WO2011064826A1 - Va-type liquid crystal display apparatus - Google Patents

Va-type liquid crystal display apparatus Download PDF

Info

Publication number
WO2011064826A1
WO2011064826A1 PCT/JP2009/006460 JP2009006460W WO2011064826A1 WO 2011064826 A1 WO2011064826 A1 WO 2011064826A1 JP 2009006460 W JP2009006460 W JP 2009006460W WO 2011064826 A1 WO2011064826 A1 WO 2011064826A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
retardation
rth
crystal display
Prior art date
Application number
PCT/JP2009/006460
Other languages
French (fr)
Japanese (ja)
Inventor
石黒誠
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to PCT/JP2009/006460 priority Critical patent/WO2011064826A1/en
Publication of WO2011064826A1 publication Critical patent/WO2011064826A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to a VA (Vertically Aligned) liquid crystal display device with improved front contrast.
  • VA Very Aligned
  • the VA liquid crystal display device has an advantage that the CR in the normal direction (hereinafter referred to as “front CR”) is higher than other modes, and various research and developments have been conducted to further improve the advantage. It has been broken. As a result, in the past six years, the front CR of the VA liquid crystal display device has increased from about 400 to about 8000, about 20 times higher.
  • a retardation film as a technique for reducing light leakage that occurs in an oblique direction during black display (for example, Patent Document 1).
  • a phase difference film is arranged on the front side and the rear side centering on the liquid crystal cell, and the optical retardation is achieved by sharing the phase difference necessary for optical compensation between the two retardation films. ing. Two methods are usually used for the combination of optical compensation.
  • One method is a method in which retardation films are equally allocated to the retardation films respectively arranged on the front side and the rear side, and there is an advantage that a single film can be used.
  • the other method is a method in which a large phase difference is shared by the phase difference film disposed on one side, and is advantageous in terms of cost because optical compensation can be performed in combination with an inexpensive film. In the latter method, it has been practically common to share a large retardation with the retardation film disposed on the rear side. One reason is manufacturing cost.
  • Patent Document 2 when the cellulose acylate film of the present invention is used only for the protective film (between the liquid crystal cell and the polarizing film) of one polarizing plate, Either the observation side) or the lower side polarizing plate (backlight side) may be used, and there is no functional problem, but there is a need to provide a functional film on the observation side (upper side) when used as an upper polarizing plate. Since there is a possibility that the production yield will be reduced, it is considered that the use as a lower polarizing plate is high, and it is considered to be a more preferable embodiment.
  • the second reason is that it is preferable to dispose a film having a larger phase difference on the rear side in terms of impact resistance and environmental resistance such as temperature change and humidity change. Conventionally, no study has been made on the relationship between the optical characteristics of the retardation film (retardation film) used for improving the viewing angle contrast and the front CR.
  • An object of the present invention is to provide a VA liquid crystal display device with high front contrast.
  • Front-side polarizer, rear-side polarizer, VA-type liquid crystal cell disposed between the front-side polarizer and the rear-side polarizer, and between the rear-side polarizer and the VA-type liquid crystal cell
  • a first retardation region composed of one or two or more retardation layers
  • the first retardation region has the following formula: 0 nm ⁇ Re (590) ⁇ 10 nm and
  • VA type liquid crystal display device satisfying the following:
  • Re ( ⁇ ) means in-plane retardation (nm) at the wavelength ⁇ nm
  • Rth ( ⁇ ) means retardation in the thickness direction (nm) at the wavelength ⁇ nm.
  • the VA type liquid crystal cell has a front side substrate and a rear side substrate, and a ratio of a member contrast (CR f ) of the front side substrate to a member contrast (CR r ) of the rear side substrate (CR f / (CR r ) is 3 or more, VA type liquid crystal display device according to [1].
  • a second retardation region composed of one or two or more retardation layers, and the second retardation region is Following formula: 30 nm ⁇ Re (590) ⁇ 90 nm and 170 nm ⁇ Rth (590) ⁇ 300 nm
  • the VA liquid crystal display device according to [1] or [2], wherein: [4]
  • the first and second retardation regions are represented by the following formula: ⁇ nd (590) ⁇ 70 ⁇ Rth 1 (590) + Rth 2 (590) ⁇ ⁇ nd (590) ⁇ 10
  • VA liquid crystal display device characterized by satisfying: Where d is the thickness (nm) of the liquid crystal layer of the VA type liquid crystal cell, ⁇ n ( ⁇ ) is the refractive index anisotropy at the wavelength ⁇ of the liquid crystal layer of the VA type liquid crystal cell, and ⁇ nd ( ⁇ ) is ⁇ n Rth 1 ( ⁇ ) is retardation in the thickness direction of the first retardation region
  • the VA liquid crystal display device according to any one of [1] to [4], wherein the first retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
  • a compound in which the cellulose acylate film reduces the retardation Rth in the thickness direction is represented by the following formulas (I) and (II): (I) (Rth [A] ⁇ Rth [0]) / A ⁇ ⁇ 1.0 (II) 0.01 ⁇ A ⁇ 30 (Rth [A]: Rth (nm) of a film containing A% of a compound that lowers Rth, Rth [0]: Rth (nm) of a film not containing a compound that lowers Rth, and A: (5)
  • the VA liquid crystal display device according to [5] wherein at least one compound is contained within a range satisfying the mass (%) of the compound when the mass is 100.
  • the cellulose acylate film is a cellulose acylate having an acyl substitution degree of 2.85 to 3.00, a cellulose acylate having at least one compound that reduces in-plane retardation Re and thickness direction retardation Rth.
  • the VA liquid crystal display device according to [5] or [6] which is contained in an amount of 0.01 to 30% by mass with respect to the rate solid content.
  • the cellulose acylate film comprises at least one compound that lowers
  • the VA liquid crystal display device according to any one of [1] to [8], wherein the first retardation region is made of an acrylic polymer film or includes an acrylic polymer film.
  • the first retardation region comprises an acrylic polymer film containing an acrylic polymer containing at least one unit selected from a lactone ring unit, a maleic anhydride unit, and a glutaric anhydride unit;
  • the VA type liquid crystal display device having the acrylic polymer film.
  • the VA liquid crystal display device according to any one of [3] to [10], wherein the second retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
  • the VA liquid crystal display device according to any one of [3] to [10], wherein the second retardation region is made of a cyclic olefin polymer film or includes a cyclic olefin polymer film.
  • the VA liquid crystal display device according to any one of [1] to [12], wherein the front contrast is 1500 or more.
  • the VA liquid crystal display device according to any one of [1] to [13], which includes a backlight unit that sequentially emits independent three primary color lights and is driven by a field sequential driving method.
  • a VA liquid crystal display device with high front contrast can be provided.
  • VA-type liquid crystal display device of the present invention It is a cross-sectional schematic diagram of an example of the VA-type liquid crystal display device of the present invention. It is the schematic diagram used in order to demonstrate the effect
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation (nm) and retardation in the thickness direction (nm) at wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured by making light having a wavelength of ⁇ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). The standard wavelength of KOBRA is 590 nm.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is the Re ( ⁇ )
  • the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis).
  • the light is incident at a wavelength of ⁇ nm in 10 degree steps from the normal direction to 50 degrees on one side with respect to the film normal direction (with the direction of the rotation axis as the rotation axis).
  • KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction orthogonal to nx in the plane
  • nz represents the refractive index in the direction orthogonal to nx and ny.
  • d represents a film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is from ⁇ 50 degrees to +50 degrees with respect to the normal direction of the film, with Re ( ⁇ ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis).
  • the light of wavelength ⁇ nm is incident from each inclined direction in 10 degree steps and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
  • slow axis of a retardation film or the like means a direction in which the refractive index is maximum.
  • the “visible light region” means 380 nm to 780 nm.
  • a measurement wavelength is 590 nm.
  • the wavelength of 590 nm is a wavelength generally used for management of physical properties of a film in the technical field industry to which the present invention belongs.
  • the retardation film means a self-supporting film disposed between the liquid crystal cell and the polarizer (regardless of the size of the retardation).
  • the retardation film is synonymous with the retardation film.
  • the retardation region is a general term for a retardation film of one layer or two or more layers disposed between a liquid crystal cell and a polarizer.
  • front side means the display surface side
  • rear side means the backlight side.
  • front means a normal direction with respect to the display surface
  • “front contrast (CR)” is calculated from white luminance and black luminance measured in the normal direction of the display surface. Contrast.
  • the present invention provides the following formula between the VA liquid crystal cell and the rear polarizer: 0 nm ⁇ Re (590) ⁇ 10 nm and
  • the present invention relates to a VA liquid crystal display device characterized by having a first retardation region that satisfies the above. 2.
  • a backlight that emits light having directivity is used as a light source of a liquid crystal display device and disposed on the rear side. Light obliquely incident on the liquid crystal display device from the backlight is scattered by the liquid crystal layer and the color filter in the liquid crystal cell, and the components scattered in the front direction contribute to lowering the front CR.
  • the component in the absorption axis direction of the front side polarizer (hereinafter sometimes referred to as “A component”) is absorbed by the polarizer, but the component in the transmission axis direction of the front side polarizer. (Hereinafter sometimes referred to as “B component”) passes through the polarizer.
  • This B component causes the front CR to decrease. If the B component is reduced, the front contrast can be improved. From this point of view, it is preferable that the Rth of the retardation region disposed between the rear-side polarizer and the liquid crystal cell is as small as possible.
  • the retardation film constituting the retardation region has an optical axis distribution in production, and this causes an axial shift when being bonded to the polarizer. Since the axial shift promotes the elliptical polarization of light from the backlight, the front contrast can be improved by reducing the axial shift. From this point of view, the smaller the Re of the phase difference region disposed between the rear-side polarizer and the liquid crystal cell, the better.
  • the first retardation region between the rear-side polarizer and the liquid crystal cell has the following formula: 0 nm ⁇ Re (590) ⁇ 10 nm, and
  • the liquid crystal display device has also achieved improved oblique CR and reduced color shift during black display. Can be provided.
  • the liquid crystal cell LC is a VA mode liquid crystal cell and has homeotropic alignment when displaying black.
  • the liquid crystal cell LC is configured by making an upper substrate 26 and a lower substrate 24 made of glass or the like face each other, and has an alignment film (not shown) and an electrode layer (not shown) on the substrate. Further, a color filter layer (not shown) is provided on the front substrate.
  • the rear side polarizing plate PL1 has the polarizer 12 and the first retardation film 16 and the outer protective film 20 on the surface thereof, respectively, and the front side polarizing plate PL2 has the polarizer 14 and the first surface on the surface thereof. 2 retardation films 18 and an outer protective film 22.
  • the polarizers 12 and 14 are arranged with their absorption axes orthogonal to each other.
  • the first retardation film disposed between the polarizer 12 of the rear-side polarizing plate PL1 and the liquid crystal cell LC satisfies the following conditions: 0 nm ⁇ Re (590) ⁇ 10 nm and
  • a plurality of retardation films may be present.
  • a protective film for the polarizer 12 may be separately disposed between the first retardation film 16 and the polarizer 12, but the total retardation of the first retardation film 16 and the protective film. Satisfies 0 nm ⁇ Re (590) ⁇ 10 nm and
  • the effect of the present invention is that the member contrast CR f of the front side substrate (including the substrate 26 and all members formed on the substrate in FIG. 1) of the VA liquid crystal cell is It has been found that this is particularly noticeable in a mode higher than the member contrast (CR r ) of the rear side substrate (including the substrate 24 and all members formed on the substrate in FIG. 1). Further, the ratio of the member contrast CR f of the front side substrate to the member contrast (CR r ) of the rear side substrate (CR f / CR r ) is 3 or more, that is, in the aspect of 3 ⁇ CR f / CR r . It turned out that an effect becomes remarkable.
  • the VA liquid crystal cell (LC in FIG. 1) is disassembled into two substrates (substrates 24 and 26 in FIG. 1), the front substrate (substrate 26 in FIG. 1) and the substrate
  • the generic name of the members formed on the substrate is referred to as a front substrate
  • the generic term of the rear substrate (substrate 24 in FIG. 1) and the members formed on the substrate is referred to as a rear substrate.
  • the member include various members such as a color filter, a black matrix, an array member (such as a TFT array), a protrusion on the substrate, a common electrode, and a slit. That is, the member contrast between the rear side substrate and the front side substrate of the liquid crystal cell refers to the total contrast of each substrate and various members formed on each substrate. Details of the measurement method are described in Examples described later.
  • the retardation of the first retardation region between the rear-side polarizer and the liquid crystal cell greatly affects the front CR of the liquid crystal display device.
  • optical phenomena such as scattering and diffraction occur in each member of the liquid crystal cell (for example, liquid crystal layer, color filter, black matrix, array member, protrusion formed on the substrate, common electrode member, slit member, etc.).
  • these optical phenomena have polarization dependency. Details will be described below.
  • the liquid crystal layer is in a vertically aligned state during black display, and thus linearly polarized light that passes through the rear polarizer and proceeds in the normal direction passes through the liquid crystal layer.
  • the polarization state does not change, and in principle, it is absorbed by the absorption axis of the front polarizer. That is, in principle, it can be said that there is no light leakage in the normal direction during black display.
  • the front transmittance at the time of black display of the VA liquid crystal display device is not zero.
  • liquid crystal molecules in the liquid crystal layer are fluctuating, and light incident on the liquid crystal layer is known to be scattered to some extent by the fluctuation.
  • the influence increases and the front light leakage tends to increase. That is, as the phase difference of the phase difference region arranged on the rear side is larger and converted into elliptically polarized light having a higher elliptical polarization rate, light leakage on the front due to this fluctuation can be reduced.
  • the phase difference in the retardation region between the rear-side polarizer and the liquid crystal layer is also responsible for this.
  • linearly polarized light is converted into elliptically polarized light by the phase difference.
  • the elliptically polarized light is diffracted and scattered by the array member in the liquid crystal cell and the color filter layer, and at least a part of the light becomes light traveling in the front direction.
  • the elliptically polarized light includes a linearly polarized light component that cannot be blocked by the absorption axis of the front-side polarizer, light leaks in the front direction even during black display, causing a reduction in front CR.
  • the optical phenomenon caused by passing through the array member or the color filter layer is, for example, that the surface of the array member or the color filter layer is not completely smooth and has a certain degree of unevenness, or a scattering factor or the like in the member. By being contained.
  • the influence of the optical phenomenon generated by passing through the array member and the color filter layer on the light leakage in the front direction is larger than the influence of the liquid crystal molecules in the liquid crystal layer described above.
  • the elliptical polarization rate of the incident light is determined by the phase difference of the rear-side phase difference region (first phase difference region) that passes therethrough.
  • a member for example, a color filter
  • the phase difference of the liquid crystal layer in addition to the phase difference of the rear side phase difference region.
  • ⁇ nd (590) of the liquid crystal layer d is the thickness (nm) of the liquid crystal layer
  • ⁇ n ( ⁇ ) is the refractive index anisotropy at the wavelength ⁇ of the liquid crystal layer.
  • ⁇ nd ( ⁇ ) is the product of ⁇ n ( ⁇ ) and d.) Is set to about 280 to 350 nm.
  • FIG. 2B summarizes the phase difference in the rear side phase difference region, the tendency of the influence on the light leakage in the front direction by passing through each member, and the strength of the influence.
  • “ ⁇ ” indicates an effect of increasing the front CR as compared to the case where the rear phase difference region has a high retardation
  • “ ⁇ ” indicates an effect of decreasing the front CR.
  • the number of arrows is a measure of the strength of the action, and the greater the number, the stronger the action.
  • the color filter is arranged on the front side substrate and the array member is arranged on the rear side substrate
  • the phase difference in the rear side retardation region is lowered, the rear side
  • the light leakage in the front direction caused by the optical phenomenon by the array member arranged on the substrate acts in the direction to be reduced, while the light leakage in the front direction caused by the optical phenomenon by the color filter layer arranged on the front side substrate. Acts in an increasing direction, i.e., there is a relationship in which both actions cancel out.
  • the front CR by the member (for example, the CF member in FIG. 2B) arranged on the front substrate is the effect of increasing the front CR by the member (for example, the array member in FIG. 2B) disposed on the rear side substrate.
  • the first retardation region on the rear side has a low retardation is particularly effective in an aspect in which many members that cause a decrease in contrast are present on the rear substrate. You can say.
  • the influence of the retardation of the first retardation region on the rear side on the front CR is almost negligible in a low front CR liquid crystal display device.
  • this influence cannot be ignored in order to further improve the front CR of a liquid crystal display device with a high front CR (for example, the front CR is 1500 or more) that has been provided in recent years.
  • the present invention is particularly useful for further improving the front CR for liquid crystal display devices having a front CR of 1500 or more.
  • FIG. 2 as an example, a normal liquid crystal cell configuration in which a color filter (CF) is provided on the inner surface of the front substrate 26 and an array member is provided on the inner surface of the rear substrate 24 is illustrated.
  • the positions of the CF and the array member are arbitrary.
  • the CF is arranged on the rear substrate side having the array member, such as a color filter on array (COA), is also included in the present invention.
  • COA color filter on array
  • the array member is disposed on the front side substrate 26 side, the operation of the array member is the same as the CF member in FIG. 2B, and the CF is disposed on the rear side substrate 24 side. If so, the operation of the CF member is the same as that of the array member of FIG.
  • the ratio (CR f / CR r ) of the member contrast CR f of the front substrate (substrate 26 in FIG. 1) to the member contrast (CR r ) of the rear substrate (substrate 24 in FIG. 1) is 3 or more, That is, it was found that the effect of the present invention becomes remarkable in an aspect satisfying 3 ⁇ CR f / CR r .
  • a liquid crystal cell that satisfies this relationship, for example, there is a liquid crystal cell in which the rear substrate is a COA substrate.
  • COA there are detailed descriptions in JP-A-2005-99499 and JP-A-2005-258004.
  • the position of the black matrix in the liquid crystal display device of the COA in which the CF is arranged on the rear substrate side having the array member may be located in the liquid crystal cell, and may be located between the rear polarizer and the liquid crystal layer. preferable.
  • Examples of the liquid crystal cell that satisfies 3 ⁇ CR f / CR r include a liquid crystal cell that does not have a color filter and a liquid crystal cell that does not have a color filter and is field sequential drive.
  • the field sequential drive liquid crystal cell is described in detail in Japanese Patent Application Laid-Open No. 2009-42446, Japanese Patent Application Laid-Open No. 2007-322988, Japanese Patent No. 3996178, and the like.
  • a backlight unit that sequentially emits independent three primary color lights is used.
  • a backlight unit including an LED as the light source is preferable.
  • a backlight unit including an LED element that emits three colors of red, green, and blue as the light source is preferably used.
  • a high-contrast color filter there is a color filter using a pigment having a finer particle diameter than that of a pigment used in a conventional CF.
  • Examples of a method for producing a high-contrast color filter using a pigment include the following two methods.
  • the optical characteristics of the second retardation film 18 of the front polarizing plate PL2 contribute to the improvement of the contrast in the oblique direction and the reduction of the color shift during black display.
  • ⁇ nd ( ⁇ ) of the liquid crystal layer of the VA liquid crystal cell LC is generally about 280 to 350 nm as described above.
  • the preferred range of retardation, particularly Rth, of the second retardation film 18 varies depending on the value of ⁇ nd ( ⁇ ) of the liquid crystal layer.
  • preferred combinations of retardation films with respect to ⁇ nd ( ⁇ ) are described in various publications, and are described in, for example, Japanese Patent Nos. be able to. A preferable range of the optical characteristics of the second retardation region will be described later.
  • ⁇ nd (590) of the VA liquid crystal cell is generally about 280 to 350 nm, in order to make the transmittance during white display as high as possible.
  • ⁇ nd (590) is 280 nm or less, white luminance slightly decreases with a decrease in ⁇ nd (590), but the thickness d of the cell is reduced, so that a liquid crystal display device excellent in high-speed response is obtained. If the first retardation region on the rear side has a low retardation, light leakage in the front direction is reduced, and as a result, a high front CR is obtained.
  • the feature of any liquid crystal display of any ⁇ nd (590) It is also effective in the apparatus.
  • the first retardation film 16 and the second retardation film 18 also function as protective films for the polarizers 12 and 14 is shown.
  • the invention is not limited to this embodiment.
  • a protective film for a polarizer may be separately disposed between each of the first retardation film and the second retardation film and the polarizers 12 and 14.
  • the protective film disposed between the first retardation film and the polarizer 12 is required in the first retardation region as a laminate with the first retardation film. It is necessary to satisfy the characteristics.
  • the rear polarizer 12 has a protective film 20 on the surface on the backlight 10 side, and further has functionalities such as an antifouling film, an anti-reflection film, an anti-glare film, and an anti-static film on the surface.
  • the front polarizer 14 has a protective film 22 on the display surface side surface, and further has an antifouling film, an anti-reflection film, an anti-glare film on the surface. You may have functional films, such as a film and an antistatic film.
  • a film having a large phase difference is generally arranged on the rear side, but as in the present invention. It is considered that the yield rate as a polarizing plate is improved by arranging it on the front side.
  • plain TAC Re is 0 to 10 nm, and Rth is 30 to 80 nm. It is difficult to widen the width compared to a film having a certain triacetyl cellulose film or a small retardation film.
  • a horizontally long liquid crystal cell is used, and the absorption axis of the front-side polarizer is arranged in the horizontal direction (left-right direction), and the absorption axis of the rear-side polarizer is arranged in the vertical direction (up-down direction). It is common. Furthermore, in industrial production, a polarizer and a retardation film are generally bonded by roll-to-roll. Considering that the polarizing plate produced by this manufacturing method is bonded to the liquid crystal cell, it is possible to use the width direction of the polarizing plate with high efficiency by arranging a film having a large retardation on the front side, that is, The yield increases.
  • a retardation film having a small retardation When a retardation film having a small retardation is arranged on the rear side as in the present invention, such a film can be easily produced as a wide film, and the yield is further increased by combining with a wide polarizer. it can. As a result, the amount of polarizing plate to be discarded can be reduced.
  • the width of the retardation film is approximately 1100 mm, 1300 mm, 1500 mm, 2000 mm, and 2500 mm
  • the thickness of the film is approximately 25 ⁇ m, 40 ⁇ m, and 80 ⁇ m.
  • the length of the roll around which the film is wound is approximately 2500 m and 4000 m.
  • the screen size of the VA liquid crystal display device is 20 inches, 32 inches, 40 inches, 42 inches, 52 inches, 68 inches, etc., for television use.
  • the screen width is 853 mm (42 inches wide 16: 9 is 930 mm), and the screen height is 640 mm (42 inches wide is 523 mm).
  • a retardation film having a width of 1300 mm or 1500 mm can take only one retardation film for a screen in the width direction.
  • a film having a large retardation is arranged on the front side, for example, even if the retardation film has a width of 1300 mm or 1500 mm, it suffices that the screen height can be taken in the width direction of the retardation film.
  • the retardation film for two screens can be taken in the width direction, and productivity is nearly doubled.
  • the size of TVs increases year by year. For example, 65 inches (standard) has a screen width of 991 mm and a screen height of 1321 mm. However, only one retardation film for a screen can be taken in the width direction. However, as in this aspect, two retardation films for a screen can be taken in the width direction in the front side arrangement. Furthermore, since the 68-inch (wide) screen has a screen width of 1505 mm and a screen height of 846 mm, a productivity almost twice as high can be expected.
  • the mode of the VA type liquid crystal display device of the present invention may be any mode, specifically, MVA (Multi-domain Vertical Alignment) type, PVA (Patterned Vertical Alignment) type, optical alignment type (Optical Alignment), and Any of PSA (Polymer-Sustained Alignment) may be used. Details of these modes are described in JP-A-2006-215326 and JP-T 2008-538819.
  • a high-contrast color filter may be used, but of course, a color filter included in a normal liquid crystal display device may be used.
  • the color filter is generally a color filter in which a plurality of different colors (for example, three primary colors of red, green, and blue light, transparent, yellow, cyan, and the like) are arranged in a pixel portion of the substrate.
  • a coloring material organic pigment, dye, carbon black, etc.
  • a colored photosensitive composition which may be colorless
  • a layer is formed by coating on a substrate, and a pattern is formed by photolithography.
  • a spin coater method is adopted, and from the viewpoint of saving liquid, a slit & spin type coater method is adopted.
  • the slit coater method is generally adopted.
  • Other methods include roll coating, bar coating, and die coating.
  • a pixel color is also formed by an inkjet method.
  • methods using a combination of a colored non-photosensitive composition and a photosensitive positive resist, a printing method, an electrodeposition method, and a film transfer method are known.
  • the color filter used in the present invention may be produced by any method.
  • the material for forming the color filter there are no particular restrictions on the material for forming the color filter.
  • the coloring material any of dyes, organic pigments, inorganic pigments and the like can be used. Dyes have been studied because of the demand for higher contrast, but in recent years, organic pigment dispersion technology has advanced, and breakdown pigments that have been finely crushed by the salt milling method, finer pigments by the build-up method, etc. Used for contrast. Any coloring material may be used in the present invention.
  • the effect of improving the front contrast of the present invention can be further improved by adjusting the angle profile of the light emitted from the backlight.
  • the absolute value of the front contrast is increased, so that the increase in the absolute value of the front CR shown in the present invention is also increased.
  • the light collecting index is represented by, for example, a ratio I (0 °) / I (45 °) of the outgoing light intensity I (45 °) at a polar angle of 45 degrees with respect to the outgoing light intensity I (0 °) at the front. The larger the value, the stronger the light collection.
  • a backlight having a high light collecting property it is desirable to provide a prism film (prism layer) having a light collecting function between the diffusion film and the liquid crystal panel.
  • This prism film collects the light emitted from the light exit surface of the light guide plate and diffused by the diffusion film with high efficiency on the effective display area of the liquid crystal panel.
  • a liquid crystal display device equipped with a general direct type backlight has, for example, a color filter sandwiched between a transparent substrate and a polarizing plate at the top, a liquid crystal panel composed of a liquid crystal layer, and a backlight on the lower surface side. It has been.
  • a brightness enhancement film (Brightness Enhancement Film: BEF), which is a registered trademark of 3M USA, is a representative example.
  • BEF is a film in which unit prisms having a triangular cross section are periodically arranged in one direction on a film substrate, and the prism has a size (pitch) larger than the wavelength of light.
  • BEF collects light from “off-axis” and redirects this light “on-axis” or “recycle” toward the viewer.
  • Patent documents that disclose that a brightness control member having a repetitive array structure of prisms represented by BEF is adopted for a display are disclosed in Japanese Patent Publication No. 1-37801, Japanese Patent Laid-Open No. 6-102506, Special Table. Many examples are known as exemplified in Japanese Patent Laid-Open No. 10-506500.
  • the lens array sheet has a lens surface in which a plurality of unit lenses formed in a convex shape at a predetermined pitch are two-dimensionally arranged.
  • a lens array sheet in which the opposite side of the lens surface is a flat surface and a light reflecting layer for reflecting light rays on the non-light-condensing surface region of the lens is formed on the flat surface is preferable.
  • a lens array sheet in which a light reflecting layer for reflecting light beams in the longitudinal direction is formed on the non-light-condensing surface region of the cylindrical lens is also preferable.
  • a lens array sheet in which unit lenses are two-dimensionally arranged in a plane can also be used.
  • the present invention is also effective in a display mode in which the color reproduction range is widened by adjusting the emission light spectrum of the backlight and the transmission spectrum of the color filter.
  • a white backlight in which a red LED, a green LED, and a blue LED are mixed and mixed as the backlight.
  • the half value width of the emitted light peak of red LED, green LED, and blue LED is small.
  • the half-value wavelength width is as small as about 20 nm as compared with CCFL, and the peak wavelength is R (red) is 610 nm or more, G (green) is 530 nm, and B (blue) is 480 nm or less.
  • the color purity of the light source itself can be increased.
  • the color reproducibility is further improved by suppressing the spectral transmittance of the color filter as small as possible except for the peak wavelength of the LED, and the NTSC ratio is 100%.
  • the red color filter desirably has a small transmittance at the peak positions of the green LED and the blue LED
  • the green color filter desirably has a small transmittance at the peak position of the blue LED and the red LED
  • the blue color filter has a red color. It is desirable that the transmittance at the peak position of the LED and the green LED is small.
  • both of these transmittances are desirably 0.1 or less, more preferably 0.03 or less, and still more preferably 0.01 or less.
  • the relationship between the backlight and the color filter is described in, for example, Japanese Patent Application Laid-Open No. 2009-192661, and can be referred to.
  • the peak wavelengths of the red, green, and blue laser light sources are preferably 430 to 480 nm, 520 to 550 nm, and 620 to 660 nm, respectively.
  • the backlight of the laser light source is described in Japanese Patent Application Laid-Open No. 2009-14892, and can be referred to.
  • the first retardation region composed of one layer or two or more retardation layers disposed between the rear-side polarizer and the VA liquid crystal cell has the following formula: 0 nm ⁇ Re (590) ⁇ 10 nm and
  • the first retardation region has the following formula: 0 nm ⁇ Re (590) ⁇ 5 nm and
  • ⁇ 5 nm It is more preferable to satisfy
  • the wavelength dispersion of the in-plane retardation Re in the first retardation region exhibits a so-called reverse dispersion property that the wavelength becomes larger as the wavelength becomes longer in the visible light region. That is, it is preferable that Re (450) ⁇ Re (550) ⁇ (Re (590) ⁇ ) Re (630) is satisfied.
  • the Re of the first retardation region is inverse wavelength dispersive, the optical wavelength is optimized at the center wavelength of about 550 nm in the visible light region, and there is a tendency to be optimized over the entire visible light region. Because there is. Ideally, the value obtained by dividing Re ( ⁇ ) of the first phase difference region by the wavelength ⁇ becomes constant.
  • the transition on the Poincare sphere has a wavelength in the visible light region. This is the same regardless of the color shift problem occurring in the oblique direction.
  • the haze of the retardation film constituting the first retardation region disposed on the rear side is preferably 0.5 or less, more preferably 0.3 or less, and 0.2 More preferred are:
  • the measuring method of the haze of a film is as follows. A film sample of 40 mm ⁇ 80 mm is prepared and measured according to JIS K-6714 with a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.) in an environment of 25 ° C. and 60% RH.
  • the first retardation region may be composed of one or more retardation films.
  • a cellulose acylate film and an acrylic polymer film are preferable.
  • Cellulose acylate film refers to a film containing cellulose acylate as a main component (50% by mass or more of all components). The cellulose acylate used for producing the film is obtained by substituting the hydrogen atom of the hydroxyl group of cellulose with an acyl group.
  • the cellulose acylate is obtained by acylating a hydroxyl group of cellulose, and the substituent can be any from an acetyl group having 2 carbon atoms to an acyl group having 22 carbon atoms.
  • the degree of substitution of cellulose with a hydroxyl group is not particularly limited, but the degree of binding of acetic acid and / or a fatty acid having 3 to 22 carbon atoms substituted with a hydroxyl group of cellulose is measured, The degree of substitution can be obtained by calculation. As a measuring method, it can be carried out according to ASTM D-817-91.
  • cellulose acylate that can be used as a material for the retardation film constituting the first retardation phase difference region of the present invention are described in detail in [0019] to [0025] of JP-A-2006-184640. Cellulose acylate with the following description is included.
  • the degree of substitution of cellulose acylate used for producing the retardation film constituting the first retardation region is not particularly limited, but the acyl substitution degree of cellulose is preferably 2.30 to 3.00. .
  • the acyl substitution degree is preferably low, and the acyl substitution degree is preferably 2.30 to 2.65, and preferably 2.35 to 2.60. Is more preferable and 2.40 to 2.60 is even more preferable.
  • the acyl substitution degree be higher, and specifically, 2.65 to 3.00 is preferable, and 2.75 to 3.00. More preferably, it is more preferably 2.80 to 3.00.
  • the total degree of substitution is 2.30 to 3.00 Further, it was found that the optical anisotropy of the cellulose acylate film can be effectively reduced.
  • the acyl substitution degree is more preferably 2.35 to 3.00, and further preferably 2.40 to 3.00.
  • the degree of polymerization of cellulose acylate used for producing the retardation film constituting the first retardation region is 180 to 700 in terms of viscosity average polymerization degree, and in the case of cellulose acetate, 180 to 550 is more preferable. Preferably, 180 to 400 is more preferable, and 180 to 350 is particularly preferable.
  • the average degree of polymerization can be measured by the intrinsic viscosity method of Uda et al. (Kazuo Uda, Hideo Saito, Journal of Textile Society, Vol. 18, No. 1, pp. 105-120, 1962). This is described in detail in JP-A-9-95538.
  • the molecular weight distribution of cellulose acylate used for the production of the retardation film constituting the first retardation region was evaluated by gel permeation chromatography, and its polydispersity index Mw / Mn (Mw is a mass average)
  • Mw polydispersity index
  • Mn polydispersity index
  • the molecular weight and Mn are preferably the number average molecular weight) and the molecular weight distribution is preferably narrow.
  • the specific value of Mw / Mn is preferably 1.0 to 3.0, more preferably 1.0 to 2.0, and most preferably 1.0 to 1.6. preferable.
  • additives can be used together with cellulose acylate.
  • additives that can be used include compounds that reduce optical anisotropy, wavelength dispersion adjusters, ultraviolet inhibitors, plasticizers, deterioration inhibitors, fine particles, optical property adjusters, and the like.
  • examples of additives that can be used include various additives described in detail in [0026] to [0218] of JP-A-2006-184640. Further, the preferable range of the addition amount is the same as the preferable range described in the column.
  • the compound for reducing the optical anisotropy may or may not contain an aromatic group.
  • the compound that reduces the optical anisotropy preferably has a molecular weight of 150 or more and 3000 or less, preferably 170 or more and 2000 or less, and particularly preferably 200 or more and 1000 or less. As long as these molecular weights are within the range, a specific monomer structure may be used, or an oligomer structure or a polymer structure in which a plurality of the monomer units are bonded may be used.
  • the compound that reduces optical anisotropy is preferably a liquid at 25 ° C. or a solid having a melting point of 25 to 250 ° C., more preferably a liquid at 25 ° C. or a melting point of 25 to 200 ° C. It is a solid. Moreover, it is preferable that the compound which reduces optical anisotropy does not volatilize in the process of dope casting of cellulose acylate film production and drying.
  • the amount of the compound that reduces optical anisotropy is preferably 0.01 to 30% by mass, more preferably 1 to 25% by mass, and more preferably 5 to 20% by mass based on the solid content of cellulose acylate. % Is particularly preferred.
  • the compound which reduces optical anisotropy may be used independently, or 2 or more types of compounds may be mixed and used by arbitrary ratios.
  • the timing for adding the compound for reducing the optical anisotropy may be any timing during the dope preparation step, or may be added at the end of the dope preparation step.
  • the cellulose acylate film used as part or all of the first retardation region is preferably produced by a solution casting method.
  • a film can be produced using a solution (dope) obtained by dissolving cellulose acylate in an organic solvent.
  • a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used.
  • a cellulose acylate solution (dope) for each layer is prepared.
  • the casting dope for each layer may be simultaneously pressed from another slit or the like on a casting support (band or drum).
  • This is a casting method in which a dope is extruded from a casting giusa to be cast, and each layer is cast simultaneously, peeled off from a support at an appropriate time, and dried to form a film.
  • the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying.
  • the dope for casting is extruded from the casting gieser and casted, and if necessary, the dope is cast and laminated to the third layer or more, peeled off from the support at an appropriate time, and dried.
  • This is a casting method for forming a film.
  • the core layer film is formed into a film by a solution casting method to prepare a coating solution to be applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate applicator. In this method, a liquid film is applied and dried to form a laminated film.
  • the acrylic polymer film is a film mainly composed of an acrylic polymer having a repeating unit derived from at least one of (meth) acrylic acid esters.
  • a preferred example of the acrylic polymer film is an acrylic containing at least one unit selected from a lactone ring unit, a maleic anhydride unit, and a glutaric anhydride unit together with a repeating unit derived from a (meth) acrylic ester. Based polymer.
  • the acrylic polymer is described in detail in Japanese Patent Application Laid-Open No. 2008-9378 and can be referred to.
  • various film forming methods can be used, and examples thereof include a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression forming method.
  • solution casting method solution casting method
  • melt extrusion method melt extrusion method
  • calendar method calendar method
  • compression forming method a solution casting method (solution casting method)
  • melt extrusion method melt extrusion method
  • Solvents used in the solution casting method include, for example, chlorine solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene and benzene; methanol, ethanol, isopropanol, n-butanol, Examples include alcohol solvents such as 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone, ethyl acetate, diethyl ether, and the like. These solvents may be used alone or in combination of two or more.
  • Examples of apparatuses for performing the solution casting method include a drum casting machine, a band casting machine, and a spin coater.
  • melt extrusion method examples include a T-die method and an inflation method.
  • the film forming temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C.
  • the thickness of the retardation film constituting the first retardation region disposed on the rear side is preferably thinner, but in order to suppress corner unevenness, the thickness of the retardation film due to the stress applied to the retardation film is reduced. It is necessary to reduce the deformation.
  • the thickness of the retardation film constituting the first retardation region is preferably 20 ⁇ m or more and 200 ⁇ m or less from the viewpoint of corner unevenness suppression and manufacturing suitability.
  • the second retardation region disposed between the front polarizer and the liquid crystal cell has an optical characteristic that improves contrast in an oblique direction and reduces color shift during black display. It is preferably adjusted so that it can contribute.
  • An example of a preferable second retardation region is 30 nm ⁇ Re (590) ⁇ 90 nm and 170 nm ⁇ Rth (590) ⁇ 300 nm. Is a phase difference region satisfying the above. Within this range, light leakage in an oblique direction during black display of a general VA liquid crystal cell ( ⁇ nd (590) is about 180 to 350 nm) can be reduced.
  • the retardation of the second retardation region varies according to the value of ⁇ nd ( ⁇ ) of the liquid crystal layer.
  • Rth of the first retardation region at wavelength ⁇ is Rth 1 ( ⁇ ) and Rth of the second retardation region is Rth 2 ( ⁇ )
  • ⁇ nd ( ⁇ ) of the liquid crystal layer and the first position An example of a more preferable second phase difference region with respect to Rth ( ⁇ ) of the phase difference region is ⁇ nd (590) ⁇ 70 ⁇ Rth 1 (590) + Rth 2 (590) ⁇ ⁇ nd (590) ⁇ 10
  • a phase difference region satisfying ⁇ nd (590) ⁇ 60 ⁇ Rth 1 (590) + Rth 2 (590) ⁇ ⁇ nd (590) ⁇ 20 Is a phase difference region satisfying the above.
  • ⁇ nd (590) of the liquid crystal layer is 280 nm or more and 340 nm or less.
  • the second phase difference region disposed on the front side is 220 nm ⁇ Rth (590) ⁇ 280 nm It is preferable that 230 nm ⁇ Rth (590) ⁇ 280 nm It is more preferable that On the other hand, when manufacturing aptitude is considered, a configuration using a retardation film of Rth (590) ⁇ 230 nm may be preferable as the second retardation region. In general, in order to obtain a retardation film having a high retardation, it is necessary to perform a stretching treatment with a high stretching ratio or increase the amount of an additive that contributes to the expression of the retardation.
  • ⁇ nd (590) of the liquid crystal cell is preferably ⁇ nd (590) ⁇ 290 nm, and more preferably ⁇ nd (590) ⁇ 280 nm. .
  • the second retardation region may be a single retardation film or a laminate of two or more films.
  • Various polymer films such as cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc. Styrene polymers and the like can be used.
  • Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or polymer mixed with the above polymers, etc.
  • One or two or more polymers are selected from the above, and a polymer film is produced using the polymer as a main component, and the phase constituting the second retardation region in a combination satisfying the above characteristics. It can be used in the production of the film.
  • the retardation film constituting the second retardation region it is preferable to use a cellulose acylate film.
  • the acyl substitution degree is preferably 2.00 to 3.00.
  • the film is adjusted to have a desired retardation by stretching, but from the viewpoint of retardation development during stretching, it is preferable that the acyl substitution degree is low.
  • the retardation degree of the VA liquid crystal display device preferably has an acyl substitution degree of 2.00 to 2.65. 20 to 2.65 is more preferable, and 2.30 to 2.60 is even more preferable.
  • the acyl substitution degree is higher, specifically, 2.65 to 3.00 is preferable, and 2.75 to 3.00. More preferably, it is more preferably 2.80 to 3.00.
  • the cellulose acylate is preferably cellulose acetate, but may be substituted with an acyl group other than the acetyl group instead of the acetyl group or together with the acetyl group.
  • cellulose acylate having at least one acyl group selected from acetyl, propionyl and butyryl groups is preferable, and cellulose acylate having at least two acyl groups selected from acetyl, propionyl and butyryl groups is more preferable.
  • a cellulose acylate having an acetyl group and a propionyl and / or butyryl group is preferable, the substitution degree of the acetyl group is 1.0 to 2.97, and the substitution degree of the propionyl and / or butyryl group is 0.2 to A cellulose acylate of 2.5 is more preferred.
  • the cellulose acylate preferably has a mass average degree of polymerization of 200 to 800, more preferably 250 to 550.
  • the cellulose acylate used in the present invention preferably has a number average molecular weight of 70000 to 230,000, more preferably a number average molecular weight of 75000 to 230,000, and more preferably a number average molecular weight of 78000 to 120,000. Further preferred.
  • the first retardation region such as a compound that reduces optical anisotropy is constituted.
  • the additive used for producing the cellulose acylate film for retardation film is not used for producing the cellulose acylate film for retardation film constituting the second retardation region.
  • a retardation enhancer as an additive.
  • the retardation developer that can be used include a rod-like or discotic compound and a positive birefringent compound.
  • a compound having at least two aromatic rings can be preferably used as a retardation developer.
  • the addition amount of the retardation developer composed of the rod-like compound is preferably 0.1 to 30 parts by mass, and preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component containing cellulose acylate. Is more preferable.
  • the discotic retardation enhancer is preferably used in the range of 0.05 to 20 parts by weight, and in the range of 0.1 to 15 parts by weight, with respect to 100 parts by weight of the cellulose acylate resin. It is more preferable to use in the range of 0.1 to 10 parts by mass.
  • the discotic compound is superior to the rod-like compound in Rth retardation expression, it is preferably used when a particularly large Rth retardation is required.
  • Two or more retardation developers may be used in combination.
  • the retardation developing agent preferably has a maximum absorption in the wavelength region of 250 to 400 nm, and preferably has substantially no absorption in the visible region.
  • Discotic compound The discotic compound will be described.
  • the discotic compound a compound having at least two aromatic rings can be used.
  • the “aromatic ring” includes an aromatic heterocycle in addition to an aromatic hydrocarbon ring.
  • Examples of the discotic compound that can be used in the present invention include compounds described in JP-A 2008-181105, [0038] to [0046].
  • Examples of the discotic compound that can be used for producing the retardation film constituting the second retardation region include compounds represented by the following general formula (I).
  • X 1 is a single bond, —NR 4 —, —O— or S—
  • X 2 is a single bond, —NR 5 —, —O— or S—
  • X 3 is a single bond A bond, —NR 6 —, —O— or S—.
  • R 1 , R 2 , and R 3 are each independently an alkyl group, an alkenyl group, an aromatic ring group, or a heterocyclic group
  • R 4 , R 5, and R 6 are each independently a hydrogen atom , An alkyl group, an alkenyl group, an aryl group or a heterocyclic group.
  • Rod-shaped compound in the present invention, a rod-shaped compound having a linear molecular structure can be preferably used in addition to the aforementioned disk-shaped compound.
  • Examples of the rod-like compound that can be used in the present invention include compounds described in [0053] to [0095] of JP-A-2007-268898.
  • a positive birefringent compound is a compound in which light is incident on a layer formed with a uniaxial orientation of molecules, and the refractive index of light in the orientation direction is the orientation direction. Refers to a polymer that is greater than the refractive index of light in the direction orthogonal to the.
  • Such a positive birefringent compound is not particularly limited, and examples thereof include polymers having a positive intrinsic birefringence value such as polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide. Ketones and polyester polymers are preferred, and polyester polymers are more preferred.
  • the polyester polymer includes a mixture of an aliphatic dicarboxylic acid having 2 to 20 carbon atoms and an aromatic dicarboxylic acid having 8 to 20 carbon atoms, an aliphatic diol having 2 to 12 carbon atoms, and an alkyl ether diol having 4 to 20 carbon atoms. And at least one diol selected from aromatic diols having 6 to 20 carbon atoms, and both ends of the reaction product may remain as the reaction product. Alcohols or phenols may be reacted to perform so-called end sealing. It is effective in terms of storage stability that the end capping is performed in particular so as not to contain free carboxylic acids.
  • the dicarboxylic acid used in the polyester polymer of the present invention is preferably an aliphatic dicarboxylic acid residue having 4 to 20 carbon atoms or an aromatic dicarboxylic acid residue having 8 to 20 carbon atoms.
  • Examples of the aliphatic dicarboxylic acid having 2 to 20 carbon atoms preferably used include oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. , Dodecanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acid having 8 to 20 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,8 -Naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid.
  • preferable aliphatic dicarboxylic acids are malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, and 1,4-cyclohexanedicarboxylic acid
  • aromatic dicarboxylic acid is phthalic acid.
  • the aliphatic dicarboxylic acid component is succinic acid, glutaric acid, and adipic acid
  • the aromatic dicarboxylic acid is phthalic acid, terephthalic acid, and isophthalic acid.
  • the combination is not particularly limited, and there is no problem even if several types of each component are combined.
  • diol or aromatic ring-containing diol used in the positive birefringent compound examples include an aliphatic diol having 2 to 20 carbon atoms, an alkyl ether diol having 4 to 20 carbon atoms, and an aromatic having 6 to 20 carbon atoms. It is selected from ring-containing diols.
  • Examples of the aliphatic diol having 2 to 20 carbon atoms include alkyl diols and alicyclic diols such as ethane diol, 1,2-propane diol, 1,3-propane diol, 1,2-butane.
  • Preferred aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1 , 4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, particularly preferred Is ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,4-cyclohexanedio
  • alkyl ether diol having 4 to 20 carbon atoms preferably include polytetramethylene ether glycol, polyethylene ether glycol, polypropylene ether glycol, and combinations thereof.
  • the average degree of polymerization is not particularly limited, but is preferably 2 to 20, more preferably 2 to 10, further 2 to 5, and particularly preferably 2 to 4.
  • Examples of these typically commercially available polyether glycols include Carbowax resin, Pluronics® resin and Niax resin.
  • aromatic diol having 6 to 20 carbon atoms examples include, but are not limited to, bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, and 1,4-benzenedimethanol. Of these, bisphenol A, 1,4-hydroxybenzene, and 1,4-benzenedimethanol are preferred.
  • the positive birefringent compound is preferably a compound whose end is sealed with an alkyl group or an aromatic group. This is because the terminal is protected with a hydrophobic functional group, which is effective against deterioration with time at high temperature and high humidity, and is due to the role of delaying hydrolysis of the ester group. It is preferable to protect with a monoalcohol residue or a monocarboxylic acid residue so that both ends of the positive birefringent compound do not become carboxylic acid or OH group.
  • the monoalcohol is preferably a substituted or unsubstituted monoalcohol having 1 to 30 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol.
  • Octanol isooctanol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, aliphatic alcohols such as dodecaoctanol, allyl alcohol, oleyl alcohol, benzyl alcohol, 3-phenyl Examples include substituted alcohols such as propanol.
  • End-capping alcohols that can be preferably used are methanol, ethanol, propanol, isopropanol, butanol, isobutanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, isooctanol, 2-ethylhexyl alcohol, isononyl alcohol, oleyl alcohol
  • Benzyl alcohol in particular methanol, ethanol, propanol, isobutanol, cyclohexyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, benzyl alcohol.
  • the monocarboxylic acid used as the monocarboxylic acid residue is preferably a substituted or unsubstituted monocarboxylic acid having 1 to 30 carbon atoms. These may be aliphatic monocarboxylic acids or aromatic ring-containing carboxylic acids.
  • Preferred aliphatic monocarboxylic acids are described, for example, acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid, and examples of the aromatic ring-containing monocarboxylic acid include Benzoic acid, p-tert-butylbenzoic acid, p-tert-amylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, etc. Yes, these can be used alone or in combination of two or more.
  • the positive birefringent compound may be synthesized by a hot melt condensation method using a polyesterification reaction or a transesterification reaction between the dicarboxylic acid and a diol and / or a monocarboxylic acid or monoalcohol for end-capping according to a conventional method, Alternatively, it can be easily synthesized by any of the interfacial condensation methods of acid chlorides of these acids and glycols.
  • polyester-based additives are described in detail in Koichi Murai, “Additives, Theory and Application” (Kokaibo Co., Ltd., first edition published on March 1, 1973). Also, JP-A Nos.
  • PA is phthalic acid
  • TPA is terephthalic acid
  • IPA is isophthalic acid
  • AA is adipic acid
  • SA is succinic acid
  • 2,6-NPA is 2,6-naphthalenedicarboxylic acid.
  • 2,8-NPA is 2,8-naphthalenedicarboxylic acid
  • 1,5-NPA is 1,5-naphthalenedicarboxylic acid
  • 1,4-NPA 1,4-naphthalenedicarboxylic acid
  • 1,8 -NPA represents 1,8-naphthalenedicarboxylic acid, respectively.
  • the addition amount of the positive birefringent compound is preferably 1 to 30 parts by mass, more preferably 4 to 25 parts by mass with respect to 100 parts by mass of the cellulose acylate resin. It is particularly preferable that the amount be ⁇ 20 parts by mass.
  • the cellulose acylate solution used for the production of the cellulose acylate film may have other additives in addition to the retardation developer.
  • additives include antioxidants, ultraviolet absorbers, peeling accelerators, plasticizers, and the like, and any known additive can be used.
  • a plasticizer can be added to the cellulose acylate solution in order to improve the mechanical properties of the resulting film or to improve the drying speed.
  • examples of the plasticizer that can be used in the present invention include compounds described in JP-A-2008-181105, [0067].
  • the retardation film constituting the second retardation region it is also preferable to use a cyclic olefin polymer film.
  • the raw material of the cyclic olefin polymer film, the production method thereof, and the production method of the film using the raw material are described in detail in [0098] to [0193] of JP-A-2006-293342. Can be referred to.
  • Examples of the cyclic olefin-based polymer film that can be used as the retardation film constituting the second retardation region include a norbornene-based polymer film, and commercially available polymers include Arton (manufactured by JSR) and Zeonore (manufactured by Nippon Zeon). ) Etc. can be used.
  • the various polymer films used as the retardation film constituting the second retardation region can be produced by various methods. Examples thereof include a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Of these film forming methods, the solution casting method (solution casting method) and the melt extrusion method are particularly preferable.
  • the various polymer films used as the retardation film constituting the second retardation region may be films that are formed and then subjected to a stretching treatment. The film may be stretched uniaxially or biaxially. It is preferable to perform biaxial stretching treatment simultaneously or sequentially. In order to achieve a large optical anisotropy, it is necessary to stretch the film at a high stretch ratio. For example, the film is preferably stretched in the width direction of the film and in the longitudinal direction (flow direction) of the film. The draw ratio is preferably about 3 to 100%.
  • the stretching process can be performed using a tenter. Further, longitudinal stretching may be performed between the rolls.
  • a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used.
  • a cellulose acylate solution (dope) for each layer is prepared.
  • the casting dope for each layer may be simultaneously pressed from another slit or the like on a casting support (band or drum).
  • This is a casting method in which a dope is extruded from a casting giusa to be cast, and each layer is cast simultaneously, peeled off from a support at an appropriate time, and dried to form a film.
  • the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying.
  • the dope for casting is extruded from the casting gieser and casted, and if necessary, the dope is cast and laminated to the third layer or more, peeled off from the support at an appropriate time, and dried.
  • This is a casting method for forming a film.
  • the core layer film is formed into a film by a solution casting method to prepare a coating solution to be applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate applicator. In this method, a liquid film is applied and dried to form a laminated film.
  • the retardation film constituting the second retardation region may be a layer formed by fixing the alignment state after the liquid crystal composition is in a desired alignment state, or together with the layer.
  • a laminate having a polymer film that supports the layer may be used.
  • the polymer film can be used as a protective film for a polarizer.
  • the liquid crystal that can be used for the production of the retardation film constituting the second retardation region include various liquid crystals such as a rod-like liquid crystal, a disk-like liquid crystal, and a cholesteric liquid crystal.
  • the haze of the retardation film constituting the second retardation region disposed on the front side is preferably 0.5 or less, more preferably 0.3 or less, and 0.2 The following is more preferable.
  • the thickness of the retardation film constituting the second retardation region arranged on the front side is preferably 20 ⁇ m or more and 200 ⁇ m or less from the viewpoint of suppressing corner unevenness and manufacturing suitability.
  • Polarizer There is no particular limitation on the polarizer disposed on the front side and the rear side.
  • a commonly used linearly polarizing film can be used.
  • the linear polarizing film is manufactured by Optiva Inc.
  • a polarizing film comprising a binder and iodine or a dichroic dye is preferable.
  • the iodine and the dichroic dye in the linearly polarizing film exhibit polarizing performance by being oriented in the binder. It is preferable that the iodine and the dichroic dye are aligned along the binder molecule, or the dichroic dye is aligned in one direction by self-assembly such as liquid crystal.
  • polarizers are made by immersing a stretched polymer in a solution of iodine or dichroic dye in a bath and allowing iodine or dichroic dye to penetrate into the binder. Is common.
  • the protective film is bonded to both surfaces of the front-side polarizer and the rear-side polarizer.
  • the protective film on the surface of the polarizer on the liquid crystal cell side is omitted in an embodiment in which the first and second retardation regions are made of a single film and the film also functions as a protective film. be able to.
  • the protective film and the one or more retardation films are the first as the entire laminate. Satisfies the optical characteristics required for the phase difference region.
  • the preferable material of the said protective film it is the same as that of the preferable material of the phase film which comprises a 1st phase difference area
  • the protective film and the one or more retardation films are the second layer as a whole. It is preferable to satisfy the optical characteristics required for the phase difference region.
  • the protective film, together with one or more retardation films has an effect of improving contrast in an oblique direction and reducing color shift during black display, that is, a retardation film exhibiting a certain amount of Re and Rth. May be.
  • the protective film disposed outside the front side polarizer and the rear side polarizer there is no particular limitation on the protective film disposed outside the front side polarizer and the rear side polarizer.
  • Various polymer films can be used. This is the same as the example of the phase film constituting the first retardation region.
  • cellulose acylates eg, films of cellulose acetate, cellulose propionate, cellulose butyrate, etc.
  • polyolefins eg, norbornene polymers, polypropylene
  • poly (meth) acrylic acid esters eg, polymethyl methacrylate
  • examples thereof include, but are not limited to, films mainly composed of polycarbonate, polyester, or polysulfone.
  • TD80UL commercially available polymer films
  • arton manufactured by JSR
  • zeonore manufactured by Nippon Zeon
  • norbornene-based polymers can also be used.
  • the kind and substitution degree of the acyl group were adjusted by adjusting the kind and amount of the carboxylic acid. Moreover, it age
  • surface is an acetyl group and CTA means a cellulose triacetate (The cellulose ester derivative which an acyl group consists only of an acetate group).
  • Cellulose acylate solution Cellulose acylate solution
  • TPP Triphenyl phosphate
  • BDP Biphenyl diphenyl phosphate
  • the above dope was cast using a band casting machine.
  • the film stripped from the band with the residual solvent amount described in the following table is stretched in the longitudinal direction at the stretch ratio described in the following table in the section from stripping to the tenter, and then stretched in the table below using the tenter.
  • the film was stretched in the width direction at a magnification, and immediately after transverse stretching, the film was removed from the tenter after shrinking (relaxing) in the width direction at the magnification described in the following table, and a cellulose acylate film was formed.
  • the residual solvent amount of the film when the tenter was removed was as shown in the following table. Both ends were cut off in front of the winding part to make a width of 2000 mm and wound up as a roll film having a length of 4000 m.
  • the draw ratio is shown in the following table. About the produced cellulose acylate film, Re retardation value and Rth retardation value at a wavelength of 590 nm were measured at 25 ° C. and 60% RH. The results are listed in the table below. Rth ( ⁇ ) was calculated with an average refractive index of 1.48.
  • additive solution D Methylene chloride 80 parts by mass Methanol 20 parts by mass
  • optical anisotropy reducing agent A-7 40 parts by mass
  • a dope was prepared by adding 40 parts by mass of the additive solution D to 465 parts by mass of the cellulose acylate solution C. The transparency of this dope solution was good at 85% or more. This dope was cast on a support to produce a cellulose acylate film having a thickness of 80 ⁇ m. This was used as film 9.
  • a stretched film (protective film A) was produced according to the description in [0223] to [0226] of JP-A No. 2007-127893.
  • An easy-adhesion layer coating composition P-2 is prepared on the surface of the protective film A according to the description in [0232] of the publication, and the composition is stretched according to the method described in [0246] of the publication.
  • An easy-adhesion layer was formed by coating on the surface of the film. This film was used as film 10.
  • Cellulose acylate B has a viscosity average degree of polymerization of 300, an acetyl group substitution degree at the 6-position of 0.89, an acetone extract of 7% by mass, a mass average molecular weight / number average molecular weight ratio of 2.3, and a water content of 0.3.
  • Viscosity in 2 mass% and 6 mass% dichloromethane solutions is 305 mPa ⁇ s
  • residual acetic acid content is 0.1 mass% or less
  • Ca content is 65 ppm
  • Mg content is 26 ppm
  • iron content is 0.8 ppm
  • sulfate ion The content was 18 ppm
  • the yellow index was 1.9
  • the amount of free acetic acid was 47 ppm.
  • the average particle size of the powder was 1.5 mm, and the standard deviation was 0.5 mm.
  • Additives A and B those listed in Table 4 below were selected and used.
  • Additive A Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
  • Additive B Triphenyl phosphate (1.6 parts by mass) Biphenyl diphenyl phosphate (0.8 parts by mass) Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
  • Dissolution Swelling and dissolution were performed using the following dissolution step A.
  • ⁇ Dissolution process A The cellulose acylate was gradually added to the 400 liter stainless steel dissolution tank having a stirring blade and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additive. After completion of the addition, the mixture was stirred at room temperature for 2 hours, swollen for 3 hours and then stirred again to obtain a cellulose acylate swelling solution.
  • a dissolver type eccentric stirring shaft that stirs at a peripheral speed of 15 m / sec (shear stress 5 ⁇ 10 4 kgf / m / sec 2 [4.9 ⁇ 10 5 N / m / sec 2 ]).
  • filters, housings, and pipes that were exposed to high temperature were made of Hastelloy alloy and had excellent corrosion resistance, and those having a jacket for circulating a heat medium for heat retention and heating were used.
  • the temperature was lowered to 36 ° C. to obtain a cellulose acylate solution.
  • the film was formed by the following film forming step A. ⁇ Film formation process A
  • the cellulose acylate solution was heated to 30 ° C., and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesa (described in JP-A-11-314233).
  • the casting speed was 50 m / min and the coating width was 200 cm.
  • the space temperature of the entire casting part was set to 15 ° C.
  • the cellulose acylate film that had been cast and rotated 50 cm before the end point of the casting part was peeled off from the band, and 45 ° C. dry air was blown. Next, it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a transparent film of cellulose acylate.
  • the stretching step was performed by either of the following stretching steps A or B.
  • ⁇ Extension process A The resulting film was stretched using an apparatus having a heating zone between two nip rolls. The distance between the nip rolls was adjusted so that the aspect ratio (distance between nip rolls / base inlet width) was 0.1, the base temperature before entering the heating zone was 25 ° C., and the heating zone was listed in Table 4 below. It was temperature. Further, by adjusting the speed ratio between the speed of the feeding nip roll and the speed of the take-up nip roll, it was adjusted so that the draw ratios shown in Table 4 below were obtained.
  • this mixture was supplied to a twin screw extruder manufactured by Technobel Co., Ltd., and from the opening of an additive hopper provided in the middle part of the extruder, as a matting agent, AEROSIL 200V (0.016 ⁇ m silica fine particles). (Manufactured by Nippon Aerosil Co., Ltd.) with a continuous feeder so as to be 0.05% of the extrusion amount, and TINUVIN 360 (manufactured by Ciba Specialty Chemicals) as an ultraviolet absorber It added so that it might become 0.5%, and melt-extruded.
  • the film thickness of the melt-extruded film was 220 ⁇ m.
  • this film was stretched at a temperature of 142 ° C. in the MD direction by 1.3 times and in the TD direction by 2.4 times to produce a fixed end biaxial stretch.
  • This film was used as film 22.
  • the film thickness of this film was 70 ⁇ m.
  • Production of film 1 was carried out in the same manner as production of film 1 except that cellulose acylate shown in the following table was used as a raw material and production conditions were changed as shown in the following table. And used as film 23.
  • cellulose acylate shown in the following table was used as a raw material and production conditions were changed as shown in the following table. And used as film 23.
  • the abbreviations of the following additives and plasticizers are as defined above.
  • Additive A Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
  • Dissolution Swelling and dissolution were performed by the following dissolution step A.
  • ⁇ Dissolution process A The polymer was gradually added to the 400 liter stainless steel dissolution tank having stirring blades and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additive. After completion of the addition, the mixture was stirred at room temperature for 2 hours to obtain a polymer solution.
  • Film formation was performed by the following film formation process A.
  • ⁇ Film formation process A The polymer solution was heated to 30 ° C. and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesa (described in JP-A-11-314233). The casting speed was 10 m / min and the coating width was 150 cm. The space temperature of the entire casting part was set to 15 ° C. And the polymer film which was cast and rotated 50 cm before the end point of the casting part was peeled off from the band, and 45 ° C. drying air was blown. Next, it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a transparent polymer film.
  • the composition of the retardation developer (3) is shown in Table 6 below.
  • EG represents ethylene glycol
  • TPA represents terephthalic acid
  • PA represents phthalic acid
  • AA represents adipic acid
  • SA represents succinic acid.
  • the retardation developer (3) is a non-phosphate ester compound and a compound that functions as a retardation developer. The end of the retardation developer (3) is sealed with an acetyl group.
  • the above prepared cellulose acylate solution was quickly cast with a band casting machine.
  • the film peeled off from the band with a residual solvent amount of about 30% by mass was stretched in the width direction by a tenter at a stretch ratio of 16% at 140 ° C. Thereafter, the film was transferred from the tenter conveyance to the roll conveyance, and further dried and wound at 110 ° C. to 150 ° C. to produce a film 26.
  • the film thickness of this film was 85 ⁇ m.
  • cellulose acylate solution for low substitution layer The following composition was put into a mixing tank, stirred while being heated to dissolve each component, and a cellulose acylate solution for a low substitution layer was prepared.
  • the composition of the retardation developer (4) is shown in Table 7 below.
  • EG represents ethylene glycol
  • PG represents propylene glycol
  • BG represents butylene glycol
  • TPA represents terephthalic acid
  • PA represents phthalic acid
  • AA represents adipic acid
  • SA represents succinic acid.
  • the retardation developer (4) is a non-phosphate ester compound and a compound that functions as a retardation developer.
  • the terminal of the retardation developer (4) is sealed with an acetyl group.
  • Cellulose acylate solution for high substitution layer The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution for a high substitution degree layer.
  • Production of Film 28 Production of film 27 was carried out in the same manner except that the film thickness of the core layer was changed to 75 ⁇ m and the draw ratio was changed to 20%.
  • Cellulose acylate solution for high substitution layer The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution for a high substitution degree layer.
  • a polyvinyl alcohol (PVA) film having a thickness of 80 ⁇ m is dyed by dipping in an aqueous iodine solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds, and then boric acid having a boric acid concentration of 4% by mass. While being immersed in an aqueous solution for 60 seconds, the film was longitudinally stretched 5 times the original length and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 ⁇ m.
  • cellulose acylate films were saponified as follows.
  • a laminated polarizing plate was prepared by sandwiching a polarizing film with any two of films 1 to 29. The combinations are shown in the table below.
  • films 1 to 9, 11 to 18, and 22 to 29, which are cellulose acylate films they are bonded using a polyvinyl alcohol adhesive;
  • the films 19 to 21 were bonded using an acrylic pressure-sensitive adhesive.
  • the in-plane slow axis is bonded in parallel with the transmission axis of the polarizer; and for films 25 and 29, the in-plane slow axis is The films were bonded so as to be orthogonal to the transmission axis of the polarizer.
  • VA liquid crystal display device (1) Preparation of liquid crystal cell 1 LC-42RX1W (manufactured by Sharp Corporation) was prepared as a VA liquid crystal display cell. This was used as the liquid crystal cell 1. When ⁇ nd (590) of the liquid crystal cell 1 was measured using AXOSCAN manufactured by AXOMETRICS and the attached software, ⁇ nd (590) was 300 nm.
  • a curable composition layer (coating film) was formed.
  • the slit coating was performed at a coating speed of 100 mm / second by adjusting the distance between the slit and the glass substrate and the discharge amount of the coating liquid so that the film thickness after post-baking was 2.0 ⁇ m.
  • the obtained curable composition layer was dried (prebaked) at 80 ° C. for 120 seconds using a hot plate, and then the proximity gap was set to 180 ⁇ m and 90 mJ using a HITACHI exposure machine LE5565. / Cm 2 (illuminance: 20 mW / cm 2 ).
  • the exposed substrate was shower-developed with a 1.0% developer (25 ° C.) of potassium hydroxide developer CDK-1 (manufactured by FUJIFILM Electronics Materials) for 60 seconds and washed with pure water. Thus, a red pixel portion was formed on the glass substrate. This substrate was post-baked at 220 ° C. for 30 minutes in an oven to obtain a glass substrate on which a red pixel portion was formed.
  • Example 19 of JP2009-144126A is further added with 0.05 mm ⁇ zirconia beads to the glass substrate on which the red pixel portion and the green pixel portion are formed.
  • a blue pixel portion was formed in the same manner as the red pixel portion except that a dispersion process was performed for 30 minutes with the used bead disperser Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.). This substrate was post-baked in an oven at 230 ° C. for 30 minutes to obtain a color filter substrate.
  • a transparent electrode of ITO (Indium Tin Oxide) was formed on the produced color filter substrate by sputtering.
  • a spacer was formed in a portion corresponding to the upper part of the partition wall (black matrix) on the ITO film. This was used as the front substrate.
  • a glass substrate on which an ITO transparent electrode was formed as a counter substrate was prepared, and the color filter substrate and the transparent electrode of the counter substrate were each patterned for the PVA mode, and an alignment film made of vertical polyimide was further provided thereon. .
  • the liquid crystal cell taken out from the SHARP liquid crystal panel “LC-37GX1W” was disassembled, the array substrate arranged on the light source side was taken out, the surface was washed with ethanol, and then the glass was used on the glass side of the counter substrate.
  • the product array substrate was attached using matching oil. This was used as the rear substrate.
  • a UV curable resin sealant is applied by a dispenser method at a position corresponding to the outer periphery of the black matrix provided around the RGB pixel group of the color filter on the front substrate, and VA mode liquid crystal is dropped. After bonding to the rear substrate, the bonded substrate was irradiated with UV, and then heat treated to cure the sealant.
  • the liquid crystal cell 2 was produced. Subsequently, when ⁇ ND (590) of the produced liquid crystal cell 2 was used with AXOSCAN manufactured by AXOMETRICS and the attached software, ⁇ nd (590) was 300 nm.
  • the liquid crystal cell 1 is disassembled, and the substrate arranged on the viewing side is the front side substrate, and the array substrate is arranged on the light source side Was used as the rear side substrate, and after cleaning the surface with ethanol, it was used to calculate the member CR of the front side substrate and the rear side substrate.
  • a polarizing plate (HLC2-2518, manufactured by Sanlitz) is disposed on the backlight of the liquid crystal panel “LC-32GH5” manufactured by SHARP, and the front side substrate or the rear of the liquid crystal cells 1 to 5 described above is disposed thereon.
  • the side substrate was attached to a rotating stage (SGSP-120YAW, manufactured by Sigma Kogyo Co., Ltd.) and arranged in parallel with the polarizing plate on the light source at 2 mm intervals.
  • the array wiring on the rear substrate and the black matrix of the front substrate were arranged so as to coincide with the polarization axis of the polarizing plate.
  • a polarizing plate HCC2-2518, manufactured by Sanlitz
  • a measuring instrument (BM5A, manufactured by TOPCON) is used.
  • the luminance values of black display and white display in the normal direction were measured, and front contrast A (white luminance / black luminance) was calculated.
  • front contrast A white luminance / black luminance
  • the luminance value of black display and white display of only the polarizing plate was measured with the color filter substrate or the array substrate removed, and the front contrast B was calculated.
  • the member contrast was calculated by the following formula.
  • Member contrast 1 / (1 / Front contrast A-1 / Front contrast B) Based on the calculated member contrast, the member contrast of the front substrate / the member contrast of the rear substrate was calculated and summarized in the table below.
  • VA type liquid crystal display device was manufactured by laminating polarizing plates on the outer surfaces of both substrates of the liquid crystal cell in the combinations shown in the following table. The polarizing plates were bonded with the absorption axes orthogonal to each other. As the light source of each liquid crystal display device manufactured, LC-42RX1W (Sharp Co., Ltd.) backlights were used for the liquid crystal cells 1 to 4 and 6, and BGR 3-color LEDs were alternately used at 180 Hz for the liquid crystal cell 5. The following evaluation was performed using the light-emitting element.
  • VA-type liquid crystal display device As the VA-type liquid crystal cell, the liquid crystal cell 1 was used, and each of the liquid crystal display devices of Examples and Comparative Examples was prepared in combination with polarizing plates as shown in the following table.
  • a measuring instrument (BM5A, manufactured by TOPCON)
  • the brightness value of black display and white display in the panel normal direction is measured in a dark room
  • the front contrast (white brightness / black brightness) is calculated.
  • the front contrast ratio (white brightness / black brightness) is measured.
  • Front contrast ratio Front contrast in the embodiment / Front contrast in the reference form
  • the reference form is In the case of the liquid crystal cell 1, the front contrast is 3060 in Comparative Example 10, Met.
  • the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film
  • the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film.
  • the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film
  • the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film
  • ⁇ 25 nm as the inner protective film of the rear polarizing plate, that is, the first retardation film it can be understood that any of VA type liquid crystal display devices according to the embodiments of the present invention having either. Furthermore, it can be understood that it was favorable from the viewpoints of viewing angle contrast, color shift during black display, and corner unevenness.
  • the film 7 includes a film that satisfies the characteristics required as the first retardation film.
  • Comparative Example 1 and Comparative Example 6 have the same configuration except that the rear-side polarizing plate and the front-side polarizing plate of Examples 2 and 5 are replaced, respectively, but between the rear-side polarizer and the liquid crystal cell. It can be understood that the front contrast is lowered because the film 2 does not satisfy the characteristics required for the first retardation film.
  • Example 18 the front contrast was high as in Example 1, but the viewing angle contrast was low compared to Example 1. This is because the optical characteristics of the film 28 used as the second retardation film satisfy ⁇ nd (590) ⁇ 70 nm ⁇ Rth 1 (590) + Rth 2 (590) ⁇ ⁇ nd (590) ⁇ 10 nm, but almost the lower limit. It is thought that it is a value.
  • the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film
  • the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film
  • the front contrast ratio is remarkably improved in any of the liquid crystal cells 1 to 5 in which the member contrast of the front substrate of the liquid crystal cell substrate / the member contrast of the rear substrate is 3.0 or more.
  • the liquid crystal cell 5 used in Example 22 is the same as the feed sequential drive liquid crystal cell, that is, from the above results, the effect of the present invention is also remarkable in the feed sequential drive liquid crystal display device. Understandable.
  • a VA liquid crystal display device manufactured in the same manner as in Example 2 was evaluated in the same manner except that the liquid crystal cell 6 was used instead of the liquid crystal cell 1.

Abstract

Provided is a VA-type liquid crystal display apparatus having a high front contrast. The VA-type liquid crystal display apparatus comprises a front side polarizer (14), a rear side polarizer (12), a VA-type liquid crystal cell (LC) arranged between the front side polarizer and the rear side polarizer, and a first phase difference area (16) which is formed of one or more phase difference layers arranged between the rear side polarizer and the VA-type liquid crystal cell. The first phase difference area satisfies 0 nm ≤ Re(590) ≤ 10 nm and |Rth(590)| ≤ 25 nm, wherein Re(λ) represents the in-plane retardation (nm) at a wavelength of λ nm, and Rth(λ) represents the retardation (nm) in the thickness direction at a wavelength of λ nm.

Description

VA型液晶表示装置VA liquid crystal display device
 本発明は、正面コントラストが改善されたVA(Vertically Aligned)型液晶表示装置に関する。 The present invention relates to a VA (Vertically Aligned) liquid crystal display device with improved front contrast.
 近年、液晶表示装置の高コントラスト(CR)化が進んでいる。特に、VA型液晶表示装置は、他のモードと比較して法線方向のCR(以下、「正面CR」という)が高いという長所があり、その長所をより改善するための研究開発が種々行われている。その結果、この6年間で、VA型液晶表示装置の正面CRは、400程度から8000程度に、約20倍高くなっている。 In recent years, liquid crystal display devices have become increasingly high contrast (CR). In particular, the VA liquid crystal display device has an advantage that the CR in the normal direction (hereinafter referred to as “front CR”) is higher than other modes, and various research and developments have been conducted to further improve the advantage. It has been broken. As a result, in the past six years, the front CR of the VA liquid crystal display device has increased from about 400 to about 8000, about 20 times higher.
 一方、液晶表示装置については、正面CRが高いことのみならず、斜め方向のCR(以下、「視野角CR」という場合がある)も高いことが重要である。VA型液晶表示装置については、黒表示時の斜め方向に生じる光漏れを軽減する技術として、位相差フィルムを採用することが種々提案されている(例えば、特許文献1)。一般的には、液晶セルを中心として、フロント側とリア側にそれぞれ位相差フィルムを配置し、光学補償に必要な位相差を2枚の位相差フィルムのそれぞれに分担させて光学補償を達成している。光学補償の組み合わせには通常2つの方式が用いられている。一方の方式は、フロント側及びリア側にそれぞれ配置される位相差フィルムに位相差を等しく分担させる方式であり、使用するフィルムを一種類にできるメリットがある。他方の方式は、片側に配置される位相差フィルムにより大きな位相差を分担させる方式であり、安価なフィルムとの組み合わせで光学補償が可能なことからコスト的に有利である。後者の方式では、リア側に配置される位相差フィルムにより大きな位相差を分担させる方が実用上一般的であった。その理由の1つは、製造コストにある。この理由に関しては、特許文献2に、「一方の偏光板の(液晶セルと偏光膜との間の)保護膜のみに本発明のセルロースアシレート系フィルムを用いた場合、これが、上側偏光板(観察側)、下側偏光板(バックライト側)のどちら側でもよく、機能的には何ら問題がない。ただし、上側偏光板として使用すると機能性膜を観察側(上側)に設ける必要性があり生産得率が下がる可能性があるため、下側偏光板として使用する場合が高いと考えられ、より好ましい実施形態であると考えられる」との記載がある。第2の理由は、リア側により大きな位相差を有するフィルムを配置する方が、耐衝撃性や、温度変化および湿度変化などの耐環境性の点では好ましいためである。
 従来、このような視野角コントラストの改善のために利用されている位相差フィルム(位相差膜)の光学特性と、正面CRとの関係についてはなんら検討されていない。
On the other hand, for a liquid crystal display device, it is important that not only the front CR is high but also the CR in the oblique direction (hereinafter sometimes referred to as “viewing angle CR”) is high. For VA liquid crystal display devices, various proposals have been made to adopt a retardation film as a technique for reducing light leakage that occurs in an oblique direction during black display (for example, Patent Document 1). In general, a phase difference film is arranged on the front side and the rear side centering on the liquid crystal cell, and the optical retardation is achieved by sharing the phase difference necessary for optical compensation between the two retardation films. ing. Two methods are usually used for the combination of optical compensation. One method is a method in which retardation films are equally allocated to the retardation films respectively arranged on the front side and the rear side, and there is an advantage that a single film can be used. The other method is a method in which a large phase difference is shared by the phase difference film disposed on one side, and is advantageous in terms of cost because optical compensation can be performed in combination with an inexpensive film. In the latter method, it has been practically common to share a large retardation with the retardation film disposed on the rear side. One reason is manufacturing cost. Regarding this reason, in Patent Document 2, when the cellulose acylate film of the present invention is used only for the protective film (between the liquid crystal cell and the polarizing film) of one polarizing plate, Either the observation side) or the lower side polarizing plate (backlight side) may be used, and there is no functional problem, but there is a need to provide a functional film on the observation side (upper side) when used as an upper polarizing plate. Since there is a possibility that the production yield will be reduced, it is considered that the use as a lower polarizing plate is high, and it is considered to be a more preferable embodiment. The second reason is that it is preferable to dispose a film having a larger phase difference on the rear side in terms of impact resistance and environmental resistance such as temperature change and humidity change.
Conventionally, no study has been made on the relationship between the optical characteristics of the retardation film (retardation film) used for improving the viewing angle contrast and the front CR.
特開2006-184640号公報JP 2006-184640 A 特開2006-241293号公報の[0265]欄[0265] column of JP-A-2006-241293
 高CR化された液晶表示装置では、従来のCRの低下要因に基づいて提案されている手法では、さらなる高コントラスト化を達成することは困難である。本発明者が鋭意検討した結果、VA型液晶表示装置では、従来正面CRに影響するとは考えられていなかった、リア側偏光子と液晶セルとの間に存在する位相差層のレターデーションが、正面CRを低下させる一因であることがわかった。 In a liquid crystal display device with a high CR, it is difficult to achieve a higher contrast with the method proposed based on the conventional factors for reducing the CR. As a result of intensive studies by the present inventors, in the VA type liquid crystal display device, the retardation of the retardation layer existing between the rear side polarizer and the liquid crystal cell, which has not been considered to affect the front CR, has been obtained. It has been found that this is one of the causes of lowering the front CR.
 本発明は、正面コントラストが高いVA型液晶表示装置を提供することを課題とする。 An object of the present invention is to provide a VA liquid crystal display device with high front contrast.
 前記課題を解決するための手段は、以下の通りである。
[1] フロント側偏光子、リア側偏光子、前記フロント側偏光子とリア側偏光子との間に配置されるVA型液晶セル、及び前記リア側偏光子と前記VA型液晶セルとの間に1層又は2層以上の位相差層からなる第1の位相差領域を有し、該第1の位相差領域が下記式:
 0nm≦Re(590)≦10nm、かつ|Rth(590)|≦25nm
を満足することを特徴とするVA型液晶表示装置:
 但し、Re(λ)は、波長λnmにおける面内レターデーション(nm)を、Rth(λ)は波長λnmにおける厚み方向のレターデーション(nm)を意味する。
[2] 前記VA型液晶セルが、フロント側基板及びリア側基板を有し、前記リア側基板の部材コントラスト(CRr)に対する前記フロント側基板の部材コントラスト(CRf)の比(CRf/CRr)が、3以上であることを特徴とする[1]のVA型液晶表示装置。[3] 前記フロント側偏光子と前記VA型液晶セルとの間に、1層又は2層以上の位相差層からなる第2の位相差領域を有し、該第2の位相差領域が、下記式:
 30nm≦Re(590)≦90nm、且つ
 170nm≦Rth(590)≦300nm
を満足することを特徴とする[1]又は[2]のVA型液晶表示装置。
[4] 前記第1および前記第2の位相差領域が、下記式:
Δnd(590)-70≦Rth1(590)+Rth2(590)≦Δnd(590)-10
を満足することを特徴とする[3]のVA型液晶表示装置:
 但し、dは前記VA型液晶セルの液晶層の厚さ(nm)、Δn(λ)は前記VA型液晶セルの液晶層の波長λにおける屈折率異方性であり、Δnd(λ)はΔn(λ)とdの積を意味し;Rth1(λ)は波長λにおける前記第1の位相差領域の厚み方向のレターデーション(nm)、及びRth2(λ)は波長λにおける前記第2の位相差領域の厚み方向のレターデーション(nm)を意味する。
[5] 前記第1の位相差領域が、セルロースアシレート系フィルムからなる、またはセルロースアシレート系フィルムを含むことを特徴とする[1]~[4]のいずれかのVA型液晶表示装置。
[6] 前記セルロースアシレート系フィルムが、厚み方向のレターデーションRthを低下させる化合物を、下記式(I)及び(II):
(I)(Rth[A]-Rth[0])/A≦-1.0
(II)0.01≦A≦30
(Rth[A]:Rthを低下させる化合物をA%含有するフィルムのRth(nm)、Rth[0]:Rthを低下させる化合物を含有しないフィルムのRth(nm)、及びA:フィルム原料ポリマーの質量を100としたときの化合物の質量(%)である。)を満たす範囲で少なくとも1種含有することを特徴とする[5]のVA型液晶表示装置。
[7] 前記セルロースアシレート系フィルムが、アシル置換度が2.85~3.00のセルロースアシレートに、面内レターデーションRe及び厚み方向レターデーションRthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01~30質量%含むことを特徴とする[5]又は[6]のVA型液晶表示装置。
[8] 前記セルロースアシレート系フィルムが、フィルムの|Re(400)-Re(700)|及び|Rth(400)-Rth(700)|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01~30質量%含むことを特徴とする[5]~[7]のいずれかのVA型液晶表示装置。
[9] 前記第1の位相差領域が、アクリル系ポリマーフィルムからなる又はアクリル系ポリマーフィルムを含むことを特徴とする[1]~[8]のいずれかのVA型液晶表示装置。
[10] 前記第1の位相差領域が、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含有するアクリル系ポリマーフィルムからなる又は当該アクリル系ポリマーフィルムを有する[9]のVA型液晶表示装置。
[11] 前記第2の位相差領域が、セルロースアシレート系フィルムからなる、又はセルロースアシレート系フィルムを含むことを特徴とする[3]~[10]のいずれかのVA型液晶表示装置。
[12] 前記第2の位相差領域が、環状オレフィン系ポリマーフィルムからなる、又は環状オレフィン系ポリマーフィルムを含むことを特徴とする[3]~[10]のいずれかのVA型液晶表示装置。
[13] 正面コントラストが、1500以上であることを特徴とする[1]~[12]のいずれかのVA型液晶表示装置。
[14] 独立した3原色光が順次発光するバックライトユニットを含み、フィールドシーケンシャル駆動方式で駆動されることを特徴とする[1]~[13]のいずれかのVA型液晶表示装置。
Means for solving the above problems are as follows.
[1] Front-side polarizer, rear-side polarizer, VA-type liquid crystal cell disposed between the front-side polarizer and the rear-side polarizer, and between the rear-side polarizer and the VA-type liquid crystal cell Have a first retardation region composed of one or two or more retardation layers, and the first retardation region has the following formula:
0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm
VA type liquid crystal display device satisfying the following:
However, Re (λ) means in-plane retardation (nm) at the wavelength λnm, and Rth (λ) means retardation in the thickness direction (nm) at the wavelength λnm.
[2] The VA type liquid crystal cell has a front side substrate and a rear side substrate, and a ratio of a member contrast (CR f ) of the front side substrate to a member contrast (CR r ) of the rear side substrate (CR f / (CR r ) is 3 or more, VA type liquid crystal display device according to [1]. [3] Between the front-side polarizer and the VA-type liquid crystal cell, there is a second retardation region composed of one or two or more retardation layers, and the second retardation region is Following formula:
30 nm ≦ Re (590) ≦ 90 nm and 170 nm ≦ Rth (590) ≦ 300 nm
The VA liquid crystal display device according to [1] or [2], wherein:
[4] The first and second retardation regions are represented by the following formula:
Δnd (590) −70 ≦ Rth 1 (590) + Rth 2 (590) ≦ Δnd (590) −10
[3] VA liquid crystal display device characterized by satisfying:
Where d is the thickness (nm) of the liquid crystal layer of the VA type liquid crystal cell, Δn (λ) is the refractive index anisotropy at the wavelength λ of the liquid crystal layer of the VA type liquid crystal cell, and Δnd (λ) is Δn Rth 1 (λ) is retardation in the thickness direction of the first retardation region at wavelength λ (nm), and Rth 2 (λ) is the second at wavelength λ. Means retardation (nm) in the thickness direction of the retardation region.
[5] The VA liquid crystal display device according to any one of [1] to [4], wherein the first retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
[6] A compound in which the cellulose acylate film reduces the retardation Rth in the thickness direction is represented by the following formulas (I) and (II):
(I) (Rth [A] −Rth [0]) / A ≦ −1.0
(II) 0.01 ≦ A ≦ 30
(Rth [A]: Rth (nm) of a film containing A% of a compound that lowers Rth, Rth [0]: Rth (nm) of a film not containing a compound that lowers Rth, and A: (5) The VA liquid crystal display device according to [5], wherein at least one compound is contained within a range satisfying the mass (%) of the compound when the mass is 100.
[7] The cellulose acylate film is a cellulose acylate having an acyl substitution degree of 2.85 to 3.00, a cellulose acylate having at least one compound that reduces in-plane retardation Re and thickness direction retardation Rth. The VA liquid crystal display device according to [5] or [6], which is contained in an amount of 0.01 to 30% by mass with respect to the rate solid content.
[8] The cellulose acylate film comprises at least one compound that lowers | Re (400) -Re (700) | and | Rth (400) -Rth (700) | The VA type liquid crystal display device according to any one of [5] to [7], wherein the VA type liquid crystal display device is contained in an amount of 0.01 to 30% by mass based on the total amount.
[9] The VA liquid crystal display device according to any one of [1] to [8], wherein the first retardation region is made of an acrylic polymer film or includes an acrylic polymer film.
[10] The first retardation region comprises an acrylic polymer film containing an acrylic polymer containing at least one unit selected from a lactone ring unit, a maleic anhydride unit, and a glutaric anhydride unit; [9] The VA type liquid crystal display device having the acrylic polymer film.
[11] The VA liquid crystal display device according to any one of [3] to [10], wherein the second retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
[12] The VA liquid crystal display device according to any one of [3] to [10], wherein the second retardation region is made of a cyclic olefin polymer film or includes a cyclic olefin polymer film.
[13] The VA liquid crystal display device according to any one of [1] to [12], wherein the front contrast is 1500 or more.
[14] The VA liquid crystal display device according to any one of [1] to [13], which includes a backlight unit that sequentially emits independent three primary color lights and is driven by a field sequential driving method.
 本発明によれば、正面コントラストが高いVA型液晶表示装置を提供することができる。 According to the present invention, a VA liquid crystal display device with high front contrast can be provided.
本発明のVA型液晶表示装置の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the VA-type liquid crystal display device of the present invention. 本発明の作用を説明するために用いた模式図である。It is the schematic diagram used in order to demonstrate the effect | action of this invention.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 まず、本明細書で用いられる用語について、説明する。
(レターデーション、Re及びRth)
本明細書において、Re(λ)及びRth(λ)は各々、波長λにおける面内のレターデーション(nm)及び厚さ方向のレターデーション(nm)を表す。Re(λ)はKOBRA 21ADH又はWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。KOBRAの標準波長は590nmである。
 測定されるフィルム等のサンプルが1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH又はWRが算出する。
 尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(X)及び式(XI)よりRthを算出することもできる。
Hereinafter, the present invention will be described in detail. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
First, terms used in this specification will be described.
(Retardation, Re and Rth)
In the present specification, Re (λ) and Rth (λ) represent in-plane retardation (nm) and retardation in the thickness direction (nm) at wavelength λ, respectively. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments). The standard wavelength of KOBRA is 590 nm.
When a sample such as a film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is the Re (λ), and the in-plane slow axis (determined by KOBRA 21ADH or WR) is the tilt axis (rotation axis). The light is incident at a wavelength of λ nm in 10 degree steps from the normal direction to 50 degrees on one side with respect to the film normal direction (with the direction of the rotation axis as the rotation axis). KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative.
In addition, the retardation value is measured from the two inclined directions, with the slow axis as the tilt axis (rotation axis) (in the case where there is no slow axis, the arbitrary direction in the film plane is the rotation axis), Rth can also be calculated from the following formula (X) and formula (XI) based on the value, the assumed value of the average refractive index, and the input film thickness value.
Figure JPOXMLDOC01-appb-M000001
注記:
上記のRe(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。また、式中、nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dは膜厚を表す。
Figure JPOXMLDOC01-appb-M000001
Note:
The above Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction. In the formula, nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction orthogonal to nx in the plane, and nz represents the refractive index in the direction orthogonal to nx and ny. . d represents a film thickness.
 測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して-50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
 上記の測定において、平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:
 セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
 これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx-nz)/(nx-ny)が更に算出される。
In the case where the film to be measured cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis, Rth (λ) is calculated by the following method.
Rth (λ) is from −50 degrees to +50 degrees with respect to the normal direction of the film, with Re (λ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis). The light of wavelength λ nm is incident from each inclined direction in 10 degree steps and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
In the above measurement, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. Examples of the average refractive index values of main optical films are given below:
Cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), and polystyrene (1.59).
The KOBRA 21ADH or WR calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness. Nz = (nx−nz) / (nx−ny) is further calculated from the calculated nx, ny, and nz.
 本明細書において、位相差フィルム等の「遅相軸」は、屈折率が最大となる方向を意味する。また、「可視光領域」とは、380nm~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は590nmである。波長590nmは、本発明が属する技術分野の業界において、フィルムの物性値の管理に一般的に用いられている波長である。
 また、本明細書において、位相差領域、位相差フィルム及び液晶層等の各部材の光学特性を示す数値、数値範囲、及び定性的な表現(例えば、「同等」、「等しい」等の表現)については、液晶表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値、数値範囲及び性質を示していると解釈されるものとする。
In this specification, “slow axis” of a retardation film or the like means a direction in which the refractive index is maximum. The “visible light region” means 380 nm to 780 nm. Moreover, in this specification, when there is no special mention about a measurement wavelength, a measurement wavelength is 590 nm. The wavelength of 590 nm is a wavelength generally used for management of physical properties of a film in the technical field industry to which the present invention belongs.
Further, in this specification, numerical values, numerical ranges, and qualitative expressions (for example, expressions of “equivalent”, “equal”, etc.) indicating optical characteristics of each member such as a retardation region, a retardation film, and a liquid crystal layer Is interpreted to indicate numerical values, numerical ranges, and properties including generally allowable errors for liquid crystal display devices and members used therefor.
 本明細書において、位相差フィルムとは、液晶セルと偏光子の間に配置された自己支持性のある膜を意味する(レターデーションの大小は関係ない)。なお、位相差膜は位相差フィルムと同義である。位相差領域は液晶セルと偏光子の間に配置された1層または2層以上の位相差フィルムの総称である。
 また、本明細書では、「フロント側」とは表示面側を意味し、「リア側」とはバックライト側を意味する。また、本明細書で「正面」とは、表示面に対する法線方向を意味し、「正面コントラスト(CR)」は、表示面の法線方向において測定される白輝度及び黒輝度から算出されるコントラストをいうものとする。
In the present specification, the retardation film means a self-supporting film disposed between the liquid crystal cell and the polarizer (regardless of the size of the retardation). The retardation film is synonymous with the retardation film. The retardation region is a general term for a retardation film of one layer or two or more layers disposed between a liquid crystal cell and a polarizer.
In this specification, “front side” means the display surface side, and “rear side” means the backlight side. In this specification, “front” means a normal direction with respect to the display surface, and “front contrast (CR)” is calculated from white luminance and black luminance measured in the normal direction of the display surface. Contrast.
 本発明は、VA型液晶セルとリア側偏光子との間に、下記式:
 0nm≦Re(590)≦10nm、かつ|Rth(590)|≦25nm
を満足する第1の位相差領域を有することを特徴とするVA型液晶表示装置に関する。
 従来、液晶表示装置の光源であって、リア側に配置されるバックライトとして、指向性をもった光を照射するバックライトが使用されている。当該バックライトから液晶表示装置に斜め入射した光は、液晶セル中の液晶層及びカラーフィルタで散乱され、正面方向に散乱された成分が、正面CRを低下させる一因になる。本発明者が検討した結果、バックライトからリア側偏光子に入射した光が、液晶セルに入射するまでに、位相差領域を通過すると、正面CRの低下が顕著になるとの知見を得た。この理由は以下の通りである。
(i) バックライトから斜め入射してリア側偏光子を通過した直線偏光は、液晶セルに入射する前に、位相差領域を通過すると、位相差領域のRe及び/又はRthによって楕円偏光化され、その後、液晶セル中の液晶層及びカラーフィルタ層等で正面に散乱される。正面に散乱された光のうち、フロント側偏光子の吸収軸方向の成分(以下、「A成分」という場合がある)は偏光子に吸収されるが、フロント側偏光子の透過軸方向の成分(以下、「B成分」という場合がある)は、偏光子を透過してしまう。このB成分が、正面CRの低下の原因になる。B成分を少なくすれば、正面コントラストを向上させることができる。この観点で、リア側偏光子と液晶セルとの間に配置する位相差領域のRthは、小さいほど好ましい。
 また、
(ii) 位相差領域を構成する位相差フィルムには、製造上、光軸の分布があり、これが偏光子と貼り合せる際の軸ズレを生じさせる。軸ズレは、バックライトからの光の楕円偏光化を促進するため、軸ズレを軽減すれば、正面コントラストを向上させることができる。この観点では、リア側偏光子と液晶セルとの間に配置する位相差領域のReは、小さいほど好ましい。
The present invention provides the following formula between the VA liquid crystal cell and the rear polarizer:
0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm
The present invention relates to a VA liquid crystal display device characterized by having a first retardation region that satisfies the above.
2. Description of the Related Art Conventionally, a backlight that emits light having directivity is used as a light source of a liquid crystal display device and disposed on the rear side. Light obliquely incident on the liquid crystal display device from the backlight is scattered by the liquid crystal layer and the color filter in the liquid crystal cell, and the components scattered in the front direction contribute to lowering the front CR. As a result of investigations by the present inventors, it has been found that when the light incident on the rear side polarizer from the backlight passes through the phase difference region before entering the liquid crystal cell, the front CR is significantly reduced. The reason is as follows.
(I) The linearly polarized light obliquely incident from the backlight and passed through the rear side polarizer is elliptically polarized by Re and / or Rth in the phase difference region when passing through the phase difference region before entering the liquid crystal cell. Thereafter, the light is scattered to the front by the liquid crystal layer and the color filter layer in the liquid crystal cell. Among the light scattered in the front, the component in the absorption axis direction of the front side polarizer (hereinafter sometimes referred to as “A component”) is absorbed by the polarizer, but the component in the transmission axis direction of the front side polarizer. (Hereinafter sometimes referred to as “B component”) passes through the polarizer. This B component causes the front CR to decrease. If the B component is reduced, the front contrast can be improved. From this point of view, it is preferable that the Rth of the retardation region disposed between the rear-side polarizer and the liquid crystal cell is as small as possible.
Also,
(Ii) The retardation film constituting the retardation region has an optical axis distribution in production, and this causes an axial shift when being bonded to the polarizer. Since the axial shift promotes the elliptical polarization of light from the backlight, the front contrast can be improved by reducing the axial shift. From this point of view, the smaller the Re of the phase difference region disposed between the rear-side polarizer and the liquid crystal cell, the better.
 上記(i)及び(ii)の知見に基づき、さらに検討した結果、リア側偏光子と液晶セルとの間の第1の位相差領域が、下記式
 0nm≦Re(590)≦10nm、かつ|Rth(590)|≦25nm
を満足することで、高い正面CRのVA型液晶表示装置が得られることを見出し、本発明を完成するに至った。即ち、本発明によれば、上記構成とすることで、高い正面コントラストを達成するVA型液晶表示装置を提供することができる。また、本発明では、リア側偏光子と液晶セルとの間の位相差領域には低Re及び低Rthの位相差フィルムのみが配置されているので、偏光子がバックライトからの熱によって変形等して当該位相差フィルムに応力がかかっても、元々低Re及び低Rthである位相差フィルムの光学的異方性の変化は極わずかである。その結果、従来VA型液晶表示装置において観察されていた、画面の四隅部において生じる光もれ、いわゆるコーナームラと呼ばれる、表示品位を低下させる故障も軽減することができる。
 さらに、フロント側偏光子と液晶セルとの間の第2の位相差領域が所定の光学特性を示す態様では、斜め方向のCRの向上及び黒表示時のカラーシフトの低減も達成した液晶表示装置を提供することができる。
As a result of further investigation based on the findings of (i) and (ii) above, the first retardation region between the rear-side polarizer and the liquid crystal cell has the following formula: 0 nm ≦ Re (590) ≦ 10 nm, and | Rth (590) | ≦ 25 nm
By satisfying the above, it was found that a high front CR VA liquid crystal display device was obtained, and the present invention was completed. That is, according to the present invention, the above configuration can provide a VA liquid crystal display device that achieves high front contrast. In the present invention, since only the low Re and low Rth retardation films are disposed in the retardation region between the rear side polarizer and the liquid crystal cell, the polarizer is deformed by heat from the backlight. Even when stress is applied to the retardation film, the change in optical anisotropy of the retardation film that originally has low Re and low Rth is negligible. As a result, light leakage that occurs at the four corners of the screen, which is conventionally observed in a VA liquid crystal display device, can be reduced, which is a so-called corner non-uniformity failure that degrades display quality.
Furthermore, in the aspect in which the second retardation region between the front-side polarizer and the liquid crystal cell exhibits predetermined optical characteristics, the liquid crystal display device has also achieved improved oblique CR and reduced color shift during black display. Can be provided.
 図1に本発明のVA型液晶表示装置の一例の断面模式図を示す。なお、図中、各層の厚みの相対的関係は、実際の液晶表示装置の各層の厚みの相対的関係と必ずしも一致しているものではない。
 図1に示すVA型液晶表示装置は、VA型液晶セルLC、ならびにそれを挟んで、リア側偏光板PL1及びフロント側偏光板PL2を有する。リア側偏光板PL1のさらに外側には、バックライト10が配置され、バックライト10からの光は、リア側偏光板PL1、液晶セルLC、及びフロント側偏光板PL2の順に入射するように構成されている。液晶セルLCはVAモードの液晶セルであり、黒表示時には、ホメオトロピック配向になる。液晶セルLCは、ガラス等からなる上側基板26と下側基板24を対向させることで構成されており、前記基板上には配向膜(図示せず)と電極層(図示せず)を有し、さらにフロント側の基板上には、カラーフィルタ層(図示せず)を有する。
FIG. 1 shows a schematic cross-sectional view of an example of the VA liquid crystal display device of the present invention. In the drawing, the relative relationship between the thicknesses of the respective layers does not necessarily coincide with the relative relationship between the thicknesses of the respective layers of the actual liquid crystal display device.
The VA type liquid crystal display device shown in FIG. 1 includes a VA type liquid crystal cell LC, and a rear side polarizing plate PL1 and a front side polarizing plate PL2 sandwiching the VA type liquid crystal cell LC. A backlight 10 is arranged on the outer side of the rear side polarizing plate PL1, and light from the backlight 10 is configured to enter the rear side polarizing plate PL1, the liquid crystal cell LC, and the front side polarizing plate PL2 in this order. ing. The liquid crystal cell LC is a VA mode liquid crystal cell and has homeotropic alignment when displaying black. The liquid crystal cell LC is configured by making an upper substrate 26 and a lower substrate 24 made of glass or the like face each other, and has an alignment film (not shown) and an electrode layer (not shown) on the substrate. Further, a color filter layer (not shown) is provided on the front substrate.
 リア側偏光板PL1は、偏光子12と、その表面に、第1の位相差フィルム16及び外側保護フィルム20をそれぞれ有し、並びにフロント側偏光板PL2は、偏光子14と、その表面に第2の位相差フィルム18及び外側保護フィルム22とをそれぞれ有する。偏光子12及び14は、その吸収軸を互いに直交方向にして配置されている。リア側偏光板PL1の偏光子12と液晶セルLCとの間に配置される第1の位相差フィルムは、0nm≦Re(590)≦10nm、かつ|Rth(590)|≦25nmを満足する位相差フィルムである。この特性を満足する限り、位相差フィルムは複数存在していてもよい。例えば、第1の位相差フィルム16と偏光子12との間に、偏光子12の保護フィルムが別途配置されていてもよいが、第1の位相差フィルム16と当該保護フィルムの合計の位相差が0nm≦Re(590)≦10nm、かつ|Rth(590)|≦25nmを満足する。即ち、偏光子12と液晶セルLCとの間には複数の位相差フィルムが存在していてもよいが、複数枚の合計の位相差が上記特性を満足する。偏光子12と液晶セルLCとの間に配置する位相差フィルムが、上記特性を満足することにより、図1に示すVA型液晶表示装置では、バックライト10からの斜め入射光が、液晶セルLCに入射する前に楕円偏光化するのが抑制される。その結果、上記(i)及び(ii)の理由によるコントラストの低下を軽減することができ、高い正面CRを達成できる。 The rear side polarizing plate PL1 has the polarizer 12 and the first retardation film 16 and the outer protective film 20 on the surface thereof, respectively, and the front side polarizing plate PL2 has the polarizer 14 and the first surface on the surface thereof. 2 retardation films 18 and an outer protective film 22. The polarizers 12 and 14 are arranged with their absorption axes orthogonal to each other. The first retardation film disposed between the polarizer 12 of the rear-side polarizing plate PL1 and the liquid crystal cell LC satisfies the following conditions: 0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm It is a phase difference film. As long as this characteristic is satisfied, a plurality of retardation films may be present. For example, a protective film for the polarizer 12 may be separately disposed between the first retardation film 16 and the polarizer 12, but the total retardation of the first retardation film 16 and the protective film. Satisfies 0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm. That is, a plurality of retardation films may exist between the polarizer 12 and the liquid crystal cell LC, but the total retardation of the plurality of sheets satisfies the above characteristics. Since the retardation film disposed between the polarizer 12 and the liquid crystal cell LC satisfies the above characteristics, in the VA liquid crystal display device shown in FIG. 1, oblique incident light from the backlight 10 is converted into the liquid crystal cell LC. It is possible to suppress the elliptical polarization before entering the beam. As a result, a decrease in contrast due to the reasons (i) and (ii) can be reduced, and a high front CR can be achieved.
 本発明者が鋭意検討した結果、本発明の効果は、VA型液晶セルのフロント側基板(図1中基板26と基板上に形成されたすべての部材を含む)の部材コントラストCRfのほうが、リア側基板(図1中基板24と基板上に形成されたすべての部材を含む)の部材コントラスト(CRr)より高い態様において、特に顕著になることがわかった。さらに、リア側基板の部材コントラスト(CRr)に対するフロント側基板の部材コントラストCRfの比(CRf/CRr)が3以上、即ち、3≦CRf/CRrの態様で、本発明の効果が顕著になることがわかった。ここで、VA型液晶セル(図1中のLC)を2枚の基板(図1中の基板24および26)に分解したときに、フロント側の基板(図1中基板26)とその基板上に形成されていた部材の総称をフロント側基板といい、リア側の基板(図1中基板24)とその基板上に形成されていた部材の総称をリア側基板というものとする。当該部材の例には、カラーフィルタ、ブラックマトリックス、アレイ部材(TFTアレイ等)、基板上の突起部、共通電極、スリット等、種々の部材が含まれる。即ち、液晶セルのリア側基板及びフロント側基板の部材コントラストとは、各基板と各基板上に形成されている種々の部材のトータルのコントラストをいうものとする。測定方法の詳細については、後述する実施例に記載がある。 As a result of intensive studies by the inventor, the effect of the present invention is that the member contrast CR f of the front side substrate (including the substrate 26 and all members formed on the substrate in FIG. 1) of the VA liquid crystal cell is It has been found that this is particularly noticeable in a mode higher than the member contrast (CR r ) of the rear side substrate (including the substrate 24 and all members formed on the substrate in FIG. 1). Further, the ratio of the member contrast CR f of the front side substrate to the member contrast (CR r ) of the rear side substrate (CR f / CR r ) is 3 or more, that is, in the aspect of 3 ≦ CR f / CR r . It turned out that an effect becomes remarkable. Here, when the VA liquid crystal cell (LC in FIG. 1) is disassembled into two substrates ( substrates 24 and 26 in FIG. 1), the front substrate (substrate 26 in FIG. 1) and the substrate The generic name of the members formed on the substrate is referred to as a front substrate, and the generic term of the rear substrate (substrate 24 in FIG. 1) and the members formed on the substrate is referred to as a rear substrate. Examples of the member include various members such as a color filter, a black matrix, an array member (such as a TFT array), a protrusion on the substrate, a common electrode, and a slit. That is, the member contrast between the rear side substrate and the front side substrate of the liquid crystal cell refers to the total contrast of each substrate and various members formed on each substrate. Details of the measurement method are described in Examples described later.
 本発明者が鋭意検討した結果、液晶表示装置の正面CRには、リア側偏光子と液晶セルとの間の第1の位相差領域のレターデーションが大きく影響することが分かった。この理由は、液晶セルの各部材(例えば、液晶層、カラーフィルタ、ブラックマトリックス、アレイ部材、基板に形成された突起部、共通電極部材、スリット部材など)において散乱や回折といった光学現象が生じるが、それら光学現象に偏光依存性があるためである。以下、詳細に説明する。
 一般的には、VA型液晶表示装置では、黒表示時には液晶層は垂直配向状態になるので、リア側偏光子を通過し、法線方向に進む直線偏光は、その後、液晶層を通過してもその偏光状態は変化せず、原則として全てフロント側偏光子の吸収軸で吸収される。即ち、原則として、黒表示時には法線方向には光漏れはないといえる。しかし、VA型液晶表示装置の黒表示時の正面透過率はゼロではない。この理由の1つは、液晶層中の液晶分子が揺らいでいるためであり、液晶層に入射した光がある程度その揺らぎによって散乱されるためであることが知られている。液晶層に入射した光が、完全に、フロント側偏光子の吸収軸で吸収される直線偏光成分しか含んでいないほど、その影響が大きくなり、正面の光漏れが多くなる傾向がある。即ち、リア側に配置される位相差領域の位相差が大きく、高い楕円偏光率の楕円偏光に変換されているほど、この揺らぎによる正面の光漏れを軽減できる。
As a result of intensive studies by the inventor, it has been found that the retardation of the first retardation region between the rear-side polarizer and the liquid crystal cell greatly affects the front CR of the liquid crystal display device. This is because optical phenomena such as scattering and diffraction occur in each member of the liquid crystal cell (for example, liquid crystal layer, color filter, black matrix, array member, protrusion formed on the substrate, common electrode member, slit member, etc.). This is because these optical phenomena have polarization dependency. Details will be described below.
In general, in a VA liquid crystal display device, the liquid crystal layer is in a vertically aligned state during black display, and thus linearly polarized light that passes through the rear polarizer and proceeds in the normal direction passes through the liquid crystal layer. However, the polarization state does not change, and in principle, it is absorbed by the absorption axis of the front polarizer. That is, in principle, it can be said that there is no light leakage in the normal direction during black display. However, the front transmittance at the time of black display of the VA liquid crystal display device is not zero. One reason for this is that liquid crystal molecules in the liquid crystal layer are fluctuating, and light incident on the liquid crystal layer is known to be scattered to some extent by the fluctuation. As the light incident on the liquid crystal layer completely contains only the linearly polarized light component absorbed by the absorption axis of the front-side polarizer, the influence increases and the front light leakage tends to increase. That is, as the phase difference of the phase difference region arranged on the rear side is larger and converted into elliptically polarized light having a higher elliptical polarization rate, light leakage on the front due to this fluctuation can be reduced.
 しかし、本発明者が検討した結果、液晶層中の液晶分子の揺らぎ以外に、リア側偏光子と液晶層との間の位相差領域の位相差にもその一因があることがわかった。バックライトからの指向性のある光がリア側偏光子を通過して、斜め方向から当該位相差領域に入射すると、その位相差によって直線偏光は楕円偏光に変換される。この楕円偏光は、液晶セル中のアレイ部材、及びカラーフィルタ層によって回折及び散乱され、少なくとも一部は正面方向に進む光となる。当該楕円偏光には、フロント側偏光子の吸収軸でブロックできない直線偏光成分が含まれるため、黒表示時においても正面方向に光が漏れ、正面CR低下の原因になる。このアレイ部材やカラーフィルタ層を通過することによって生じる光学現象は、例えば、アレイ部材やカラーフィルタ層の表面が完全に平滑ではなく、ある程度の凹凸があることや、当該部材中に散乱因子等が含有されることによる。このアレイ部材やカラーフィルタ層を通過することによって生じる光学現象が、正面方向の光漏れに与える影響は、前記した液晶層中の液晶分子が揺らいでいることによる影響よりも大きい。 However, as a result of investigation by the present inventor, it was found that in addition to the fluctuation of the liquid crystal molecules in the liquid crystal layer, the phase difference in the retardation region between the rear-side polarizer and the liquid crystal layer is also responsible for this. When directional light from the backlight passes through the rear polarizer and enters the phase difference region from an oblique direction, linearly polarized light is converted into elliptically polarized light by the phase difference. The elliptically polarized light is diffracted and scattered by the array member in the liquid crystal cell and the color filter layer, and at least a part of the light becomes light traveling in the front direction. Since the elliptically polarized light includes a linearly polarized light component that cannot be blocked by the absorption axis of the front-side polarizer, light leaks in the front direction even during black display, causing a reduction in front CR. The optical phenomenon caused by passing through the array member or the color filter layer is, for example, that the surface of the array member or the color filter layer is not completely smooth and has a certain degree of unevenness, or a scattering factor or the like in the member. By being contained. The influence of the optical phenomenon generated by passing through the array member and the color filter layer on the light leakage in the front direction is larger than the influence of the liquid crystal molecules in the liquid crystal layer described above.
 さらに本発明者が鋭意検討した結果、位相差領域を通過することで楕円偏光となった光が液晶セル中の所定の部材を通過する際に受ける光学現象(回折及び散乱等)は、光が液晶層に入射する前に当該部材を通過するか、又は液晶層を通過した後に当該部材を通過するかで、正面方向の光漏れに影響する態様が異なることがわかった。図1中、例えば、図2(a)に示す通り、リア側基板24の内面にアレイ部材が配置されていて、且つフロント側基板26の内面にカラーフィルタが配置されているとすると、光は、液晶層に入射する前にアレイ部材を通過し、液晶層を通過した後にカラーフィルタを通過することになる。
 光が液晶層に入射する前に通過する部材(例えばアレイ部材)では、入射光の楕円偏光率は、その前に通過するリア側位相差領域(第1の位相差領域)の位相差によって決まる。一方で、液晶層に入射した後に通過する部材(例えばカラーフィルタ)では、リア側位相差領域の位相差に加えて、液晶層の位相差によって決まる。ここで、VA用液晶表示装置の場合、通常、液晶層のΔnd(590) (dは液晶層の厚さ(nm)、Δn(λ)は液晶層の波長λにおける屈折率異方性であり、Δnd(λ)はΔn(λ)とdの積のことである。)は280~350nm程度に設定される。アレイ部材の光漏れが少なくなるようにリア側位相差領域の位相差を設定しても、液晶を通過すると楕円率は逆に大きくなる。リア側位相差領域の位相差が大きいほど入射偏光の楕円率が小さくなるので、液晶層を通過する前に光が入射する部材であるか、液晶層を通過した後に光が入射する部材であるかによって、リア側位相差領域の位相差を低く設定した結果、当該部材が正面方向の光漏れに影響する作用が逆転する。
 リア側位相差領域の位相差の高低、各部材を通過することによる正面方向光漏れに与える影響の傾向、及びその影響の強弱を、図2(b)にまとめた。なお、図2(b)中、「↑」はリア側位相差領域が高レターデーションの場合に比べて正面CRを高める作用を示し、「↓」は正面CRを低下させる作用を示す。矢印の本数はその作用の強弱の目安であって、本数が多いほど作用が強いことを示す。
Furthermore, as a result of intensive studies by the inventor, optical phenomena (diffraction and scattering, etc.) received when light that has become elliptically polarized light by passing through the phase difference region passes through a predetermined member in the liquid crystal cell, It has been found that the aspect affecting the light leakage in the front direction differs depending on whether the light passes through the member before entering the liquid crystal layer or passes through the member after passing through the liquid crystal layer. In FIG. 1, for example, as shown in FIG. 2A, if an array member is arranged on the inner surface of the rear substrate 24 and a color filter is arranged on the inner surface of the front substrate 26, the light is The light passes through the array member before entering the liquid crystal layer, and passes through the color filter after passing through the liquid crystal layer.
In a member that passes light before entering the liquid crystal layer (for example, an array member), the elliptical polarization rate of the incident light is determined by the phase difference of the rear-side phase difference region (first phase difference region) that passes therethrough. . On the other hand, a member (for example, a color filter) that passes after entering the liquid crystal layer is determined by the phase difference of the liquid crystal layer in addition to the phase difference of the rear side phase difference region. Here, in the case of a VA liquid crystal display device, generally, Δnd (590) of the liquid crystal layer (d is the thickness (nm) of the liquid crystal layer, and Δn (λ) is the refractive index anisotropy at the wavelength λ of the liquid crystal layer. , Δnd (λ) is the product of Δn (λ) and d.) Is set to about 280 to 350 nm. Even if the phase difference in the rear side phase difference region is set so that light leakage of the array member is reduced, the ellipticity increases conversely when passing through the liquid crystal. As the phase difference in the rear phase difference region is larger, the ellipticity of incident polarized light is smaller. Therefore, the light is incident before passing through the liquid crystal layer, or the light is incident after passing through the liquid crystal layer. Accordingly, as a result of setting the phase difference in the rear side phase difference region to be low, the effect of the member on the light leakage in the front direction is reversed.
FIG. 2B summarizes the phase difference in the rear side phase difference region, the tendency of the influence on the light leakage in the front direction by passing through each member, and the strength of the influence. In FIG. 2B, “↑” indicates an effect of increasing the front CR as compared to the case where the rear phase difference region has a high retardation, and “↓” indicates an effect of decreasing the front CR. The number of arrows is a measure of the strength of the action, and the greater the number, the stronger the action.
 図2(b)に示す通り、フロント側基板にカラーフィルタ、及びリア側基板にアレイ部材が配置されたVA型液晶表示装置の態様では、リア側位相差領域の位相差を低くすると、リア側基板に配置されているアレイ部材による光学現象によって生じる正面方向の光漏れは軽減される方向に作用する一方で、フロント側基板に配置されているカラーフィルタ層による光学現象によって生じる正面方向の光漏れは増加する方向に作用し、即ち、双方の作用が相殺される関係にある。 As shown in FIG. 2B, in the aspect of the VA liquid crystal display device in which the color filter is arranged on the front side substrate and the array member is arranged on the rear side substrate, if the phase difference in the rear side retardation region is lowered, the rear side The light leakage in the front direction caused by the optical phenomenon by the array member arranged on the substrate acts in the direction to be reduced, while the light leakage in the front direction caused by the optical phenomenon by the color filter layer arranged on the front side substrate. Acts in an increasing direction, i.e., there is a relationship in which both actions cancel out.
 例えば、リア側基板とフロント側基板の双方に、コントラストを低下させる要因となる部材が同様に配置されている液晶セルでは、リア側の第1の位相差領域が低レターデーションであっても、リア側基板に配置されている部材(例えば図2(b)ではアレイ部材)による正面CRを高める作用が、フロント側基板に配置されている部材(例えば図2(b)ではCF部材)による正面CRを低下させる作用によって若干打ち消されてしまう場合がある。即ち、リア側の第1の位相差領域が低レターデーションであるという本発明の特徴は、リア側基板にコントラストを低下される要因となる部材が多く存在している態様において、特に高い効果を示す、と言うことができる。 For example, in a liquid crystal cell in which members that cause a decrease in contrast are similarly arranged on both the rear side substrate and the front side substrate, even if the first retardation region on the rear side has low retardation, The front CR by the member (for example, the CF member in FIG. 2B) arranged on the front substrate is the effect of increasing the front CR by the member (for example, the array member in FIG. 2B) disposed on the rear side substrate. There is a case where it is slightly canceled by the action of lowering the CR. That is, the feature of the present invention that the first retardation region on the rear side has a low retardation is particularly effective in an aspect in which many members that cause a decrease in contrast are present on the rear substrate. You can say.
 なお、リア側の第1の位相差領域のレターデーションが、正面CRに与える影響は、低い正面CRの液晶表示装置ではほとんど無視できる程度である。しかし、近年提供されている、高い正面CR(例えば、正面CRが1500以上)の液晶表示装置について、さらなる正面CRの改善を図るためには、この影響を無視することはできない。本発明は、正面CRが1500以上の液晶表示装置について、正面CRをさらに改善するのに特に有用である。 Note that the influence of the retardation of the first retardation region on the rear side on the front CR is almost negligible in a low front CR liquid crystal display device. However, this influence cannot be ignored in order to further improve the front CR of a liquid crystal display device with a high front CR (for example, the front CR is 1500 or more) that has been provided in recent years. The present invention is particularly useful for further improving the front CR for liquid crystal display devices having a front CR of 1500 or more.
 なお、図2では、一例として、フロント側基板26の内面にカラーフィルタ(CF)が、リア側基板24の内面にアレイ部材がある、通常の液晶セル構成を図示したが、本発明の液晶表示装置では、CF及びアレイ部材の位置は任意である。例えば、カラーフィルタオンアレイ(COA)の様に、CFがアレイ部材を有するリア側基板側に配置されている態様も、本発明に含まれることは勿論である。また、アレイ部材が、フロント側基板26側に配置されているのであれば、アレイ部材の作用は、図2(b)中のCF部材と同様になり、またCFがリア側基板24側に配置されているのであれば、CF部材の作用は、図2(b)のアレイ部材と同様になる。図示していない他の部材(例えば、ブラックマトリックス)についても同様であり、部材が、フロント側基板26側に配置されているのであれば、当該アレイ部材の作用は、図2(b)中のCF部材と同様になり、また部材がリア側基板24側に配置されているのであれば、当該部材の作用は、図2(b)のアレイ部材と同様になる。 In FIG. 2, as an example, a normal liquid crystal cell configuration in which a color filter (CF) is provided on the inner surface of the front substrate 26 and an array member is provided on the inner surface of the rear substrate 24 is illustrated. In the apparatus, the positions of the CF and the array member are arbitrary. For example, an embodiment in which the CF is arranged on the rear substrate side having the array member, such as a color filter on array (COA), is also included in the present invention. Further, if the array member is disposed on the front side substrate 26 side, the operation of the array member is the same as the CF member in FIG. 2B, and the CF is disposed on the rear side substrate 24 side. If so, the operation of the CF member is the same as that of the array member of FIG. The same applies to other members not shown (for example, black matrix). If the members are arranged on the front substrate 26 side, the function of the array member is as shown in FIG. If the member is the same as the CF member and the member is arranged on the rear substrate 24 side, the operation of the member is the same as that of the array member in FIG.
 上記した通り、リア側基板(図1中基板24)の部材コントラスト(CRr)に対するフロント側基板(図1中基板26)の部材コントラストCRfの比(CRf/CRr)が3以上、即ち、3≦CRf/CRr、を満足する態様で、本発明の効果が顕著になることがわかった。この関係を満足する液晶セルの例としては、例えば、リア側基板がCOA基板である液晶セルがある。COAに関しては、特開2005-99499号公報及び特開2005-258004号公報に詳細な記載がある。 As described above, the ratio (CR f / CR r ) of the member contrast CR f of the front substrate (substrate 26 in FIG. 1) to the member contrast (CR r ) of the rear substrate (substrate 24 in FIG. 1) is 3 or more, That is, it was found that the effect of the present invention becomes remarkable in an aspect satisfying 3 ≦ CR f / CR r . As an example of a liquid crystal cell that satisfies this relationship, for example, there is a liquid crystal cell in which the rear substrate is a COA substrate. Regarding COA, there are detailed descriptions in JP-A-2005-99499 and JP-A-2005-258004.
 なお、前述のように、CF、ブラックマトリックス、アレイ部材での光学現象による、黒表示時の光漏れの入射偏光状態依存性は、すべて同じ傾向を示すが、ブラックマトリックスの寄与は相対的に小さいため、CFがアレイ部材を有するリア側基板側に配置されたCOAの液晶表示装置におけるブラックマトリックスの位置は、液晶セル内のいずれでもよく、リア側偏光子と液晶層の間に位置することが好ましい。 As described above, the dependency of incident light on the incident polarization state of light leakage at the time of black display due to the optical phenomenon in the CF, black matrix, and array member shows the same tendency, but the contribution of the black matrix is relatively small. Therefore, the position of the black matrix in the liquid crystal display device of the COA in which the CF is arranged on the rear substrate side having the array member may be located in the liquid crystal cell, and may be located between the rear polarizer and the liquid crystal layer. preferable.
 また、3≦CRf/CRr、を満足する液晶セルの例には、カラーフィルタを有さない液晶セル、及びカラーフィルタを有さず、フィールドシーケンシャル駆動の液晶セルが挙げられる。フィールドシーケンシャル駆動の液晶セルについては、特開2009-42446号公報、特開2007-322988号公報、及び特許第3996178号公報等に詳細な記載があり、参照することができる。フィールドシーケンシャル駆動では、独立した3原色光が順次発光するバックライトユニットが利用される。光源としてLEDを備えたバックライトユニットが好ましく、例えば、赤、緑、青の3色を発光するLED素子を光源として備えるバックライトユニットが好ましく利用される。 Examples of the liquid crystal cell that satisfies 3 ≦ CR f / CR r include a liquid crystal cell that does not have a color filter and a liquid crystal cell that does not have a color filter and is field sequential drive. The field sequential drive liquid crystal cell is described in detail in Japanese Patent Application Laid-Open No. 2009-42446, Japanese Patent Application Laid-Open No. 2007-322988, Japanese Patent No. 3996178, and the like. In the field sequential drive, a backlight unit that sequentially emits independent three primary color lights is used. A backlight unit including an LED as the light source is preferable. For example, a backlight unit including an LED element that emits three colors of red, green, and blue as the light source is preferably used.
 また、リア側基板にアレイ部材が配置され、フロント側基板にカラーフィルタが配置されている通常の態様の液晶セルであっても、カラーフィルタのコントラストが高い態様であれば、勿論、上記条件、3≦CRf/CRrを満足し、本発明の好ましい態様となる。高コントラストのカラーフィルタの例としては、従来のCFに使用される顔料と比較して、より微小な粒径の顔料を使用したカラーフィルタが挙げられる。顔料を使用した高コントラストのカラーフィルタの作製方法の例としては、以下の2つの方法が挙げられる。
(i)顔料粒子をサンドミルやロールミル、ボールミルといった分散機を用いて機械的により細かく粉砕する方法であって、例えば、特開2009-144126号公報等に称さない記載があり、参照することができる。
(ii)顔料を溶剤に溶解させた後に再析出させることで微細な顔料粒子を調整する方法であって、例えば、特開2009-134178号公報に詳細な記載がある。
 また、顔料以外に、染料を利用して高コントラストのカラーフィルタを作製する方法も提案されている。特開2005-173532号公報に詳細な記載があり、参照することができる。
 これらの高コントラスト化されたカラーフィルタを利用することにより、通常の構成であっても、3≦CRf/CRrを満足する液晶セルとなる。
In addition, even in a normal mode liquid crystal cell in which an array member is arranged on the rear side substrate and a color filter is arranged on the front side substrate, the above condition is, of course, as long as the color filter has a high contrast. 3 ≦ CR f / CR r is satisfied, which is a preferred embodiment of the present invention. As an example of a high-contrast color filter, there is a color filter using a pigment having a finer particle diameter than that of a pigment used in a conventional CF. Examples of a method for producing a high-contrast color filter using a pigment include the following two methods.
(I) A method of mechanically pulverizing pigment particles using a disperser such as a sand mill, a roll mill, or a ball mill. .
(Ii) A method of adjusting fine pigment particles by dissolving the pigment in a solvent and then reprecipitating it, which is described in detail in, for example, JP-A-2009-134178.
In addition to the pigment, a method for producing a high-contrast color filter using a dye has also been proposed. JP-A-2005-173532 has a detailed description and can be referred to.
By using these high-contrast color filters, a liquid crystal cell satisfying 3 ≦ CR f / CR r is obtained even with a normal configuration.
 再び、図1において、フロント側偏光板PL2が有する第2の位相差フィルム18の光学特性は、斜め方向のコントラストの改善、及び黒表示時のカラーシフトの軽減に寄与するものであるのが好ましい。なお、VA型液晶セルLCの液晶層のΔnd(λ)は、上記した通り、一般的には、280~350nm程度である。第2の位相差フィルム18のレターデーション、特にRth、の好ましい範囲は、液晶層のΔnd(λ)の値に応じて変動する。斜めコントラスト改善のため、Δnd(λ)に対する、好ましい位相差フィルムの組み合わせについては、種々の公報に記載があり、例えば、特許3282986号、第3666666号及び第3556159号等に記載があり、参照することができる。
 第2の位相差領域の光学特性の好ましい範囲については、後述する。
In FIG. 1 again, it is preferable that the optical characteristics of the second retardation film 18 of the front polarizing plate PL2 contribute to the improvement of the contrast in the oblique direction and the reduction of the color shift during black display. . Note that Δnd (λ) of the liquid crystal layer of the VA liquid crystal cell LC is generally about 280 to 350 nm as described above. The preferred range of retardation, particularly Rth, of the second retardation film 18 varies depending on the value of Δnd (λ) of the liquid crystal layer. For the purpose of improving the oblique contrast, preferred combinations of retardation films with respect to Δnd (λ) are described in various publications, and are described in, for example, Japanese Patent Nos. be able to.
A preferable range of the optical characteristics of the second retardation region will be described later.
 なお、VA型液晶セルのΔnd(590)は一般的に280~350nm程度であるが、これは白表示時の透過率をなるべく高くするためである。一方で、Δnd(590)が280nm以下の場合、Δnd(590)の低下に伴い白輝度がわずかに低下するものの、セルの厚みdが小さくなるため、高速応答性に優れる液晶表示装置となる。リア側の第1の位相差領域が低レターデーションであれば、正面方向への光漏れが少なくなる結果、高い正面CRが得られるという本発明の特徴は、いずれのΔnd(590)の液晶表示装置においても効果がある。 Note that Δnd (590) of the VA liquid crystal cell is generally about 280 to 350 nm, in order to make the transmittance during white display as high as possible. On the other hand, when Δnd (590) is 280 nm or less, white luminance slightly decreases with a decrease in Δnd (590), but the thickness d of the cell is reduced, so that a liquid crystal display device excellent in high-speed response is obtained. If the first retardation region on the rear side has a low retardation, light leakage in the front direction is reduced, and as a result, a high front CR is obtained. The feature of any liquid crystal display of any Δnd (590) It is also effective in the apparatus.
 図1のVA型液晶表示装置では、第1の位相差フィルム16及び第2の位相差フィルム18が、それぞれ偏光子12及び14の保護フィルムとしても機能している実施形態を示したが、本発明は本実施形態に限定されるものではない。例えば、第1の位相差フィルム及び第2位相差フィルムのそれぞれと、偏光子12及び14との間には、別途、偏光子の保護フィルムが配置されていてもよい。但し、上記した通り、第1の位相差フィルムと偏光子12との間に配置される保護フィルムは、第1の位相差フィルムとの積層体としてトータルで、第1の位相差領域に求められる特性を満足する必要がある。
 また、リア側偏光子12は、そのバックライト10側の表面に、保護フィルム20を有するが、さらにその表面に、防汚性フィルム、アンチリフレクションフィルム、アンチグレアフィルム、アンチスタチックフィルム等の機能性フィルムを有していてもよく、また、同様に、フロント側偏光子14は、その表示面側表面に、保護フィルム22を有するが、さらにその表面に、防汚性フィルム、アンチリフレクションフィルム、アンチグレアフィルム、アンチスタチックフィルム等の機能性フィルムを有していてもよい。
In the VA liquid crystal display device of FIG. 1, an embodiment in which the first retardation film 16 and the second retardation film 18 also function as protective films for the polarizers 12 and 14 is shown. The invention is not limited to this embodiment. For example, a protective film for a polarizer may be separately disposed between each of the first retardation film and the second retardation film and the polarizers 12 and 14. However, as described above, the protective film disposed between the first retardation film and the polarizer 12 is required in the first retardation region as a laminate with the first retardation film. It is necessary to satisfy the characteristics.
The rear polarizer 12 has a protective film 20 on the surface on the backlight 10 side, and further has functionalities such as an antifouling film, an anti-reflection film, an anti-glare film, and an anti-static film on the surface. Similarly, the front polarizer 14 has a protective film 22 on the display surface side surface, and further has an antifouling film, an anti-reflection film, an anti-glare film on the surface. You may have functional films, such as a film and an antistatic film.
 ところで、前述した通り、片側に大きな位相差を分担させて光学補償する方式の場合、大きな位相差のフィルムは、リア側に配置されるのが従来一般的であったが、本発明のように、フロント側に配置した方が、偏光板としての得率が向上すると考えられる。その理由を説明する。
 大きな位相差のフィルムは、高倍率で延伸する工程が必要であるため、フィルムに多くの添加剤を加えなくとも製造可能な安価フィルムいわゆるプレーンTAC=Reが0~10nm、Rthが30~80nmであるトリアセチルセルロースフィルム等)や小さな位相差のフィルムに比べて広幅化が困難である。通常の液晶表示装置には、横長の液晶セルが使用され、フロント側偏光子の吸収軸は水平方向(左右方向)に、リア側偏光子の吸収軸は鉛直方向(上下方向)に配置されるのが一般的である。さらに、工業的生産では、偏光子と位相差フィルムとをロール トゥ ロールで貼合するが一般的である。この製法で作製した偏光板を液晶セルに貼合することを考えると、フロント側に大きな位相差のフィルムを配置した方が、偏光板の幅方向を高い効率で使用することができ、即ち、得率が高くなる。本発明のように、リア側に位相差の小さな位相差のフィルムを配置する場合は、かかるフィルムは、広幅フィルムとしての作製が容易であり、広幅偏光子と組み合わせることで、さらに得率を高くできる。その結果、廃棄する偏光板の量を少なくすることができる。
By the way, as described above, in the case of a system in which a large phase difference is shared on one side and optical compensation is performed, a film having a large phase difference is generally arranged on the rear side, but as in the present invention. It is considered that the yield rate as a polarizing plate is improved by arranging it on the front side. The reason will be explained.
Since a film having a large retardation requires a process of stretching at a high magnification, an inexpensive film that can be produced without adding many additives to the film, so-called plain TAC = Re is 0 to 10 nm, and Rth is 30 to 80 nm. It is difficult to widen the width compared to a film having a certain triacetyl cellulose film or a small retardation film. In a normal liquid crystal display device, a horizontally long liquid crystal cell is used, and the absorption axis of the front-side polarizer is arranged in the horizontal direction (left-right direction), and the absorption axis of the rear-side polarizer is arranged in the vertical direction (up-down direction). It is common. Furthermore, in industrial production, a polarizer and a retardation film are generally bonded by roll-to-roll. Considering that the polarizing plate produced by this manufacturing method is bonded to the liquid crystal cell, it is possible to use the width direction of the polarizing plate with high efficiency by arranging a film having a large retardation on the front side, that is, The yield increases. When a retardation film having a small retardation is arranged on the rear side as in the present invention, such a film can be easily produced as a wide film, and the yield is further increased by combining with a wide polarizer. it can. As a result, the amount of polarizing plate to be discarded can be reduced.
 ここで、具体的な数字で説明する。一般的には、位相差フィルムの幅は、概ね、1100mm、1300mm、1500mm、2000mm、2500mmであり、フィルムの厚さは、概ね25μm、40μm、80μmである。フィルムを巻いたロールの長さは、概ね2500m、4000mである。一方、VA型液晶表示装置の画面サイズは、仮にテレビ用途だと、画面サイズ20インチ、32インチ、40インチ、42インチ、52インチ、68インチなどである。一例として現在出荷が多い42インチを考えると、42インチ(標準4:3)では、画面幅が853mm(42インチワイド16:9は930mm)、画面高さが640mm(42インチワイドは523mm)である。従来一般的であったリア側に、大きな位相差のフィルムを配置する方式では、例えば、1300mm、1500mm幅の位相差フィルムでは、幅方向に一つの画面用の位相差フィルムしか採れない。本態様では、フロント側に位相差の大きなフィルムを配置するので、例えば、1300mm、1500mm幅の位相差フィルムであっても、画面高さ分を位相差フィルムの幅方向に採れればよく、よって、幅方向に二つの画面用の位相差フィルムを採ることができ、生産性が2倍近くになる。テレビのサイズは年々大型化するが、例えば、65インチ(標準)は画面幅が991mm、画面高さが1321mmであるので、従来一般的であったリア側配置では、広幅化した2000mmフィルムであっても幅方向に一つの画面用の位相差フィルムしか採れないが、本態様のように、フロント側配置では、幅方向に二つの画面用の位相差フィルムが採れる。更に68インチ(ワイド)は画面幅が1505mm、画面高さが846mmであるので、同様に2倍近い生産性が期待できる。 Here, I will explain with specific numbers. In general, the width of the retardation film is approximately 1100 mm, 1300 mm, 1500 mm, 2000 mm, and 2500 mm, and the thickness of the film is approximately 25 μm, 40 μm, and 80 μm. The length of the roll around which the film is wound is approximately 2500 m and 4000 m. On the other hand, the screen size of the VA liquid crystal display device is 20 inches, 32 inches, 40 inches, 42 inches, 52 inches, 68 inches, etc., for television use. As an example, when 42 inches, which are currently shipped, are considered to be 42 inches (standard 4: 3), the screen width is 853 mm (42 inches wide 16: 9 is 930 mm), and the screen height is 640 mm (42 inches wide is 523 mm). In the conventional method in which a film having a large retardation is arranged on the rear side, for example, a retardation film having a width of 1300 mm or 1500 mm can take only one retardation film for a screen in the width direction. In this aspect, since a film having a large retardation is arranged on the front side, for example, even if the retardation film has a width of 1300 mm or 1500 mm, it suffices that the screen height can be taken in the width direction of the retardation film. The retardation film for two screens can be taken in the width direction, and productivity is nearly doubled. The size of TVs increases year by year. For example, 65 inches (standard) has a screen width of 991 mm and a screen height of 1321 mm. However, only one retardation film for a screen can be taken in the width direction. However, as in this aspect, two retardation films for a screen can be taken in the width direction in the front side arrangement. Furthermore, since the 68-inch (wide) screen has a screen width of 1505 mm and a screen height of 846 mm, a productivity almost twice as high can be expected.
 本発明のVA型液晶表示装置のモードについてはいずれであってもよく、具体的にはMVA(Multi-domain Vertical Alignment)型、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。 The mode of the VA type liquid crystal display device of the present invention may be any mode, specifically, MVA (Multi-domain Vertical Alignment) type, PVA (Patterned Vertical Alignment) type, optical alignment type (Optical Alignment), and Any of PSA (Polymer-Sustained Alignment) may be used. Details of these modes are described in JP-A-2006-215326 and JP-T 2008-538819.
 上記した通り、本発明では、高コントラストのカラーフィルタを用いてもよいが、勿論、通常の液晶表示装置が有するカラーフィルタを利用してもよい。カラーフィルタは、一般的には、基板の画素部位に複数の異なる色(例えば赤、緑、青の光の3原色、透明、黄色、シアンなど)を配列したカラーフィルタである。その作製方法は様々であり、例えば、着色のための材料(有機顔料、染料、カーボンブラックなど)を用い、カラーレジストと呼ばれる着色感光性組成物(無色の場合もある)を調製し、これを基板の上に塗布して層を形成し、フォトリソグラフィ法によりパターン形成するのが一般的である。前記着色感光性組成物を基板の上に塗布する方法も様々であり、例えば初期には、スピンコーター法が採用され、省液の観点で、スリット&スピン型コーター法が採用され、現在では、スリット・コーター法が一般的に採用されている。その他にロールコーティング法、バーコーティング法、ダイコーティング法などがある。また近年では、フォトリソグラフィにより離画壁とよばれるパターンを形成した後に、インクジェット方式により画素の色を形成することも行なわれている。この他に、着色非感光性組成物と感光性ポジ型レジストを組み合わせた方法、印刷法、電着法、フィルム転写法によるものなどが知られている。本発明に利用するカラーフィルタは、いずれの方法で作製されたものであってもよい。 As described above, in the present invention, a high-contrast color filter may be used, but of course, a color filter included in a normal liquid crystal display device may be used. The color filter is generally a color filter in which a plurality of different colors (for example, three primary colors of red, green, and blue light, transparent, yellow, cyan, and the like) are arranged in a pixel portion of the substrate. There are various preparation methods, for example, using a coloring material (organic pigment, dye, carbon black, etc.) to prepare a colored photosensitive composition (which may be colorless) called a color resist. In general, a layer is formed by coating on a substrate, and a pattern is formed by photolithography. There are also various methods for applying the colored photosensitive composition on the substrate, for example, initially, a spin coater method is adopted, and from the viewpoint of saving liquid, a slit & spin type coater method is adopted. The slit coater method is generally adopted. Other methods include roll coating, bar coating, and die coating. In recent years, after forming a pattern called a separation wall by photolithography, a pixel color is also formed by an inkjet method. In addition, methods using a combination of a colored non-photosensitive composition and a photosensitive positive resist, a printing method, an electrodeposition method, and a film transfer method are known. The color filter used in the present invention may be produced by any method.
 カラーフィルタ形成用の材料についても特に制限はない。着色材料として、染料、有機顔料、無機顔料等、いずれを用いることもできる。染料は、高コントラスト化の要求から検討されていたが、近年は有機顔料の分散技術が進歩し、ソルトミリング法などで微細に砕いたブレークダウン顔料や、ビルドアップ法による微細化顔料などが高コントラスト化に用いられている。本発明には、いずれの着色材料を用いてもよい。 There are no particular restrictions on the material for forming the color filter. As the coloring material, any of dyes, organic pigments, inorganic pigments and the like can be used. Dyes have been studied because of the demand for higher contrast, but in recent years, organic pigment dispersion technology has advanced, and breakdown pigments that have been finely crushed by the salt milling method, finer pigments by the build-up method, etc. Used for contrast. Any coloring material may be used in the present invention.
 また、本発明の正面コントラスト向上の効果は、バックライトからの出射光の角度プロファイルを調整することによって、更に改善することができる。具体的には、より集光性が強いバックライトを用いると正面コントラストの絶対値が増加するため、本発明で示された正面CR絶対値の増加分も大きくなる。集光性の指標は例えば正面における出射光強度I(0°)に対する極角45度における出射光強度I(45°)の比I(0°)/I(45°)で表され、この値が大きいほど集光性が強いバックライトということになる。集光性が高いバックライトとしては、拡散フィルムと液晶パネルとの間に、光集光機能を備えたプリズムフィルム(プリズム層)を設けることが望ましい。このプリズムフィルムは、導光板の光出射面から出射され、拡散フィルムで拡散された光を、高効率で液晶パネルの有効表示エリアに集光させるものである。一般的な直下型方式のバックライトが搭載された液晶表示装置は、例えば、上部に透明基板や偏光板に挟まれたカラーフィルタ、液晶層からなる液晶パネルと、その下面側にバックライトが設けられている。米国3M社の登録商標である輝度強調フィルム(Brightness Enhancement Film:BEF)が代表例である。BEFは、フィルム基材上に、断面三角形状の単位プリズムが一方向に周期的に配列されたフィルムであり、プリズムは光の波長に比較して大きいサイズ(ピッチ)である。BEFは、“軸外(off-axis)”からの光を集光し、この光を視聴者に向けて“軸上(on-axis)”に方向転換(redirect)または“リサイクル(recycle)”する。BEFに代表されるプリズムの反復的アレイ構造を有する輝度制御部材をディスプレイに採用する旨が開示されている特許文献としては、特公平1-37801号公報、特開平6-102506号公報、特表平10-506500号公報に例示されるように多数のものが知られている。 Further, the effect of improving the front contrast of the present invention can be further improved by adjusting the angle profile of the light emitted from the backlight. Specifically, when a backlight having a higher light collecting property is used, the absolute value of the front contrast is increased, so that the increase in the absolute value of the front CR shown in the present invention is also increased. The light collecting index is represented by, for example, a ratio I (0 °) / I (45 °) of the outgoing light intensity I (45 °) at a polar angle of 45 degrees with respect to the outgoing light intensity I (0 °) at the front. The larger the value, the stronger the light collection. As a backlight having a high light collecting property, it is desirable to provide a prism film (prism layer) having a light collecting function between the diffusion film and the liquid crystal panel. This prism film collects the light emitted from the light exit surface of the light guide plate and diffused by the diffusion film with high efficiency on the effective display area of the liquid crystal panel. A liquid crystal display device equipped with a general direct type backlight has, for example, a color filter sandwiched between a transparent substrate and a polarizing plate at the top, a liquid crystal panel composed of a liquid crystal layer, and a backlight on the lower surface side. It has been. A brightness enhancement film (Brightness Enhancement Film: BEF), which is a registered trademark of 3M USA, is a representative example. BEF is a film in which unit prisms having a triangular cross section are periodically arranged in one direction on a film substrate, and the prism has a size (pitch) larger than the wavelength of light. BEF collects light from “off-axis” and redirects this light “on-axis” or “recycle” toward the viewer. To do. Patent documents that disclose that a brightness control member having a repetitive array structure of prisms represented by BEF is adopted for a display are disclosed in Japanese Patent Publication No. 1-37801, Japanese Patent Laid-Open No. 6-102506, Special Table. Many examples are known as exemplified in Japanese Patent Laid-Open No. 10-506500.
 また、集光性を高めるために、レンズアレイシートを用いることも望ましい。レンズアレイシートは、所定のピッチで凸状に形成された単位レンズが複数個2次元に配列されてなるレンズ面を有する。そのレンズ面の反対側は平坦面になっていて、前記平坦面に、前記レンズの非集光面領域に光線を反射する光反射層が形成されているレンズアレイシートが好ましい。また、所定のピッチで形成された凸状のシリンドリカルレンズが複数個平行に配列されてなるレンチキュラーレンズ面と、そのレンズ面の反対側は平坦面になっていて、前記平坦面には、前記凸状のシリンドリカルレンズの非集光面領域に長手方向のストライプ状の光線を反射する光反射層が形成されているレンズアレイシートも好ましい。また、例えば、シリンドリカル状の曲面から構成される単位レンズを面内に一方向に配列したレンチキュラーレンズアレイシート、あるいは円形、矩形、六角形などの底面形状を有しドーム状の曲面から構成される単位レンズが面内に2次元配列されてなるレンズアレイシートなども使用することができる。これらのレンズアレイシートについては、特開平10-241434号、特開2001-201611号、特開2007-256575号、特開2006-106197号、特開2006-208930号、特開2007-213035号、及び特開2007-41172号等の各公報に記載があり、参照することができる。 Also, it is desirable to use a lens array sheet in order to improve the light collecting property. The lens array sheet has a lens surface in which a plurality of unit lenses formed in a convex shape at a predetermined pitch are two-dimensionally arranged. A lens array sheet in which the opposite side of the lens surface is a flat surface and a light reflecting layer for reflecting light rays on the non-light-condensing surface region of the lens is formed on the flat surface is preferable. Further, a lenticular lens surface in which a plurality of convex cylindrical lenses formed at a predetermined pitch are arranged in parallel, and a side opposite to the lens surface is a flat surface, and the convex surface has the convex surface. A lens array sheet in which a light reflecting layer for reflecting light beams in the longitudinal direction is formed on the non-light-condensing surface region of the cylindrical lens is also preferable. Further, for example, a lenticular lens array sheet in which unit lenses composed of cylindrical curved surfaces are arranged in one plane in a plane, or a dome-shaped curved surface having a bottom surface shape such as a circle, a rectangle, or a hexagon. A lens array sheet in which unit lenses are two-dimensionally arranged in a plane can also be used. Regarding these lens array sheets, JP-A-10-241434, JP-A-2001-201611, JP-A-2007-256575, JP-A-2006-106197, JP-A-2006-208930, JP-A-2007-213035, And can be referred to in Japanese Laid-Open Patent Publication No. 2007-41172.
 本発明は、バックライトの出射光スペクトル、及びカラーフィルタの透過スペクトルを調整することによって、色再現域を広げたディスプレイの態様においても効果を奏する。具体的には、バックライトには赤色LED、緑色LED及び青色LEDを組み合わせて混色させた白色バックライトを用いることが望ましい。また、赤色LED、緑色LED及び青色LEDの出射光ピークの半値幅が小さいことが好ましい。LEDの場合には、CCFLに比べて半値波長幅が20nm程度と小さく、またピーク波長をR(赤)が610nm以上、G(緑)が530nm、B(青)が480nm以下とすることにより、光源自体の色純度を高くすることができる。 The present invention is also effective in a display mode in which the color reproduction range is widened by adjusting the emission light spectrum of the backlight and the transmission spectrum of the color filter. Specifically, it is desirable to use a white backlight in which a red LED, a green LED, and a blue LED are mixed and mixed as the backlight. Moreover, it is preferable that the half value width of the emitted light peak of red LED, green LED, and blue LED is small. In the case of LED, the half-value wavelength width is as small as about 20 nm as compared with CCFL, and the peak wavelength is R (red) is 610 nm or more, G (green) is 530 nm, and B (blue) is 480 nm or less. The color purity of the light source itself can be increased.
 また、LEDのピーク波長以外において、カラーフィルタの分光透過率をできるだけ小さく抑制することにより、さらに色再現性を向上させ、NTSC比が100%の特性を有することが報告されている。例えば、特開2004-78102号公報に記載がある。赤色カラーフィルタは、緑色LED及び青色LEDのピーク位置における透過率が小さいことが望ましく、緑色カラーフィルタは、青色LED及び赤LEDのピーク位置における透過率が小さいことが望ましく、青カラーフィルタは、赤色LED及び緑色LEDのピーク位置における透過率が小さいことが望ましい。具体的にはこれら透過率がいずれも、0.1以下であることが望ましく、更に好ましくは0.03以下であり、更に好ましくは0.01以下である。これらのバックライトとカラーフィルタとの関係については、例えば特開2009-192661号公報に記載があり、参照することができる。 Further, it has been reported that the color reproducibility is further improved by suppressing the spectral transmittance of the color filter as small as possible except for the peak wavelength of the LED, and the NTSC ratio is 100%. For example, it is described in JP-A-2004-78102. The red color filter desirably has a small transmittance at the peak positions of the green LED and the blue LED, the green color filter desirably has a small transmittance at the peak position of the blue LED and the red LED, and the blue color filter has a red color. It is desirable that the transmittance at the peak position of the LED and the green LED is small. Specifically, both of these transmittances are desirably 0.1 or less, more preferably 0.03 or less, and still more preferably 0.01 or less. The relationship between the backlight and the color filter is described in, for example, Japanese Patent Application Laid-Open No. 2009-192661, and can be referred to.
 また、バックライトにレーザー光源を用いることも色再現域を広げるためには好ましい。赤、緑及び青色のレーザー光源のピーク波長が、それぞれ430~480nm、520~550nm、及び620~660nmであることが好ましい。レーザー光源のバックライトについては、特開2009?14892号公報に記載があり、参照することができる。 It is also preferable to use a laser light source for the backlight in order to widen the color reproduction range. The peak wavelengths of the red, green, and blue laser light sources are preferably 430 to 480 nm, 520 to 550 nm, and 620 to 660 nm, respectively. The backlight of the laser light source is described in Japanese Patent Application Laid-Open No. 2009-14892, and can be referred to.
 以下、本発明のVA型液晶表示装置に用いられる種々の部材について、詳細に説明する。
1.第1の位相差領域
 本発明では、前記リア側偏光子と前記VA型液晶セルとの間に配置する1層又は2層以上の位相差層からなる第1の位相差領域は、下記式:
 0nm≦Re(590)≦10nm、且つ|Rth(590)|≦25nm
を満足する。第1の位相差領域は、下記式:
 0nm≦Re(590)≦5nm、且つ|Rth(590)|≦10nm
を満足するのが好ましく、下記式:
 0nm≦Re(590)≦3nm、且つ|Rth(590)|≦5nm
を満足するのがより好ましい。
Hereinafter, various members used in the VA liquid crystal display device of the present invention will be described in detail.
1. First Retardation Region In the present invention, the first retardation region composed of one layer or two or more retardation layers disposed between the rear-side polarizer and the VA liquid crystal cell has the following formula:
0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm
Satisfied. The first retardation region has the following formula:
0 nm ≦ Re (590) ≦ 5 nm and | Rth (590) | ≦ 10 nm
Preferably satisfying the following formula:
0 nm ≦ Re (590) ≦ 3 nm and | Rth (590) | ≦ 5 nm
It is more preferable to satisfy
 第1の位相差領域の面内レターデーションReの波長分散は、可視光域において、波長が長波長になる程大きくなるという、いわゆる逆分散性を示すことが好ましい。即ち、Re(450)<Re(550)<(Re(590)<)Re(630)を満足するのが好ましい。その理由は、第1の位相差領域のReが逆波長分散性であると、可視光域の中心波長550nm程度で、光学特性を最適化すれば、可視光全域にわたって、最適化される傾向があるからである。理想的には、第1の位相差領域のRe(λ)を、波長λで割った値が一定になることであり、この態様では、ポアンカレ球上での遷移は、可視光域において、波長によらず同様であり、斜め方向に生じるカラーシフトの問題も解決される。 It is preferable that the wavelength dispersion of the in-plane retardation Re in the first retardation region exhibits a so-called reverse dispersion property that the wavelength becomes larger as the wavelength becomes longer in the visible light region. That is, it is preferable that Re (450) <Re (550) <(Re (590) <) Re (630) is satisfied. The reason is that if the Re of the first retardation region is inverse wavelength dispersive, the optical wavelength is optimized at the center wavelength of about 550 nm in the visible light region, and there is a tendency to be optimized over the entire visible light region. Because there is. Ideally, the value obtained by dividing Re (λ) of the first phase difference region by the wavelength λ becomes constant. In this aspect, the transition on the Poincare sphere has a wavelength in the visible light region. This is the same regardless of the color shift problem occurring in the oblique direction.
 より高い正面CRを得るためには、リア側に配置される第1の位相差領域を構成する位相差フィルムのヘイズは、0.5以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましい。
 なお、本明細書において、フィルムのヘイズの測定方法は以下の通りである。フィルム試料40mm×80mmを準備し、25℃,60%RHの環境下、ヘイズメーター(NDH-2000、日本電色工業(株)製)により、JIS K-6714に従って測定する。
In order to obtain a higher front CR, the haze of the retardation film constituting the first retardation region disposed on the rear side is preferably 0.5 or less, more preferably 0.3 or less, and 0.2 More preferred are:
In addition, in this specification, the measuring method of the haze of a film is as follows. A film sample of 40 mm × 80 mm is prepared and measured according to JIS K-6714 with a haze meter (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.) in an environment of 25 ° C. and 60% RH.
 前記第1の位相差領域は、1枚又は2枚以上の位相差フィルムからなっていてもよい。その材料については特に制限はない。上記特性を満足するフィルムとしては、セルロースアシレート系フィルム、及びアクリル系ポリマーフィルムが好ましい。
セルロースアシレート系フィルム:
 本明細書では、「セルロースアシレート系フィルム」とは、セルロースアシレートを主成分(全成分の50質量%以上)として含有するフィルムをいう。当該フィルムの作製に用いられるセルロースアシレートは、セルロースの水酸基の水素原子を、アシル基に置換したものである。前記セルロースアシレートはセルロースの水酸基がアシル化されたもので、その置換基はアシル基の炭素原子数が2のアセチル基から炭素原子数が22のものまでいずれも用いることができる。本発明において使用されるセルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、セルロースの水酸基に置換する酢酸および/または炭素原子数3~22の脂肪酸の結合度を測定し、計算によって置換度を得ることができる。測定方法としては、ASTMのD-817-91に準じて実施することができる。
 なお、本発明の第1の位相差位相差領域を構成する位相差フィルムの材料として利用可能なセルロースアシレートの例には、特開2006-184640号公報の[0019]~[0025]に詳細な記載があるセルロースアシレートが含まれる。
The first retardation region may be composed of one or more retardation films. There is no restriction | limiting in particular about the material. As the film satisfying the above characteristics, a cellulose acylate film and an acrylic polymer film are preferable.
Cellulose acylate film:
In the present specification, the “cellulose acylate film” refers to a film containing cellulose acylate as a main component (50% by mass or more of all components). The cellulose acylate used for producing the film is obtained by substituting the hydrogen atom of the hydroxyl group of cellulose with an acyl group. The cellulose acylate is obtained by acylating a hydroxyl group of cellulose, and the substituent can be any from an acetyl group having 2 carbon atoms to an acyl group having 22 carbon atoms. In the cellulose acylate used in the present invention, the degree of substitution of cellulose with a hydroxyl group is not particularly limited, but the degree of binding of acetic acid and / or a fatty acid having 3 to 22 carbon atoms substituted with a hydroxyl group of cellulose is measured, The degree of substitution can be obtained by calculation. As a measuring method, it can be carried out according to ASTM D-817-91.
Examples of cellulose acylate that can be used as a material for the retardation film constituting the first retardation phase difference region of the present invention are described in detail in [0019] to [0025] of JP-A-2006-184640. Cellulose acylate with the following description is included.
 前記第1の位相差領域を構成する位相差フィルムの作製に利用されるセルロースアシレートの置換度については特に限定されないが、セルロースのアシル置換度が2.30~3.00であることが望ましい。また、低いヘイズの位相差フィルムを得るためには、アシル置換度は低い方が好ましく、アシル置換度が2.30~2.65であることが好ましく、2.35~2.60であることがより好ましく、2.40~2.60であることがさらに好ましい。一方、位相差フィルムが逆波長分散性を示すためには、アシル置換度は高い方が好ましく、具体的には、2.65~3.00であることが好ましく、2.75~3.00であることがより好ましく、2.80~3.00であることがさらに好ましい。
 また、上述のセルロースアシレートのアシル置換基のうちで、実質的にアセチル基/プロピオニル基/ブタノイル基の少なくとも2種類からなる場合においては、その全置換度が2.30~3.00の場合にセルロースアシレート系フィルムの光学異方性を効果的に低下させることができることがわかった。より好ましいアシル置換度は2.35~3.00であり、さらにのぞましくは2.40~3.00である。
The degree of substitution of cellulose acylate used for producing the retardation film constituting the first retardation region is not particularly limited, but the acyl substitution degree of cellulose is preferably 2.30 to 3.00. . In order to obtain a retardation film having a low haze, the acyl substitution degree is preferably low, and the acyl substitution degree is preferably 2.30 to 2.65, and preferably 2.35 to 2.60. Is more preferable and 2.40 to 2.60 is even more preferable. On the other hand, in order for the retardation film to exhibit reverse wavelength dispersion, it is preferable that the acyl substitution degree be higher, and specifically, 2.65 to 3.00 is preferable, and 2.75 to 3.00. More preferably, it is more preferably 2.80 to 3.00.
Further, among the acyl substituents of the above-mentioned cellulose acylate, in the case of substantially consisting of at least two kinds of acetyl group / propionyl group / butanoyl group, the total degree of substitution is 2.30 to 3.00 Further, it was found that the optical anisotropy of the cellulose acylate film can be effectively reduced. The acyl substitution degree is more preferably 2.35 to 3.00, and further preferably 2.40 to 3.00.
 また、前記第1の位相差領域を構成する位相差フィルムの作製に利用されるセルロースアシレートの重合度は、粘度平均重合度で180~700であり、セルロースアセテートにおいては、180~550がより好ましく、180~400がさらに好ましく、180~350が特に好ましい。重合度が高すぎるとセルロースアシレートのドープ溶液の粘度が高くなり、流延によりフィルム作製が困難になる。重合度が低すぎると作製したフィルムの強度が低下してしまう。なお、平均重合度は、宇田らの極限粘度法( 宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105~120頁、1962年)により測定できる。特開平9-95538に詳細に記載されている。 Further, the degree of polymerization of cellulose acylate used for producing the retardation film constituting the first retardation region is 180 to 700 in terms of viscosity average polymerization degree, and in the case of cellulose acetate, 180 to 550 is more preferable. Preferably, 180 to 400 is more preferable, and 180 to 350 is particularly preferable. When the degree of polymerization is too high, the viscosity of the cellulose acylate dope solution becomes high, and film production becomes difficult due to casting. If the degree of polymerization is too low, the strength of the produced film will decrease. The average degree of polymerization can be measured by the intrinsic viscosity method of Uda et al. (Kazuo Uda, Hideo Saito, Journal of Textile Society, Vol. 18, No. 1, pp. 105-120, 1962). This is described in detail in JP-A-9-95538.
 また、前記第1の位相差領域を構成する位相差フィルムの作製に利用されるセルロースアシレートの分子量分布はゲルパーミエーションクロマトグラフィーによって評価され、その多分散性指数Mw/Mn(Mwは質量平均分子量、Mnは数平均分子量)が小さく、分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0~3.0であることが好ましく、1.0~2.0であることがさらに好ましく、1.0~1.6であることが最も好ましい。 Further, the molecular weight distribution of cellulose acylate used for the production of the retardation film constituting the first retardation region was evaluated by gel permeation chromatography, and its polydispersity index Mw / Mn (Mw is a mass average) The molecular weight and Mn are preferably the number average molecular weight) and the molecular weight distribution is preferably narrow. The specific value of Mw / Mn is preferably 1.0 to 3.0, more preferably 1.0 to 2.0, and most preferably 1.0 to 1.6. preferable.
 1枚又は他のフィルムとともに、前記第1の位相差領域に要求される光学特性を満足するフィルムを作製するため、セルロースアシレートとともに、種々の添加剤を用いることができる。使用可能な添加剤の例には、光学的異方性を低下する化合物、波長分散調整剤、紫外線防止剤、可塑剤、劣化防止剤、微粒子、光学特性調整剤などが含まれる。本発明おいて、利用可能な添加剤の例には、特開2006-184640号公報の[0026]~[0218]に詳細な記載がある種々の添加剤が含まれる。また添加量の好ましい範囲についても、当該欄に記載されている好ましい範囲と同様である。 In order to produce a film that satisfies the optical properties required for the first retardation region together with one sheet or another film, various additives can be used together with cellulose acylate. Examples of additives that can be used include compounds that reduce optical anisotropy, wavelength dispersion adjusters, ultraviolet inhibitors, plasticizers, deterioration inhibitors, fine particles, optical property adjusters, and the like. In the present invention, examples of additives that can be used include various additives described in detail in [0026] to [0218] of JP-A-2006-184640. Further, the preferable range of the addition amount is the same as the preferable range described in the column.
 前記光学異方性を低下させる化合物は、芳香族基を含有してもよいし、含有しなくてもよい。また光学異方性を低下させる化合物は、分子量が150以上3000以下であることが好ましく、170以上2000以下であることが好ましく、200以上1000以下であることが特に好ましい。これらの分子量の範囲であれば、特定のモノマー構造であっても良いし、そのモノマーユニットが複数結合したオリゴマー構造、ポリマー構造でもよい。
 光学異方性を低下させる化合物は、好ましくは、25℃で液体であるか、融点が25~250℃の固体であり、さらに好ましくは、25℃で液体であるか、融点が25~200℃の固体である。また光学異方性を低下させる化合物は、セルロースアシレート系フィルム作製のドープ流延、乾燥の過程で揮散しないことが好ましい。
The compound for reducing the optical anisotropy may or may not contain an aromatic group. The compound that reduces the optical anisotropy preferably has a molecular weight of 150 or more and 3000 or less, preferably 170 or more and 2000 or less, and particularly preferably 200 or more and 1000 or less. As long as these molecular weights are within the range, a specific monomer structure may be used, or an oligomer structure or a polymer structure in which a plurality of the monomer units are bonded may be used.
The compound that reduces optical anisotropy is preferably a liquid at 25 ° C. or a solid having a melting point of 25 to 250 ° C., more preferably a liquid at 25 ° C. or a melting point of 25 to 200 ° C. It is a solid. Moreover, it is preferable that the compound which reduces optical anisotropy does not volatilize in the process of dope casting of cellulose acylate film production and drying.
 光学異方性を低下させる化合物の添加量は、セルロースアシレート固形分に対して0.01~30質量%であることが好ましく、1~25質量%であることがより好ましく、5~20質量% であることが特に好ましい。特に、本発明では、アシル置換度が2.85~3.00のセルロースアシレートに対し、前述の光学異方性を低下させる化合物を少なくとも一種、上記添加量で添加することが好ましい。
 なお、光学異方性を低下させる化合物は、単独で用いても、2種以上化合物を任意の比で混合して用いてもよい。また、光学異方性を低下させる化合物を添加する時期は、溶液製膜法においては、ドープ調製工程中のいずれのタイミングであってもよく、ドープ調製工程の最後に添加してもよい。
The amount of the compound that reduces optical anisotropy is preferably 0.01 to 30% by mass, more preferably 1 to 25% by mass, and more preferably 5 to 20% by mass based on the solid content of cellulose acylate. % Is particularly preferred. In particular, in the present invention, it is preferable to add at least one compound that reduces the optical anisotropy described above to the cellulose acylate having an acyl substitution degree of 2.85 to 3.00 in the above-mentioned addition amount.
In addition, the compound which reduces optical anisotropy may be used independently, or 2 or more types of compounds may be mixed and used by arbitrary ratios. In addition, in the solution casting method, the timing for adding the compound for reducing the optical anisotropy may be any timing during the dope preparation step, or may be added at the end of the dope preparation step.
 本発明では、第1の位相差領域の一部又は全部として使用されるセルロースアシレート系フィルムは、溶液キャスト法により製造することが好ましい。この方法では、セルロースアシレートを有機溶媒に溶解した溶液(ドープ)を用いてフィルムを製造することができる。上記添加剤を使用する場合は、添加剤はドープ調製のいずれのタイミングで添加してもよい。本発明に利用可能なセルロースアシレート系フィルムの製造方法については、特開2006-184640号公報の[0219]~[0224]の記載を参照することができる。 In the present invention, the cellulose acylate film used as part or all of the first retardation region is preferably produced by a solution casting method. In this method, a film can be produced using a solution (dope) obtained by dissolving cellulose acylate in an organic solvent. When using the said additive, you may add an additive at any timing of dope preparation. For the method for producing a cellulose acylate film that can be used in the present invention, reference can be made to the descriptions in [0219] to [0224] of JP-A-2006-184640.
 前記溶液キャスト法として、共流延法、逐次流延法、塗布法などの積層流延法も用いることができる。共流延法および逐次流延法により製造する場合には、先ず、各層用のセルロースアシレート溶液(ドープ)を調製する。共流延法(重層同時流延)は、流延用支持体(バンドまたはドラム)の上に、各層(3層あるいはそれ以上でも良い)各々の流延用ドープを別のスリットなどから同時に押出す流延用ギーサからドープを押出して、各層同時に流延し、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 逐次流延法は、流延用支持体の上に先ず第1層用の流延用ドープを流延用ギーサから押出して、流延し、乾燥あるいは乾燥することなく、その上に第2層用の流延用ドープを流延用ギーサから押出して流延する要領で、必要なら第3層以上まで逐次ドープを流延・積層して、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 塗布法は、一般的には、コア層のフィルムを溶液製膜法によりフィルムに成形し、表層に塗布する塗布液を調製し、適当な塗布機を用いて、片面ずつまたは両面同時にフィルムに塗布液を塗布・乾燥して積層構造のフィルムを成形する方法である。
As the solution casting method, a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used. When producing by the co-casting method and the sequential casting method, first, a cellulose acylate solution (dope) for each layer is prepared. In the co-casting method (multilayer simultaneous casting), the casting dope for each layer (three layers or more) may be simultaneously pressed from another slit or the like on a casting support (band or drum). This is a casting method in which a dope is extruded from a casting giusa to be cast, and each layer is cast simultaneously, peeled off from a support at an appropriate time, and dried to form a film.
In the sequential casting method, the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying. The dope for casting is extruded from the casting gieser and casted, and if necessary, the dope is cast and laminated to the third layer or more, peeled off from the support at an appropriate time, and dried. This is a casting method for forming a film.
In general, the core layer film is formed into a film by a solution casting method to prepare a coating solution to be applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate applicator. In this method, a liquid film is applied and dried to form a laminated film.
アクリル系ポリマーフィルム:
 アクリル系ポリマーフィルムは、(メタ)アクリル酸エステルの少なくとも1種から誘導される繰り返し単位を有するアクリル系ポリマーを主成分とするフィルムである。当該アクリル系ポリマーフィルムの好ましい例は、(メタ)アクリル酸エステルから誘導される繰り返し単位とともに、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーである。このアクリル系ポリマーについては、特開2008-9378号公報に詳細な記載があり、参照することができる。
Acrylic polymer film:
The acrylic polymer film is a film mainly composed of an acrylic polymer having a repeating unit derived from at least one of (meth) acrylic acid esters. A preferred example of the acrylic polymer film is an acrylic containing at least one unit selected from a lactone ring unit, a maleic anhydride unit, and a glutaric anhydride unit together with a repeating unit derived from a (meth) acrylic ester. Based polymer. The acrylic polymer is described in detail in Japanese Patent Application Laid-Open No. 2008-9378 and can be referred to.
 フィルム成形の方法としては、種々のフィルム成形方法を利用することができ、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法などが挙げられる。これらのフィルム成形方法のうち、溶液キャスト法(溶液流延法)、溶融押出法が特に好ましい。 As the film forming method, various film forming methods can be used, and examples thereof include a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression forming method. Of these film forming methods, the solution casting method (solution casting method) and the melt extrusion method are particularly preferable.
 溶液キャスト法(溶液流延法)に使用される溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼンなどの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は、単独で用いても2種以上を併用してもよい。 Solvents used in the solution casting method (solution casting method) include, for example, chlorine solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene and benzene; methanol, ethanol, isopropanol, n-butanol, Examples include alcohol solvents such as 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone, ethyl acetate, diethyl ether, and the like. These solvents may be used alone or in combination of two or more.
 溶液キャスト法(溶液流延法)を行うための装置としては、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーターなどが挙げられる。 Examples of apparatuses for performing the solution casting method (solution casting method) include a drum casting machine, a band casting machine, and a spin coater.
 溶融押出法としては、Tダイ法、インフレーション法などが挙げられ、その際の、フィルムの成形温度は、好ましくは150~350℃、より好ましくは200~300℃である。 Examples of the melt extrusion method include a T-die method and an inflation method. In this case, the film forming temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C.
 また、リア側に配置される第1の位相差領域を構成している位相差フィルムの厚みは、薄いほうが好ましいが、コーナームラ抑制のためには、位相差フィルムにかかる応力による位相差フィルムの変形を小さくする必要がある。第1の位相差領域を構成している位相差フィルムの膜厚は20μm以上、200μm以下とすることがコーナームラの抑制及び製造適性の観点で好ましい。 Further, the thickness of the retardation film constituting the first retardation region disposed on the rear side is preferably thinner, but in order to suppress corner unevenness, the thickness of the retardation film due to the stress applied to the retardation film is reduced. It is necessary to reduce the deformation. The thickness of the retardation film constituting the first retardation region is preferably 20 μm or more and 200 μm or less from the viewpoint of corner unevenness suppression and manufacturing suitability.
2. 第2の位相差領域
 フロント側偏光子と液晶セルとの間に配置される第2の位相差領域は、その光学特性が、斜め方向のコントラストの向上、及び黒表示時のカラーシフトの軽減に寄与し得るように調整されているのが好ましい。好ましい第2の位相差領域の一例は、30nm≦Re(590)≦90nm、且つ170nm≦Rth(590)≦300nm
を満足する位相差領域である。この範囲であると、一般的なVA型液晶セル(Δnd(590)は180~350nm程度)の黒表示時の斜め方向の光漏れを軽減できる。
 さらに、前述したように、第2の位相差領域のレターデーション、特にRth、の好ましい範囲は、液晶層のΔnd(λ)の値に応じて変動する。ここで、波長λにおける第1の位相差領域のRthをRth1(λ)、第2の位相差領域のRthをRth2(λ)とすると、液晶層のΔnd(λ)および第1の位相差領域のRth(λ)に対する、さらに好ましい第2の位相差領域の一例は、
 Δnd(590)-70≦Rth1(590)+Rth2(590)≦Δnd(590)-10
を満足する位相差領域であり、より好ましくは、
 Δnd(590)-60≦Rth1(590)+Rth2(590)≦Δnd(590)-20
を満足する位相差領域である。この範囲であると、VA型液晶セルの黒表示時の斜め方向の光漏れをより軽減できる。
 また、上記した通り、白表示時の透過率を高くする(=正面CRを高くする)ためには、液晶層のΔnd(590)が280nm以上340nm以下であることが好ましい。この場合、フロント側に配置される第2の位相差領域は、
 220nm≦Rth(590)≦280nm
であることが好ましく、
 230nm≦Rth(590)≦280nm
であることがより好ましい。
 一方で、製造適性を考慮すると、第2の位相差領域として、Rth(590)≦230nmの位相差フィルムを利用する構成が好ましい場合がある。一般的に、高い位相差の位相差フィルムを得るためには、延伸倍率の高い延伸処理を行ったり、または位相差の発現に寄与する添加剤の添加量を増やしたりする必要があるが、延伸倍率が高くなるとフィルムの切断が起こり易くなり、また、添加剤の添加量が多くなるとフィルムから添加剤が染み出す場合があるためである。
 Rth(590)≦230nmの位相差フィルムを利用するためには、液晶セルのΔnd(590)は、Δnd(590)≦290nmであることが好ましく、Δnd(590)≦280nmであることがより好ましい。
2. Second retardation region The second retardation region disposed between the front polarizer and the liquid crystal cell has an optical characteristic that improves contrast in an oblique direction and reduces color shift during black display. It is preferably adjusted so that it can contribute. An example of a preferable second retardation region is 30 nm ≦ Re (590) ≦ 90 nm and 170 nm ≦ Rth (590) ≦ 300 nm.
Is a phase difference region satisfying the above. Within this range, light leakage in an oblique direction during black display of a general VA liquid crystal cell (Δnd (590) is about 180 to 350 nm) can be reduced.
Furthermore, as described above, the retardation of the second retardation region, particularly the preferable range of Rth, varies according to the value of Δnd (λ) of the liquid crystal layer. Here, when Rth of the first retardation region at wavelength λ is Rth 1 (λ) and Rth of the second retardation region is Rth 2 (λ), Δnd (λ) of the liquid crystal layer and the first position An example of a more preferable second phase difference region with respect to Rth (λ) of the phase difference region is
Δnd (590) −70 ≦ Rth 1 (590) + Rth 2 (590) ≦ Δnd (590) −10
A phase difference region satisfying
Δnd (590) −60 ≦ Rth 1 (590) + Rth 2 (590) ≦ Δnd (590) −20
Is a phase difference region satisfying the above. Within this range, light leakage in an oblique direction during black display of the VA liquid crystal cell can be further reduced.
Further, as described above, in order to increase the transmittance during white display (= increase the front CR), it is preferable that Δnd (590) of the liquid crystal layer is 280 nm or more and 340 nm or less. In this case, the second phase difference region disposed on the front side is
220 nm ≦ Rth (590) ≦ 280 nm
It is preferable that
230 nm ≦ Rth (590) ≦ 280 nm
It is more preferable that
On the other hand, when manufacturing aptitude is considered, a configuration using a retardation film of Rth (590) ≦ 230 nm may be preferable as the second retardation region. In general, in order to obtain a retardation film having a high retardation, it is necessary to perform a stretching treatment with a high stretching ratio or increase the amount of an additive that contributes to the expression of the retardation. This is because when the magnification is high, the film is likely to be cut, and when the amount of the additive is increased, the additive may ooze out from the film.
In order to use a retardation film of Rth (590) ≦ 230 nm, Δnd (590) of the liquid crystal cell is preferably Δnd (590) ≦ 290 nm, and more preferably Δnd (590) ≦ 280 nm. .
 第2の位相差領域は、一枚の位相差フィルムからなっていても、2枚以上のフィルムの積層体であってもよい。また、上記特性を満足する限り、その材料について特に制限はない。種々のポリマーフィルム、例えば、セルロースアシレート、ポリカーボネート系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー等を利用することができる。また、ポリエチレン、ポリプロピレン等のポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、塩化ビニリデン系ポリマー、ビニルアルコール系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーを混合したポリマー等から1種又は2種以上のポリマーを選択し、主成分として用いてポリマーフィルムを作製し、上記特性を満足する組合せで、第2の位相差領域を構成している位相差フィルムの作製に利用することができる。 The second retardation region may be a single retardation film or a laminate of two or more films. Moreover, there is no restriction | limiting in particular about the material, as long as the said characteristic is satisfied. Various polymer films such as cellulose acylate, polycarbonate polymer, polyester polymer such as polyethylene terephthalate and polyethylene naphthalate, acrylic polymer such as polymethyl methacrylate, polystyrene, acrylonitrile / styrene copolymer (AS resin), etc. Styrene polymers and the like can be used. Polyolefins such as polyethylene and polypropylene, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers, polyethersulfone polymers , Polyether ether ketone polymer, polyphenylene sulfide polymer, vinylidene chloride polymer, vinyl alcohol polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or polymer mixed with the above polymers, etc. One or two or more polymers are selected from the above, and a polymer film is produced using the polymer as a main component, and the phase constituting the second retardation region in a combination satisfying the above characteristics. It can be used in the production of the film.
 第2の位相差領域を構成する位相差フィルムとしては、セルロースアシレート系フィルムを用いるのが好ましい。第2の位相差領域を構成する位相差フィルムとして利用可能なセルロースアシレート系フィルムの原料としては、アシル置換度が2.00~3.00であることが好ましい。また、フィルムは延伸することで所望のレターデーションに調整するが、延伸時のレターデーション発現性の観点からは、アシル置換度は低い方が好ましい。ただし、アシル置換度が低いほど、未延伸時のフィルムのRthが高くなるため、VA液晶表示装置の位相差フィルムとしては、アシル置換度が2.00~2.65であることが好ましく、2.20~2.65であることがより好ましく、2.30~2.60であることがさらに好ましい。一方、位相差フィルムが逆波長分散性を示すためには、アシル置換度の高い方が好ましく、具体的には、2.65~3.00であることが好ましく、2.75~3.00であることがより好ましく、2.80~3.00であることがさらに好ましい。
 また、前記セルロースアシレートは、セルロースアセテートであることが好ましいが、アセチル基に代えて、又はアセチル基とともに、アセチル基以外のアシル基で置換されていてもよい。中でも、アセチル、プロピオニル及びブチリル基から選ばれる少なくとも一種のアシル基を有するセルロースアシレートが好ましく、及びアセチル、プロピオニル及びブチリル基から選ばれる少なくとも二種のアシル基を有するセルロースアシレートがより好ましい。さらに、アセチル基と、プロピオニル及び/又はブチリル基とを有するセルロースアシレートが好ましく、アセチル基の置換度が1.0~2.97で、プロピオニル及び/又はブチリル基の置換度が0.2~2.5のセルロースアシレートがより好ましい。
As the retardation film constituting the second retardation region, it is preferable to use a cellulose acylate film. As a raw material of a cellulose acylate film that can be used as a retardation film constituting the second retardation region, the acyl substitution degree is preferably 2.00 to 3.00. In addition, the film is adjusted to have a desired retardation by stretching, but from the viewpoint of retardation development during stretching, it is preferable that the acyl substitution degree is low. However, the lower the acyl substitution degree, the higher the Rth of the unstretched film. Therefore, the retardation degree of the VA liquid crystal display device preferably has an acyl substitution degree of 2.00 to 2.65. 20 to 2.65 is more preferable, and 2.30 to 2.60 is even more preferable. On the other hand, in order for the retardation film to exhibit reverse wavelength dispersion, it is preferable that the acyl substitution degree is higher, specifically, 2.65 to 3.00 is preferable, and 2.75 to 3.00. More preferably, it is more preferably 2.80 to 3.00.
The cellulose acylate is preferably cellulose acetate, but may be substituted with an acyl group other than the acetyl group instead of the acetyl group or together with the acetyl group. Among these, cellulose acylate having at least one acyl group selected from acetyl, propionyl and butyryl groups is preferable, and cellulose acylate having at least two acyl groups selected from acetyl, propionyl and butyryl groups is more preferable. Further, a cellulose acylate having an acetyl group and a propionyl and / or butyryl group is preferable, the substitution degree of the acetyl group is 1.0 to 2.97, and the substitution degree of the propionyl and / or butyryl group is 0.2 to A cellulose acylate of 2.5 is more preferred.
 また、前記セルロースアシレートは、200~800の質量平均重合度を有することが好ましく、250~550の質量平均重合度を有することがさらに好ましい。また本発明で用いられるセルロースアシレートは、70000~230000の数平均分子量を有することが好ましく、75000~230000の数平均分子量を有することがさらに好ましく、78000~120000の数平均分子量を有することがよりさらに好ましい。 The cellulose acylate preferably has a mass average degree of polymerization of 200 to 800, more preferably 250 to 550. The cellulose acylate used in the present invention preferably has a number average molecular weight of 70000 to 230,000, more preferably a number average molecular weight of 75000 to 230,000, and more preferably a number average molecular weight of 78000 to 120,000. Further preferred.
 上記第1の位相差領域を構成する位相差フィルムとして利用可能なセルロースアシレートの原料と同様であるが、但し、光学的異方性を低下させる化合物等、第1の位相差領域を構成している位相差フィルム用のセルロースアシレート系フィルムの作製に用いられる添加剤は、第2の位相差領域を構成する位相差フィルム用セルロースアシレート系フィルムの作製には用いないことが好ましい。一方、第2の位相差領域を構成する位相差フィルム用セルロースアシレート系フィルムの作製には、レターデーション発現剤を添加剤として利用することが好ましい。使用可能なレターデーション発現剤としては、棒状または円盤状化合物、正の複屈折性化合物からなるものを挙げることができる。前記棒状または円盤状化合物としては、少なくとも二つの芳香族環を有する化合物をレターデーション発現剤として好ましく用いることができる。前記棒状化合物からなるレターデーション発現剤の添加量は、セルロースアシレートを含むポリマー成分100質量部に対して0.1~30質量部であることが好ましく、0.5~20質量部であることがさらに好ましい。前記円盤状のレターデーション発現剤は、前記セルロースアシレート樹脂100質量部に対して、0.05~20質量部の範囲で使用することが好ましく、0.1~15質量部の範囲で使用することがより好ましく、0.1~10質量部の範囲で使用することがさらに好ましい。
 前記円盤状化合物はRthレターデーション発現性において前記棒状化合物よりも優れているため、特に大きなRthレターデーションを必要とする場合には好ましく使用される。2種類以上のレターデーション発現剤を併用してもよい。
 前記レターデーション発現剤は、250~400nmの波長領域に最大吸収を有することが好ましく、可視領域に実質的に吸収を有していないことが好ましい。
It is the same as the raw material of cellulose acylate that can be used as the retardation film constituting the first retardation region, except that the first retardation region such as a compound that reduces optical anisotropy is constituted. It is preferable that the additive used for producing the cellulose acylate film for retardation film is not used for producing the cellulose acylate film for retardation film constituting the second retardation region. On the other hand, for producing a cellulose acylate film for retardation film constituting the second retardation region, it is preferable to use a retardation enhancer as an additive. Examples of the retardation developer that can be used include a rod-like or discotic compound and a positive birefringent compound. As the rod-like or discotic compound, a compound having at least two aromatic rings can be preferably used as a retardation developer. The addition amount of the retardation developer composed of the rod-like compound is preferably 0.1 to 30 parts by mass, and preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component containing cellulose acylate. Is more preferable. The discotic retardation enhancer is preferably used in the range of 0.05 to 20 parts by weight, and in the range of 0.1 to 15 parts by weight, with respect to 100 parts by weight of the cellulose acylate resin. It is more preferable to use in the range of 0.1 to 10 parts by mass.
Since the discotic compound is superior to the rod-like compound in Rth retardation expression, it is preferably used when a particularly large Rth retardation is required. Two or more retardation developers may be used in combination.
The retardation developing agent preferably has a maximum absorption in the wavelength region of 250 to 400 nm, and preferably has substantially no absorption in the visible region.
(1)円盤状化合物
 前記円盤状化合物について説明する。円盤状化合物としては少なくとも二つの芳香族環を有する化合物を用いることができる。
 本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。本発明に用いることができる前記円盤状化合物としては、例えば、特開2008-181105号公報の[0038]~[0046]に記載される化合物を挙げることができる。
(1) Discotic compound The discotic compound will be described. As the discotic compound, a compound having at least two aromatic rings can be used.
In the present specification, the “aromatic ring” includes an aromatic heterocycle in addition to an aromatic hydrocarbon ring. Examples of the discotic compound that can be used in the present invention include compounds described in JP-A 2008-181105, [0038] to [0046].
 第2の位相差領域を構成する位相差フィルムの作製に利用可能な前記円盤状化合物の例には、下記一般式(I)で表される化合物が含まれる。 Examples of the discotic compound that can be used for producing the retardation film constituting the second retardation region include compounds represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、X1は、単結合、-NR4-、-O-又はS-であり;X2は、単結合、-NR5-、-O-又はS-であり;X3は、単結合、-NR6-、-O-又はS-である。また、R1、R2、及びR3は、それぞれ独立に、アルキル基、アルケニル基、芳香族環基又は複素環基であり;R4、R5及びR6は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。 In the formula, X 1 is a single bond, —NR 4 —, —O— or S—; X 2 is a single bond, —NR 5 —, —O— or S—; X 3 is a single bond A bond, —NR 6 —, —O— or S—. R 1 , R 2 , and R 3 are each independently an alkyl group, an alkenyl group, an aromatic ring group, or a heterocyclic group; R 4 , R 5, and R 6 are each independently a hydrogen atom , An alkyl group, an alkenyl group, an aryl group or a heterocyclic group.
 以下に前記一般式(I)で表される化合物の好ましい例(I-(1)~IV-(10))を下記に示すが、本発明はこれらの具体例に限定されるものではない。 Preferred examples (I- (1) to IV- (10)) of the compounds represented by the general formula (I) are shown below, but the present invention is not limited to these specific examples.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(2)棒状化合物
 本発明では前述の円盤状化合物の他に直線的な分子構造を有する棒状化合物も好ましく用いることができる。本発明に用いることができる前記棒状化合物としては、例えば、特開2007-268898号公報の[0053]~[0095]に記載される化合物を挙げることができる。
(2) Rod-shaped compound In the present invention, a rod-shaped compound having a linear molecular structure can be preferably used in addition to the aforementioned disk-shaped compound. Examples of the rod-like compound that can be used in the present invention include compounds described in [0053] to [0095] of JP-A-2007-268898.
(3)正の複屈折性化合物
 正の複屈折性化合物とは、分子が一軸性の配向をとって形成された層に光が入射したとき、前記配向方向の光の屈折率が前記配向方向に直交する方向の光の屈折率より大きくなるポリマーをいう。
 このような正の複屈折性化合物としては、特に制限ないが、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン、ポリアミドイミドおよびポリエステルイミド等の固有複屈折値が正のポリマーを挙げることができ、ポリエーテルケトンおよびポリエステル系ポリマー等が好ましく、ポリエステル系ポリマーがより好ましい。
(3) Positive birefringent compound A positive birefringent compound is a compound in which light is incident on a layer formed with a uniaxial orientation of molecules, and the refractive index of light in the orientation direction is the orientation direction. Refers to a polymer that is greater than the refractive index of light in the direction orthogonal to the.
Such a positive birefringent compound is not particularly limited, and examples thereof include polymers having a positive intrinsic birefringence value such as polyamide, polyimide, polyester, polyetherketone, polyamideimide and polyesterimide. Ketones and polyester polymers are preferred, and polyester polymers are more preferred.
 前記ポリエステル系ポリマーは、炭素数2~20の脂肪族ジカルボン酸と炭素数8~20の芳香族ジカルボン酸の混合物と、炭素数2~12の脂肪族ジオール、炭素数4~20のアルキルエーテルジオールおよび炭素数6~20の芳香族ジオールから選ばれる少なくとも1種類以上のジオールとの反応によって得られるものであり、かつ反応物の両末端は反応物のままでもよいが、さらにモノカルボン酸類やモノアルコール類またはフェノール類を反応させて、所謂末端の封止を実施してもよい。この末端封止は、特にフリーなカルボン酸類を含有させないために実施されることが、保存性などの点で有効である。本発明のポリエステル系ポリマーに使用されるジカルボン酸は、炭素数4~20の脂肪族ジカルボン酸残基または炭素数8~20の芳香族ジカルボン酸残基であることが好ましい。 The polyester polymer includes a mixture of an aliphatic dicarboxylic acid having 2 to 20 carbon atoms and an aromatic dicarboxylic acid having 8 to 20 carbon atoms, an aliphatic diol having 2 to 12 carbon atoms, and an alkyl ether diol having 4 to 20 carbon atoms. And at least one diol selected from aromatic diols having 6 to 20 carbon atoms, and both ends of the reaction product may remain as the reaction product. Alcohols or phenols may be reacted to perform so-called end sealing. It is effective in terms of storage stability that the end capping is performed in particular so as not to contain free carboxylic acids. The dicarboxylic acid used in the polyester polymer of the present invention is preferably an aliphatic dicarboxylic acid residue having 4 to 20 carbon atoms or an aromatic dicarboxylic acid residue having 8 to 20 carbon atoms.
 好ましく用いられる炭素数2~20の脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸および1,4-シクロヘキサンジカルボン酸が挙げられる。
 また炭素数8~20の芳香族ジカルボン酸としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,8-ナフタレンジカルボン酸および2,6-ナフタレンジカルボン酸等がある。
Examples of the aliphatic dicarboxylic acid having 2 to 20 carbon atoms preferably used include oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. , Dodecanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid.
Examples of the aromatic dicarboxylic acid having 8 to 20 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,8 -Naphthalenedicarboxylic acid and 2,6-naphthalenedicarboxylic acid.
 これらの中でも好ましい脂肪族ジカルボン酸としては、マロン酸、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、1,4-シクロヘキサンジカルボン酸であり、芳香族ジカルボン酸としては、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸である。特に好ましくは、脂肪族ジカルボン酸成分としてはコハク酸、グルタル酸、アジピン酸であり、芳香族ジカルボン酸としてはフタル酸、テレフタル酸、イソフタル酸、である。 Among these, preferable aliphatic dicarboxylic acids are malonic acid, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, and 1,4-cyclohexanedicarboxylic acid, and aromatic dicarboxylic acid is phthalic acid. Acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid. Particularly preferably, the aliphatic dicarboxylic acid component is succinic acid, glutaric acid, and adipic acid, and the aromatic dicarboxylic acid is phthalic acid, terephthalic acid, and isophthalic acid.
 前述の脂肪族ジカルボン酸と芳香族ジカルボン酸のそれぞれの少なくとも一種類を組み合わせて用いられるが、その組み合わせは特に限定されるものではなく、それぞれの成分を数種類組み合わせても問題ない。 Although at least one of each of the above-mentioned aliphatic dicarboxylic acids and aromatic dicarboxylic acids is used in combination, the combination is not particularly limited, and there is no problem even if several types of each component are combined.
 前記正の複屈折性化合物に利用されるジオールまたは芳香族環含有ジオールは、例えば、炭素数2~20の脂肪族ジオール、炭素数4~20のアルキルエーテルジオールおよび炭素数6~20の芳香族環含有ジオールから選ばれるものである。 Examples of the diol or aromatic ring-containing diol used in the positive birefringent compound include an aliphatic diol having 2 to 20 carbon atoms, an alkyl ether diol having 4 to 20 carbon atoms, and an aromatic having 6 to 20 carbon atoms. It is selected from ring-containing diols.
 炭素原子2~20の脂肪族ジオールとしては、アルキルジオールおよび脂環式ジオール類を挙げることができ、例えば、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロ-ルペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。 Examples of the aliphatic diol having 2 to 20 carbon atoms include alkyl diols and alicyclic diols such as ethane diol, 1,2-propane diol, 1,3-propane diol, 1,2-butane. Diol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol) ), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3 -Methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl 1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, and the like. Or it is used as a mixture of two or more.
 好ましい脂肪族ジオールとしては、エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールであり、特に好ましくはエタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールである。 Preferred aliphatic diols include ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1 , 4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, particularly preferred Is ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Hexanediol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol.
 炭素数4~20のアルキルエーテルジオールとしては、好ましくは、ポリテトラメチレンエーテルグリコール、ポリエチレンエーテルグリコールおよびポリプロピレンエーテルグリコールならびにこれらの組み合わせが挙げられる。その平均重合度は、特に限定されないが好ましくは2~20であり、より好ましくは2~10であり、さらには2~5であり、特に好ましくは2~4である。これらの例としては、典型的に有用な市販のポリエーテルグリコール類としては、カーボワックス(Carbowax)レジン、プルロニックス(Pluronics) レジンおよびニアックス(Niax)レジンが挙げられる。 Examples of the alkyl ether diol having 4 to 20 carbon atoms preferably include polytetramethylene ether glycol, polyethylene ether glycol, polypropylene ether glycol, and combinations thereof. The average degree of polymerization is not particularly limited, but is preferably 2 to 20, more preferably 2 to 10, further 2 to 5, and particularly preferably 2 to 4. Examples of these typically commercially available polyether glycols include Carbowax resin, Pluronics® resin and Niax resin.
 炭素数6~20の芳香族ジオールとしては、特に限定されないがビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノールが挙げられ、好ましくはビスフェノールA、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノールである。 Examples of the aromatic diol having 6 to 20 carbon atoms include, but are not limited to, bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, and 1,4-benzenedimethanol. Of these, bisphenol A, 1,4-hydroxybenzene, and 1,4-benzenedimethanol are preferred.
 前記正の複屈折性化合物は、末端がアルキル基あるいは芳香族基で封止された化合物であることが好ましい。これは、末端を疎水性官能基で保護することにより、高温高湿での経時劣化に対して有効であり、エステル基の加水分解を遅延させる役割を示すことが要因となっている。
 前記正の複屈折性化合物の両末端がカルボン酸やOH基とならないように、モノアルコール残基やモノカルボン酸残基で保護することが好ましい。
 この場合、モノアルコールとしては炭素数1~30の置換、無置換のモノアルコールが好ましく、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコールなどの脂肪族アルコール、ベンジルアルコール、3-フェニルプロパノールなどの置換アルコールなどが挙げられる。
The positive birefringent compound is preferably a compound whose end is sealed with an alkyl group or an aromatic group. This is because the terminal is protected with a hydrophobic functional group, which is effective against deterioration with time at high temperature and high humidity, and is due to the role of delaying hydrolysis of the ester group.
It is preferable to protect with a monoalcohol residue or a monocarboxylic acid residue so that both ends of the positive birefringent compound do not become carboxylic acid or OH group.
In this case, the monoalcohol is preferably a substituted or unsubstituted monoalcohol having 1 to 30 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol. , Octanol, isooctanol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, aliphatic alcohols such as dodecaoctanol, allyl alcohol, oleyl alcohol, benzyl alcohol, 3-phenyl Examples include substituted alcohols such as propanol.
 好ましく使用され得る末端封止用アルコールは、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、イソペンタノール、ヘキサノール、イソヘキサノール、シクロヘキシルアルコール、イソオクタノール、2-エチルヘキシルアルコール、イソノニルアルコール、オレイルアルコール、ベンジルアルコールであり、特にはメタノール、エタノール、プロパノール、イソブタノール、シクロヘキシルアルコール、2-エチルヘキシルアルコール、イソノニルアルコール、ベンジルアルコールである。 End-capping alcohols that can be preferably used are methanol, ethanol, propanol, isopropanol, butanol, isobutanol, isopentanol, hexanol, isohexanol, cyclohexyl alcohol, isooctanol, 2-ethylhexyl alcohol, isononyl alcohol, oleyl alcohol Benzyl alcohol, in particular methanol, ethanol, propanol, isobutanol, cyclohexyl alcohol, 2-ethylhexyl alcohol, isononyl alcohol, benzyl alcohol.
 また、モノカルボン酸残基で封止する場合は、モノカルボン酸残基として使用されるモノカルボン酸は、炭素数1~30の置換、無置換のモノカルボン酸が好ましい。これらは、脂肪族モノカルボン酸でも芳香族環含有カルボン酸でもよい。好ましい脂肪族モノカルボン酸について記述すると、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸が挙げられ、芳香族環含有モノカルボン酸としては、例えば安息香酸、p-tert-ブチル安息香酸、p-tert-アミル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上を使用することができる。 In the case of sealing with a monocarboxylic acid residue, the monocarboxylic acid used as the monocarboxylic acid residue is preferably a substituted or unsubstituted monocarboxylic acid having 1 to 30 carbon atoms. These may be aliphatic monocarboxylic acids or aromatic ring-containing carboxylic acids. Preferred aliphatic monocarboxylic acids are described, for example, acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid, and examples of the aromatic ring-containing monocarboxylic acid include Benzoic acid, p-tert-butylbenzoic acid, p-tert-amylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, aminobenzoic acid, acetoxybenzoic acid, etc. Yes, these can be used alone or in combination of two or more.
 前記正の複屈折性化合物の合成は、常法により上記ジカルボン酸とジオールおよび/または末端封止用のモノカルボン酸またはモノアルコール、とのポリエステル化反応またはエステル交換反応による熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコール類との界面縮合法のいずれかの方法によっても容易に合成し得るものである。これらのポリエステル系添加剤については、村井孝一編者「添加剤 その理論と応用」(株式会社幸書房、昭和48年3月1日初版第1版発行)に詳細な記載がある。また、特開平05-155809号、特開平05-155810号、特開平5-197073号、特開2006-259494号、特開平07-330670号、特開2006-342227号、特開2007-003679号各公報などに記載されている素材を利用することもできる。
 以下に、前記正の複屈折性化合物の具体例を記すが、本発明で用いることができる正の複屈折性化合物はこれらに限定されるものではない。
The positive birefringent compound may be synthesized by a hot melt condensation method using a polyesterification reaction or a transesterification reaction between the dicarboxylic acid and a diol and / or a monocarboxylic acid or monoalcohol for end-capping according to a conventional method, Alternatively, it can be easily synthesized by any of the interfacial condensation methods of acid chlorides of these acids and glycols. These polyester-based additives are described in detail in Koichi Murai, “Additives, Theory and Application” (Kokaibo Co., Ltd., first edition published on March 1, 1973). Also, JP-A Nos. 05-155809, 05-155810, JP-A-5-97073, JP-A-2006-259494, JP-A-07-330670, JP-A-2006-342227, JP-A-2007-003679. The materials described in each publication can also be used.
Specific examples of the positive birefringent compound are described below, but the positive birefringent compound that can be used in the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2中、PAはフタル酸を、TPAはテレフタル酸を、IPAはイソフタル酸を、AAはアジピン酸を、SAはコハク酸を、2,6-NPAは2,6-ナフタレンジカルボン酸を、2,8-NPAは2,8-ナフタレンジカルボン酸を、1,5-NPAは1,5-ナフタレンジカルボン酸を、1,4-NPAは1,4-ナフタレンジカルボン酸を、1,8-NPAは1,8-ナフタレンジカルボン酸をそれぞれ示している。 In Tables 1 and 2, PA is phthalic acid, TPA is terephthalic acid, IPA is isophthalic acid, AA is adipic acid, SA is succinic acid, and 2,6-NPA is 2,6-naphthalenedicarboxylic acid. 2,8-NPA is 2,8-naphthalenedicarboxylic acid, 1,5-NPA is 1,5-naphthalenedicarboxylic acid, 1,4-NPA is 1,4-naphthalenedicarboxylic acid, 1,8 -NPA represents 1,8-naphthalenedicarboxylic acid, respectively.
 このような前記正の複屈折性化合物の添加量は、セルロースアシレート樹脂100質量部に対して、1~30質量部であることが好ましく、4~25質量部であることがより好ましく、10~20質量部であることが特に好ましい。 The addition amount of the positive birefringent compound is preferably 1 to 30 parts by mass, more preferably 4 to 25 parts by mass with respect to 100 parts by mass of the cellulose acylate resin. It is particularly preferable that the amount be ˜20 parts by mass.
 前記セルロースアシレート系フィルムの作製に用いられるセルロースアシレート溶液に、前記レターデーション発現剤のほかに、その他の添加剤を有していてもよい。その他の添加剤としては、酸化防止剤、紫外線吸収剤、剥離促進剤、可塑剤などをあげることができ、いずれも公知の添加剤を用いることができる。 The cellulose acylate solution used for the production of the cellulose acylate film may have other additives in addition to the retardation developer. Examples of other additives include antioxidants, ultraviolet absorbers, peeling accelerators, plasticizers, and the like, and any known additive can be used.
 前記セルロースアシレート溶液に、得られるフィルムの機械的物性を改良するため、または乾燥速度を向上するために、可塑剤を添加することができる。本発明に用いることができる前記可塑剤としては、例えば、特開2008-181105号公報の[0067]に記載される化合物を挙げることができる。 A plasticizer can be added to the cellulose acylate solution in order to improve the mechanical properties of the resulting film or to improve the drying speed. Examples of the plasticizer that can be used in the present invention include compounds described in JP-A-2008-181105, [0067].
 また、第2の位相差領域を構成する位相差フィルムとしては、環状オレフィン系ポリマーフィルムを用いるのも好ましい。該環状オレフィン系ポリマーフィルムの原料及びその製造方法、並びに該原料を用いたフィルムの製造方法については、特開2006-293342号公報の[0098]~[0193]に詳細な記載があり、本発明において参照することができる。第2の位相差領域を構成する位相差フィルムとして利用可能な環状オレフィン系ポリマーフィルムの例には、ノルボルネン系ポリマーフィルムが含まれ、市販のポリマーでは、アートン(JSR製)、ゼオノア(日本ゼオン製)などを用いることができる。 Also, as the retardation film constituting the second retardation region, it is also preferable to use a cyclic olefin polymer film. The raw material of the cyclic olefin polymer film, the production method thereof, and the production method of the film using the raw material are described in detail in [0098] to [0193] of JP-A-2006-293342. Can be referred to. Examples of the cyclic olefin-based polymer film that can be used as the retardation film constituting the second retardation region include a norbornene-based polymer film, and commercially available polymers include Arton (manufactured by JSR) and Zeonore (manufactured by Nippon Zeon). ) Etc. can be used.
 第2の位相差領域を構成する位相差フィルムとして用いられる種々のポリマーフィルムは、種々の方法で製造することができる。例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法などが挙げられる。これらのフィルム成形方法のうち、溶液キャスト法(溶液流延法)、溶融押出法が特に好ましい。また、第2の位相差領域を構成する位相差フィルムとして利用される種々のポリマーフィルムは、成形された後、延伸処理を経て製造されたフィルムであってもよい。フィルムの延伸は、1軸延伸であっても2軸延伸であってもよい。同時あるいは逐次2軸延伸処理を行うのが好ましい。大きな光学異方性を達成するためにはフィルムを高い延伸倍率で延伸することが必要である。例えば、フィルムの幅方向、及びフィルムの縦方向(流れ方向)に延伸することが好ましい。延伸倍率は、3~100%程度であることが好ましい。延伸処理は、テンターを用いて実施できる。また、ロール間にて縦延伸を行ってもよい。 The various polymer films used as the retardation film constituting the second retardation region can be produced by various methods. Examples thereof include a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Of these film forming methods, the solution casting method (solution casting method) and the melt extrusion method are particularly preferable. In addition, the various polymer films used as the retardation film constituting the second retardation region may be films that are formed and then subjected to a stretching treatment. The film may be stretched uniaxially or biaxially. It is preferable to perform biaxial stretching treatment simultaneously or sequentially. In order to achieve a large optical anisotropy, it is necessary to stretch the film at a high stretch ratio. For example, the film is preferably stretched in the width direction of the film and in the longitudinal direction (flow direction) of the film. The draw ratio is preferably about 3 to 100%. The stretching process can be performed using a tenter. Further, longitudinal stretching may be performed between the rolls.
 前記溶液キャスト法として、共流延法、逐次流延法、塗布法などの積層流延法も用いることができる。共流延法および逐次流延法により製造する場合には、先ず、各層用のセルロースアシレート溶液(ドープ)を調製する。共流延法(重層同時流延)は、流延用支持体(バンドまたはドラム)の上に、各層(3層あるいはそれ以上でも良い)各々の流延用ドープを別のスリットなどから同時に押出す流延用ギーサからドープを押出して、各層同時に流延し、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。
 逐次流延法は、流延用支持体の上に先ず第1層用の流延用ドープを流延用ギーサから押出して、流延し、乾燥あるいは乾燥することなく、その上に第2層用の流延用ドープを流延用ギーサから押出して流延する要領で、必要なら第3層以上まで逐次ドープを流延・積層して、適当な時期に支持体から剥ぎ取って、乾燥しフィルムを成形する流延法である。塗布法は、一般的には、コア層のフィルムを溶液製膜法によりフィルムに成形し、表層に塗布する塗布液を調製し、適当な塗布機を用いて、片面ずつまたは両面同時にフィルムに塗布液を塗布・乾燥して積層構造のフィルムを成形する方法である。
As the solution casting method, a lamination casting method such as a co-casting method, a sequential casting method, or a coating method can also be used. When producing by the co-casting method and the sequential casting method, first, a cellulose acylate solution (dope) for each layer is prepared. In the co-casting method (multilayer simultaneous casting), the casting dope for each layer (three layers or more) may be simultaneously pressed from another slit or the like on a casting support (band or drum). This is a casting method in which a dope is extruded from a casting giusa to be cast, and each layer is cast simultaneously, peeled off from a support at an appropriate time, and dried to form a film.
In the sequential casting method, the casting dope for the first layer is first extruded from the casting giusa on the casting support, cast, and dried on the second layer without drying or drying. The dope for casting is extruded from the casting gieser and casted, and if necessary, the dope is cast and laminated to the third layer or more, peeled off from the support at an appropriate time, and dried. This is a casting method for forming a film. In general, the core layer film is formed into a film by a solution casting method to prepare a coating solution to be applied to the surface layer, and then applied to the film one side at a time or both sides simultaneously using an appropriate applicator. In this method, a liquid film is applied and dried to form a laminated film.
 また、第2の位相差領域を構成する位相差フィルムは、液晶組成物を所望の配向状態とした後、その配向状態を固定して形成された層であってもよいし、又は当該層とともに、当該層を支持するポリマーフィルムを有する積層体であってもよい。後者の態様では、当該ポリマーフィルムを偏光子の保護フィルムとして利用することもできる。第2の位相差領域を構成する位相差フィルムの作製に利用可能な液晶の例には、棒状液晶、円盤状液晶、コレステリック液晶等、種々の液晶が含まれる。 Further, the retardation film constituting the second retardation region may be a layer formed by fixing the alignment state after the liquid crystal composition is in a desired alignment state, or together with the layer. A laminate having a polymer film that supports the layer may be used. In the latter embodiment, the polymer film can be used as a protective film for a polarizer. Examples of the liquid crystal that can be used for the production of the retardation film constituting the second retardation region include various liquid crystals such as a rod-like liquid crystal, a disk-like liquid crystal, and a cholesteric liquid crystal.
 より高い正面CRを得るためには、フロント側に配置される第2の位相差領域を構成する位相差フィルムのヘイズは、0.5以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましい。 In order to obtain a higher front CR, the haze of the retardation film constituting the second retardation region disposed on the front side is preferably 0.5 or less, more preferably 0.3 or less, and 0.2 The following is more preferable.
 コーナームラ抑制のためには、位相差フィルムにかかる応力による位相差フィルムの変形を小さくする必要がある。フロント側に配置される第2の位相差領域を構成する位相差フィルムの膜厚は20μm以上、200μm以下とすることがコーナームラの抑制および製造適性の観点で好ましい。 In order to suppress corner unevenness, it is necessary to reduce the deformation of the retardation film due to the stress applied to the retardation film. The thickness of the retardation film constituting the second retardation region arranged on the front side is preferably 20 μm or more and 200 μm or less from the viewpoint of suppressing corner unevenness and manufacturing suitability.
3. 偏光子
 フロント側及びリア側に配置される偏光子については特に制限はない。通常用いられている直線偏光膜を利用することができる。直線偏光膜は、Optiva Inc.に代表される塗布型偏光膜、もしくはバインダーと、ヨウ素又は二色性色素からなる偏光膜が好ましい。直線偏光膜におけるヨウ素及び二色性色素は、バインダー中で配向することで偏光性能を発現する。ヨウ素及び二色性色素は、バインダー分子に沿って配向するか、もしくは二色性色素が液晶のような自己組織化により一方向に配向することが好ましい。現在、市販の偏光子は、延伸したポリマーを、浴槽中のヨウ素もしくは二色性色素の溶液に浸漬し、バインダー中にヨウ素、もしくは二色性色素をバインダー中に浸透させることで作製されるのが一般的である。
3. Polarizer There is no particular limitation on the polarizer disposed on the front side and the rear side. A commonly used linearly polarizing film can be used. The linear polarizing film is manufactured by Optiva Inc. And a polarizing film comprising a binder and iodine or a dichroic dye is preferable. The iodine and the dichroic dye in the linearly polarizing film exhibit polarizing performance by being oriented in the binder. It is preferable that the iodine and the dichroic dye are aligned along the binder molecule, or the dichroic dye is aligned in one direction by self-assembly such as liquid crystal. Currently, commercially available polarizers are made by immersing a stretched polymer in a solution of iodine or dichroic dye in a bath and allowing iodine or dichroic dye to penetrate into the binder. Is common.
4. 保護フィルム
 フロント側偏光子及びリア側偏光子のそれぞれの両面には、保護フィルムが貼合されているのが好ましい。但し、図1に示す通り、第1及び第2の位相差領域が1枚のフィルムからなり、当該フィルムが保護フィルムとしても機能する態様では、液晶セル側の偏光子表面の保護フィルムは省略することができる。リア側偏光子と液晶セルとの間に、保護フィルム及び1枚以上の位相差フィルムが配置されている態様では、当該保護フィルムと1枚以上の位相差フィルムは、積層体全体として、第1の位相差領域に要求される光学特性を満足する。当該保護フィルムの好ましい材料等については、第1の位相差領域を構成する位相フィルムの好ましい材料等と同様である。
4). Protective film It is preferable that the protective film is bonded to both surfaces of the front-side polarizer and the rear-side polarizer. However, as shown in FIG. 1, the protective film on the surface of the polarizer on the liquid crystal cell side is omitted in an embodiment in which the first and second retardation regions are made of a single film and the film also functions as a protective film. be able to. In the aspect in which the protective film and the one or more retardation films are disposed between the rear-side polarizer and the liquid crystal cell, the protective film and the one or more retardation films are the first as the entire laminate. Satisfies the optical characteristics required for the phase difference region. About the preferable material of the said protective film, it is the same as that of the preferable material of the phase film which comprises a 1st phase difference area | region.
 フロント側偏光子と液晶セルとの間に、保護フィルム及び1枚以上の位相差フィルムが配置されている態様では、当該保護フィルムと1枚以上の位相差フィルムは、積層体全体として、第2の位相差領域に要求される光学特性を満足するのが好ましい。保護フィルムは、1枚以上の位相差フィルムとともに、斜め方向のコントラストの向上、及び黒表示時のカラーシフトの軽減に寄与する作用を有する、即ち、ある程度のRe及びRthを示す位相差フィルムであってもよい。 In the aspect in which the protective film and the one or more retardation films are disposed between the front polarizer and the liquid crystal cell, the protective film and the one or more retardation films are the second layer as a whole. It is preferable to satisfy the optical characteristics required for the phase difference region. The protective film, together with one or more retardation films, has an effect of improving contrast in an oblique direction and reducing color shift during black display, that is, a retardation film exhibiting a certain amount of Re and Rth. May be.
 フロント側偏光子及びリア側偏光子の外側に配置される保護フィルムについては、特に制限はない。種々のポリマーフィルムを使用することができる。上記第1の位相差領域を構成する位相フィルムの例と同様である。例えば、セルロースアシレート類(例、セルロースアセテート、セルロースプロピオネート、セルロースブチレート等のフィルム)、ポリオレフィン(例、ノルボルネン系ポリマー、ポリプロピレン)、ポリ(メタ)アクリル酸エステル(例、ポリメチルメタクリレート)、ポリカーボネート、ポリエステル、又はポリスルホンを主成分とするフィルム等が挙げられるがこれらに限定されるものではない。市販のポリマーフィルム(セルロースアシレート類では、「TD80UL」(富士フイルム社製)、ノルボルネン系ポリマーでは、アートン(JSR製)、ゼオノア(日本ゼオン製)など)も使用することができる。 There is no particular limitation on the protective film disposed outside the front side polarizer and the rear side polarizer. Various polymer films can be used. This is the same as the example of the phase film constituting the first retardation region. For example, cellulose acylates (eg, films of cellulose acetate, cellulose propionate, cellulose butyrate, etc.), polyolefins (eg, norbornene polymers, polypropylene), poly (meth) acrylic acid esters (eg, polymethyl methacrylate) Examples thereof include, but are not limited to, films mainly composed of polycarbonate, polyester, or polysulfone. Commercially available polymer films ("TD80UL" (manufactured by Fujifilm) for cellulose acylates), arton (manufactured by JSR), zeonore (manufactured by Nippon Zeon) and the like for norbornene-based polymers can also be used.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
1. フィルム1~6の作製
 下記表に記載のアシル基の種類、置換度の異なるセルロースアシレートを調製した。これは、触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40℃でアシル化反応を行った。この時、カルボン酸の種類、量を調整することでアシル基の種類、置換度を調整した。またアシル化後の40℃で熟成を行った。さらにこのセルロースアシレートの低分子量成分をアセトンで洗浄し除去した。なお、表中のAcとはアセチル基であり、CTAとは、セルローストリアセテート(アシル基がアセテート基のみからなるセルロースエステル誘導体)を意味する。
The present invention will be described more specifically with reference to the following examples. The materials, reagents, amounts and ratios of substances, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
1. Production of Films 1 to 6 Cellulose acylates having different types of acyl groups and different degrees of substitution described in the following table were prepared. This was carried out by adding sulfuric acid (7.8 parts by mass with respect to 100 parts by mass of cellulose) as a catalyst, adding carboxylic acid as a raw material for the acyl substituent, and carrying out an acylation reaction at 40 ° C. At this time, the kind and substitution degree of the acyl group were adjusted by adjusting the kind and amount of the carboxylic acid. Moreover, it age | cure | ripened at 40 degreeC after acylation. Further, the low molecular weight component of the cellulose acylate was removed by washing with acetone. In addition, Ac in a table | surface is an acetyl group and CTA means a cellulose triacetate (The cellulose ester derivative which an acyl group consists only of an acetate group).
(セルロースアシレート溶液)
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、更に90℃に約10分間加熱した後、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した。
―――――――――――――――――――――――――――――――――
セルロースアシレート溶液
―――――――――――――――――――――――――――――――――
セルロースアシレート             100.0質量部
トリフェニルホスフェート(TPP)        7.8質量部
ビフェニルジフェニルホスフェート(BDP)    3.9質量部
メチレンクロライド              403.0質量部
メタノール                   60.2質量部
―――――――――――――――――――――――――――――――――
(Cellulose acylate solution)
The following composition was placed in a mixing tank, stirred to dissolve each component, further heated to 90 ° C. for about 10 minutes, and then filtered through a filter paper having an average pore size of 34 μm and a sintered metal filter having an average pore size of 10 μm.
―――――――――――――――――――――――――――――――――
Cellulose acylate solution ――――――――――――――――――――――――――――――――――
Cellulose acylate 100.0 parts by mass Triphenyl phosphate (TPP) 7.8 parts by mass Biphenyl diphenyl phosphate (BDP) 3.9 parts by mass Methylene chloride 403.0 parts by mass Methanol 60.2 parts by mass ――――――――――――――――――――――――――
(マット剤分散液)
次に上記方法で調製したセルロースアシレート溶液を含む下記組成物を分散機に投入し、マット剤分散液を調製した。
――――――――――――――――――――――――――――――――――
マット剤分散液
――――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製)  2.0質量部
メチレンクロライド                  72.4質量部
メタノール                      10.8質量部
セルロースアシレート溶液               10.3質量部
――――――――――――――――――――――――――――――――――
(Matting agent dispersion)
Next, the following composition containing the cellulose acylate solution prepared by the above method was charged into a disperser to prepare a matting agent dispersion.
――――――――――――――――――――――――――――――――――
Matting agent dispersion ――――――――――――――――――――――――――――――――――
Silica particles having an average particle diameter of 16 nm (aerosil R972, manufactured by Nippon Aerosil Co., Ltd.) 2.0 parts by mass Methylene chloride 72.4 parts by mass Methanol 10.8 parts by mass Cellulose acylate solution 10.3 parts by mass ――――――――――――――――――――――――――――
(添加剤溶液)
次に上記方法で調製したセルロースアシレート溶液を含む下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、添加剤溶液を調製した。
―――――――――――――――――――――――――――――――――
添加剤溶液
―――――――――――――――――――――――――――――――――
レターデーション発現剤(1)            20.0質量部
メチレンクロライド                 58.3質量部
メタノール                      8.7質量部
セルロースアシレート溶液              12.8質量部
―――――――――――――――――――――――――――――――――
(Additive solution)
Next, the following composition containing the cellulose acylate solution prepared by the above method was put into a mixing tank and dissolved by stirring while heating to prepare an additive solution.
―――――――――――――――――――――――――――――――――
Additive solution ―――――――――――――――――――――――――――――――――
Retardation agent (1) 20.0 parts by mass Methylene chloride 58.3 parts by mass Methanol 8.7 parts by mass Cellulose acylate solution 12.8 parts by mass ――――――――――――――― ―――――――――――――――――
上記セルロースアシレート溶液を100質量部、マット剤分散液を1.35質量部、更にセルロースアシレート系フィルム中のレターデーション発現剤(1)の添加量が10質量部となる量の添加剤溶液を混合し、製膜用ドープを調製した。添加剤の添加割合はセルロースアシレート量を100質量部とした時の質量部で示した。
下記表に記載の通り綿、添加剤を変更して、上記の溶液および分散液を調製した。
 ここで、下記表中に記載の添加剤および可塑剤の略称は下記の通りである。
CTA:トリアセチルセルロース
TPP:トリフェニルホスフェート
BDP:ビフェニルジフェニルホスフェート
100 parts by mass of the cellulose acylate solution, 1.35 parts by mass of the matting agent dispersion, and an additive solution in an amount such that the addition amount of the retardation developer (1) in the cellulose acylate film is 10 parts by mass. Were mixed to prepare a dope for film formation. The addition ratio of the additive is shown in parts by mass when the amount of cellulose acylate is 100 parts by mass.
Cotton and additives were changed as described in the following table to prepare the above solutions and dispersions.
Here, the abbreviations of additives and plasticizers described in the following table are as follows.
CTA: triacetyl cellulose TPP: triphenyl phosphate BDP: biphenyl diphenyl phosphate
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上述のドープをバンド流延機を用いて流延した。下記表に記載の残留溶剤量でバンドから剥ぎ取ったフィルムを、剥ぎ取りからテンターまでの区間で下記表に記載の延伸倍率で縦方向に延伸し、ついでテンターを用いて下記表に記載の延伸倍率で幅方向に延伸し、横延伸直後に、下記表に記載の倍率で幅方向に収縮(緩和)させた後にフィルムをテンターから離脱し、セルロースアシレート系フィルムを製膜した。テンター離脱時のフィルムの残留溶剤量は、下記表に記載のとおりであった。巻取り部前で両端部を切り落とし幅2000mmとし、長さ4000mのロールフィルムとして巻き取った。下記表に、延伸倍率を示してある。作製したセルロースアシレート系フィルムについて、25℃60%RHで波長590nmにおけるReレターデーション値、およびRthレターデーション値を測定した。ここで結果を、下記表に記した。なお、平均屈折率を1.48としてRth(λ)を算出した。 The above dope was cast using a band casting machine. The film stripped from the band with the residual solvent amount described in the following table is stretched in the longitudinal direction at the stretch ratio described in the following table in the section from stripping to the tenter, and then stretched in the table below using the tenter The film was stretched in the width direction at a magnification, and immediately after transverse stretching, the film was removed from the tenter after shrinking (relaxing) in the width direction at the magnification described in the following table, and a cellulose acylate film was formed. The residual solvent amount of the film when the tenter was removed was as shown in the following table. Both ends were cut off in front of the winding part to make a width of 2000 mm and wound up as a roll film having a length of 4000 m. The draw ratio is shown in the following table. About the produced cellulose acylate film, Re retardation value and Rth retardation value at a wavelength of 590 nm were measured at 25 ° C. and 60% RH. The results are listed in the table below. Rth (λ) was calculated with an average refractive index of 1.48.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
2. フィルム7の作製
 特開2003-315556号公報の実施例2に記載の光学補償A層と同様の方法にて、Re(590)77nm、及びRth(590)47nmの位相差フィルム7を得た。
2. Production of Film 7 A retardation film 7 having Re (590) 77 nm and Rth (590) 47 nm was obtained in the same manner as the optical compensation A layer described in Example 2 of JP-A-2003-315556.
3. フィルム8の作製
 Z-TACフィルム(富士フイルム社製、Re(590)=1nm、Rth(590)=-1nm)を準備した。別途、特開2003-315556号公報の実施例2に記載の光学補償B層と同様の方法にて、Re(590)1.5nm、Rth(590)207nmの位相差フィルム8aを得た。この位相差フィルム8aを、Z-TACの表面に貼合して、積層フィルムを作製し、フィルム8として用いた。
3. Production of Film 8 A Z-TAC film (manufactured by Fuji Film, Re (590) = 1 nm, Rth (590) = − 1 nm) was prepared. Separately, Re (590) 1.5 nm, Rth (590) 207 nm retardation film 8a was obtained in the same manner as the optical compensation B layer described in Example 2 of JP-A-2003-315556. This retardation film 8a was bonded to the surface of Z-TAC to produce a laminated film, and used as film 8.
4. フィルム9の作製
 下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアシレート溶液Cを調製した。
<セルロースアシレート溶液C組成>
置換度2.86のセルロースアセテート     100質量部
メチレンクロライド(第1溶媒)        300質量部
メタノール(第2溶媒)             54質量部
1-ブタノール                 11質量部
4). Production of Film 9 The following composition was placed in a mixing tank, stirred while heating to dissolve each component, and a cellulose acylate solution C was prepared.
<Cellulose acylate solution C composition>
Cellulose acetate having a substitution degree of 2.86 100 parts by mass Methylene chloride (first solvent) 300 parts by mass Methanol (second solvent) 54 parts by mass 1-butanol 11 parts by mass
別のミキシングタンクに、下記の組成物を投入し、加熱しながら攪拌して、各成分を溶解し、添加剤溶液Dを調製した。
<添加剤溶液D組成>
メチレンクロライド               80質量部
メタノール                   20質量部
下記の光学的異方性低下剤A-7         40質量部
The following composition was charged into another mixing tank, stirred while heating to dissolve each component, and an additive solution D was prepared.
<Additive solution D composition>
Methylene chloride 80 parts by mass Methanol 20 parts by mass The following optical anisotropy reducing agent A-7 40 parts by mass
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
セルロースアシレート溶液Cの465質量部に、添加剤溶液Dの40質量部を添加してドープを調製した。このドープ溶液の透明度は85%以上で良好であった。
 このドープを支持体上に流延して、厚み80μmのセルロースアシレート系フィルムを作製した。これをフィルム9として使用した。
A dope was prepared by adding 40 parts by mass of the additive solution D to 465 parts by mass of the cellulose acylate solution C. The transparency of this dope solution was good at 85% or more.
This dope was cast on a support to produce a cellulose acylate film having a thickness of 80 μm. This was used as film 9.
5. フィルム10の作製
 特開2007-127893号公報の[0223]~[0226]の記載に従って、延伸フィルム(保護フィルムA)を作製した。この保護フィルムAの表面に、同公報の[0232]の記載に従って、易接着層コーティング組成物P-2を調製し、当該組成物を、同公報の[0246]に記載の方法に従って、前記延伸フィルムの表面に塗布して、易接着層を形成した。このフィルムをフィルム10として用いた。
5. Production of Film 10 A stretched film (protective film A) was produced according to the description in [0223] to [0226] of JP-A No. 2007-127893. An easy-adhesion layer coating composition P-2 is prepared on the surface of the protective film A according to the description in [0232] of the publication, and the composition is stretched according to the method described in [0246] of the publication. An easy-adhesion layer was formed by coating on the surface of the film. This film was used as film 10.
6. フィルム11の準備
フィルム11として、市販のトリアセチルセルロースフィルム「TF80UL」(富士フイルム製)を準備した。
6). Preparation of Film 11 A commercially available triacetyl cellulose film “TF80UL” (manufactured by Fuji Film) was prepared as the film 11.
7.フィルム12~16の準備
(ポリマー溶液の調製)
1)セルロースアシレート
 下記のセルロースアシレートA及びBの中から、下記表4に記載される通り選択して使用した。各セルロースアシレートは120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、20質量部を使用した。
・セルロースアシレートA:
 置換度が2.93のセルロースアセテートの粉体を用いた。セルロースアシレートAの粘度平均重合度は300、6位のアセチル基置換度は0.94であった。
・セルロースアシレートB:
 置換度が2.86のセルロースアセテートの粉体を用いた。セルロースアシレートBの粘度平均重合度は300、6位のアセチル基置換度は0.89、アセトン抽出分は7質量%、質量平均分子量/数平均分子量比は2.3、含水率は0.2質量%、6質量%ジクロロメタン溶液中の粘度は305mPa・s、残存酢酸量は0.1質量%以下、Ca含有量は65ppm、Mg含有量は26ppm、鉄含有量は0.8ppm、硫酸イオン含有量は18ppm、イエローインデックスは1.9、遊離酢酸量は47ppmであった。粉体の平均粒子サイズは1.5mm、標準偏差は0.5mmであった。
7). Preparation of films 12 to 16 (preparation of polymer solution)
1) Cellulose acylate From the following cellulose acylates A and B, it was selected and used as described in Table 4 below. Each cellulose acylate was heated to 120 ° C. and dried to adjust the water content to 0.5% by mass or less, and then 20 parts by mass was used.
Cellulose acylate A:
A cellulose acetate powder having a substitution degree of 2.93 was used. Cellulose acylate A had a viscosity average degree of polymerization of 300 and a 6-position acetyl group substitution degree of 0.94.
Cellulose acylate B:
A cellulose acetate powder having a substitution degree of 2.86 was used. Cellulose acylate B has a viscosity average degree of polymerization of 300, an acetyl group substitution degree at the 6-position of 0.89, an acetone extract of 7% by mass, a mass average molecular weight / number average molecular weight ratio of 2.3, and a water content of 0.3. Viscosity in 2 mass% and 6 mass% dichloromethane solutions is 305 mPa · s, residual acetic acid content is 0.1 mass% or less, Ca content is 65 ppm, Mg content is 26 ppm, iron content is 0.8 ppm, sulfate ion The content was 18 ppm, the yellow index was 1.9, and the amount of free acetic acid was 47 ppm. The average particle size of the powder was 1.5 mm, and the standard deviation was 0.5 mm.
2)溶媒
 下記の溶媒Aを使用した。各溶媒の含水率は、いずれも0.2質量%以下であった。
・溶媒A
 ジクロロメタン/メタノール=90/10質量部
2) Solvent The following solvent A was used. The water content of each solvent was 0.2% by mass or less.
・ Solvent A
Dichloromethane / methanol = 90/10 parts by mass
3)添加剤
 下記の添加剤A及びBの中から、下記表4に記載されるものを選択して使用した。
・添加剤A
 二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
・添加剤B
 トリフェニルホスフェート(1.6質量部)
 ビフェニルジフェニルホスフェート(0.8質量部)
 二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
3) Additives Among the following Additives A and B, those listed in Table 4 below were selected and used.
・ Additive A
Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
・ Additive B
Triphenyl phosphate (1.6 parts by mass)
Biphenyl diphenyl phosphate (0.8 parts by mass)
Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
4)溶解
 下記の溶解工程Aを使用して膨潤、溶解を行った。
・溶解工程A
 攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、前記溶媒および添加剤を投入して撹拌、分散させながら、前記セルロースアシレートを徐々に添加した。投入完了後、室温にて2時間撹拌し、3時間膨潤させた後に再度撹拌を実施し、セルロースアシレート膨潤溶液を得た。
 なお、攪拌には、15m/sec(剪断応力5×104kgf/m/sec2〔4.9×105N/m/sec2〕)の周速で攪拌するディゾルバータイプの偏芯攪拌軸および中心軸にアンカー翼を有して周速1m/sec(剪断応力1×104kgf/m/sec2〔9.8×104N/m/sec2〕)で攪拌する攪拌軸を用いた。膨潤は、高速攪拌軸を停止し、アンカー翼を有する攪拌軸の周速を0.5m/secとして実施した。
 膨潤した溶液をタンクから、ジャケット付配管で50℃まで加熱し、さらに2MPaの加圧化で90℃まで加熱し、完全溶解した。加熱時間は15分であった。この際、高温にさらされるフィルター、ハウジング、および配管はハステロイ合金製で耐食性の優れたものを利用し保温加熱用の熱媒を流通させるジャケットを有する物を使用した。
 次に36℃まで温度を下げ、セルロースアシレート溶液を得た。
4) Dissolution Swelling and dissolution were performed using the following dissolution step A.
・ Dissolution process A
The cellulose acylate was gradually added to the 400 liter stainless steel dissolution tank having a stirring blade and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additive. After completion of the addition, the mixture was stirred at room temperature for 2 hours, swollen for 3 hours and then stirred again to obtain a cellulose acylate swelling solution.
For the stirring, a dissolver type eccentric stirring shaft that stirs at a peripheral speed of 15 m / sec (shear stress 5 × 10 4 kgf / m / sec 2 [4.9 × 10 5 N / m / sec 2 ]). And an agitating shaft having an anchor blade on the central axis and stirring at a peripheral speed of 1 m / sec (shear stress 1 × 10 4 kgf / m / sec 2 [9.8 × 10 4 N / m / sec 2 ]) It was. Swelling was carried out with the high speed stirring shaft stopped and the peripheral speed of the stirring shaft having anchor blades set at 0.5 m / sec.
The swollen solution was heated from a tank to 50 ° C. with a jacketed pipe, and further heated to 90 ° C. under a pressure of 2 MPa to completely dissolve. The heating time was 15 minutes. At this time, filters, housings, and pipes that were exposed to high temperature were made of Hastelloy alloy and had excellent corrosion resistance, and those having a jacket for circulating a heat medium for heat retention and heating were used.
Next, the temperature was lowered to 36 ° C. to obtain a cellulose acylate solution.
5)ろ過
 得られたセルロースアシレート溶液を、絶対濾過精度10μmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの金属焼結フィルター(FH025、ポール社製)にて濾過してポリマー溶液を得た。
5) Filtration The obtained cellulose acylate solution was filtered with a filter paper (# 63, manufactured by Toyo Roshi Kaisha, Ltd.) having an absolute filtration accuracy of 10 μm, and further a sintered metal filter (FH025, Pole Corporation) having an absolute filtration accuracy of 2.5 μm. To obtain a polymer solution.
(フィルムの作製)
 下記の製膜工程Aにより製膜した。
・製膜工程A
 前記セルロースアシレート溶液を30℃に加温し、流延ギーサ(特開平11-314233号公報に記載)を通して15℃に設定したバンド長60mの鏡面ステンレス支持体上に流延した。流延スピードは50m/分、塗布幅は200cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたセルロースアシレート系フィルムをバンドから剥ぎ取り、45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥して、セルロースアシレートの透明フィルムを得た。
(Production of film)
The film was formed by the following film forming step A.
・ Film formation process A
The cellulose acylate solution was heated to 30 ° C., and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesa (described in JP-A-11-314233). The casting speed was 50 m / min and the coating width was 200 cm. The space temperature of the entire casting part was set to 15 ° C. Then, the cellulose acylate film that had been cast and rotated 50 cm before the end point of the casting part was peeled off from the band, and 45 ° C. dry air was blown. Next, it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a transparent film of cellulose acylate.
(延伸)
 下記表4に示す通り、下記の延伸工程AまたはBのいずれかにより延伸工程を実施した。
・延伸工程A
 得られたフィルムを、2つのニップロール間に加熱ゾーンを有する装置を用いて延伸した。縦横比(ニップロール間の距離/ベース入口幅)は0.1となるようにニップロール間の距離を調整し、加熱ゾーンに入る前のベース温度は25℃とし、加熱ゾーンは下記表4に記載の温度とした。また、送り出しのニップロールの速度と引取りのニップロールの速度との速度比をつけることによって、下記表4に記載の延伸倍率となるように調整した。
(Stretching)
As shown in Table 4 below, the stretching step was performed by either of the following stretching steps A or B.
・ Extension process A
The resulting film was stretched using an apparatus having a heating zone between two nip rolls. The distance between the nip rolls was adjusted so that the aspect ratio (distance between nip rolls / base inlet width) was 0.1, the base temperature before entering the heating zone was 25 ° C., and the heating zone was listed in Table 4 below. It was temperature. Further, by adjusting the speed ratio between the speed of the feeding nip roll and the speed of the take-up nip roll, it was adjusted so that the draw ratios shown in Table 4 below were obtained.
・延伸工程B
 得られたフィルムの両端をテンタークリップで把持した後、加熱ゾーン内で搬送方向と直交する方向に延伸した。加熱ゾーンは下記表4に記載の温度に設定し、およびテンターの拡縮率から算出した延伸倍率は下記表4に記載の倍率とした。
 以上の通り、フィルム12~16を作製した。作製条件を下記表4にまとめる。
・ Extension process B
After gripping both ends of the obtained film with a tenter clip, the film was stretched in a direction perpendicular to the transport direction in the heating zone. The heating zone was set to the temperature described in Table 4 below, and the draw ratio calculated from the expansion / contraction rate of the tenter was set to the ratio described in Table 4 below.
As described above, films 12 to 16 were produced. The production conditions are summarized in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
8.フィルム17の準備
 フィルム4の作製において、レターデーション発現剤(1)の添加量を12質量部に変更し、縦延伸倍率を20%に、及び横延伸倍率を35%に変更した以外は、同様にして作製した。
8). Preparation of film 17 In preparation of film 4, the same applies except that the addition amount of the retardation enhancer (1) is changed to 12 parts by mass, the longitudinal stretch ratio is changed to 20%, and the lateral stretch ratio is changed to 35%. It was made as follows.
9.フィルム18の準備
 フィルム5の作製において、レターデーション発現剤(1)の添加量を7.2質量部に変更し、縦延伸倍率を35%に、及び横延伸倍率を75%に変更した以外は、同様にして作製した。
9. Preparation of film 18 In the production of film 5, the addition amount of the retardation enhancer (1) was changed to 7.2 parts by mass, the longitudinal draw ratio was changed to 35%, and the transverse draw ratio was changed to 75%. This was produced in the same manner.
10.フィルム19の作製
 市販のノルボルネン系ポリマーフィルム「ZEONOR ZF14-060」((株)オプテス製)の表面に、ソリッドステートコロナ処理機6KVA(ピラー(株)製)によりコロナ放電処理を行った。このフィルムをフィルム19として使用した。このフィルムの厚みは、60μmであった。
10. Production of Film 19 The surface of a commercially available norbornene polymer film “ZEONOR ZF14-060” (manufactured by Optes Co., Ltd.) was subjected to corona discharge treatment using a solid state corona treatment machine 6KVA (manufactured by Pillar Co., Ltd.). This film was used as film 19. The thickness of this film was 60 μm.
11.フィルム20の作製
 市販のシクロオレフィン系ポリマーフィルム「ARTON FLZR50」(JSR(株)製)の表面に、フィルム18と同様の方法でコロナ放電処理を行った。このフィルムをフィルム20として使用した。このフィルムの厚みは、50μmであった。
11. Production of Film 20 The surface of a commercially available cycloolefin polymer film “ARTON FLZR50” (manufactured by JSR Corporation) was subjected to corona discharge treatment in the same manner as film 18. This film was used as film 20. The thickness of this film was 50 μm.
12.フィルム21の作製
 市販のノルボルネン系ポリマーフィルム「ZEONOR ZF14-100」((株)オプテス製)を、温度142℃にてMD方向に1.55倍、TD方向に1.8倍で固定端二軸延伸を行った後、表面に、ソリッドステートコロナ処理機6KVA(ピラー(株)製)によりコロナ放電処理を行った。このフィルムを、フィルム21として使用した。このフィルムの厚みは、38μmであった。
12 Production of film 21 A commercially available norbornene polymer film “ZEONOR ZF14-100” (manufactured by Optes Co., Ltd.) is fixed at a fixed end biaxially at 1.55 times in the MD direction and 1.8 times in the TD direction at a temperature of 142 ° C. After stretching, the surface was subjected to corona discharge treatment using a solid state corona treatment machine 6KVA (manufactured by Pillar Co., Ltd.). This film was used as film 21. The thickness of this film was 38 μm.
13.フィルム22の作製
 セルロースアシレートプロピオネート(「CAP482-20」(イーストマンケミカル社製);アセチル置換度0.2、プロピオニル基置換度2.4)を用意した。これに、可塑剤として、1、4-フェニレン-テトラフェニルリン酸エステルを8質量%、劣化防止剤(酸化防止剤)として、IRGANOX-1010(チバスペシャルティケミカルズ社製)を0.5質量%加え、タンブラー型混合機で30分間混合した。得られた混合物を、除湿熱風式乾燥機((株)松井製作所DMZ2)により熱風温度150℃、露点-36℃で乾燥した。次いで、この混合物をテクノベル(株)製二軸押出し機に供給し、押出し機中間部に設けてある添加剤ホッパーの開口部から、マット剤として、アエロジル(AEROSIL)200V(0.016μmのシリカ微粒子、日本アエロジル社製)を押出し量の0.05%となるように連続式フィーダーにより添加し、紫外線吸収剤として、チヌビン(TINUVIN)360(チバスペシャルティケミカルズ社製)を同開口部から押出し量の0.5%となるように添加して、溶融押出した。溶融押出したフィルムの膜厚は220μmだった。
 さらにこのフィルムを、温度142℃にてMD方向に1.3倍、TD方向に2.4倍で固定端二軸延伸を行ってフィルムを作製した。このフィルムを、フィルム22として使用した。なお、このフィルムの膜厚は70μmであった。
13. Preparation of Film 22 Cellulose acylate propionate (“CAP482-20” (manufactured by Eastman Chemical Co.); acetyl substitution degree 0.2, propionyl group substitution degree 2.4) was prepared. To this, 8% by mass of 1,4-phenylene-tetraphenyl phosphate as a plasticizer and 0.5% by mass of IRGANOX-1010 (manufactured by Ciba Specialty Chemicals) as a deterioration inhibitor (antioxidant) are added. For 30 minutes in a tumbler mixer. The obtained mixture was dried with a dehumidifying hot air dryer (Matsui Seisakusho DMZ2) at a hot air temperature of 150 ° C. and a dew point of −36 ° C. Subsequently, this mixture was supplied to a twin screw extruder manufactured by Technobel Co., Ltd., and from the opening of an additive hopper provided in the middle part of the extruder, as a matting agent, AEROSIL 200V (0.016 μm silica fine particles). (Manufactured by Nippon Aerosil Co., Ltd.) with a continuous feeder so as to be 0.05% of the extrusion amount, and TINUVIN 360 (manufactured by Ciba Specialty Chemicals) as an ultraviolet absorber It added so that it might become 0.5%, and melt-extruded. The film thickness of the melt-extruded film was 220 μm.
Further, this film was stretched at a temperature of 142 ° C. in the MD direction by 1.3 times and in the TD direction by 2.4 times to produce a fixed end biaxial stretch. This film was used as film 22. The film thickness of this film was 70 μm.
14.フィルム23の作製
 フィルム1の作製において、原料として、下記表に示すセルロースアシレートを使用し、及び製造条件を下記表に示す通りに代えた以外は、フィルム1の作製と同様にしてフィルムを作製し、フィルム23として使用した。なお、下記の添加剤および可塑剤の略称は、上記と同義である。
14 Production of film 23 Production of film 1 was carried out in the same manner as production of film 1 except that cellulose acylate shown in the following table was used as a raw material and production conditions were changed as shown in the following table. And used as film 23. In addition, the abbreviations of the following additives and plasticizers are as defined above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
15.フィルム24の作製
(ポリマー溶液の調製)
1)ポリマー
 ビスフェノールAと9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンをビスフェノール成分とするポリカーボネート共重合体を使用した。ポリマーは120℃に加熱して乾燥し、含水率を0.5質量%以下とした後、20質量部を使用した。
15. Production of film 24 (preparation of polymer solution)
1) Polymer A polycarbonate copolymer containing bisphenol A and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene as a bisphenol component was used. The polymer was heated to 120 ° C. and dried to adjust the water content to 0.5% by mass or less, and then 20 parts by mass was used.
2)溶媒
 下記の溶媒Aを使用した。各溶媒の含水率は、いずれも0.2質量%以下であった。
・溶媒A
 ジクロロメタン=100質量部
2) Solvent The following solvent A was used. The water content of each solvent was 0.2% by mass or less.
・ Solvent A
Dichloromethane = 100 parts by mass
3)添加剤
 下記の添加剤Aを使用した。
・添加剤A
 二酸化ケイ素微粒子(粒子サイズ20nm、モース硬度約7)(0.08質量部)
3) Additive The following additive A was used.
・ Additive A
Silicon dioxide fine particles (particle size 20 nm, Mohs hardness about 7) (0.08 parts by mass)
4)溶解
 下記の溶解工程Aにより、膨潤、溶解を行った。
・溶解工程A
 攪拌羽根を有し外周を冷却水が循環する400リットルのステンレス製溶解タンクに、前記溶媒および添加剤を投入して撹拌、分散させながら、前記ポリマーを徐々に添加した。投入完了後、室温にて2時間撹拌して、ポリマー溶液を得た。
4) Dissolution Swelling and dissolution were performed by the following dissolution step A.
・ Dissolution process A
The polymer was gradually added to the 400 liter stainless steel dissolution tank having stirring blades and circulating cooling water around the outer periphery, while stirring and dispersing the solvent and additive. After completion of the addition, the mixture was stirred at room temperature for 2 hours to obtain a polymer solution.
5)ろ過
 得られたポリマー溶液を、絶対濾過精度10μmの濾紙(#63、東洋濾紙(株)製)で濾過し、さらに絶対濾過精度2.5μmの金属焼結フィルター(FH025、ポール社製)にて濾過してポリマー溶液を得た。
5) Filtration The obtained polymer solution was filtered with a filter paper (# 63, manufactured by Toyo Roshi Kaisha, Ltd.) with an absolute filtration accuracy of 10 μm, and further a sintered metal filter (FH025, manufactured by Pall) with an absolute filtration accuracy of 2.5 μm. To obtain a polymer solution.
(フィルムの作製)
 下記の製膜工程Aにより製膜を行った。
・製膜工程A
 前記ポリマー溶液を30℃に加温し、流延ギーサ(特開平11-314233号公報に記載)を通して15℃に設定したバンド長60mの鏡面ステンレス支持体上に流延した。流延スピードは10m/分、塗布幅は150cmとした。流延部全体の空間温度は、15℃に設定した。そして、流延部の終点部から50cm手前で、流延して回転してきたポリマーフィルムをバンドから剥ぎ取り、45℃の乾燥風を送風した。次に110℃で5分、さらに140℃で10分乾燥して、透明ポリマーフィルムを得た。
(Production of film)
Film formation was performed by the following film formation process A.
・ Film formation process A
The polymer solution was heated to 30 ° C. and cast on a mirror surface stainless steel support having a band length of 60 m set at 15 ° C. through a casting Giesa (described in JP-A-11-314233). The casting speed was 10 m / min and the coating width was 150 cm. The space temperature of the entire casting part was set to 15 ° C. And the polymer film which was cast and rotated 50 cm before the end point of the casting part was peeled off from the band, and 45 ° C. drying air was blown. Next, it was dried at 110 ° C. for 5 minutes and further at 140 ° C. for 10 minutes to obtain a transparent polymer film.
(延伸)
 下記の延伸工程Aを実施した。
・延伸工程A
 得られたフィルムを、2つのニップロール間に加熱ゾーンを有する装置を用いて延伸した。縦横比(ニップロール間の距離/ベース入口幅)は8となるようにニップロール間の距離を調整し、加熱ゾーンに入る前のベース温度は25℃とし、加熱ゾーンは210℃とした。送り出しのニップロールの速度と引取りのニップロールの速度との速度比をつけることによってフィルムの延伸を行い、Re/Rth=140/72nmの透明ポリマーフィルムを得た。
(Stretching)
The following stretching process A was performed.
・ Extension process A
The resulting film was stretched using an apparatus having a heating zone between two nip rolls. The distance between nip rolls was adjusted so that the aspect ratio (distance between nip rolls / base inlet width) was 8, the base temperature before entering the heating zone was 25 ° C., and the heating zone was 210 ° C. The film was stretched by giving a speed ratio between the speed of the feeding nip roll and the speed of the take-off nip roll to obtain a transparent polymer film having Re / Rth = 140/72 nm.
16.フィルム25の作製
 2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンと、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルから合成されたポリイミドをシクロヘキサノン中に溶解させ、15質量%の溶液を調製した。このポリイミド溶液を、二軸延伸ポリエステルフィルム(基材)上に塗布し、120℃で10分間乾燥させて、厚さ5μmの非液晶性ポリマー層(光学補償B層)を形成し、積層体を得た。
 この積層体を、上記で作製したフィルム9と、粘着剤を用いて貼り合せた。光学補償B層の表面をフィルム9の表面と接触させて貼り合せた。その後、基材を除去し、フィルム25を作製した。
16. Fabrication of Film 25 Polyimide synthesized from 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane and 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl was used as cyclohexanone. Dissolved in a 15% by weight solution. This polyimide solution is applied on a biaxially stretched polyester film (base material) and dried at 120 ° C. for 10 minutes to form a non-liquid crystalline polymer layer (optical compensation B layer) having a thickness of 5 μm. Obtained.
This laminate was bonded to the film 9 produced above using an adhesive. The surface of the optical compensation B layer was brought into contact with the surface of the film 9 and bonded. Then, the base material was removed and the film 25 was produced.
17.フィルム26の作製
 下記の組成物をミキシングタンクに投入し、過熱しながら攪拌して各成分を溶解した後、平均孔径34μmのろ紙及び平均孔径10μmの焼結金属フィルターでろ過し、セルロースアシレート溶液を調製した。
(セルロースアシレート溶液)
 置換度2.81のセルロースアセテート         100質量部
 レターデーション発現剤(1)             8.5質量部
 レターデーション発現剤(3)             7.0質量部
メチレンクロライド                 428.4質量部
メタノール                      64.0質量部
17. Preparation of film 26 The following composition was put into a mixing tank, stirred while being heated to dissolve each component, and then filtered through a filter paper having an average pore size of 34 μm and a sintered metal filter having an average pore size of 10 μm to obtain a cellulose acylate solution. Was prepared.
(Cellulose acylate solution)
Cellulose acetate having a substitution degree of 2.81 100 parts by mass Retardation developer (1) 8.5 parts by mass Retardation developer (3) 7.0 parts by mass Methylene chloride 428.4 parts by mass Methanol 64.0 parts by mass
 前記レターデーション発現剤(3)の組成を、下記表6に示す。なお、下記表6中、EGはエチレングリコールを、TPAはテレフタル酸を、PAはフタル酸を、AAはアジピン酸を、SAはコハク酸をそれぞれ示している。なお、レターデーション発現剤(3)は、非リン酸系エステル系化合物であり、かつ、レターデーション発現剤として機能する化合物である。前記レターデーション発現剤(3)の末端は、アセチル基で封止されている。 The composition of the retardation developer (3) is shown in Table 6 below. In Table 6 below, EG represents ethylene glycol, TPA represents terephthalic acid, PA represents phthalic acid, AA represents adipic acid, and SA represents succinic acid. The retardation developer (3) is a non-phosphate ester compound and a compound that functions as a retardation developer. The end of the retardation developer (3) is sealed with an acetyl group.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記の調製したセルロースアシレート溶液を速やかにバンド流延機にて流延した。残留溶剤量が約30質量%でバンドから剥ぎ取ったフィルムを、テンターにより140℃で16%の延伸倍率で幅方向に延伸した。その後テンター搬送からロール搬送に移行し、更に110℃から150℃で乾燥し巻き取り、フィルム26を作製した。なお、このフィルムの膜厚は85μmであった。 The above prepared cellulose acylate solution was quickly cast with a band casting machine. The film peeled off from the band with a residual solvent amount of about 30% by mass was stretched in the width direction by a tenter at a stretch ratio of 16% at 140 ° C. Thereafter, the film was transferred from the tenter conveyance to the roll conveyance, and further dried and wound at 110 ° C. to 150 ° C. to produce a film 26. The film thickness of this film was 85 μm.
 フィルム26の製造においては、フィルム1の製造時に発生する問題(乾燥工程等における高温処理時の発煙、揮散した油分等の製造機付着による動作の不具合やフィルム付着による面状故障)が発生しなかった。
 これは、フィルム26の作製に、レターデーション発現剤として使用したレターデーション発現剤(3)が可塑剤として機能するため、フィルム1の作製に使用したTPPおよびBDPといった従来の低分子可塑剤を使用しなかったためである。
このように、レターデーション発現剤(3)のような前記正の複屈折性化合物を使用することで、前述の問題を解決することができることから、前記正の複屈折性化合物はフィルム製造の観点から好ましいレターデーション発現剤であるといえる。
In the production of the film 26, problems that occur during the production of the film 1 (smoke during high-temperature treatment in the drying process, malfunctions due to adhesion of the production machine such as volatilized oil, and surface failure due to film adhesion) do not occur It was.
This is because the retardation developing agent (3) used as the retardation developing agent functions as a plasticizer in the production of the film 26, so that conventional low molecular plasticizers such as TPP and BDP used in the production of the film 1 are used. This is because they did not.
Thus, since the above-mentioned problem can be solved by using the positive birefringent compound such as the retardation enhancer (3), the positive birefringent compound is used from the viewpoint of film production. Therefore, it can be said that it is a preferable retardation developer.
18.フィルム27の作製
(低置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、過熱しながら攪拌して各成分を溶解し、低置換度層用セルロースアシレート溶液を調製した。
置換度2.43のセルロースアセテート          100質量部
レターデーション発現剤(1)              4.0質量部
レターデーション発現剤(4)             10.0質量部
メチレンクロライド                 351.5質量部
メタノール                      52.5質量部
18. Production of film 27 (cellulose acylate solution for low substitution layer)
The following composition was put into a mixing tank, stirred while being heated to dissolve each component, and a cellulose acylate solution for a low substitution layer was prepared.
Cellulose acetate with a degree of substitution of 2.43 100 parts by weight retardation developer (1) 4.0 parts by weight retardation developer (4) 10.0 parts by weight methylene chloride 351.5 parts by weight Methanol 52.5 parts by weight
 前記レターデーション発現剤(4)の組成を、下記表7に示す。なお、下記表7中、EGはエチレングリコールを、PGはプロピレングリコールを、BGはブチレングリコールを、TPAはテレフタル酸を、PAはフタル酸を、AAはアジピン酸を、SAはコハク酸をそれぞれ示している。なお、レターデーション発現剤(4)は、非リン酸系エステル系化合物であり、かつ、レターデーション発現剤として機能する化合物である。レターデーション発現剤(4)の末端はアセチル基で封止されている。 The composition of the retardation developer (4) is shown in Table 7 below. In Table 7, EG represents ethylene glycol, PG represents propylene glycol, BG represents butylene glycol, TPA represents terephthalic acid, PA represents phthalic acid, AA represents adipic acid, and SA represents succinic acid. ing. The retardation developer (4) is a non-phosphate ester compound and a compound that functions as a retardation developer. The terminal of the retardation developer (4) is sealed with an acetyl group.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(高置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、高置換度層用セルロースアシレート溶液を調製した。
置換度2.79のセルロースアセテート        100.0質量部
レターデーション発現剤(4)             11.0質量部
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製) 0.15質量部
メチレンクロライド                 395.0質量部
メタノール                       9.0質量部
(Cellulose acylate solution for high substitution layer)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution for a high substitution degree layer.
Cellulose acetate with a substitution degree of 2.79 100.0 parts by mass Retardation developer (4) 11.0 parts by mass Silica particles with an average particle size of 16 nm (Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.) 0.15 parts by mass methylene chloride 395 0.0 part by mass methanol 9.0 parts by mass
(セルロースアシレート試料の作製)
 前記低置換度層用セルロースアシレート溶液から膜厚82μmのコア層を、前記高置換度層用セルロースアシレート溶液から膜厚2μmのスキンA層及びスキンB層を、形成するために、それぞれ流延した。得られたフィルムをバンドから剥離し、クリップに挟み、フィルム全体の質量に対する残留溶媒量が20%の状態のときに延伸温度180℃で幅方向に18%、テンターを用いて横延伸した。その後にフィルムからクリップを外して130℃で20分間乾燥させ、フィルム27を作製した。
(Production of cellulose acylate sample)
In order to form a core layer having a film thickness of 82 μm from the cellulose acylate solution for the low substitution degree layer and a skin A layer and a skin B layer having a film thickness of 2 μm from the cellulose acylate solution for the high substitution degree layer, respectively. Extended. The obtained film was peeled from the band, and was sandwiched between clips. When the amount of residual solvent relative to the total mass of the film was 20%, the film was stretched horizontally using a tenter at a stretching temperature of 180 ° C. and 18% in the width direction. Thereafter, the clip was removed from the film and dried at 130 ° C. for 20 minutes to produce a film 27.
19.フィルム28の作製
 フィルム27の作製において、コア層の膜厚を75μmに、延伸倍率を20%に変更した以外は、同様にして作製した。
19. Production of Film 28 Production of film 27 was carried out in the same manner except that the film thickness of the core layer was changed to 75 μm and the draw ratio was changed to 20%.
20.フィルム29の作製
(低置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、過熱しながら攪拌して各成分を溶解し、低置換度層用セルロースアシレート溶液を調製した。
置換度2.43のセルロースアセテート          100質量部
レターデーション発現剤(4)             18.5質量部
メチレンクロライド                 365.5質量部
メタノール                      54.6質量部
20. Production of film 29 (cellulose acylate solution for low substitution layer)
The following composition was put into a mixing tank, stirred while being heated to dissolve each component, and a cellulose acylate solution for a low substitution layer was prepared.
Cellulose acetate having a degree of substitution of 2.43 100 parts by mass Retardation developer (4) 18.5 parts by mass Methylene chloride 365.5 parts by mass Methanol 54.6 parts by mass
(高置換度層用セルロースアシレート溶液)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、高置換度層用セルロースアシレート溶液を調製した。
置換度2.79のセルロースアセテート        100.0質量部
レターデーション発現剤(4)             11.0質量部
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製) 0.15質量部
メチレンクロライド                 395.0質量部
メタノール                      59.0質量部
(Cellulose acylate solution for high substitution layer)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution for a high substitution degree layer.
Cellulose acetate with a substitution degree of 2.79 100.0 parts by mass Retardation developer (4) 11.0 parts by mass Silica particles with an average particle size of 16 nm (Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.) 0.15 parts by mass methylene chloride 395 .0 parts by mass Methanol 59.0 parts by mass
(セルロースアシレート試料の作製)
 前記低置換度層用セルロースアシレート溶液から膜厚37μmのコア層を、前記高置換度層用セルロースアシレート溶液から膜厚2μmのスキンA層及びスキンB層を、形成するために、それぞれ流延した。得られたフィルムをバンドから剥離し、フィルム全体の質量に対する残留溶媒量が20%の状態のときに、温度200℃で30分間乾燥した後、130℃で20分間乾燥させ、フィルム29を作製した。
(Production of cellulose acylate sample)
In order to form a core layer having a film thickness of 37 μm from the cellulose acylate solution for the low substitution degree layer and a skin A layer and a skin B layer having a film thickness of 2 μm from the cellulose acylate solution for the high substitution degree layer, respectively. Extended. The obtained film was peeled from the band, and when the amount of residual solvent with respect to the total mass of the film was 20%, the film was dried at a temperature of 200 ° C. for 30 minutes and then dried at 130 ° C. for 20 minutes to produce a film 29. .
21. フィルム1~29の特性
 上記フィルム1~29の特性を以下の表にまとめた。なお、各フィルムのRe(590)及びRth(590)は、試料30mm×40mmを、25℃、60%RHで2時間調湿し、KOBRA21ADH(王子計測機器(株)製)において波長590nmで測定し、フィルム1~6、9、11~18、22、23、26~29については、平均屈折率の仮定値1.48および膜厚を入力し算出した。また、それ以外のフィルムの場合は平均屈折率の仮定値として、フィルム7及び20については1.52を、フィルム8については1.60を、フィルム10については1.50を、フィルム19、21については1.53を、フィルム24については1.59を、フィルム25については1.58を用いた。
21. Properties of Films 1 to 29 The properties of Films 1 to 29 are summarized in the following table. In addition, Re (590) and Rth (590) of each film were measured at a wavelength of 590 nm using KOBRA21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) after conditioning the sample 30 mm × 40 mm for 2 hours at 25 ° C. and 60% RH. For films 1 to 6, 9, 11 to 18, 22, 23, and 26 to 29, the assumed average refractive index of 1.48 and the film thickness were input and calculated. For the other films, the assumed average refractive index is 1.52 for films 7 and 20, 1.60 for film 8, 1.50 for film 10, and films 19 and 21. 1.53 for film 24, 1.59 for film 24 and 1.58 for film 25.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
22. 偏光板の作製
 厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
 上記表に示すフィルム1~29のうち、セルロースアシレート系フィルムについては、以下の通り、鹸化処理を行った。各フィルムを、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
 フィルム1~29のいずれか2枚で、偏光膜を挟んで、貼り合せ偏光板を作製した。組合せについては下記表に示す。
 なお、セルロースアシレート系フィルムである、フィルム1~9、11~18、及び22~29については、ポリビニルアルコール系接着剤を用いて貼合し;フィルム10については、易接着層を偏光子の表面側にして貼合し;並びにフィルム19~21については、アクリル系粘着剤を利用して貼合した。
 また、フィルム1~24、及び26~28については、その面内遅相軸を、偏光子の透過軸と平行にして貼り合せ;及びフィルム25、29については、その面内遅相軸を、偏光子の透過軸と直交にして貼り合せた。
22. Preparation of Polarizing Plate A polyvinyl alcohol (PVA) film having a thickness of 80 μm is dyed by dipping in an aqueous iodine solution having an iodine concentration of 0.05% by mass at 30 ° C. for 60 seconds, and then boric acid having a boric acid concentration of 4% by mass. While being immersed in an aqueous solution for 60 seconds, the film was longitudinally stretched 5 times the original length and then dried at 50 ° C. for 4 minutes to obtain a polarizing film having a thickness of 20 μm.
Among the films 1 to 29 shown in the above table, cellulose acylate films were saponified as follows. Each film was immersed in an aqueous sodium hydroxide solution at 55 mol C at 1.5 mol / liter, and then the sodium hydroxide was thoroughly washed away with water. Then, after being immersed in a diluted sulfuric acid aqueous solution at 0.005 mol / liter at 35 ° C. for 1 minute, it was immersed in water to sufficiently wash away the diluted sulfuric acid aqueous solution. Finally, the sample was thoroughly dried at 120 ° C.
A laminated polarizing plate was prepared by sandwiching a polarizing film with any two of films 1 to 29. The combinations are shown in the table below.
For the films 1 to 9, 11 to 18, and 22 to 29, which are cellulose acylate films, they are bonded using a polyvinyl alcohol adhesive; The films 19 to 21 were bonded using an acrylic pressure-sensitive adhesive.
For films 1 to 24 and 26 to 28, the in-plane slow axis is bonded in parallel with the transmission axis of the polarizer; and for films 25 and 29, the in-plane slow axis is The films were bonded so as to be orthogonal to the transmission axis of the polarizer.
23. VA型液晶表示装置の作製
(1)液晶セル1の準備
 VA型液晶表示セルとして、LC-42RX1W(シャープ(株)社製)を準備した。これを液晶セル1として使用した。液晶セル1のΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用して測定したところ、Δnd(590)は300nmであった。
23. Preparation of VA liquid crystal display device (1) Preparation of liquid crystal cell 1 LC-42RX1W (manufactured by Sharp Corporation) was prepared as a VA liquid crystal display cell. This was used as the liquid crystal cell 1. When Δnd (590) of the liquid crystal cell 1 was measured using AXOSCAN manufactured by AXOMETRICS and the attached software, Δnd (590) was 300 nm.
(2)液晶セル2の準備
(2)-1 赤色画素部の形成
<硬化性組成物層(塗膜)の形成>
 一方の面にブラックマトリクス(BM)が形成されたガラス基板(550mm×650mm)のBM形成面側に、特開2009-144126号公報の実施例17の着色感光性組成物を更に0.05mmφジルコニアビーズを用いたビーズ分散機ウルトラアペックスミル(寿工業社製)にて30分間分散処理を行なったものを、スリット間隔100μm、塗布有効幅500mmのスリットヘッドを備えたスリット塗布装置を用いてスリット塗布することにより、硬化性組成物層(塗膜)を形成した。
 スリット塗布は、ポストベーク後の膜厚が、2.0μmとなるようにスリットとガラス基板との間隔、塗布液の吐出量を調節して、塗布速度100mm/秒で行った。
(2) Preparation of liquid crystal cell 2 (2) -1 Formation of red pixel portion <Formation of curable composition layer (coating film)>
The colored photosensitive composition of Example 17 of JP-A-2009-144126 is further added to the glass substrate (550 mm × 650 mm) on which the black matrix (BM) is formed on one side, and 0.05 mmφ zirconia. Using a bead disperser Ultra Apex Mill (manufactured by Kotobuki Kogyo Co., Ltd.) with beads for 30 minutes, slit coating is performed using a slit coating apparatus equipped with a slit head having a slit interval of 100 μm and an effective coating width of 500 mm. By doing so, a curable composition layer (coating film) was formed.
The slit coating was performed at a coating speed of 100 mm / second by adjusting the distance between the slit and the glass substrate and the discharge amount of the coating liquid so that the film thickness after post-baking was 2.0 μm.
<露光、現像、洗浄(リンス)>
 次いで、得られた硬化性組成物層に対し、ホットプレートを用いて、80℃で120秒間乾燥(プリベーク)を行なった後、HITACHI露光機LE5565を用いて、プロキシミテイーギャップを180μmとして、90mJ/cm2で露光した(照度:20mW/cm2)。
 露光後の基板を、水酸化カリウム系現像液CDK-1(富士フイルムエレクトロニクスマテリアルズ(株)製)の1.0%現像液(25℃)で60秒間シャワー現像し、純水で洗浄した。
 以上により、ガラス基板上に赤色画素部を形成した。この基板をオーブンにて220℃30分のポストベークを行い、赤色画素部が形成されたガラス基板を得た。
<Exposure, development, cleaning (rinse)>
Next, the obtained curable composition layer was dried (prebaked) at 80 ° C. for 120 seconds using a hot plate, and then the proximity gap was set to 180 μm and 90 mJ using a HITACHI exposure machine LE5565. / Cm 2 (illuminance: 20 mW / cm 2 ).
The exposed substrate was shower-developed with a 1.0% developer (25 ° C.) of potassium hydroxide developer CDK-1 (manufactured by FUJIFILM Electronics Materials) for 60 seconds and washed with pure water.
Thus, a red pixel portion was formed on the glass substrate. This substrate was post-baked at 220 ° C. for 30 minutes in an oven to obtain a glass substrate on which a red pixel portion was formed.
(2)-2 緑色画素部の形成
 赤色画素部が形成されたガラス基板に、特開2009-144126号公報の実施例18の着色感光性組成物を更に0.05mmφジルコニアビーズを用いたビーズ分散機ウルトラアペックスミル(寿工業社製)にて30分間分散処理を行なったものを用いた以外は、赤色画素部の形成と同様にして緑色画素部を形成した。この基板をオーブンにて220℃で30分間のポストベークを行い、赤色画素部及び緑色画素部が形成されたガラス基板を得た。
(2) -2 Formation of green pixel portion Bead dispersion using 0.05 mmφ zirconia beads and the colored photosensitive composition of Example 18 of JP-A-2009-144126 on a glass substrate on which a red pixel portion is formed A green pixel part was formed in the same manner as the red pixel part except that a machine subjected to a dispersion treatment for 30 minutes with a machine ultra apex mill (manufactured by Kotobuki Industries Co., Ltd.) was used. This substrate was post-baked in an oven at 220 ° C. for 30 minutes to obtain a glass substrate on which a red pixel portion and a green pixel portion were formed.
(2)-3 青色画素部の形成
 赤色画素部及び緑色画素部が形成されたガラス基板に、特開2009-144126号公報の実施例19の着色感光性組成物を更に0.05mmφジルコニアビーズを用いたビーズ分散機ウルトラアペックスミル(寿工業社製)にて30分間分散処理を行なったものを用いた以外は、赤色画素部の形成と同様にして青色画素部を形成した。この基板をオーブンにて230℃で30分間のポストベークを行い、カラーフィルタ基板を得た。
 上記作製したカラーフィルタ基板の上に、ITO(Indium Tin Oxide)の透明電極をスパッタリングにより形成した。次いで、特開2006-64921号公報の実施例1に従い、このITO膜上の隔壁(ブラックマトリックス)上部に相当する部分にスペーサを形成した。これをフロント側基板とした。
 別途、対向基板としてITOの透明電極を形成したガラス基板を用意し、カラーフィルタ基板及び対向基板の透明電極にそれぞれPVAモード用にパターニングを施し、その上に更に垂直ポリイミドよりなる配向膜を設けた。
 SHARP社製の液晶パネル「LC-37GX1W」から取り出した液晶セルを分解して、光源側に配置されていたアレイ基板を取り出し、エタノールで表面を洗浄した後、前記対向基板のガラス側にガラス用マッチングオイルを用いて前記製品アレイ基板を貼り付けた。これをリア側基板とした。
 その後、フロント側基板のカラーフィルタのRGB画素群を取り囲むように周囲に設けられたブラックマトリクス外枠に相当する位置に紫外線硬化樹脂のシール剤をディスペンサ方式により塗布し、VAモード用液晶を滴下し、リア側基板と貼り合わせた後、貼り合わされた基板をUV照射した後、熱処理してシール剤を硬化させた。このようにして液晶セル2を作製した。
 続いて、作製した液晶セル2のΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用したところ、Δnd(590)は300nmであった。
(2) -3 Formation of Blue Pixel Portion The colored photosensitive composition of Example 19 of JP2009-144126A is further added with 0.05 mmφ zirconia beads to the glass substrate on which the red pixel portion and the green pixel portion are formed. A blue pixel portion was formed in the same manner as the red pixel portion except that a dispersion process was performed for 30 minutes with the used bead disperser Ultra Apex Mill (manufactured by Kotobuki Industries Co., Ltd.). This substrate was post-baked in an oven at 230 ° C. for 30 minutes to obtain a color filter substrate.
A transparent electrode of ITO (Indium Tin Oxide) was formed on the produced color filter substrate by sputtering. Next, according to Example 1 of Japanese Patent Application Laid-Open No. 2006-64921, a spacer was formed in a portion corresponding to the upper part of the partition wall (black matrix) on the ITO film. This was used as the front substrate.
Separately, a glass substrate on which an ITO transparent electrode was formed as a counter substrate was prepared, and the color filter substrate and the transparent electrode of the counter substrate were each patterned for the PVA mode, and an alignment film made of vertical polyimide was further provided thereon. .
The liquid crystal cell taken out from the SHARP liquid crystal panel “LC-37GX1W” was disassembled, the array substrate arranged on the light source side was taken out, the surface was washed with ethanol, and then the glass was used on the glass side of the counter substrate. The product array substrate was attached using matching oil. This was used as the rear substrate.
After that, a UV curable resin sealant is applied by a dispenser method at a position corresponding to the outer periphery of the black matrix provided around the RGB pixel group of the color filter on the front substrate, and VA mode liquid crystal is dropped. After bonding to the rear substrate, the bonded substrate was irradiated with UV, and then heat treated to cure the sealant. Thus, the liquid crystal cell 2 was produced.
Subsequently, when ΔND (590) of the produced liquid crystal cell 2 was used with AXOSCAN manufactured by AXOMETRICS and the attached software, Δnd (590) was 300 nm.
(3) 液晶セル3の作製法
 カラーフィルタ基板の作製法において、赤色画素部の形成に特開2009-144126号公報の実施例17の着色感光性組成物を、緑色画素部の形成に特開2009-144126号公報の実施例18の着色感光性組成物を、青色画素部の形成に特開2009-144126号公報の実施例19の着色感光性組成物を、それぞれ用いた以外は、液晶セル2と同様の方法で液晶セル3を作製した。
 続いて、作製した液晶セル3のΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用したところ、Δnd(590)は300nmであった。
(3) Method for Producing Liquid Crystal Cell 3 In the method for producing the color filter substrate, the colored photosensitive composition of Example 17 of JP-A-2009-144126 is used for forming the red pixel portion, and the method for forming the green pixel portion is disclosed. A liquid crystal cell except that the colored photosensitive composition of Example 18 of 2009-144126 was used, and the colored photosensitive composition of Example 19 of JP-A-2009-144126 was used to form a blue pixel portion, respectively. A liquid crystal cell 3 was produced in the same manner as in 2.
Subsequently, when ΔND (590) of the produced liquid crystal cell 3 was used with AXOSCAN manufactured by AXOMETRICS and the attached software, Δnd (590) was 300 nm.
(4)液晶セル4の作製法
 カラーフィルタ基板上のITO膜上の隔壁上部に相当する部分に形成した柱上スペーサーパターンに、直径16μm、平均高さ3.0μmのものを使用した以外は、液晶セル2と同様の方法で液晶セル4を作製した。
 作製した液晶セル4のΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用して測定したところ、Δnd(590)は240nmであった。
(4) Manufacturing method of the liquid crystal cell 4 Except having used the spacer pattern on a pillar formed in the part corresponding to the partition wall upper part on the ITO film | membrane on a color filter board | substrate with a diameter of 16 micrometers and an average height of 3.0 micrometers, A liquid crystal cell 4 was produced in the same manner as the liquid crystal cell 2.
When Δnd (590) of the produced liquid crystal cell 4 was measured using AXOSCAN manufactured by AXOMETRICS and the attached software, Δnd (590) was 240 nm.
(5)液晶セル5の作製法
 ITOの透明電極を形成したガラス基板を用意し、ガラス基板上のITO膜の上に直径16μm、平均高さ3.7μmの透明な柱状スペーサーパターンを形成し、透明電極にPVAモード用にパターニングを施し、その上に更に垂直ポリイミドよりなる配向膜を設け、フロント基板とした。
 液晶セル2と同様の方法でリア側基板を作製した。
 その後、フロント側基板の柱上スペーサの上に紫外線硬化樹脂のシール剤をディスペンサ方式により塗布し、VAモード用液晶を滴下し、リア側基板と貼り合わせた後、貼り合わされた基板をUV照射した後、熱処理してシール剤を硬化させた。このようにして液晶セル5を作製した。
 続いて、作製した液晶セル5のΔnd(590)をAXOMETRICS社製のAXOSCANと付属のソフトを使用して測定したところ、Δnd(590)は300nmであった。
(5) Manufacturing method of liquid crystal cell 5 A glass substrate on which an ITO transparent electrode is formed is prepared, and a transparent columnar spacer pattern having a diameter of 16 μm and an average height of 3.7 μm is formed on the ITO film on the glass substrate. The transparent electrode was patterned for the PVA mode, and an alignment film made of vertical polyimide was further provided thereon to form a front substrate.
A rear substrate was produced in the same manner as in the liquid crystal cell 2.
Thereafter, a UV curable resin sealant was applied onto the pillar spacers of the front substrate by a dispenser method, VA mode liquid crystal was dropped, bonded to the rear substrate, and then the bonded substrate was irradiated with UV. Thereafter, the sealant was cured by heat treatment. Thus, the liquid crystal cell 5 was produced.
Subsequently, Δnd (590) of the produced liquid crystal cell 5 was measured using AXOSCAN manufactured by AXOMETRIC and the attached software, and Δnd (590) was 300 nm.
(6)液晶セル6(参考例用)の作製法
カラーフィルタ基板の作製法において、赤色画素部の形成に特開2009-144126号公報の比較例12の着色感光性組成物を、緑色画素部の形成に特開2009-144126号公報の比較例13の着色感光性組成物を、青色画素部の形成に特開2009-144126号公報の比較例14の着色感光性組成物を、それぞれ用いた以外は、液晶セル2と同様の方法で液晶セル6を作製した。
(6) Manufacturing Method of Liquid Crystal Cell 6 (For Reference Example) In the manufacturing method of the color filter substrate, the colored photosensitive composition of Comparative Example 12 of JP-A-2009-144126 is used for forming the red pixel portion, and the green pixel portion. The colored photosensitive composition of Comparative Example 13 of JP-A-2009-144126 was used for forming, and the colored photosensitive composition of Comparative Example 14 of JP-A-2009-144126 was used for forming the blue pixel portion, respectively. A liquid crystal cell 6 was produced in the same manner as the liquid crystal cell 2 except for the above.
(7)作製した液晶セルのフロント側基板およびリア側基板の部材コントラストの算出
 液晶セル1を分解して、視認側に配置されていた基板をフロント側基板、光源側に配置されていたアレイ基板をリア側基板とし、エタノールで表面を洗浄した後、フロント側基板およびリア側基板の部材CRの算出に使用した。
 SHARP社製の液晶パネル「LC-32GH5」のバックライト上に、偏光板(HLC2-2518、サンリッツ社製)を配置し、その上に、前述の液晶セル1~5のフロント側基板、又はリア側基板を、回転ステージ(SGSP-120YAW、シグマ光機製)に取り付けて光源上の偏光板と2mm間隔で平行に配置した。このとき、リア側基板にあるアレイの配線およびフロント基板のブラックマトリックスが偏光板の偏光軸と一致するように配置した。さらにその上に、回転ステージに取り付けた偏光板(HLC2-2518、サンリッツ社製)を、偏光板間の距離が52mmになるように配置し、測定器(BM5A、TOPCON社製)を用いて、暗室において、法線方向の黒表示および白表示の輝度値を測定し、正面コントラストA(白輝度/黒輝度)を算出した。ここで、偏光板を回転させたときに、最も輝度値が低くなるときを黒表示の輝度値とし、さらに偏光板を90度回転させた場合の輝度値を白表示の輝度値とした。
 次に、前述の形態において、カラーフィルタ基板またはアレイ基板を取り外した形態で、偏光板のみの黒表示および白表示の輝度値を測定し、正面コントラストBを算出した。
 正面コントラストAにおける、偏光板の正面コントラストBの影響を排除するため、次の式で部材コントラストを算出した。
 部材コントラスト=1/(1/正面コントラストA-1/正面コントラストB)
 算出した部材コントラストをもとに、フロント側基板の部材コントラスト/リア側基板の部材コントラスト を算出し、下表にまとめた。
(7) Calculation of the member contrast of the front side substrate and the rear side substrate of the manufactured liquid crystal cell The liquid crystal cell 1 is disassembled, and the substrate arranged on the viewing side is the front side substrate, and the array substrate is arranged on the light source side Was used as the rear side substrate, and after cleaning the surface with ethanol, it was used to calculate the member CR of the front side substrate and the rear side substrate.
A polarizing plate (HLC2-2518, manufactured by Sanlitz) is disposed on the backlight of the liquid crystal panel “LC-32GH5” manufactured by SHARP, and the front side substrate or the rear of the liquid crystal cells 1 to 5 described above is disposed thereon. The side substrate was attached to a rotating stage (SGSP-120YAW, manufactured by Sigma Kogyo Co., Ltd.) and arranged in parallel with the polarizing plate on the light source at 2 mm intervals. At this time, the array wiring on the rear substrate and the black matrix of the front substrate were arranged so as to coincide with the polarization axis of the polarizing plate. Furthermore, a polarizing plate (HLC2-2518, manufactured by Sanlitz) attached to the rotary stage is arranged so that the distance between the polarizing plates is 52 mm, and a measuring instrument (BM5A, manufactured by TOPCON) is used. In a dark room, the luminance values of black display and white display in the normal direction were measured, and front contrast A (white luminance / black luminance) was calculated. Here, when the polarizing plate is rotated, the luminance value when the luminance value is the lowest is set as the luminance value for black display, and the luminance value when the polarizing plate is further rotated by 90 degrees is set as the luminance value for white display.
Next, in the above-described form, the luminance value of black display and white display of only the polarizing plate was measured with the color filter substrate or the array substrate removed, and the front contrast B was calculated.
In order to eliminate the influence of the front contrast B of the polarizing plate on the front contrast A, the member contrast was calculated by the following formula.
Member contrast = 1 / (1 / Front contrast A-1 / Front contrast B)
Based on the calculated member contrast, the member contrast of the front substrate / the member contrast of the rear substrate was calculated and summarized in the table below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(7) VA型液晶表示装置の作製
 上記液晶セルのいずれかの両基板の外側表面に、下記表に示す組合せで偏光板を貼合して、VA型液晶表示装置を作製した。偏光板の吸収軸は互いに直交にして貼合した。
 作製した各液晶表示装置の光源として、液晶セル1~4および6には、LC-42RX1W(シャープ(株)社製)のバックライトを、液晶セル5には、BGR3色のLEDを180Hzで交互に発光させたものを使用し、以下の評価を行った。
(7) Manufacture of VA type liquid crystal display device A VA type liquid crystal display device was manufactured by laminating polarizing plates on the outer surfaces of both substrates of the liquid crystal cell in the combinations shown in the following table. The polarizing plates were bonded with the absorption axes orthogonal to each other.
As the light source of each liquid crystal display device manufactured, LC-42RX1W (Sharp Co., Ltd.) backlights were used for the liquid crystal cells 1 to 4 and 6, and BGR 3-color LEDs were alternately used at 180 Hz for the liquid crystal cell 5. The following evaluation was performed using the light-emitting element.
24. VA型液晶表示装置の評価
 VA型液晶セルとして、上記液晶セル1を使用して、下記表に示すとおり偏光板とそれぞれ組合せ、実施例及び比較例の液晶表示装置をそれぞれ作製した。
(1) 正面コントラストの測定
 測定器(BM5A、TOPCON社製)を用いて、暗室において、パネル法線方向の黒表示および白表示の輝度値を測定し、正面コントラスト(白輝度/黒輝度)を算出した。(2)正面コントラスト比の測定
 測定器(BM5A、TOPCON社製)を用いて、暗室において、パネル法線方向の黒表示および白表示の輝度値を測定し、正面コントラスト(白輝度/黒輝度)を算出した。このとき、測定器とパネル間の距離は700mmに設定した。
 続いて、正面コントラスト比を、基準形態での正面コントラスト比を基に、次の式で算出した。
  正面コントラスト比=実施形態での正面コントラスト/基準形態での正面コントラスト
なお、基準形態は、
液晶セル1の場合は比較例10で正面コントラストは3060、
であった。
24. Evaluation of VA-type liquid crystal display device As the VA-type liquid crystal cell, the liquid crystal cell 1 was used, and each of the liquid crystal display devices of Examples and Comparative Examples was prepared in combination with polarizing plates as shown in the following table.
(1) Measurement of front contrast Using a measuring instrument (BM5A, manufactured by TOPCON), the brightness value of black display and white display in the panel normal direction is measured in a dark room, and the front contrast (white brightness / black brightness) is calculated. Calculated. (2) Measurement of front contrast ratio Using a measuring instrument (BM5A, manufactured by TOPCON), the brightness values of black display and white display in the normal direction of the panel are measured in a dark room, and the front contrast (white brightness / black brightness) is measured. Was calculated. At this time, the distance between the measuring instrument and the panel was set to 700 mm.
Subsequently, the front contrast ratio was calculated by the following formula based on the front contrast ratio in the reference form.
Front contrast ratio = Front contrast in the embodiment / Front contrast in the reference form The reference form is
In the case of the liquid crystal cell 1, the front contrast is 3060 in Comparative Example 10,
Met.
(3) 視野角コントラスト(斜め方向のコントラスト)
 装置正面からの方位角方向45度、極角方向60度における黒表示時の光漏れ率を測定した。この値が小さいほど斜め45度方向での光漏れが少なく、表示装置のコントラストが良いことを示し、液晶表示装置の視野角特性を評価できる。
下記指標における許容不可は、明室でも光漏れが認識される程度の光漏れを意味する。
◎:光漏れが認識できない
○:光漏れが軽度
△:光漏れが中程度
△×:大きな光漏れがある(許容不可)
×:激しい光漏れがある(許容不可)
(3) Viewing angle contrast (contrast in diagonal direction)
The light leakage rate during black display in the azimuth direction 45 degrees and polar angle direction 60 degrees from the front of the apparatus was measured. The smaller this value is, the smaller the light leakage in the oblique 45 degree direction, and the better the contrast of the display device, and the viewing angle characteristics of the liquid crystal display device can be evaluated.
“Unacceptable” in the following index means light leakage to the extent that light leakage is recognized even in a bright room.
◎: Light leakage is not recognizable ○: Light leakage is slight △: Light leakage is moderate △ ×: Light leakage is large (unacceptable)
×: There is severe light leakage (unacceptable)
(4)黒表示時のカラーシフト
 極角60度における全方位角方向の変化(Δuv)を測定した。
下記指標における許容不可は、明室でも認識できる程の色味変化であることを意味する。◎:色味変化が極めて小さい
○:色味変化が軽度
△:色味変化が中程度
△×:色味変化がある(許容不可)
×:激しい色味変化がある(許容不可)
(5)コーナームラ
 コーナームラは、液晶表示装置を50℃95%RHで120時間サーモ処理して、25℃60%RHに20時間調湿後、バックライトを点灯させ、黒表示での光漏れの評価を行った。
◎:4隅の光漏れがない
○:4隅のうち、どこかにうっすらと光漏れがある
△:4隅のうち、2~3箇所に光漏れがある(許容不可)
△×:4隅に光漏れがある(許容不可)
×:4隅にはっきりとした光漏れがある(許容不可)
(4) Color shift during black display A change (Δuv) in all azimuth directions at a polar angle of 60 degrees was measured.
“Unacceptable” in the following index means a color change that can be recognized even in a bright room. ◎: Color change is very small ○: Color change is slight Δ: Color change is moderate Δ ×: Color change is not allowed (unacceptable)
×: Severe color change (not acceptable)
(5) Corner irregularity Corner irregularity is caused by the liquid crystal display device being thermo-treated at 50 ° C. and 95% RH for 120 hours, adjusting the humidity to 25 ° C. and 60% RH for 20 hours, turning on the backlight, and leaking light in black display. Was evaluated.
◎: There is no light leakage at the four corners ○: There is a slight light leakage at some of the four corners △: Light leakage at two to three of the four corners (unacceptable)
Δ ×: light leaks at four corners (unacceptable)
×: Clear light leakage at the four corners (unacceptable)
 結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000010
*1 実施例では、リア側偏光板の内側保護フィルムが、第1の位相差フィルムに相当し、フロント側偏光板の内側保護フィルムが、第2の位相差フィルムに相当する。
The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000010
* 1 In an Example, the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film, and the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film.
Figure JPOXMLDOC01-appb-T000011
*1 実施例では、リア側偏光板の内側保護フィルムが、第1の位相差フィルムに相当し、フロント側偏光板の内側保護フィルムが、第2の位相差フィルムに相当する。
Figure JPOXMLDOC01-appb-T000011
* 1 In an Example, the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film, and the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film.
 上記結果から、リア側偏光板の内側保護フィルム、即ち第1の位相差フィルムとして、|Re(590)|≦10nm及び|Rth(590)|≦25nmを満足するフィルム9、10、13、15.19及び20のいずれかを有する、本発明の実施例のVA型液晶表示装置は、いずれも正面コントラストが高いことが理解できる。さらに、視野角コントラスト、黒表示時のカラーシフト、及びコーナームラのいずれの観点でも、良好であったことを理解できる。
 一方、リア側偏光板の内側保護フィルムとして、フィルム7を用いた比較例2では、フィルム7には、第1の位相差フィルムとして要求される特性を満足するフィルムが含まれるものの、それ以外に、当該特性を満足しない位相差フィルム(位相差フィルム7a)も存在するため、正面コントラストが低下していることが理解できる。
 また、比較例1及び比較例6は、それぞれ実施例2及び5のリア側偏光板とフロント側偏光板を入れ替えた以外は同一の構成であるが、リア側偏光子と液晶セルとの間に、第1の位相差フィルムに要求される特性を満足しない、フィルム2が存在するため、正面コントラストが低下していることが理解できる。
From the above results, films 9, 10, 13, 15 satisfying | Re (590) | ≦ 10 nm and | Rth (590) | ≦ 25 nm as the inner protective film of the rear polarizing plate, that is, the first retardation film. It can be understood that any of VA type liquid crystal display devices according to the embodiments of the present invention having either. Furthermore, it can be understood that it was favorable from the viewpoints of viewing angle contrast, color shift during black display, and corner unevenness.
On the other hand, in Comparative Example 2 using the film 7 as the inner protective film of the rear-side polarizing plate, the film 7 includes a film that satisfies the characteristics required as the first retardation film. Since there is also a retardation film (retardation film 7a) that does not satisfy the characteristics, it can be understood that the front contrast is lowered.
Comparative Example 1 and Comparative Example 6 have the same configuration except that the rear-side polarizing plate and the front-side polarizing plate of Examples 2 and 5 are replaced, respectively, but between the rear-side polarizer and the liquid crystal cell. It can be understood that the front contrast is lowered because the film 2 does not satisfy the characteristics required for the first retardation film.
 実施例18は、正面コントラストは実施例1と同様に高かったが、視野角コントラストは実施例1と比較して低かった。これは、第2の位相差フィルムとして利用したフィルム28の光学特性が、Δnd(590)-70nm≦Rth1(590)+Rth2(590)≦Δnd(590)-10nmを満足するものの、ほぼ下限値であるためと考えられる。 In Example 18, the front contrast was high as in Example 1, but the viewing angle contrast was low compared to Example 1. This is because the optical characteristics of the film 28 used as the second retardation film satisfy Δnd (590) −70 nm ≦ Rth 1 (590) + Rth 2 (590) ≦ Δnd (590) −10 nm, but almost the lower limit. It is thought that it is a value.
25. VA型液晶表示装置の評価(液晶セルの特性)
 次に、実施例2の液晶表示装置の作製において、液晶セル1に代えて、液晶セル2~5を使用した以外は、実施例2と同様にしてVA型液晶表示装置を作製し、上記と同様に評価した。評価結果を下記表に示す。
但し、以下の式から算出される正面コントラスト比に関しては、基準形態を以下の通りとした。
  正面コントラスト比=実施形態での正面コントラスト/基準形態での正面コントラスト
液晶セル1の場合は比較例10で正面コントラストは3060、
液晶セル2の場合は比較例11で正面コントラストは3080
液晶セル3の場合は比較例12で正面コントラストは2820、
液晶セル4の場合は比較例13で正面コントラストは2480、及び
液晶セル5の場合は比較例14で正面コントラストは3950
であった。
25. Evaluation of VA liquid crystal display device (Characteristics of liquid crystal cell)
Next, in the production of the liquid crystal display device of Example 2, a VA type liquid crystal display device was produced in the same manner as in Example 2 except that the liquid crystal cells 2 to 5 were used instead of the liquid crystal cell 1, and Evaluation was performed in the same manner. The evaluation results are shown in the following table.
However, regarding the front contrast ratio calculated from the following formula, the reference form was as follows.
Front contrast ratio = front contrast in embodiment / front contrast liquid crystal cell 1 in reference form In Comparative Example 10, the front contrast is 3060,
In the case of the liquid crystal cell 2, the front contrast is 3080 in Comparative Example 11.
In the case of the liquid crystal cell 3, the front contrast is 2820 in Comparative Example 12,
In the case of the liquid crystal cell 4, the front contrast is 2480 in the comparative example 13, and in the case of the liquid crystal cell 5, the front contrast is 3950.
Met.
Figure JPOXMLDOC01-appb-T000012
*1 実施例では、リア側偏光板の内側保護フィルムが、第1の位相差フィルムに相当し、フロント側偏光板の内側保護フィルムが、第2の位相差フィルムに相当する。
Figure JPOXMLDOC01-appb-T000012
* 1 In an Example, the inner side protective film of a rear side polarizing plate corresponds to a 1st phase difference film, and the inner side protective film of a front side polarizing plate corresponds to a 2nd phase difference film.
 上記表に示す結果から、液晶セル基板のフロント側基板の部材コントラスト/リア側基板の部材コントラストが、3.0以上の液晶セル1~5のいずれについても、正面コントラスト比が顕著に改善されることが理解できる。実施例22で利用している液晶セル5は、フィードシーケンシャル駆動の液晶セルと同様であり、即ち、上記結果から、本発明の効果は、フィードシーケンシャル駆動の液晶表示装置においても顕著であることを理解できる。
 参考例として、液晶セル1の代わりに、液晶セル6を用いた以外は、実施例2と同様にして作製したVA型液晶表示装置についても同様に評価した。このVA型液晶表示装置では、正面コントラスト比の改善効果があまりえられず、実施例2、実施例19~22と比較して、正面コントラスト比が小さかった。この理由は、液晶セル6は、フロント側基板の部材コントラスト/リア側基板の部材コントラストが、1.7であるため、本発明の効果が、軽減されてしまったためと推測される。
From the results shown in the above table, the front contrast ratio is remarkably improved in any of the liquid crystal cells 1 to 5 in which the member contrast of the front substrate of the liquid crystal cell substrate / the member contrast of the rear substrate is 3.0 or more. I understand that. The liquid crystal cell 5 used in Example 22 is the same as the feed sequential drive liquid crystal cell, that is, from the above results, the effect of the present invention is also remarkable in the feed sequential drive liquid crystal display device. Understandable.
As a reference example, a VA liquid crystal display device manufactured in the same manner as in Example 2 was evaluated in the same manner except that the liquid crystal cell 6 was used instead of the liquid crystal cell 1. In this VA type liquid crystal display device, the effect of improving the front contrast ratio was not obtained so much, and the front contrast ratio was small as compared with Example 2 and Examples 19-22. This is presumably because the liquid crystal cell 6 has a member contrast of the front substrate / member contrast of the rear substrate of 1.7, and thus the effect of the present invention has been reduced.
10 バックライト
12、14 偏光子
16 第1の位相差フィルム(第1の位相差領域)
18 第2の位相差フィルム(第2の位相差領域)
20、22 外側保護フィルム
LC VA型液晶セル
PL1 リア側偏光板
PL2 フロント側偏光板
 
10 Backlights 14, 14 Polarizer 16 First retardation film (first retardation region)
18 Second retardation film (second retardation region)
20, 22 Outside protective film LC VA liquid crystal cell PL1 Rear side polarizing plate PL2 Front side polarizing plate

Claims (14)

  1. フロント側偏光子、リア側偏光子、前記フロント側偏光子とリア側偏光子との間に配置されるVA型液晶セル、及び前記リア側偏光子と前記VA型液晶セルとの間に1層又は2層以上の位相差層からなる第1の位相差領域を有し、該第1の位相差領域が下記式:
     0nm≦Re(590)≦10nm、且つ
     |Rth(590)|≦25nm
    を満足することを特徴とするVA型液晶表示装置:
     但し、Re(λ)は、波長λnmにおける面内レターデーション(nm)を、Rth(λ)は波長λnmにおける厚み方向のレターデーション(nm)を意味する。
    Front-side polarizer, rear-side polarizer, VA liquid crystal cell disposed between the front-side polarizer and rear-side polarizer, and one layer between the rear-side polarizer and the VA-type liquid crystal cell Or it has the 1st phase contrast field which consists of two or more phase contrast layers, and the 1st phase contrast field has the following formula:
    0 nm ≦ Re (590) ≦ 10 nm and | Rth (590) | ≦ 25 nm
    VA type liquid crystal display device satisfying the following:
    However, Re (λ) means in-plane retardation (nm) at the wavelength λnm, and Rth (λ) means retardation in the thickness direction (nm) at the wavelength λnm.
  2. 前記VA型液晶セルが、フロント側基板及びリア側基板を有し、前記リア側基板の部材コントラスト(CRr)に対する前記フロント側基板の部材コントラスト(CRf)の比(CRf/CRr)が、3以上であることを特徴とする請求項1に記載のVA型液晶表示装置。 The VA liquid crystal cell has a front side substrate and a rear side substrate, and a ratio (CR f / CR r ) of a member contrast (CR f ) of the front side substrate to a member contrast (CR r ) of the rear side substrate. The VA type liquid crystal display device according to claim 1, wherein the VA type liquid crystal display device is 3 or more.
  3. 前記フロント側偏光子と前記VA型液晶セルとの間に、1層又は2層以上の位相差層からなる第2の位相差領域を有し、該第2の位相差領域が、下記式:
     30nm≦Re(590)≦90nm、且つ
     170nm≦Rth(590)≦300nm
    を満足することを特徴とする請求項1又は2に記載のVA型液晶表示装置。
    Between the front side polarizer and the VA type liquid crystal cell, there is a second retardation region composed of one or more retardation layers, and the second retardation region has the following formula:
    30 nm ≦ Re (590) ≦ 90 nm and 170 nm ≦ Rth (590) ≦ 300 nm
    3. The VA liquid crystal display device according to claim 1, wherein:
  4. 前記第1および前記第2の位相差領域が、下記式:
    Δnd(590)-70≦Rth1(590)+Rth2(590)≦Δnd(590)-10
    を満足することを特徴とする請求項3に記載のVA型液晶表示装置:
     但し、dは前記VA型液晶セルの液晶層の厚さ(nm)、Δn(λ)は前記VA型液晶セルの液晶層の波長λにおける屈折率異方性であり、Δnd(λ)はΔn(λ)とdの積を意味し;Rth1(λ)は波長λにおける前記第1の位相差領域の厚み方向のレターデー
    ション(nm)、及びRth2(λ)は波長λにおける前記第2の位相差領域の厚み方向の
    レターデーション(nm)を意味する。
    The first and second retardation regions have the following formula:
    Δnd (590) −70 ≦ Rth 1 (590) + Rth 2 (590) ≦ Δnd (590) −10
    The VA liquid crystal display device according to claim 3, wherein:
    Where d is the thickness (nm) of the liquid crystal layer of the VA type liquid crystal cell, Δn (λ) is the refractive index anisotropy at the wavelength λ of the liquid crystal layer of the VA type liquid crystal cell, and Δnd (λ) is Δn Rth 1 (λ) is retardation in the thickness direction of the first retardation region at wavelength λ (nm), and Rth 2 (λ) is the second at wavelength λ. Means retardation (nm) in the thickness direction of the retardation region.
  5. 前記第1の位相差領域が、セルロースアシレート系フィルムからなる、またはセルロースアシレート系フィルムを含むことを特徴とする請求項1~4のいずれか1項に記載のVA型液晶表示装置。 The VA liquid crystal display device according to any one of claims 1 to 4, wherein the first retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
  6. 前記セルロースアシレート系フィルムが、厚み方向のレターデーションRthを低下させる化合物を、下記式(I)及び(II):
    (I)(Rth[A]-Rth[0])/A≦-1.0
    (II)0.01≦A≦30
    (Rth[A]:Rthを低下させる化合物をA%含有するフィルムのRth(nm)、Rth[0]:Rthを低下させる化合物を含有しないフィルムのRth(nm)、及びA:フィルム原料ポリマーの質量を100としたときの化合物の質量(%)である。)を満たす範囲で少なくとも1種含有することを特徴とする請求項5に記載のVA型液晶表示装置。
    Compounds in which the cellulose acylate film decreases the retardation Rth in the thickness direction are represented by the following formulas (I) and (II):
    (I) (Rth [A] −Rth [0]) / A ≦ −1.0
    (II) 0.01 ≦ A ≦ 30
    (Rth [A]: Rth (nm) of a film containing A% of a compound that lowers Rth, Rth [0]: Rth (nm) of a film not containing a compound that reduces Rth, and A: 6. The VA liquid crystal display device according to claim 5, wherein the VA type liquid crystal display device is contained in a range that satisfies a mass (%) of the compound when the mass is 100).
  7. 前記セルロースアシレート系フィルムが、アシル置換度が2.85~3.00のセルロースアシレートに、面内レターデーションRe及び厚み方向レターデーションRthを低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01~30質量%含むことを特徴とする請求項5又は6に記載のVA型液晶表示装置。 The cellulose acylate-based film comprises a cellulose acylate having an acyl substitution degree of 2.85 to 3.00, at least one compound that reduces in-plane retardation Re and thickness direction retardation Rth, and a cellulose acylate solid content. The VA liquid crystal display device according to claim 5 or 6, wherein the VA type liquid crystal display device is contained in an amount of 0.01 to 30% by mass based on the mass.
  8. 前記セルロースアシレート系フィルムが、フィルムの|Re(400)-Re(700)|及び|Rth(400)-Rth(700)|を低下させる化合物を少なくとも1種、セルロースアシレート固形分に対して0.01~30質量%含むことを特徴とする請求項5~7のいずれか1項に記載のVA型液晶表示装置。 The cellulose acylate-based film has at least one compound that reduces | Re (400) -Re (700) | and | Rth (400) -Rth (700) | The VA liquid crystal display device according to any one of claims 5 to 7, wherein the content is 0.01 to 30% by mass.
  9. 前記第1の位相差領域が、アクリル系ポリマーフィルムからなる又はアクリル系ポリマーフィルムを含むことを特徴とする請求項1~8のいずれか1項に記載のVA型液晶表示装置。 9. The VA liquid crystal display device according to claim 1, wherein the first retardation region is made of an acrylic polymer film or includes an acrylic polymer film.
  10. 前記第1の位相差領域が、ラクトン環単位、無水マレイン酸単位、及びグルタル酸無水物単位から選ばれる少なくとも1種の単位を含むアクリル系ポリマーを含有するアクリル系ポリマーフィルムからなる又は当該アクリル系ポリマーフィルムを有する請求項9に記載のVA型液晶表示装置。 The first retardation region is made of an acrylic polymer film containing an acrylic polymer containing at least one unit selected from a lactone ring unit, a maleic anhydride unit, and a glutaric anhydride unit, or the acrylic system The VA liquid crystal display device according to claim 9, which has a polymer film.
  11. 前記第2の位相差領域が、セルロースアシレート系フィルムからなる、又はセルロースアシレート系フィルムを含むことを特徴とする請求項3~10のいずれか1項に記載のVA型液晶表示装置。 The VA liquid crystal display device according to any one of claims 3 to 10, wherein the second retardation region is made of a cellulose acylate film or includes a cellulose acylate film.
  12. 前記第2の位相差領域が、環状オレフィン系ポリマーフィルムからなる、又は環状オレフィン系ポリマーフィルムを含むことを特徴とする請求項3~10のいずれか1項に記載のVA型液晶表示装置。 The VA liquid crystal display device according to any one of claims 3 to 10, wherein the second retardation region is made of a cyclic olefin polymer film or includes a cyclic olefin polymer film.
  13. 正面コントラストが、1500以上であることを特徴とする請求項1~12のいずれか1項に記載のVA型液晶表示装置。 The VA liquid crystal display device according to any one of claims 1 to 12, wherein the front contrast is 1500 or more.
  14. 独立した3原色光が順次発光するバックライトユニットを含み、フィールドシーケンシャル駆動方式で駆動されることを特徴とする請求項1~13のいずれか1項に記載のVA型液晶表示装置。
     
    The VA liquid crystal display device according to any one of claims 1 to 13, comprising a backlight unit that sequentially emits independent three primary color lights, and is driven by a field sequential driving method.
PCT/JP2009/006460 2009-11-30 2009-11-30 Va-type liquid crystal display apparatus WO2011064826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006460 WO2011064826A1 (en) 2009-11-30 2009-11-30 Va-type liquid crystal display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006460 WO2011064826A1 (en) 2009-11-30 2009-11-30 Va-type liquid crystal display apparatus

Publications (1)

Publication Number Publication Date
WO2011064826A1 true WO2011064826A1 (en) 2011-06-03

Family

ID=44065951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006460 WO2011064826A1 (en) 2009-11-30 2009-11-30 Va-type liquid crystal display apparatus

Country Status (1)

Country Link
WO (1) WO2011064826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219863A (en) * 2013-01-08 2017-12-14 コニカミノルタ株式会社 Production method of cellulose acylate film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129464A1 (en) * 2006-05-01 2007-11-15 Mitsui Chemicals, Inc. Method of compensating wavelength dependence of birefringence of optical part, optical part, and display obtained with these
JP2009015292A (en) * 2007-06-08 2009-01-22 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP2009053653A (en) * 2007-05-16 2009-03-12 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2009223305A (en) * 2008-02-20 2009-10-01 Fujifilm Corp Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129464A1 (en) * 2006-05-01 2007-11-15 Mitsui Chemicals, Inc. Method of compensating wavelength dependence of birefringence of optical part, optical part, and display obtained with these
JP2009053653A (en) * 2007-05-16 2009-03-12 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2009015292A (en) * 2007-06-08 2009-01-22 Nitto Denko Corp Liquid crystal panel and liquid crystal display device
JP2009223305A (en) * 2008-02-20 2009-10-01 Fujifilm Corp Liquid crystal display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219863A (en) * 2013-01-08 2017-12-14 コニカミノルタ株式会社 Production method of cellulose acylate film

Similar Documents

Publication Publication Date Title
JP5529672B2 (en) Liquid crystal display
JP2011081021A (en) Va liquid crystal display device
JP5529512B2 (en) VA liquid crystal display device
JP5479179B2 (en) Liquid crystal display
US8395727B2 (en) VA mode liquid crystal display device
JP5297360B2 (en) VA liquid crystal display device
JP5611575B2 (en) VA liquid crystal display device
JP5632605B2 (en) Liquid crystal display
JP2011095694A (en) Va-mode liquid crystal display device
JP5538853B2 (en) Liquid crystal display
JP5202490B2 (en) VA liquid crystal display device
WO2011064826A1 (en) Va-type liquid crystal display apparatus
TWI486688B (en) Va type liquid crystal display device
JP2011085885A (en) Va liquid crystal display device
JP2006071964A (en) Polarizing plate integrated optical compensation film and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP