著劑(厚度:20#m)貼著於前述參考例48之液晶 單元(C)的目視側,且以光學補償層(A8)侧為前述液晶單元 (C)側,使前述附光學補償層之偏光板(B31)的延伸軸(吸收 軸)方向與前述液晶單元(C)的長邊方向平行,接著,將前述 5 參考例4 7之附光學補償層之偏光板(B 31)隔著丙烯酸系黏 著劑(厚度:20//m)貼著於前述液晶單元(C)的背光側,真 以光學補償層(A8)側為前述液晶單元(C)側,使前述附光學 補償層之偏光板(B31)的延伸轴(吸收轴)方向與前述液晶單 元(C)的長邊方向垂直,即得到液晶面板(P13)。此時,前述 10目視側之附光學補償層之偏光板(B31)的延伸軸與前述背 光側之附光學補償層之偏光板(B31)的延伸軸呈垂直。將前 述液晶面板(P13)與原先的液晶顯示裝置的背光單元結合, 即製作出液晶顯示裝置(D13)。前述液晶面板(pi3)的構造顯 示於下述表1。 15 (比較例1) 將前述參考例40之附光學補償層之偏光板(B21)隔著 丙烯酸系黏著劑(厚度:20"m)貼著於前述參考例48之液晶 單元(C)的目視側,且以光學補償層(A9)側為前述液晶單元 (C)側’使前述附光學補償層之偏光板(B2i)的延伸軸(吸收 20軸)方向與前述液晶單元(C)的長邊方向单行,接著,將前述 參考例40之附光學補償層之偏光板(B21)隔著丙烯酸系黏 著劑(厚度:20 μ m)貼著於前述液晶單元(c)的背光側,且 以光學補償層(A9)側為前述液晶單元(c)側,使前述附光學 補償層之偏光板(B21)的延伸軸(吸收軸)方向與前述液晶單 56 200907509 元(c)的長邊方向垂直,即得到液晶面板(pi4)。此時,前述 目視側之附光學補償層之偏光板(肋)的&伸轴與前述背 光側之附光學補償層之偏光板(B21)的延伸轴呈垂直。將前 述液晶面板(P14)與原先的液晶顯示裝置的背光單元結合, 5即製作出液晶顯示裝置。前述液晶面板(pl4)的構造顯 示於下述表2。 (比較例2) 將前述參考例23之偏光板(B7)隔著丙烯酸系黏著劑(厚 度· 20# m)貼著於前述參考例48之液晶單元(c)的目視側, 10使前述偏光板(B7)的延伸軸(吸收軸)方向與前述液晶單元 (C)的長邊方向平行,接著,將前述參考例23之偏光板(B7) 隔著丙烯酸系黏著劑(厚度:20/zm)貼著於前述液晶單元(c) 的背光側’使前述附光學補償層之偏光板(B7)的延伸軸(吸 收軸)方向與前述液晶單元(C)的長邊方向垂直,即得到液晶 15面板(P15)。此時,前述目視側之偏光板(B7)的延伸軸與前 述背光側之偏光板(B7)的延伸轴呈垂直。將前述液晶面板 (P15)與原先的液晶顯示裝置的背光單元結合,即製作出液 晶顯示裝置(D15)。前述液晶面板(P15)的構造顯示於下述表 2 ° 20 (比較例3) 將前述參考例24之偏光板(B8)隔著丙烯酸系黏著劑(厚 度:20//m)貼著於前述參考例48之液晶單元(C)的目視側’ 且以光學補償層(A 10)側為前述液晶單元(c)側,使前述偏光 板(B8)的延伸軸(吸收軸)方向與前述液晶單元(C)的長邊方 57 200907509 向平行,接著,將前述參考例26之偏光板(m〇)隔著丙稀酸 系黏著劑(厚度:20㈣貼著於前述液晶單元(c)的背光 側、,且以光學補償層(A2)側為前述液晶單元(c)側,使前述 附光=補償層之偏絲(謂)的延伸轴(吸妹)方向與前述 5液晶單元(C)的長邊方向垂直,即得到液晶面板㈣)。此 時,前述偏光板⑽)的延伸軸與前述偏光板_)的延伸軸 呈垂直。將前述液晶面板(P16)與原先的液晶顯示裝置的背 光單元結合,即製作出液晶顯示裝置(di6)。前述液晶面板 (P16)的構造顯示於下述表2。 10 (比較例4) 將前述參考例27之偏光板(B11)隔著丙烯酸系黏著劑 (厚度:20//m)貼著於前述參考例48之液晶單元(c)的目視 側,且以光學補償層(A11)側為前述液晶單元(c)側,使前述 偏光板(B11)的延伸軸(吸收軸)方向與前述液晶單元(c)的 15長邊方向平行,接著,將前述參考例41之附光學補償層之 偏光板(B22)隔著丙烯酸系黏著劑(厚度:2〇" m)貼著於前 述液晶單元(C)的背光侧,且以光學補償層(A13)側為前述液 晶單元(C)側,使前述附光學補償層之偏光板(B22)的延伸軸 (吸收軸)方向與前述液晶單元(C)的長邊方向垂直,即得到 20液晶面板(P17)。此時,前述偏光板(B11)的延伸軸與前述附 光學補償層之偏光板(B22)的延伸軸呈垂直。將前述液晶面 板(P17)與原先的液晶顯示裝置的背光單元結合,即製作出 液晶顯示裝置(D17)。泊述液晶面板(p 17)的構造顯示於下述 表2。 58 200907509 (比較例5) 將前述參考例28之偏光板剛隔著丙烯酸系黏著劑 (厚度:20" m)貼著於前述參考例48之液晶單元(〇的目視 側,且以光學補償層(A5)側為前述液晶單元(c)側,使前述 5偏光板(B12)的延伸轴(吸收軸)方向與前述液晶單元(c)的 長邊方向平行,接著,將前述參考例29之偏光板_)隔著 =稀酸系黏者劑(厚度:2〇"m)貼著於前述液晶單元⑹的 月光側,且以光學補償層(A5)側為前述液晶單元(c)側,使 月'J述偏光板(B13)的延伸軸(吸收軸)方向與前述液晶單元(c) 1〇的長邊方向垂直,即得到液晶面板(P18)。此時,前述偏光 板(B12)的延伸軸與前述偏光板(Bn)的延伸轴呈垂直。將前 述液晶面板(P18)與原先的液晶顯示裝置的背光單元結合, 1作出液晶顯不裝置(Dl8)。前述液晶面板(p⑻的構造顯 示於下述表2。 15【表1】 液晶面板 實施例1 P1 實施例2 實施例3 實施例4 實施例5 實 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 偏先氣s r 1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 R1 光學補償層 A1 —- . A3 A4 A6 A7 A4 A7 A14 A14 A15 A15 A16 A16 光學補 液晶單元 - A8 A8 - A8 - A8 - A8 光學補償i ΛΟ C C C C C C C C C C C C 光學補償;| A1 A2 A5 A5 Γ~Α5 A8 A8 A2 A8 A2 A8 A2 A8 偏光板 Λ.1 13 1 A3 A4 A6 Α7 A4 A7 A14 A14 A15 A15 A16 A16 〇1 B1 B1 B1 Β1 B1 B1 B1 B1 B1 B1 B1 B1 【表2】 59 200907509 比較例2 比較例3 比較例4 比較例^ 液晶面板 u ~ρΤί P15 P16 P17 P18 偏光板 B7 Bl Bl Bl — 光學補償層 -Λ9 A10 All A10 — 光學補償層 ----- " - - A5 液晶單元 c C c C C 光學補償層 - A12 - 光學補償Θ A2 A12 A5 偏光板 Bl B7 B9 B9 Bl 實施例1〜7之液晶顯示裝置的色移測定結果顯示於第8 圖〜第14圖的圖表。另外,實施例1對應第8圖;實施例2對 應第9圖;實施例3對應第10圖;實施例4對應第11圖;實施 5例5對應第12圖;實施例6對應第13圖;實施例7對應第14 圖。如圖所示’在實施例1〜7中,視角往左右移動時的色變 报小。又,如下述表3所示,在實施例1〜7中,黑亮度佳, 且傾斜方向的黑亮度亦受到控制。另外,在實施例8、10及 12的液晶顯示裝置中,可得到與實施例2相同的色移及平均 10黑亮度,在實施例9、11及13的液晶顯示裝置中,可得到與 實施例7相同的色移及平均黑亮度。 比較例1〜5之液晶顯示裝置的色移測定結果顯示於15 圖〜第19圖的圖表。同樣地,比較例丨〜5的平均黑亮度顯示 (5於下述表3。另外,比較例1對應第15圖;比較例2對應第16 5圖;比較例3對應第17圖;比較例4對應第18圖;比較例5對 應苐19圖。如圖所示,比較例1中,與實施例相比較,極角 6〇方位角45 、135 ' 225 、3丨5。的平均黑亮度很高, 且傾斜方向的CR很低。比較例2中,與實施例相比較,方 位角改變時的色變很大(振幅大’且波形相對於45。、丨35 60 200907509 ° 、225° 、315°未呈左右對稱),又,與實施例相比較, 極角60°方位角45° 、135° 、225° 、315°的平均黑亮度 很高,且傾斜方向的CR很低。比較例3中,與實施例相比 較,方位角改變時的色變很大(振幅大,且波形相對於45 5 。、:135° 、225° 、315°未呈左右對稱)。比較例4中,與 實施例相比較,方位角改變時的色變很大(振幅大,且波形 相對於45° 、135° 、225° 、315°未呈左右對稱),又, 與實施例相比較,極角60°方位角45° 、135° 、225° 、 315°的平均黑亮度很高,且傾斜方向的CR很低。比較例5 10 中,與實施例相比較,方位角改變時的色變很大(振幅大, 且波形相對於45° 、135° 、225° 、315°未呈左右對稱)。 【表3】 平均黑亮度(cd/m2) 實施例1 2.7 實施例2 2.0 實施例3 2.8 實施例4 2.8 實施例5 2.1 實施例6 2.2 實施例7 2.7 比較例1 3.1 比較例2 4.8 比較例3 2.7 比較例4 3.8 比較例5 2.9 【產業上利用之可能性】 15 如前述,本發明之液晶面板可在全方位呈無色偏之中 性顯示,且黑亮度佳。本發明之液晶面板及使用該液晶面 板的液晶顯示裝置的用途可舉例如:桌上型個人電腦、筆 61 200907509 記型電腦、影印機等辦公設備;行動電話、時鐘、數位相 機、個人數位助理(PDA)、可攜式遊戲機等可攜式裝置;錄 放影機、電視機、微波爐等家用電器;倒車監視器、汽車 導航系統監視器、汽車音響等車載設備;商店用資訊監視 5 器等顯示設備;監視用監視器等保全設備;護理用監視器、 醫療用監視器等護理-醫療設備等,且不受限於前述用途, 可適用於廣泛領域。 【圖式簡單說明3 第1圖係顯示本發明之液晶面板構造之一例的示意截 10 面圖。 第2圖係顯示本發明之液晶面板構造之他例的示意截 面圖。 第3圖係顯示液晶單元構造之一例的示意截面圖。 弟4圖係顯不習知液晶面板構造的不意截面圖。 15 第5(A)、(B)、(C)圖係顯示偏光板構造之範例的示意截 面圖。 第6圖係顯示極角與方位角之關係的示意圖。 第7圖係顯示本發明之一實施例的相位差薄膜之波長 色散之一例的圖表。 20 第8圖係顯示本發明之實施例1的色移結果的圖表。 第9圖係顯示本發明之實施例2的色移結果的圖表。 第10圖係顯示本發明之實施例3的色移結果的圖表。 第11圖係顯示本發明之實施例4的色移結果的圖表。 第12圖係顯示本發明之實施例5的色移結果的圖表。 62 200907509 第13圖係顯示本發明之實施例6的色移結果的圖表。 第14圖係顯示本發明之實施例7的色移結果的圖表。 第15圖係顯示比較例1的色移結果的圖表。 第16圖係顯示比較例2的色移結果的圖表。 5 第17圖係顯示比較例3的色移結果的圖表。 第18圖係顯示比較例4的色移結果的圖表。 第19圖係顯示比較例5的色移結果的圖表。 【主要元件符號說明】 10 液晶面板 133 間隔物 11a 第1光學補償層 141偏光片 lib 第1光學補償層 142 保護層 12 第2光學補償層 C 光學補償層(A1)的雙折射率 12a 第2光學補償層 波長色散 12b 第2光學補償層 PI 光學補償層(A2)的雙折射 13 液晶早元 率波長色散 14 偏光板 C 光學補償層(A3)的雙折射率 14a 第1偏光片 波長色散 14b 第2偏光片 TAC 光學補償層(A12)的雙折 15a 光學補償層 射率波長色散 15b 光學補償層 131 液晶層 132a 反 132b 紐 63_ .  (5) The polymer was dissolved in methyl ethyl ketone (MEK) and cast onto a base material (PET) to have a thickness of 110# m after drying to obtain a polyethylene acetal film. After the base material was peeled off, the optical compensation layer (A15) was produced by stretching the film twice in the width direction by a free end extension method at 14 °C. The aforementioned optical compensation layer (A15) has nx > ny = nz (Nz coefficient 1. The relationship of 00) is 5 〇 # m, the in-plane retardation Re is 20 14 〇 nm, and the thickness direction directional difference Rth is 140 nm. Further, the optical compensation layer (A15) exhibits wavelength dependence of inverse dispersion. [Reference Example 16] The optical compensation layer was produced in the same manner as in Reference Example 15 except that the polyethylene film-cut film was stretched twice in the width axis direction with the mouth end Hi: at 14 0 C, that is, 41 200907509. (A16). The optical compensation layer (A16) has a relationship of nx > ny > nz (Nz coefficient = 1_00), the thickness of which is 5 〇 / / m, and the in-plane retardation value 1 is 14 〇 11 ° 1 ' and the thickness direction The position difference Rth is 150 nm. Further, the optical compensation layer (A16) exhibits wavelength dependence of inverse dispersion. 5 [Polarizing Plate] [Reference Example 17] Prepare a polarizing plate manufactured by Toho Electric Co., Ltd., trade name r SIG1423DU". This polarizing plate was used as a polarizing plate. [Reference Example 18] The optical compensation layer (A1) of the above-mentioned Reference Example 1 was placed on one side of the polarizing plate (m) of the above-mentioned Reference Example 17 via an acrylic pressure-sensitive adhesive (thickness: 20 #m). The absorption axis of the polarizing plate (B1) is perpendicular to the extending axis (slow axis) of the optical compensation layer (A1). In this way, a polarizing plate (B2) is produced. [Reference Example 19] The optical compensation layer (A3) of the above-mentioned Reference Example 3 was attached to one side of the polarizing plate (B1) of the above-mentioned Reference Example 17 via an acrylic pressure-sensitive adhesive (thickness: 20/zm). The absorption axis of the polarizing plate (B1) is perpendicular to the extension axis (slow axis) of the optical compensation layer (A3). In this way, a polarizing plate (B3) is produced. [Reference Example 20] The optical compensation layer (A4) of the above Reference Example 4 was attached to one side of the polarizing plate of the above-mentioned Reference Example 17 via a (iv) acid-based adhesive (thickness: 20 #m), and the polarizing plate was placed. The absorption axis of (B1) is perpendicular to the extension axis (slow axis) of the aforementioned optical compensation layer (a4). In this way, a polarizing plate (B4) is produced. [Reference Example 21] 42 200907509 The optical compensation layer (A6) of the above-mentioned Reference Example 6 was placed on one side of the polarizing plate (β1) of the above-mentioned Reference Example 17 via an acrylic pressure-sensitive adhesive (thickness: 20 #m). The absorption axis of the polarizing plate (B1) is perpendicular to the extension axis (slow axis) of the optical compensation layer (A6). In this way, a polarizing plate (B5) is produced. [Reference Example 22] The optical compensation layer (A7) of the above-mentioned Reference Example 7 was attached to one side of the polarizing plate (B1) of the above-mentioned Reference Example 17 via an acrylic adhesive (thickness: 20 " m). The absorption axis of the polarizing plate (B1) is perpendicular to the extending axis (slow axis) of the optical compensation layer (A7). In this way, a polarizing plate (B6) is produced. [Reference Example 23] A polarizing plate with a compensation plate for VA, manufactured by Nitto Denko Corporation, and a product name X-Plate (NXP). This polarizing plate was used as a polarizing plate (B7). [Reference Example 24] The optical compensation layer (A丨〇) of the above Reference Example 10 was placed on one side of the polarizing plate (B1) of the above-mentioned Reference Example 17 via an acrylic adhesive 15 (thickness: 20 #m). The absorption axis of the polarizing plate (B1) is perpendicular to the extension axis (slow axis) of the optical compensation layer (A1〇). In this way, a polarizing plate (B8) is produced. [Reference Example 25] A polarizing plate manufactured by Nitto Denko Corporation and the trade name "SEG1423" were prepared. The polarizing plate was used as a polarizing plate (B9). [Reference Example 26] The optical compensation layer (A 2) of the above Reference Example 2 was placed on one side of the polarizing plate (B9) of the above-mentioned Reference Example 25 via an acrylic adhesive (thickness: 20 / / m). In this way, a polarizing plate (Bl〇) is produced. [Reference Example 27] The optical compensation layer (A11) of the above-mentioned Reference Example 11 was placed on one side of the polarizing plate (B1) of the above-mentioned Reference Example 17 via an acrylic pressure-sensitive adhesive (thickness: 20/zm). The absorption axis of the polarizing plate (B1) is perpendicular to the 5 extension axis (slow axis) of the optical compensation layer (A11). In this way, a polarizing plate (B11) is produced. [Reference Example 28] The optical compensation layer (A5) of the above Reference Example 5 was interposed with an acrylic adhesive (thickness. 20//m) was attached to the side of the optical compensation layer (A10) of the polarizing plate (B8) of the aforementioned Reference Example 24. In this way, a polarizing plate (B12) is produced. [Reference Example 29] The optical compensation layer (a5) of the above-mentioned Reference Example 5 was placed on one side of the polarizing plate (B1) of the above-mentioned Reference Example 17 via an acrylic pressure-sensitive adhesive (thickness: 20/im). The absorption axis of the polarizing plate (B1) is perpendicular to the extension axis (slow axis) of the optical compensation layer (A5). In this way, a polarizing plate (B13) is produced. [Reference Example 30] The optical compensation layer (A14) of Reference Example 14 was placed on one side of the polarizing plate (B1) of Reference Example 17 via an acrylic adhesive back K thickness · 20 #m). The absorption axis of the polarizing plate (B1) is perpendicular to the optical compensation layer (I axis of the ai sentence). In this way, a polarizing plate (B23) is produced. [Reference Example 31] The optical compensation layer (A15) of Reference Example 15 was adhered to one side of the polarizing plate (B1) of the above-mentioned reference example via an acrylic adhesive (thickness: 20 #m). The absorption axis of the polarizing plate (B1) is perpendicular to the extending axis (slow sleeve) of the optical compensation layer (A15). In this way, a polarizing plate (b24) is produced. 44 200907509 [Reference Example 32] The optical compensation layer (ai 6) of the above-mentioned Reference Example 16 was placed on the side of the polarizing plate (3) with an acrylic acid-based adhesive (thickness: 20 (four)) to make the polarizing plate The absorption axis of (8)) is perpendicular to the 5 extension axis (slow axis) of the optical compensation layer (Al6). In this way, a polarizing plate (b25) is produced. [Polarizing plate with optical compensation layer] [Reference Example 33] The optical compensation layer (A2) of Reference Example 2 was adhered to the thickness of the acrylic acid. 20#m) is attached to the polarizing plate (the optical compensation layer (A1) side of the above reference example). Thus, a polarizing plate (B14) with an optical compensation layer is formed. [Reference Example 34] The optical compensation layer (A2) of the aforementioned Reference Example 2 is adhered by an acrylic acid layer (thickness. 20 "m) is attached to the side of the optical compensation layer (A3) of the polarizing plate (B3) of the aforementioned Reference Example 19. In this way, gp produces a polarizing plate (B15) with an optical compensation layer. [Reference Example 35] The optical compensation layer (A5) of the above Reference Example 5 was attached to the optical compensation layer (A4) of the polarizing plate (B4) of the above Reference Example 2 via an acrylic adhesive (thickness: 20/zm). )side. In this way, a polarizing plate (B16) with an optical compensation layer was produced. [Reference Example 36] The optical compensation layer (A5) of the above Reference Example 5 was attached to the optical plate of the polarizing plate (B5) of the above-mentioned Reference Example 21 via an acrylic adhesive (thickness: 20 #m). (A6) side. In this way, a polarizing plate with an optical compensation layer was prepared (Β17) 〇 [Reference Example 37] The optical compensation layer (Α5) of the above Reference Example 5 was occupied with 5 agents by an acrylic acid (thickness: 2) 〇//m) is attached to the side of the optical compensation layer (10) of the polarizing plate (4) of the aforementioned reference example π. In this way, the offset plate (B18) with the optical compensation layer is produced. [Reference Example 38] The optical compensation layer (A8) of the above Reference Example 8 was adhered to the polarizing plate (10) of the above Reference Example 2 via an acrylic-based adhesive 10 (thickness: 20/m). Layer (A4) side. In this way, a polarizing plate (B19) with an optical compensation layer was produced. [Reference Example 39] The optical compensation layer (A8) of the above-mentioned Reference Example 8 was adhered to the polarizing plate of the reference example π (the optical compensation layer (A7) of (10)) via the acrylic adhesive 5 (thickness: plus (9)). In this way, a polarizing plate (B20) with an optical compensation layer is produced. [Reference Example 40] 2 The optical compensation layer (A9) of Reference Example 9 is adhered to the acrylic resin by 20 agents (thickness·· 2〇/zm) is attached to one side of the polarizing plate (B1) of the aforementioned reference example n such that the absorption axis of the polarizing plate (B1) is perpendicular to the slow axis of the optical compensation layer (A9). A polarizing plate (B 2 i) with an optical compensation layer was produced. [Reference Example 41] The optical compensation layer (A13) of the above Reference Example 13 was adhered to the acrylic adhesive 46 200907509 (thickness: 20//m). On one side of the polarizing plate (B9) of the above-mentioned Reference Example 25. Thus, a polarizing plate (B22) with an optical compensation layer was produced. [Reference Example 42] The optical compensation layer (A2) of the aforementioned Reference Example 2 was used. Adhesively adhered to the side of one side of the polarizing plate (B23) of Reference Example 30 by means of an acrylic adhesive 5 (thickness: 20/m). Thus, an optical compensation layer was produced. The polarizing plate (B26) of the reference example 30 was attached to the optical compensation layer (A8) of the above-mentioned Reference Example 8 via an acrylic adhesive (thickness: 20/m). B10) One of the 10 sides. Thus, a polarizing plate (B27) with an optical compensation layer was produced. [Reference Example 44] The optical compensation layer (A 2) of the above Reference Example 2 was adhered via a propionic acid system. The agent (thickness: 20/m) was attached to one side of the polarizing plate (B24) of the above-mentioned Reference Example 31. Thus, a polarizing plate (B28) with an optical compensation layer was produced. 15 [Reference Example 45] The optical compensation layer (A 8) of the above-mentioned Reference Example 8 was adhered to one side of the polarizing plate (B24) of the above-mentioned Reference Example 31 via an acrylic adhesive (thickness: 20 / / m). The polarizing plate (B29) of the optical compensation layer was attached. [Reference Example 46] 20 The optical compensation layer (A2) of the above Reference Example 2 was attached to the above reference example via an acrylic adhesive (thickness: 20/m). One side of the polarizing plate (B25) of 32. Thus, a polarizing plate (B30) with an optical compensation layer was produced. [Reference Example 47] The optical compensation layer (A8) of the aforementioned Reference Example 8 was interposed by C. The olefin-based adhesive 47 200907509 (thickness: 20# m) was attached to one side of the polarizing plate (B25) of the above-mentioned Reference Example 32. Thus, a polarizing plate (B31) with an optical compensation layer was produced. Liquid crystal cell] [Reference Example 48] 5 After taking out the liquid crystal panel from a commercially available liquid crystal display device (32-inch LCD TV, brand name "BraVIAS 2500 32" manufactured by SONY Co., Ltd.) containing the VA mode liquid crystal cell, it is placed in the liquid crystal cell. The optical films such as the square polarizing plate are all removed. The liquid crystal cell (C) was obtained by washing the front and back surfaces of the glass plate of the liquid crystal cell. [Liquid Crystal Panel and Liquid Crystal Display Device] (Example 1) The polarizing plate (B 2) of the above-mentioned Reference Example 18 was attached to the liquid crystal cell of the above Reference Example 48 via an acrylic adhesive (thickness: 20 " m). c) on the visual side, with the optical compensation layer (A1) side being the liquid crystal cell (C) side, and the direction of the extension axis (absorption axis) of the polarizing plate 15 (B2) and the long side of the liquid crystal cell (C) The direction is parallel, and then the polarizing plate (B14) of the optical compensation layer of the above-mentioned Reference Example 33 is attached to the backlight side of the liquid crystal cell (C) via an acrylic adhesive (thickness: 2Q " m) and optically The compensation layer (A2M material of the liquid crystal cell 20 (C) side" is such that the direction of the extension axis (absorption axis) of the polarizing plate (B14) with the optical compensation layer is perpendicular to the longitudinal direction # of the liquid crystal cell (C), that is, The liquid crystal panel (4). At this time, the extending axis of the polarizing plate (4) is perpendicular to the extending axis of the polarizing plate (B14) with the optical compensation layer. The "light" of the former liquid (four) display device is combined, that is, Create a liquid crystal display: device (D1). The structure of the above liquid crystal panel (ρι) is shown in the following table. 00907509 In Table 1, the visual side of the liquid crystal panel is above, and the backlight side is described below, and the same applies to the following Table 2. (Example 2) The polarizing plate of the above-mentioned Reference Example 19 (B 3) The acrylic adhesive (thickness: 5: m) is attached to the visual side of the liquid crystal cell (C) of the above-mentioned Reference Example 48, and the optical compensation layer (A3) side is the liquid crystal cell (C) side. The direction of the extension axis (absorption axis) of the polarizing plate (B3) is parallel to the longitudinal direction of the liquid crystal cell (C). Then, the polarizing plate (B15) of the optical compensation layer of the above-mentioned Reference Example 34 is sandwiched by acrylic. An adhesive (thickness: 20 μm) is attached to the backlight side of the liquid crystal 10 unit (C), and the optical compensation layer (A2) side is the liquid crystal cell (C) side 'the polarizing plate with the optical compensation layer ( The direction of the extension axis (absorption axis) of B15) is perpendicular to the longitudinal direction of the liquid crystal cell (C), that is, the liquid crystal panel (P2) is obtained. At this time, the extension axis of the polarizing plate (B3) and the optical compensation layer described above are The extending axis of the polarizing plate (B15) is vertical. The backlight of the liquid crystal panel (p2) and the original liquid crystal display device of 15 The liquid crystal display device (D2) was produced by unit bonding, and the structure of the liquid crystal panel (P2) is shown in the following Table 1. (Example 3) The polarizing plate (B4) of the above Reference Example 20 was sandwiched with an acrylic adhesive. (thickness: 20 μm) is attached to the visual side of the liquid crystal cell (c) of the above-mentioned Reference Example 48, 20, and the side of the optical compensation layer (A4) is the liquid crystal cell (C) side, so that the polarizing plate (B4) The direction of the extension axis (absorption axis) is parallel to the longitudinal direction of the liquid crystal cell, and then the polarizing plate (B16) of the optical compensation layer of Reference Example 35 is pasted with an acrylic adhesive (thickness: 2 〇em). On the backlight side of the liquid crystal cell (c), and on the side of the optical compensation layer (A5), the liquid crystal cell 49 200907509 (C) side is the extension axis of the polarizing plate (gig) of the optical compensation layer (absorbed) The direction of the axis is perpendicular to the longitudinal direction of the liquid crystal cell (c), that is, the liquid crystal panel (P3) is obtained. At this time, the extending axis of the polarizing plate (B4) is perpendicular to the extending axis of the polarizing plate (B16) with the optical compensation layer. The liquid crystal display device (D3) is produced by combining the liquid crystal panel (p3) with the backlight unit of the original liquid crystal display device of 5. The structure of the liquid crystal panel (P3) described above is shown in Table 1 below. (Example 4) The polarizing plate (B5) of the above-mentioned Reference Example 21 was adhered to the visual side of the liquid crystal cell (c) of the above-mentioned Reference Example 48 via an acrylic adhesive (thickness: 20/m), 10 and The optical compensation layer (A6) side is on the liquid crystal cell (C) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B5) is parallel to the longitudinal direction of the liquid crystal cell (c), and then the reference example is used. A polarizing plate (ΒΠ) with an optical compensation layer of 36 attached to the backlight side of the liquid crystal cell (c) via an acrylic adhesive (thickness: 2〇//111) and an optical compensation layer (A5) The side of the liquid crystal cell 15 (C) side is such that the direction of the extension axis (absorption axis) of the polarizing plate (B17) with the optical compensation layer is perpendicular to the longitudinal direction of the liquid crystal cell (c), that is, the liquid crystal panel is obtained (P4). ). At this time, the extending axis of the polarizing plate (B5) is perpendicular to the extending axis of the polarizing plate (B17) with the optical compensation layer. The liquid crystal panel (p4) was combined with the backlight unit of the original liquid crystal display device to produce a liquid crystal display device (D4). The structure of the liquid crystal panel (P4) is shown in Table 1 below. (Example 5) The polarizing plate (B6) of the above-mentioned Reference Example 22 was adhered to the visual side of the liquid crystal cell (6) of the above-mentioned Reference Example 48 via an acrylic adhesive (thickness: 20/m), and an optical compensation layer was used. The side of (A7) is the liquid crystal cell (c) side, and the direction of the extension axis (absorption axis) of the polarizing plate 50 200907509 (B6) is aligned with the longitudinal direction of the liquid crystal cell (c). The polarizing plate (B18) with the optical compensation layer is adhered to the backlight side of the liquid crystal cell (c) via an acrylic adhesive (thickness: 2 〇 (4), and the liquid crystal is provided on the side of the optical compensation layer (A5). On the side of the unit 5 (C), the direction of the extension axis (absorption axis) of the polarizing plate (B18) to which the optical compensation layer is attached is perpendicular to the longitudinal direction of the liquid crystal cell (C), thereby obtaining a liquid crystal panel (P5). At this time, the extending axis of the polarizing plate (7) 6) is perpendicular to the extending axis of the polarizing plate (B18) with the optical compensation layer. The liquid crystal display device (D5) is produced by combining the liquid crystal panel (p5) with the backlight unit of the original liquid crystal display device. The structure of the liquid crystal panel (P5) described above is shown in the following table. (Example 6) The polarizing plate (B19) of the optical compensation layer of the above-mentioned Reference Example 38 was attached to the liquid crystal cell (c) of the above-mentioned Reference Example 48 via an acrylic adhesive (thickness: 2 〇 #m). On the visual side, the optical compensation layer (A8) side is the liquid crystal cell 15 (C) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B19) with the optical compensation layer is the same as that of the liquid crystal cell (c). The direction of the long side is parallel, and then the polarizing plate (B19) of the optical compensation layer of Reference Example 38 is attached to the backlight side of the liquid crystal cell (c) via an acrylic adhesive (thickness: 20 #m), and The side of the optical compensation layer (A8) is the liquid crystal cell (the side of the side, and the direction of the extension axis (absorption axis) of the polarizing plate (B19) of the optical compensation layer 20 is perpendicular to the longitudinal direction of the liquid crystal (C) That is, the liquid crystal panel (P6) is obtained. At this time, the extending axis of the polarizing plate (B19) with the optical compensation layer on the visual side is perpendicular to the extending axis of the polarizing plate (B19) with the optical compensation layer on the backlight side. The liquid crystal panel (P6) is combined with the backlight unit of the original liquid crystal display device, that is, 51 200907509 A liquid crystal display device (D6) was produced. The structure of the liquid crystal panel (P6) is shown in Table 1 below (Example 7). The polarizing plate (B2〇) of the optical compensation layer of Reference Example 39 was separated by 5 C. Dilute acid adhesive (thickness. 20 // m) is attached to the visual side of the liquid helium unit (C) of the above-mentioned Reference Example 48, and the optical compensation layer (A8) side is the liquid crystal cell (C) side 'the polarizing plate with the optical compensation layer The direction of the extension axis (absorption axis) of (B20) is parallel to the longitudinal direction of the liquid crystal cell (C), and then the polarizing plate (B20) of the optical compensation layer of the above-mentioned Reference Example 39 is adhered with an acrylic acid. 10 agent (thickness: 20 " m) is attached to the liquid crystal cell (the backlight side of the crucible, and the side of the optical compensation layer (A8) is the liquid crystal cell (the side of the lens, the polarizing plate with the optical compensation layer (B20) The direction of the extension axis (absorption axis) is perpendicular to the longitudinal direction of the liquid crystal cell (C), that is, the liquid crystal panel (P7) is obtained. At this time, the extension axis of the polarizing plate (B20) with the optical compensation layer on the aforementioned visual side is obtained. The liquid crystal display device (D7) is formed by combining the liquid crystal panel (P7) with the backlight unit of the original liquid crystal display device to form a liquid crystal display device (D7). The configuration of the liquid crystal panel (P7) described above is shown in Table 1 below. (Embodiment 8) 20 The polarizing plate (B23) of Example 30 was adhered to the liquid crystal cell of the above-mentioned Reference Example 48 (thickness side of the crucible) and the side of the optical compensation layer (A14) was the above liquid crystal via an acrylic adhesive (thickness: 20 " m). On the side of the unit (c), the direction of the extension axis (absorption axis) of the polarizing plate (B23) is parallel to the longitudinal direction of the liquid crystal cell (c), and then the optical compensation layer 52 200907509 of the reference example 42 is polarized. The plate (B26) is adhered to the liquid crystal cell 7'(c)m side' via an acrylic adhesive (thickness: 2 Å//: 〇1) and the liquid crystal cell is the optical compensation layer (A2) side. The side 'the direction of the extension axis (absorption axis) of the polarizing plate (B26) with the optical compensation layer is perpendicular to the longitudinal direction of the liquid crystal cell (c), that is, the liquid crystal panel (P8) is obtained. At this time, the polarizing plate is obtained. The extension axis of (B23) is perpendicular to the extension axis of the polarizing plate (B26) with the optical compensation layer. The liquid crystal panel (P8) is combined with the backlight unit of the original liquid crystal display device to fabricate a liquid crystal display device (D8). The configuration of the liquid crystal panel (P8) is shown in the following table (Example 9). The polarizing plate (B27) of the optical compensation layer of the test example 43 was attached to the visual side of the liquid crystal cell (C) of the aforementioned reference example 48 via an acrylic adhesive (thickness: 20 vm), and an optical compensation layer was used. The side of the (A8) side is the liquid crystal cell (c) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B27) with the optical compensation layer is parallel to the longitudinal direction of the liquid crystal cell (C), and then the The polarizing plate (B27) with the optical compensation layer of Reference Example 43 is adhered to the backlight side of the liquid crystal cell (c) via an acrylic adhesive (thickness: 20/zm), and is optically compensated (A8) side. In the liquid crystal cell (C) side, the direction of the extension axis (absorption axis) of the polarizing plate (B27) with the optical compensation layer is perpendicular to the longitudinal direction of the liquid crystal cell (C), thereby obtaining a liquid crystal panel (P9). . At this time, the extending axis of the polarizing plate (B27) with the optical compensation layer on the 20-gauge side is perpendicular to the extending axis of the polarizing plate (B27) with the optical compensation layer on the backlight side. The liquid crystal display device (D9) was produced by combining the liquid crystal panel (P9) described above with the backlight unit of the original liquid crystal display device. The configuration of the liquid crystal panel (P9) described above is shown in Table 1 below. 53 200907509 (Example ίο) The polarizing plate (B24) of the above-mentioned Reference Example 31 was adhered to the liquid crystal cell of the above-mentioned Reference Example 48 via the acrylic adhesive (thickness: 20 / / m), and The side of the optical compensation layer (A15) is the liquid crystal cell (the side of the side, and the direction of the extension axis (absorption axis) of the fifth polarizing plate (B24) is parallel to the longitudinal direction of the liquid crystal cell (C), and then the reference example is given. The polarizing plate (B28) with an optical compensation layer attached to 44 is attached to the backlight side of the liquid crystal cell (C) via an acrylic adhesive (thickness: 2 μm), and the optical compensation layer (A2) side is the aforementioned side. On the liquid crystal cell (C) side, the direction of the extension axis 10 (absorption axis) of the polarizing plate (B28) with the optical compensation layer is perpendicular to the longitudinal direction of the liquid crystal cell (C), thereby obtaining a liquid crystal panel (P10). The extending axis of the polarizing plate (B24) on the visual side is perpendicular to the extending axis of the polarizing plate (B28) of the optical compensation layer on the backlight side. The backlight of the liquid crystal panel (P10) and the original liquid crystal display device The unit is combined to form a liquid crystal display device (D10). The aforementioned liquid crystal panel 15 The structure of (P10) is shown in the following Table 1. (Example 11) The polarizing plate (B29) with the optical compensation layer of the above-mentioned Reference Example 45 was adhered to the above via an acrylic adhesive (thickness: 20/zm). Referring to the visual side of the liquid crystal cell (C) of Example 48, and the side of the optical compensation layer (A8) is the liquid crystal cell 20 (C) side, the extension axis of the polarizing plate (B29) with the optical compensation layer (absorption axis) The direction is parallel to the longitudinal direction of the liquid crystal cell (C), and then the polarizing plate (B 2 9) of the optical compensation layer of the above Reference Example 45 is interposed with an acrylic adhesive (thickness: 20/m). Adhering to the liquid crystal cell (the backlight side of the crucible, and the side of the optical compensation layer (A8) is the liquid crystal cell (C) side, and the extension axis (absorption axis) of the polarizing plate (B29) of the compensation layer of the optical transmission 01 200907509 The direction is perpendicular to the longitudinal direction of the liquid crystal cell (C), that is, the liquid crystal panel (P11) is obtained. At this time, the extending axis of the polarizing plate (B29) with the optical compensation layer on the visual side and the optical side of the backlight side are attached. The extension axis of the polarizing plate (B29) of the compensation layer is vertical. The first five liquid crystal panels (P11) and the original liquid crystal The liquid crystal display device (D11) was produced by combining the backlight units of the display device. The structure of the liquid crystal panel (P1) is shown in Table 1 below. (Example 12) The polarizing plate of the above Reference Example 3 (B) 2 5) The liquid crystal cell of the above-mentioned Reference Example 48 is adhered to the liquid crystal cell of the above reference example 48 (thickness: 20 #m), and the optical compensation layer (A16) side is the liquid crystal cell (c) side The direction of the extension axis (absorption axis) of the polarizing plate (B 2 5) is parallel to the longitudinal direction of the liquid crystal cell (c). Next, the polarizing plate (B30) of the optical compensation layer of the aforementioned Reference Example 46 is separated. An acrylic adhesive (thickness: 2 〇 " m) is placed on the backlight side of the liquid crystal cell of the first fifteenth, and the optical compensation layer (A2) side is the side of the liquid crystal cell (c) The direction of the extension axis (absorption axis) of the polarizing plate (B3〇) of the layer is perpendicular to the longitudinal direction of the liquid crystal cell (c), that is, the liquid crystal panel (P12) is obtained. At this time, the extension axis of the aforementioned polarizing plate (7) 25 on the visual side is perpendicular to the extending axis of the polarizing plate (B 3 附) of the optical compensation layer on the backlight side. The liquid crystal display device (D12) is produced by combining the liquid crystal panel (pi2) with the backlight unit of the original liquid crystal display device. The configuration of the liquid crystal panel (P12) described above is shown in Table i below. (Example 13) The polarizing plate (B31) of the optical compensation layer of the above-mentioned Reference Example 47 was attached to the liquid crystal cell (C) of the aforementioned Reference Example 48 via a 55 200907509 acrylic adhesive (thickness: 20 #m). On the visual side, the side of the optical compensation layer (A8) is the liquid crystal cell (C) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B31) with the optical compensation layer is longer than that of the liquid crystal cell (C). The side faces are parallel, and then the polarizing plate (B 31) of the optical compensation layer with reference to the above reference example 47 is attached to the backlight of the liquid crystal cell (C) via an acrylic adhesive (thickness: 20/m). On the side, the side of the optical compensation layer (A8) is the liquid crystal cell (C) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B31) with the optical compensation layer is the long side of the liquid crystal cell (C). The direction is vertical, that is, the liquid crystal panel (P13) is obtained. At this time, the extending axis of the polarizing plate (B31) with the optical compensation layer on the side of the 10 mesh side is perpendicular to the extending axis of the polarizing plate (B31) with the optical compensation layer on the back side. The liquid crystal display device (D13) is produced by combining the liquid crystal panel (P13) described above with the backlight unit of the original liquid crystal display device. The structure of the liquid crystal panel (pi3) described above is shown in Table 1 below. (Comparative Example 1) The polarizing plate (B21) of the optical compensation layer of the above Reference Example 40 was attached to the liquid crystal cell (C) of the above Reference Example 48 via an acrylic adhesive (thickness: 20 " m). Side, and the side of the optical compensation layer (A9) is the liquid crystal cell (C) side 'the direction of the extension axis (absorption 20 axis) of the polarizing plate (B2i) with the optical compensation layer and the length of the liquid crystal cell (C) The polarizing plate (B21) with the optical compensation layer of the above-mentioned Reference Example 40 was attached to the backlight side of the liquid crystal cell (c) via an acrylic adhesive (thickness: 20 μm), and The side of the optical compensation layer (A9) is the liquid crystal cell (c) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B21) with the optical compensation layer is the same as the longitudinal direction of the liquid crystal cell 56 200907509 (c). Vertically, the liquid crystal panel (pi4) is obtained. At this time, the & extension axis of the polarizing plate (rib) with the optical compensation layer on the visual side is perpendicular to the extending axis of the polarizing plate (B21) with the optical compensation layer on the backlight side. The liquid crystal panel (P14) is combined with the backlight unit of the original liquid crystal display device, and a liquid crystal display device is produced. The structure of the liquid crystal panel (pl4) described above is shown in Table 2 below. (Comparative Example 2) The polarizing plate (B7) of the above-mentioned Reference Example 23 was placed on the visual side of the liquid crystal cell (c) of the above-mentioned Reference Example 48 via an acrylic adhesive (thickness: 20#m), and the polarized light was applied. The direction of the extension axis (absorption axis) of the plate (B7) was parallel to the longitudinal direction of the liquid crystal cell (C), and then the polarizing plate (B7) of the above-mentioned Reference Example 23 was sandwiched with an acrylic adhesive (thickness: 20/zm). Applying a liquid crystal to the backlight side of the liquid crystal cell (c) to make the direction of the extension axis (absorption axis) of the polarizing plate (B7) with the optical compensation layer perpendicular to the longitudinal direction of the liquid crystal cell (C) 15 panel (P15). At this time, the extending axis of the polarizing plate (B7) on the visual side is perpendicular to the extending axis of the polarizing plate (B7) on the backlight side. The liquid crystal panel (P15) is combined with the backlight unit of the original liquid crystal display device to produce a liquid crystal display device (D15). The structure of the liquid crystal panel (P15) is shown in the following Table 2 ° 20 (Comparative Example 3). The polarizing plate (B8) of the above Reference Example 24 was attached to the above via an acrylic adhesive (thickness: 20 / / m). Refer to the visual side of the liquid crystal cell (C) of Example 48 and the side of the liquid crystal cell (c) with the optical compensation layer (A 10) side, and the direction of the extension axis (absorption axis) of the polarizing plate (B8) and the liquid crystal described above. The long side of the unit (C) 57 200907509 is parallel, and then the polarizing plate (m〇) of the above reference example 26 is adhered to the backlight of the liquid crystal cell (c) via an acrylic adhesive (thickness: 20 (four)). Side, and the side of the optical compensation layer (A2) is the side of the liquid crystal cell (c), and the direction of the extension axis of the light-attached/compensation layer is said to be the same as that of the above-mentioned 5 liquid crystal cell (C) The long side direction is vertical, that is, the liquid crystal panel (4) is obtained. At this time, the extending axis of the polarizing plate (10) is perpendicular to the extending axis of the polarizing plate _). The liquid crystal display device (di6) was produced by combining the liquid crystal panel (P16) with the backlight unit of the original liquid crystal display device. The structure of the liquid crystal panel (P16) described above is shown in Table 2 below. (Comparative Example 4) The polarizing plate (B11) of the above-mentioned Reference Example 27 was adhered to the visual side of the liquid crystal cell (c) of the above-mentioned Reference Example 48 via an acrylic adhesive (thickness: 20/m), and The side of the optical compensation layer (A11) is on the side of the liquid crystal cell (c), and the direction of the extension axis (absorption axis) of the polarizing plate (B11) is parallel to the longitudinal direction of the liquid crystal cell (c), and then the reference is made. The polarizing plate (B22) with the optical compensation layer of Example 41 was adhered to the backlight side of the liquid crystal cell (C) via an acrylic adhesive (thickness: 2 〇 " m), and the optical compensation layer (A13) side was used. In the liquid crystal cell (C) side, the direction of the extension axis (absorption axis) of the polarizing plate (B22) with the optical compensation layer is perpendicular to the longitudinal direction of the liquid crystal cell (C), thereby obtaining a liquid crystal panel (P17). . At this time, the extending axis of the polarizing plate (B11) is perpendicular to the extending axis of the polarizing plate (B22) to which the optical compensation layer is attached. The liquid crystal display device (D17) was produced by combining the liquid crystal panel (P17) with the backlight unit of the original liquid crystal display device. The configuration of the mooring liquid crystal panel (p 17) is shown in Table 2 below. 58 200907509 (Comparative Example 5) The polarizing plate of the above-mentioned Reference Example 28 was adhered to the liquid crystal cell of the above Reference Example 48 (thickness: 20 " m), and the optical compensation layer was used. The side of the liquid crystal cell (c) is on the side of the liquid crystal cell (c), and the direction of the extension axis (absorption axis) of the five polarizing plates (B12) is parallel to the longitudinal direction of the liquid crystal cell (c), and then the reference example 29 is used. The polarizing plate _) is adhered to the moonlight side of the liquid crystal cell (6) via a thin acid-based adhesive (thickness: 2 〇 " m), and the liquid crystal cell (c) side is on the side of the optical compensation layer (A5) The direction of the extension axis (absorption axis) of the polarizing plate (B13) of the month is perpendicular to the longitudinal direction of the liquid crystal cell (c) 1〇, that is, the liquid crystal panel (P18) is obtained. At this time, the extending axis of the polarizing plate (B12) is perpendicular to the extending axis of the polarizing plate (Bn). The liquid crystal panel (P18) is combined with the backlight unit of the original liquid crystal display device, and a liquid crystal display device (D18) is formed. The configuration of the liquid crystal panel (p(8) is shown in Table 2 below. 15 [Table 1] Liquid crystal panel embodiment 1 P1 Example 2 Example 3 Example 4 Example 5 Example 7 Example 8 Example 9 Example 10 Embodiment 11 Embodiment 12 Embodiment 13 Pre-emptive gas sr 1 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 R1 Optical compensation layer A1 --- .   A3 A4 A6 A7 A4 A7 A14 A14 A15 A15 A16 A16 Optical compensation liquid crystal cell - A8 A8 - A8 - A8 - A8 Optical compensation i ΛΟ CCCCCCCCCCCC Optical compensation; | A1 A2 A5 A5 Γ~Α5 A8 A8 A2 A8 A2 A8 A2 A8 Polarized light Banyan. 1 13 1 A3 A4 A6 Α7 A4 A7 A14 A14 A15 A15 A16 A16 〇1 B1 B1 B1 Β1 B1 B1 B1 B1 B1 B1 B1 B1 [Table 2] 59 200907509 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example ^ Liquid crystal panel u ~ρΤί P15 P16 P17 P18 Polarizer B7 Bl Bl Bl — Optical compensation layer - Λ9 A10 All A10 — Optical compensation layer ----- " - - A5 Liquid crystal cell c C c CC Optical compensation layer - A12 - Optical compensation Θ A2 A12 A5 Polarizing plate Bl B7 B9 B9 Bl The color shift measurement results of the liquid crystal display devices of Examples 1 to 7 are shown in the graphs of Figs. 8 to 14 . In addition, Embodiment 1 corresponds to FIG. 8; Embodiment 2 corresponds to FIG. 9; Embodiment 3 corresponds to FIG. 10; Embodiment 4 corresponds to FIG. 11; Embodiment 5 corresponds to FIG. 12; and Example 6 corresponds to FIG. Embodiment 7 corresponds to Figure 14. As shown in the figure, in the first to seventh embodiments, the color change when the viewing angle is moved to the left and right is small. Further, as shown in the following Table 3, in Examples 1 to 7, the black luminance was good, and the black luminance in the oblique direction was also controlled. Further, in the liquid crystal display devices of Examples 8, 10, and 12, the same color shift and average black luminance as in Example 2 were obtained, and the liquid crystal display devices of Examples 9, 11, and 13 were available and implemented. Example 7 has the same color shift and average black brightness. The color shift measurement results of the liquid crystal display devices of Comparative Examples 1 to 5 are shown in the graphs of Fig. 15 to Fig. 19. Similarly, the average black luminance of Comparative Example 丨5 was displayed (5 is shown in Table 3 below. In addition, Comparative Example 1 corresponds to Figure 15; Comparative Example 2 corresponds to Figure 16; Comparative Example 3 corresponds to Figure 17; Comparative Example 4 corresponds to Fig. 18; Comparative Example 5 corresponds to Fig. 19. As shown in the figure, in Comparative Example 1, the average black brightness of the polar angle 6 〇 azimuth angles 45, 135 ' 225, and 3 丨 5 is compared with the embodiment. Very high, and the CR in the oblique direction is very low. In Comparative Example 2, the color change when the azimuth angle is changed is large (the amplitude is large) and the waveform is relative to 45. 丨35 60 200907509 ° , 225 ° compared with the embodiment. 315° is not bilaterally symmetric. Moreover, compared with the embodiment, the average black brightness of the polar angle of 60° azimuth angles of 45°, 135°, 225°, and 315° is high, and the CR in the oblique direction is very low. In Example 3, the color change when the azimuth angle was changed was large (the amplitude was large, and the waveform was not bilaterally symmetric with respect to 45 5 ., : 135°, 225°, and 315°) as compared with the example. In Comparative Example 4 Compared with the embodiment, the color change becomes large when the azimuth angle is changed (the amplitude is large, and the waveform is relative to 45°, 135°, 225°, 315° The left-right symmetry), in addition, compared with the embodiment, the average black luminance of the polar angle of 60° azimuth angles of 45°, 135°, 225°, and 315° is high, and the CR in the oblique direction is very low. In Comparative Example 5, 10 Compared with the embodiment, the color change when the azimuth angle is changed is large (the amplitude is large, and the waveform is not bilaterally symmetric with respect to 45°, 135°, 225°, and 315°). [Table 3] Average black luminance (cd/) M2) Example 1 2. 7 Example 2 2. 0 Example 3 2. 8 Example 4 2. 8 Example 5 2. 1 Example 6 2. 2 Example 7 2. 7 Comparative Example 1 3. 1 Comparative Example 2 4. 8 Comparative Example 3 2. 7 Comparative Example 4 3. 8 Comparative Example 5 2. 9 [Possibility of Industrial Utilization] 15 As described above, the liquid crystal panel of the present invention can be displayed in a colorless and neutral manner in all directions, and has good black brightness. The liquid crystal panel of the present invention and the use of the liquid crystal display device using the liquid crystal panel include, for example, a desktop personal computer, a pen 61 200907509 type computer, a photocopying machine, and the like; a mobile phone, a clock, a digital camera, and a personal digital assistant. Portable devices such as (PDA) and portable game consoles; home appliances such as video recorders, televisions, microwave ovens; reversing monitors, car navigation system monitors, car audio and other in-vehicle devices; store information monitoring devices, etc. A maintenance device such as a display device or a monitoring monitor, a care-medical device such as a care monitor or a medical monitor, and the like are not limited to the above-described uses, and are applicable to a wide range of fields. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of the structure of a liquid crystal panel of the present invention. Fig. 2 is a schematic cross-sectional view showing another example of the structure of the liquid crystal panel of the present invention. Fig. 3 is a schematic cross-sectional view showing an example of the structure of a liquid crystal cell. The 4th figure shows an unintentional cross-sectional view of the liquid crystal panel structure. 15 The fifth (A), (B), and (C) drawings show schematic cross-sectional views of examples of the structure of the polarizing plate. Figure 6 is a schematic diagram showing the relationship between polar angle and azimuth. Fig. 7 is a graph showing an example of wavelength dispersion of a phase difference film according to an embodiment of the present invention. 20 Fig. 8 is a graph showing the color shift result of Example 1 of the present invention. Fig. 9 is a graph showing the color shift result of Example 2 of the present invention. Fig. 10 is a graph showing the color shift result of Example 3 of the present invention. Fig. 11 is a graph showing the color shift result of Example 4 of the present invention. Fig. 12 is a graph showing the color shift result of Example 5 of the present invention. 62 200907509 Fig. 13 is a graph showing the color shift result of Example 6 of the present invention. Fig. 14 is a graph showing the color shift result of Example 7 of the present invention. Fig. 15 is a graph showing the color shift result of Comparative Example 1. Fig. 16 is a graph showing the color shift result of Comparative Example 2. 5 Fig. 17 is a graph showing the color shift result of Comparative Example 3. Fig. 18 is a graph showing the color shift result of Comparative Example 4. Fig. 19 is a graph showing the color shift result of Comparative Example 5. [Description of main component symbols] 10 liquid crystal panel 133 spacer 11a first optical compensation layer 141 polarizer lib first optical compensation layer 142 protective layer 12 second optical compensation layer C optical compensation layer (A1) birefringence 12a second Optical compensation layer wavelength dispersion 12b Second optical compensation layer PI Optical compensation layer (A2) Birefringence 13 Liquid crystal early element rate Wavelength dispersion 14 Polarizing plate C Optical compensation layer (A3) Birefringence 14a First polarizer wavelength dispersion 14b 2nd polarizer TAC optical compensation layer (A12) double fold 15a optical compensation layer transmittance rate wavelength dispersion 15b optical compensation layer 131 liquid crystal layer 132a anti 132b button 63

Claims (1)

200907509 十、申請專利範圍: 1. 一種液晶面板,係具有液晶單元、第1偏光片、第2偏光 片、第1光學補償層及第2光學補償層者, 且該液晶面板至少有兩個前述第1光學補償層, 5 又,前述液晶單元之一側配置有前述第1偏光片, 且前述液晶單元與前述第1偏光片之間配置有前述第1 光學補償層,而前述液晶單元之另一侧配置有前述第2 偏光片,且前述液晶單元與前述第2偏光片之間配置有 前述第1光學補償層及前述第2光學補償層, 10 前述第1光學補償層及前述第2光學補償層滿足下 述關係式(I )及(Π): Nz(l)<Nz(2) (I); Wd(l)< Wd(2) (Π); Νζ(1):第1光學補償層的Νζ係數; 15 Νζ(2):第2光學補償層的Νζ係數; Wd(l):第1光學補償層的波長色散 [Re(380)/Re(550)]; Wd(2):第2光學補償層的波長色散 [Re(380)/Re(550)]; 20 Νζ係婁i:=(nx-nz)/(nx-ny); nx :層的面内折射率為最大之方向(慢軸方向)的折 射率; ny :在層的面内與前述nx方向垂直之方向(快轴方 向)的折射率; 64 200907509 nz :相對於前述nx及前述ny之各方向呈垂直的層厚 方向的折射率; Re(;l):於波長(又)之以下述式(皿)表示之層的面内 相位差值; 5 Re=(nx-ny) · d (ΙΠ) i d=層厚。 2. 如申請專利範圍第1項之液晶面板,其中前述第1光學補 償層的Nz係數為1〜2.5的範圍。 3. 如申請專利範圍第1項之液晶面板,其中前述第1光學補 10 償層的波長色散W d (1)係以下述式(IV)表示之平坦色散 及以下述式(V)表示之反色散的至少一種波長色散,且 前述第2光學補償層的波長色散Wd(2)係以下述式(VI) 表示之正色散, Wd(l) : Re(380)/Re(550)= 1 (IV); 15 Wd(l) : Re(380)/Re(550)< 1 (V); Wd(2) : Re(380)/Re(550)> 1 (VI)。 4. 如申請專利範圍第3項之液晶面板,其中,在前述式(IV) 中,Re(380)/Re(550)為0.95〜1.05的範圍;在前述式(V) 中,Re(380)/Re(550)小於0.95 ;在前述式(VI)中, 20 Re(380)/Re(550)為大於 1.05 的值。 5. 如申請專利範圍第1項之液晶面板,其中前述第1光學補 償層為具有nx > ny=nz之關係的正A板,且前述第2光學 補償層為具有nx=ny > nz之關係的負C板。 6. 如申請專利範圍第1項之液晶面板,其中在前述液晶單 65 200907509 几與前述第2偏光片之間,從前述液晶單元側開始,以 月’J述第2光學補償層及前述第丨光學補償層的順序,配置 有前述第2光學補償層及前述第1光學補償層。 $ 士申明專利範圍第1項之液晶面板,其中至少有兩個前 述第2光學補償層,且前述液晶單元與前述第丨偏光片之 間亦配置有前述第2光學補償層。 8·如申凊專利範圍第7項之液晶面板,其中在前述液晶單 几與前述第1偏光片之間,從前述液晶單元側開始,以 前述第2光學補償層及前述第丨光學補償層的順序,配 10 、复 有前述第2光學補償層及前述第丨光學補償層。 9·如申睛專利範圍第1項之液晶面板,其中配置有前述第1 偏光片側為目視側,且配置有前述第2偏光片側為背光 侧。 10. 如申請專利範圍第1項之液晶面板,其中液晶配向模式 15 為垂直配向(VA)模式。 11. 如申請專利範圍第1項之液晶面板,其中前述第1光學補 償層係含有選自於由降冰片烯系樹脂、纖維素系樹脂、 聚酯系樹脂及聚乙烯縮醛系樹脂所構成之群組之至少i 種樹脂的相位差薄膜。 12. 如申請專利範圍第1項之液晶面板’其中前述第2光學補 償層係含有非液晶性聚合物的相位差薄膜。 13. 如申請專利範圍第12項之液晶面板,其中前述非液晶性 聚合物係選自於由聚醯胺、聚醯亞胺、聚酯、聚芳醚嗣、 聚醚酮、聚醯胺醯亞胺及聚酯醯亞胺所構成之群組之至 66 200907509 少1種聚合物。 14. 一種液晶顯示裝置,係具有液晶面板,其中前述液晶面 板係申請專利範圍第1項之液晶面板。 67200907509 X. Patent Application Range: 1. A liquid crystal panel having a liquid crystal cell, a first polarizer, a second polarizer, a first optical compensation layer, and a second optical compensation layer, and the liquid crystal panel has at least two of the foregoing In the first optical compensation layer, the first polarizer is disposed on one side of the liquid crystal cell, and the first optical compensation layer is disposed between the liquid crystal cell and the first polarizer, and the liquid crystal cell is further disposed The second polarizer is disposed on one side, and the first optical compensation layer and the second optical compensation layer are disposed between the liquid crystal cell and the second polarizer, and the first optical compensation layer and the second optical The compensation layer satisfies the following relations (I) and (Π): Nz(l)<Nz(2) (I); Wd(l)< Wd(2) (Π); Νζ(1): 1st Νζ coefficient of optical compensation layer; 15 Νζ(2): Νζ coefficient of the second optical compensation layer; Wd(l): wavelength dispersion of the first optical compensation layer [Re(380)/Re(550)]; Wd(2 ): wavelength dispersion of the second optical compensation layer [Re(380)/Re(550)]; 20 Νζ system 娄i:=(nx-nz)/(nx-ny); nx : in-plane refractive index of the layer is Refractive index of the largest direction (slow axis direction); ny: refractive index of the direction perpendicular to the aforementioned nx direction (fast axis direction) in the plane of the layer; 64 200907509 nz : relative to the aforementioned nx and the aforementioned ny directions Refractive index in the direction of the vertical layer thickness; Re(;l): the in-plane phase difference of the layer represented by the following formula (dish) at the wavelength (again); 5 Re=(nx-ny) · d (ΙΠ) Id=layer thickness. 2. The liquid crystal panel of claim 1, wherein the Nz coefficient of the first optical compensation layer is in the range of 1 to 2.5. 3. The liquid crystal panel of claim 1, wherein the wavelength dispersion W d (1) of the first optical compensation layer is a flat dispersion expressed by the following formula (IV) and expressed by the following formula (V). At least one wavelength dispersion of the inverse dispersion, and the wavelength dispersion Wd(2) of the second optical compensation layer is a positive dispersion expressed by the following formula (VI), Wd(l): Re(380)/Re(550)=1 (IV); 15 Wd(l): Re(380)/Re(550)< 1 (V); Wd(2): Re(380)/Re(550)> 1 (VI). 4. The liquid crystal panel of claim 3, wherein in the above formula (IV), Re(380)/Re(550) is in the range of 0.95 to 1.05; in the above formula (V), Re(380) ) / Re (550) is less than 0.95; in the above formula (VI), 20 Re (380) / Re (550) is a value greater than 1.05. 5. The liquid crystal panel of claim 1, wherein the first optical compensation layer is a positive A plate having a relationship of nx > ny=nz, and the second optical compensation layer has nx=ny > nz The negative C plate of the relationship. 6. The liquid crystal panel according to claim 1, wherein the second optical compensation layer and the first portion are formed from the liquid crystal cell side between the liquid crystal cell 65 200907509 and the second polarizer The second optical compensation layer and the first optical compensation layer are disposed in the order of the optical compensation layer. The liquid crystal panel of claim 1, wherein at least two of the second optical compensation layers are disposed, and the second optical compensation layer is disposed between the liquid crystal cell and the second polarizer. The liquid crystal panel of claim 7, wherein the second optical compensation layer and the second optical compensation layer are formed from the liquid crystal cell side between the liquid crystal cell and the first polarizer In the order of 10, the second optical compensation layer and the second optical compensation layer are combined. 9. The liquid crystal panel according to claim 1, wherein the first polarizer side is disposed on a visual side, and the second polarizer side is disposed on a backlight side. 10. The liquid crystal panel of claim 1, wherein the liquid crystal alignment mode 15 is a vertical alignment (VA) mode. 11. The liquid crystal panel according to claim 1, wherein the first optical compensation layer is selected from the group consisting of a norbornene resin, a cellulose resin, a polyester resin, and a polyvinyl acetal resin. A retardation film of at least one of the groups of resins. 12. The liquid crystal panel of claim 1, wherein the second optical compensation layer contains a retardation film of a non-liquid crystalline polymer. 13. The liquid crystal panel of claim 12, wherein the non-liquid crystalline polymer is selected from the group consisting of polyamine, polyimine, polyester, poly(arylene ether), polyether ketone, and polyamidoxime. The group consisting of imine and polyester quinone is up to 66 200907509 with one less polymer. A liquid crystal display device comprising a liquid crystal panel, wherein the liquid crystal panel is a liquid crystal panel of claim 1 of the patent application. 67
TW97119341A 2007-06-08 2008-05-26 Liquid crystal panel and liquid crystal display device TW200907509A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007152620 2007-06-08
JP2008023160A JP2009015292A (en) 2007-06-08 2008-02-01 Liquid crystal panel and liquid crystal display device

Publications (1)

Publication Number Publication Date
TW200907509A true TW200907509A (en) 2009-02-16

Family

ID=40356197

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97119341A TW200907509A (en) 2007-06-08 2008-05-26 Liquid crystal panel and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2009015292A (en)
TW (1) TW200907509A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395727B2 (en) 2009-11-30 2013-03-12 Fujifilm Corporation VA mode liquid crystal display device
WO2011064826A1 (en) * 2009-11-30 2011-06-03 富士フイルム株式会社 Va-type liquid crystal display apparatus
KR20120002411A (en) * 2010-06-30 2012-01-05 동우 화인켐 주식회사 A laminated polarizer set and in-plane switching mode liquid crystal display comprising the same
JP2018205362A (en) * 2017-05-30 2018-12-27 大日本印刷株式会社 Polarization plate compensation film, liquid crystal panel
KR102571057B1 (en) * 2018-02-12 2023-08-25 삼성전자주식회사 Phase difference film and display device

Also Published As

Publication number Publication date
JP2009015292A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
TWI437288B (en) Polarizing plate, liquid crystal panel, and liquid crystal display
JP4618675B2 (en) Retardation film, polarizing element, liquid crystal panel, and liquid crystal display device
TWI316623B (en) Liquid crystal panel
KR101211980B1 (en) liquid crystal panel and liquid crystal display device
TWI400527B (en) Liquid crystal panel and liquid crystal display device
JP5530580B2 (en) Liquid crystal panel and liquid crystal display device
JP4726148B2 (en) Liquid crystal panel and liquid crystal display device
JP4153945B2 (en) Liquid crystal panel and liquid crystal display device
TWI361292B (en)
KR101335056B1 (en) Liquid crystal panel, and liquid crystal display device
WO2006100901A1 (en) Liquid crystal panel, liquid crystal television, and liquid crystal display device
WO2006090617A1 (en) Polarizing element, liquid crystal panel, liquid crystal television and liquid crystal display device
WO2006095518A1 (en) Liquid crystal panel, liquid crystal television and liquid crystal display
JP4450011B2 (en) Liquid crystal panel and liquid crystal display device
TWI448746B (en) Liquid crystal panel and liquid crystal display device
JP2008020670A (en) Liquid crystal panel and liquid crystal display
JP5248235B2 (en) Liquid crystal panel and liquid crystal display device
TW200907509A (en) Liquid crystal panel and liquid crystal display device
TW200835980A (en) Liquid crystal panel, and liquid crystal display
TWI374318B (en)
JP4731269B2 (en) Polarizing element, liquid crystal panel, and liquid crystal display device
JP5048279B2 (en) Liquid crystal panel and liquid crystal display device
JP2012145732A (en) Liquid crystal panel and liquid crystal display device
KR102574840B1 (en) liquid crystal display
JP5580348B2 (en) A set of polarizing plates arranged on a normally black liquid crystal panel and a liquid crystal display device using the set of polarizing plates