TW200904286A - Optoelectric hybrid circuit board and manufacture thereof - Google Patents

Optoelectric hybrid circuit board and manufacture thereof Download PDF

Info

Publication number
TW200904286A
TW200904286A TW96124312A TW96124312A TW200904286A TW 200904286 A TW200904286 A TW 200904286A TW 96124312 A TW96124312 A TW 96124312A TW 96124312 A TW96124312 A TW 96124312A TW 200904286 A TW200904286 A TW 200904286A
Authority
TW
Taiwan
Prior art keywords
circuit board
hybrid circuit
opto
cladding layer
light
Prior art date
Application number
TW96124312A
Other languages
Chinese (zh)
Other versions
TWI393509B (en
Inventor
Chun-Hsing Lee
Shin-Ge Lee
Chien-Chun Lu
Sheng-Ho Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW96124312A priority Critical patent/TWI393509B/en
Publication of TW200904286A publication Critical patent/TW200904286A/en
Application granted granted Critical
Publication of TWI393509B publication Critical patent/TWI393509B/en

Links

Abstract

A optoelectric hybrid circuit board and its manufacturing method are provided. The optoelectric hybrid circuit board comprises a conductive substrate and a waveguide structure. The waveguide structure has a light transmission path to receive and transmit light. A microlens is formed in the light transmission path to refract the light passing through the microlens.

Description

200904286 九、發明說明: [發明所屬之技術領威】 本發明係有關於一種光電混載電路板及其製造方法,特別是 有關於一種將微透鏡製作於光波導結構内之光電混載電路板及其 製造方法。 【先前技術】 隨著通訊系統及超大型積體電路(Very Large Scale Integration,VLSI)技術的迅速發展,使得通訊與電腦設備的速度 大幅提升。現今電腦間對高速訊號傳輸的需求越來越大,習用以 銅導線傳遞電子訊號之方式,因受限於頻寬不足的因素,業已無 法負載如此龐大的傳輸訊號,且銅導線於執行高速傳輸過程中, 將產生電磁干擾、傳輸信賴度降低、及散熱不易的問題。 為了改善此一問題,近年來開始研發光電混載電路之技術, 將光波導元件結合光收發元件,以取代傳統金屬導線做為傳遞電 子訊號之媒介。由於光傳輸具有高平行性、高頻寬、極低電磁信 號干擾(Electromagnetic Interference,EMI)的特性,極適合做為電 路板或是晶片間的信號傳輸應用。 由於光波導元件與光收發元件之間必須耦光對位 (alignment) ’而目前光電混載電路日趨微型化,要在有限的空間 内設計光路彎曲、聚光及光學切換之光路佈線,是相當不容易的。 有鑑於此,美國專利第6,599,〇31號專利案揭露一種光電傳輸 封裝模組,係於光電基板上設置一透明聚合物層,此透明聚合物 層一側设置有光收發元件,於聚合物層與光電基板之兩相對側上 200904286 分钶製造複數個微透鏡陣列,以將光訊號折射至光纖之中。 丄述之專利案於製造微透鏡前,必須先對聚合物層進行研磨 處理,加上透鏡係獨立製作於聚合物層及光電基板上,如此不僅 造成透鏡不易與光電基板製程進行整合,亦導致製造工序及成本 的增加。再者,透鏡與光波導元件之間的距離過遠,加上透鏡元 件於製造上所產生的誤差,使得投射至透鏡巾的絲產生偏移, 進而與光料光路中之騎元件相互錯位,導致找合效率不佳。 於美國專利第6,804,423號專利案揭示了 一種光電路板,其具 有-垂直紐導元件及-水平級導元件,並於垂直光波導光路 之起點設置-微透鏡’絲所投射出來的総號通過此透鏡而聚 焦,且聚焦後之光訊號通過垂直光波導,再藉由設置於垂直光波 $14水平紐導父界處之轉折鏡面,而可於光波導光勒進行全 反射。 第6,8〇4,423 f虎專利案之透鏡與轉折鏡面的相對距離過遠,其 t焦後之光簡仍存在有發散的問題,導致無法將全部的光能量 =身=轉折鏡面巾進行全反射n轉折鏡面係於光波導元件 衣私元畢後’再以鑽;5蝴或是雷射切鮮方式單獨製作,如此 將導致光電路板之製缸序過於繁複,以及製造成本的增加。 【發明内容】 蓉於以上關題’本發明提供—種光電混载電路板及其製造 微^細嫩雜術之綠混載電路,制以折縣訊號之 置距離細,導致折射後之光訊號容$產生發散及偏 夕’且制微透鏡侧立製作於光絲板上,微魏料與光電 200904286 基校整合,導致光耦合效率不诖、製程過於繁禎、男二、丄 欠久取尽過高的 問題。 ' 本發明所揭露之光電混載電路板,係用以承接並傳輪一光1 號,其包括有一導電基板及一光波導結構。光波導結構具有依序 堆疊於導電基板上之第一包覆層、一核心層、及一莖_ ^—巴覆層, 以形成一供光訊號通過之光傳輸路徑,且第一包覆層上形成有至 少一微透鏡,係設置於光傳輸路徑上,以使通過微透鏡之光茂號 產生折射。 本發明之光電混載電路板之製造方法,首先提供—導電芙 板,於導電基板一側上形成一第一包覆層,並且形成至少一微透 鏡於第一包覆一側,此微透鏡係對應於光訊號之光傳輪方向,以 使光訊號產生折射。接著形成一核心層於第一包覆層上,最後於 核心層上形成一第二包覆層,以形成一光傳輸路徑。 本發明之光電混载電路及其製造方法具有下列優點: 1. 微透鏡與光傳輸路徑具備高度整合性。 2. 節省各別元件單獨製作所產生的成本。 3. 簡化光電混載電路之製程。 4. 光訊號聚焦距離較短,光學對位容許度較高。 5. 可應用於三維(3D)多層光路傳輸。 以上之關於本發明内容之說明及以下之實施方式之說明係用 以不範與解釋本發明之原理,並且提供本發明之專利申請範圍更 進一步之解釋。 【實施方式】 200904286 1第i圖」所示為第-實施例之剖面示錢。本發明之户雪 混载電路板100係用以承接並傳輸一光訊號,光電混載電路板⑽ 包括有一導電基板110,以及一設置於導電基板11〇上之光波導沾 構120。 ' 第-實施例之導f基板no係絲面具有金料電佈線之印 刷電路板,例如樹脂銅箔基板(FR4基板或是Βτ基板)等非透明材 質之導電基板no。導電基板no開設有多個導光孔⑴,且於導 光孔内設有一導光核心層112,以及一包圍於導光核心層112 之導光包覆層113。 曰 導電基板no與一對應於其中一導光孔lu之光發射器151, 及一對應於另-導光孔U1之光接收器152電性連接。光發射器 151可發出一光訊號通過光電混載電路板1〇〇,再由光接收器 所接收。 光波導結構120具有覆蓋於導電基板110 -側之第-包覆層 121覆盍於第—包覆層121上之核心層122、及一覆蓋於核心 層122上之第—包覆層123 ,以形成一光傳輸路徑I%。光傳輸路 =130更具有二分別對應於光發射器Μ〗與光接收器Μ)之導引 ^路131 ’以及一銜接於導引光路131之反射光路132 ,以承接光 么射器151射出之光訊號,並令光訊號通過導引光路13卜而傳 輪至光接收器152中。 其中’第一包覆層與第二包覆層m之折射率(refractive index)係為相同,而爽設於二包覆層⑵、⑵中之核心層的 折射率係大於包覆層⑵、123之折射率,本發明之核心層ι22折 200904286 射率為i.553,包覆層121、13之折射率為L534,以使光訊號於 核心層ι22中進仃全反射,並依照所設計的光傳輪路徑丨3〇行進。 光波導結構120更具有至少一微透鏡124及至少一反射面 140。其中微透鏡124設置於光傳輸路徑13〇上,以令光發射器 151射出之光§礼號產生聚焦、平準、或是發散等作用,反射面14〇 係設置於導引光路131與反射光路132之銜接位置上,並且鄰近 於微透鏡124。 本發明之通過導引光路131的光訊號,係透過微透鏡124的 聚焦作用而聚焦至反射面14〇上,並且藉由反射面14〇轉換此聚 焦光訊號之行進方向,而反射至反射光路132中進行全反射,再 經由反射光路132另一端之反射面14〇及微透鏡124,而使光訊 號聚焦至光接收器152中接收。 反射面140設置於導引光路131與反射光路132之銜接位 置,且反射面140係相對於第一包覆層121 —側以35至55度角 之範圍傾斜,而本發明係以傾斜45度角之反射面140做為實施例 之說明。然,反射面140可配合實際光波導結構12〇之光路設計, 而對應傾斜一適當角度,並不以本實施例所揭露之45度角為限。 另外,更可於反射面14〇上鑛覆一金屬鍍膜141,以增加聚焦光 訊號的折射效果。 本發明之光波導結構12〇之材質可選自有機高分子材料,例 如環氧树知(epoxy resin)、丙烯酸樹脂(aerylie resin)、或是聚醋樹 脂(polyesterresin)等;或者是選擇有機高分子與無機高分子材料之 匕合物’例如石夕氧燒樹脂(sii〇xane)、壓克力、或是聚碳 200904286 麵樹脂(PQm述高分子辞製造而成的光轉結樣DO, 具有尺寸安定性高、加工容易、可依需求調整絲性質掌優點。 「第2A圖」至「第況圖」、及「第3圖」所示^發明 揭4第貫施例之光電混載電路板100可藉由下述之製造方、去而 形成: / 首先提供-導電基板110(步驟2〇〇),並以機械鑽孔或是雷射 鑽孔等加卫方式,形成至少—導光孔lu於導電基板11Q上(步驟 210),且於導光孔in内形成導光核心層112及導光包覆層113。 接著,形成一第一包覆層121於導電基板110的—側(步驟22〇), 並且形成對應於模具形狀之至少一微透鏡124於第一包覆層121 上(步驟230),此微透鏡124係設置於導電基板11〇相對於導電基 板110之另一侧面上,並且對應於光訊號之光傳輸方向,以使通 過微透鏡124之光訊號產生折射。接著,形成一核心層]22於第 包覆層121上(步驟240),並形成至少一反射面140於核心層122 上(步驟250),且反射面140表面可選擇性地形成一金屬鑛膜 141(步驟251),以增加光訊號的折射效果。最後,形成一第二包 覆層123於核心層122上(步驟260),以形成光傳輸路徑13〇。 本發明之第一包覆層121、核心層122、及第二包覆層123係 以熱固化或是光固化方式依序堆疊形成,並且用以聚焦及轉折光 訊號行進方向之微透鏡124與反射面140,可透過模具熱壓、雷 射離刻、或是鑽石刀具切割等機械加工方式,分別形成於第—包 覆層121及核心層122上。另外,微透鏡124及反射面140亦可 與苐一包覆層121及核心層122的製程進行整合,而以光固化方 10 200904286 、與;一包覆層12及核心層122同時形成。 然形成微透鏡124及反射面140之方式已為熟悉該項技術之 通常人士所能知悉的設計,除了本發明揭露之實施例外,更有多 種加工方法可形成微透鏡124與反射面140,故發明人於此不另 贅敘。 「第4圖」所示為本發明第二實施例之剖面示意圖。本發明 第二實施例之光電混載電路板100所使用的導電基板11〇 ,可為 透明材質之印刷電路板,例如玻璃基板,本發明之光發射器151 與光接收裔152係對應於導引光路131之位置,而無須於導電基 板110上鑽設多個供光訊號通過之導光孔。 請參閱「第5圖」,本發明更可依序堆疊多個光電混載電路板 100,以形成一複合光電混載基板16〇。複合光電混載基板具 有多層光傳輸路徑,而可同時傳輸與接收多組光傳輸訊號。另外, 可分別於光發射器丨51及光接收器152之光行進路徑上設置一準 直透鏡153,_錄触職路狀総號,秋光訊號於複 合光電混載基板160的行進路徑過長,而導致光訊號散射及偏移 本發明之微透舰於製造紐導結構時,_形成於光波導 結構之光傳輸路虹,使得光電喊電路板之_具備高度整合 性,並且簡化製錢節錢造各個光學元件的成本。微透鏡與反 射,係相互鄰近,使得技號的聚焦轉較短,辟對位容許度 較局’並藉由多個光電混載電路板的堆疊, : 光路傳輸的功效。 一准(3D)夕層 200904286 雖然本發明之實施例揭露如上所述,然並非用以限定本發 明,任何熟習相關技藝者,在不脫離本發明之精神和範圍内'舉 凡依本發明申請範圍所述之形狀、構造、特徵及精神當可做些許 之變更,因此本發明之專利保護範圍須視本說明書所附之申請專 利範圍所界定者為準。 【圖式簡單說明】 第1圖為本發明第一實施例之剖面示意圖; 第2A圖為本發明第一實施例之分解步驟示意圖; 第2B圖為本發明第一實施例之分解步驟示意圖; 第2C圖為本發明第一實施例之分解步驟示意圖; 第2D圖為本發明第一實施例之分解步驟示意圖; 第2E圖為本發明第一實施例之分解步驟示意圖; 第2F圖為本發明第一實施例之分解步驟示意圖; 第2G圖為本發明第一實施例之分解步驟示意圖; 第2H圖為本發明第一實施例之分解步驟示意圖; 第3圖為本發明第一實施例之步驟流程圖; 第4圖為本發明第二實施例之剖面示意圖;以及 第5圖為本發明之複合光電混載基板之剖面示意圖。 【主要元件符號說明】 100 光電混載電路板 導電基板 12 110 200904286 ill 二貧山叫 i 導光核心層 113 導光包覆層 120 光波導結構 121 第一包覆層 122 核心層 123 第二包覆層 124 微透鏡 130 光傳輸路徑 131 導引光路 132 反射光路 140 反射面 141 金屬鍍膜 151 光發射器 152 光接收器 153 準直透鏡 160 複合光電混載基板 步驟200 提供導電基板 步驟210 形成至少一導光孔於導電基板上 步驟220 形成第一包覆層於導電基板一侧 步驟230 形成至少一微透鏡於第一包覆層一侧 步驟240 形成核心層於第一包覆層上 步驟250 形成至少一反射面於核心層之光傳輸路徑上 200904286 步驟251 步驟260 形成金屬鍍膜於反射面表面 形成第二包覆層於核心層上 14200904286 IX. Description of the Invention: [Technical Leadership of the Invention] The present invention relates to an opto-electric hybrid circuit board and a method of manufacturing the same, and more particularly to an opto-electric hybrid circuit board in which a microlens is fabricated in an optical waveguide structure and Production method. [Prior Art] With the rapid development of communication systems and Very Large Scale Integration (VLSI) technology, the speed of communication and computer equipment has increased dramatically. Nowadays, there is an increasing demand for high-speed signal transmission between computers. The way in which copper wires are used to transmit electronic signals is limited by the lack of bandwidth, and it is impossible to load such a large transmission signal, and the copper wires are subjected to high-speed transmission. During the process, electromagnetic interference, reduced transmission reliability, and difficulty in heat dissipation will occur. In order to improve this problem, in recent years, the technology of developing an opto-electric hybrid circuit has been developed, and an optical waveguide component is combined with an optical transceiver component to replace a conventional metal wire as a medium for transmitting an electronic signal. Due to its high parallelism, high frequency bandwidth, and extremely low Electromagnetic Interference (EMI), optical transmission is ideal for signal transmission applications between boards or wafers. Since the optical waveguide component and the optical transceiver component must be coupled to optical alignment, and the current optical hybrid circuit is increasingly miniaturized, it is quite unnecessary to design optical path bending, concentrating, and optical switching optical path wiring in a limited space. Easy. In view of the above, U.S. Patent No. 6,599, No. 31 discloses a photoelectric transmission package module in which a transparent polymer layer is disposed on a photovoltaic substrate, and an optical transceiver element is disposed on one side of the transparent polymer layer. A plurality of microlens arrays are fabricated on the opposite sides of the layer and the optoelectronic substrate to refract optical signals into the optical fibers. In the patent case described above, the polymer layer must be ground before the microlens is manufactured, and the lens system is separately fabricated on the polymer layer and the photoelectric substrate, which not only causes the lens to be difficult to integrate with the photovoltaic substrate process, but also causes Increase in manufacturing processes and costs. Moreover, the distance between the lens and the optical waveguide component is too far, and the error caused by the manufacture of the lens component causes the wire projected to the lens towel to be offset, thereby being misaligned with the riding components in the optical path of the light. Lead to poor efficiency. U.S. Patent No. 6,804,423 discloses an optical circuit board having a vertical conductor element and a horizontal level conductor element, and is provided at the beginning of the optical path of the vertical optical waveguide - the apostrophe projected by the microlens' wire The lens is focused, and the focused optical signal passes through the vertical optical waveguide, and is further reflected by the optical waveguide by means of a folding mirror disposed at the horizontal edge of the vertical light wave. In the 6th, 8th, 4th, 423th, the relative distance between the lens of the tiger patent and the turning mirror is too far, and there is still a problem of divergence after the t-focus, which makes it impossible to carry all the light energy = body = turning mirror towel The reflective n-turn mirror is attached to the optical waveguide component and then drilled separately; 5 butterfly or laser cutting method is separately produced, which will result in an excessively complicated cylinder sequence of the optical circuit board and an increase in manufacturing cost. SUMMARY OF THE INVENTION In the above question, the present invention provides an opto-electric hybrid circuit board and a green hybrid circuit for manufacturing the micro-compound technique, which is formed by the fine distance of the folding county signal, resulting in the optical signal after the refraction. $ produces divergence and eclipse' and the microlens is fabricated sideways on the filament plate. Micro-Wei material is integrated with the photoelectricity of the Optoelectronics 200904286. The result is that the optical coupling efficiency is not good, the process is too complicated, and the man is not exhausted. Too high a problem. The opto-electric hybrid circuit board disclosed in the present invention is used to receive and transmit a light No. 1, which comprises a conductive substrate and an optical waveguide structure. The optical waveguide structure has a first cladding layer, a core layer, and a stem layer stacked on the conductive substrate in sequence to form an optical transmission path through which the optical signal passes, and the first cladding layer At least one microlens is formed on the light transmission path to refract the photocatalyst passing through the microlens. In the method for manufacturing an opto-electric hybrid circuit board of the present invention, first, a conductive slab is provided, a first cladding layer is formed on one side of the conductive substrate, and at least one microlens is formed on the first cladding side, the microlens system Corresponding to the direction of the light transmission wheel of the optical signal, so that the optical signal is refracted. Then, a core layer is formed on the first cladding layer, and finally a second cladding layer is formed on the core layer to form an optical transmission path. The opto-electric hybrid circuit of the present invention and the method of manufacturing the same have the following advantages: 1. The microlens is highly integrated with the optical transmission path. 2. Save on the cost of individual components. 3. Simplify the process of the opto-electric hybrid circuit. 4. The optical signal has a short focusing distance and a high optical alignment tolerance. 5. Can be applied to three-dimensional (3D) multilayer optical transmission. The above description of the present invention and the following description of the embodiments of the present invention are intended to be illustrative of the principles of the invention. [Embodiment] 200904286 1th i"" shows a cross section of the first embodiment. The household snow hybrid circuit board 100 of the present invention is for receiving and transmitting an optical signal. The opto-electric hybrid circuit board (10) includes a conductive substrate 110 and an optical waveguide structure 120 disposed on the conductive substrate 11A. The guide substrate of the first embodiment has a printed circuit board having a gold electric wiring, and a non-transparent conductive substrate no such as a resin copper foil substrate (FR4 substrate or Βτ substrate). The conductive substrate no is provided with a plurality of light guiding holes (1), and a light guiding core layer 112 is disposed in the light guiding hole, and a light guiding coating layer 113 surrounding the light guiding core layer 112 is disposed.导电 The conductive substrate no is electrically connected to a light emitter 151 corresponding to one of the light guiding holes lu, and a light receiver 152 corresponding to the other light guiding hole U1. The light emitter 151 can emit an optical signal through the opto-electric hybrid circuit board 1 and then received by the optical receiver. The optical waveguide structure 120 has a core layer 122 covering the first cladding layer 121 covering the first cladding layer 121 on the conductive substrate 110 side, and a first cladding layer 123 covering the core layer 122. To form an optical transmission path I%. The optical transmission path=130 further has two guiding channels 131' corresponding to the light emitters and the light receivers 以及, and a reflected light path 132 connected to the guiding light path 131 for receiving the light emitters 151. The optical signal is transmitted to the optical receiver 152 through the guiding optical path 13b. Wherein the refractive index of the first cladding layer and the second cladding layer m are the same, and the refractive index of the core layer which is provided in the two cladding layers (2) and (2) is greater than that of the cladding layer (2), The refractive index of 123, the core layer of the present invention ι22 fold 200904286, the refractive index is i.553, the refractive index of the cladding layers 121, 13 is L534, so that the optical signal is totally reflected in the core layer ι22, and is designed according to The light transmission path 丨3〇 travels. The optical waveguide structure 120 further has at least one microlens 124 and at least one reflective surface 140. The microlens 124 is disposed on the optical transmission path 13 , to cause the light emitted by the light emitter 151 to generate focus, leveling, or divergence, and the reflective surface 14 is disposed on the guiding optical path 131 and the reflected optical path. The position of 132 is in the vicinity of the microlens 124. The optical signal passing through the guiding optical path 131 of the present invention is focused on the reflecting surface 14〇 by the focusing action of the microlens 124, and the traveling direction of the focused optical signal is converted by the reflecting surface 14〇, and reflected to the reflected optical path. The total reflection is carried out in 132, and the optical signal is focused to the light receiver 152 via the reflective surface 14 and the microlens 124 at the other end of the reflected optical path 132. The reflecting surface 140 is disposed at a position where the guiding light path 131 and the reflecting light path 132 are connected, and the reflecting surface 140 is inclined at an angle of 35 to 55 degrees with respect to the side of the first covering layer 121, and the present invention is inclined by 45 degrees. The corner reflecting surface 140 is described as an embodiment. However, the reflecting surface 140 can be matched with the optical path design of the actual optical waveguide structure 12, and corresponding to the tilting of an appropriate angle, is not limited to the 45 degree angle disclosed in the embodiment. In addition, a metal coating 141 may be coated on the reflective surface 14 to increase the refractive effect of the focused light signal. The material of the optical waveguide structure 12 of the present invention may be selected from organic polymer materials, such as epoxy resin, aerylie resin, or polyester resin, or organic high. A mixture of a molecule and an inorganic polymer material, such as a sii〇xane resin, an acrylic, or a polycarbon 200904286 surface resin (a light-transformed DO produced by PQm) It has the advantages of high dimensional stability, easy processing, and the ability to adjust the silk properties according to the requirements. "2A" to "Graphic map" and "3rd map" ^Inventive 4th embodiment of the opto-electric hybrid circuit The board 100 can be formed by the following manufacturing method: / Firstly, the conductive substrate 110 is provided (step 2 〇〇), and at least the light guide is formed by mechanical drilling or laser drilling. The hole is formed on the conductive substrate 11Q (step 210), and the light guiding core layer 112 and the light guiding cladding layer 113 are formed in the light guiding hole in. Next, a first cladding layer 121 is formed on the side of the conductive substrate 110. (Step 22〇), and forming at least one microlens 124 corresponding to the shape of the mold On a cladding layer 121 (step 230), the microlens 124 is disposed on the other side of the conductive substrate 11 〇 relative to the conductive substrate 110 and corresponds to the light transmission direction of the optical signal so as to pass through the microlens 124 The optical signal is refracted. Then, a core layer 22 is formed on the first cladding layer 121 (step 240), and at least one reflective surface 140 is formed on the core layer 122 (step 250), and the surface of the reflective surface 140 is selectively A metal ore film 141 is formed (step 251) to increase the refractive effect of the optical signal. Finally, a second cladding layer 123 is formed on the core layer 122 (step 260) to form an optical transmission path 13A. The first cladding layer 121, the core layer 122, and the second cladding layer 123 are sequentially formed by thermal curing or photocuring, and are used to focus and transform the microlens 124 and the reflecting surface of the optical signal traveling direction. 140, can be formed on the first cladding layer 121 and the core layer 122 by mechanical processing such as mold hot pressing, laser cutting, or diamond cutter cutting. In addition, the microlens 124 and the reflective surface 140 can also be包覆 a cladding layer 121 and a core layer 122 The process is integrated, and is formed by photocuring side 10 200904286, with a cladding layer 12 and a core layer 122. The manner in which the microlens 124 and the reflecting surface 140 are formed is already known to those familiar with the art. The design is not limited to the implementation of the present invention. A plurality of processing methods can form the microlens 124 and the reflective surface 140. Therefore, the inventors will not elaborate here. "FIG. 4" shows a second embodiment of the present invention. The conductive substrate 11A used in the opto-electric hybrid circuit board 100 of the second embodiment of the present invention may be a transparent printed circuit board, such as a glass substrate, and the light emitter 151 of the present invention corresponds to the light receiving 152 system. At the position of the guiding optical path 131, it is not necessary to drill a plurality of light guiding holes through which the optical signals pass through the conductive substrate 110. Referring to FIG. 5, the present invention can sequentially stack a plurality of opto-electric hybrid circuit boards 100 to form a composite opto-electric hybrid substrate 16A. The composite opto-electric hybrid substrate has a multi-layer optical transmission path, and can simultaneously transmit and receive multiple sets of optical transmission signals. In addition, a collimating lens 153 can be disposed on the light traveling path of the light emitter 丨 51 and the light receiver 152, respectively, and the traveling path of the autumn optical signal on the composite opto-electric hybrid substrate 160 is too long. When the optical signal scattering and offset of the micro-transmission ship of the present invention is used to manufacture the light guide structure, the optical transmission path formed in the optical waveguide structure makes the optical shouting circuit board highly integrated and simplifies the money making section. The cost of making each optical component. The microlenses and the reflections are adjacent to each other, so that the focus of the technique is shortened, and the alignment tolerance is better than that of the board and the stacking of the plurality of opto-electric hybrid boards: the effect of the optical path transmission. The present invention is not limited to the scope of the present invention, and is not intended to limit the scope of the present invention. The shapes, configurations, features, and spirits of the present invention are subject to change, and the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a first embodiment of the present invention; FIG. 2B is a schematic exploded view of a first embodiment of the present invention; 2C is a schematic diagram of an exploded step of the first embodiment of the present invention; FIG. 2D is a schematic diagram of an exploded step of the first embodiment of the present invention; FIG. 2E is a schematic diagram of an exploded step of the first embodiment of the present invention; 2 is a schematic diagram of a decomposition step of the first embodiment of the present invention; FIG. 2H is a schematic diagram of an exploded step of the first embodiment of the present invention; FIG. 3 is a first embodiment of the present invention; FIG. 4 is a schematic cross-sectional view showing a second embodiment of the present invention; and FIG. 5 is a cross-sectional view showing the composite opto-electric hybrid substrate of the present invention. [Main component symbol description] 100 Photoelectric hybrid circuit board conductive substrate 12 110 200904286 ill Two poor mountains called i light guide core layer 113 Light guide cladding layer 120 Optical waveguide structure 121 First cladding layer 122 Core layer 123 Second cladding Layer 124 microlens 130 optical transmission path 131 guiding optical path 132 reflecting optical path 140 reflecting surface 141 metal plating film 151 light emitter 152 light receiver 153 collimating lens 160 composite opto-electric hybrid substrate step 200 providing conductive substrate step 210 forming at least one light guide Forming a first cladding layer on the conductive substrate on step 220, forming at least one microlens on the first cladding layer side, step 240, forming a core layer on the first cladding layer, and forming at least one on step 250. The reflective surface is on the optical transmission path of the core layer. 200904286. Step 251. Step 260: forming a metal plating film on the surface of the reflective surface to form a second cladding layer on the core layer.

Claims (1)

200904286 十、申請專利範園: 1· 一種光電混魏触,⑽承触傳輸—光職,其包括有: 一導電基板;以及 一光波導結構,係設置於該導電基板上,並呈有一第一包 覆層、一,心層、一第二包覆層、及至少—微透鏡,該第一包 覆層係覆盍於該導電基板一侧,該核心層覆蓋於該第一包覆層 上,該第二包覆層覆蓋於_心層上,卿成—光傳輪路徑以 承接並傳輸該光喊,賴透鏡係設置於觀傳輸路徑上,以 使該光訊號產生折射。 2_如申晴專利範圍第〗項所述之光電混載電路板,其中該光傳輸 路控更具有-導弓丨光路,及—銜接於該導引光路之反射光路, 該導引光路係承接該光訊號並傳輪該歧號至該反射光路。 3·如申Sf專利·第2項所述之光電混載電路板,其巾該導電基 板係為一非透明材f之導電基板,且該導電基板具有至少一^ 應該導引光路之導光孔,該導光孔内設有-導光核心層及一包 圍於該導光核心層之導光包覆層。 4. 如申請專利範圍第2項所述之光電混載電路板,財於 光路與該反射光路之銜触置更設有至少_域面,以改師 光訊號之光傳輸方向。 又节人 5. 如申請專織圍第4摘述之光姐載電路板,其 係將該光減聚紐觀射面,並藉由 % 訊號至該導引光路及該反射光路内傳輸。反射面反射該聚焦光 6. 如申請專繼㈣4·述之光電混載電路板,其中該反射面 \ < 200904286 係相對於該第一包覆層一側呈35度角至5s度痒傾斜。 7·如申請料m®第6項所述之光電混錢路板,其中該反射面 係相對於該第一包覆層一侧呈45度角傾斜。 8. 如申請專利範圍第4項所述之光電混載電路板,其中該反射面 表面更具有-金屬賴,用以改變該光訊號之光傳輸方向。 9. 如申請專纖圍第】賴狀光f混麵叫,射該導電基 板係為一透明材質之導電基板。 10. 如申請專利細第述之光電混載f路板,其巾該光波導 結構係為一有機高分子材料製成。 U·如申請專利翻第K) _述之光電混載電路板,其中該有機 高分子材料係選自環氧樹脂、丙烯酸樹月旨、及聚酷樹脂所成群 組。 以如申請專利範圍第!項所述之光電混載電路板,其中該光波導 結構係為-錢高分子材料及無機高分子㈣之混合物所製 成。 3.如申請專伽IU I2項所述之光電混載電路板,其中該混合 物係選㈣城樹脂、壓克力、及聚碳酸酯樹脂所成群组。 •〜種光電混載電路板之製造方法,射該光電混载電路板係用 以承接並傳輸-光訊號,職造方法之步驟包括有: 提供一導電基板; 形成-第-包覆層於該導電基板一側; 形成至少^透鏡於該第—包覆層一側,該__對應 於该光訊號之光傳輪方向,以使該光訊號產生折射; 16 200904286 形成-核心層於該第—包覆層上;以及 形成一罘二包覆層於該核心層上,以 | 15. 如申請專利範圍第14 7 XK寻輸路徑。 其中更包含有:員所述之光電混裁電路板之製造方法, 形成至少-導光孔於該導電基板上 -導光核心層,及__於 於該U孔内形成 16. 如申請專利範圍第14Θ導光包覆層。 其中更包含有 項所述之光電混载電路板之製造方法, 形成至少-反射面於該核心層之光傳輪路徑上 光訊號之光傳輸方向。 文又該 Π.如申4專利|_第16項所述之光電混载 、 其中更包含有形成-金屬鍍膜於該反射面表面之步^法 18.如申請專利範圍第16項所述之找混载電路板之製造方法, 其中該反射面係藉由一模具熱壓於該核心層所形成。/ , 设如申請專繼圍第16項所述之光魏—路板之製造方法, 其中該反射面係藉由光固化方式而形成於該核心層上 20. 如申請專利第16項所述之找混載電路^製造方法, 其中該反射面係藉由雷射雕刻方式而形成於該校心層上 21. 如申請專利範㈣16 _述之光電混載電路板之製造方法, 其中該反射面係藉由鑽石刀具切割方式而形成於該核心層上。 22·如申請專利範圍第14項所述之光電混载電路板之製造方法, 其中該第-包覆層、該核心層及該第二包覆層係藉由熱固化方 式所形成。 17 200904286 23. 如申請專利範圍第14項所述之光電混載電路板之製造方法, 其中該第一包覆層、該核心層及該第二包覆層係藉由光固化方 式所形成。 24. 如申請專利範圍第14項所述之光電混載電路板之製造方法, 其中該微透鏡係藉由一模具熱壓於該第一包覆層所形成。 25. 如申請專利範圍第14項所述之光電混載電路板之製造方法, 其中該微透鏡係藉由光固化方式而形成於該第一包覆層上。 26. 如申請專利範圍第14項所述之光電混載電路板之製造方法, 其中該微透鏡係藉由雷射雕刻方式而形成於該第一包覆層上。 27. 如申請專利範圍第14項所述之光電混載電路板之製造方法, 其中該微透鏡係藉由鑽石刀具切割方式而形成於該第一包覆層 上。 18200904286 X. Application for Patent Park: 1· An electro-optical hybrid touch, (10) a touch transmission-light job, which includes: a conductive substrate; and an optical waveguide structure, which is disposed on the conductive substrate and has a first a cladding layer, a core layer, a second cladding layer, and at least a microlens, the first cladding layer is coated on one side of the conductive substrate, and the core layer covers the first cladding layer The second cladding layer covers the _ core layer, and the light-transmitting wheel path receives and transmits the light screaming, and the ray lens is disposed on the viewing transmission path to refract the optical signal. 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The optical signal transmits the error to the reflected light path. 3. The opto-electric hybrid circuit board of claim 2, wherein the conductive substrate is a conductive substrate of a non-transparent material f, and the conductive substrate has at least one light guiding hole that should guide the optical path. The light guiding hole is provided with a light guiding core layer and a light guiding coating layer surrounding the light guiding core layer. 4. For the opto-electric hybrid circuit board as described in item 2 of the patent application, the contact between the optical path and the reflected optical path is further provided with at least a _ domain to change the optical transmission direction of the optical signal. Section 5. If you apply for a photo-sampling board of the 4th excerpt, it will reduce the light to the Newview surface and transmit it through the % signal to the guiding light path and the reflected light path. The reflective surface reflects the focused light. 6. The optical hybrid circuit board of the above-mentioned (4) 4, wherein the reflective surface \ < 200904286 is inclined at an angle of 35 degrees to 5 s with respect to one side of the first cladding layer. 7. The opto-electric hybrid road board of claim 6, wherein the reflecting surface is inclined at an angle of 45 degrees with respect to one side of the first cladding layer. 8. The opto-electric hybrid circuit board of claim 4, wherein the surface of the reflecting surface further has a metal ray for changing the light transmission direction of the optical signal. 9. If you want to apply for a special fiber, the conductive substrate is a conductive substrate with a transparent material. 10. The optical waveguide hybrid structure described in the patent application is an organic polymer material. U.S. Patent Application Serial No. K) is an opto-electric hybrid circuit board in which the organic polymer material is selected from the group consisting of epoxy resin, acrylic tree, and poly-resin. For example, the scope of patent application! The opto-electric hybrid circuit board of the invention, wherein the optical waveguide structure is made of a mixture of a money polymer material and an inorganic polymer (4). 3. For the application of the opto-electric hybrid circuit board described in the item GI I2, wherein the mixture is selected from the group consisting of (4) city resin, acrylic, and polycarbonate resin. • a method of manufacturing an opto-electric hybrid circuit board for receiving and transmitting an optical signal, the steps of the method of manufacturing include: providing a conductive substrate; forming a first-cladding layer a side of the conductive substrate; forming at least a lens on a side of the first cladding layer, the __ corresponding to a light transmission direction of the optical signal to cause the optical signal to be refracted; 16 200904286 forming a core layer in the - on the cladding layer; and forming a second cladding layer on the core layer, as in the patent application range 14 7 XK search path. The method further includes: a method for manufacturing an opto-electric hybrid circuit board according to the member, forming at least a light guiding hole on the conductive substrate - a light guiding core layer, and forming a 16 in the U hole. The 14th light guide coating in the range. Further, the method for manufacturing an opto-electric hybrid circuit board according to the above aspect, wherein at least a light-transmitting direction of the optical signal on the optical path of the reflective layer is formed. The method of claim 4, wherein the photoelectric hybridization described in claim 16 further comprises forming a metal coating on the surface of the reflective surface. 18. The method of claim 16 A method of manufacturing a hybrid circuit board, wherein the reflective surface is formed by heat pressing a mold on the core layer. / , The method of manufacturing the optical Wei-road board according to Item 16 is applied, wherein the reflective surface is formed on the core layer by photo-curing. 20. As described in claim 16 The method for manufacturing a hybrid circuit, wherein the reflective surface is formed on the core layer by laser engraving. 21. The method for manufacturing an opto-electric hybrid circuit board according to the application of the invention, wherein the reflective surface is It is formed on the core layer by a diamond cutter cutting method. The method of manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the first cladding layer, the core layer and the second cladding layer are formed by a heat curing method. The method for manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the first cladding layer, the core layer and the second cladding layer are formed by photocuring. 24. The method of manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the microlens is formed by hot pressing a mold on the first cladding layer. 25. The method of manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the microlens is formed on the first cladding layer by photocuring. 26. The method of manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the microlens is formed on the first cladding layer by laser engraving. 27. The method of manufacturing an opto-electric hybrid circuit board according to claim 14, wherein the microlens is formed on the first cladding layer by a diamond cutter cutting method. 18
TW96124312A 2007-07-04 2007-07-04 Optoelectric hybrid circuit board and manufacture thereof TWI393509B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96124312A TWI393509B (en) 2007-07-04 2007-07-04 Optoelectric hybrid circuit board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96124312A TWI393509B (en) 2007-07-04 2007-07-04 Optoelectric hybrid circuit board and manufacture thereof

Publications (2)

Publication Number Publication Date
TW200904286A true TW200904286A (en) 2009-01-16
TWI393509B TWI393509B (en) 2013-04-11

Family

ID=44722317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124312A TWI393509B (en) 2007-07-04 2007-07-04 Optoelectric hybrid circuit board and manufacture thereof

Country Status (1)

Country Link
TW (1) TWI393509B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813617A (en) * 2012-11-13 2014-05-21 欣兴电子股份有限公司 Circuit board, manufacturing method thereof and photo-electronic device provided with circuit board
TWI452364B (en) * 2012-11-01 2014-09-11 Unimicron Technology Corp Circuit board and manufacturing method thereof and electro-optic apparatus having the circuit board
TWI486144B (en) * 2012-12-26 2015-06-01 Ind Tech Res Inst Multi-light couple device
CN113009625A (en) * 2021-03-09 2021-06-22 中国电子科技集团公司第五十四研究所 Manufacturing method of multilayer LCP optical transmission module of integrated optical waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379378B2 (en) * 2013-09-06 2018-08-29 住友電工プリントサーキット株式会社 Opto-electric hybrid board

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW451084B (en) * 1999-06-25 2001-08-21 Toppan Printing Co Ltd Optical-electro wiring board, mounted board, and manufacturing method of optical-electro wiring board
US6599031B2 (en) * 2001-09-12 2003-07-29 Intel Corporation Optical/electrical interconnects and package for high speed signaling
US6874950B2 (en) * 2002-12-17 2005-04-05 International Business Machines Corporation Devices and methods for side-coupling optical fibers to optoelectronic components
US7139448B2 (en) * 2003-11-20 2006-11-21 Anvik Corporation Photonic-electronic circuit boards
US7263256B2 (en) * 2004-04-02 2007-08-28 Samsung Electronics Co., Ltd. Optical connection block, optical module, and optical axis alignment method using the same
KR100623477B1 (en) * 2004-08-25 2006-09-19 한국정보통신대학교 산학협력단 Optical printed circuit boards and optical interconnection blocks using optical fiber bundles
TWI390264B (en) * 2004-11-17 2013-03-21 Hitachi Chemical Co Ltd A photoelectric hybrid circuit mounting substrate and a transfer device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452364B (en) * 2012-11-01 2014-09-11 Unimicron Technology Corp Circuit board and manufacturing method thereof and electro-optic apparatus having the circuit board
CN103813617A (en) * 2012-11-13 2014-05-21 欣兴电子股份有限公司 Circuit board, manufacturing method thereof and photo-electronic device provided with circuit board
TWI486144B (en) * 2012-12-26 2015-06-01 Ind Tech Res Inst Multi-light couple device
CN113009625A (en) * 2021-03-09 2021-06-22 中国电子科技集团公司第五十四研究所 Manufacturing method of multilayer LCP optical transmission module of integrated optical waveguide
CN113009625B (en) * 2021-03-09 2022-06-10 中国电子科技集团公司第五十四研究所 Manufacturing method of multilayer LCP optical transmission module of integrated optical waveguide

Also Published As

Publication number Publication date
TWI393509B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
TWI396874B (en) Optical wiring printing board manufacturing method and optical wiring printed circuit board
US8774576B2 (en) Optical module and method for manufacturing the same
CN103837946B (en) Optical module and manufacture method
JP6115067B2 (en) Optical module
US7316512B2 (en) Interconnect device
JP4690870B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system
JP2016009151A (en) Light coupling structure, semiconductor device, optical interconnect structure for multi-chip module, and manufacturing method for light coupling structure
JP2010026508A (en) Method for manufacturing optical interface module and optical interface module
JP3833131B2 (en) Optical transmission equipment
US20110007998A1 (en) Optical waveguide, opto-electronic circuit board, and method of fabricating opto-electronic circuit board
TW200904286A (en) Optoelectric hybrid circuit board and manufacture thereof
KR20120072683A (en) Optical printed circuit board and method for manufacturing the same
JP2014122929A (en) Optical waveguide device and manufacturing method therefor
JP4511291B2 (en) Manufacturing method of optical connection device and optical connection device
JP2007178950A (en) Optical wiring board and optical wiring module
JP2012013819A (en) Optical transmission substrate and light-receiving module
JP2004320666A (en) Optical transmission device, photoelectric fusion circuit in which electronic circuit and optical circuit are mixed
JP5409441B2 (en) Optical transmission board and optical module
US20140119688A1 (en) Circuit board and manufacturing method thereof and electro-optic apparatus having the circuit board
JP6268932B2 (en) Optical waveguide, imprint mold, optical waveguide manufacturing method, opto-electric hybrid board, and electronic device
KR20080084660A (en) Opto-electric-bus module and manufacturing method of the same
CN103813617B (en) Wiring board and preparation method thereof and the electrooptical device with this wiring board
JP2015106099A (en) Optical wiring component, optical module, photo-electric hybrid board, and electronic equipment
JP5898732B2 (en) Manufacturing method of optical module
JP4698728B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system