TW200905788A - Substrate detecting apparatus, substrate aligning apparatus, substrate bonding apparatus having substrate detecting apparatus and substrate aligning apparatus, wafer outer shape detecting apparatus, wafer aligning apparatus, and wafer bonding apparat - Google Patents

Substrate detecting apparatus, substrate aligning apparatus, substrate bonding apparatus having substrate detecting apparatus and substrate aligning apparatus, wafer outer shape detecting apparatus, wafer aligning apparatus, and wafer bonding apparat Download PDF

Info

Publication number
TW200905788A
TW200905788A TW097121990A TW97121990A TW200905788A TW 200905788 A TW200905788 A TW 200905788A TW 097121990 A TW097121990 A TW 097121990A TW 97121990 A TW97121990 A TW 97121990A TW 200905788 A TW200905788 A TW 200905788A
Authority
TW
Taiwan
Prior art keywords
wafer
edge
substrate
detecting device
detecting
Prior art date
Application number
TW097121990A
Other languages
Chinese (zh)
Other versions
TWI483339B (en
Inventor
Toshihisa Tanaka
Kazuyasu Oone
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of TW200905788A publication Critical patent/TW200905788A/en
Application granted granted Critical
Publication of TWI483339B publication Critical patent/TWI483339B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like

Abstract

A wafer outer shape detecting apparatus (10) is provided with a rotating apparatus (12) for rotating a wafer (11); an edge detecting apparatus (15) for detecting the edge of the wafer placed on the rotating apparatus; a servo apparatus (16) for making the edge detecting apparatus follow displacement of the wafer edge; and a position detecting apparatus (17) for detecting the position of the edge detecting apparatus to the radius direction of the wafer.

Description

200905788 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種在電子裝置製造領域所使用之 基板檢測裝置、基板位置決定裝置、具有基板檢測裝 置及基板位置決定裝置的基板貼合裝置、晶圓外形檢 測裝置、晶圓位置決定裝置、及具有晶圓外形檢測裝 置及晶圓位置決定裝置的晶圓貼合裝置。 【先前技術】 作為用以達成電子裝置之動作速度提升、功能高 度化、大容量等之有力的手段之一,在此例舉形成電 子裝置之晶圓之三維積層。此係藉由積層設有貫穿於 半導體基板(晶圓)内部之導線之晶圓來連接導線、薄加 工,能使電路之脫線長度縮短,並能謀求實現裝置之 高速化與低發熱化。此外,藉由增加晶圓積層之層 數,能提高電路功能、增加記憶體容量。 要進行晶圓之三維積層,係提案有在電路形成完 成之晶圓表面形成接合電極,位置決定為兩片晶圓或 已積層之晶圓與進一步積層之下一晶圓之電極彼此一 致以貼合之晶圓貼合裝置(例如日本專利特開 2005-302858 號公報)。 以往之晶圓貼合裝置中,為檢測晶圓之外形,使 用有自晶圓上方照射光,用配置在晶圓下方之光檢測 裔檢測晶圓外形之晶圓外形檢測裝置。 然而,以往之晶圓外形裝置中,檢測積層有複數 的晶圓之狀悲的積層晶圓(之後亦稱為晶圓)外形時^會 有檢測出晶圓整體之最大外形,而無法正確檢測對應 5 200905788 貼合面之晶圓外形之問題。 【發明内容】 因此本發明係有鑑於上述問題點而研創者,其目 的在提供一種基板檢測裝置、基板位置決定裝置、具 有基板檢測裝置及基板位置決定裝置的基板貼合裝 置、晶圓外形檢測裝置、晶圓位置決定裝置、及具有 晶圓外形檢測裝置及晶圓位置決定裝置的晶圓貼合裝 置。 為解決上述課題之本發明第一態樣,係提供一種 基板檢測裝置,其特徵為具備用以檢測所積層之複數 的基板之中構成最上層之最上層基板之檢測部。 又,根據本發明之第一態樣,前述檢測部係檢測 前述最上層基板之邊緣之邊緣檢測裝置,進一步具 備:旋轉所積層之前述複數的基板之旋轉裝置;使前 述邊緣檢測裝置追蹤藉由該旋轉裝置旋轉之前述最上 層基板之前述邊緣之變位之伺服裝置;及用以檢測前 述邊緣檢測裝置之位置之位置檢測裝置。 又,根據本發明之第一態樣,前述邊緣檢測裝置 係用以檢測前述最上層基板之前述邊緣之段差。 又,根據本發明之第一態樣,前述邊緣檢測裝置 係用以檢測前述最上層基板之傾斜。 又,根據本發明之第一態樣,前述邊緣檢測裝置 係用以檢測前述最上層基板之前述邊緣之光學特性之 變化。 又,根據本發明之第一態樣,前述光學特性係包 含前述最上層基板之顏色、反射率之至少一方。 6 200905788 又,根據本發明之第二態樣,係提供一種基板位 置決定裝置,其特徵為具備:前述基板檢測裝置;用 以位置決定保持前述基板之基板保持具之基板保持載 台;及將前述基板移送至前述基板保持具之搬送手 段。 又,根據本發明之第三態樣,係提供一種基板貼 合裝置,其特徵為具備:前述基板位置決定裝置;及 透過前述基板保持具,將使用前述基板位置決定裝置 所位置決定之兩片前述基板接合之基板貼合部。 又,根據本發明之第四態樣,係提供一種晶圓外 形檢測裝置,其特徵為具備:用以旋轉晶圓之旋轉裝 置;用以檢測載置於前述旋轉裝置之該晶圓之邊緣之 邊緣檢測裝置;使前述邊緣檢測裝置追蹤前述晶圓邊 緣之變位之伺服裝置;及用以檢測相對前述晶圓半徑 方向之前述邊緣檢測裝置之位置之位置檢測裝置。 又,根據本發明之第四態樣,前述邊緣檢測裝置 係用以檢測前述晶圓邊緣之段差。 又,根據本發明之第四態樣,前述邊緣檢測裝置 係用以檢測前述晶圓邊緣之傾斜。 又,根據本發明之第四態樣,前述邊緣檢測裝置 係用以檢測前述晶圓邊緣之光學特性之變化。 又,根據本發明之第四態樣,前述光學特性係包 含前述晶圓邊緣之顏色、反射率之至少一方。 又,根據本發明之第四態樣,更具備:配置在前 述晶圓之外周部附近,用以檢測前述晶圓邊緣之固定 式邊緣檢測裝置。 又,根據本發明之第四態樣,根據前述邊緣檢測 7 200905788[Technical Field] The present invention relates to a substrate detecting device, a substrate position determining device, a substrate bonding device having a substrate detecting device and a substrate position determining device, which are used in the field of electronic device manufacturing, and A wafer shape detecting device, a wafer position determining device, and a wafer bonding device having a wafer shape detecting device and a wafer position determining device. [Prior Art] As one of the powerful means for achieving an increase in the operation speed of the electronic device, high function, large capacity, and the like, a three-dimensional layer of a wafer on which an electronic device is formed is exemplified. By connecting the wires and thinning the wafers provided with the wires which are formed inside the semiconductor substrate (wafer), the length of the off-line of the circuit can be shortened, and the device can be speeded up and the heat can be reduced. In addition, by increasing the number of layers of the wafer stack, the circuit function can be improved and the memory capacity can be increased. In order to perform three-dimensional lamination of a wafer, it is proposed to form a bonding electrode on the surface of the formed circuit, and the position is determined to be two wafers or a laminated wafer and the electrodes of the further stacked one wafer are aligned with each other. A wafer bonding apparatus (for example, Japanese Patent Laid-Open Publication No. 2005-302858). In the conventional wafer bonding apparatus, in order to detect the shape of the wafer, a wafer shape detecting device for detecting the shape of the wafer by the light detector disposed under the wafer is used. However, in the conventional wafer outline device, when the shape of a laminated wafer (hereinafter also referred to as a wafer) in which a plurality of wafers are stacked is detected, the maximum shape of the entire wafer is detected, and the wafer cannot be correctly detected. Corresponds to the issue of the wafer shape of the 5 200905788 bonding surface. SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a substrate detecting device, a substrate position determining device, a substrate bonding device having a substrate detecting device and a substrate position determining device, and wafer profile inspection. A device, a wafer position determining device, and a wafer bonding device having a wafer shape detecting device and a wafer position determining device. In order to solve the above-described problems, the first aspect of the present invention provides a substrate detecting apparatus comprising: a detecting unit for detecting an uppermost layer of an uppermost layer among a plurality of substrates which are stacked. Further, according to a first aspect of the present invention, the detecting unit detects an edge detecting device for detecting an edge of the uppermost substrate, and further includes: a rotating device that rotates the plurality of substrates stacked; and the edge detecting device traces a servo device for displacing the edge of the uppermost substrate of the rotating device, and a position detecting device for detecting a position of the edge detecting device. Further, according to a first aspect of the present invention, the edge detecting means is adapted to detect a step difference of the edge of the uppermost substrate. Further, according to the first aspect of the invention, the edge detecting means is for detecting the inclination of the uppermost substrate. Further, according to a first aspect of the present invention, the edge detecting means is for detecting a change in optical characteristics of the edge of the uppermost substrate. Further, according to a first aspect of the present invention, the optical characteristic includes at least one of a color and a reflectance of the uppermost substrate. 6 200905788 Further, according to a second aspect of the present invention, a substrate position determining device includes: the substrate detecting device; a substrate holding stage for determining a substrate holder holding the substrate; and The substrate is transferred to the transfer means of the substrate holder. According to a third aspect of the present invention, there is provided a substrate bonding apparatus comprising: the substrate position determining device; and the two substrates that are determined by the position of the substrate position determining device through the substrate holder The substrate bonding portion to which the substrate is bonded. Moreover, according to a fourth aspect of the present invention, a wafer shape detecting device is provided, comprising: a rotating device for rotating a wafer; and detecting an edge of the wafer placed on the rotating device An edge detecting device; a servo device for causing the edge detecting device to track the displacement of the wafer edge; and a position detecting device for detecting a position of the edge detecting device in a radial direction of the wafer. Further, according to a fourth aspect of the present invention, the edge detecting means is for detecting a step difference of the edge of the wafer. Further, according to a fourth aspect of the invention, the edge detecting means is for detecting the inclination of the edge of the wafer. Further, according to a fourth aspect of the present invention, the edge detecting means is for detecting a change in optical characteristics of the edge of the wafer. Further, according to a fourth aspect of the present invention, the optical characteristic includes at least one of a color and a reflectance of the edge of the wafer. Further, according to a fourth aspect of the present invention, there is provided a fixed edge detecting device for detecting the edge of the wafer in the vicinity of a peripheral portion of the wafer. Further, according to the fourth aspect of the present invention, according to the aforementioned edge detection 7 200905788

=β= 定^檢測裝置之至少 時之曰圓浐屏h月 悲樣’根據月·』述晶圓投入 =曰曰0積層貧訊’選擇前述邊緣檢測裝 定式邊緣檢測裝置之任—方。 引、u 、^,根據本發明之第五態樣,係提供一種晶圓位 置决疋装置,其特徵為具備:前述晶圓外形檢測裝 置;用以位置決定保持晶圓之晶圓保持具之晶圓保持 載台;將前述晶圓移送至前述晶圓保持具之搬送手 段。 又’根據本發明之第五態樣,根據使用前述晶圓 外形檢測裝置之前述晶圓之偏心量、刻槽位置或定向 平面位置之檢測結果’進行相對前述晶圓保持具之既 定位置之前述晶圓之偏心量、及前述刻槽位置或前述 定向平面位置之補正,將前述晶圓位置決定於前述晶 圓保持具。 又’根據本發明之第六態樣,係提供一種晶圓貼 200905788 合裝置,其特徵為具備:前述晶圓位置決定裝置;及 透過晶圓保持具將使用前述晶圓位置決定裝置而位置 決定之兩片晶圓接合之晶圓貼合部。 根據本發明,提供一種能正確計測對應基板最上 面之貼合面的外形之基板檢測裝置、基板位置決定裝 置、具有基板檢測裝置及基板位置決定裝置之基板貼 合裝置。 此外,提供一種能正確計測對應晶圓最上面之貼 合面的外形之晶圓外形檢測裝置、晶圓位置決定裝 置、及具有晶圓外形檢測裝置及晶圓位置決定裝置之 晶圓貼合裝置。 又,藉由上述裝置,能依各層計測貼合時之基板 或晶圓偏移量,而能謀求貼合條件之最適化。 【實施方式】 以下詳細說明本發明實施形態之晶圓貼合裝置。 另外,以下之全實施形態中,雖以半導體晶圓為 代表說明,但當然亦可使用電子裝置製造所使用之半 導體晶圓以外之例如玻璃基板、陶瓷基板、鐵氧體基 板等各種基板。 此外,亦可使用於形成有電子裝置之晶片。 第一圖係實施形態之晶圓貼合裝置之概略構成 圖。 實施形態之晶圓貼合裝置1係由:晶圓位置決定裝 置50 :内裝後述之晶圓外形檢測裝置10 ;及透過晶圓 保持具接合位置決定之兩個晶圓以形成積層晶圓之晶 圓貼合部90所構成。 200905788 前步驟完成投入晶圓位置決定裝置50之晶圓外形 檢測裝置10之晶圓,係以晶圓外形檢測裝置10檢測對 應最上面之貼合面之晶圓的外形、晶圓之刻槽位置、 或定向平面位置。 此外,在半導體晶圓以外之基板中,形成有相當於 刻槽位置或定向平面位置亦可。 根據晶圓外形檢測裝置10之檢測結果,將晶圓之 刻槽位置或定向平面位置以後述之晶圓位置決定裝置 50位置決定在後述之晶圓保持具之既定位置。 以晶圓位置決定裝置50位置決定在晶圓保持具之 晶圓與晶圓保持具之固定,係以搬送機械2搬送至晶圓 貼合部9 0 ’透過晶圓保持具將兩片晶圓以晶圓貼合部 90接合而形成貼合晶圓11(之後單板晶圓、積層晶圓僅 稱為晶圓)。 (第一實施形態) 接著說明第一實施形態之晶圓外形檢測裝置10。 第二圖係第一實施形態之晶圓外形檢測裝置10之 概略構成圖。第三圖係晶圓外形檢測裝置10之晶圓外 形檢測流程圖。第四A圖、第四B圖、第五A圖、第 五B圖、第五C圖係分別顯示晶圓之邊緣檢測輸出之 例。第六圖係顯示第一實施形態之晶圓外形檢測裝置中 的邊緣檢測裝置之邊緣追蹤控制方塊線圖。 第二圖中,例如兩片晶圓11a與lib所貼合之晶圓 11,係透過後述之晶圓投入機械51(參照第十圖)載置於 固定在旋轉馬達12的旋轉軸之轉盤13。此外,晶圓11a、 lib有單板晶圓亦有積層晶圓之情況。 旋轉馬達12中係内裝有用以檢測旋轉馬達12之旋 10 200905788 般轉角度)之旋轉編碼器14。以下之說明中,雖 =月在轉盤13上載置有(積層^ag] u 亦可為單板晶圓11 〇 仁田… 、蠢缕t晶圓Γ之上方配置有:用以檢测晶圓1之外形 ΐ、5 測感測器15;及支持該邊緣檢測感測 H 測感測器15追縱晶圓11之邊緣的飼服 、、 。伺服機構16係由内襞線性編碼器17之線性馬 達18所構成,將邊緣檢測感測器15移動於晶圓丨丨之 半徑方向。 、 又,控制力疋轉馬達12、邊緣檢測感測器丨5、線性 馬達18等之同時,具有由用以處理各信號之後述之各 種控制部構成之控制裝置2〇。 以下說明晶圓外形檢測裝置1〇之構成要素。 线邊緣檢測感測器15係可抽出晶圓U之厚度方向之 變位、,如第四A圖、第四B圖所示,形成能檢測晶圓 1 ^邊緣部份的段差之感測器系統。此外,邊緣檢測感 ^器15係亦能一併測定晶圓1之厚度,晶圓1為積層 曰曰圓時,只要事先知道各層之晶圓厚度,則亦可檢測積 層數量。 第四A圖係顯示晶圓U之邊緣部放大圖、第四b 圖係顯示來自遍及晶圓半徑方向之邊緣檢測感測器15 之"ί§號之一例。 又,邊緣檢測感測器15具有傾斜檢測功能,可檢 測晶圓11之邊緣區域傾斜之部分,如第五Α圖至第五c 圖所示’可辨別晶圓11之邊緣之區域。 第五A圖係顯示晶圓U之邊緣部放大圖、第五b 圖係顯示來自遍及晶圓半徑方向之邊緣檢測感測器15 200905788 之信號之一例、第五C圖係顯示形成有以第五B圖之信 號為依據制定邊緣範圍之信號之例。 又,邊緣檢測感測器15可檢測反射率之變化,在 晶圓11之各層之晶圓(例如11a、lib)之邊緣附近,反射 率不同時,可辨別特定之層的邊緣。 此外,邊緣檢測感測器15可檢測色相,在晶圓11 各層之邊緣附近,色相不同時,可辨別特定之層的邊緣。 又,本實施形態中,邊緣追蹤用之線性帶最寬,使 用可抽出厚度方向變位之非接觸光學式變位計。 線性馬達18係可將邊緣檢測感測器15驅動於晶圓 11之半徑方向之機構,具有利用三相線圈與磁鐵產生電 磁驅動力之可動部與固定部,且具有透過電磁驅動力, 可動部相對固定部驅動之構造。邊緣檢測感測器15係 固定於可動部。此外,線性馬達18亦内裝有引導機構, 位置決定分解能力亦具有數μιη程度之能力。 此外,晶圓11之邊緣檢測所必須之分解能力雖依 據取樣數據,但由於需要ΙΟμηι程度,因此若有數μιη 程度之位置決定能力之驅動型態時,使用單相VCM驅 動或具有電磁驅動力以外之空壓驅動力之空壓制動器 等亦可。又,最好為引導追蹤邊緣等之滑動阻抗較小之 機構系統。 線性編碼器17内裝於線性馬達18,進行可動部之 驅動方向(晶圓半徑方向)位置檢測者。線性編碼器17係 能以脈衝計數判定位置,但於線性馬達18初期化時, 以原點感測器(未顯示於圖)進行計數設定。又,從計數 值至晶圓半徑方向位置之變換係以控制裝置20之數據 處理部(CPU)21進行。此外,本實施形態中,雖内裝線 12 200905788 性編碼器17,但線性編碼器17亦可為外設。 晶圓11係使用單層晶圓、積層(貼合)晶圓等。本實 施形態中,主要以積層有200mm晶圓為對象,但並不 限定於此。 旋轉馬達12之構造是以未顯示於圖之轉子與定 子,形成轉子相對於定子以電磁力等產生轉矩而能夠旋 轉。 旋轉編碼器14係内裝於旋轉馬達12(未顯示於 圖),係進行檢測因應旋轉馬達12之旋轉角度,能以脈 衝計數判定角度。旋轉編碼器14係於旋轉馬達12初期 化時,以原點感測器(未顯示於圖)進行計數設定,從計 數值至馬達旋轉角度之變換係以數據處理部(CPU)21進 行。此外,本實施形態中,旋轉編碼器14雖内裝,但 亦可為外設。 轉盤13係安裝在旋轉馬達12之轉子,具有吸附晶 圓11之功能。所吸附之晶圓11係形成與旋轉馬達12 之旋轉一起迴轉。此外,本實施形態中,使用真空吸附, 到轉盤13為止之真空導入係透過旋轉接頭(未顯示於圖) 來轉送並執行。此外,亦可使用靜電吸附等取代真空吸 附。 控制裝置20内之線性馬達驅動器22係用以驅動線 性馬達18之控制驅動器,傳送位置指令將線性馬達18 位置決定於既定位置,傳送推力指令時可以既定推力驅 動可動子,且能設定線性馬達18之驅動條件等各種參 數,而可因應參數驅動線性馬達。 旋轉馬達驅動器23係為用以驅動旋轉馬達12之控 制驅動器,傳送旋轉指令時可以指令旋轉數旋轉,傳送 13 200905788 至目的旋轉角度之位置指令時,可位置決定至既定旋轉 角度,且能設定旋轉馬達12之驅動條件等各種參數, 而可因應參數驅動旋轉馬達12。 伺服控制部24係為具有用以使邊緣檢測感測器15 追蹤於晶圓11之邊緣之伺服功能之電路,參照第六圖 之方塊圖說明電路之功能構成。 本電路之功能係方塊圖中之方塊Bl、B2,及為Et 與Es之比較器。此外,方塊B3係表示線性馬達驅動器 22之電流感度特性(A/V)、方塊34係表示線性馬達28 之推力特性(N/A)、方塊B5(虛線部分)係表示以運動於 裝載於可動子之邊緣檢測感測器15之晶圓半徑方向之 狀態為一個方塊。 方塊B5係藉由以線性馬達可動子與邊緣檢測感測 器15所構成之可動部質量,推力藉由加速度特性 ((m/s2)/N)成為加速度,以積分要素表示加速度之時間積 分轉換為速度(m/s),速度之時間積分轉換為位置(m)之 變化。 邊緣檢測感測器15係如第二圖、第四A圖、第四 B圖、第五A圖至第五C圖所示,較晶圓lib之邊緣為 内侧(晶圓内周側)時,計測晶圓表面,較晶圓1 lb之邊 緣為外側時,計測下層晶圓11a表面或無測定表面之狀 態。 使用邊緣檢測感測器15之厚度方向之變位抽出功 能時,依照晶圓11之半徑而獲得如第四B圖所示之信 號輸出Es,此時,臨界值Et係相對相當於晶圓11最上 面之晶圓lib表面高度之Es之值,設定為較低的值。 考慮第六圖之方塊圖之Es與Et之比較時,方塊B1係 14 200905788 ΐϊϊ四A圖之晶圓ub之邊緣於晶圓lib之外^ 感測器15時,成為職切,相反:側有 対日日圓11b之邊绫於曰圄 仲久的’相 f 15 ^ 相對+ k UA 弟圖之方塊圖之B 1 則產生E(V之ί 8為正則產生+E(V)之電壓,若ε為备 之晶應在邊緣檢測感‘5 -E(vs> ;疋化’使用方塊B2之過 行制動作之 專之電路構成,可對晶圓補仞。藉由該 資保持對邊緣之追縱狀態,藉此自碰緣仏 貝一取邊緣檢呢測器 線^碼器17 置之資訊。 之位置’而可操作邊緣位 檢測^第二圖所示,計測數據讀取部25係呈有你真 …旋轉編碼器14或線性^、=邊緣 ::壓與時間同步,或與編碼器計數同步二=輸 力月匕。經讀取之數據係傳遞至數據處理部π取數據之 數據處理部(CPU)21係於晶圓外。 進行計測數據之演算處理及儲存,或心匕置1。 發出邊緣追縱伺服之ΟΝ/OFF指令,或谁二司服控制部 之指令’或讀取驅動器之狀態等之處理,=各驅動器 之晶圓之狀態判別且進行對應狀態之處理所投入 接著’參照第三圖’依每一步驟說明;々。 (相)之流程。晶圓n係由未顯示=卜:檢測 ❾或以人的手動搬送積載至旋轉馬達12=來自動搬 步驟(S1):晶圓表面計測 之轉盤13上。 要設定臨界值Et係必須求取應計心晶圓之最上 15 200905788 層晶,lib(參照第二圖)之表面高度。要計測該最上層之 表面高度,係必須將邊緣檢測感測器15位置決定^晶 圓lib之内周侧。以2〇〇mm晶圓之情況為例,相對轉 盤13之旋轉中心,R=1〇〇mm附近形成邊緣。但是,邊 緣檢測感測器15係晶圓11積載至轉盤13時有偏移, ^此有必要考慮該偏移量之位置來做決定位置的設 ^。正確的臨界值設定係必須盡量在接近邊緣之位置ς 得晶圓表面之高度數據,因此在轉盤13上之晶圓u偏 ( =量最好為5mm以下。因此邊緣檢測感測器15係最好 攸轉盤13中心位置決定設定在半徑r=9〇〜94mm附 近。此外,該數值係根據載置於轉盤13之晶圓u之尺 寸加以變更。 接著’晶圓外形檢測裝置10係旋轉轉盤13,計測 對應晶圓旋轉角度之晶圓llb之面偏移。計測結束後, 停止轉盤13之旋轉。邊緣之段差較小時,亦設定考慮 晶圓11之面偏移之臨界值,藉此能無錯誤的使邊緣檢 測感測器15追蹤作為對象之邊緣。因而,目標臨界值 C 成為自最上層之晶圓11的表面高度依存於具有一 定:之偏移之旋轉角度之參數。第七圖係晶圓llb表面 之高度變動之一例。 /偏移量之標準係所追蹤之段差之一半程度。控制上 係將該偏移量轉換為類比電壓或數位值來控制。藉由以 士’獲得對應晶圓旋轉角度θ之目標臨界值參照 1圖)’並且將其儲存。此外,控制裝置20係預先將 晶圓積層數登錄於控制裝置20内,所計測之晶圓高度 與登錄值不同時,亦可以數據處理部21進行錯誤判定。 步驟(S2):邊緣伺服ON至權重(weight)處理為止 16 200905788 之方塊圖之^)制部24成為邊緣追縱狀態(第六圖 邊緣靜严時,邊緣檢測感測器15之變化係如第八 Θ不。弟八圖係顯示相對邊緣之伺服牽引特性之一 例。邊緣檢測感測器15之作動係以線性編碼器17之輸 ,表示,因此過度的牽Μ完成之狀態係能藉由二 編碼器17之輸出而獲得。 伺服控制部24係在伺服牽引完成之階段啟動旋轉 馬達12,以既定之旋轉數轉動晶圓11。伺服控制器24 係旋轉開始之邊緣伺服之追蹤有誤差時,使數據取得之 時序設定延遲固定時間之權重流程(權重時間)。該時間 係依存旋轉馬達12之旋轉數與晶圓u之安裝偏心量, 旋轉數與偏心量較大時,權重時間係變長。此外偏心量 為5mm程度時之第六圖之方塊B2之過濾器之電路常 數,係以超前/滯後過濾器30Hz之設定而旋轉數為〇.2rps 以下時,權重時間為〇亦可。 步驟(S3):晶圓外形數據取得 曰曰圓11 b之外形數據係旋轉馬達12之旋轉編碼器 14之值與對應於此之邊緣檢測感測器15之位置(線性編 馬器17值)做為一對數據,儲存於計測數據讀取部μ。 第九圖係顯示以邊緣檢測感測器15所檢測之晶圓外形 檢測結果之一例,檢測遍及一周之晶圓邊緣與刻槽位 置。 伺服控制部24係計測一旋轉數據後,將儲存數據 傳送至數據處理部21。控制裝置20係自晶圓外形數據, 抽出無形成於晶圓Ub之外周部之後述之刻槽部份或未 17 200905788 顯示於圖之定向平面部分之數據,自該數據算出晶圓 11 b之直徑、偏心。 控制裝置20係使用該算出值,再抽出除去刻槽部 份或定向平面部份之晶圓外周數據,判定為具有正確的 直徑、偏心座標、刻槽部份之晶圓(刻槽晶圓)、或為具 有定向平面部份之晶圓(定向平面晶圓)、或為無刻槽部 份亦無定向平面部份之晶圓,若為刻槽晶圓,算出刻槽 位置之角度,若為定向平面晶圓則算出定向平面位置之 角度。此時之角度基準係以旋轉馬達12之原點為基準。 例如,第九圖時,刻槽位置係為約3.14rad。 又,預先將晶圓11種類登錄於控制裝置20内,經 計測之晶圓11之結果與所登錄之數據不同時,例如投 入無刻槽之晶圓時,或非投入刻槽而投入定向平面晶圓 時,亦可能以數據處理部21做錯誤判定。 步驟(S4):晶圓刻槽部精密計測 刻槽晶圓時,為正確計算刻槽位置之角度,在減緩 晶圓旋轉速度之狀態下,進行刻槽位置附近之再度數據 取得,由於刻槽位置之大致角度在步驟S3求取,因此 至該刻槽位置之前,驅動旋轉馬達12並位置決定,旋 轉馬達12在停止狀態下,數據處理部21係發出伺服ON 指令,以使於伺服控制部24成為邊緣追蹤狀態。伺服 控制部24係進行伺服牽引完成之判斷後,將晶圓旋轉 僅進行既定角度。控制裝置20係將包含刻槽位置之局 部的外形,儲存於計測數據讀取部25,作為對應旋轉馬 達12之旋轉編碼器14值之邊緣檢測感測器15位置(線 性編碼器17值)。 步驟(S5):晶圓偏心、刻槽位置算出 18 200905788 使用步驟S3之結果與步驟S4所取得之計測數據, 數據處理部21係以旋轉馬達12之原點為基準,若為轉 盤13上之晶圓lib之偏心座標與刻槽晶圓,則算出再 測定之刻槽位置角度,若為定向平面晶圓則算出偏心補 正之定向平面位置角度。 以上’完成晶圓lib之偏心與刻槽位置檢測,在此 所求取之晶圓lib之偏心量與刻槽位置角度會使用於下 一步驟之補正。 接著說明内裝晶圓外形檢測裝置10之晶圓位置決 定裝置50之構成與晶圓位置決定流程。 以下說明硬體構成。第十圖係晶圓位置決定裝置50 之概略構成圖,如第十圖中所示說明決定XYZ軸。 晶圓投入機械51係用以將晶圓11從既定之保管場 地積載至旋轉馬達12之轉盤13上之機械,以臂部51a 前端吸附保持晶圓11進行搬送。此外,晶圓投入機械 係51以多關節構造可伸縮臂部51a。 旋轉馬達升降機構部52係為使旋轉馬達12上下移 動於垂直方向之驅動部。 晶圓搬送機構部(Y軸)53係用以將晶圓11從旋轉馬 達12位置搬送至晶圓保持載台54之機構部,以臂部53a 前端吸附保持晶圓11進行搬送。 晶圓搬送機構部(Z軸)55係為使晶圓11上下移動於 垂直方向之驅動部,具有用以吸附保持晶圓11之吸附 針腳。 晶圓保持具56係為保持可裝卸之晶圓11之基材, 具有吸附晶圓11之面。 晶圓保持載台(Θ軸)54a係旋轉晶圓保持具56之驅 19 200905788 動部,裝載晶圓搬送機構部(Z轴)55,且具有吸附保持 晶圓保持具56之機構。 晶圓保持載台(X軸)54b係使晶圓保持具56移動於 X軸方向之驅動部,裝載晶圓保持載台(Θ軸)54a。 晶圓保持載台(Y軸)54c係使晶圓保持具56移動於 Y軸方向之驅動部,裝載晶圓保持載台(X轴)54b。 晶圓保持具投入機械57係將晶圓保持具56搬送至 晶圓保持載台54之機械。此外,晶圓保持具投入機械 57亦可兼用為晶圓投入機械51。 又,晶圓位置決定裝置50係具有:旋轉馬達升降 機構52、晶圓搬送機構部(Y軸)53、晶圓搬送機構部(Z 軸)55之驅動機構各個之驅動控制器;晶圓保持載台(Θ 軸)54a、(X軸)54b、(Y軸)54c之驅動機構各個之驅動控 制器;及包含控制部(CPU)等之未顯示於圖之驅動系統 控制器。而且,該等驅動控制器與第二圖所示之數據處 理部21通訊,進行以下之晶圓位置決定流程控制。 依每一步驟說明晶圓位置決定流程。 步驟S11 ·晶圓投入流程 晶圓投入機械51係將晶圓11搬送至轉盤13上。 步驟S12 :晶圓保持具投入流程 晶圓保持具投入機械57係將晶圓保持具56搬送至 晶圓保持載台54。 步驟S13 :晶圓外形計測流程 控制裝置20係執行如第三圖所示之步驟S1至步驟 S5。 步驟S14:晶圓刻槽(定向平面)位置決定 晶圓外形檢測裝置10係根據在步驟S13所求取之 20 200905788 決置之角度’將刻槽(定向平面)位置位置 二=保持载台移交位置移動 晶圓偏心座標?::【上〇係根據在步驟si3所求取之 中位置’使晶圓保持载台54之中心與晶圓llb 步驟S16 :將晶圓n 送機構部(Υ軸,馬達12搬送至晶圓搬 達車 日日回外形檢測裝置10,係在旋轉馬 運升降機構部52传斿μ n m 之曰m μ A、„更疋轉馬達12下降,將吸附於轉盤13 夢曰曰p 送至晶圓搬送機構部(Y軸)臂部53a。在轉=β= 定 At least the time of the detection device 曰 浐 h h h 悲 悲 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 晶圆 选择 选择 选择 选择 选择 选择 选择 选择According to a fifth aspect of the present invention, a wafer position determining device is provided, comprising: the wafer shape detecting device; and a wafer holder for position determining and holding a wafer The wafer holding stage; the transfer of the wafer to the wafer holder. Further, according to the fifth aspect of the present invention, the aforementioned position relative to the wafer holder is performed based on the detection result of the eccentric amount, the groove position or the orientation plane position of the wafer using the wafer shape detecting device The eccentricity of the wafer, the correction of the groove position or the orientation plane position, and the wafer position are determined by the wafer holder. According to a sixth aspect of the present invention, a wafer bonding apparatus 200905788 is provided, comprising: the wafer position determining device; and the position of the wafer holder to be determined by using the wafer position determining device Two wafer bonded wafer bonding portions. According to the present invention, there is provided a substrate detecting device, a substrate position determining device, and a substrate bonding device having a substrate detecting device and a substrate position determining device which can accurately measure the outer shape of the bonding surface of the uppermost surface of the corresponding substrate. Further, a wafer shape detecting device, a wafer position determining device, and a wafer bonding device having a wafer shape detecting device and a wafer position determining device capable of accurately measuring the outer shape of the bonding surface of the uppermost wafer are provided. . Further, according to the above apparatus, it is possible to measure the offset amount of the substrate or the wafer at the time of bonding, and to optimize the bonding conditions. [Embodiment] Hereinafter, a wafer bonding apparatus according to an embodiment of the present invention will be described in detail. In the following embodiments, a semiconductor wafer is used as a representative, but it is of course possible to use various substrates such as a glass substrate, a ceramic substrate, and a ferrite substrate other than the semiconductor wafer used in the electronic device manufacturing. In addition, it can also be used for a wafer on which an electronic device is formed. The first figure is a schematic configuration diagram of a wafer bonding apparatus of an embodiment. The wafer bonding apparatus 1 of the embodiment is composed of a wafer position determining device 50 that incorporates a wafer shape detecting device 10 to be described later, and two wafers that are determined by the bonding position of the wafer holder to form a stacked wafer. The wafer bonding unit 90 is configured. 200905788 The previous step is to complete the wafer of the wafer shape detecting device 10 of the wafer position determining device 50, and the wafer shape detecting device 10 detects the shape of the wafer corresponding to the uppermost bonding surface and the groove position of the wafer. , or orientation plane position. Further, in the substrate other than the semiconductor wafer, a position corresponding to the groove position or the orientation plane may be formed. Based on the detection result of the wafer shape detecting device 10, the position of the wafer groove or the position of the orientation of the wafer, which will be described later, is determined at a predetermined position of the wafer holder to be described later. The wafer position determining device 50 determines the position of the wafer holder and the wafer holder fixed by the position of the wafer position determining device 50, and the transfer device 2 transports the wafer bonding portion to the wafer bonding unit. The bonded wafer 11 is formed by bonding the wafer bonding portions 90 (the single-wafer wafer and the laminated wafer are simply referred to as wafers). (First Embodiment) Next, a wafer shape detecting device 10 of a first embodiment will be described. The second drawing is a schematic configuration diagram of the wafer shape detecting device 10 of the first embodiment. The third figure is a flow chart of the wafer shape detection of the wafer shape detecting device 10. The fourth A picture, the fourth B picture, the fifth A picture, the fifth B picture, and the fifth C picture respectively show an example of the edge detection output of the wafer. Fig. 6 is a block diagram showing the edge tracking control of the edge detecting device in the wafer shape detecting device of the first embodiment. In the second drawing, for example, the wafer 11 to which the two wafers 11a and 11b are bonded is placed on the turntable 13 fixed to the rotating shaft of the rotary motor 12 through a wafer loading machine 51 (see FIG. 10) which will be described later. . In addition, the wafers 11a and lib have a case where a single-wafer wafer also has a stacked wafer. A rotary encoder 14 for detecting the rotation angle of the rotary motor 12 is mounted in the rotary motor 12. In the following description, although the month is placed on the turntable 13 (layered ^ag] u can also be a single-board wafer 11 〇 仁 ... 、 、 、 、 、 、 、 、 Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ Γ An external shape, a 5 sense sensor 15; and a feeding device that supports the edge detection sensing H sensor 15 to trace the edge of the wafer 11. The servo mechanism 16 is linear by the intrinsic linear encoder 17. The motor 18 is configured to move the edge detecting sensor 15 in the radial direction of the wafer cassette. Further, the control force twisting motor 12, the edge detecting sensor 丨5, the linear motor 18, and the like are used simultaneously. The control device 2 configured by processing various types of control units, which will be described later, will be described below. The components of the wafer shape detecting device 1 will be described below. The line edge detecting sensor 15 can extract the displacement of the wafer U in the thickness direction. As shown in FIG. 4A and FIG. 4B, a sensor system capable of detecting a step difference of the edge portion of the wafer 1 ^ is formed. Further, the edge detecting sensor 15 can also measure the wafer 1 together. Thickness, when wafer 1 is laminated, if you know the thickness of each layer in advance, you can also check The number of layers is shown in Fig. 4A to show an enlarged view of the edge portion of the wafer U, and the fourth b diagram shows an example of the "ί§ number from the edge detecting sensor 15 in the radial direction of the wafer. The sensor 15 has a tilt detecting function for detecting a portion where the edge region of the wafer 11 is inclined, as shown in the fifth to fifth c-characterized regions of the edge of the wafer 11. The fifth image is displayed. An enlarged view of the edge portion of the wafer U, and a fifth b-picture showing an example of a signal from the edge detecting sensor 15 200905788 in the radial direction of the wafer, and a fifth C-picture showing that the signal in the fifth B-picture is formed. In addition, the edge detecting sensor 15 can detect the change of the reflectivity, and can discriminate between the edges of the wafers (for example, 11a, lib) of each layer of the wafer 11 when the reflectance is different. In addition, the edge detecting sensor 15 can detect the hue, and the edge of the specific layer can be discriminated when the hue is different near the edge of each layer of the wafer 11. Further, in the present embodiment, the edge tracking is used. The linear band is the widest, making A non-contact optical displacement meter capable of extracting a thickness direction displacement is used. The linear motor 18 is a mechanism for driving the edge detection sensor 15 in the radial direction of the wafer 11, and has an electromagnetic driving force generated by using a three-phase coil and a magnet. The movable portion and the fixed portion have a structure that transmits the electromagnetic driving force and the movable portion is driven relative to the fixed portion. The edge detecting sensor 15 is fixed to the movable portion. Further, the linear motor 18 is also provided with a guiding mechanism for determining the position. The ability also has the ability to be a few μm. In addition, the decomposition capability necessary for the edge detection of the wafer 11 is based on the sampled data, but since the degree of ΙΟμηι is required, if the position of the number of μιη determines the driving type of the capability, the use list A phase VCM drive or a pneumatic brake having a pneumatic driving force other than an electromagnetic driving force may be used. Further, it is preferable to guide a mechanism system in which the sliding impedance of the tracking edge or the like is small. The linear encoder 17 is incorporated in the linear motor 18, and detects the position of the movable portion in the driving direction (wafer radial direction). The linear encoder 17 can determine the position by the pulse count. However, when the linear motor 18 is initialized, the count is set by the origin sensor (not shown). Further, the change from the count value to the position in the wafer radial direction is performed by the data processing unit (CPU) 21 of the control device 20. Further, in the present embodiment, although the line 12 200905788 is used as the encoder 17, the linear encoder 17 may be a peripheral. The wafer 11 is a single layer wafer, a laminated (bonded) wafer or the like. In the present embodiment, a 200 mm wafer is mainly laminated, but the present invention is not limited thereto. The structure of the rotary motor 12 is a rotor and a stator which are not shown in the drawings, and the rotor can be rotated by electromagnetic force or the like with respect to the stator. The rotary encoder 14 is incorporated in a rotary motor 12 (not shown) for detecting the angle of rotation of the rotary motor 12, and can determine the angle by pulse counting. The rotary encoder 14 is set by the origin sensor (not shown) when the rotary motor 12 is initialized, and is converted by the data processing unit (CPU) 21 from the count value to the motor rotation angle. Further, in the present embodiment, the rotary encoder 14 is built in, but may be a peripheral device. The turntable 13 is attached to the rotor of the rotary motor 12 and has a function of absorbing the crystals 11. The adsorbed wafer 11 is formed to rotate together with the rotation of the rotary motor 12. Further, in the present embodiment, vacuum suction is used, and the vacuum introduction to the turntable 13 is transferred and executed through a rotary joint (not shown). Further, it is also possible to use electrostatic adsorption or the like instead of vacuum adsorption. The linear motor driver 22 in the control device 20 is used to drive the control driver of the linear motor 18. The transfer position command determines the position of the linear motor 18 at a predetermined position, and the movable thrust can be driven by a predetermined thrust when the thrust command is transmitted, and the linear motor can be set. Various parameters such as driving conditions, and the linear motor can be driven according to the parameters. The rotary motor driver 23 is a control driver for driving the rotary motor 12. When the rotation command is transmitted, the number of rotations can be commanded, and when the position command of 13 200905788 to the target rotation angle is transmitted, the position can be determined to a predetermined rotation angle, and the rotation can be set. Various parameters such as the driving condition of the motor 12 are used, and the rotary motor 12 can be driven in accordance with the parameters. The servo control unit 24 is a circuit having a servo function for causing the edge detecting sensor 15 to track the edge of the wafer 11, and the functional configuration of the circuit will be described with reference to a block diagram of the sixth drawing. The function of this circuit is the blocks B1 and B2 in the block diagram, and the comparators of Et and Es. Further, the block B3 represents the current sensitivity characteristic (A/V) of the linear motor driver 22, the block 34 represents the thrust characteristic (N/A) of the linear motor 28, and the block B5 (the dotted line portion) represents the movement to be loaded on the movable The state of the wafer edge direction of the sub-edge detection sensor 15 is one block. Block B5 is a mass of the movable portion formed by the linear motor mover and the edge detecting sensor 15, the thrust is accelerated by the acceleration characteristic ((m/s2)/N), and the time integral conversion of the acceleration is represented by the integral element. For speed (m/s), the time integral of the speed is converted to the change in position (m). The edge detecting sensor 15 is as shown in the second figure, the fourth A picture, the fourth B picture, and the fifth A picture to the fifth C picture, when the edge of the wafer lib is the inner side (the inner circumference side of the wafer) The surface of the wafer is measured, and when the edge of the wafer 1 lb is outside, the state of the surface of the lower wafer 11a or the state without the measurement surface is measured. When the displacement extraction function of the thickness detecting direction of the edge detecting sensor 15 is used, the signal output Es as shown in FIG. 4B is obtained according to the radius of the wafer 11, and the critical value Et is relatively equivalent to the wafer 11 at this time. The value of the Es of the top wafer lib surface height is set to a lower value. Considering the comparison of Es and Et in the block diagram of the sixth figure, the block B1 is 14 200905788. The edge of the wafer ub of the fourth A picture is outside the wafer lib ^ sensor 15 , which becomes the job cut, opposite: side There is a day of the Japanese yen 11b 绫 曰圄 Zhong Zhongjiu 'phase f 15 ^ relative + k UA brother figure block diagram B 1 produces E (V ί 8 is positive, then produces +E (V) voltage, if ε is the preparation of the crystal should be detected in the edge of the '5-E (vs>; 疋化' using the circuit of the B2's pass-through action, which can be used to fill the wafer. The tracking state is obtained by taking the information of the edge detection detector line detector 17 from the edge of the edge. The position of the detector is detected by the position 'the second position, the measurement data reading unit 25 Presented by you... Rotary Encoder 14 or Linear ^, = Edge:: Voltage is synchronized with time, or synchronized with encoder count 2 = Power Month. The read data is passed to the data processing unit π to take data. The data processing unit (CPU) 21 is external to the wafer. The calculation processing and storage of the measurement data are performed, or the heartbeat is set to 1. The edge tracking servo is issued/OFF finger , or the processing of the commander's control unit's or the status of the read drive, etc., = the status of the wafer of each driver is determined and the corresponding state is processed. Then, refer to the third figure for each step. The process of (phase) is performed on the turntable 13 of the wafer surface measurement by the unloaded display or the manual transfer of the person to the rotary motor 12 = automatic transfer step (S1). To set the threshold value Et, the surface height of the top 15 200905788 layer crystal, lib (refer to the second figure) must be obtained from the top of the wafer. To measure the surface height of the uppermost layer, the edge detection sensor 15 must be used. The position determines the inner circumference side of the wafer lib. Taking the case of a 2 〇〇mm wafer as an example, an edge is formed near R=1〇〇mm with respect to the rotation center of the turntable 13. However, the edge detection sensor 15 is crystallized. There is an offset when the circle 11 is stowed to the turntable 13. It is necessary to consider the position of the offset to determine the position. The correct threshold setting must be as close as possible to the height of the wafer surface. Data, so the wafer on the turntable 13 is biased (=The amount is preferably 5 mm or less. Therefore, the edge detecting sensor 15 is preferably set to the center of the turntable 13 at a radius of r = 9 〇 to 94 mm. Further, the value is based on the wafer placed on the turntable 13 Next, the size of the wafer is changed. Next, the wafer shape detecting device 10 rotates the turntable 13 to measure the surface shift of the wafer 11b corresponding to the wafer rotation angle. After the measurement is completed, the rotation of the turntable 13 is stopped. When the edge difference is small The threshold value of the surface offset of the wafer 11 is also set, whereby the edge detecting sensor 15 can be tracked as the edge of the object without error. Therefore, the target critical value C becomes a parameter depending on the surface height of the wafer 11 from the uppermost layer depending on the rotation angle having a certain offset. The seventh drawing is an example of the height variation of the surface of the wafer 11b. The /offset standard is one-and-a-half of the segment difference tracked. The control is controlled by converting the offset to an analog voltage or digital value. The target threshold value corresponding to the wafer rotation angle θ is obtained by the person's reference to Fig. 1' and stored. Further, the control device 20 registers the number of wafer layers in the control device 20 in advance, and when the measured wafer height is different from the registered value, the data processing unit 21 may perform an error determination. Step (S2): Edge servo ON to weight processing until the block diagram of the 2009 200988 block becomes the edge tracking state (when the edge of the sixth figure is static, the change of the edge detecting sensor 15 is as follows The eighth figure is an example of the servo traction characteristic of the opposite edge. The action of the edge detection sensor 15 is represented by the output of the linear encoder 17, so that the state of excessive tie completion can be Obtained by the output of the second encoder 17. The servo control unit 24 activates the rotary motor 12 at the stage of completion of servo traction, and rotates the wafer 11 at a predetermined number of revolutions. When the servo controller 24 rotates, the tracking of the edge servo is in error. The timing of data acquisition is delayed by a fixed time weighting process (weighting time). This time depends on the number of rotations of the rotating motor 12 and the mounting eccentricity of the wafer u. When the number of rotations and the amount of eccentricity is large, the weighting time is changed. In addition, the circuit constant of the filter of the block B2 of the sixth figure when the eccentricity is 5 mm is the weight of the lead/lag filter 30 Hz and the rotation number is 〇.2 rps or less. Step (S3): The wafer shape data is obtained by the round shape 11b. The data of the rotary encoder 12 is the value of the rotary encoder 14 and the position of the edge detecting sensor 15 corresponding thereto (linear The horse-drawn device 17 value is stored as a pair of data in the measurement data reading unit μ. The ninth figure shows an example of the wafer shape detection result detected by the edge detection sensor 15 to detect the wafer over one week. The servo control unit 24 measures the rotation data and transmits the stored data to the data processing unit 21. The control device 20 extracts the outer shape of the wafer Ub from the wafer outer shape data. The grooved portion or the data of the orientation plane portion shown in Fig. 200905788 is calculated from the data, and the diameter and eccentricity of the wafer 11b are calculated from the data. The control device 20 uses the calculated value to extract the removed groove portion or the orientation plane. Part of the wafer peripheral data, determined to have the correct diameter, eccentric coordinates, grooved wafer (grooved wafer), or wafer with oriented planar portion (oriented planar wafer), or No moment Some of the wafers with no planar planes are also calculated. If the wafer is grooved, the angle of the groove position is calculated. If it is a plane wafer, the angle of the orientation plane is calculated. At this time, the angle reference is rotated by the motor 12 For example, in the ninth figure, the groove position is about 3.14 rad. Further, the wafer 11 type is registered in the control device 20 in advance, and the result of the measured wafer 11 and the registered data are recorded. At the same time, for example, when a wafer having no groove is introduced, or when a plane wafer is placed without being grooved, the data processing unit 21 may make an erroneous determination. Step (S4): Precision measurement of the wafer groove portion In the case of the grooved wafer, in order to accurately calculate the angle of the groove position, in the state in which the wafer rotation speed is slowed down, the re-data acquisition in the vicinity of the groove position is performed, and since the approximate angle of the groove position is obtained in step S3, the Before the groove position, the rotary motor 12 is driven and the position is determined. When the rotary motor 12 is in the stopped state, the data processing unit 21 issues a servo ON command to cause the servo control unit 24 to be in the edge tracking state. The servo control unit 24 rotates the wafer to perform only a predetermined angle after the servo pull completion is judged. The control device 20 stores the outer shape of the portion including the groove position in the measurement data reading unit 25 as the edge detection sensor 15 position (linear encoder 17 value) corresponding to the value of the rotary encoder 14 of the rotary motor 12. Step (S5): wafer eccentricity and groove position calculation 18 200905788 Using the result of step S3 and the measurement data obtained in step S4, the data processing unit 21 is based on the origin of the rotary motor 12, and is the turntable 13 The eccentric coordinates of the wafer lib and the grooved wafer are used to calculate the groove position angle of the re-measurement. If it is the oriented planar wafer, the orientation plane position angle of the eccentric correction is calculated. The above-mentioned eccentricity and groove position detection of the wafer lib is completed, and the eccentricity of the wafer lib and the groove position angle obtained here are used for the correction of the next step. Next, the configuration of the wafer position determining device 50 and the wafer position determining flow of the built-in wafer shape detecting device 10 will be described. The hardware configuration is explained below. The tenth diagram is a schematic configuration diagram of the wafer position determining device 50, and the XYZ axis is determined as illustrated in the tenth diagram. The wafer loading machine 51 is a machine for accumulating the wafer 11 from a predetermined storage site to the turntable 13 of the rotary motor 12, and sucks and holds the wafer 11 at the tip end of the arm portion 51a. Further, the wafer loading mechanism 51 has a telescopic arm portion 51a in a multi-joint configuration. The rotary motor elevating mechanism portion 52 is a drive portion that moves the rotary motor 12 up and down in the vertical direction. The wafer transfer mechanism unit (Y-axis) 53 is for transporting the wafer 11 from the rotary motor 12 to the mechanism portion of the wafer holding stage 54, and transports and holds the wafer 11 at the tip end of the arm portion 53a. The wafer transfer mechanism portion (Z-axis) 55 is a drive portion for moving the wafer 11 up and down in the vertical direction, and has an adsorption pin for sucking and holding the wafer 11. The wafer holder 56 is a substrate that holds the detachable wafer 11 and has a surface on which the wafer 11 is adsorbed. The wafer holding stage (pin) 54a rotates the wafer holder 56. The 200905788 moving unit mounts the wafer transfer mechanism unit (Z-axis) 55 and has a mechanism for adsorbing and holding the wafer holder 56. The wafer holding stage (X-axis) 54b moves the wafer holder 56 to the driving portion in the X-axis direction, and mounts the wafer holding stage (Θ axis) 54a. The wafer holding stage (Y-axis) 54c moves the wafer holder 56 to the driving portion in the Y-axis direction, and mounts the wafer holding stage (X-axis) 54b. The wafer holder loading mechanism 57 is a machine that transports the wafer holder 56 to the wafer holding stage 54. Further, the wafer holder input mechanism 57 can also be used as the wafer loading machine 51. Further, the wafer position determining device 50 includes a drive controller for each of the drive mechanisms of the rotary motor elevating mechanism 52, the wafer transfer mechanism unit (Y-axis) 53, and the wafer transfer mechanism unit (Z-axis) 55; A drive controller for each of the drive mechanisms of the stage (shaft) 54a, (X-axis) 54b, and (Y-axis) 54c; and a drive system controller not shown in the figure including a control unit (CPU). Further, the drive controllers communicate with the data processing unit 21 shown in Fig. 2 to perform the following wafer position determination flow control. The wafer position determination process is described in each step. Step S11 - Wafer Loading Process The wafer loading machine 51 transports the wafer 11 to the turntable 13. Step S12: Wafer Holder Input Flow The wafer holder input machine 57 transports the wafer holder 56 to the wafer holding stage 54. Step S13: Wafer Profile Measurement Flow The control device 20 executes steps S1 to S5 as shown in the third figure. Step S14: The wafer groove (orientation plane) position determines the wafer shape detecting device 10 to position the groove (orientation plane) position according to the angle of 20 200905788 determined in step S13. Position moving wafer eccentric coordinates? :: [Upper 〇 is based on the position obtained in step si3] to hold the center of the wafer holding stage 54 and the wafer llb. Step S16: Transfer the wafer n to the mechanism portion (the shaft, the motor 12 is transported to the wafer) The moving-to-back shape detecting device 10 is transferred to the rotating horse lift mechanism 52 to transmit 斿μ nm 曰m μ A, „more twirling motor 12 descends, and is adsorbed to the turntable 13 nightmuff p to the crystal Round conveyance mechanism unit (Y-axis) arm portion 53a.

U晶圓吸附係在確認晶圓11至晶圓搬送機構部(Y 構部(^3 f及附後’將吸附解除且完成至晶圓搬送機 )臂部53a之搬送。旋轉馬達升降機構部52係 至下方退避位置,可驅動至晶圓搬送機構部(γ 車)53之晶圓保持载台54侧。 、、,步驟S17.從晶圓搬送機構部(Υ軸)53將晶圓η搬 迭至晶圓搬送機構部(z軸)54a。 晶圓位置決定裝置50係將晶圓搬送機構部(Y軸)53 到與晶圓保持載台54之移交位置移動於γ方向,晶圓 搬送機構部(Ζ軸)54a於晶圓搬送機構部(γ軸)53停止後 移動於上下方向,將晶圓搬送機構部(Z轴)54a之未顯示 於圖之吸附銷呈吸附開啟狀態,使其上升至移交位置為 止後,一面監視吸附銷之吸附狀態,一面到產生吸附力 為止猶微移動於上方向,若吸附針腳側之吸附力超過既 定之臨界值’則將晶圓搬送機構部(Y軸)53侧之臂部53a 之吸附解除。晶圓位置決定裝置5〇係使吸附針腳再度 21 200905788 上升,將晶圓11提起至上方待機位置,之後將晶圓搬 送機構部(Y軸)53退避。 步驟S18 :從晶圓搬送機構部(Z軸)54a將晶圓11 搬送至晶圓保持具56。 晶圓位置決定裝置50係在將晶圓搬送機構部(Z 轴)54a之吸附針腳在晶圓吸附狀態下,一面保持一面下 降,使晶圓保持具56呈吸附開啟狀態,將吸附銷下降 至移交位置為止,晶圓保持具之吸附力若超過既定之臨 界值時,將吸附鎖側之吸附解除。吸附針腳係再度下降 而在下方待機位置完成動作。此外,吸附力之確認可以 真空壓來做確認,或以無視真空壓確認之時間管理之搬 送亦可。 藉由以上之流程,將晶圓11之最上面晶圓lib之刻 槽位置位置決定在晶圓保持具56之預定之位置。 如上述所示,位置決定於晶圓保持具56之晶圓11 與晶圓保持具56之固定,係以另一晶圓11與晶圓保持 具56之固定與晶圓保持具56所形成之標記58為基準 來位置決定,在第一圖所示之晶圓貼合部90,透過晶圓 保持具56加壓、加熱接合兩張晶圓11、11之接合部之 例如電極,完成貼合(積層)晶圓11(參照第一圖)。 根據第一實施形態之晶圓貼合裝置1,使用晶圓外 形檢測裝置10,檢測晶圓11之最上面之晶圓lib之邊 緣、及檢測刻槽位置,藉此貼合前之晶圓11即使為貼 合有複數的基板之晶圓11,亦可正確檢測晶圓11之最 上面之貼合面之晶圓lib的外形、及刻槽位置。又,根 據晶圓外形檢測裝置10之邊緣檢測結果,補正晶圓 11(1 lb)之偏心量、刻槽位置,藉由晶圓位置決定裝置50 22 200905788 可將晶圓11(1 lb)正確的位置決定於晶圓保持具允之既 定位置。之後,在貼合部9〇將兩張晶圓u ' ^持具56之固定’透過晶圓保持具56加壓、加丄接曰;0 猎此可製造接合位置無偏移之貼合晶圓u。 (弟二實施形態) 接著說明本發明第二實施形態之晶圓貼合 實施形態之晶圓貼合震置之主要不同點, : 形態之晶圓外形檢測裝置诘加右佶用、类 、 ^ ^ Ιϊΐ ^ -V a 置追加有使用透過型線感測器 口疋式日日圓㈣㈣感測器之點,於其他相同構 予相同符號並省略說明。此外,第— 裝置,成、,用亦相同因此省略說明。3 _ 口 第十一圖係第二實施形態之晶圓外形檢測裝置之 概略構成圖’第十二圖係晶圓外形檢測裝置110之晶圓 外形檢測流程®。此外,第十三圖係第二實施形態之晶 圓位置決定裝置之概略構成圖。 一於第十—圖,曰曰曰圓外形檢測裝置110係除第二圖所 不之各構成外’配置在透過型線感測胃112旋轉之晶圓 ϋ外,γ,ϊ。於,第二實施形態相同構成賦予相同 # 堇5兄明經追加之透過型線感測器ιΐ2。 測感測器自發光部112a日5以71 吏用之晶圓外形檢 在受光部mb⑽,麟透過光 線感測器112係與第-實施形態中 之邊緣檢測感測器15並创· ,, , 與邊緣檢測威測哭15 /又。此外,透過型線感測器112 旋轉方向。 之設置 角度係可任意設定於晶圓 接著,一面參照第十 圖一面依每一步驊說明使用 200905788 第二實施形態之晶圓外形檢測裝置110之晶圓外形計測 流程。 步驟S6 :兩種之感測器之外形計測 邊緣檢測感測器15係進行第三圖所示之步驟S1之 計測。同時透過型線感測器112係於第三圖所示之步驟 S1之轉盤13旋轉時,進行晶圓11之外形計測。 步驟S7 :兩種之感測器之選擇 刻槽位置之精密檢測係於第三圖所示之步驟S1結 束時,自邊緣檢測感測器15之高度計測結果檢測晶圓 11為單層晶圓時,使用透過型線感測器112之外形計測 結果。 另一方面,檢測晶圓11為積層晶圓時,使用邊緣 檢測感測器15計測晶圓11之外形與刻槽位置。晶圓11 為單層時,即使為透過型線感測器112亦對外形檢測無 問題,因此能縮短計測時間。 步驟S8:晶圓之積層狀態之檢測 在步驟S6,晶圓11為積層晶圓時,以邊緣檢測感 測器15執行第三圖所示之步驟S3至S5,同時使用透過 型線感測器112進行外形計測。 步驟S9 :偏心座標計算等之處理 控制裝置20係使用邊緣檢測感測器15之計測結 果,進行晶圓11之偏心座標之算出、刻槽位置之算出。 算出結果係在第1實施形態說明之使用於晶圓位置決定 裝置50中的晶圓之位置決定。 此外,於該步驟中,自邊緣檢測感測器15與透過 型線感測器112之兩感測器之輸出結果能檢測晶圓11 之重疊狀態之偏移,可從該偏移狀態管理之前進行之晶 24 200905788 圓貼合製程之品質。 如上述所示,第二實施形態之晶圓外形檢測裝置 110中,共用邊緣檢測感測器15與透過型線感測器112, 措此可縮短早層晶圓與積層晶圓混在時之晶圓外形檢 測時間。 此外,晶圓外形檢測裝置110以外之構成係與第一 實施形態相同,而晶圓外形檢測以後的之後製程之說明 係省略。 又,將邊緣檢測感測器15配置在晶圓之表側、背 側之兩側,進行晶圓ID管理,藉此能依各層檢測相對 最下層之晶圓之中心之上層晶圓之中心偏移,因此可 殘留各層之中心偏移之履歷。 此外,上述實施形態僅為一例,並非限定於上述 之構成及形狀者,於本發明之範圍内可適當修正、變 更。 【圖式簡單說明】 第一圖係實施形態之晶圓貼合裝置之概略構成 圖。 第二圖係第一實施形態之晶圓外形檢測裝置之概 略構成圖。 第三圖係晶圓外形檢測裝置之晶圓外形檢測流程 圖。 第四A圖係顯示晶圓11之邊緣部放大圖。 第四B圖係顯示來自遍及晶圓半徑方向之邊緣檢測 感測器15之信號之一例。 第五A圖係顯示晶圓11之邊緣部放大圖。 25 200905788 第五B圖係顯示來自遍及晶圓半徑方向之邊緣檢測 感測器15之信號之一例。 第五C圖係顯示以第五B圖之信號為基準形成制定 邊緣範圍之信號之例。 第六圖係顯示第一實施形態之晶圓外形檢測裝置 之邊緣檢測裝置之邊緣追蹤控制方塊線圖。 第七圖係晶圓表面之高度變動檢測結果之一例。 第八圖係相對邊緣之伺服牵引特性之一例。 第九圖係邊緣檢測感測器所檢測之晶圓外形測定 結果之一例。 第十圖係晶圓位置決定裝置之概略構成圖。 第十一圖係第二實施形態之晶圓外形檢測裝置之 概略構成圖。 第十二圖係第二實施形態之晶圓外形檢測裝置之 晶圓外形檢測流程圖。 第十三圖係係第二實施形態之晶圓位置決定裝置 之概略構成圖。 【主要元件符號說明】 1 晶圓貼合裝置 2 搬送機械 10 、 110 晶圓外形檢測裝置 11 貼合晶圓 11a、lib 晶圓 12 旋轉馬達 13 轉盤 14 旋轉編碼器 26 200905788 15 邊緣檢測感測器 16 伺服機構 17 線性編碼器 18、28 線性馬達 20 控制裝置 21 數據處理部 22 線性馬達驅動器 23 旋轉馬達驅動器 24 伺服控制部 25 測量數據讀取部 50 晶圓位置決定裝置 51 晶圓投入機械 51a、53a 臂部 52 旋轉馬達升降機構部 53 晶圓搬送機構部(Y軸) 54 晶圓保持載台 54a 晶圓保持載台(Θ軸) 54b 晶圓保持載台(X軸) 54c 晶圓保持載台(Y軸) 55 晶圓搬送機構部(Z軸) 56 晶圓保持具 57 晶圓保持具投入機械 58 標記 90 晶圓貼合部 112 透過型線感測器 112a 發光部 112b 受光部 27The U-wafer adsorption system is used to confirm the transfer of the wafer 11 to the wafer transfer mechanism unit (the Y-structure and the attachment/removal to the wafer transfer machine) 53a. The 52 series is driven to the lower retracted position, and can be driven to the wafer holding stage 54 side of the wafer transfer mechanism unit (γ car) 53. Then, step S17. The wafer is transferred from the wafer transfer mechanism unit (Υ axis) 53. The wafer transfer mechanism unit (z-axis) 54a is stacked. The wafer position determining device 50 moves the wafer transfer mechanism unit (Y-axis) 53 to the transfer position with the wafer holding stage 54 in the γ direction. When the wafer transfer mechanism unit (y-axis) 53 is stopped, the transport mechanism unit (Ζ axis) 54a moves in the vertical direction, and the adsorption pin of the wafer transfer mechanism unit (Z-axis) 54a that is not shown in the figure is in an adsorption open state. After raising the adsorption state to the transfer position, the adsorption state of the adsorption pin is monitored, and the adsorption force is slightly moved in the upward direction, and when the adsorption force on the adsorption pin side exceeds a predetermined threshold value, the wafer transfer mechanism unit is moved. The suction of the arm portion 53a on the (Y-axis) 53 side is released. The wafer position determining device 5 After the adsorption stitches are raised again 21 200905788, the wafer 11 is lifted to the upper standby position, and then the wafer transfer mechanism portion (Y-axis) 53 is retracted. Step S18: Wafer is transferred from the wafer transfer mechanism portion (Z-axis) 54a 11 is transported to the wafer holder 56. The wafer position determining device 50 lowers the suction pin of the wafer transfer mechanism unit (Z-axis) 54a while the wafer is being adsorbed, so that the wafer holder 56 is lowered. When the adsorption pin is lowered to the transfer position, if the adsorption force of the wafer holder exceeds a predetermined critical value, the adsorption on the adsorption lock side is released, and the adsorption stitch is lowered again to complete the operation at the lower standby position. The confirmation of the adsorption force can be confirmed by vacuum pressure, or can be carried out by ignoring the time of vacuum pressure confirmation. By the above process, the position of the groove of the uppermost wafer lib of the wafer 11 is determined in the crystal. The predetermined position of the circular holder 56. As shown above, the position is determined by the wafer 11 of the wafer holder 56 being fixed to the wafer holder 56, and the other wafer 11 and the wafer holder 56 are used. The fixing is determined based on the mark 58 formed by the wafer holder 56. The wafer bonding unit 90 shown in the first figure presses and heats the bonding of the two wafers 11 and 11 through the wafer holder 56. For example, the electrode is laminated (laminated) wafer 11 (refer to the first figure). According to the wafer bonding apparatus 1 of the first embodiment, the wafer shape detecting device 10 is used to detect the uppermost surface of the wafer 11. The edge of the wafer lib and the position of the groove are detected, so that the wafer 11 before bonding can be the wafer of the uppermost bonding surface of the wafer 11 even if it is a wafer 11 to which a plurality of substrates are bonded. The shape of the circle lib and the groove position. Further, according to the edge detection result of the wafer shape detecting device 10, the eccentricity and the groove position of the wafer 11 (1 lb) are corrected by the wafer position determining device 50 22 200905788 The correct position of the wafer 11 (1 lb) can be determined by the wafer holder's intended position. Thereafter, the two wafers 'fixed' of the wafer 'the holder 56' are pressed and bonded through the wafer holder 56 at the bonding portion 9; 0, this can be used to manufacture a bonded wafer with no offset at the bonding position. . (Second Embodiment) Next, a description will be given of the main difference between the wafer bonding and the wafer bonding embodiment according to the second embodiment of the present invention, and the wafer shape detecting device of the form is applied to the right side, class, ^ ^ Ιϊΐ ^ -V a The point of the sensor that uses the transmission line type sensor (Japanese) (4) (4) is added, and the same reference numerals are given to the same components, and the description is omitted. In addition, the first device, the device, and the like are also the same, and thus the description is omitted. 3 _ mouth The eleventh drawing is a schematic configuration diagram of the wafer shape detecting device of the second embodiment. The twelfth drawing is the wafer shape detecting process of the wafer shape detecting device 110. Further, a thirteenth diagram is a schematic configuration diagram of a wafer position determining device according to the second embodiment. In the tenth-figure, the round-shaped outer shape detecting device 110 is disposed outside the wafer which is rotated by the transmission line sensing stomach 112 except for the configuration of the second figure, γ, ϊ. In the second embodiment, the same configuration is used to provide the transmission line sensor ι 2 which is the same as the same. The sensor is detected on the light receiving portion mb (10) by the wafer shape of the light emitting portion 112a on the day 5, and the edge transmitting sensor 112 is combined with the edge detecting sensor 15 in the first embodiment. , with the edge detection prestige cry 15 / again. In addition, the direction of rotation of the line sensor 112 is transmitted. The setting angle can be arbitrarily set on the wafer. Next, the wafer shape measuring process of the wafer shape detecting device 110 of the second embodiment will be described with reference to the tenth embodiment. Step S6: Two types of sensor external measurement The edge detection sensor 15 performs the measurement of step S1 shown in the third figure. At the same time, when the profile sensor 112 is rotated by the turntable 13 of the step S1 shown in the third figure, the wafer 11 is subjected to external measurement. Step S7: The precise detection of the selected groove positions of the two types of sensors is performed at the end of the step S1 shown in the third figure, and the height measurement result from the edge detecting sensor 15 detects that the wafer 11 is a single layer wafer. At the time, the measurement results are obtained by using the shape sensor 112. On the other hand, when the detecting wafer 11 is a laminated wafer, the edge detecting sensor 15 is used to measure the outer shape and the groove position of the wafer 11. When the wafer 11 is a single layer, even if the transmission line sensor 112 has no problem in shape detection, the measurement time can be shortened. Step S8: Detection of the laminated state of the wafer. In step S6, when the wafer 11 is a laminated wafer, the edge detecting sensor 15 performs steps S3 to S5 shown in the third figure while using the transmitted line sensor. 112 for shape measurement. Step S9: Processing of Eccentricity Coordinate Calculation, etc. The control device 20 uses the measurement result of the edge detection sensor 15 to calculate the eccentricity of the wafer 11 and calculate the groove position. The calculation result is determined by the position of the wafer used in the wafer position determining device 50 described in the first embodiment. In addition, in this step, the output results of the two sensors from the edge detecting sensor 15 and the transmitting line sensor 112 can detect the offset of the overlapping state of the wafer 11 from which the offset state can be managed.晶晶24 200905788 The quality of the round fit process. As described above, in the wafer shape detecting device 110 of the second embodiment, the edge detecting sensor 15 and the transmitting line sensor 112 are shared, so that the crystal of the early wafer and the laminated wafer can be shortened. Round shape detection time. The configuration other than the wafer shape detecting device 110 is the same as that of the first embodiment, and the description of the subsequent processes after the wafer shape detecting is omitted. Moreover, the edge detecting sensor 15 is disposed on both sides of the front side and the back side of the wafer to perform wafer ID management, thereby detecting the center shift of the wafer above the center of the wafer of the lowermost layer according to each layer. Therefore, the history of the center offset of each layer can be left. The above-described embodiments are merely examples, and are not limited to the above-described configurations and shapes, and can be appropriately modified and changed within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic configuration diagram of a wafer bonding apparatus of an embodiment. The second drawing is a schematic configuration diagram of the wafer shape detecting device of the first embodiment. The third figure is a wafer shape inspection flow chart of the wafer shape detecting device. The fourth A diagram shows an enlarged view of the edge portion of the wafer 11. The fourth B diagram shows an example of a signal from the edge detecting sensor 15 extending in the radial direction of the wafer. The fifth A diagram shows an enlarged view of the edge portion of the wafer 11. 25 200905788 The fifth B diagram shows an example of a signal from the edge detecting sensor 15 extending in the radial direction of the wafer. The fifth C-picture shows an example of forming a signal for defining an edge range based on the signal of the fifth B-picture. Fig. 6 is a block diagram showing the edge tracking control of the edge detecting device of the wafer shape detecting device of the first embodiment. The seventh figure is an example of the detection result of the height variation of the wafer surface. The eighth figure is an example of the servo traction characteristics of the opposite edges. The ninth figure is an example of the measurement result of the wafer profile detected by the edge detecting sensor. The tenth diagram is a schematic configuration diagram of the wafer position determining device. The eleventh drawing is a schematic configuration diagram of a wafer shape detecting device of the second embodiment. Fig. 12 is a flow chart showing the wafer profile inspection of the wafer shape detecting device of the second embodiment. Figure 13 is a schematic configuration diagram of a wafer position determining device according to a second embodiment. [Main component symbol description] 1 Wafer bonding device 2 Transfer machine 10, 110 Wafer shape detecting device 11 Bonding wafer 11a, lib Wafer 12 Rotating motor 13 Turntable 14 Rotary encoder 26 200905788 15 Edge detecting sensor 16 servo mechanism 17 linear encoder 18, 28 linear motor 20 control device 21 data processing unit 22 linear motor driver 23 rotary motor driver 24 servo control unit 25 measurement data reading unit 50 wafer position determining device 51 wafer loading machine 51a, 53a Arm 52 Rotary motor elevating mechanism unit 53 Wafer transfer mechanism unit (Y-axis) 54 Wafer holding stage 54a Wafer holding stage (Θ axis) 54b Wafer holding stage (X-axis) 54c Wafer holding Table (Y-axis) 55 Wafer transfer mechanism unit (Z-axis) 56 Wafer holder 57 Wafer holder input machine 58 Mark 90 Wafer bonding unit 112 Transmissive line sensor 112a Light-emitting unit 112b Light-receiving unit 27

Claims (1)

200905788 十、申請專利範圍: 1. 一種基板檢測裝置,其特徵為具備用以檢測所積層之 複數的基板之中構成最上層之最上層基板的檢測部。 2. 如申請專利範圍第1項之基板檢測裝置,其中,前述 檢測部係檢測前述最上層基板之邊緣之邊緣檢測裝 置,係具備: 旋轉所積層之前述複數的基板之旋轉裝置; 使前述邊緣檢測裝置追蹤藉由該旋轉裝置旋轉 之前述最上層基板之前述邊緣的變位之伺服裝置;及 用以檢測前述邊緣檢測裝置之位置之位置檢測 裝置。 3. 如申請專利範圍第2項之基板檢測裝置,其中,前述 邊緣檢測裝置係用以檢測前述最上層基板之前述邊 緣之段差。 4. 如申請專利範圍第2項之基板檢測裝置,其中,前述 邊緣檢測裝置係用以檢測前述最上層基板之傾斜。 5. 如申請專利範圍第2項之基板檢測裝置,其中,前述 邊緣檢測裝置係用以檢測前述最上層基板之前述邊 緣之光學特性之變化。 6. 如申請專利範圍第5項之基板檢測裝置,其中,前述 光學特性係包含前述最上層基板之顏色、反射率之至 少一方。 7. —種基板位置決定裝置,其特徵為具備: 如申請專利範圍第1項至第6項中任一項之基板 檢測裝置; 用以位置決定保持前述基板之基板保持具之基 板保持載台;及 28 200905788 將前述基板移送至前述基板保持具之搬送手段。 S. 一種基板貼合裝置,其特徵為具備: 申請專利範圍第7項之基板位置決定裝置;及 透過前述基板保持具,將使用前述基板位置決定 裝置而做位置決定之兩個該基板接合之基板貼合部。 9. 一種晶圓外形檢測裝置其特徵為具備: 用以旋轉晶圓之旋轉裝置; 用以檢測載置於前述旋轉裝置之前述晶圓之邊 緣之邊緣檢測裝置; 使前述邊緣檢測裝置追縱前述晶圓邊緣之變位 之伺服裝置;及 用以檢測相對前述晶圓半徑方向之前述邊緣檢 測裝置之位置之位置檢測裝置。 10. 如申請專利範圍第9項之晶圓外形檢測裝置,其中, 前述邊緣檢測裝置係用以檢測前述晶圓邊緣之段差。 11. 如申請專利範圍第9項之晶圓外形檢測裝置,其中, 前述邊緣檢測裝置係用以檢測前述晶圓邊緣之傾斜。 12. 如申請專利範圍第9項之晶圓外形檢測裝置,其中, 前述邊緣檢測裝置係用以檢測前述晶圓邊緣之光學 特性之變化。 13. 如申請專利範圍第12項之晶圓外形檢測裝置,其 中,前述光學特性係包含前述晶圓邊緣之顏色、反射 率之至少一方。 14. 如申請專利範圍第9項至第13項中任一項之晶圓外 形檢測裝置,其中,更具備配置在前述晶圓之外周部 附近,用以檢測晶圓邊緣之固定式邊緣檢測裝置。 15. 如申請專利範圍第14項之晶圓外形檢測裝置,其 29 200905788 根據前述邊緣檢測裝置與前述固定式邊緣 方之信號檢測前述晶圓外周部所形成ί 16. ^申請專利範圍第15項之晶圓外形檢測裝置,兑 中,=由珂述邊緣檢測裝置檢測前述晶圓之積層數^ 前述晶圓為積層晶圓時藉由前述邊緣檢^穿 檢測前述刻槽位置。 、置 17. ^申請專利範圍第項之晶圓外形檢測裝置,並 中,错由前述邊緣檢測裝置檢測前述晶圓之積層數, ^晶,單層晶圓時,藉由前述固定式邊 置檢測前述刻槽位置。 《 队如申請專利範㈣17項之晶圓外形檢測裝置,並 中,所檢測之前述晶圓之積層數與該晶圓投入時之晶 圓積層資訊不同時,則做錯誤顯示。 曰曰 19.如申請專利範圍帛18項之晶圓外形檢測裝置,1 中,根據前述晶圓投入時之晶圓積層資訊,選擇前述 20. 邊緣檢測裝置或前述固定式邊緣檢測裝置之任一方。 一種晶圓位置決定裝置,其特徵為具備: 如申請專利範圍第9項至第19項中任一項之晶 圓外形檢測裝置; 、阳 用以位置決定保持晶圓之晶圓保持具之 持載台;及 將前述晶圓移送至前述晶圓保持具之搬送手段。 21.如申請專利範圍第20項之晶圓位置決定裝置,其 中二根據使用前述晶圓外形檢測裝置之前述晶圓之偏 〜里,刻槽位置或定向平面位置之檢測結果,相對前 述晶圓保持具之既定位置之前述晶圓之偏心量,及前 30 200905788 述刻槽位置或前述定向平面位置之補正,將前述晶圓 位置決定於前述晶圓保持具。 22. —種晶圓貼合裝置,其特徵為具備: 如申請專利範圍第20項至第21項之晶圓位置決 定裝置;及 透過晶圓保持具將使用前述晶圓位置決定裝置 而位置決定之兩個晶圓接合之晶圓貼合部。 31200905788 X. Patent Application Range: 1. A substrate detecting device characterized by comprising a detecting portion for detecting an uppermost layer of an uppermost layer among a plurality of substrates which are stacked. 2. The substrate detecting device according to claim 1, wherein the detecting unit detects an edge detecting device that detects an edge of the uppermost substrate, and includes: a rotating device that rotates the plurality of substrates stacked; The detecting device tracks the servo device of the displacement of the edge of the uppermost substrate rotated by the rotating device; and the position detecting device for detecting the position of the edge detecting device. 3. The substrate detecting device of claim 2, wherein the edge detecting device is configured to detect a step difference of the edge of the uppermost substrate. 4. The substrate detecting device of claim 2, wherein the edge detecting device is configured to detect a tilt of the uppermost substrate. 5. The substrate detecting device of claim 2, wherein the edge detecting device detects a change in optical characteristics of the edge of the uppermost substrate. 6. The substrate detecting device according to claim 5, wherein the optical characteristic includes at least one of a color and a reflectance of the uppermost substrate. 7. A substrate position determining device, comprising: a substrate detecting device according to any one of claims 1 to 6; a substrate holding stage for determining a substrate holder holding the substrate And 28 200905788 Transfer the substrate to the transfer means of the substrate holder. A substrate bonding apparatus comprising: a substrate position determining device according to claim 7; and a substrate holder that is bonded to the substrate by using the substrate position determining device Substrate bonding portion. A wafer shape detecting device comprising: a rotating device for rotating a wafer; an edge detecting device for detecting an edge of the wafer placed on the rotating device; and the edge detecting device tracking the foregoing a servo device for displacing the edge of the wafer; and a position detecting device for detecting a position of the edge detecting device in a radial direction of the wafer. 10. The wafer shape detecting device of claim 9, wherein the edge detecting device is configured to detect a step difference of the edge of the wafer. 11. The wafer shape detecting device of claim 9, wherein the edge detecting device is configured to detect a tilt of the edge of the wafer. 12. The wafer shape detecting device of claim 9, wherein the edge detecting device is configured to detect a change in optical characteristics of the edge of the wafer. 13. The wafer shape detecting device according to claim 12, wherein the optical characteristic includes at least one of a color and a reflectance of the edge of the wafer. The wafer shape detecting device according to any one of claims 9 to 13, further comprising a fixed edge detecting device for detecting a wafer edge near a peripheral portion of the wafer . 15. The wafer shape detecting device according to claim 14 of the patent scope, 29 200905788 detects the outer peripheral portion of the wafer according to the edge detection device and the signal of the fixed edge side. The wafer shape detecting device is configured to detect the number of layers of the wafer by the edge detecting device. When the wafer is a stacked wafer, the groove position is detected by the edge inspection. 17. The wafer shape detecting device of the patent application scope is applied, and the number of layers of the wafer is detected by the edge detecting device, and the fixed edge is used for the single crystal wafer. The aforementioned groove position is detected. If the team applies for a wafer shape inspection device of 17 patents, the number of layers of the wafer to be detected is different from the crystal layer information when the wafer is input.曰曰 19. In the wafer shape detecting device of claim 18, in the first aspect, one of the above-mentioned edge detecting device or the fixed edge detecting device is selected according to the wafer layering information at the time of wafer loading. . A wafer position determining device, comprising: a wafer shape detecting device according to any one of claim 9 to claim 19; and a positive position of the wafer holding device for holding the wafer a stage; and a transfer means for transferring the wafer to the wafer holder. 21. The wafer position determining device according to claim 20, wherein the second wafer is in accordance with the detection result of the offset, the groove position or the orientation plane position of the wafer using the wafer shape detecting device, and the wafer is opposite to the wafer The eccentricity of the wafer at a predetermined position of the holder, and the correction of the position of the groove or the position of the orientation plane of the first 30 200905788, the wafer position is determined by the wafer holder. 22. A wafer bonding apparatus, comprising: a wafer position determining device according to claims 20 to 21; and a position determining by using the wafer position determining device through the wafer holder Two wafer bonded wafer bonding portions. 31
TW097121990A 2007-06-12 2008-06-12 Wafer bonding device, wafer bonding method, wafer detection device and wafer detection method TWI483339B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007155460 2007-06-12

Publications (2)

Publication Number Publication Date
TW200905788A true TW200905788A (en) 2009-02-01
TWI483339B TWI483339B (en) 2015-05-01

Family

ID=40129691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097121990A TWI483339B (en) 2007-06-12 2008-06-12 Wafer bonding device, wafer bonding method, wafer detection device and wafer detection method

Country Status (3)

Country Link
JP (2) JP5343847B2 (en)
TW (1) TWI483339B (en)
WO (1) WO2008153086A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495541B (en) * 2012-12-28 2015-08-11
CN114454024A (en) * 2021-03-02 2022-05-10 华中科技大学 Wafer processing equipment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201133700A (en) * 2009-12-18 2011-10-01 Nikon Corp Pair of substrate holders, method for manufacturing device, separation device, method for separating substrates, substrate holder, and device for positioning substrate
WO2011096239A1 (en) * 2010-02-08 2011-08-11 株式会社ニコン Detection method and detection device
JP5477053B2 (en) * 2010-03-02 2014-04-23 株式会社ニコン Overlay apparatus, wafer holder, position detection method, and device manufacturing method
JP5895332B2 (en) * 2010-04-01 2016-03-30 株式会社ニコン Position detection apparatus, overlay apparatus, position detection method, and device manufacturing method
JP5617418B2 (en) * 2010-08-05 2014-11-05 株式会社ニコン Semiconductor substrate laminating method, semiconductor substrate laminating apparatus and device manufacturing method
JP6610026B2 (en) * 2015-06-23 2019-11-27 三星ダイヤモンド工業株式会社 Scribing equipment
JP6721468B2 (en) * 2016-09-14 2020-07-15 株式会社ディスコ Processing equipment
KR102455415B1 (en) 2017-12-18 2022-10-17 삼성전자주식회사 Substrate bonding apparatus and method of bonding a pair of substrates using the same
WO2019208359A1 (en) * 2018-04-27 2019-10-31 東京エレクトロン株式会社 Substrate processing system and substrate processing method
JP7430455B2 (en) 2020-06-05 2024-02-13 株式会社ディスコ Edge position detection device and edge position detection method
TWI735315B (en) * 2020-08-21 2021-08-01 上銀科技股份有限公司 Method and apparatus for detecting positions of wafers
US11862507B2 (en) * 2020-11-25 2024-01-02 Kawasaki Jukogyo Kabushiki Kaisha Robot system, and slip determination method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106012A (en) * 1989-09-20 1991-05-02 Fujitsu Ltd Manufacture of semiconductor device and device thereof
JP3580600B2 (en) * 1995-06-09 2004-10-27 株式会社ルネサステクノロジ Method for manufacturing semiconductor device, semiconductor wafer used for the same, and method for manufacturing the same
JP2000150621A (en) * 1998-11-18 2000-05-30 Matsushita Electric Ind Co Ltd Device and method for supplying resin substrate
JP3991300B2 (en) * 2000-04-28 2007-10-17 株式会社Sumco Manufacturing method of bonded dielectric isolation wafer
JP2002050749A (en) * 2000-07-31 2002-02-15 Canon Inc Method and device for separating composite member
DE10140133A1 (en) * 2001-08-16 2003-03-13 Wacker Siltronic Halbleitermat Method and device for producing an adhesive connection between a semiconductor wafer and a carrier plate
JP2004111580A (en) * 2002-09-18 2004-04-08 Matsushita Electric Ind Co Ltd Semiconductor device and its fabricating process
US6908027B2 (en) * 2003-03-31 2005-06-21 Intel Corporation Complete device layer transfer without edge exclusion via direct wafer bonding and constrained bond-strengthening process
JP2006100656A (en) * 2004-09-30 2006-04-13 Nikon Corp Overlapping method at wafer lamination

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495541B (en) * 2012-12-28 2015-08-11
CN114454024A (en) * 2021-03-02 2022-05-10 华中科技大学 Wafer processing equipment
CN114454024B (en) * 2021-03-02 2023-04-25 华中科技大学 Wafer processing equipment

Also Published As

Publication number Publication date
WO2008153086A1 (en) 2008-12-18
TWI483339B (en) 2015-05-01
JP5561419B2 (en) 2014-07-30
JP5343847B2 (en) 2013-11-13
JPWO2008153086A1 (en) 2010-08-26
JP2013258423A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
TW200905788A (en) Substrate detecting apparatus, substrate aligning apparatus, substrate bonding apparatus having substrate detecting apparatus and substrate aligning apparatus, wafer outer shape detecting apparatus, wafer aligning apparatus, and wafer bonding apparat
CN101794721B (en) Alignment apparatus for semiconductor wafer
JP5484821B2 (en) Detection method
JP4530891B2 (en) Method for positioning semiconductor wafer with support plate, method for manufacturing semiconductor wafer using the same, and positioning device for semiconductor wafer with support plate
JP4803703B2 (en) Semiconductor wafer position determination method and apparatus using the same
JP6276053B2 (en) Prober
JP2009194346A (en) Uniaxial drive aligner
TW200419686A (en) Component feeding head unit, component feeding unit, component mounting apparatus, and method for moving of mounting head
TW480560B (en) Wafer orienting and reading mechanism
JP5436876B2 (en) Grinding method
JP2008218903A (en) Centripetal apparatus and centripetal method for wafer
JP7224695B2 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
CN113161273A (en) Position deviation detection method and device, position abnormality determination method and conveyance control method
TWI525741B (en) The angle positioning method of the wafer-mounted ring assembly and the mechanism for carrying out the
JP2012038922A (en) Substrate transferring apparatus, substrate transferring method, and record medium for recording program for executing substrate transferring method of the same
CN113753576A (en) Automatic piece arranging and testing method
JP5239220B2 (en) Wafer positioning apparatus and wafer bonding apparatus having the same
JP2015005682A (en) Transfer robot and transfer method of disk-shaped transfer object
CN1189070C (en) Device for positioning electronic circuits arranged on foil
JP5413529B2 (en) Wafer positioning apparatus and wafer bonding apparatus having the same
TWI823237B (en) Alignment device and alignment method
JP5763759B2 (en) Alignment apparatus and alignment method
JP2014060429A (en) Wafer bonding device and wafer bonding method
JP7430872B2 (en) Conveyance method and conveyance device
JPH11312726A (en) Substrate carrying device