TW200906705A - Vibration-suppressing positioning control method and apparatus - Google Patents

Vibration-suppressing positioning control method and apparatus Download PDF

Info

Publication number
TW200906705A
TW200906705A TW97113455A TW97113455A TW200906705A TW 200906705 A TW200906705 A TW 200906705A TW 97113455 A TW97113455 A TW 97113455A TW 97113455 A TW97113455 A TW 97113455A TW 200906705 A TW200906705 A TW 200906705A
Authority
TW
Taiwan
Prior art keywords
acceleration
vibration
deceleration
mode
time
Prior art date
Application number
TW97113455A
Other languages
Chinese (zh)
Other versions
TWI342298B (en
Inventor
Shuntaro Suzuki
Shiho Sodekoda
Original Assignee
Ihi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corp filed Critical Ihi Corp
Publication of TW200906705A publication Critical patent/TW200906705A/en
Application granted granted Critical
Publication of TWI342298B publication Critical patent/TWI342298B/zh

Links

Landscapes

  • Control And Safety Of Cranes (AREA)
  • Control Of Position Or Direction (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Provided are vibration-suppressing positioning control method and apparatus capable of suppressing vibration of moving objects having vibration and elastic deformation occurring during acceleration and deceleration. Vibration of a moving object is modeled as a one-degree-of-freedom spring-and-mass-point system, the natural period T of the model is calculated, an acceleration pattern in acceleration/deceleration is set as a trapezoidal pattern containing accelerations and decelerations with constant jerk, and each of the constant jerk period is set as an integral multiple of the natural period.

Description

200906705 九、發明說明: 【發明所屬之技術領域】 本發明係有關可抑制於加速(減速)時會產生振動或彈 性變形的移動體之振動以進行正確定位用的制振定位控制 方法及裝置。 二 【先前技術】 起重機(crane)或機械臂(rob〇t arm)等具有於加速(減 速)時易於產生振動或彈性變形之構造的移動體’會於移動 中前後振動、產生彈性變形,而難以進行正確定位。因此, 就非即時地計測如上所述的移動體之振動,而以開放迴路 控制且抑制振動的定位手段而言,自以往起即提案有種種 設為配合固有週期的速度模式(pattern)的手段(例如,非專 利文獻1、以及專利文獻i至6)。 非專利文獻1係最早提倡含有二階段加速法的輸入修 正法(Input Shaping Method)者。於該方法中,並未 風 等外亂或衰減’只要於加速中或減速中的振動特性沒錢 化,則在當最初的加速(減速)與第2段加速(減速)間的 差為固有週期之1 /2時則振動會相抵銷。 =即’若以固有週期之1/2的矩形加速度進行加速(減 u)’、彳因第1段加速(減速)與第2段加速(減速)為連 果ΓΓ时㈣之錄倍㈣間進行直線^速 (減速),則加速(減速)完了時之剩餘振動為〇。 加m:重機之貨物振動控制中適用二階段 加者。如弟1A圖、第⑺圖 '第1C圖的模塑、速户 320135 5 200906705 模式、以及振動所示,對於加逮或減速所生的振動,藉由 調整時間點再度加速或減速而將其振動抵銷。 - 專利文獻2為將二階段加迷法適用於機械臂者。 專利文獻3將加速從矩形改為梯形,具體而言係將從 加速提昇起至加速降低為止的時間設為固有週期的整數 倍。 專利文獻4為在存在前述手段的前提上,顯示具體的 加速度模式之异出方法者,但其以固有週期之整數倍時間 ( 重疊加速度模式的概念並無不同。 專利文獻5係為了減少機器人的振動,而以使加減速 時間成為振動系之固有週期的1 /2之整數倍的方式,僅在 加減速時調整伺服系之增益的變化者。 專利文獻6係在機盗人操作器(r〇b〇t manipulator)之定 位控制中,輸出具有固有週期之整數倍週期的矩形波形訊 號作為速度指令者。 [非專利文獻 l]N.C.Singer,W.P.Seering,“Preshaping %,BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping positioning control method and apparatus for suppressing vibration of a moving body that generates vibration or elastic deformation during acceleration (deceleration) for correct positioning. [Prior Art] A moving body having a structure that is susceptible to vibration or elastic deformation during acceleration (deceleration), such as a crane or a robot arm, vibrates back and forth during movement, and elastically deforms. It is difficult to make a correct positioning. Therefore, in the case of the positioning means that controls the vibration of the moving body as described above and the open circuit is controlled and the vibration is suppressed, various means for matching the speed pattern of the natural period have been proposed from the past. (For example, Non-Patent Document 1 and Patent Documents i to 6). Non-Patent Document 1 is the first to advocate the Input Shaping Method with a two-stage acceleration method. In this method, there is no wind or other disturbance or attenuation. As long as the vibration characteristics during acceleration or deceleration are not profitable, the difference between the initial acceleration (deceleration) and the second acceleration (deceleration) is inherent. At 1 / 2 of the cycle, the vibration will be offset. = ie 'If the acceleration is accelerated by a rectangular acceleration of 1/2 of the natural period (minus u)', the first stage of acceleration (deceleration) and the second stage of acceleration (deceleration) are connected to the second (fourth) (four) When the linear speed (deceleration) is performed, the residual vibration when the acceleration (deceleration) is completed is 〇. Add m: The two-stage addition is applied to the vibration control of the heavy machine. For example, in the case of Brother 1A, Figure 7 (Fig. 1C), the model of the quick-moving 320135 5 200906705, and the vibration, the vibration generated by the acceleration or deceleration is accelerated or decelerated by adjusting the time point. Vibration offset. - Patent Document 2 is a method in which a two-stage confusing method is applied to a robot arm. Patent Document 3 changes the acceleration from a rectangle to a trapezoid, and specifically, the time from the acceleration to the acceleration is set to an integral multiple of the natural period. Patent Document 4 is a method for displaying a specific acceleration mode in the presence of the above-described means, but it is an integer multiple of the natural period (the concept of the overlapping acceleration mode is not different. Patent Document 5 is for reducing the robot. The vibration is adjusted so that the acceleration/deceleration time becomes an integral multiple of 1 / 2 of the natural period of the vibration system, and only the change in the gain of the servo system is adjusted during acceleration/deceleration. Patent Document 6 is a machine-to-the-hand manipulator (r〇 In the positioning control of b〇t manipulator, a rectangular waveform signal having an integer multiple of the period of the natural period is output as a speed commander. [Non-Patent Document 1] NCSinger, WP Seering, "Preshaping %,

Command Inputs to Reduce System Vibration’’,Journal of Dynamic Systems, Measurement, and Control, Vol.112, MARCH 1990 [專利文獻1]日本國特開平5_85698號公報「起重機之貨物 振動控制裝置」 [專利文獻2]日本國特開平6-114762號公報「制振控制方 法」 [專利文獻3]曰本國特開平7-328965號公報「制振控制方 6 320135 200906705 :法及固有振動週期測定方法以及制振控制裳置 [專利文獻4]曰本國特開2〇〇5_3395〇3 、」 .定位控制方法以及裝置」 &么報「驅動裝置之 [專利文獻5]日本國特卩相仏姻的 動減低方式」 7〇 &報機器人之振 [專利文獻6]日本國特許32嶋9號公 法」 &制振疋位控制方 則述以往之手段係存有以下問題點·至 =動故(2)由於會產生比因加速度而生振=會 振動,故相對地存有發生應力變 動更大的 ^有使加逮_和減速時間配合固有要此外’ 有無法任意進行設定的問題點。 、而要,故存[Patent Document 1] Japanese Patent Application Laid-Open No. Hei. No. Hei. No. 5-85698. Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 7-328965. [Patent Document 4] 曰 特 特 〇〇 〇〇 〇〇 _ _ . . . . 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位 定位7〇& report robot vibration [Patent Document 6] Japanese Patent No. 32嶋9 Public Law” & Vibration Control Position Control Party describes the following problems in the past: · = = (2) There is a problem that the vibration is generated by the acceleration and the vibration is generated. Therefore, there is a problem that the stress variation is relatively large, and there is a problem that the addition and the deceleration time are combined. But want to save

【發明内容J 本發明乃為了解^L奇·、+、曰 發明之第-目的點而研發成者。亦即,本 其至抵鎖為止的振產定Π制方法及裝置’ 靜態振動更大的振動,因此:::可產== .I要使加速時間或減速時間配合固有週期::意:: 再且,本發明之第二目的, 一 方法及裝置,其即使在固 〜η種制振定位控制 之吊索長度或機^//^因質點之位置變化€起重機 心衝度㈣;指加(減)速度之時 ^ 週期(之整數倍)充分一致而達成第一㈣,間與固有 320135 7 200906705 此外,本發明之第三目的, 方法及裝置,其即使在無法事前位:制 .歷時變化等而在相同位置固有週期开時或因 可達成第一目的。 欠日]閒形時,也 依據本發明,可提供一種制振定位控制方法 於加速、減速時產生#· 係抑制 行定位者,其令 動或舞性變形的移動體之振動而進 以模移動體之振動以1自由度之彈簧_質點系統予 求出前述模型之固有週期;以及 將加速、減速時之加 i 增速及減速的梯形模式,且;3有急衝度固定之 週期之整數倍。將各固疋急衝度時間設為固有 有:依據本發明之較佳的實施形態,前述加速度模式係具 产伴^ = ^使加速度以固定急衝度增加,接著將加速 r減速模再使加速度以固^急衝度減少至〇為止; 速度保持一定 止;以及 等速模式 、吴工使加速度以固定急衝度的減少,接著將加 接著再使加速度以固定急衝度增加至〇為 迷度保持為Q。切前述加速模式與減速模式之間且將加 2波或再3=好為將前述加速度模式偏離1/2週期而重叠 320135 8 200906705 中 再且,在固有週期係依質點之位置變化而變化的情形 依據質點位置而各自導出加速開始時、加速故 減速開始時、以及減速終了時的固有週期,、、 且將加速開始時、加诘故 速故了時的— A 、,,; 了夺、減速開始時、以及減 、、’、、了 %的各固疋急衝度時間設 有週期的整數倍。 、所V出的各者之固 較好為在同—條件下,多次計量 減速終了時之殘留振動, 疋、】吁及 算出前述多個殘留振動的平均值, 當前述殘留振動之平均值為預定之臨限值以 使殘留振動變小的方式增減固有週期的補正值。, 再且’依據本發明.,可接供 係抑制於加速、減速時產生定位控制裝置, 動而進行定位者,其^動或彈性變形的移動體之振 將前述移動體之振動以山 以模型化; 振動以1自由度之彈簧-質點系統予 求出前述模型之固有週期;以及 將加速、減速時之加速度模式設為 增速及減速的梯形模式, :衝度固疋之 週期之整數倍。 將各^急衝度時間設為固有 以一定的斜率使加速度變化時之加速度變象固中有^ 320135 9 200906705 期之整數倍-致時,其振動係僅有因加速度而生的振動(靜 悲撓曲)的特性。以下,單純地將加速度的時間微分稱為「急 本發明乃依據該新發現者。亦即,本發明之方法及裝 f係利用該特性,將加速、減速時之加速度模式設為固^ 〜衝度之梯料式’且將各固定急衝度時間設為固有週期 的整數倍,因此而可如後所述地使等加速度時、等速度時、 及停止時之殘留振動理論上減低為0。 再且,由於因本發明之方法及I置之動作而生的挽曲 (振幅)之大小為因加速度而生的靜態撓 加於機器之應力成為最小。 “吏知 再且’由於加速度模式可輕易地設^,故沒有必要在 強度設計上保有需要以上的餘裕度。 罢且、由於即使任意地設定等加速度之時間在止振效 6又有差異,故在使最大速度為可變的情形中可輕易地 政疋速度模式0 卜即使在固有週期隨質點之位置變化而變化的情 二中、’、依據質點之位置而各自導出加速開始時、加速終了 速門開始時、以及減速終了時的固有週期,且將加 加速終了時、減速開始時、以及減速終了時的 述度時間各自定……、”,,依循前SUMMARY OF THE INVENTION The present invention has been developed for the purpose of understanding the first and the object of the invention. That is to say, the method and device for vibrating the production of the vibration-damping method are more static vibrations, so::: can be produced == .I should make the acceleration time or deceleration time match the natural period:: meaning: Further, a second object of the present invention, a method and apparatus, which change the position of the sling or the position of the machine ^//^ due to the solid or η type vibration damping positioning control, the crane impulse (4); When the speed is increased (subtracted), the period (integer multiple) is fully consistent to achieve the first (four), and the inherent 320135 7 200906705. In addition, the third object, method and apparatus of the present invention, even if it is impossible to advance: system. The first purpose can be achieved when the same position is inherently cycled over time or the like. In the case of idle time, according to the present invention, it is also possible to provide a vibration damping positioning control method for generating a stop line during acceleration and deceleration, which causes the vibration of a moving body that is moving or dancing to enter the mode. The vibration of the moving body is obtained by a spring-to-mass system of one degree of freedom, and the natural period of the model is obtained; and a trapezoidal mode in which i is increased and decelerated during acceleration and deceleration, and; Integer multiple. According to a preferred embodiment of the present invention, the acceleration mode is accompanied by ^ = ^ to increase the acceleration with a fixed rush, and then the acceleration r is reduced. The acceleration is reduced to the enthalpy until the enthalpy; the speed remains constant; and the constant velocity mode, the empire accelerates the acceleration with a fixed rush, and then increases and then increases the acceleration to a fixed rush. The fascination remains Q. Cutting between the acceleration mode and the deceleration mode and adding 2 waves or 3 = is better to shift the acceleration mode by 1/2 cycle and overlap 320135 8 200906705, and the natural period varies depending on the position of the mass point. In the case, depending on the position of the mass point, the natural cycle at the start of acceleration, the start of acceleration, the start of deceleration, and the end of deceleration are respectively derived, and when the acceleration is started and the speed is increased, A -, ,, At the start of deceleration, and each of the reductions, and the % of the solids are set to an integral multiple of the period. The solidity of each of the V-outs is preferably the residual vibration at the end of the multiple-measurement deceleration under the same conditions, and the mean value of the plurality of residual vibrations is calculated and calculated as the average value of the residual vibration. The correction value of the natural period is increased or decreased for the predetermined threshold value so that the residual vibration is reduced. Further, according to the present invention, the detachable supply system suppresses the occurrence of the positioning control device during acceleration and deceleration, and the locator is moved to move the vibration of the moving body to the mountain. Modeling; vibration is a spring-mass point system with 1 degree of freedom to determine the natural period of the model; and the acceleration mode for acceleration and deceleration is set to increase and decrease the trapezoidal mode, the integer of the period of the impulse Times. Each of the rushing time is set to have a certain slope to make the acceleration change when the acceleration changes. In the case of an integral multiple of the period 320 320 9 200906705, the vibration system only has vibration due to acceleration (static Tragedy). Hereinafter, the time differential of the acceleration is simply referred to as "the invention is based on the new discoverer. That is, the method and the f system of the present invention use the characteristic to set the acceleration mode during acceleration and deceleration to be fixed~ The rushing step type 'and each fixed rush time is an integral multiple of the natural period. Therefore, the residual vibration at the constant acceleration, the constant speed, and the stop can be theoretically reduced as described later. 0. Moreover, the magnitude of the bending (amplitude) generated by the method of the present invention and the action of the I-position is that the stress caused by the acceleration due to the acceleration is minimized in the machine. The mode can be easily set, so there is no need to maintain the above margin in the strength design. In addition, since even if the time for arbitrarily setting the acceleration is different in the vibration damping effect 6, the speed mode 0 can be easily suppressed in the case where the maximum speed is made variable, even if the natural period changes with the position of the mass point. In the second case of change, ', according to the position of the mass point, each derives the natural cycle at the start of acceleration, the start of acceleration at the end of the speed gate, and the end of deceleration, and at the end of acceleration, at the start of deceleration, and at the end of deceleration The time is fixed...,",, before

、功,將各固定急衝度時間各自設定為前述所導出 勺各個固有週期整數。 A 週期(之料“㈣仏#此111疋急衝度時間與固有 W之整數倍)_轉會變小,而可提升止振精度。 320135 10 200906705 . 再且,於同一條件下,多次計量加读饮^士,姑 —:殘留振動之平均值,當前述殘留振二 臨限值以上時,則以使殘留振動變小的方式增之 正值’藉此,即可在減輕機器導入時之 :: 同%,能將對於歷時變化的再調整予以。乍業里的 【實施方式】 以下,參照附圖說明本發明之較 中共通的部份係附加同一符 ’'开4、。又各圖 ^ 〇 J付唬且嗜略重複的說明。 的r=:、第2B圖為在加速、減速時振動或彈性變形 的和動體之拉型圖。於本發明 : 而言,採用質量m 砂勒骽模型(第2A圖) 定於矛夕動么直1 ^透過長度L的彈性臂2而被固 私動口車3的旋轉彈簧擺(第2B圖)。 ::,k為彈簧常數,Θ為角度,M 為驅動力,g為重力加速度。 再且,移動合直Ο 時地計測貨物二 此模型之動放料進行控制。 可用第(2)式表示。 式之第⑴式表示,位能u 動方G係Γ(1)式和第(2)式中,拉格朗其㈣運 第(3)、(4)式予以表現。在此1係極小, 故认疋咖6>=1,_0;=6|。 T,#'^ 320135 11 200906705 y ^^Mx2 +~mlx~L0cosef +(x^sin5»)2} Mx2 + —w(i2 ~2Lx0cos0+L2S2J ⑴ 2 丄 2 V = mgL cos& +—kL2&2 (2)And work, each fixed rush time is set to each of the inherent period integers of the aforementioned spoon. A cycle (material "(4) 仏 # this 111 疋 冲 时间 与 与 ) _ _ _ _ _ 转 转 转 转 转 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 Measure and read the drink, and the average value of the residual vibration. When the residual vibration is equal to or greater than the limit value, increase the positive value by reducing the residual vibration. In the following, the re-adjustment of the diachronic change can be given. [Embodiment] Hereinafter, the common part of the present invention will be described with reference to the accompanying drawings. Further, each figure is a description of the repetition of the singularity and the repetition of the singularity. The r=: and the 2Bth drawing are the pull-type diagrams of the moving body which are vibrated or elastically deformed during acceleration and deceleration. In the present invention: The mass m shale model (Fig. 2A) is fixed at the spear shed 1 ^ through the elastic arm 2 of the length L and is rotated by the rotating spring of the movable car 3 (Fig. 2B). ::,k is The spring constant, Θ is the angle, M is the driving force, and g is the gravitational acceleration. Moreover, when the movement is straight, the goods are measured. The dynamic discharge of this model is controlled. It can be expressed by the formula (2). The formula (1) of the formula indicates that the potential energy u is in the G system Γ(1) and (2), and the Lagrangian (four) Equations (3) and (4) are expressed. In this case, the 1 series is extremely small, so it is considered that the coffee is 6>=1,_0;=6|. T,#'^ 320135 11 200906705 y ^^Mx2 +~mlx~L0cosef +(x^sin5»)2} Mx2 + —w(i2 ~2Lx0cos0+L2S2J (1) 2 丄2 V = mgL cos&+-kL2&2 (2)

dfdy) dV dU (3) d 'dV)Dfdy) dV dU (3) d 'dV)

dV QU mldV QU ml

'kL mg (5) 事,:=二㈣藉由控制裝置1〇而按照指令值行動 字第(4)式變形即可求得下述第(6)式。 在此’設第⑹式的右邊為F(i),且採用角逮度 #··. a)的關係則第(6)式會轉變為第(?)式。 第⑺式為非同次二階微分方程式,其解係由第(8)式給出 (7) 6 + 〇)26=zF(t) &=Csmmt + Dc〇sm + l. />(r)sin4-rVr (8) =(:_邊歸+ 一如 從時間二為二車:二:值::係考慮如第3 Α圖所; :度」)--之方式進行加速後,保 =:( 式。此時’當經過時 &加速度的加讀 間1超過固疋急衝度時間tr時,苐 12 32〇] (9) 200906705 式係以下述第(9)式予以表示 Θ ωΐ{ί f~Sin ~τ)άτ+\ι sin ω(ί ~ r)^r| ω21 當急衝度時間tr為固有週期Τ之整數倍(η為整數) 時,從第(6a)式可得ωίΓ=ωηΤ = 2η7Γ…(外) 在弟(9)式中,.sinω (卜的=sin〇t · c〇s〇tr — cos6;t - sm^tr = sina>t · cos2n tt -cos^t · sin2n^ = since; t...(6c)成立。 從而,第(9)式能以第(10)式進行表示。 θ = 1/(ω 2L)...(i〇) 弟3B圖係比較固定急衝度時間☆為本發明時扣=π =1〇)、及與本發明有若干差異時(tr=i2)的圖。 從該圖可知,且右台t 以… 度的彈簧韻系統加 ㈣化的振動要素的控制對象中,在以-定的斜率使加 速度變化時(以下稱為「固定 疋㈣丰使加 r「面—基i± 〜衝度」)的加速度變化時間 (固疋急衝度時間」)為固有週期之整數倍時,其振 為僅有因加速度而生的振動(靜態撓曲)。 ’、 本發明係利用該特性,使加速、模 為固定急衝度㈣形模式,·力速度板式 週期的整數俨,葬肤;从 疋心衝度時間為固有 脖 數倍糟此而作成不會弓丨起等加迷度時、等速声 %、以及停止時的殘留振動。 尋速度 由於該特性在從加速度一 疋的狀怨下以負的固定急衝 320135 13 200906705 度而使加速度變為〇時也成立,故若以將各斜率時間設為 固有週期之整數倍的梯形加速度模式進行加速、減速,則 不只是加速完了時和減速完了(停止)時,連加速中、減速 中(等加速度動作中)也不會引起殘留振動。 再且,由本發明之方法及裝置之動作而生的撓曲(振幅) 之大小為在因加速度而生的靜態撓曲以下,因此施加於機 器的應力變為最小且可輕易地計算,在強度設計方面也變 知不需要具有必需以上的餘裕度。再且,即使將等加速度 之時間設為任意者時,在止振效果上也不會有差異,因此 在將最大速度設為可變之情形中,速度模式的算出變得容 第4圖為習知例’示有當在第2圖之模型中以固有週 =4倍的時間直線加速時之加速模式與工作臂之振動及 _ Η與本發明不同,在僅僅使「加速時 間為时週期之整數倍」時’工作臂之振動的變動較大。 期二圖為本發明之例,示有於第2模型中將達固有週 倍的時間設為固定急衝度,接著以等加速度動: 之後將達固有週期之丨倍的時 又動作 速模:,,形二衝度的加 為了與習知例比較,於签ς回丄 間而使其成為與第4圖相同的固調:加速所需的時 後之最大速度與第4圖—致的方加速 時’可知帛5圖之最大加速度雖 '二-取大加迷度。此 曲量)係第5圖的方式較小。 圖大,但最大振動 320135 14 200906705 此外,相對於第4圖於 動,於第5圖成為僅有作臂進行了 欠振 子中工作臂之疲勞也變少。(繞曲)’故在本發明之例 第:圖為,,制振定位控制的加速度模式。 於該圖中,棱軸為經過時間,縱軸為加逮度。 p圖所示的工作臂進行制振定位 將 動系統,且^水平uim::—]所設計的驅 式。 動至距離x[m]的位置的加速度模 中又作#之固有週期為T[sec],而設其為於動 作中固有週期不會變M U Ά錢 料八化者。此外,於後述的計算例中係為 將固疋急衝度時間設為固有週期之1倍的設計條件。 第6圖的等加速時間α係從加速模式之積分與最大速 度間的關係中求出V ·/A — Τ ... 。 再且’等速時U可從加速模式之二讀分與移動距 離間之關係而以(X _ Xad) / V...第(12)式求得。 在此,Xad為加速及減速所需要的移動距離,於本計 算例中可由(1/6 AT2)+1/2AT 立 +1/2Α α 2+5/6At2+at ^ )χ2 =(AT2+3/2ATa+l/2A〇x2=(l/2VT+l/2V2/A)x2 …第(13) 式求得。 第7圖為表示加速度模式之計算方法的流程圖。 於第6圖中,當在設計上之最大速度v的加速(減速) 所需要的移動距離Xad比目標移動距離又為大時(當§4為 「否」時),則於S5降低最大速度v。再且,若因降低最 15 320135 200906705 大速度v而使等加速時間α未滿 則在S7降低最大加速度Α。 夺US6為否」時)’ 又,於第7圖之流程圖中,「 的再設定」(S7)雖也可夢由 白勺再設定」(S5)與「Α 的條件而解析性地求出移 σ速時間=G、等速時間=〇 格等取得縣料好的值。為最小的值,但亦可從表 二)算==時間,等速時間,解為 咕 /(2Τ)..·第(14)式。 專加速時間α及移動距離 定急衝度時間設為固有週 “勺异出式係错由將固 第8圖係表示本發明之2而唯一地予以決定。 程。 之制振定位控制裝置的動作流 在該圖中,首先,於 入目標位置、現在㈣ _ ’從操作器或感測器等輸 該等資訊算出移動% 送物之有無等。於S12中,由 更於S13中有週期等力姻式計算條件。 模式。 月^加速度模式計算流程而算出加速度 依據本發明之和制 等驅動裝置以-定二山,/於變頻馬達(Invert°r Motor) 亦即,於S14中,將度指令而進行機器的控制。 行追縱―並將在控制週期的時間間隔進 為§16的速戶少人 對加速度進行數值積分的值作 僅在加^二二而於每個控制週期輸出至驅動裝置。 輪出,當速=程所計劃的動作時間進行控制 又馬0日守即動作完了(S17)。但是,由於 320135 16 200906705 一致,故實際的運用 進行以微小速度而行 驅動裝置之動作與速度指令並非完全 中,係於移動距離x設有餘裕量,而 的最終定位等處理。 等動作,在預先已知起重機之吊索長度會有改變 用二ίί週期之變動時,亦可於加速時和減速時 从"週期异出加速度模式。此時之具體例將於後述。 圖二二1為本發明之加速度模式之第2實施例,第9Β 3 Λ — °第9Α圖為2波之重疊例,第9Β圖為 3波之重疊例。 、'如該圖所示’藉由將加速度模式錯開1/2週期且重疊 :波或3波以上而可提昇對於固有週期變動的穩定⑽_ | °至於4疊幾個波,則視加速時間與穩^性之間的取捨 ^•ade-off)而疋’故視所適甩的機器之特性和運作條件而採 用如該圖㈣地重4的梯形加速度模式亦可。 如上所述’本發明之方法及裝置係利用旋轉彈簧擺模 ^之新特性’使加速(減速)時之加速度模式成為固定急衝 二的梯形_式’並使各固^急衝度時間成為固有週期的整 倍’藉此可使等加速度時、等速度時、以及停止時之殘 留振動理論上減低為〇。 _此外由於本發明之方法及裝置的動作而生的撓曲(振 中田)之大小’為在因加速度而生的靜態撓曲以下,故可使施 加於機器的應力成為最小。 ±再且,由於可輕易地設定加速度模式,故在強度設計 &不需要保留必須以上的餘裕度。 17 320135 200906705 再且’即使將等加速度之時間設為任意者,在止振效 上也不會有差異’因此在將最大速度設為可變時之速度 模式的設定變得容易。 第10圖為與第6圖相同之加速度模式的f 4實施例。 該例為預先已知有起重機之吊索長度會變化等,動作中固 有週期會變化時之一例。. —、將第2圖所示的工作臂進行制振定位控制時之加速度 模式以及加速度模式計算流程示於以下。 又,本計算例中係以加加速時間為固有週期之〗倍 設計條件。 作為以最大加速度A[m/S2]、最大速度v[m/s]所設計 的驅動系統’並朝距離X[m]的位置水平移動,且使水平移 動開始時之工作臂長度為L1而目標位置之工作臂長度為 L2之加速度模式為如第10圖所示者。在此,設垂直移動 之最大速度為Vz[m/S]、搬送物之質量為m[kg]。 於第10圖中,在固有週期隨質點之位置變化而變化的 情形中,依據質點之位置而各自算出加迷開始時、加速終 了時、減速開始時、以及減速終了時的固有週期。 將加速開始時、加速終了時、減速開始時、以及減速 終了時的各固定急衝度時間^2、^設為前述導 出的各個固有週期之整數倍。 第11圖為導出第10圖之加速度模式的流程圖。 首先,設定作為計算條件的Vz、v、A、x、m、Li、 L2(S21) ° 320135 18 200906705 其次,由於可從m及li、本β 週期與減速終了時之固有料,故㈣時之固有 模型所計算出的值再加上考化、《 #之物理 甘A丹加上考慮模型化的誤差之補正值。 乂-人’由以下程序計算Τ2、Τ3、ai、^(s3〇)。 π速中及減速中卫作f長度不會變化的假設下設定 Γ2 - ΤΙ、T3 = T4(S3 1)。 ^在前述條件下算出到最大速度V為止的加速時間以及 攸:起的停止時間,而暫定計算al、a2(s32)。 L1起至L2的變化量與最大速度Vz中,算出加速終 了時與減速開始時的工作臂長度L1,、L2,(S33)。 (、)由於了從m及L1 ’、L2 ’求得加速終了時的固有週期與 減速開始時的固有週期,故用各個的值計算T2、T3 (S34)。 ()以剞述條件异出至最大速度V為止的加速時間以及從V 起的停止時間,且計算α 1、a 2 (S35)。 其次’計算加速及減速所需要的移動距離Xa、Xd (S23) 〇 若Xg Xa + Xd,則藉由(X— (Xa + Xd)) / V而計算等 速移動時間0(S24、S28)。 若X<Xa + Xd,則再設定最大速度V(S24、S25)、並 再度進行前述「T2、T3、α 1、α2」計算(S30)。 再且’在α1、α 2之計算結果為負時,則再設定最大 加速度Α,且再度進行前述「Τ2、Τ3、《1、α 2」計算(S26、 S27 、 S30)。 19 320135 200906705 .算加速及減速需要的移動距離Xa、Xd(s 第u圖示有與第8圖同樣的在第4. j 控制裝置之動作流程。 u例的制振定位 於該圖中,首先,於S41中從操作 目標位置、現在位置、搬送物之有 :肩入 資訊算出移動量盘固有等;;f於料2,從該等 S43中,片祕,”有 4速度模式計算條件。更於 中依據前述加速度模式計算流程而算出、 依據本發明之控制裝置 、又果式。 Μ * LV〜、 7 %欠頻馬達等驅動裝置, =;τ輸出速度指令而進行機器的控制。亦即, 於二數1:控制週期的時間間隔追縱加速度模式,且'kL mg (5) Event::=2 (4) The following equation (6) can be obtained by the control device 1〇 according to the command value action word (4). Here, the right side of the formula (6) is F(i), and the relationship of the angle catching degree #··. a) is changed to the (?) formula. Equation (7) is a non-homogeneous second-order differential equation, and the solution is given by (8) 6 + 〇) 26 = zF(t) &=Csmmt + Dc〇sm + l. /> r) sin4-rVr (8) = (: _ edge return + as from time two for two cars: two: value:: consider the third map; : degree") - the way to accelerate, Guarantee =: (Expression. At this time, when the passing time & acceleration plus reading 1 exceeds the solid rush time tr, 苐12 32〇] (9) 200906705 is expressed by the following formula (9) Θ ωΐ{ί f~Sin ~τ)άτ+\ι sin ω(ί ~ r)^r| ω21 When the rush time tr is an integer multiple of the natural period ( (η is an integer), from the (6a) ωίΓ=ωηΤ = 2η7Γ...(external) In the formula (9), .sinω (b = sin〇t · c〇s〇tr — cos6; t - sm^tr = sina>t · cos2n tt -cos^t · sin2n^ = since; t...(6c) holds. Thus, equation (9) can be expressed by equation (10). θ = 1/(ω 2L)...(i〇 The younger 3B map is a graph comparing the fixed rush time ☆ for the present invention = π = 1 〇), and when there are some differences from the present invention (tr = i2). As can be seen from the figure, in the control object of the vibration element of the right-hand stage t, which is added to the (four) spring element system, when the acceleration is changed by the constant slope (hereinafter referred to as "fixed 疋 (4) When the acceleration change time (solid spurt time) of the surface-base i± to rush degree is an integral multiple of the natural period, the vibration is only the vibration generated by the acceleration (static deflection). ', the present invention uses this feature to make the acceleration, the mold is a fixed sharpness (four) shape mode, · the force velocity plate cycle integer 俨, funeral; from the heart rush time is the inherent neck number of times this is not When the bow is picked up, the equal vibration, the residual sound, and the residual vibration at the stop. The seek speed is also established when the acceleration is changed to 〇 with a negative fixed rush 320135 13 200906705 degrees from the acceleration slamming, so the trapezoidal acceleration is set to be an integral multiple of the natural period. When the mode is accelerated or decelerated, not only when the acceleration is completed but also when the deceleration is completed (stopped), even during acceleration and deceleration (during acceleration operation), residual vibration is not caused. Furthermore, the magnitude of the deflection (amplitude) generated by the operation of the method and apparatus of the present invention is below the static deflection due to acceleration, so that the stress applied to the machine becomes minimum and can be easily calculated. The design aspect also knows that it is not necessary to have the necessary margin. In addition, even if the time of the constant acceleration is arbitrary, there is no difference in the vibration stop effect. Therefore, when the maximum speed is changed, the calculation of the speed mode becomes the fourth picture. The conventional example 'shows that the acceleration mode and the vibration of the working arm when the linear acceleration is linearly 4 times in the model of Fig. 2 differs from the present invention in that only the "acceleration time is the time period". When the integral multiple is "when", the vibration of the working arm changes greatly. The second diagram is an example of the present invention, and is shown in the second model that the time of the inherent cycle is set to a fixed jerk, and then the acceleration is equal to: after the doubling of the natural period, the motion mode is :,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, When the square is accelerating, it can be seen that the maximum acceleration of the 图5 graph is 'two-taken and large. This volume is smaller in the way of Figure 5. The figure is large, but the maximum vibration is 320135 14 200906705 In addition, with respect to the fourth figure, in Fig. 5, only the arm is operated, and the fatigue of the working arm is also reduced. (Wound) [There is an example of the present invention. Fig.: The acceleration mode of the vibration damping positioning control. In the figure, the axis is the elapsed time and the vertical axis is the catch. The working arm shown in Figure p is used to make the vibration system, and the drive system is designed with ^uu::-]. In the acceleration mode moving to the position of the distance x[m], the natural period of # is again [T[sec], and it is assumed that the natural period of the motion does not change to M U. Further, in the calculation example described later, it is a design condition that the solid rush time is set to be twice the natural period. The equal acceleration time α in Fig. 6 is obtained from the relationship between the integral of the acceleration mode and the maximum speed, and V·/A — Τ ... is obtained. Further, at the same speed, U can be obtained from the relationship between the second reading of the acceleration mode and the moving distance by (X _ Xad) / V... (12). Here, Xad is the moving distance required for acceleration and deceleration. In this calculation example, (1/6 AT2) + 1/2 AT + 1/2 Α α 2+5 / 6 At2+ at ^ ) χ 2 = (AT2+ 3/2ATa+l/2A〇x2=(l/2VT+l/2V2/A)x2 ... Equation (13) is obtained. Fig. 7 is a flow chart showing the calculation method of the acceleration mode. When the moving distance Xad required for the acceleration (deceleration) of the maximum speed v in design is larger than the target moving distance (when § 4 is "No"), the maximum speed v is lowered at S5. If the acceleration time α is not full due to the reduction of the maximum speed of 15 320135 200906705, then the maximum acceleration is reduced in S7. When the US6 is "No"), again, in the flowchart of Fig. 7, "reset" (S7) It is also possible to obtain the value of the prefecture by analytically determining the value of the sigma velocities = G, the constant velocity time = 〇, etc. The value, but also from Table 2) == time, constant velocity time, the solution is 咕/(2Τ)..·(14). The acceleration time α and the moving distance are set to the intrinsic time. Week "spoon out" is wrong Figure 8 represents a system 2 of the present invention uniquely be decided. Cheng. Operation flow of the vibration damping positioning control device In the figure, first, at the target position, and now (4) _ ', the information such as the operator or the sensor is input, and the presence or absence of the movement % of the delivery object is calculated. In S12, the condition is calculated by the cycle equal force in S13. mode. According to the calculation system of the present invention, the acceleration is calculated according to the present invention. In the case of the inverter motor, the inverter motor is controlled by the degree command in S14. The tracking is performed - and the value of the acceleration is numerically integrated in the time interval of the control cycle. The value of the acceleration is numerically integrated only in the control cycle and output to the driving device in each control cycle. Turning out, when the speed = the planned action time of the process is controlled, and the action is completed on the 0th day (S17). However, since 320135 16 200906705 is the same, the actual operation is performed at a small speed. The operation and speed command of the drive unit are not complete, and the movement distance x is provided with a margin and the final positioning is processed. In the case of the action, the length of the sling of the crane is known in advance. When the cycle of the two cycles is changed, the acceleration mode can also be changed from the "cycle during acceleration and deceleration. Specific examples at this time will be described later. Fig. 22 is a second embodiment of the acceleration mode of the present invention, and the ninth Β ° ° 第 Α 。 为 为 为 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 'As shown in the figure', by shifting the acceleration mode by 1/2 cycle and overlapping: wave or more than 3 waves, it can improve the stability of the natural period variation (10)_ | ° to 4 waves, then the acceleration time and It is also possible to use a trapezoidal acceleration mode with a weight of 4 as shown in Fig. 4 for the selection of the stability and the adjacency of the machine. As described above, the method and apparatus of the present invention utilizes the new characteristic of the rotating spring pendulum mold to make the acceleration mode at the time of acceleration (deceleration) a trapezoidal pattern of a fixed rush, and to make each rush time become The doubling of the natural period can be used to theoretically reduce the residual vibration at constant acceleration, constant velocity, and stop. Further, since the size of the deflection (vibration field) produced by the operation of the method and apparatus of the present invention is equal to or less than the static deflection caused by the acceleration, the stress applied to the machine can be minimized. ± Again, since the acceleration mode can be easily set, it is not necessary to reserve the margin above the intensity design. 17 320135 200906705 Furthermore, even if the time of the constant acceleration is set to any one, there is no difference in the vibration suppression effect. Therefore, it is easy to set the speed mode when the maximum speed is set to be variable. Fig. 10 is an f 4 embodiment of the same acceleration mode as Fig. 6. This example is an example in which the length of the sling of the crane is changed in advance, and the cycle is changed during the operation. — The acceleration mode and the acceleration mode calculation flow when the working arm shown in Fig. 2 is subjected to vibration damping positioning control are shown below. Further, in this calculation example, the acceleration time is set to the design condition of the natural period. As the drive system designed at the maximum acceleration A[m/S2], the maximum speed v[m/s] and horizontally moved toward the position of the distance X[m], and the length of the working arm at the start of the horizontal movement is L1 The acceleration mode in which the working arm length of the target position is L2 is as shown in Fig. 10. Here, the maximum speed of the vertical movement is Vz [m/S], and the mass of the conveyed object is m [kg]. In Fig. 10, in the case where the natural period changes as the position of the mass point changes, the natural period at the start of the smear, the end of the acceleration, the start of the deceleration, and the end of the deceleration are calculated based on the position of the mass point. The fixed rush time ^2 and ^ at the start of acceleration, the end of acceleration, the start of deceleration, and the end of deceleration are set to integer multiples of the respective natural periods of the above-mentioned outputs. Figure 11 is a flow chart for deriving the acceleration mode of Figure 10. First, set Vz, v, A, x, m, Li, L2 (S21) ° 320135 18 200906705 as the calculation conditions. Secondly, since it can be derived from m and li, the β cycle and the end of the deceleration, (4) The value calculated by the intrinsic model is added to the correction, "#Physical Gan A Dan plus the correction value of the modeled error.乂-人' is calculated by the following procedure: Τ2, Τ3, ai, ^(s3〇). Set Γ2 - ΤΙ, T3 = T4 (S3 1) under the assumption that the length of f in the π-speed and the deceleration is not changed. ^ Under the above conditions, the acceleration time up to the maximum speed V and the stop time from 攸: are calculated, and a and a2 (s32) are tentatively calculated. In the amount of change from L1 to L2 and the maximum speed Vz, the arm lengths L1, L2 at the end of the acceleration and the start of the deceleration are calculated (S33). (2) Since the natural period at the end of acceleration and the natural period at the start of deceleration are obtained from m, L1', and L2', T2 and T3 are calculated for each value (S34). () The acceleration time up to the maximum speed V and the stop time from V are described in the above-described conditions, and α 1 and a 2 are calculated (S35). Secondly, 'calculate the movement distances Xa and Xd (S23) required for acceleration and deceleration. If Xg Xa + Xd, calculate the constant velocity movement time 0 by (X - (Xa + Xd)) / V (S24, S28) . When X < Xa + Xd, the maximum speed V is set again (S24, S25), and the above-mentioned "T2, T3, α1, α2" calculation is performed again (S30). Further, when the calculation results of α1 and α2 are negative, the maximum acceleration 再 is set again, and the above-mentioned calculations of "Τ2, Τ3, "1, α2" are performed again (S26, S27, S30). 19 320135 200906705 . Calculating the movement distances Xa and Xd required for acceleration and deceleration (s. u shows the operation flow of the 4. j control device similar to Fig. 8. The vibration damping of the u example is located in the figure. First, in S41, from the operation target position, the current position, and the transported object: the shoulder input information is used to calculate the inherent value of the mobile dial; etc.; f is the material 2, from the S43, the secret, "there are 4 speed mode calculation conditions. Further, the control device according to the present invention is calculated based on the acceleration mode calculation flow, and the control device according to the present invention. Μ * LV~, 7 % under-frequency motor and other driving devices, =; τ output speed command to control the machine. That is, the acceleration mode is tracked at the time interval of the second number 1: control period, and

一、數值積/刀了加速度後的值於S46中作 A 於每個控制週期輸出至驅動裝置。 ’、、、、又S 7 僅在加速度模式計算流程中 :=速度指令變為。時即動作結 運用上,係於移動距離又設有餘致’故在實際 而行的最終定位等處理。裕置且進仃以微小速度 之位34第4貫施例之構成,即使在固有週期因質點 之位置變化而轡仆6 < J U肩點 速開始時、加速炊了 ΓΓ 點的位置分別導出加 固有週期,並將Γ始時、以及減速終了時的 以及減、亲& * 1始時、加速終了時、減速開始時、 Τ3、τ广、'了0、的各固定急衝度時間個別定義為T1、丁2、 個固有述固有週期而個別設定為前述導出的各 有週期之整數倍,故可縮小固定急衝度時間與固有週 320135 20 200906705 .期(的整數倍)間的乖離,而可提升止振精度。 從而’即使於移動中存有 ,充分的止振效果。 ^相時,也可期待 又,於前述的第4實施例中,於n1. The value of the value product/knife acceleration is output to the drive unit in each control cycle as A in S46. ', , , and S 7 are only in the acceleration mode calculation flow: = speed command becomes. At the time of the action, the operation is based on the movement distance and the final positioning of the actual position. The position of the 4th embodiment of the position of the fine speed is 34. Even if the natural period is changed due to the change of the position of the mass point, the position of the shoulder point is accelerated and the position of the acceleration point is deduced. Reinforcement has a period of time, and at the beginning of the deceleration, and at the end of the deceleration, as well as the reduction, pro & * 1 start, acceleration end, deceleration start, Τ 3, τ wide, '0, each fixed rush time Individually defined as T1, D2, and the intrinsic period of the intrinsic period are individually set to integer multiples of each of the derived periods, so that the fixed urgency time and the inherent period 320135 20 200906705 can be reduced. Deviate, but can improve the accuracy of the vibration stop. Thus, even if there is a movement, there is a sufficient vibration-stopping effect. In the case of the phase, it is also expected that, in the fourth embodiment described above,

之算,(S30)和V的再設定(S25)、α的再 二、W 用已算過一次的結果再度、 ,可 週期。 U而嚴密地算出固有 此外,當加料與減速時的时 可改再變:速::最大加速度與減速時的最二 藉此怪常地使τ +的工作臂長度變化, 第13« 而省下再計算的麻煩。 由於太Is 9圖相同的加速度模式之第5實施例。 換曲」的频加速_的振動會成為僅有靜態 ==二::如使T1為固㈣ 模切可2式,改變加速開始與加速終了時的加速 耦式亦可。再且,如第n 疋 各衝产,丁2⑽圖示,使T1的部份為固定 心衝fT2的部份為固定急衝度的2波重疊也可。疋 指令與ί際二:::::動系統之應答特性’而存有速度 為-二式相異,而有急衝度無法成 償驅動亦可於加速度模式計算區塊設置補 W動线應答特制的補正參數 2 …動糸統應答特性之逆傳達函數區塊。 間設成比m Ή S 因/、可糟由將固定急衝度時 固有週期長而在某種程度上補償驅動系統的應答 320135 21 200906705 \延遲,故配合加速開始、加速终 之各者的驅動系統應答特性而 ’速開始、減速終了 —上各者的補正值的方法是有效的。1 H'T4分別加 第14圖為與第2圖相同 例。 心動體模型圖之第2實施 於該圖中,如第14圖所 有應變儀例如應變計物=工作臂2之根基部設 速度計5、6,於外邻1置t爾與移動台車3設置有加 距計7、8,而成為將各個應變、加二 及位置輸入控制裝置10的方式。 量實=:構成’可從各者的應變、加速度、及位“計 樣作為第14圖之模型_持原 、弟圖所示的彈簧-質點系統模型化, == Τ表示為數式4之第(15)式,但也可例 ( =正拉型化誤差的參數而設P、q ’且以第(16)式予 Μ表示0In the calculation, the re-setting of (S30) and V (S25), the second of α, and the result of using W once again, can be cycled. U and rigorously calculate the intrinsic. In addition, when feeding and decelerating, it can be changed again: speed:: the maximum acceleration and the second most deceleration, thereby making the length of the working arm of τ + change, the 13th province The trouble of recalculating. The fifth embodiment of the same acceleration mode due to the Is 9 diagram. The vibration of the frequency change _ will be static only == two: If T1 is solid (four) die-cutting type 2, the acceleration coupling can be changed when the acceleration starts and the acceleration ends. Furthermore, if the nth 冲 is produced, the D2 (10) is shown, and the portion of the T1 portion that is fixed to the center of the fT2 is a two-wave overlap with a fixed rush.疋 command and 际2::::: response characteristics of the dynamic system' and the speed is - the difference between the two types, and the rush can not be compensated for the drive can also set the W line in the acceleration mode calculation block Respond to the special correction parameter 2 ... the inverse communication function block of the dynamic response feature. The ratio is set to m Ή S due to /, and the response period of the drive system is compensated to some extent by the inherent period of the fixed rush, and the delay is accelerated. The method of the drive system response characteristic and the 'speed start, the end of the deceleration--the method of correcting each of the above is effective. 1 H'T4 and Fig. 14 are the same as in Fig. 2, respectively. The second embodiment of the cardiac body model diagram is shown in the figure. As shown in Fig. 14, all strain gauges such as strain gauges = the base of the working arm 2 are provided with speedometers 5, 6, and the outer neighbors are set to 1 and the mobile trolley 3 is set. There is a distance meter 7, 8 and it is a method of inputting each strain, plus two and position into the control device 10. Quantitative =: constituting 'strain, acceleration, and position from each person's sample as a model of Fig. 14 _ holding the spring-mass point system model shown in the original and the younger figure, == Τ is expressed as the number 4 (15), but it is also possible to set (P, q ' for the parameter of the positive pull-type error and to give it to the formula (16).

mL \kL' mg (15) T = 2π. kL- 七 q (16) 女1此例中,在同一條件下多次計量加速終了時及減速 ''了 $的殘留振動,算出前述多次殘留振動的平均值,當 22 320135 200906705 ‘振動^留振動之平均值為預定之臨限值以上時,以使殘留 x變小的方式,增減固有週期的補正值。 M圖為苓數p、q的更新流程圖,第16圖為於更新 日、所计:的振動之示意圖,第17圖為Δρ、“的設定例。 德的^ 1圖第16圖中,£ 1為T1之固定急衝度時間 ' ε 1為在T1之固定急衝度時間後振動收歛後的 '助ε 1(3為變更參數P、q前的ε 1,ε 10,為變更來數 q 前的 ε 1,。 / Ρ 於第15圖中’將ε 10、ε 10,以雷射測距計7、8計測 (),設定ΔΡ、Δ_52),使P1、P2各增加•△咐叫, 運轉移動體(S54),將以雷射測距計7、8計測 (S55),反覆進行至ε i,與^ i之差的絕對值比』,〜1〇 之差的絕對值更小為止(S56),將ε1〇,與εΐ〇^εΐ,鱼Η 替換(S57),結束參數p、q之掃描(s58),更新至义】,時之 Pi 、 ql(S59)。 藉由該方法’可使用於曰常運轉中所計測的振動資料 而更新p、q’而可減少設計時之模型化誤差及因歷時變化 所致的模型與實機間的乖離。 攸而」可縮短現場調整時間,且減少維修上的麻煩。 又,補正參數P、q亦可為視工作f長度和貨物重量而 不同的矩陣值。 再且’亦可使補正參數p、q定期地微小變化,而更新 :、'、令殘留振動為最小的參數做為結果。 又本發月係不限定於前述實施形態,於不逸脫本發 320135 23 200906705 明之要旨的範圍内當然可進行種種變更 ”要在可適用前述模型的前提下,並二:發明只 ..臂’而可適用於具有加速、減速時容易振動 形之構造的其他移動體。 次引起彈性k 【圖式簡單說明】 j ΙΑ ®為二階段加速法之模型,帛⑺ 式,第1C圖為表示其振動的圖。 〜、、又、 第2A圖、第2B圖為依據本發明的加迷 或彈性變形的移動體之模型圖。 振動 解析圖為依據本發明的加速度模式,第犯圖示有其 度。第4圖示有習知例之加速模式、工作臂之振動以及速 度 第5圖示有本發明之加速模式'卫作臂之振動以及速 第6圖為本發明之制振定位控制的加速度模式。 第7圖為表示加速度模式之計算方法的流程圖。 1 :圖不有本發明之制振定位控制裝置之動作流程。mL \kL' mg (15) T = 2π. kL- 七q (16) Female 1 In this case, under the same conditions, the residual vibration at the end of the acceleration and the deceleration of ''$ is calculated multiple times, and the above multiple residuals are calculated. When the average value of the vibration is 22 320135 200906705 'the average value of the vibration residual vibration is equal to or greater than the predetermined threshold value, the correction value of the natural period is increased or decreased so that the residual x becomes small. The M diagram is an update flowchart of the number of turns p and q, the 16th diagram is a schematic diagram of the vibration on the update date and the calculation, and the 17th diagram is a setting example of Δρ, "". £1 is the fixed rush time of T1' ε 1 is the ε ε 1 after the vibration converges after the fixed rush time of T1 (3 is ε 1, ε 10 before changing the parameters P and q, and is changed ε 1, before the number q, / Ρ In Fig. 15, 'measure ε 10, ε 10, with the laser range finder 7, 8 (, set ΔΡ, Δ_52), so that P1 and P2 increase each. Howling, running the moving body (S54), measuring with the laser range finder 7, 8 (S55), and repeating the absolute value of the difference between ε i and ^ i, the absolute value of the difference of ~1 反When it is smaller (S56), ε1〇, εΐ〇^εΐ, fish 替换 are replaced (S57), the scanning of the parameters p and q is finished (s58), and the meaning is updated, and the time is Pi and ql (S59). According to this method, p and q' can be updated for the vibration data measured during the normal operation, and the modeling error at the time of design and the deviation between the model and the real machine due to the temporal change can be reduced. Shorten the on-site adjustment time, and Less maintenance trouble on. Further, the correction parameters P and q may be matrix values different depending on the length of the work f and the weight of the cargo. Further, the correction parameters p and q may be periodically changed minutely, and the parameters of ", and the minimum residual vibration are updated as a result. Further, the present invention is not limited to the above-described embodiment, and various modifications can of course be made without departing from the gist of the present invention 320135 23 200906705. "On the premise that the above model can be applied, and two: invention only. 'It can be applied to other moving bodies that have a structure that is easy to vibrate when accelerating or decelerating. Sub-induced elasticity k [Simple description of the drawing] j ΙΑ ® is a model of the two-stage acceleration method, 帛(7), and Figure 1C shows Fig. 2, Fig. 2A and Fig. 2B are model diagrams of the occluded or elastically deformed moving body according to the present invention. The vibration analysis diagram is an acceleration mode according to the present invention, and the The fourth embodiment has the acceleration mode of the conventional example, the vibration of the working arm, and the speed. The fifth embodiment has the acceleration mode of the present invention, the vibration of the guard arm, and the sixth figure of the vibration damping positioning control of the present invention. Acceleration mode Fig. 7 is a flow chart showing the calculation method of the acceleration mode. 1 : The operation flow of the vibration damping positioning control device of the present invention is not shown.

圖為^第3圖為本發明之加速度模式之第2實施例,第9B 圖為其弟3貫施例。 第1〇圖為與第6圖相同加速度模式的第4實施例。 第η圖為導出第10圖之加速度模式的流程圖。 ㈣有與第8圖相同的第4實施例之制振定位控 制裝置之動作流程。 320135 24 200906705 第13圖為與第9圖相同加逮唐捃a ^ 施例。 貫施例。 ^ 镍式的第5實 第14圖為與第2圖相同移動體模型圖的第2 第1 5為參數p、q的更新流程圖。 第16圖為更新時所計量的振動之示意圖。 第17圖為△ p、△ q的設定例。 【主要元件符號說明】 貨物 2 彈性臂 3 移動台車 4 應變儀 5 加速度計 加速度計 8 10 雷射测距計 雷射測距計 控制裝置 k 320135 25Fig. 3 is a second embodiment of the acceleration mode of the present invention, and Fig. 9B is a third embodiment of the same. Fig. 1 is a fourth embodiment of the same acceleration mode as Fig. 6. The nth diagram is a flow chart for deriving the acceleration mode of Fig. 10. (4) The operation flow of the vibration damping positioning control device of the fourth embodiment which is the same as Fig. 8. 320135 24 200906705 The 13th picture is the same as the 9th figure. Throughout the case. ^ The fifth version of the nickel type Fig. 14 is a flowchart showing the updating of the parameters p and q in the second and fifth terms of the moving body model diagram as in Fig. 2 . Figure 16 is a schematic diagram of the vibration measured at the time of the update. Fig. 17 is a diagram showing an example of setting Δ p and Δ q. [Main component symbol description] Cargo 2 Elastic arm 3 Mobile trolley 4 Strain gauge 5 Accelerometer Accelerometer 8 10 Laser range finder Laser range finder Control device k 320135 25

Claims (1)

200906705 十、申請專利範圍: 動ΐ = : =制方法,係抑制於加速、減速時產生振 舞,的移動體之振動而進行定位者,其中, 予以移動體之振動以1自由度之彈簧i點系統 求出前逑模型之固有週期;以及 之增減速時之加速度模式設為含有急衝度固定 固二Μ ’、的梯形模式,且將各固定急衝度時間設為 气 固有週期之整數倍。 丁间叹马 範圍第1項之制㈣位控制方法,其中,前 述加速度模式係具有·· 八〒刖 速二:二度::定急衝度增加’接著將加 減速模式,使==二,°; 〇,·以及 纟再使加速度以固定急衝度增加至 i 等速模式’位於前述加 加速度保持為〇。 Μ與減迷拉式之間且將 3.如申請專利範圍第丨項或 , 其中,將前述加速度模式制振定位控制方法, 波以上。 又模式錯開1/2週期而重叠2波或3 I 圍第1項之制振定位控制方法,其中, 依據質點位置而各自導^化;^變化的情形時, ¥出加逮開始時、加速終了 320135 26 200906705 時、減速開始時、以及減速終了時的固有週期, 且將加速開始時、加速終了時、減速開始時、以及 減速終了時的各固定急衝度時間設為前述所導出的各 者之固有週期的整數倍。 5. 如申請專利範圍第1項之制振定位控制方法,1中, 條件下’多次計量加速終了時及減 時之殘留振動, 〜j 算出前述多個殘留振動的平均值, 士田月’J述殘留振動之平均值為預定之臨限值以上 广’以使殘留振動變小的方式增減固有 6. 一種制振定位控制穿詈 補正值。 動切… 抑制於加速、減速時產生振 彼— 之振動而進行定位者,其中, 將别述移動體之振動 予以模型化; 勤以1自由度之彈簧-質點系統 求出前述模型之固有週期;以及 之增速二速迷度模式設為含有急衝度固定 固有週期之整數倍。、",且將各固定急衝度時間設為 320135 27200906705 X. Patent application scope: The motion method = : = system method is to suppress the vibration of the moving body when the acceleration and deceleration occur, and the vibration of the moving body is 1 point of the spring of the 1 degree of freedom. The system obtains the natural period of the front 逑 model; and the acceleration mode during acceleration and deceleration is set to the trapezoidal mode with the jerk fixed fixed Μ ', and each fixed rush time is set to an integral multiple of the natural period of the gas. . Ding sighs the range of the first (four) position control method, wherein the aforementioned acceleration mode has ·· eight speeds two: two degrees:: the increase of the rush degree 'then the acceleration and deceleration mode, so == two , °; 〇, · and 纟 then increase the acceleration to a fixed speed to the i constant speed mode 'located at the aforementioned jerk. Between Μ and 迷 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉 拉In addition, the mode is shifted by 1/2 cycle and overlaps 2 waves or 3 I. The vibration damping positioning control method of the first item is controlled by the position of the particle point; when the change occurs, the acceleration starts and accelerates. At the end of 320135 26 200906705, at the start of deceleration, and the natural cycle at the end of deceleration, the fixed rush time at the start of acceleration, at the end of acceleration, at the start of deceleration, and at the end of deceleration are set as the above-mentioned An integer multiple of the natural period of the person. 5. In the vibration damping positioning control method of the first application of the patent scope, in the condition 1, the residual vibration at the end of the multiple measurement acceleration and the time of the reduction, ~j calculates the average value of the plurality of residual vibrations, Shi Tianyue 'The average value of the residual vibration is a predetermined margin or more' to increase or decrease the residual vibration. 6. A vibration damping positioning control correction value. The cutting is performed by suppressing the vibration of the vibration and the vibration during acceleration and deceleration, and the vibration of the moving body is modeled. The natural period of the model is obtained by the spring-mass system of one degree of freedom. And the speed-increasing two-speed mode is set to an integer multiple of the fixed natural period of the rush. , ", and set each fixed rush time to 320135 27
TW97113455A 2007-06-28 2008-04-14 Vibration-suppressing positioning control method and apparatus TW200906705A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007170993 2007-06-28
JP2008058988A JP4415335B2 (en) 2007-06-28 2008-03-10 Vibration damping positioning control method and apparatus

Publications (2)

Publication Number Publication Date
TW200906705A true TW200906705A (en) 2009-02-16
TWI342298B TWI342298B (en) 2011-05-21

Family

ID=40197308

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113455A TW200906705A (en) 2007-06-28 2008-04-14 Vibration-suppressing positioning control method and apparatus

Country Status (3)

Country Link
JP (1) JP4415335B2 (en)
CN (1) CN101334674B (en)
TW (1) TW200906705A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5418154B2 (en) * 2009-11-05 2014-02-19 株式会社Ihi Control device and method for die cushion device
JP5689329B2 (en) * 2011-02-07 2015-03-25 富士機械製造株式会社 Pitch drive device
CN102518743B (en) * 2011-12-30 2013-04-03 中联重科股份有限公司 Method for controlling coupled vibration of tower crane and cable support tower structure
JP2014056352A (en) * 2012-09-11 2014-03-27 Canon Inc Positioning device and measuring device
CN103513575B (en) * 2013-10-08 2017-04-19 广东工业大学 S-shaped movement curve planning method for reducing residual oscillation of high-speed mechanism
JP6719807B2 (en) * 2016-05-18 2020-07-08 新東工業株式会社 Liquid tank transport control system by overhead crane and method of transporting liquid tank by overhead crane
EP3473585B1 (en) * 2016-06-16 2023-12-06 Mitsubishi Logisnext Co., Ltd. Industrial vehicle
DE102017114789A1 (en) * 2017-07-03 2019-01-03 Liebherr-Components Biberach Gmbh Crane and method for controlling such a crane
JP7142359B2 (en) * 2019-07-27 2022-09-27 公立大学法人公立諏訪東京理科大学 Movable part control device, movable part control method and program
CN110647183B (en) * 2019-10-16 2021-10-01 广东工业大学 Vibration reduction method, device and equipment for high-precision positioning platform
CN114001193B (en) * 2021-09-18 2024-03-15 上海华兴数字科技有限公司 Start-stop vibration reduction control method and device for working machine and electronic equipment
CN114506769B (en) * 2022-02-21 2023-02-28 山东大学 Anti-swing control method and system for bridge crane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920431A1 (en) * 1999-05-04 2000-11-16 Hofer Eberhard Method for damping pendulum load on cranes with reduced sensory mechanism includes one or more drive motors while detecting the cable length between a crane trolley, its load and a load mass.

Also Published As

Publication number Publication date
TWI342298B (en) 2011-05-21
CN101334674A (en) 2008-12-31
CN101334674B (en) 2012-08-15
JP2009029617A (en) 2009-02-12
JP4415335B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
TW200906705A (en) Vibration-suppressing positioning control method and apparatus
CN103968789B (en) Dynamical monitoring of a coordinate measuring machine using recursive filtering
TWI380946B (en) Vibration damping positioning control method and device
CN103477181A (en) Coordinate measuring machine
EP3716263A1 (en) Structural damper
CN106052667A (en) System, Apparatus, and Method for Resonator and Coriolis Axis Control in Vibratory Gyroscopes
JPH06249239A (en) Static pressure bearing device
CN102567563A (en) Accurately quantitative calculation method for near-field ultrasonic levitation force
US8855826B2 (en) Controller for reducing vibrations in mechanical systems
JP2009171587A (en) Method and device for detecting displacement and movement of sound producing unit of woofer
Ghemari Analysis and optimization of vibration sensor
CN110133665B (en) Doppler measurement method of ultrasonic transducer based on envelope curve
CN207215010U (en) A kind of device for measuring flexible beam transverse vibrational displacement and strain stress relation
Kim et al. Design of a vibrating MEMS gyroscope considering design variable uncertainties
JP2001290541A (en) Method for accelerating and decelerating industrial machine
US11032657B2 (en) Volume acceleration sensor calibration
JP5459662B2 (en) Positioning device and positioning method
JP7362060B2 (en) Measuring devices and arithmetic processing devices for measuring devices
JP2019100791A (en) Liquid level sensor and liquid level detection method
Nizioł et al. Free vibration of the discrete-continuous system with damping
JP2004009176A (en) Balance adjustment device
JP2005103739A (en) Vibration suppressing control device
Kozień et al. Simulation of control algorithm for active reduction of transversal vibrations of beams by piezoelectric elements based on identification of bending moment
Santhosh et al. Experimental design for single degree of freedom vibration system
US20230065276A1 (en) Piezoelectric ceramic crystals integrating an impedance matching region and a backing region, methods of designing piezoelectric ceramic crystals, and methods of forming piezoelectric ceramic crystals

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees