TW200904168A - Driving apparatus - Google Patents

Driving apparatus Download PDF

Info

Publication number
TW200904168A
TW200904168A TW097114917A TW97114917A TW200904168A TW 200904168 A TW200904168 A TW 200904168A TW 097114917 A TW097114917 A TW 097114917A TW 97114917 A TW97114917 A TW 97114917A TW 200904168 A TW200904168 A TW 200904168A
Authority
TW
Taiwan
Prior art keywords
signal
level
transistor
circuit
potential
Prior art date
Application number
TW097114917A
Other languages
Chinese (zh)
Other versions
TWI388207B (en
Inventor
Youji Sakioka
Eiji Makino
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW200904168A publication Critical patent/TW200904168A/en
Application granted granted Critical
Publication of TWI388207B publication Critical patent/TWI388207B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

Disclosed herein is a driving apparatus for driving a pixel, including a first pMOS type transistor connected to a first potential a first nMOS type transistor connected in series to the first pMOS type transistor and connected to a second potential; and a control section configured to control the first pMOS type transistor and the first nMOS type transistor individually using a first on-signal for controlling the timing of turning on of one of the first pMOS type transistor and the first nMOS type transistor; a signal of a potential at a node between the first pMOS type transistor and the first nMOS type transistor being inputted as a driving signal for driving the pixel to the pixel.

Description

200904168 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用以驅動一像素之驅動裝置。 本發明包含與2007年8月8日向日本專利局申請的日本專 利申請案第JP 2007-206000號以及2007年5月17日向日本專 利局申請的曰本專利申請案第jp 2007-1 32098號相關之標 的’該等申請案之全部内容係以引用的方式併入於此。 【先前技術】 圖1顯不一 CMOS(互補金氧半導體)影像感測器之一像素 驅動電路或V驅動電路之一組態之一範例,而特定言之係 為解說方便起見而顯示一像素驅動電路或V驅動電路之一 部分(其中在一第η列中的像素受驅動)。另外,儘管在圖J 中’為簡化說明而使用一 AND電路、一 〇R電路及一 Ν〇丁 電路但一實際電路並非藉由使用AND、OR及NOT電路 而係藉由使用NAND、NOR及NOT電路來實施。 參考圖1,所顯示的像素驅動電路1〇包括一位址解碼器 η、一時序調整區段12、一驅動器區段13及一控制區段 14,並產生及輸出一傳輸閘極信號TR(n)、一重設信號 RST(n)及一選擇信號SEL(n)來驅動在該第n列中的像素。 该位址解碼器1丨以一預定時序將用以選擇在該第η列中 的像素作為-驅動目標之一列選擇信號中以测⑷供應至 該時序調整區段12。 該時序調整區段12調整該傳輸閘極信號TR(n)、重設信 號RST⑷及選擇信號SEL⑷之產生之時序。特定言之該 128552.doc 200904168 時序調整區段12包括AND電路21及22、一 OR電路23及一 NOT電路24,該等電路配合用作一用於調整該傳輸閘極信 號TR(n)之產生之時序的邏輯閘極電路。該時序調整區段 12進一步包括一 AND電路25與一NOT電路26,該等電路配 合用作一用以調整該重設信號RST(n)之產生之時序的邏輯 閘極電路。該時序調整區段12進一步包括一 AND電路27與 一NOT電路28,該等電路配合用作一用以調整該選擇信號 SEL (η)之產生之時序的邏輯閘極電路。 該AND電路21對從該位址解碼器丨丨輸入的列選擇信號 cpV—LINE(n)與從該控制區段M輸入之一時序信號進 行邏輯AND運算並將藉由該邏輯and運算獲得之一信號供 應至該OR電路23。該AND電路22對從該位址解碼器丨!輸 入的列選擇信號(pV-LINE(n)與從該控制區段14輸入之另一 時序信號(pSTR進行邏輯AND運算並將藉由該邏輯AND運 算獲得之一信號供應至該OR電路23。 έ亥OR電路23對從該AND電路21供應的信號與從該AND 電路22供應的信號進行邏輯〇R運算,並將藉由該邏輯〇r 運算獲得之一信號供應至該NOT電路24。該NOT電路24對 «該OR電路23供應之信號操作邏輯否定運算,並將藉由 該邏輯否定獲得之一信號供應至該驅動器區段13。因此, 下文所述之欲藉由該驅動器區段13產生的傳輸閘極信號 TR(n)之產生之時序得到控制。 忒AND電路2 5對從該位址解碼器丨丨輸入的列選擇信號 cpV_LINE(n)與從該控制區段14輸入之—時序信號^尺饤進 128552.doc 200904168 行邏輯AND運算並將藉由該邏輯AND運算獲得之—信號供 應至該NOT電路26。該NOT電路26對從該AND電路25供應 之信號操作邏輯否定運算,並將藉由該邏輯否定獲得之— 信號供應至該驅動器區段13。因此,欲藉由該驅動器區段 1 3產生的重设信號RST(n)之產生之時序得到控制。 該AND電路27對從該位址解碼器u輸入的列選擇信號 cpV—LINE(n)與從該控制區段14輸入之一時序信號的肛進 行邏輯AND運算並將藉由該邏輯AND運算獲得之一信號供 應至該NOT電路28。該NOT電路28對從該AND電路27供應 之6號操作邏輯否定運算,並將藉由該邏輯否定獲得之一 信號供應至該驅動器區段13。因此,欲藉由該驅動器區段 13產生的選擇彳自號sEL(n)之產生之時序得到控制。 該驅動器區段13依據從該時序調整區段12供應之信號產 生並輸出該傳輸閘極信號TR(n)、重設信號RST(n)及選擇 信號 SEL(n)。 特定§之,在該驅動器區段13中,一 pM〇s電晶體3 i與 一 nMOS電晶體32係串聯連接。一電位¥1)1:)係作為一高位200904168 IX. Description of the Invention: [Technical Field] The present invention relates to a driving device for driving a pixel. The present invention is related to Japanese Patent Application No. JP 2007-206000, filed on Sep. 8, 2007, to Japan, and Japanese Patent Application No. JP-A No. The entire contents of these applications are incorporated herein by reference. [Prior Art] FIG. 1 shows an example of one of the configuration of one of the pixel driving circuit or the V driving circuit of the CMOS (Complementary Metal Oxide Semiconductor) image sensor, and the specific system is shown for convenience of explanation. A portion of the pixel drive circuit or the V drive circuit (where the pixels in an nth column are driven). In addition, although in FIG. J, an AND circuit, an R circuit, and a 电路 circuit are used for simplicity of explanation, an actual circuit is not used by using AND, OR, and NOT circuits by using NAND, NOR, and The NOT circuit is implemented. Referring to FIG. 1, the pixel driving circuit 1A includes a bit address decoder η, a timing adjustment section 12, a driver section 13, and a control section 14, and generates and outputs a transmission gate signal TR ( n), a reset signal RST(n) and a select signal SEL(n) to drive the pixels in the nth column. The address decoder 1 将 selects a pixel in the nth column as a one of the - drive target column selection signals at a predetermined timing to supply (4) to the timing adjustment section 12. The timing adjustment section 12 adjusts the timing of generation of the transmission gate signal TR(n), the reset signal RST(4), and the selection signal SEL(4). Specifically, the 128552.doc 200904168 timing adjustment section 12 includes AND circuits 21 and 22, an OR circuit 23, and a NOT circuit 24, which are used together to adjust the transmission gate signal TR(n). The logic gate circuit that produces the timing. The timing adjustment section 12 further includes an AND circuit 25 and a NOT circuit 26, the circuits being used as a logic gate circuit for adjusting the timing of the generation of the reset signal RST(n). The timing adjustment section 12 further includes an AND circuit 27 and a NOT circuit 28 that cooperate to function as a logic gate circuit for adjusting the timing of the generation of the selection signal SEL(n). The AND circuit 21 performs a logical AND operation on the column selection signal cpV_LINE(n) input from the address decoder 与 and a timing signal input from the control section M, and obtains the result by the logical AND operation. A signal is supplied to the OR circuit 23. The AND circuit 22 pairs the decoder from the address 丨! The input column selection signal (pV-LINE(n) is logically ANDed with another timing signal input from the control section 14 (pSTR and a signal obtained by the logical AND operation is supplied to the OR circuit 23. The OR OR OR circuit 23 performs a logical 〇R operation on the signal supplied from the AND circuit 21 and the signal supplied from the AND circuit 22, and supplies a signal obtained by the logic 〇r operation to the NOT circuit 24. The NOT circuit 24 operates a logical negation operation on the signal supplied by the OR circuit 23, and supplies a signal obtained by the logical negation to the driver section 13. Therefore, the driver section 13 is intended to be used hereinafter. The timing of the generation of the generated transmission gate signal TR(n) is controlled. The AND circuit 2 5 selects the column selection signal cpV_LINE(n) input from the address decoder 与 and inputs from the control section 14 - The timing signal is incremented by 128552.doc 200904168 The row logical AND operation and the signal obtained by the logical AND operation is supplied to the NOT circuit 26. The NOT circuit 26 operates a logical negation operation on the signal supplied from the AND circuit 25. And will use this logic Negatively obtained - the signal is supplied to the driver section 13. Therefore, the timing of the generation of the reset signal RST(n) to be generated by the driver section 13 is controlled. The AND circuit 27 decodes the address from the address. The column selection signal cpV_LINE(n) input to the unit u is logically ANDed with the anus input from one of the timing sections of the control section 14, and a signal obtained by the logical AND operation is supplied to the NOT circuit 28. The NOT circuit 28 negates the operation logic No. 6 supplied from the AND circuit 27, and supplies a signal obtained by the logic negation to the driver section 13. Therefore, it is intended to be generated by the driver section 13. The timing of selecting the generation of the 彳EL(n) is controlled. The driver section 13 generates and outputs the transmission gate signal TR(n) and the reset signal RST(n) according to the signal supplied from the timing adjustment section 12. And a selection signal SEL(n). Specifically, in the driver section 13, a pM〇s transistor 3i is connected in series with an nMOS transistor 32. A potential of ¥1)1:) is used as a High position

準的電位連接至該pMOS電晶體3 1之源極,而一電位vsS 係作為一低位準的電位連接至該nM〇s電晶體32之源極。 從該時序調整區段12的Ν〇τ電路24供應之一信號係供應至 該PMOS電晶體31與該nMOS電晶體32之閘極。若該信號係 一低位準信號,則將該PM〇§電晶體3 1置於一開啟狀態, 但右該彳§號係一高位準信號’則將該nMOS電晶體32置入 一開啟狀態。 128552.doc 200904168 因此,若輸入至該閘極之信號係一低位準信號,則在該 PMOS電晶體31與該nM0S電晶體32的汲極係互相連接之1 點處的電位變成電位VDD,但是,若輸入至該閘極之信號 係冋位準彳5號,則處於該點的電位變成電位v s s。下面 將所提到的該點稱為傳輸閘極接合點。接著,將該電位之 一信號作為該傳輸閘極信號TR(n)施加於在由複數個像素 形成之一像素區段的第n列中之像素之傳輸閘極。以此方 式,該驅動器區段13依據從該時序調整區段12供應之信號 產生並輸出該傳輸閘極信號TR(n)。 另外,在該驅動器區段丨3中,類似於該pM〇s電晶體3 i 與該nMOS電晶體32,一 pm〇S電晶體33與一 nM〇s電晶體 34係串聯連接,而該等電位VDD及vss係分別連接至該 PMOS電晶體33與該nM〇S電晶體34之源極。從該時序調整 區#又1 2的NOT電路26供應之一信號係供應至該pM〇s電晶 體33與該nMOS電晶體34之閘極。接著,將在該1)厘〇8電晶 體33與該nMOS電晶體34的汲極互相連接之一點處的電位 之一信號作為該重設信號RST(n)輸入至在該像素區段的第 η列中之像素。下面將所提到的該點稱為重設接合點。因 此,依據從該時序調整區段12供應之信號將該電位VDD或 該電位vss之重設信號RST(n)輸入至在該像素區段之第n 列中的像素。 此外’在該驅動器區段丨3中,類似於該pM〇s電晶體3 1 與該nMOS電晶體32,一 pMOS電晶體35與一 nMOS電晶體 36係串聯連接,而該等電位VDD及vss係分別連接至該 128552.doc 200904168 pMOS電晶體35與該nM0S電晶體36之源極。從該時序調整 區段12的NOT電路28供應之一信號係供應至該pM〇s電晶 體35與該nMOS電晶體36之閘極。接著,將在該13河〇8電晶 體35與該nMOS電晶體36的汲極互相連接之一點處的電位 之一信號作為該選擇信號SEL(n)輸入至在該像素區段的第 η列中之像素。下面將所提到的該點稱為選擇接合點。因 此,依據從該時序調整區段12供應之信號將該電位vdd或 該電位vss之選擇信號SEL(n)輸入至在該像素區段之第n列 中的像素。 該控制區段Μ在預定時序產生#高位準或該低位準之時 序信號cpSEL、cpRST、的丁尺及㈣丁尺,並將所產生的信號 供應至該時序調整區段12。 接下來參考圖2說明與圖1所示像素驅動電路1〇中的傳 輸閘極信號TR(n)之輸出相關的信號之時序。 若該列選擇信號cpV—LINE(n)之位準在時間q從該低位準 改變為該高位準而接著該時序信號φ8τκ或該時序信號 (pRTR之位準在時間h從該低位準改變為該高位準,則藉由 該等AND電路21與22、OR電路23及NOT電路24產生的信 號之位準變成該低位準。因此,將該?]^〇8電晶體31置入 一開啟狀態而將該11河〇3電晶體32置入一關閉狀態,並將 該電位VDD之傳輸閘極信號TR⑷輸出至該像素區段(如圖 2所示)。 接著,若該時序信號或該時序信號φΐιτιι之位準在 時間t3從該高位準改變為該低位準(如圖2所示),則藉由該 128552.doc 200904168 等AND電路21與22 ' OR電路23及NOT電路24產生的信號 之位準變成該高位準。因此,將該pMOS電晶體3 1置入一 關閉狀態而將該nMOS電晶體32置入一開啟狀態,並將該 電位vss之傳輸閘極信號711(11)輸出至該像素區段(如圖2所 示)。 此後,儘管該列選擇信號φν一LINE(n)之位準在時間“從 該尚位準改變為該低位準(如圖2所示),但藉由該等and 電路21與22、OR電路23及Ν〇τ電路24產生的信號之位準 係保持於該高位準。因此,該電位vss之傳輸閘極信號 TR(n)繼續輪出至該像素區段(如圖2所示)。 應注意,儘管上面說明該時序信號中以尺或該時序信號 (pRTR具有@向位準或該低位準但此說明内容意味著以 下兩個if况.一情況係其中該等時序信號9Str與中皆 具有該高位準或該低位準;%另一情況係其中該等時序信 號仰1與cpRTR之-信號具㈣高位準或該低位準而該等 #號之另一信號一般具有該低位準。 另外,儘管未顯示,但在圖1所示之像素驅動電路10 中’類似於該傳輸問極信號TR⑷,該重設信號RST⑻及 ㈣擇信號亂⑷之電位亦依據該列選擇信號cpv LINE⑷ 及該時序信號_L或該時序信號之位準而改變為該 電位VDD或該電位vss。 順便提及,在圖1所示之 心像素驅動電路丨〇中,較佳 係’就理想情況而言在完全相π认卩太十 5 ^ λα 冋的時序將相同的信號傳播 至串聯連接的pM〇S電晶體3 j、μ十 33或35與nM〇S電晶體32、 I28552.doc 200904168 3 4 %之閘極。但疋,有可能的係,一旦該pM〇s電晶體 31、33或35與該nMOS電晶體32、34或36的開啟與關閉狀 態之間發生轉換,其操作時序便可能彼此相對位移而使得 出現該PMOS電晶體31、33或35與該nM〇s電晶體32、“或 36兩者皆係置入一開啟狀態之一時刻。 同日守,與此一如上所述之傳輸閘極信號TR(n) —樣由一 像素之一特定決定而輸出三個值(例如,高、中及低位準) 之一驅動電路已為吾等所習知並揭示於(例如)日本專利特 許公開案第2002-77730號中。特定言之,在如上所述類型 之此一驅動電路中,處於一驅動器區段之一 pM〇s電晶體 之前一級的邏輯閘極之數目與處於該驅動區段之一 nM〇s 電晶體之前一級的邏輯閘極之數目常常互不相同。因此, 可能呈現一定扭斜偏離之可能性較高。 另外,一般藉由使用具有一高容量的電晶體來設計該像 素驅動電路10的驅動器區段132pM〇s電晶體31、33或35 及nMOS電晶體32、34或36,以便同時開啟與關閉針對一 列的像素之閘S。因此,有可能的係,若該驅動器區段Η 的PM0S電晶體31、33或35與nMOS電晶體32、34或36之操A quasi-potential is connected to the source of the pMOS transistor 31, and a potential vsS is connected to the source of the nM〇s transistor 32 as a low level potential. A signal supplied from the Ν〇τ circuit 24 of the timing adjustment section 12 is supplied to the PMOS transistor 31 and the gate of the nMOS transistor 32. If the signal is a low level signal, the PM 电 transistor 31 is placed in an on state, but the § § is a high level signal 'the nMOS transistor 32 is placed in an on state. 128552.doc 200904168 Therefore, if the signal input to the gate is a low level signal, the potential at the point where the PMOS transistor 31 and the drain of the nMOS transistor 32 are connected to each other becomes the potential VDD, but If the signal input to the gate is at position 5, the potential at that point becomes the potential vss. This point referred to below is referred to as a transmission gate junction. Next, a signal of the potential is applied as the transmission gate signal TR(n) to the transmission gate of the pixel in the nth column of one pixel segment formed by a plurality of pixels. In this manner, the driver section 13 generates and outputs the transmission gate signal TR(n) in accordance with the signal supplied from the timing adjustment section 12. In addition, in the driver section 丨3, similar to the pM〇s transistor 3 i and the nMOS transistor 32, a pm〇S transistor 33 and an nM〇s transistor 34 are connected in series, and the like The potentials VDD and vss are connected to the PMOS transistor 33 and the source of the nM〇S transistor 34, respectively. A signal supplied from the NOT circuit 26 of the timing adjustment area #1 1 is supplied to the gate of the pM〇s electric crystal 33 and the nMOS transistor 34. Next, a signal of a potential at a point at which the 1) centistoke 8 transistor 33 and the drain of the nMOS transistor 34 are mutually connected is input as the reset signal RST(n) to the pixel segment. The pixels in the η column. This point referred to below is referred to as a reset joint. Therefore, the potential VDD or the reset signal RST(n) of the potential vss is input to the pixel in the nth column of the pixel section in accordance with the signal supplied from the timing adjustment section 12. Further, in the driver section 丨3, similar to the pM〇s transistor 3 1 and the nMOS transistor 32, a pMOS transistor 35 is connected in series with an nMOS transistor 36, and the equipotential VDD and vss The source is connected to the source of the 128552.doc 200904168 pMOS transistor 35 and the nM0S transistor 36, respectively. A signal supplied from the NOT circuit 28 of the timing adjustment section 12 is supplied to the gates of the pM〇s electric crystal 35 and the nMOS transistor 36. Next, a signal of a potential at a point at which the 13-channel 8 transistor 35 and the drain of the nMOS transistor 36 are mutually connected is input as the selection signal SEL(n) to the nth column of the pixel section. The pixel in the middle. This point referred to below is referred to as a selection joint. Therefore, the potential vdd or the selection signal SEL(n) of the potential vss is input to the pixel in the nth column of the pixel section in accordance with the signal supplied from the timing adjustment section 12. The control section generates a #high level or a low level timing signal cpSEL, cpRST, and a 1/4 scale at a predetermined timing, and supplies the generated signal to the timing adjustment section 12. Next, the timing of the signal associated with the output of the transfer gate signal TR(n) in the pixel drive circuit 1A shown in Fig. 1 will be described with reference to Fig. 2 . If the level of the column selection signal cpV_LINE(n) changes from the low level to the high level at time q and then the timing signal φ8τκ or the timing signal (the level of pRTR changes from the low level to the time h from the low level to At the high level, the level of the signal generated by the AND circuits 21 and 22, the OR circuit 23, and the NOT circuit 24 becomes the low level. Therefore, the transistor 31 is placed in an on state. The 11 Helium 3 transistor 32 is placed in a closed state, and the transmission gate signal TR(4) of the potential VDD is output to the pixel section (as shown in FIG. 2). Then, if the timing signal or the timing is The signal φΐιτιι is changed from the high level to the low level at time t3 (as shown in FIG. 2), and the signals generated by the AND circuit 21 and the 22 'OR circuit 23 and the NOT circuit 24 of the 128552.doc 200904168 are used. The level becomes the high level. Therefore, the pMOS transistor 3 1 is placed in a closed state to place the nMOS transistor 32 in an on state, and the transmission gate signal 711 (11) of the potential vss is output. To the pixel segment (as shown in Figure 2). Thereafter, despite the column selection letter The level of φν_LINE(n) changes from the still level to the low level (as shown in Fig. 2) at the time, but by the AND circuits 21 and 22, the OR circuit 23 and the Ν〇τ circuit 24 The level of the generated signal is maintained at the high level. Therefore, the transmission gate signal TR(n) of the potential vss continues to be rotated to the pixel segment (as shown in Figure 2). It should be noted that although the above description The timing signal is in the scale or the timing signal (pRTR has @direction or the low level, but the content of the description means the following two conditions. In one case, the timing signals 9Str and the medium have the high level or the The lower level; the other case is where the timing signals are 1 and the cpRTR-signal has a high level or the low level and the other signal of the # generally has the low level. In addition, although not shown, In the pixel driving circuit 10 shown in FIG. 1, 'similar to the transmission signal signal TR (4), the potentials of the reset signal RST (8) and the (4) selection signal chaos (4) are also according to the column selection signal cpv LINE (4) and the timing signal _L or the The level of the timing signal changes to the potential VDD or the potential vss. It is mentioned that in the cardiac pixel driving circuit 所示 shown in FIG. 1, it is preferable that the same signal is propagated to the series connection at the timing of the complete phase π 卩 5 ^ ^ ^ 冋 冋 冋 冋 理想pM〇S transistor 3 j, μ th 33 or 35 with nM〇S transistor 32, I28552.doc 200904168 3 4 % gate. But hey, possible system, once the pM〇s transistor 31, 33 Or a transition occurs between the 35 and the on and off states of the nMOS transistor 32, 34 or 36, the operational timings of which may be displaced relative to one another such that the PMOS transistor 31, 33 or 35 and the nM〇s transistor 32 are present. , "or 36 are both placed in an open state. On the same day, as described above, the transmission gate signal TR(n) is determined by one of the pixels and outputs three values (for example, high, medium and low levels). It is known and disclosed in, for example, Japanese Patent Laid-Open Publication No. 2002-77730. In particular, in such a driving circuit of the type described above, the number of logic gates of one stage before the pM〇s transistor of one of the driver sections is before the nM〇s transistor of one of the driving sections The number of logic gates at one level is often different from each other. Therefore, there is a high possibility that a certain skew deviation may occur. In addition, the driver section 132pM〇s transistor 31, 33 or 35 and the nMOS transistor 32, 34 or 36 of the pixel driving circuit 10 are generally designed by using a transistor having a high capacity so as to be simultaneously turned on and off. A column of pixel gates S. Therefore, it is possible to operate the PMOS transistor 31, 33 or 35 and the nMOS transistor 32, 34 or 36 of the driver section Η

作時序係彼此相對位移而使得出現該{3]^(;^電晶體Η、D 或35與該nMOS電曰曰曰體32、34或36兩者皆係置放一開啟狀 態之-時刻,則過高的饋通電流可能從該電位侧流向該 電位VSS。 接著,若尚饋通電流流向該電位vss之低位準的電源供 應而此舉導致該低位準波動,則用以壓下(例如)在一儲存 128552.doc 200904168 週期期間在一不同列中之像素之閘極的低位準亦會波動。 尤/、係在將藉由併入一晶片(其中提供該像素驅動電路1 〇) 充電幫廣產生的負電位決定為該低位準之電位$ 之It況下,有可能的係,由該充電幫浦之容量決定,在因 ,饋通電流所導致的該負電位之波動安定之前可能需要較 多時間。因此,出現對圖像品質之一有害影響而使得圖像 品質劣化。 【發明内容】 以此方式’在上述像素驅動電路10中,有可能的係,該 饋通電流可從該電位VDD流向該電位VSS以導致該電位 VSS之低位準的電源供應波動而對圖像品質產生一有害影 響。 … 因此,需要防止在像素受驅動的情況下該低位準的電源 供應之波動以防止該圖像品質之劣化。 依據本發明之具體實施例,提供一種用以驅動一像素之 驅動裝置,其包括:一第一 pM〇s電晶體,其係連接至一 第一電位;一第一 nM〇s電晶體,其係串聯連接至該第一 pMOS型電晶體且連接至一第二電位;以及一控制區段, 其經組態用以藉由使用一用以控制該第一 pMOS型電晶體 與该第一 nMOS型電晶體之一電晶體之開啟之時序的第— 開啟信號來個別地控制該第一 pMOS型電晶體與該第— nMOS型電晶體;介於該第一 pM〇s型電晶體與該第— nMOS型電晶體之間的一節點處之一電位之一信號係作為 用以驅動該像素之一驅動信號而輸入至該像素。 128552.doc • 14- 200904168 該控制區段可個別地控制該! 』唸弟—PMOS電晶體與該第一 nMOS電晶體以控制一第一雷仿柄& / 哥位週期(期間該節點處的電位 係該第-電位)、一第二電位週期(期間該節點處的電位係 該第二電位)及-高阻抗週期(期間該節點係處於一高阻抗 狀恶)之長度及開始時序。 該控制區段可控制該第-電位週期、第二電位週期及高 阻抗週期之長度及開始時序使得—旦從該等第—及第二電The timing sequences are relatively displaced from each other such that the {3]^(;^ transistor Η, D or 35 and the nMOS electrical body 32, 34 or 36 are both placed in an open state, Then, an excessively high feed-through current may flow from the potential side to the potential VSS. Next, if the feedthrough current flows to the low-level power supply of the potential vss, which causes the low-level fluctuation, it is pressed (for example) The low level of the gate of a pixel in a different column during a period of storage 128552.doc 200904168 may also fluctuate. In particular, it will be charged by incorporating a wafer in which the pixel driving circuit 1 is provided. The negative potential generated by Bangguang is determined as the potential of the low level. In the case of It, the possible system is determined by the capacity of the charging pump. It may be caused by the fluctuation of the negative potential caused by the feedthrough current. More time is required. Therefore, there is a detrimental effect on image quality and the image quality is degraded. [Invention] In this manner, in the above-described pixel driving circuit 10, there is a possibility that the feedthrough current can be derived from The potential VDD flows to the potential VSS to The power supply fluctuation causing the low level of the potential VSS has a detrimental effect on the image quality. Therefore, it is necessary to prevent fluctuations in the low-level power supply in the case where the pixel is driven to prevent degradation of the image quality. According to a specific embodiment of the present invention, a driving device for driving a pixel is provided, comprising: a first pM〇s transistor connected to a first potential; a first nM〇s transistor, Connected to the first pMOS type transistor in series and connected to a second potential; and a control section configured to control the first pMOS type transistor and the first nMOS by using one a first-on signal of the timing of the opening of one of the transistors to individually control the first pMOS type transistor and the first nMOS type transistor; between the first pM〇s type transistor and the first - one of the potentials at one of the nodes between the nMOS type transistors is input to the pixel as a drive signal for driving the pixel. 128552.doc • 14- 200904168 The control section can individually control the ! Nian- PMOS transistor and the first nMOS transistor to control a first Lei-like handle & / Gothic cycle (during the potential at the node is the first potential), a second potential period (during the node The potential at the potential is the second potential) and the length of the high-impedance period (the node is in a high-impedance state) and the start timing. The control section can control the first-potential period, the second potential period, and the high The length of the impedance period and the starting timing are such that from the first and second

位週期之-週期轉換為該等週期之另—週期便提供該高阻 抗週期。 該驅動裝置可進一步包括一第二電晶體,其係以下兩個 電晶體之一電晶體:一第二pM〇s電晶體,其係與該第一 PMOS電晶體並聯連接且連接至一第三電位;以及一第二 nMOS電晶體,其係與該第一 nM〇s電晶體並聯連接且連接 至該第三電位,該控制區段藉由使用該第一開啟信號及一 用以控制該第二電晶體之開啟之時序的第二開啟信號來個 別地控制該第一pM0S電晶體、第一11崖〇8電晶體及第二電 晶體,在該第一pMOS電晶體 '第一nM〇s,晶體及第二電 晶體之間的一節點4的電位之一信號係作為該驅動信號輸 入至該像素。 該控制區段可個別地控制該第一 pM〇s電晶體、兮第一 nMOS電晶體及第二電晶體以控制一第一電位週期(期間該 節點處的電位係該第一電位)、一第二電位週期(期間該節 點處的電位係該第二電位)、一第三電位週期(期間該節: 處的電位係該第三電位)及一高阻抗週期(期間該節點係處 128552.doc -15- 200904168 於一高阻抗狀態)之長度及開始時序。 該控制區段可控制該等第_、第二、第三電位週期及高 阻抗週期之長度及開始時序使得—旦從該等第一、第二及 第三電位週期之一週期轉換為一不同週期便提供該高阻抗 週期。 在該驅動裝置中,藉由使用該第一開啟信號來個別地控 制該第一PMOS電晶體與該第—nM〇s電晶體,該第一開啟 信號係用α控制連接至該第一電位的第一 pM〇s電晶體與 串聯連接至該第-pM0S電晶體且連#至該第二電位的第 一 nMOS電晶體開啟之時序。另外,將在該第一 pM〇s電晶 體與該第一 nMOS電晶體之間的接合點處之電位之一信號 作為一用以驅動該等像素的驅動信號輸入至該等像素。 藉由在其中驅動像素之驅動裝置,可以防止該低位準的 電源供應之波動以防止該圖像品質之劣化。 【實施方式】 在詳細說明本發明之較佳具體實施例前,說明在隨附申 凊專利範圍中所述之若干特徵與下述較佳具體實施例之特 定疋件之間的一對應關係。但是,該說明内容僅係用於確 認在關於本發明之具體實施例的說明中揭示如申請專利範 圍中所述的支援本發明之特定元件。因此,即使在該等具 體實施例之說明中所述之某一特定元件並未在以下說明内 谷中作為該等特徵之一特徵而述及,此亦不意味著該特定 兀件不對應於該特徵。相反’即使某一特定元件係表述為 對應於該等特徵之一特徵的一元件,此亦不意味著該元件 128552.doc • 16 - 200904168 不對應於除該元件外的任何其他特徵。 依據本發明之具體實施例, 耠么、—種用以驅動一像素之 ㈣裝置(例如,圖3所示之—像素㈣電路50),其包括. -第:PMOS電晶體(例如,圖3所示之— pM〇s電晶體 )’,、係連接至一第—電位(例如,—電位聊);—第— nMOS電晶體(例如,圖3所示之_n聰電晶體切,其係 串聯連接至該第-p刪型電晶體且連接至—第二電位(例 如,-電位VSS);以及一控制區段(例如,圖3所示之一時 序調整區段51),級组態用以藉由使用一用以控制該第 一 P则型電晶體與該第1刪型電晶體之—電晶體之開 啟之時序的第-開啟信號(例如,一開啟信號cpTR_PMOS) 來個別地控制該第一 pMOS型電晶體與該第一 nM〇s型電晶 體;介於該第一 pMOS型電晶體與該第一 nM〇s型電晶體之 間的一節點處之一電位之一信號係作為用以驅動該像素之 一驅動信號(例如,一傳輸閘極信號TR(n))而輸入至該像 素。 該驅動裝置可進一步包括一第二電晶體(例如,圖8所示 之一 pMOS電晶體121),其係以下兩個電晶體之一電晶 體· 一第二pMOS電晶體,其係與該第一 pM〇s電晶體並聯 連接且連接至一第三電位;以及一第二nM〇s電晶體,其 係與s亥第一 nMOS電晶體並聯連接且連接至該第三電位, 該控制區段藉由使用該第一開啟信號及一用以控制該第二 電晶體之開啟之時序的第二開啟信號來個別地控制該第一 pMOS電晶體、第一nM〇S電晶體及第二電晶體,在該第一 128552.doc •17· 200904168 pMOS電晶體、第_n議電晶體及第二電晶體之間的—節 點處的電位之-信號係作為該驅動信號輸人至該像素。 下面參考附圖詳細說明依據本發明之特定具體實施 例。 圖3顯不依據本發明之一第一具體實施例之一 cm〇s影像 感測器之一像素驅動電路之一組態之一範例。 應注思,為說明方便起見,圖3顯示包括在該第n列中之 驅動像素的像素驅動電路之一部分。另外,儘管在圖3 中,為簡化說明而使用一 AND電路、一 〇R電路及一 NOT 電路,但一實際電路可以係藉由使用一 nand電路、一 NOR電路及一 NOT電路來實施。此同樣亦適用於下文參考 圖8所述之一電路。 參考圖3,所顯示的像素驅動電路5〇包括一位址解碼器 11、一驅動器區段13、一時序調整區段5丨及一控制區段 52,並產生及輸出一傳輸閘極信號TR(n)、一重設信號 RST(n)—選擇信號SEL(n)。應注意,該像素驅動電路5〇包 括上文參考圖1所說明的該些組件之若干共用組件,而在 此省略關於此類共同組件之重疊說明以避免重複。 該時序調整區段51包括一 AND電路2 1、一 NOT電路60、 一 OR電路61及另一 NOT電路66,該等電路配合用作一用 以調整該傳輸閘極信號TR(n)之產生之時序的邏輯閘極電 路。該時序調整區段51進一步包括一 AND電路25、一 NOT 電路26、一 OR電路62及另一 NOT電路65,該等電路配合 用作一用以調整該重設信號RST(n)之產生之時序的邏輯閘 128552.doc •18- 200904168 極電路。該時序調整區段51進一步包括一 AND電路27、一 NOT電路28、一〇R電路63及另一 not電路64,該等電路配 合用作一用以調整該選擇信號SEL(n)之產生之時序的邏輯 閘極電路。 特疋s之,在該時序調整區段51中,該等〇R電路61至 63與該4 NOT電路64至66係置放於該驅動器區段13之前一 級。另外,在該時序調整區段51中,並不將相同的信號輸 入至該驅動器區段13之pMOS電晶體31、33或35&nM〇s電 晶體32、34或36,而將藉由邏輯0R運算(其使用向該nM〇s 電晶體32、34或36輸入之一信號)獲得之一信號輸入至該 pMOS電晶體31、33或35。 另外,在該時序調整區段5丨中,不提供在圖丨所示像素 驅動電路ίο中提供的AND電路22及該〇R電路23,而將從 該AND電路21輸出之一信號直接輸入至該Ν〇τ電路6〇。因 此,不必藉由該控制區段52產生該時序信號((>8111。 更特疋5之,5玄時序調整區段5 1之NOT電路60對從該 AND電路21供應之一信號操作邏輯否定運算並輸出藉由該 邏輯否定獲得之一信號。將從該!^〇丁電路6〇輸出之信號輸 入至該驅動器區段13之nMOS電晶體32並且還輸入至該〇R 電路61。另外,將從該控制區段52輸出之一用以控制該 pMOS電晶體31之開啟之時序的開啟信號少丁、pM〇s輸入 至該NOT電路66。接著,該丽電路66對該開啟信號 cpTR_PMOS操作邏輯否定運算並將藉由該邏輯否定獲得之 一信號輸入至該OR電路61。 128552.doc 19 200904168 該OR電路6 1對從該NOT電路60輸出的信號與從該NOT電 路66輸出的信號進行邏輯OR運算,並將藉由該邏輯OR運 算獲得之一信號供應至該pMOS電晶體3 1。特定言之,藉 由使用從該NOT電路66輸出之信號,該OR電路61產生欲 輸入至該pMOS電晶體31之信號而與從該NOT電路60輸出 以便輸入至該nMOS電晶體32的信號分離。因此,該時序 調整區段5 1可個別地控制該pMOS電晶體3 1與該nMOS電晶 體32。 同時,將從該時序調整區段5 1的NOT電路26輸出之一信 號輸入至該驅動器區段13之nMOS電晶體34並且還輸入至 該OR電路62。另外,將從該控制區段52輸出之一用以控 制該pMOS電晶體33之開啟之時序的開啟信號cpRST_PMOS 輸入至該NOT電路65。該NOT電路65對該開啟信號 cpRST_PMOS操作邏輯否定運算並將藉由該邏輯否定獲得 之一信號輸入至該OR電路62。 該OR電路62對從該NOT電路26輸出的信號與從該NOT電 路65輸出的信號進行邏輯OR運算,並將藉由該邏輯OR運 算獲得之一信號供應至該pMOS電晶體33。因此,該時序 調整區段51可個別地控制該pMOS電晶體33與該nMOS電晶 體34。The high-impedance period is provided by the period-cycle transition to the other period of the periods. The driving device may further include a second transistor, which is one of the following two transistors: a second pM〇s transistor connected in parallel with the first PMOS transistor and connected to a third And a second nMOS transistor connected in parallel with the first nM〇s transistor and connected to the third potential, wherein the control section uses the first turn-on signal and one to control the first a second turn-on signal of the timing of turning on the two transistors to individually control the first pMOS transistor, the first 11 pad 8 transistor, and the second transistor, in the first pMOS transistor 'first nM〇s A signal of a potential of a node 4 between the crystal and the second transistor is input to the pixel as the driving signal. The control section can individually control the first pM〇s transistor, the first nMOS transistor and the second transistor to control a first potential period (the potential at the node is the first potential), a second potential period (the potential at the node is the second potential), a third potential period (the period at which the potential is the third potential), and a high impedance period (the period is 128552. Doc -15- 200904168 The length and start timing of a high impedance state. The control section can control the lengths of the first, second, third, and third potential periods and the high-impedance period and the start timing to convert from one of the first, second, and third potential periods to a different one This high impedance period is provided by the cycle. In the driving device, the first PMOS transistor and the first nM〇s transistor are individually controlled by using the first turn-on signal, and the first turn-on signal is connected to the first potential by α control. a timing at which the first pM〇s transistor is connected to the first pMOS transistor connected in series to the first p-MOS transistor and connected to the second potential. Further, a signal of a potential at a junction between the first pM〇s transistor and the first nMOS transistor is input to the pixels as a driving signal for driving the pixels. By driving the driving means of the pixels therein, fluctuations in the low-level power supply can be prevented to prevent degradation of the image quality. [Embodiment] Before describing a preferred embodiment of the present invention, a correspondence between certain features described in the accompanying claims and specific features of the preferred embodiments described below will be described. However, the description is only for the purpose of clarifying the specific elements of the invention as described in the claims of the invention. Therefore, even if a particular element described in the description of the specific embodiments is not described as a feature of the features in the following description, this does not mean that the specific element does not correspond to the feature. Conversely, even if a particular element is expressed as an element corresponding to one of the features, this does not mean that the element 128552.doc • 16 - 200904168 does not correspond to any other feature than the element. According to a specific embodiment of the present invention, a device for driving a pixel (for example, the pixel (four) circuit 50 shown in FIG. 3) includes: - a: PMOS transistor (for example, FIG. 3) Illustrated - pM〇s transistor), connected to a first potential (eg, - potential chat); - nMOS transistor (for example, the _n Cong transistor cut shown in Figure 3, Connected in series to the pp-p-type transistor and connected to a second potential (eg, -potential VSS); and a control section (eg, one of the timing adjustment sections 51 shown in FIG. 3), the level set The state is used to individually control a first-on signal (for example, an on signal cpTR_PMOS) for controlling the timing of the opening of the first P-type transistor and the first die-type transistor. Controlling the first pMOS type transistor and the first nM〇s type transistor; one of potentials at a node between the first pMOS type transistor and the first nM〇s type transistor It is input to the pixel as a driving signal for driving the pixel (for example, a transmission gate signal TR(n)). The driving device may further include a second transistor (for example, one of the pMOS transistors 121 shown in FIG. 8), which is one of the following two transistors, a second pMOS transistor, and the first a pM〇s transistor connected in parallel and connected to a third potential; and a second nM〇s transistor connected in parallel with the first nMOS transistor and connected to the third potential, the control section The first pMOS transistor, the first nM〇S transistor, and the second transistor are individually controlled by using the first turn-on signal and a second turn-on signal for controlling a timing of turning on the second transistor. The signal of the potential at the node between the first 128552.doc •17·200904168 pMOS transistor, the _nth transistor and the second transistor is input to the pixel as the driving signal. DETAILED DESCRIPTION OF THE INVENTION A specific embodiment in accordance with the present invention will be described in detail with reference to the accompanying drawings in which: FIG. 3 shows an example of one of the configurations of one of the pixel drive circuits of a cm〇s image sensor according to one of the first embodiments of the present invention. Should be noted, for the sake of convenience, Figure 3 shows A portion of the pixel driving circuit including the driving pixels in the nth column. In addition, although an AND circuit, an R circuit, and a NOT circuit are used for simplification of description in FIG. 3, an actual circuit can be used. It is implemented by using a nand circuit, a NOR circuit and a NOT circuit. The same applies to one of the circuits described below with reference to Fig. 8. Referring to Fig. 3, the pixel drive circuit 5 shown includes a bit address decoder 11 a driver section 13, a timing adjustment section 5A and a control section 52, and generates and outputs a transmission gate signal TR(n) and a reset signal RST(n) - a selection signal SEL(n). It should be noted that the pixel drive circuit 5 includes several common components of the components described above with reference to Figure 1, and overlapping descriptions of such common components are omitted herein to avoid redundancy. The timing adjustment section 51 includes an AND circuit 2 1 , a NOT circuit 60 , an OR circuit 61 and another NOT circuit 66 , which are used together to adjust the generation of the transmission gate signal TR(n). The timing of the logic gate circuit. The timing adjustment section 51 further includes an AND circuit 25, a NOT circuit 26, an OR circuit 62, and another NOT circuit 65. The circuits are used together to adjust the generation of the reset signal RST(n). Timing logic gate 128552.doc •18- 200904168 pole circuit. The timing adjustment section 51 further includes an AND circuit 27, a NOT circuit 28, a 〇R circuit 63 and another not circuit 64. The circuits cooperate to adjust the generation of the selection signal SEL(n). Timing logic gate circuit. In the timing adjustment section 51, the 〇R circuits 61 to 63 and the 4 NOT circuits 64 to 66 are placed in a stage before the driver section 13. In addition, in the timing adjustment section 51, the same signal is not input to the pMOS transistor 31, 33 or 35 & nM〇s transistor 32, 34 or 36 of the driver section 13, but by logic The 0R operation (which uses one of the signals input to the nM〇s transistor 32, 34 or 36) is input to the pMOS transistor 31, 33 or 35. Further, in the timing adjustment section 5A, the AND circuit 22 and the 〇R circuit 23 provided in the pixel drive circuit 丨 shown in FIG. 不 are not provided, and one signal output from the AND circuit 21 is directly input to The Ν〇τ circuit is 6 〇. Therefore, it is not necessary to generate the timing signal by the control section 52 ((>8111. More specifically, the NOT circuit 60 of the 5th timing adjustment section 51 has a signal operation logic supplied from the AND circuit 21). Negative operation and outputting a signal obtained by the logic negation. The signal output from the circuit 6 is input to the nMOS transistor 32 of the driver section 13 and is also input to the 〇R circuit 61. An output signal for outputting a timing for controlling the turn-on of the pMOS transistor 31 from the control section 52 is input to the NOT circuit 66. Then, the circuit 66 is turned on by the cpTR_PMOS. The logic negation operation is operated and a signal obtained by the logic negation is input to the OR circuit 61. 128552.doc 19 200904168 The OR circuit 6 1 pairs the signal output from the NOT circuit 60 and the signal output from the NOT circuit 66. A logical OR operation is performed, and a signal obtained by the logical OR operation is supplied to the pMOS transistor 31. Specifically, by using a signal output from the NOT circuit 66, the OR circuit 61 generates an input to be input to The letter of the pMOS transistor 31 The signal output from the NOT circuit 60 for input to the nMOS transistor 32 is separated. Therefore, the timing adjustment section 51 can individually control the pMOS transistor 31 and the nMOS transistor 32. One of the output signals of the NOT circuit 26 of the timing adjustment section 51 is input to the nMOS transistor 34 of the driver section 13 and is also input to the OR circuit 62. In addition, one of the outputs from the control section 52 is used for An enable signal cpRST_PMOS that controls the timing of turning on the pMOS transistor 33 is input to the NOT circuit 65. The NOT circuit 65 operates a logic negative operation on the turn-on signal cpRST_PMOS and inputs a signal obtained by the logic negation to the OR circuit. 62. The OR circuit 62 performs a logical OR operation on the signal output from the NOT circuit 26 and the signal output from the NOT circuit 65, and supplies a signal obtained by the logical OR operation to the pMOS transistor 33. The timing adjustment section 51 can individually control the pMOS transistor 33 and the nMOS transistor 34.

另外,將從該時序調整區段5 1的NOT電路28輸出之一信 號輸入至該驅動器區段13之nMOS電晶體36並且還輸入至 該OR電路63。另外,將從該控制區段52輸出之一用於開 啟該pMOS電晶體35的開啟信號cpSEL_PMOS輸入至該NOT 128552.doc -20- 200904168 電路64。接著,該NOT電路64對該開啟信號q>SEL_PMOS 操作邏輯否定運算並將藉由該邏輯否定獲得之一信號輸入 至該OR電路63。 該OR電路63對從該NOT電路28輸出的信號與從該NOT電 路64輸出的信號進行邏輯〇R運算,並將藉由該邏輯運 算獲得之一信號供應至該pMOS電晶體35。因此,該時序 調整區段51可個別地控制該pMOS電晶體35與該nMOS電晶 體36。 ΓFurther, a signal output from the NOT circuit 28 of the timing adjustment section 51 is input to the nMOS transistor 36 of the driver section 13 and is also input to the OR circuit 63. In addition, an enable signal cpSEL_PMOS output from the control section 52 for turning on the pMOS transistor 35 is input to the NOT 128552.doc -20-200904168 circuit 64. Next, the NOT circuit 64 operates a logic negative operation on the turn-on signal q > SEL_PMOS and inputs a signal obtained by the logic negation to the OR circuit 63. The OR circuit 63 performs a logical 〇R operation on the signal output from the NOT circuit 28 and the signal output from the NOT circuit 64, and supplies a signal obtained by the logic operation to the pMOS transistor 35. Therefore, the timing adjustment section 51 can individually control the pMOS transistor 35 and the nMOS transistor 36. Γ

該控制區段52在預定時序產生具有該高位準或該低位準 之時序信號cpSEL、(pRST及(pRTR及該等開啟信號 cpTR—PMOS、(pRST—PMOS 及(pSEL—PMOS,並將該等信號 供應至該時序調整區段5 1。 接下來,參考圖4說明與圖3所示像素驅動電路5〇中的傳 輸閘極#號TR(n)之輸出相關的信號之時序之一範例。 若該列選擇信號cpV_UNE(n)之位準在時間tn從該低位準 改變為該高位準而接著該時序信號φΙιτκ之位準在時間。 從該低位準改變為該高位準,則藉由該and電路2i及該 NOT電路60產生以便輸入至該nM〇s電晶體32的信號之位 準變成該低位準。另夕卜,此時,若該開啟信號cpTR_PMOS 之位準係該低位準(如圖4所示),則藉由該and電路Μ、 NOT電路60或電路61及Ν〇τ電路%產生以便輸入至該 PMOS電晶體31的信號變成該高位準。因此,將該卩刪電 晶體3!與該nMOS電晶體32兩者皆置人_關閉狀_,㈣ 該傳輸閘極接合點置入一高阻抗(Hi_z)狀態,如圖4所示。 128552.doc -21 - 200904168 另外,若該開啟信號cpTR 一 PM〇s之位準在時間ti3從該低 位準改變為該高位準(如圖4所示),則欲輪入至該PM0S電 晶體3!的信號之位準改變為該低位準而欲輸入至該碰⑽ 電晶體^的信號保持該低位準。因此,當該刺S電晶體 32之狀態保持處於該關閉狀態時,將該PMOS電晶體31置 入一開啟狀態而將該雷你vrm / 、a 村忑電位VDD之尚位準的傳輸閘極信號 TR(n)輸出至該像素區段。 如上所述,當該時序信號9職之位準在時間^改變為 高位準時,該nMOS電晶體32係置入一關閉狀態,而該電 位VSS之低位準之傳輸閘極信號TR(n)之輸出結束。但是, 截至該開啟信號Φ™ 一物的位準改變為該高位準之時間 tu ’並未將該pMOS電晶體31置入一開啟狀態。因此,將 該傳輸閘極接合點置入一高阻抗狀態。 另外,若該開啟信號cpTR—PM〇s之位準在時間t"從該高 位準改變為該低位準(如圖4所示),則欲輸入至該PM0S電 晶體Μ的信號之位準返回至該高位準而讀人至該囊⑽ 電晶體32的信號之位準保持該低位準。因此,當該碰⑽ 電晶體3 2保持處於該關閉狀態時’該p刪電晶體3 i的狀 態返回至該關閉狀態而將該傳輸閑極接合點再次置入一高 阻抗狀態(如圖4所示)。 接著1該時序信號吨™之位準在時間tl5改變為該低 位準(如圖4所示),則欲輪A $分χ 輸入至该nM〇S電晶體32的信號之 位準變成該高位準。另外,在此時間,若該開啟信號 仰―PMOS保持低位準(如圖4所示),則欲輸入至該pM〇s 128552.doc -22- 200904168 電晶體3 1的信號之位準變成該高位準。因此,當該pM〇s 電晶體31之狀態保持處於該關閉狀態時,將該電晶 體32置入一開啟狀態而將該電位vss之低位準的傳輪閘極 信號TR(n)輸出至該像素區段(如圖4所示)。 因此,儘管該列選擇信號φΥ一UNE(n)之位準在時間… 從該高位準改變為該低位準(如圖4所示),但若該時序信號 cpRTR及該開啟信號^tr—pmos之位準保持該低位準^欲 個別地輸入至該PMOS電晶體31及該nM〇s電晶體32的信號 之位準保持該高位準。因此,該電位vss之傳輸閘極信號 TR(n)繼續輪出至該像素區段(如圖4所示)。 如上所述,在該傳輸閘極信號TR(n)之位準欲從該高位 準改變為該低位準或相反地從該低位準改變為該高位準 時,該控制區段52將該開啟信號φΤΚ—PM〇s之位準改變成 使得在適才所述之位準變化期間將該傳輸閘極接合點置入 一高阻抗狀態。因此,一旦發生適才所述之變化,便即刻 將該pMOS電晶體3 1及該nMOS電晶體32兩者置入一開啟狀 態而可防止饋通電流從該電位VDE)流向該電位vss。 因此,防止該低位準的電源供應之波動。另外,尤其係 在將藉由併入該晶片(在其上面提供該像素驅動電路5〇)内 部的充電幫浦產生之負電位決定為該低位準的電位vss之 情況下,消除對該充電幫浦之負載。因此,可防止該像素 區段中的圖像品質之劣化。 另外’該控制區段52可將該時序信號(pRTR或該開啟信 唬cpTR_PMOS之脈衝長度及其位準的轉換時序改變成使得 128552.doc •23- 200904168 可以改變以下週期 輪閉極信魏TR⑻的雪時序及其週期或長度:期間該傳 輪閑極信二:該電位VDD,、期間該傳 ()的電位係該電位VSS之週期w# :::合,於,抗狀態之週期 衝長产及it? Μ咖或㈣啟㈣φτκ·ρ_之脈 :二轉換時序之改變可以係以任意方式(例 藉由使用一美供於該控制區段 來實施。 τ 07督存态(未顯不)) 為::位二該傳輸間極信號TR(n)之位準從該低位準改變 準(如圖5所示)之情況下,在適才所述之改變期間 可將該傳輸閉極接合點置入-高阻抗狀態, «而抑制饋通電流之_ 丁Rfn)之办隹 "。且,在該傳輸閘極信號 Η準㈣高料改變為該低料( =在適才所述之改變期間該控制區段52可將該物: 點置入一高阻抗狀態’從而抑制饋通電流之流動。 在該傳輸閘極信號TR(n)之位準從該低位準改變為該高 位準(如圖5所示)之一情、、兄丁 ^ . 況下§在適才所述之改變期間欲 傳輸閘極接合點置人—高阻抗狀態時,該控制區段52 不在時間tl5之前的時間tl4而在時間ti5之後的時間將該開 幻吕说cpTR_PM〇S之位準從該高位準改變為該低位準。因 此’由於在將nMOS電晶體32置入—開啟狀態之同時將該 P s電曰曰體3 i置入一關閉狀態,因此,在該傳輸問極信 號™⑷之位準從該高位準改變為該低位準之情況下,不 將該傳輸閘極接合點置入一高阻抗狀態。 128552.doc •24- 200904168 另外,在該傳輸閘極信號TR(n)之位準從該高位準改變 為X低位準(如圖6所不)之一情況下,當在適才所述之改變 期:欲將該傳輸閉極接合點置入一高阻抗狀態時,該控制 區^又52不在k間tl2之後的時間tl3而在時間tI2之前的時間t31 將《亥開啟號(pTR—PM〇s之位準從該低位準改變為該高位 準。因此,由於在將該11]^〇§電晶體32置入一關閉狀態之 同%將》亥pMOS電晶體3丨置入一開啟狀態,因此,在該傳 輸閘極彳„號TR(n)之位準從該低位準改變為該高位準之情 況下,該傳輸閘極接合點不進入一高阻抗狀態。 另外,若除防止該饋通電流外還需要更加重視縮短高阻 抗週期以縮短時間或時脈週期,則在其中欲將該傳輸閘極 信號TR(n)的位準從該高位準改變為該低位準之一情況與 其中欲將該傳輸閘極信號TR(n)的位準從該低位準改變為 該高位準之另一情況(如圖7所示)之兩個情況下,該控制區 段52可防止在適才所述之改變期間將該傳輸閘極接合點置 入一高阻抗狀態之一現象。 在此實例令,該控制區段52在時間tlz之前的時間匕將該 開啟信號(pTR_PM0S之位準從該低位準改變為該高位準, 而在時間tls之後的時間tzl將該開啟信號屮丁尺―pM〇s從該言 位準改變為該低位準,如圖7所示。特定今之 竹疋。< ’該控制區 段52使得該開啟信號(pTR—PMOS之脈衝之長度比該時序广 號cpRTR之脈衝之長度更長。 另外’當該時序信號cpRTR之位準係該高位準時,該控 制區段52可改變該開啟信號(pTR—PMOS之位進LV 士 Λ在該等開 128552.doc -25- 200904168 啟與關閉狀態之間轉換該pM〇s電晶體3】之狀態從而提供 或不提供一高阻抗週期。因此,例如,當該時序信號 cpRTR之位準係高位準時’卩以提供複數個高阻抗週期或 者根本不提供任何高阻抗週期。 應庄思,儘官上文說明該傳輸閘極信號TR(n),但對於 該重設信號RST⑷及該選擇信號SEL(n),φ可同樣藉由促 使該控制區段52將該等開啟信號ρΜΤ—ρΜ〇§及 cpSEL_PMOS之位準改變成使得在該重設信號RST(n)及該 選擇信號SEL(n)之位準之改變期間將該重設接合點及該選 擇接合點置入一高阻抗狀態來防止饋通電流從該電位 流向該電位VSS。 圖8顯示依據本發明之一第二具體實施例之一 cM〇s影像 感測器之一像素驅動電路之一組態之一範例。 參考圖8,所示像素驅動電路1〇〇包括一位址解碼器u、 一時序調整區段1〇1、一驅動器區段1〇2及一控制區段 1〇3。該像素驅動電路1〇〇產生並輸出:一傳輸閘極信號 TR(n)、一重設信號RST(n)及一選擇信號SEL(n),其個別 地具有一中等位準;以及一傳輸閘極信號TR(n)、一重設 化號RST(n)及一選擇信號SEL(n),其個別地具有該高位準 或該低位準。 應注意,儘管圖8為解說方便起見而顯示產生該傳輸閘 極信號TR(n)的該像素驅動電路1〇〇之一部分,但亦類似於 該傳輸閘極信號TR(n)而產生及輸出該重設信號RST(n)及 該選擇信號SEL(n)。應注意,該像素驅動電路1〇〇包括上 128552.doc •26· 200904168 文參考圖1及3所說明的該些組件之若干共用組件,而在此 省略關於此類共同組件之重疊說明以避免冗餘。 為調整該傳輸閘極信號TR(n)之產生之時序,在該時序 調整區段1 01中,將兩個OR電路111與i 1 2及兩個NOT電路 113與114置放於該驅動器區段102之前一級。另外,該時 序調整區段101將輸入信號個別地輸入至該驅動器區段102 之兩個pMOS電晶體12 1與122及一 nMOS電晶體123以產生 該傳輸閘極信號TR(n)。 特定言之,將從該時序調整區段1〇1的]^〇丁電路60輸出 之一彳s遽輸入至該驅動器區段1〇2之nMOS電晶體123並且 還輸入至該等OR電路111及112。另外,將從該控制區段 1 〇3輸出之一用以控制該pMOS電晶體121之開啟之時序的 開啟信號cpTR—PMOS1輸入至該NOT電路113,而該NOT電 路113對該開啟信號cpTR-PMOSl操作邏輯否定運算並將藉 由該邏輯否定獲得之一信號輸入至該〇R電路丨丨1。該〇R電 路111對從該NOT電路60輸出的信號與從該not電路113輸 出的信號進行邏輯OR運算,並將藉由該邏輯〇11運算獲得 之一信號輸入至該pMOS電晶體121。 另外,將從該控制區段103輸出之一用以控制該pM〇s電 晶體122之開啟之時序的開啟信號φτκ_—pm〇S2輸入至該 NOT電路114,而該NOT電路114對該開啟信號(pTR__PM〇S2 操作邏輯否定運算並將藉由該邏輯否定獲得之一信號輸入 至該OR電路112。該OR電路112對從該NOT電路60輪出的 信號與從該NOT電路114輸出的信號進行邏輯〇R運算,並 128552.doc -27- 200904168 將藉由該邏輯OR運算獲得之一信號輸入至該pM〇s電晶體 122 ° 如上所述,該OR電路1 Π使用從該Ν〇τ電路】丨3輸出之信 號來產生欲輸入至該pMOS電晶體121之信號而與從該Ν〇τ 電路60輸出以便輸入至該nMOS電晶體123的信號分離。另 外,該OR電路112使用從該NOT電路114輸出之信號來產生 欲輸入至該pMOS電晶體122之信號而與欲輸入至該11]^〇§ 電晶體123之信號分離。因此,該時序調整區段1〇1可個別 地控制該等pMOS電晶體121與122及該nM〇S電晶體123。 該驅動器區段1 02依據從該時序調整區段! 〇丨向其供應之 信號來產生該傳輸閘極信號TR(n)等。特定言之,在該驅 動器區段102中,該pMOS電晶體121與122係並聯連接,而 該等pMOS電晶體121及122與該nMOS電晶體123係串聯連 接。一電位VDD 1係作為一高位準電位連接至該pM〇s電晶 體121之源極,而另一電位VDD2係作為一中等位準電位連 接至該pMOS電晶體122之源極.另外,該電位vSS係作為 一低位準電位連接至該nMOS電晶體1 23之源極。 將從該時序調整區段1 〇丨的〇R電路u丨及丨丨2與該N〇T電 路60供應之彳§號分別輸入至該等pM〇s電晶體121及122與 該nMOS電晶體1 23之閘極。 回應於向該等pMOS電晶體121及122與該nMOS電晶體 1 23的個別閘極供應之信號之位準而將該等電晶體置入一 開啟或關閉狀態’從而使得在該等pMOS電晶體121及122 與該nMOS電晶體123的汲極係互相連接之一點(下面稱為 128552.doc -28- 200904168 三連接點)處的電位改變為電位VDD1、電位VDD2或電位 VSS。接著,將其電位係如適才所述而改變之信號作為該 傳輸閘極信號TR(n)施加於在該像素區段的第n列中之像素 之傳輸閘極。以此方式,在該驅動器區段丨〇2中,回應於 從該時序調整區段1〇1供應的信號而產生並輸出該傳輸閘 極信號TR(n)。 s亥控制區段103在預定時序產生該時序信號、開啟 信號cpTR 一 PMOS1、開啟信號其個別地具有 該向位準或該低位準),並將該等信號供應至該時序調整 區段1 0 1。 應注意,儘管在圖8中該電位VDD2係連接至該pM〇s電 晶體122,但該電位VDD2或者可以係連接至一nM〇s電晶 體。在此實例中,該電位VDD2所連接2nM〇s電晶體係並 如連接至该nMOS電晶體123,而藉由將從該0R電路丨丨2輸 出的k號反相而獲得之一信號係輸入至該nM〇s電晶體之 間極。 現在,參考圖9說明與圖8所示像素驅動電路1〇〇中的傳 輸閘極#號TR(n)之輸出相關的信號之時序之一範例。 若該列選擇信號cpV—LINE(n)之位準在時間〜從該低位 準改變為該高位準而接著該時序信號^RTR之位準在時間 t52從該低位準改變為該高位準(如圖9所示),則欲輸入至 該nMOS電晶體123的信號之位準變成該低位準。另外,在 此時間,若該等開啟信號φΤ1ι_ΡΜ〇δ1Λ(ρΤΙι—pM〇s2之位 準係低位準(如圖9所示),則欲輸入至該等pM〇s電晶體 128552.doc -29· 200904168 1 2 1與1 2 2兩者的彳§號之位準皆改變為該高位準。因此,將 該等pMOS電晶體121及122與該nM〇S電晶體123置入一關 閉狀態,而將該三連接點置入一高阻抗丨))狀態。 因此,若該開啟信號cpTR—PMOS 1之位準在時間t53從該 低位準改變為該高位準(如圖9所示),則當欲輸入至該 pMOS電晶體122的信號之位準保持該高位準而欲輸入至該 nMOS電晶體123的信號之位準保持該低位準時,欲輸入至 該pMOS電晶體121的信號之位準改變為該低位準。因此, 當該pMOS電晶體122與該nMOS電晶體123之狀態保持該關 閉狀態時’將該pMOS電晶體12 1置入一開啟狀態。因此, 將該電位VDD1之高位準的傳輸閘極信號TR(n)輸出至該像 素區段(如圖9所示)。 儘管’當該時序信號cpRTR之位準在時間t52改變為該高 位準時’將該nMOS電晶體123置入一關閉狀態而該電位 VSS之低位準的傳輸閘極信號TR(n)之輸出結束(如上文所 述)’但截至該開啟信號tpTR_PMOSl或該開啟信號 (pTR_PMOS2的位準變成該高位準之時間…並不將該pM〇s 電晶體121或该pMOS電晶體122置入一開啟狀態。因此, 將該二連接點置入一南阻抗狀態。 因此,若該開啟信號(pTR_PMOS 1之位準在時間t54從該 高位準返回至該低位準(如圖9所示),則當欲向該pM〇s電 晶體122及该nMOS電晶體123輸入的信號之位準不改變 時,欲向該pMOS電晶體121輸入的信號之位準返回至該高 位準。因此,g §亥pMOS電晶體1 22及該nMOS電晶體123保 J28552.doc -30- 200904168 持處於該關閉狀態時,該pMOS電晶體121返回至該關閉狀 態而將該三連接點置入一高阻抗(Hi_z(2))狀態“如圖9所 示)。 如上所述,該控制區段103可將該pM〇s電晶體i2i置入 厂開啟狀態以藉由在該時序信“RTR之位準保持該高位 準時將該開啟信號CpTR—PMQS丨之位準改變為該高位準來 改變該傳輸閘極信號丁R⑷之位準。因此,該控制區段1〇3 可控制期間該開啟|號CpTR_PM〇S1的位準保肖該高位準 而該時序信號cpRTR的位準保持該高位準之週期,從而控 制該pMOS電晶體121之開啟週期以控制期間該傳輸間極信 號TR(n)的位準係該高位準之高位準週期之提供/省略、長 度及開始時序。 接著,若該開啟信號(pTR_PMOS2之位準在時間…從該 低位準返回至該尚位準(如圖9所示),則當欲向該電 晶體121及該nM〇S電晶體123輸入的信號之位準不改變 時,欲向該pMOS電晶體122輸入的信號之位準返回至該低 位準。因此,當該pMOS電晶體121及該nMOS電晶體123保 持處於該關閉狀態時’將該pM〇s電晶體122置入一開啟狀 態,而將該電位VDD之中等位準的傳輸閘極信號TR(n)輸 出至該像素區段(如圖9所示)。 接著’若該開啟信號(pTR_PMOS2之位準在時間t56從該 高位準返回至該低位準(如圖9所示),則當欲向該pM〇s電 晶體121及該nMOS電晶體123輸入的信號之位準不改變 時’欲向該pMOS電晶體121輸入的信號之位準返回至該高 128552.doc 200904168 位準。因此,當該?]^〇5電晶體121及該nMOS電晶體123保 持處於該關閉狀態時,該pM0S電晶體122返回至該關閉狀 態而將該三連接點置入一高阻抗(Hi_z(3))狀態(如圖9所 示)。 以此方式,該控制區段1〇3可將該開啟信號(()111_1>]^〇82 之位準改變為該高位準而同時該時序信號cpRTR之位準保 持該高位準’從而將該pMOS電晶體122置入一開啟狀態, 以將該傳輸閘極信號TR(n)之位準改變為該中等位準。因 "亥控制區^又1 〇3可控制期間該開啟信號中丁尺―pm〇s2的 位準保持該高位準而該時序信號中尺丁尺的位準保持該高位 準之週期,從而控制該pM〇s電晶體122之開啟週期,以控 制期間該傳輸閘極信號711(11)的位準係該中等位準之中等 位準週期之提供/省略、長度及開始時序。 接著,若該時序信號CpRTR之位準在時間h從該高位準 返回至該低位準(如圖9所示),則欲輸入至該nM〇s電晶體 123的信號之位準改變為該高位準。另外,在此時間若 該等開啟仏號…尺一卩河⑽丨及少丁、pM〇s22位準保持處於 s低位準(如圖9所示),則欲輸入至該等電晶體12 1 與122的信號之位準皆改變為該高位準。因此,當該等 PMOS電日a體121與122之狀態保持處於該關閉狀態時,將 該nMOS電日日日體! 23置人—開啟狀態而將該電位vss之低位 準的傳輸問極信號了尺⑻輸出至該像素區段(如圖9所示)。 接著,右在時間in ’該列選擇信號9V-LINE(n)之位準 k該阿位準改變為該低位準但該時序信號與該等開 128552.doc -32- 200904168 啟信號cpTR_PM〇S丨及cpTR_PM〇S2之位準保持該低位準(如 圖9所示),則欲輸出至該等pMOS電晶體i2i及122與該 nMOS電晶體123的所有信號之位準保持該高位準。因此, 該電位vss之低位準的傳輸閘極信號TR⑷繼續輸出至該像 素區段(如圖9所示)。 以此方式’在圖9中’在該傳輸閘極信號TR⑷之位準係 從該低位準改變為該高位準、從該高位準改變為該中等位 準或從該中等位準改變為該低位準之情況下,該傳輸間極 信號TR(n)之位準係改變成在上述改變期間之中途具有一 高阻抗狀態。以此方式,在上述改變期間可提供-期間該 三連接點具有-高阻抗狀態之週期,以便防止在該改變期 間該饋通電流從該電位VDD流向該電位vss。 另外,期間該等開啟信號9TR—PM⑽與φΤΙ^ρΜϋδ2兩 者之位準白係置入該低位準而該時序信號㈣丁r之位準係 該高位準(如圖9所示)之—週期係期間該三連接點應具有1 高阻抗狀態之—週期。因此’可以將該等開啟信號 cpTR—PMQS丨與9TR_P聰2之位準之轉換時序及脈衝週期 改變成使得在一任意時序提供一期間該三連接點具有一高 阻抗狀怨之一任意長度的週期。 例如,可以提供單獨的高阻抗週期Hiz⑴、單獨的週期 Ηί_Ζ(2)、單獨的週期Hi_Z(3)、單獨的週期Hi-Z⑴及Hi_ Z(2)、單獨的週期H^1)及Hi_Z(3)或單獨的週期m_z⑺ 及m-zp)。另外,除防止該饋通電流外在需要更加重視 縮知該尚阻抗週期以縮短時間之情況下,該控制區段⑻ I28552.doc •33- 200904168 可能根本不提供任何高阻抗週期。 應注意’儘管在上述像素驅動電路50與1 〇〇之任何電路 中不提供圖1所示之AND電路22及OR電路23,但其可以係 與圖1所示之像素驅動電路丨〇中類似而以其他方式來提 供。下面說明以諸如適才所述之一方式組態之一像素驅動 電路。 圖1 〇顯示依據本發明之一第三具體實施例之一 CMOS影 像感測器之一像素驅動電路之一組態之一範例。 應注意’為解說方便起見,圖1〇顯示用以驅動在該第η 列中的像素之像素驅動電路之一部分。另外,儘管在圖1〇 中’為簡化說明而使用一 AND電路、一 OR電路及一 NOT 電路’但一實際電路可以係藉由使用一 nand電路、一 NOR電路及一 Ν〇τ電路來實施。此同樣亦適用於下文參考 圖15所述之一電路。 圖1 〇所示的像素驅動電路丨50包括一位址解碼器i i、一 驅動1§區段13、一時序調整區段1 5丨及一控制區段丨52,並 產生及輸出一傳輸閘極信號TR(n)、一重設信號RST(n) — 選擇信號SEL(n)。應注意,該像素驅動電路丨5〇包括上文 參考圖1及3所說明的該些組件之若干共用組件,而在此省 略關於此類共同組件之重疊說明以避免冗餘。 該時序調整區段1 5 1包括一 AND電路2 1、另一 AND電路 22、一 OR電路23、一 NOT電路24、另一 OR電路61及一 NOT電路66,該等電路配合用作一用以調整該傳輸閘極信 號TR(n)之產生之時序的邏輯閘極電路。該時序調整區段 128552.doc -34 - 200904168 15 1進一步包括一 AND電路25、一 NOT電路26、一 OR電路 62及另一 NOT電路65,該等電路配合用作一用以調整該重 設信號RST(n)之產生之時序的邏輯閘極電路。該時序調整 區段151進一步包括一 AND電路27、一 NOT電路28、一 OR 電路63及另一 NOT電路64 ’該等電路配合用作一用以調整 該選擇信號SEL(n)之產生之時序的邏輯閘極電路。 特定言之’在該時序調整區段1 5 1中,該等OR電路6 1至 63與該等NOT電路64至66係置放於該驅動器區段13之前一 級。另外’在該時序調整區段1 5 1中,並不將相同的信號 輸入至該驅動器區段13之pMOS電晶體31、33或35及nMOS 電晶體32、34或36,而將藉由邏輯〇R運算(其使用欲向該 nMOS電晶體32、34或3 6輸入之一信號)獲得之一信號輸入 至該pMOS電晶體31、33或35。 特定言之’將從該時序調整區段151的NOT電路24輸出 之一信號輸入至該驅動器區段13之nMOS電晶體3 2並且還 輸入至該OR電路61。另外’將從該控制區段152輸出之一 用以控制該pMOS電晶體31之開啟之時序的開啟信號 cpTR—PMOS輸入至§玄NOT電路66。該NOT電路66對該開啟 信號cpTR_PMOS操作邏輯否定運算並將藉由該邏輯否定獲 得之一信號輸入至該OR電路61。 該OR電路61對從該NOT電路24輸出的信號與從該N〇T電 路66輸出的信號進行邏輯OR運算,並將藉由該邏輯〇R運 算獲得之一信號輸入至該pMOS電晶體3 1。特定言之,該 OR電路61使用從該NOT電路66輸出之信號來產生欲輸入 128552.doc -35- 200904168 至該pMOS電晶體31之信號而與從該NOT電路24輸出以便 輸入至該nMOS電晶體32的信號分離。因此,該時序調整 區段1 5 1可個別地控制該pMOS電晶體3 1與該nMOS電晶體 32 ° 另外,將從該時序調整區段1 5 1的NOT電路26輸出之一 信號輸入至該驅動器區段13之nMOS電晶體34並且還輸入 至該OR電路62。另外,將從該控制區段152輸出之一用以 控制該pMOS電晶體33之開啟之時序的開啟信號 cpRST_PMOS輸入至該NOT電路65。接著,該NOT電路65 對該開啟信號cpRST_PMOS操作邏輯否定運算並將藉由該 邏輯否定獲得之一信號輸入至該OR電路62。 該OR電路62對從該NOT電路26輸出的信號與從該NOT電 路65輸出的信號進行邏輯OR運算,並將藉由該邏輯OR運 算獲得之一信號輸入至該pMOS電晶體33。因此,該時序 調整區段1 5 1可個別地控制該pMOS電晶體33與該nMOS電 晶體34。 另外,將從該時序調整區段151的NOT電路28輸出之一 信號輸入至該驅動器區段13之nMOS電晶體36並且還輸入 至該OR電路63。另外,將從該控制區段152輸出之一用以 控制該pMOS電晶體35之開啟之時序的開啟信號 cpSEL_PMOS輸入至該NOT電路64。接著,該NOT電路64 對該開啟信號cpSEL_PMOS操作邏輯否定運算並將藉由該 邏輯否定獲得之一信號輸入至該OR電路63。 該OR電路63對從該NOT電路28輸出的信號與從該NOT電 128552.doc -36- 200904168 路64輸出的信號進行邏輯OR運算’並將藉由該邏輯〇汉運 算獲得之一信號輸入至該pMOS電晶體3 5。因此,該時序 調整區段1 5 1可個別地控制該pMOS電晶體35與該nM〇s電 晶體3 6。 該控制區段152產生個別地具有該高位準或該低位準之 時序信號cpSEL、(pRST、(pSTR及(pRTR與該等開啟信號 q>TR_PMOS、(pRST_PMOS 及 cpSEL_PMOS,並在預定時序 將該等信號供應至該時序調整區段151 ^ 現在,參考圖11說明與圖1〇所示像素驅動電路15〇中的 傳輸閘極信號TR(n)之輸出相關的信號之時序之一範例。 若該列選擇信號φV_LINE(n)之位準在時間ti〗從該低位準 改變為該高位準而接著該時序信號φ8τκ或該時序信號 (prtr之位準在時間tu從該低位準改變為該高位準(如圖η 所示)’則藉由該等AND電路21與22、OR電路23及NOT電 路24產生以便輸出至該nM〇s電晶體32的信號之位準改變 為該低位準。另外,此時,若該開啟信號φΤΚ—pM〇s之位 準係該低位準(如圖11所示),則藉由該等AND電路2ι與 22、OR電路23、N0T電路24、〇R電路61及_丁電路“產 生以便輸入至該ρ Μ O S電晶體3丨的信號改變為該高位準(如 圖1所示)因此,將5亥PMOS電晶體3 1與該nM〇S電晶體 32兩者皆置入一關閉狀態,而將該傳輸閘極接合點置入一 高阻抗(Hi-Z)狀態,如圖1丨所示。 因此,若該開啟信號CpTR_PM〇S之位準在時間h從該低 位準改變為該高位準(如圖U所示),則欲輸入至該副⑽電 128552.doc -37- 200904168 曰曰體32的彳g唬之位準保持該低位準,但欲輸入至該 電晶體31的信號之位準改變為該低位準。因此,當該 nMOS電晶體32保持處於該關閉狀態時,將該pM〇s電晶體 3 1置入一開啟狀態而將該電位VDD之高位準的傳輸閘極信 號TR(n)輸出至該像素區段(如圖丨丨所示)。 以此方式,若該時序信號或該時序信號φΚΤΙι之位 準在時間tlz改變為該高位準,則儘管將該nM〇s電晶體u 置入一關閉狀態而該電位vss之低位準的傳輸閘極信號 TR(n)之輸出結束,但截至該開啟信號(pTR一PMOS的位準 成該阿位準之時間tn並不將該pM〇s電晶體3 1置入一開 啟狀態。因此,將該傳輸閘極接合點置入一高阻抗狀態。 因此,若該開啟信號CpTR_PM〇S之位準在時間〜從該低 位準改變為該高位準(如圖U所示),則欲輸入至該囊⑽電 晶體32的信號之位準保持該低位準,但欲輸人至該p则 電晶體31的信號之位準返回至該高位準。因此,當該 nM〇S電晶體32保持處於該關閉狀態時,該pMOS電晶體31 的狀態返回至該關閉狀態而將該傳輸閘極接合點再次置入 一高阻抗狀態(如圖11所示)。 因此,若該時序信號CpSTR或該時序信號中尺丁尺之位準在 時間t〗5改變為該低位準(如圖u所示),則欲輸入至該 nMOS電晶體32的信號之位準變成該高位準。另外,在此 時間,若該開啟信號cpTR_PM0S之位準保持低位準(如圖u 所示),則欲輪入至該pM0S電晶體31的信號之位準改變為 該高位準。因此,當該pM〇s電晶體31保持處於該關閉狀 128552.doc •38· 200904168 2 ’將該nM〇s電晶體32置人—開啟狀態而將該電位 之低位準的傳輪閘極信號TR(n)輸出至 圖11所示)。 斤' 匕f又、 因,,儘管該列選擇信號φν一LINE(n)之位準在時間ti6 攸。亥问位準改變為該低位準(如圖11所示),但若該時序信 唬或該時序信號及該開啟信號cpTR—PMOS之位 低位準’則欲輸入至該PMOS電晶體31及該nM〇S 電晶體32的信號之位準保持該高位準。因此,將該電位 VSS之傳輸閘極信號TR⑷輸出至該像素區段(如圖^ ^所 示)。 以此方式,在該傳輸閘極信號TR⑷之位準係從該高位 準改變為該低位準以及從該低位準改變為該高位準時’該 控制區段152將該開啟信號^R—pM〇s之位準改變成使得 在適才所述之&變期間將該傳輸閘極接合點置入—高阻抗 狀態。因此,一旦發生適才所述之變化,便即刻將: PMOS電晶體31及該劇s電晶體如者置人1啟狀“ 可防止饋通電流從該電位VDD流向該電位vss ^ 因此,防止該低位準的電源供應之波動。另外,尤其係 在將藉由併入該晶片(在其上面提供該像素驅動電路15〇)内 部的充電幫浦產生之負電位設定為該低位準的電位州之 情況下,消除對該充電幫浦之負载。因此,可防止該像素 區段的圖像品質之劣化。 另外,該控制區段152可將該時序信號的伙、時序信號 cpRTR或開啟信號心_觸8之位準的轉換時序及脈衝^ 128552.doc •39- 200904168 改變成使得可以改變以下週期 期間該傳輸閘極 彳序及W或長度·· 位彳。唬TR(n)的電位係該電位vdd 期間該傳輸閘極产缺 週d、 期間哕值私 R(n)的電位係該電位VSS之週期以及 x &閘極接合點係處於-高阻抗狀態之週期( 稱為尚阻抗週期)。贫皮 > 吐 / (下面 'Μ T序k號φδΤΚ、時序信號(pRTR或Η 啟"is 號(pTR + &、住 Α 開 - <位準的轉換時序及脈衝長度之改變可 以係以任思方式(例如,藉 中的暫存器(未顯示⑽實施 ^㈣㈣區段152 =’在該傳輸閘極錢TR⑻之位準㈣低位準改變 為δ亥问位準(如 ^ 2所不)之情況下,在適才所述之改變期 Τ區段152可將該傳輸問極接合點置入-高阻抗狀 现^而抑制饋通電流之流動。另外,在該傳輸閘極信號 、、⑷之位準從該高位準改變為該低位準(如圖13所示)之情 兄下在適才所述之改變期間該控制區段152可將該傳輸 閑極接会"Wh λ ‘ ν阻抗狀態,從而抑制饋通電流之流 動。 如圖12所示,甚蔣兮彳击 將邊傳輸閘極信號TR(n)之位準從該低 '準改變為3亥南位準’若在適才所述之改變期間欲將該傳 輸閘極接合點置入_高阻抗狀態’則該控制區段152不在 時間t】5之前的時間tl4而在時間ti5之後的時間將該開啟信 號q>TR—PMOS之位準從該高位準改變為該低位準。因此, 由於在將該nM〇S電晶體32置入一開啟狀態之同時將該 γ電b曰體3 1置入—關閉狀態,因此,在該傳輸閘極信 虎HCri)之位準從該高位準改變為該低位準之情況下,不 128552.doc -40· 200904168 將該傳輸閘極接合點置入—高阻抗狀態。 另外,在將该傳輸閘極信號找⑻之位 變為兮柄、隹γ ^該尚位準改 k為及低位#(如圖13所示)之一情況下 改變期間欲將該傳輸閘極接人 、述之 控制區段吻在時間二 傻的時間t丨3而在時問f =:該:啟信號~之位準從該 :: 此,由於在將該_S電晶體32置入—開啟 狀態之同時將該PM0S電晶體31置入一關閉狀態,: p傳輸閑極信號TR⑻之位準從該低位準改變為該高位 準之情況下,不將該傳輸閘極接合點置入一高阻抗狀態。 點置入一高阻抗狀態之一現象 另外,若除防止該饋通電流外還需要更加重視縮短高阻 =週期以縮短時間或時脈週期’則在其中欲將該傳輸閉極 信號TR⑻的位準從該高位準改變為該低位準之一情況與 其中欲將該傳輸閘極信號TR⑷的纟準從該低位準改變為 邊尚位準之另一情況(如圖14所示)之兩個情況下,該控制 區段152可防止在適才所述之改變期間將該傳輸閘極接合 在此實例中,該控制區段1 52在時間t,2之前的時間t3!將 該開啟信號(pTR—PM〇S之位準從該低位準改變為該高位 準’而在時間h之後的時間tzl將該開啟信號(pTR_PMOS之 位準從該高位準改變為該低位準,如圖14所示。特定言 之’該控制區段丨52將該開啟信號tpTR-PMOS之脈衝之長 度設定成比該時序信號cpSTR或該時序信號cpRTR之脈衝之 長度更長。 128552.doc -41 - 200904168 另外,當該時序信號cpSTR或該時序㈣中咖之位準保 持該高位準時’該控制區段152可改變該開啟传號 CPTR—觸S之位準以在該等開啟與關閉狀態之間轉㈣ PMOS電晶體31之狀態從而提供或不提供—高阻抗週期。 因此,例如,當該時序信?“STR或該日夺序信號中⑽之位 準係高:準時’可以提供複數個高阻抗週期或者根本不提 供任何南阻抗週期。The control section 52 generates timing signals cpSEL, (pRST and (pRTR) and the turn-on signals cpTR_PMOS, (pRST_PMOS and (pSEL_PMOS) with the high level or the low level at a predetermined timing. The signal is supplied to the timing adjustment section 51. Next, an example of the timing of the signal related to the output of the transmission gate #TR(n) in the pixel driving circuit 5A shown in Fig. 3 will be described with reference to FIG. If the level of the column selection signal cpV_UNE(n) changes from the low level to the high level at time tn and then the level of the timing signal φΙιτκ is at time. From the low level to the high level, by the The circuit 2i and the NOT circuit 60 are generated so that the level of the signal input to the nM〇s transistor 32 becomes the low level. In addition, at this time, if the level of the on signal cpTR_PMOS is the low level (eg, As shown in FIG. 4, the signal generated by the AND circuit Μ, NOT circuit 60 or circuit 61 and Ν〇τ circuit % for input to the PMOS transistor 31 becomes the high level. 3! With the nMOS transistor 32 both placed _ close _, The transmission gate junction is placed in a high impedance (Hi_z) state, as shown in Figure 4. 128552.doc -21 - 200904168 In addition, if the level of the turn-on signal cpTR-PM〇s is from the low level at time ti3 Changing to the high level (as shown in FIG. 4), the level of the signal to be rotated into the PMOS transistor 3! is changed to the low level, and the signal to be input to the touch (10) transistor ^ remains at the low level. Therefore, when the state of the thorn S transistor 32 remains in the off state, the PMOS transistor 31 is placed in an open state and the lightning gate of the rms rm VDD is the same as that of the gate VDD. The pole signal TR(n) is output to the pixel segment. As described above, when the timing signal 9 level changes to a high level at time ^, the nMOS transistor 32 is placed in a closed state, and the potential VSS The output of the low-level transmission gate signal TR(n) ends. However, the time to the level of the turn-on signal ΦTM changes to the high level tu 'the pMOS transistor 31 is not turned on. Therefore, the transmission gate junction is placed in a high impedance state. The level of the turn-on signal cpTR_PM〇s changes from the high level to the low level (as shown in FIG. 4), and the level of the signal to be input to the PMOS transistor 返回 returns to the high level. Reading the person to the capsule (10) The level of the signal of the transistor 32 maintains the low level. Therefore, when the touch (10) transistor 32 remains in the off state, the state of the p-cut transistor 3 i returns to the state. The transfer idle junction is again placed in a high impedance state (as shown in Figure 4). Then, the level of the timing signal ton TM changes to the low level at time t15 (as shown in FIG. 4), and the level of the signal input to the nM 〇S transistor 32 becomes the high level. quasi. In addition, at this time, if the turn-on signal ― PMOS remains low (as shown in FIG. 4 ), the level of the signal to be input to the pM 〇 s 128552.doc -22- 200904168 transistor 3 1 becomes High level. Therefore, when the state of the pM〇s transistor 31 remains in the off state, the transistor 32 is placed in an on state and the low-level gate gate signal TR(n) of the potential vss is output to the Pixel section (as shown in Figure 4). Therefore, although the level of the column selection signal φΥUNE(n) is changed from the high level to the low level (as shown in FIG. 4), if the timing signal cPRRT and the enable signal ^tr_pmos The level of the signal is maintained at the low level and the level of the signal to be individually input to the PMOS transistor 31 and the nM 〇s transistor 32 is maintained at the high level. Therefore, the transmission gate signal TR(n) of the potential vss continues to be rotated to the pixel section (as shown in Fig. 4). As described above, when the level of the transmission gate signal TR(n) is desired to change from the high level to the low level or vice versa from the low level to the high level, the control section 52 turns the enable signal φΤΚ The level of PM〇s is changed such that the transmission gate junction is placed in a high impedance state during the level change described. Therefore, once the change described above occurs, both the pMOS transistor 3 1 and the nMOS transistor 32 are placed in an on state to prevent the feedthrough current from flowing from the potential VDE to the potential vss. Therefore, fluctuations in the low-level power supply are prevented. In addition, in particular, in the case where the negative potential generated by the charging pump inside the wafer (on which the pixel driving circuit 5 is provided) is determined to be the low level potential vss, the charging is eliminated. Puzhi load. Therefore, deterioration of image quality in the pixel section can be prevented. In addition, the control section 52 can change the timing of the timing signal (pRTR or the pulse length of the open signal cpTR_PMOS and its level to such that 128552.doc •23-200904168 can change the following periodic round-closed Wei TR(8) The snow timing and its period or length: during the transmission idle period 2: the potential VDD, during which the potential of the transmission () is the period of the potential VSS w#:::,, the period of the anti-state is long Production and it? Μ 或 or (4) 启 (4) φτκ·ρ_ pulse: the change of the two conversion timing can be in any way (for example, by using one US for the control section to implement. τ 07 supervised state (not shown No)) is:: bit 2, the level of the transmission inter-pole signal TR(n) is changed from the low level (as shown in FIG. 5), and the transmission can be closed during the change described. The junction is placed in a high-impedance state, and the "suppression of the feed-through current _ Dfn" is handled. And, in the transmission gate signal, the (4) high material is changed to the low material (= the control section 52 can place the object: the point into a high-impedance state during the change described) to suppress the feedthrough current. The flow of the gate signal TR(n) changes from the low level to the high level (as shown in Figure 5), and the brother § ^ § changes in the appropriate When the gate junction is to be transmitted during the high-impedance state, the control section 52 is not at time t14 before time t15 and at the time after time ti5, the level of cpTR_PM〇S is said to be from the high level. Change to the low level. Therefore, since the P s electric body 3 i is placed in a closed state while the nMOS transistor 32 is placed in the on state, the bit signal TM(4) is transmitted. In the case where the high level is changed to the low level, the transmission gate junction is not placed in a high impedance state. 128552.doc •24- 200904168 In addition, in the position of the transmission gate signal TR(n) In the case of changing from the high level to the low level of X (as shown in Figure 6), The change period: when the transmission closed-pole joint is to be placed in a high-impedance state, the control region ^52 is not at time t1 after k1, and at time t31 before time tI2, The level of pTR_PM〇s changes from the low level to the high level. Therefore, since the 11's transistor 32 is placed in the same state as the off state, the "Hi-PMOS transistor 3" is placed. An open state, therefore, the transmission gate junction does not enter a high impedance state in the case where the level of the transmission gate TR TR TR(n) changes from the low level to the high level. In addition to preventing the feedthrough current, it is necessary to pay more attention to shortening the high impedance period to shorten the time or clock cycle, in which the level of the transmission gate signal TR(n) is to be changed from the high level to the low level. In a case where the situation is to change the level of the transmission gate signal TR(n) from the low level to the high level (as shown in FIG. 7), the control section 52 can Preventing the transfer gate junction from being placed in a high impedance state during the change described In this example, the control section 52 changes the level of the turn-on signal (the level of pTR_PM0S from the low level to the high level at a time before time t1z, and the turn-on signal at time tzl after time tls. The 尺 尺 - pM 〇 s changed from the level of the word to the low level, as shown in Figure 7. The specific bamboo raft. < 'The control section 52 causes the turn-on signal (pTR-PMOS pulse length to be longer than the pulse of the timing wide number cpRTR. In addition, 'when the timing signal cPRRT is at the high level, the control Section 52 can change the state of the turn-on signal (pTR-PMOS bit into LV Λ 转换 转换 128 552 552 552 552 552 552 552 552 552 552 552 552 552 552 552 552 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 A high impedance period is provided. Thus, for example, when the timing signal cptTR is at a high level, it is provided to provide a plurality of high impedance periods or no high impedance period at all. Gate signal TR(n), but for the reset signal RST(4) and the select signal SEL(n), φ can also cause the control section 52 to level the turn-on signals ρΜΤ-ρΜ〇§ and cpSEL_PMOS. Changing to cause the reset junction and the selected junction to be placed in a high impedance state during a change in the level of the reset signal RST(n) and the select signal SEL(n) to prevent feedthrough current from The potential flows to the potential VSS. Figure 8 shows An example of one of the configuration of one of the pixel driving circuits of the cM〇s image sensor according to a second embodiment of the present invention. Referring to FIG. 8, the pixel driving circuit 1 includes a address decoder. u, a timing adjustment section 1〇1, a driver section 1〇2, and a control section 1〇3. The pixel driving circuit 1〇〇 generates and outputs: a transmission gate signal TR(n), a reset a signal RST(n) and a selection signal SEL(n) each having an intermediate level; and a transmission gate signal TR(n), a reset number RST(n), and a selection signal SEL(n) , which has the high level or the low level individually. It should be noted that although FIG. 8 shows a part of the pixel driving circuit 1 that generates the transmission gate signal TR(n) for convenience of explanation, it is similar. The reset signal RST(n) and the selection signal SEL(n) are generated and outputted by the transmission gate signal TR(n). It should be noted that the pixel driving circuit 1 includes 128552.doc •26·200904168 Reference is made to Figures 1 and 3 for several common components of the components, and the weight of such common components is omitted here. In order to adjust the timing of the generation of the transmission gate signal TR(n), in the timing adjustment section 101, two OR circuits 111 and i 1 2 and two NOT circuits 113 are 114 is placed in a stage before the driver section 102. In addition, the timing adjustment section 101 individually inputs an input signal to the two pMOS transistors 12 1 and 122 and an nMOS transistor 123 of the driver section 102 to generate The transmission gate signal TR(n). Specifically, one of the outputs 彳s遽 of the timing adjustment section 1〇1 is input to the nMOS transistor 123 of the driver section 1〇2 and is also input to the OR circuits 111. And 112. In addition, an enable signal cpTR_PMOS1 outputting a timing for controlling the turn-on of the pMOS transistor 121 from the control section 1 〇3 is input to the NOT circuit 113, and the NOT circuit 113 is turned on the cpTR- The PMOS1 operates a logical negation operation and inputs a signal obtained by the logic negation to the 〇R circuit 丨丨1. The 〇R circuit 111 performs a logical OR operation on the signal output from the NOT circuit 60 and the signal output from the not circuit 113, and inputs a signal obtained by the operation of the logic 〇11 to the pMOS transistor 121. In addition, an on signal φτκ__pm〇S2 outputting from the control section 103 to control the timing of turning on the pM〇s transistor 122 is input to the NOT circuit 114, and the NOT circuit 114 is turned on. (pTR__PM〇S2 operates a logical negation operation and inputs a signal obtained by the logical negation to the OR circuit 112. The OR circuit 112 performs a signal that is rotated from the NOT circuit 60 and a signal output from the NOT circuit 114. Logic R operation, and 128552.doc -27- 200904168 will obtain a signal input to the pM〇s transistor 122 by the logical OR operation. As described above, the OR circuit 1 Π uses the circuit from the Ν〇τ The signal output from 丨3 is used to generate a signal to be input to the pMOS transistor 121 to be separated from a signal output from the Ν〇τ circuit 60 for input to the nMOS transistor 123. In addition, the OR circuit 112 uses the NOT from the NOT. The signal output by the circuit 114 generates a signal to be input to the pMOS transistor 122 to be separated from the signal to be input to the transistor 123. Therefore, the timing adjustment section 101 can individually control the signal. Equal pMOS transistors 121 and 122 and the nM 〇S transistor 123. The driver section 102 generates the transmission gate signal TR(n) or the like according to a signal supplied thereto from the timing adjustment section! 。. Specifically, in the driver section 102 The pMOS transistors 121 and 122 are connected in parallel, and the pMOS transistors 121 and 122 are connected in series with the nMOS transistor 123. A potential VDD 1 is connected to the pM〇s transistor as a high level potential. The source of 121 is connected to the source of the pMOS transistor 122 as a medium level potential. In addition, the potential vSS is connected to the source of the nMOS transistor 1 23 as a low level potential. The 〇R circuits u 丨 and 丨丨 2 of the timing adjustment section 1 与 and the 彳 § of the N 〇 T circuit 60 are respectively input to the pM 〇 s transistors 121 and 122 and the nMOS The gate of the crystal 1 23 is placed in an on or off state in response to the level of the signal supplied to the pMOS transistors 121 and 122 and the individual gates of the nMOS transistor 1 23 Interconnecting the pMOS transistors 121 and 122 with the drain of the nMOS transistor 123 The potential at one point (hereinafter referred to as 128552.doc -28-200904168 three connection points) is changed to the potential VDD1, the potential VDD2, or the potential VSS. Then, the signal whose potential is changed as described is used as the transmission gate signal. TR(n) is applied to the transmission gate of the pixel in the nth column of the pixel segment. In this manner, in the driver section 丨〇2, the transmission gate signal TR(n) is generated and output in response to the signal supplied from the timing adjustment section 101. The shai control section 103 generates the timing signal at a predetermined timing, the turn-on signal cpTR-PMOS1, the turn-on signal individually has the direction or the low level, and supplies the signals to the timing adjustment section 10 1. It should be noted that although the potential VDD2 is connected to the pM 〇s transistor 122 in Fig. 8, the potential VDD2 may be connected to an nM 〇s electric crystal. In this example, the potential VDD2 is connected to the 2nM〇s electro-crystalline system and, if connected to the nMOS transistor 123, one of the signal system inputs is obtained by inverting the k-number output from the OR circuit 丨丨2. To the pole between the nM〇s transistors. Now, an example of the timing of signals related to the output of the transmission gate #TR(n) in the pixel driving circuit 1A shown in Fig. 8 will be described with reference to Fig. 9. If the level of the column selection signal cpV_LINE(n) changes from time to time from the low level to the high level, then the level of the timing signal ^RTR changes from the low level to the high level at time t52 (eg, As shown in FIG. 9, the level of the signal to be input to the nMOS transistor 123 becomes the low level. In addition, at this time, if the turn-on signal φΤ1ι_ΡΜ〇δ1Λ (the level of ρΤΙι-pM〇s2 is low level (as shown in FIG. 9), it is to be input to the pM〇s transistors 128552.doc -29 · 200904168 1 2 1 and 1 2 2 both of the levels of the § § are changed to the high level. Therefore, the pMOS transistors 121 and 122 and the nM 〇S transistor 123 are placed in a closed state, The three connection points are placed in a high impedance 丨)) state. Therefore, if the level of the turn-on signal cpTR_PMOS 1 changes from the low level to the high level at time t53 (as shown in FIG. 9), the level of the signal to be input to the pMOS transistor 122 remains. When the level of the signal to be input to the nMOS transistor 123 is maintained at the low level, the level of the signal to be input to the pMOS transistor 121 is changed to the low level. Therefore, when the state of the pMOS transistor 122 and the nMOS transistor 123 is maintained in the off state, the pMOS transistor 12 1 is placed in an on state. Therefore, the high-level transmission gate signal TR(n) of the potential VDD1 is output to the pixel section (as shown in Fig. 9). Although 'when the timing signal cpRTR level changes to the high level at time t52', the nMOS transistor 123 is placed in an off state and the output of the low level of the potential gate VSS of the transmission gate signal TR(n) ends ( As described above, 'but as of the turn-on signal tpTR_PMOS1 or the turn-on signal (the level at which the level of pTR_PMOS2 becomes the high level... the pM〇s transistor 121 or the pMOS transistor 122 is not placed in an on state. Therefore, the two connection points are placed in a south impedance state. Therefore, if the on signal (the level of pTR_PMOS 1 returns from the high level to the low level at time t54 (as shown in FIG. 9), then When the level of the signal input from the pM〇s transistor 122 and the nMOS transistor 123 is not changed, the level of the signal to be input to the pMOS transistor 121 is returned to the high level. Therefore, g § hai pMOS transistor 1 22 and the nMOS transistor 123 protects J28552.doc -30- 200904168 When the off state is maintained, the pMOS transistor 121 returns to the off state and the three connection points are placed into a high impedance (Hi_z(2)) The status is as shown in Figure 9. As mentioned above, the control The segment 103 can place the pM〇s transistor i2i into a factory-on state to change the level of the turn-on signal CpTR-PMQS丨 to the high level by maintaining the level of the RTR at the high level. The level of the transmission gate signal D(4) is changed. Therefore, the control section 1〇3 can control the level of the ON_CpTR_PM〇S1 during the control period to maintain the high level and the level of the timing signal cPRRT maintains the high level. The quasi-period, thereby controlling the turn-on period of the pMOS transistor 121 to control the level of the inter-transmission signal TR(n) during the control period is the supply/omission, length, and start timing of the high-level period of the high level. The turn-on signal (the level of pTR_PMOS2 is returned from the low level to the still level at the time... as shown in FIG. 9), and the signal is to be input to the transistor 121 and the nM〇S transistor 123. When it is not changed, the level of the signal to be input to the pMOS transistor 122 is returned to the low level. Therefore, when the pMOS transistor 121 and the nMOS transistor 123 remain in the off state, the pM〇s The transistor 122 is placed in an open state, and the electricity is The output gate signal TR(n) in the bit VDD is output to the pixel segment (as shown in Figure 9). Then 'If the turn-on signal (the level of pTR_PMOS2 returns from the high level to the time at time t56) The low level (as shown in FIG. 9) is the level of the signal to be input to the pMOS transistor 121 when the level of the signal to be input to the pM〇s transistor 121 and the nMOS transistor 123 is not changed. Return to the high 128552.doc 200904168 level. So when should that? When the transistor 121 and the nMOS transistor 123 remain in the off state, the pMOS transistor 122 returns to the off state and the three connection points are placed in a high impedance (Hi_z(3)) state (eg, Figure 9)). In this way, the control section 1〇3 can change the level of the turn-on signal (()111_1>] 82 to the high level while the level of the timing signal cPRRT maintains the high level, thereby The pMOS transistor 122 is placed in an on state to change the level of the transmission gate signal TR(n) to the intermediate level. Since the "Hai control area ^1 〇3 can be controlled during the period of the on signal The level of the ruler-pm〇s2 maintains the high level and the level of the ruler in the timing signal maintains the period of the high level, thereby controlling the turn-on period of the pM〇s transistor 122 to control the transfer gate during the control period. The level of the signal 711 (11) is the supply/omission, length and start timing of the medium level intermediate level. Then, if the level of the timing signal CpRTR returns from the high level to the low level at time h (As shown in Fig. 9), the level of the signal to be input to the nM〇s transistor 123 is changed to the high level. In addition, at this time, if the opening nickname...the 卩一卩河(10)丨 and less D, pM〇s22 level will remain at the s low level (as shown in Figure 9), then you want to enter these The level of the signals of the crystals 12 1 and 122 are changed to the high level. Therefore, when the states of the PMOS electric cells a and 121 are kept in the off state, the nMOS electric day and the sun body are set. The human-on state turns the low-level transmission signal of the potential vss to the pixel segment (8) to the pixel segment (as shown in Fig. 9). Next, the right at time in the column select signal 9V-LINE(n The position of the position k is changed to the low level, but the timing signal and the level of the opening signals cpTR_PM〇S丨 and cpTR_PM〇S2 of the 128552.doc -32-200904168 signal are kept at the low level (Fig. 9). As shown, the level of all signals to be output to the pMOS transistors i2i and 122 and the nMOS transistor 123 is maintained at the high level. Therefore, the low level of the transmission gate signal TR(4) of the potential vss continues to be output to The pixel segment (as shown in Figure 9). In this manner, 'in Figure 9', the level of the transmission gate signal TR(4) changes from the low level to the high level, from the high level to the medium level. In the case of a level change or a change from the medium level to the low level, the transmission pole The level of the signal TR(n) is changed to have a high impedance state midway during the above change period. In this manner, during the above change, the three connection points can be provided with a period of -high impedance state to prevent During the change period, the feedthrough current flows from the potential VDD to the potential vss. In addition, during the period, the levels of the turn-on signals 9TR-PM(10) and φΤΙ^ρΜϋδ2 are placed in the low level and the timing signal (4) is The level is the high level (as shown in Figure 9) - the three connection points should have a period of 1 high impedance state during the period. Therefore, the conversion timings and pulse periods of the ON signals cpTR_PMQS and 9TR_P can be changed so that the three connection points have a high-impedance arbitrarily long length during an arbitrary timing supply period. cycle. For example, a separate high-impedance period Hiz(1), a separate period Ηί_Ζ(2), a separate period Hi_Z(3), separate periods Hi-Z(1) and Hi_Z(2), separate periods H^1), and Hi_Z can be provided ( 3) or separate periods m_z(7) and m-zp). In addition, the control section (8) I28552.doc • 33- 200904168 may not provide any high-impedance period at all, in addition to preventing the feed-through current from being more important to attenuate the still-impedance period to shorten the time. It should be noted that although the AND circuit 22 and the OR circuit 23 shown in FIG. 1 are not provided in any of the above-described pixel driving circuits 50 and 1 , it may be similar to the pixel driving circuit shown in FIG. 1 . And in other ways. The following describes the configuration of one of the pixel drive circuits in one of the ways described, for example. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a diagram showing an example of one of the configuration of one of the pixel driving circuits of a CMOS image sensor according to a third embodiment of the present invention. It should be noted that for convenience of explanation, FIG. 1A shows a portion of a pixel driving circuit for driving pixels in the nth column. In addition, although in FIG. 1 'an AND circuit, an OR circuit, and a NOT circuit are used for simplicity, an actual circuit can be implemented by using a nand circuit, a NOR circuit, and a τ circuit. . The same also applies to one of the circuits described below with reference to FIG. The pixel driving circuit 丨50 shown in FIG. 1 includes a bit address decoder ii, a driving 1 § section 13, a timing adjustment section 15 5 and a control section 丨 52, and generates and outputs a transmission gate. The pole signal TR(n), a reset signal RST(n) - selects the signal SEL(n). It should be noted that the pixel drive circuit 丨5〇 includes several common components of the components described above with reference to Figures 1 and 3, and overlapping descriptions of such common components are omitted herein to avoid redundancy. The timing adjustment section 151 includes an AND circuit 2 1 , another AND circuit 22 , an OR circuit 23 , a NOT circuit 24 , another OR circuit 61 , and a NOT circuit 66 . A logic gate circuit for adjusting the timing of the generation of the transmission gate signal TR(n). The timing adjustment section 128552.doc -34 - 200904168 15 1 further includes an AND circuit 25, a NOT circuit 26, an OR circuit 62 and another NOT circuit 65, which are used together to adjust the reset A logic gate circuit for the timing of the generation of the signal RST(n). The timing adjustment section 151 further includes an AND circuit 27, a NOT circuit 28, an OR circuit 63, and another NOT circuit 64'. The circuits cooperate to serve as a timing for adjusting the generation of the selection signal SEL(n). Logic gate circuit. Specifically, in the timing adjustment section 151, the OR circuits 6 1 to 63 and the NOT circuits 64 to 66 are placed in a stage before the driver section 13. In addition, in the timing adjustment section 151, the same signal is not input to the pMOS transistor 31, 33 or 35 and the nMOS transistor 32, 34 or 36 of the driver section 13, but by logic A 〇R operation (which uses one of the signals to be input to the nMOS transistor 32, 34 or 36) is input to the pMOS transistor 31, 33 or 35. Specifically, a signal from the NOT circuit 24 output of the timing adjustment section 151 is input to the nMOS transistor 3 2 of the driver section 13 and is also input to the OR circuit 61. Further, an on signal cpTR_PMOS outputted from the control section 152 for controlling the timing of turning on the pMOS transistor 31 is input to the 玄NOT circuit 66. The NOT circuit 66 operates a logical negation operation on the turn-on signal cpTR_PMOS and inputs a signal obtained by the logic negation to the OR circuit 61. The OR circuit 61 performs a logical OR operation on the signal output from the NOT circuit 24 and the signal output from the N〇T circuit 66, and inputs a signal obtained by the logic 〇R operation to the pMOS transistor 3 1 . . Specifically, the OR circuit 61 uses the signal output from the NOT circuit 66 to generate a signal to input 128552.doc -35 - 200904168 to the pMOS transistor 31 and output from the NOT circuit 24 for input to the nMOS The signal of crystal 32 is separated. Therefore, the timing adjustment section 151 can individually control the pMOS transistor 3 1 and the nMOS transistor 32 °, and input a signal from the NOT circuit 26 output of the timing adjustment section 151 to the The nMOS transistor 34 of the driver section 13 is also input to the OR circuit 62. Further, an ON signal cpRST_PMOS outputting a timing for controlling the turn-on of the pMOS transistor 33 from the control section 152 is input to the NOT circuit 65. Next, the NOT circuit 65 operates a logical negation operation on the turn-on signal cpRST_PMOS and inputs a signal obtained by the logic negation to the OR circuit 62. The OR circuit 62 performs a logical OR operation on the signal output from the NOT circuit 26 and the signal output from the NOT circuit 65, and inputs a signal obtained by the logical OR operation to the pMOS transistor 33. Therefore, the timing adjustment section 151 can individually control the pMOS transistor 33 and the nMOS transistor 34. Further, a signal output from the NOT circuit 28 of the timing adjustment section 151 is input to the nMOS transistor 36 of the driver section 13 and is also input to the OR circuit 63. Further, an on signal cpSEL_PMOS outputting a timing for controlling the turn-on of the pMOS transistor 35 from the control section 152 is input to the NOT circuit 64. Next, the NOT circuit 64 operates a logical negative operation on the turn-on signal cpSEL_PMOS and inputs a signal obtained by the logic negation to the OR circuit 63. The OR circuit 63 performs a logical OR operation on the signal output from the NOT circuit 28 and the signal output from the NOT power 128552.doc -36 - 200904168 path 64 and inputs a signal obtained by the logic operation to The pMOS transistor 35. Therefore, the timing adjustment section 151 can individually control the pMOS transistor 35 and the nM〇s transistor 36. The control section 152 generates timing signals cpSEL, (pRST, (pSTR, and (pRTR) and the enable signals q>TR_PMOS, (pRST_PMOS and cpSEL_PMOS, respectively) having the high level or the low level, and the predetermined timings Signal is supplied to the timing adjustment section 151. Now, an example of the timing of the signal related to the output of the transmission gate signal TR(n) in the pixel driving circuit 15A shown in FIG. 1A will be described with reference to FIG. The level of the column selection signal φV_LINE(n) changes from the low level to the high level at time ti and then the timing signal φ8τκ or the timing signal (the level of prtr changes from the low level to the high level at time tu (as shown in FIG. 7) 'The level of the signal generated by the AND circuits 21 and 22, the OR circuit 23, and the NOT circuit 24 so as to be output to the nM〇s transistor 32 is changed to the low level. At this time, if the level of the turn-on signal φ ΤΚ - pM 〇 s is the low level (as shown in FIG. 11 ), the AND circuits 2 ι and 22, the OR circuit 23, the NMOS circuit 24, and the 〇R circuit 61 are provided. And the _ circuit is "generated for input to the ρ Μ OS transistor The signal of 3丨 is changed to the high level (as shown in FIG. 1). Therefore, both the 5 PMOS PMOS transistor 3 1 and the nM 〇S transistor 32 are placed in a closed state, and the transmission gate is bonded. The point is placed in a high-impedance (Hi-Z) state, as shown in Figure 1. Therefore, if the level of the turn-on signal CpTR_PM〇S changes from the low level to the high level at time h (as shown in Figure U) ), the level of the signal of the body 32 to be input to the transistor 31 is changed to the low level, and the level of the signal to be input to the transistor 31 is changed to the low level. Therefore, when the nMOS transistor 32 is kept in the off state, the pM〇s transistor 3 1 is placed in an on state to output the high-level transmission gate signal TR(n) of the potential VDD to In this manner, if the timing signal or the timing signal φΚΤΙι level changes to the high level at time tz, the nM〇s transistor u is placed The output of the low-level transmission gate signal TR(n) of the potential vss is ended, but up to the turn-on signal (pTR) The time tn at which the PMOS level is at the level of the level does not place the pM〇s transistor 31 into an on state. Therefore, the transmission gate junction is placed in a high impedance state. The level of the turn-on signal CpTR_PM〇S changes from the low level to the high level (as shown in FIG. U), and the level of the signal to be input to the transistor (10) transistor 32 maintains the low level, but The level of the signal input to the transistor 31 is returned to the high level. Therefore, when the nM〇S transistor 32 remains in the off state, the state of the pMOS transistor 31 returns to the off state and the transmission gate junction is again placed in a high impedance state (as shown in FIG. 11). ). Therefore, if the timing signal CpSTR or the timing of the timing signal changes to the low level at time t5 (as shown in FIG. u), the level of the signal to be input to the nMOS transistor 32 is used. Become the high level. In addition, at this time, if the level of the turn-on signal cpTR_PM0S is kept low (as shown in Fig. u), the level of the signal to be rotated into the pM0S transistor 31 is changed to the high level. Therefore, when the pM〇s transistor 31 remains in the closed state 128552.doc •38·200904168 2 'the nM〇s transistor 32 is set to the on state and the low level of the potential is transmitted to the gate signal TR(n) is output to Figure 11).斤' 匕f again, because, although the column selection signal φν LINE(n) is at the level ti6 攸. The position of the hainan is changed to the low level (as shown in FIG. 11), but if the timing signal or the timing signal and the low level of the ping signal cpTR_PMOS are low, the PMOS transistor 31 and the PMOS transistor 31 are to be input. The level of the signal of the nM〇S transistor 32 maintains this high level. Therefore, the transmission gate signal TR(4) of the potential VSS is output to the pixel section (as shown in Fig. 2). In this way, when the level of the transmission gate signal TR(4) changes from the high level to the low level and from the low level to the high level, the control section 152 turns the on signal ^R_pM〇s The level is changed such that the transfer gate junction is placed in a high impedance state during the & Therefore, once the change described above occurs, the PMOS transistor 31 and the s-transistor are immediately turned "on" to prevent the feedthrough current from flowing from the potential VDD to the potential vss. Therefore, the prevention is prevented. The low level of power supply fluctuations. In addition, in particular, the negative potential generated by the charging pump inside the wafer (on which the pixel driving circuit 15 is provided) is set to the low level potential state In this case, the load on the charging pump is eliminated. Therefore, the deterioration of the image quality of the pixel section can be prevented. In addition, the control section 152 can set the timing signal, the timing signal cPRRT or the turn-on signal center. The switching timing and pulse of the level of the touch 8 is changed to 128552.doc •39- 200904168 It is changed so that the transmission gate sequence and W or length·· bits can be changed during the following periods. The potential of 唬TR(n) is During the potential vdd, the potential of the transmission gate is deficient, and the potential of the R(n) is the period of the potential VSS and the period where the x & gate junction is in the -high impedance state (referred to as the period of the impedance) ). Poor skin > spit / ( Surface 'Μ T sequence number k φδΤΚ, timing signal (PRTR or Η start " is number (pTR + &, Α stay open - <Level conversion timing and pulse length change can be in any way (for example, the borrower in the borrower (not shown (10) implementation ^ (four) (four) section 152 = 'in the transmission gate money TR (8) level (four) In the case where the low level changes to the level of δ hai (such as ^ 2), the change period 152 can be placed in the high-impedance state and the feedback is suppressed. The flow of the current is passed. In addition, the control section is changed during the change of the position of the transmission gate signal, (4) from the high level to the low level (as shown in FIG. 13). 152 can connect the transmission to the "Wh λ ' ν impedance state, thereby suppressing the flow of the feedthrough current. As shown in Fig. 12, the position of the transmission gate signal TR(n) is From the low 'quasi-change to 3 hainan level', if the transmission gate junction is to be placed in the _high-impedance state during the change described, then the control section 152 is not in time before time t5 Ttl4 and changing the level of the on signal q>TR_PMOS from the high level to the time after time ti5 Therefore, since the γ 曰 电 电 电 电 置 置 置 置 置 置 置 置 置 置 置 HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC HC In the case where the high level is changed to the low level, the transmission gate junction is not placed in the high impedance state by 128552.doc -40·200904168. In addition, the position of the transmission gate signal (8) is changed.兮 隹, 隹 γ ^ This position is changed to k and low # (as shown in Figure 13) in the case of a change in the time to change the transmission gate, the control section kisses in time two silly time t丨3 and at the time f =: this: the level of the start signal ~ from this:: This, because the PMOS transistor 32 is placed in the -on state while the PMOS transistor 31 is placed in a close State, the position of the p-transmission idle signal TR(8) is changed from the low level to the high level, and the transmission gate junction is not placed in a high-impedance state. In addition, in addition to preventing the feedthrough current, more attention needs to be paid to shortening the high resistance = cycle to shorten the time or the clock cycle. 'In the case where the level of the transmission closed-loop signal TR(8) is changed from the high level to the low level, and the condition in which the transmission gate signal TR(4) is to be changed from the low level to the side position In the other case (as shown in Figure 14), the control section 152 prevents the transmission gate from being engaged in this example during the change described, which is in time. Time t3 before t, 2! The on signal (the level of pTR_PM〇S is changed from the low level to the high level) and the time tzl after time h is the on signal (pTR_PMOS level from the The high level changes to the low level, as shown in FIG. Specifically, the control section 丨52 sets the length of the pulse of the turn-on signal tpTR-PMOS to be longer than the length of the pulse of the timing signal cpSTR or the timing signal cpRTR. 128552.doc -41 - 200904168 In addition, when the timing signal cpSTR or the timing (4) of the timing (4) maintains the high level, the control section 152 can change the level of the opening signal CPTR-touch S to be at the same level. Turning between the on and off states (4) The state of the PMOS transistor 31 to provide or not provide - a high impedance period. So, for example, when the timing letter? “The STR or the position of the (10) in the ordinal signal of the day is as high as: punctuality can provide multiple high impedance periods or no south impedance period at all.

應注意,儘管上文說明該傳輸閘極信號⑶⑷,但對於 該重設信號RST⑷及該選擇信號SEL(n),亦可同樣藉由促 使該控制區段152將該等開啟信號cpRST_PM0S及 cpSEL—PM0S之位準改變成使得在該重設信號饥⑷及該 選擇信號S E L ( η)之位準之改變期間將該重設接合點及該選 擇接合點置人—高阻抗狀態來防止饋通電流從該電位VDD 流向該電位vss。 圖15顯示依據本發明之一第四具體實施例之一cM〇s影 像感測器之一像素驅動電路之一組態之一範例。 參考圖〗5,該像素驅動電路200包括一位址解碼器〗】、 一時序調整區段201、一驅動器區段102及一控制區段 2〇2該像素驅動電路200產生並輸出:個別地具有一中等 位準之一傳輸閘極信號TR(n)、一重設信號RsT(n)及一選 擇k號SEL(n);以及個別地具有言玄高位準或該低位準之— 傳輸閘極信號TR(n)、_重設信號RST(n)及一選擇信號 SEL(n)。 應注意’儘官圖1 5為解說方便起見而顯示產生該傳輸閘 328552.doc -42- 200904168 極信號TR(n)的該像素驅動電路200之一部分,但亦類似於 該傳輪閘極信號TR(n)而產生及輸出該重設信號RST(n)及 該選擇信號SEL(n)。應注意,該像素驅動電路2〇〇包括上 文參考圖1及8所說明的該些組件之若干共用組件,而在此 省略關於此類共同組件之重疊說明以避免冗餘。 在該時序調整區段201中,為調整該傳輸閘極信號TR(n) 之產生之時序,將兩個0R電路U1與112及兩個]^〇丁電路 113與114置放於該驅動器區段1〇2之前一級。該時序調整 區段20 1將輸入信號個別地輸入至該驅動器區段丨〇2之兩個 pMOS電晶體121及122與一 nMOS電晶體123以產生該傳輸 閘極信號TR(n)。 特定言之,將從該時序調整區段2〇丨的Ν〇τ電路24輸出 之k號輸入至該驅動器區段1 〇2之nM〇s電晶體i 23並且還 輸入至該等OR電路1U及112。另外,將從該控制區段2〇2 輸出之一用以控制該pMOS電晶體121之開啟之時序的開啟 信號tpTR—PMOSl輸入至該NOT電路113。該NOT電路113對 該開啟信號q>TR_PMOSl操作邏輯否定運算並將藉由該邏 輯否定獲得之一信號輸入至該〇尺電路U1。該〇R電路m 對從該NOT電路24輸出的信號與從該Ν〇τ電路113輸出的 h號進行邏輯OR運算,並將藉由該邏輯〇R運算獲得之一 信號輸入至該pMOS電晶體12 1。 另外,將從該控制區段2〇2輸出之一用以控制該?)]^〇8電 晶體122之開啟之時序的開啟信號φΤΓι_ρΜ〇82輸入至該 NOT電路丨丨4。該NOT電路丨14對該開啟信號φΤΙι一 1^〇82操 128552.doc •43· 200904168 作邏輯否定運算並將藉由該邏輯否定獲得之一信號輸入至 該OR電路112。該OR電路112對從該NOT電路24輸出的信 號與從該NOT電路114輸出的信號進行邏輯OR運算,並將 藉由該邏輯〇R運算獲得之一信號輸入至該pMOS電晶體 122 ° 以此方式,該OR電路U1使用從該NOT電路113輸出之信 號來產生欲輸入至該pMOS電晶體121之信號而與從該NOT 電路24輸出以便輸入至該nMOS電晶體123的信號分離。同 時’該OR電路112使用從該NOT電路114輸出之信號來產生 欲輸入至該pMOS電晶體122之信號而與欲輸入至該nM0S 電晶體123之信號分離。因此,該時序調整區段2〇1可個別 地控制該等pMOS電晶體121與122與該nMOS電晶體123。 該驅動器區段1 〇2回應於從該時序調整區段2〇丨供應之信 號而產生5亥傳輸閘極信號TR(n)。特定言之,在該驅動器 區段102中,該等pM0S電晶體121與122係並聯連接,而該 等pMOS電晶體121及122與該nMOS電晶體123係串聯連 接。該電位VDD1係作為一高位準電位連接至該13河〇8電晶 體121之源極,而該電位VDD2係作為一中等位準電位連接 至该pMOS電晶體122之源極’而該電位VSS係作為一低位 準電位連接至該nMOS電晶體123之源極。 將從該時序調整區段201的OR電路Ul&112與該Ν〇τ電 路24供應之信號分別輸入至該等pM〇s電晶體及122之 閘極與該nMOS電晶體123之閘極。 回應於向該等pMOS電晶體121及122與該nMOS電晶體 128552.doc -44 - 200904168 1 2 3的個別閘極供應之信號之位準而將該等電晶體置入— 開啟或關閉狀態,而使得在該等pMOS電晶體i 2 1及122與 β亥nMOS電bb體123的汲極係互相連接之一點(下面稱為= 連接點)處的電位改變為電位VDD1、電位VDD2或電位 VSS。將其電位係如適才所述而改變之信號作為該傳輸閘 極信號TR(n)施加於在該像素區段的第η列中之像素之傳輸 閘極。以此方式’该驅動益區段1 〇 2回應於從該時序調整 區段20 1供應之彳§號產生並輸出該傳輸閘極信號TR(n)。 該控制區段202在預定時序產生該等時序信號^丁尺及 (pRTR、開啟信號(pTR_PMOSl及q>TR_PM0S2等(其個別地 具有該高位準或該低位準)’並將所產生的信號供應至該 時序調整區段201。 應注意,儘管在圖1 5中該電位VDD2係連接至該pM〇s電 晶體1 22,但其或者可以係連接至一 nMOS電晶體。在此實 例中’該電位VDD2所連接之nMOS電晶體係並聯連接至該 nMOS電晶體123,而藉由將從該〇R電路112輸出的信號反 相而獲得之一信號係輸入至該nMOS電晶體之閘極。 現在’參考圖16說明與圖15所示像素驅動電路2〇〇中的 傳輸閘極信號TR(n)之輸出相關的信號之時序之一範例。 若該列選擇信號cpV_LINE(n)之位準在時間t5i從該低位 準改變為該高位準而接著該時序信號或該時序信號 cpRTR之位準在時間h從該低位準改變為該高位準(如圖工6 所不)’則欲輸入至該nMOS電晶體123的信號之位準變成 該低位準。另外,在此時間,若該等開啟信號 128552.doc •45- 200904168 PMOS1及(pTR—PMOS2之位準係低位準(如圖16所示),則欲 輸入至該等pMOS電晶體121與122兩者的信號之位準皆變 成該尚位準。因此,將該等pM〇s電晶體121及與該 iiMOS電晶體123皆置入一關閉狀態,而將該三連接點置入 一高阻抗(Hi-Z(l))狀態,如圖16所示。 因此,若該開啟信號(pTR—PMOSl之位準在時間t53從該 低位準改變為該高位準(如圖16所示),則當欲輸入至該 pMOS電晶體122的信號之位準保持該高位準而欲輸入至該 nMOS電晶體123的信號之位準保持該低位準時,欲輪入至 該pMOS電晶體121的信號之位準改變為該低位準。因此, 當該pMOS電晶體122及該nMOS電晶體123保持處於該關閉 狀態時,將該pMOS電晶體121置入一開啟狀態,而將該電 位VDD1之高位準的傳輸閘極信號TR(n)輸出至該像素區段 (如圖16所示)。 以此方式,當該時序信號φ8τκ或該時序信號中尺丁尺之位 準在時間t;52改變為該局位準時,儘管將該電晶體123 置入一關閉狀態而該電位VSS之低位準的傳輸閘極信號 TR(n)之輸出結束,但截至該開啟信號屮丁尺―pM〇s丨或該開 啟信號q>TR—PMOS2之位準變成該高位準之時間t53並不將 ^pMOS電晶體121或該pM〇s電晶體122置入一開啟狀態。 因此,將該三連接點置入一高阻抗狀態。 因此,若該開啟信號cpTR—PM〇sl之位準在時間h從該 间位準返回該低位準(如圖16所示),則儘管欲向該pM〇S 電晶體122及該nM〇s電晶體123輸入的信號之位準不改 128552.doc 46- 200904168 變’=欲向該PMQS電晶體121輪人的信號之位準亦會返回 至該冋位準。因此’當該pM〇s電晶體⑴及該邊⑽電晶 體123保持處於該關閉狀態時,該㈣⑽電晶體⑵之狀態 返回至4關閉狀態而將該三連接點置人—高阻抗(HU(2)) 狀態(如圖16所示)。 以此方式,該控制區段2〇2可將該開啟信號中pM〇si 之位準改變為_南位準而同時該時序信號ΜΗ或該時序 L號(pRTR之位準保持該高位準,從而將該pM〇s電晶體 121置入一開啟狀態以將該傳輸閘極信號TR(n)之位準改變 為該高位準。因此’該控制區段202可控制期間該開啟信 號cpTR—PMOS 1的位準保持該高位準而該時序信號…丁尺或 cpRTR的位準保持該高位準之週期,從而控制該pM〇s電晶 體121之開啟週期以控制期間該傳輸閘極信號TR(n)的位準 係該高位準之高位準週期之提供/省略、長度及開始時 序。 因此,若該開啟信號(pTR_PMOS2之位準在時間t55從該 低位準改變為該高位準(如圖丨6所示),則儘管欲向該 pMOS電晶體121及該nMOS電晶體123輸入的信號之位準不 改變,欲向該pMOS電晶體122輸入的信號之位準亦改變為 該低位準。因此’當該pMOS電晶體121及該nMOS電晶體 1 23保持處於該關閉狀態時’將該pMOS電晶體122置入一 開啟狀態’而將該電位VDD2之中等位準的傳輸閘極信號 TR(n)輸出至該像素區段(如圖16所示)。 因此,若該開啟信號cpTR_PMOS2之位準在時間t56從該 128552.doc -47- 200904168 高位準返回至該低位準(如圖i 6所示),則儘管欲向該 pMOS電晶體121及該nMOS電晶體123輸入的信號之位準不 改變,但欲向該pMOS電晶體122輸入的信號之位準亦會返 回至該高位準。因此,當該pM〇s電晶體1 2 1及該nMOS電 晶體123保持處於該關閉狀態時,該pM〇s電晶體122之狀 悲返回至該關閉狀態而將該三連接點置入一高阻抗(Hi_ Z ( 3 ))狀悲(如圖1 6所示)。 以此方式,該控制區段2〇2可將該開啟信號φΤΚ_ΡΜ〇82 之位準改變為該高位準而同時該時序信號9STR或該時序 k號tpRTR之位準係該高位準,從而將該pM〇s電晶體 置入一開啟狀態以將該傳輸閘極信號TR(n)之位準改變為 汶中等位準。因此,該控制區段2〇2可控制期間該開啟信 號(pTR_PMOS2的位準保持該高位準而該時序信號或 cpRTR的位準保持該高位準之週期,從而控制該pM〇s電晶 體122之開啟週期以控制期間該傳輸閘極信號tr⑷的位準 係該高位準之高位準週期之提供/省略 '長度及開 序。 接者,若該時序信號cpSTR或該時序信號中腿之位準在 時間t57從該高位準返回至該低位準(如圖Μ所示), 入至該nMOS電晶體1 91沾产站· Λ , 别 电曰曰體123的仏唬之位準改變為該高位 卜在^時間,右S亥等開啟信號cpTR—PMOS1及 仰—簡以㈣保持該低料(如圖16所外則欲輸入 至該專PMOS電晶體121與122的信號之 準。因此,當該等—電晶〜保持=二 128552.doc -48- 200904168 狀態時,將該nMOS電晶體123置入一開啟狀態而將該電位 vss之低位準的傳輪閘極信號TR(n)輸出至該像素區段(如 圖1 6所示)。It should be noted that although the transmission gate signal (3) (4) is described above, for the reset signal RST (4) and the selection signal SEL (n), the control section 152 can also be caused to cause the on signals cpRST_PM0S and cpSEL to be - The level of PM0S is changed such that the reset junction and the selected junction are placed in a high-impedance state during the change of the reset signal hunger (4) and the level of the selection signal SEL (η) to prevent the feedthrough current This potential VDD flows to the potential vss. Figure 15 shows an example of one configuration of one of the pixel drive circuits of a cM〇s image sensor in accordance with a fourth embodiment of the present invention. Referring to FIG. 5, the pixel driving circuit 200 includes a bit address decoder, a timing adjustment section 201, a driver section 102, and a control section 2〇2. The pixel driving circuit 200 generates and outputs: individually Having a medium-level transmission gate signal TR(n), a reset signal RsT(n), and a selection k-number SEL(n); and individually having a high level or a low level - a transmission gate Signal TR(n), _ reset signal RST(n), and a select signal SEL(n). It should be noted that the portion of the pixel driving circuit 200 that generates the transmission gate 328552.doc -42-200904168 pole signal TR(n) is shown for convenience, but is similar to the transmission gate. The reset signal RST(n) and the selection signal SEL(n) are generated and output by the signal TR(n). It should be noted that the pixel drive circuit 2 includes several common components of the components described above with reference to Figures 1 and 8, and overlapping descriptions of such common components are omitted herein to avoid redundancy. In the timing adjustment section 201, in order to adjust the timing of the generation of the transmission gate signal TR(n), two NR circuits U1 and 112 and two 〇 电路 circuits 113 and 114 are placed in the driver area. Stage 1〇2 before the level. The timing adjustment section 20 1 individually inputs the input signals to the two pMOS transistors 121 and 122 of the driver section 丨〇2 and an nMOS transistor 123 to generate the transmission gate signal TR(n). Specifically, the k number output from the Ν〇τ circuit 24 of the timing adjustment section 2〇丨 is input to the nM〇s transistor i 23 of the driver section 1 〇2 and is also input to the OR circuits 1U. And 112. Further, an ON signal tpTR_PMOS1 outputting one of the timings for controlling the turn-on of the pMOS transistor 121 from the control section 2〇2 is input to the NOT circuit 113. The NOT circuit 113 operates a logical negation operation on the ON signal q > TR_PMOS1 and inputs a signal obtained by the logic negation to the scale circuit U1. The 〇R circuit m performs a logical OR operation on the signal output from the NOT circuit 24 and the h number output from the Ν〇τ circuit 113, and inputs a signal obtained by the logic 〇R operation to the pMOS transistor. 12 1. In addition, one of the outputs from the control section 2〇2 is used to control this? The turn-on signal φΤΓι_ρΜ〇82 of the timing at which the crystal 122 is turned on is input to the NOT circuit 丨丨4. The NOT circuit 丨 14 performs a logical negation operation on the turn-on signal φ ΤΙ 一 〇 〇 128 552 552 552 552 552 552 552 552 552 552 552 552 552 552 552 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The OR circuit 112 performs a logical OR operation on the signal output from the NOT circuit 24 and the signal output from the NOT circuit 114, and inputs a signal obtained by the logic 〇R operation to the pMOS transistor 122°. In this manner, the OR circuit U1 uses a signal output from the NOT circuit 113 to generate a signal to be input to the pMOS transistor 121 to be separated from a signal output from the NOT circuit 24 for input to the nMOS transistor 123. At the same time, the OR circuit 112 uses the signal output from the NOT circuit 114 to generate a signal to be input to the pMOS transistor 122 to be separated from the signal to be input to the nMOS transistor 123. Therefore, the timing adjustment section 2〇1 can individually control the pMOS transistors 121 and 122 and the nMOS transistor 123. The driver section 1 〇 2 generates a 5 Hz transmission gate signal TR(n) in response to a signal supplied from the timing adjustment section 2 。. Specifically, in the driver section 102, the pMOS transistors 121 and 122 are connected in parallel, and the pMOS transistors 121 and 122 are connected in series with the nMOS transistor 123. The potential VDD1 is connected to the source of the 13-well transistor 121 as a high level potential, and the potential VDD2 is connected to the source of the pMOS transistor 122 as a medium level potential and the potential VSS is It is connected to the source of the nMOS transistor 123 as a low level potential. The signals supplied from the OR circuits U1 & 112 of the timing adjustment section 201 and the Ν〇τ circuit 24 are input to the gates of the pM 〇 s transistors and 122 and the gates of the nMOS transistors 123, respectively. In response to the level of the signals supplied to the respective gates of the pMOS transistors 121 and 122 and the nMOS transistors 128552.doc -44 - 200904168 1 2 3, the transistors are placed in an on or off state, The potential at the point where the pMOS transistors i 2 1 and 122 and the gate of the β-n nMOS bb body 123 are connected to each other (hereinafter referred to as = connection point) is changed to the potential VDD1, the potential VDD2, or the potential VSS. . A signal whose potential is changed as described above is applied as the transmission gate signal TR(n) to the transmission gate of the pixel in the nth column of the pixel section. In this manner, the drive benefit section 1 〇 2 generates and outputs the transmission gate signal TR(n) in response to the 彳§ number supplied from the timing adjustment section 201. The control section 202 generates the timing signals and the pRTR, the turn-on signals (pTR_PMOS1 and q>TR_PM0S2, etc. (which individually have the high level or the low level) at a predetermined timing and supply the generated signals Up to the timing adjustment section 201. It should be noted that although the potential VDD2 is connected to the pM〇s transistor 1 22 in FIG. 15, it may alternatively be connected to an nMOS transistor. In this example An nMOS transistor system to which the potential VDD2 is connected is connected in parallel to the nMOS transistor 123, and a signal signal is input to the gate of the nMOS transistor by inverting a signal output from the 〇R circuit 112. 'An example of the timing of the signal associated with the output of the transmission gate signal TR(n) in the pixel driving circuit 2A shown in Fig. 15 is explained with reference to Fig. 16. If the column selection signal cpV_LINE(n) is at the level The time t5i is changed from the low level to the high level, and then the timing signal or the level of the timing signal cpRTR is changed from the low level to the high level at time h (not shown in FIG. 6). The level of the signal of the nMOS transistor 123 becomes In this case, if the turn-on signals 128552.doc •45-200904168 PMOS1 and (pTR-PMOS2 are low level (as shown in Figure 16), then the pMOS is to be input. The level of the signals of both the crystals 121 and 122 becomes the same level. Therefore, the pM〇s transistor 121 and the iiMOS transistor 123 are placed in a closed state, and the three connection points are placed. Enter a high-impedance (Hi-Z(l)) state, as shown in Figure 16. Therefore, if the turn-on signal (pTR-PMOS1 level changes from the low level to the high level at time t53 (as shown in Figure 16) In the case where the level of the signal to be input to the pMOS transistor 122 is maintained at the high level and the level of the signal to be input to the nMOS transistor 123 is maintained at the low level, the pMOS transistor 121 is to be rotated. The level of the signal is changed to the low level. Therefore, when the pMOS transistor 122 and the nMOS transistor 123 remain in the off state, the pMOS transistor 121 is placed in an on state, and the potential VDD1 is The high level transmission gate signal TR(n) is output to the pixel section (as shown in FIG. 16). In this manner, when the timing signal φ8τκ or the level of the scale in the timing signal changes to the local level at time t; 52, although the transistor 123 is placed in a closed state and the potential VSS is low. The output of the transmission gate signal TR(n) ends, but the time t53 until the level of the turn-on signal "pM〇s" or the turn-on signal q>TR_PMOS2 becomes the high level does not cause the ^pMOS The crystal 121 or the pM〇s transistor 122 is placed in an open state. Therefore, the three connection points are placed in a high impedance state. Therefore, if the level of the turn-on signal cpTR_PM〇sl returns to the low level from the level at time h (as shown in FIG. 16), the transistor 122 and the nM〇s are intended to be directed to the pM〇S. The level of the signal input by the transistor 123 is not changed. 128552.doc 46- 200904168 Change '= The level of the signal to be turned to the PMQS transistor 121 will also return to the level. Therefore, when the pM〇s transistor (1) and the side (10) transistor 123 remain in the off state, the state of the (4) (10) transistor (2) returns to the off state and the three connection points are placed in a high impedance (HU ( 2)) Status (as shown in Figure 16). In this way, the control section 2〇2 can change the level of pM〇si in the turn-on signal to the_South level while the timing signal ΜΗ or the timing L number (the level of the pRTR maintains the high level, Therefore, the pM〇s transistor 121 is placed in an on state to change the level of the transmission gate signal TR(n) to the high level. Therefore, the control section 202 can control the on signal cpTR_PMOS during the control period. The level of 1 maintains the high level and the timing signal...the level of the squaring or cpRTR maintains the period of the high level, thereby controlling the turn-on period of the pM〇s transistor 121 to control the transmission gate signal TR(n) during control. The level of the high level is the supply/omission, length and start timing of the high level. Therefore, if the turn-on signal (pTR_PMOS2 level changes from the low level to the high level at time t55 (Figure 6) As shown, although the level of the signal to be input to the pMOS transistor 121 and the nMOS transistor 123 does not change, the level of the signal to be input to the pMOS transistor 122 also changes to the low level. When the pMOS transistor 121 and the nMOS transistor 1 23 remain In the off state, the pMOS transistor 122 is placed in an on state, and the equal-level transmission gate signal TR(n) in the potential VDD2 is output to the pixel segment (as shown in FIG. 16). If the level of the turn-on signal cpTR_PMOS2 returns from the high level of 128552.doc -47 - 200904168 to the low level at time t56 (as shown in FIG. 6), the pixel is intended to be electrically connected to the pMOS transistor 121 and the nMOS. The level of the signal input by the crystal 123 does not change, but the level of the signal to be input to the pMOS transistor 122 also returns to the high level. Therefore, when the pM〇s transistor 1 2 1 and the nMOS transistor When the 123 is kept in the off state, the pM〇s transistor 122 returns to the off state and the three connection points are placed into a high impedance (Hi_Z(3)) shape (as shown in Fig. 16. In this way, the control section 2〇2 can change the level of the turn-on signal φΤΚ_ΡΜ〇82 to the high level while the level of the timing signal 9STR or the timing k number tpRTR is the high level, thereby Putting the pM〇s transistor into an on state to place the transmission gate signal TR(n) Changing to a moderate level. Therefore, the control section 2〇2 can control the turn-on signal (the level of pTR_PMOS2 maintains the high level and the timing signal or the level of the cpRTR maintains the high level period, thereby controlling the The turn-on period of the pM〇s transistor 122 is such that the level of the transfer gate signal tr(4) during the control period is the supply/omitation of the length and the order of the high level of the high level. If the timing signal cpSTR or the timing The level of the leg in the signal returns from the high level to the low level at time t57 (as shown in FIG. ,), and enters the nMOS transistor 1 91 smear station Λ, the 曰曰 别 123 123 The level changes to the high level, and the turn-on signals cpTR_PMOS1 and sigma-supplement (4) hold the low material (the signals to be input to the dedicated PMOS transistors 121 and 122 as shown in FIG. 16). The standard. Therefore, when the state of the transistor - hold = two 128552.doc -48 - 200904168 state, the nMOS transistor 123 is placed in an on state and the low level of the potential vs. the gate signal TR(n) ) Output to the pixel segment (as shown in Figure 16).

因此’儘管該列選擇信號φν一LINE(n)之位準在時間t58 從該高位準改變為該低位準(如圖16所示),但若該時序信 號φδΤΚ或該時序信號及該等開啟信號(pTR—PMOS 1與 cpTR—PMOS2之位準保持該低位|,則欲冑入至該等pM〇s 電晶體121及122與該nMOS電晶體123的信號之位準保持該 高位準。因此,該電位vss之低位準的傳輸閘極信號TR(n) 繼續輸出至該像素區段(如圖16所示)。 如上所述,在圖丨6中,在該傳輸閘極信號TR(n)之位準 係從該低位準改變為該高位準、從該高位準改變為該中等 位準或從該t等位準改變為該低位準之情況下,該傳輸閑 極信號TR(n)之位準係改變成在上述改變期間之中途具有 一高阻抗狀態。以此方式,在上述改變期間可提供期間該 三連接點保持處於-高阻抗狀態之―週期,從而防止在該 改變期間該饋通電流從該電位VDD流向該電位vss。 另外,如圖16所示,期間該等開啟信號(pTR—PMOSl與 cpTR_PMOS2兩者之位準皆係該低位準而該時序信號咐r 或cpim^位準係該高位準之—週卿成—期間該三連接 點具有㈨阻抗狀恶之週期。因此,可以將該等開啟信號 cpTR_PM〇S丨與9TR—PM〇S2之位準之轉換時序及脈衝週期 改變成使得在-任意時序提供—期間該三連接點係處於一 高阻抗狀態之一任意長度的週期。 128552.doc -49- 200904168 例士可以&供單獨的高阻抗週期Hi-Z( 1)、單獨的週期 Hl_Z(2)、單獨的週期Hi_Z(3)、單獨的週期Hi-Z(l)及Hi-Z(2)、早獨的週期m_z(1)及Hiz(3)或單獨的週期出·ζ(2) 及Η〗-Ζ(3)。另外,除防止該饋通電流外在需要更加重視 縮短該高阻抗週期以縮短時間之情況T,該控制區段202 可能根本不提供任何高阻抗週期。 應庄意,對於該等信號之位準,可以藉由使用在該等控 制區#又52 1 03、152或202中提供的暫存器(未顯示)來設定 適用於該像素艇動電路5〇、100、150或200之-任意值。 應注意,儘管在前文參考圖丨丨至^及“所作之說明内容 中說明該時序㈣或該時序信號cpRTR之位準係該高 位準或该低位準,但此說明内容包括_其中該等時序信號 cpSTR與(pRTR兩者皆係該高位準或該低位準之情況以及一 其中該等時序信號咐r“Rtr之-信號之位準係該高位 準或a低位準而該等時序信號⑽⑺與?rtr之另—信號之 位準-般保持該低位準之情況。在後—情況下,I論該等 時序信號cpSTR^RTR之哪一㈣具有該高位準,皆可藉 由使用該開啟㈣來實施該高阻抗控制。 、應庄思,在本說明書中,說明記錄於一記錄媒體中的程 式之/驟可以係但不一定必須按所說明順序以—時間系列 來處理,π包括平行或個別執行而不以一時間系列來處理 之程序。 雖已使用特定的術語來說明本發明之較佳具體實施例, 但此類說明僅係'基於解說之目的,而應瞭解,彳以作一些 128552.doc -50- 200904168 改變及變化,而不偏離下列申請專利範圍之精神或範嘴。 熟習此項技術者應明白可取決於設計要求及其他因= =行各種修改、組合、次組合及變更,只要其屬於隨附 凊專利範圍或其等效者之範疇内。 、申 【圖式簡單說明】 圖1係顯示一現有像素驅動電路 電路圖; 4之-範例的一 圖2係解說在圖1所示驅動電 圖; Τ的、諕之時序之一時序 圖3係顯示依據本發明之一且 動電路之—組態之-範例的_電路圖體實知例之—像素驅 圖4至7係解說在圖3所示像素驅動 時序關係之時序圖; 中的信號之不同 圖8係顯示依據本發明之_ 動電路之一組態之一範例的4二體實施例之-像素驅 圖9係解說在圖8所示像素驅動 時序圖; 中的k號之時序之一 圖1 〇係顯示依據本發明之一第二 動電路之-組態之一範例的—電=體實施例之一像素驅 同時序關係之時序圖; 圖1 5係顯示依據本發明 —Μ 動電路之-組態之—範例”體實施例之-像素 ^ 幻電路圖; 圖11至U係解說在圖10所示像辛:動 時序關係之日#床闇. "、動電路中的信號之不 驅 圖1 6係解說在圖1 5所示像素 驅動雷% + 电路中的信號之時序之 128552.doc -51 . 200904168 一時序圖。 【主要元件符號說明】 10 像素驅動電路 11 位址解碼器 12 時序調整區段 13 驅動益區段 14 控制區段 21 AND電路 22 AND電路 23 OR電路 24 NOT電路 25 AND電路 26 NOT電路 27 AND電路 28 NOT電路 31 pMOS電晶體 32 nMOS電晶體 33 pMOS電晶體 34 nMOS電晶體 35 pMOS電晶體 36 nMOS電晶體 50 像素驅動電路 51 時序調整區段 52 控制區段 128552.doc - 52- 200904168 60 NOT電路 61 OR電路 62 OR電路 63 OR電路 64 NOT電路 65 NOT電路 66 NOT電路 100 像素驅動電路 101 時序調整區段 102 驅動為區段 103 控制區段 111 OR電路 112 OR電路 113 NOT電路 114 NOT電路 121 pMOS電晶體 122 pMOS電晶體 123 nMOS電晶體 150 像素驅動電路 151 時序調整區段 152 控制區段 200 像素驅動電路 201 時序調整區段 202 控制區段 128552.doc -53- 200904168 RST(n) 重設信號 SEL(n) 選擇信號 TR(n) 傳輸閘極信號 cpSEL 、cpRST 、(pSTR 及 (pRTR 時序信號 cpTRPMOS 、 cpRSTPMOS 及(pSEL_PMOS 開啟信號 cpTRPMOSl 開啟信號 q>TR_PMOS2 開啟信號 cpV_LINE(n) 列選擇信號 -54- 128552.docTherefore, although the level of the column selection signal φν_LINE(n) changes from the high level to the low level at time t58 (as shown in FIG. 16), if the timing signal φδΤΚ or the timing signal and the turn-on are turned on The signals (pTR-PMOS 1 and cpTR- PMOS 2 are maintained at the low level |, and the level of the signal to be applied to the pM 〇 s transistors 121 and 122 and the nMOS transistor 123 is maintained at the high level. The low-level transmission gate signal TR(n) of the potential vss continues to be output to the pixel segment (as shown in FIG. 16). As described above, in FIG. 6, the transmission gate signal TR(n) The transmission idle signal TR(n) is changed from the low level to the high level, from the high level to the medium level, or from the t level to the low level. The level change is changed to have a high impedance state midway during the above change period. In this manner, the period in which the three connection points remain in the -high impedance state during the change period can be provided, thereby preventing the change during the change period. The feedthrough current flows from the potential VDD to the potential vss. In addition, as shown in FIG. During the period, the on-signal (pTR-PMOS1 and cpTR_PMOS2 are both at the low level and the timing signal 咐r or cpim^ is at the high level - Zhou Qingcheng) during the three connection points (9) The period of the impedance-like evil. Therefore, the switching timing and the pulse period of the levels of the turn-on signals cpTR_PM〇S丨 and 9TR_PM〇S2 can be changed so that the three-connected point is at the time of the arbitrary timing supply. A period of any length of a high-impedance state. 128552.doc -49- 200904168 The case can be & for a separate high-impedance period Hi-Z (1), a separate period Hl_Z (2), a separate period Hi_Z (3 ), separate periods Hi-Z(l) and Hi-Z(2), early periods m_z(1) and Hiz(3) or separate periods ζ(2) and Η〗-Ζ(3) In addition, in addition to preventing the feedthrough current from being more important to shorten the high impedance period to shorten the time T, the control section 202 may not provide any high impedance period at all. It should be intentional, for the position of the signals. By default, the scratchpad (not shown) provided in the control area #52 1 03, 152 or 202 can be used. The setting is applicable to any value of the pixel boat circuit 5〇, 100, 150 or 200. It should be noted that although the timing (4) or the timing signal cPRTR is described in the foregoing description with reference to the drawings and the description thereof. The level is the high level or the low level, but the description includes _ wherein the timing signals cpSTR and (pRTR are both the high level or the low level and one of the timing signals 咐r "Rtr The -signal level is the high level or a low level and the timing signals (10)(7) and ? The other of rtr - the level of the signal - keeps the low level. In the latter case, which of the timing signals cpSTR^RTR (4) has the high level, the high impedance control can be implemented by using the turn (4). In the present specification, the description of the program recorded in a recording medium may be, but does not necessarily have to be, processed in a time series in the illustrated order, and π includes parallel or individual execution instead of one time. The series to handle the program. Although specific terms have been used to describe the preferred embodiments of the present invention, such description is only for the purpose of the explanation, but it should be understood that the changes and changes are made by some of the 128552.doc -50-200904168 instead of Deviate from the spirit or scope of the following patent application. Those skilled in the art should understand that various modifications, combinations, sub-combinations and alterations may be made depending on the design requirements and other factors, as long as they fall within the scope of the appended claims or their equivalents. FIG. 1 is a circuit diagram showing a conventional pixel driving circuit; FIG. 2 is an example of a driving electric diagram shown in FIG. 1; one of the timings of the Τ and 諕 timings is shown in FIG. FIG. 4 to FIG. 7 are diagrams showing a timing diagram of the pixel driving timing relationship shown in FIG. 3 according to one embodiment of the present invention and the configuration of the dynamic circuit. Different FIG. 8 shows a four-body embodiment of a configuration of one of the ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 is a timing diagram showing a sequential relationship of a pixel drive in an embodiment of a second dynamic circuit according to one embodiment of the present invention; FIG. 1 is a diagram showing the invention according to the present invention. Dynamic circuit - configuration - example "body embodiment - pixel ^ phantom circuit diagram; Figure 11 to U system diagram shown in Figure 10 like symplectic: dynamic timing relationship date #床暗. ", in the dynamic circuit The signal is not driven. Figure 6 shows the signal in the pixel-driven Ray % + circuit shown in Figure 15. Time series 128552.doc -51 . 200904168 A timing chart. [Main component symbol description] 10 pixel drive circuit 11 address decoder 12 timing adjustment section 13 drive benefit section 14 control section 21 AND circuit 22 AND circuit 23 OR circuit 24 NOT circuit 25 AND circuit 26 NOT circuit 27 AND circuit 28 NOT circuit 31 pMOS transistor 32 nMOS transistor 33 pMOS transistor 34 nMOS transistor 35 pMOS transistor 36 nMOS transistor 50 pixel drive circuit 51 timing adjustment section 52 control section 128552.doc - 52- 200904168 60 NOT circuit 61 OR circuit 62 OR circuit 63 OR circuit 64 NOT circuit 65 NOT circuit 66 NOT circuit 100 pixel drive circuit 101 Timing adjustment section 102 Drive as section 103 Control section 111 OR circuit 112 OR circuit 113 NOT circuit 114 NOT circuit 121 pMOS transistor 122 pMOS transistor 123 nMOS transistor 150 pixel drive circuit 151 timing adjustment section 152 control section 200 pixel drive circuit 201 timing adjustment section 202 control section 128552.doc -53- 200904168 RST(n) reset signal SEL(n) select signal TR(n) Transmit gate signals cpSEL, cpRST, (pSTR and (pRTR timing signals cpTRPMOS, cpRSTPMOS, and (pSEL_PMOS turn-on signal cpTRPMOSl turn-on signal q> TR_PMOS2 turn-on signal cpV_LINE(n) column select signal -54- 128552.doc

Claims (1)

200904168 十、申請專利範圍: 1. 一種用以驅動一像素之驅動裝置,其包含: 一第一pMOS型電晶體,其係連接至一第一電位; -第-nMOS型電晶體,其係串聯連接至該第一pM〇s 型電晶體且連接至一第二電位;以及 一控制區段,其經組態用以藉由使用一用以控制該第 一PM0S型電晶體與該第—nM〇s型電晶體之—之開啟之 f 時序的第-開啟信號來個別地控制該第—pM〇s型電晶 體與該第一 nMOS型電晶體· 在肩第pMOS型電晶體與該第—nM〇s型電晶體之間 的-節點處之-電位之—信號係作為—用以驅動該像素 之驅動信號而輸入至該像素。 2. 如請求項!之驅動裝置,其中該控制區段個別地控制該 第:PMOS型電晶體與該第一 nM〇s型電晶體以控制期間 該節點處的該電位係該第—電位之_第—電位週期、期 間該節點處的該電位係該第二電位之—第二電位週期及 期間該節點係處於—高阻抗狀態之一高阻抗週期之長度 及開始時序。 X 3. 如請求項2之驢動裝置,其中該控制區段控制該第一電 位週期、第二電位週期及高阻抗週期之該長度及該開始 時序使得-旦從該等第—及第二電位週期之—週期轉換 為該等週期之該另-週期便提供該高阻抗週期。 4_如請求項1之驅動裝置,其進一步包含: 一第二電晶體’其係—並聯連接至該第—pM〇s型電 128552.doc 200904168 晶體且連接至一第三電位的第二pM〇s型電晶體與—並 聯連接至該第一 nMOS型電晶體且連接至該第三電位的 第二nMOS型電晶體之_ ; 該控制區段藉由使用該第一開啟信號與一用以控制該 第二電晶體之開啟之該時序的第二開啟信號來個別地控 制該第一PM〇S型電晶體、第一nM〇s型電晶體及第二電 晶體; 在該第一PM〇S型電晶體、第一nM〇s型電晶體及第二 電晶體之間的一節點處之該電位之一信號係作為該驅動 信號而輪入至該像素。 5. 6. 一月求項4之驅動裝置,其中該控制區段個別地控制該 第—PM〇S電晶體、該第—nM〇st晶體及第二電晶體以 控制期間該節點處的該電位係該第一電位之第一電位週 期、期間該節點處的該電位係該第二電位之—第二電位 週期、期^亥節點處的該電位係該帛2電位之一第三電 : 立週期及期間該節點係處於一高阻抗狀態之一高阻抗週 期之該長度及該開啟時序。 如請求項5之驅動裝置’其中該控制區段控制該等第 :―、第三電位週期及高阻抗週期之該長度及該開 二Γ得一旦從該等第一、第二及第三電位週期之-'轉換不同週期便提供該高阻抗週期。 128552.doc200904168 X. Patent application scope: 1. A driving device for driving a pixel, comprising: a first pMOS type transistor connected to a first potential; - an -nMOS type transistor, which is connected in series Connected to the first pM〇s-type transistor and connected to a second potential; and a control section configured to control the first PMOS transistor and the first nM by using one The first-on signal of the f-timed period of the 〇s-type transistor is used to individually control the first-pM〇s-type transistor and the first nMOS-type transistor, and the first pMOS-type transistor and the first- The signal at the -node between the nM〇s type transistors is used to drive the driving signal of the pixel and input to the pixel. 2. The driving device of claim 1, wherein the control section individually controls the first: PMOS type transistor and the first nM 〇s type transistor to control the potential at the node during the control period to be the first potential The _th potential period, the potential at the node is the second potential - the second potential period and the period is the length of the high impedance period and the start timing of one of the high impedance states. X. The squib of claim 2, wherein the control section controls the length of the first potential period, the second potential period, and the high impedance period and the start timing such that the first and second The period of the potential period - the period into which the other period of the period is provided provides the high impedance period. 4) The driving device of claim 1, further comprising: a second transistor 'connected to the second pM of the first pM〇s type 128552.doc 200904168 crystal and connected to a third potential a 〇s-type transistor and a second nMOS-type transistor connected in parallel to the first nMOS-type transistor and connected to the third potential; the control section is used by using the first turn-on signal and Controlling, by the second turn-on signal of the timing of turning on the second transistor, the first PM〇S-type transistor, the first nM〇s-type transistor, and the second transistor; and the first PM〇 A signal of the potential at a node between the S-type transistor, the first nM〇s-type transistor, and the second transistor is rotated into the pixel as the driving signal. 5. The drive device of claim 4, wherein the control section individually controls the first PM〇S transistor, the first nM〇st crystal, and the second transistor to control the node at the node The potential is the first potential period of the first potential, the potential at the node is the second potential - the second potential period, the potential at the period is the third potential of the 帛2 potential: The length of the high-impedance period and the turn-on timing of the node in a high impedance state during the period and period. The driving device of claim 5, wherein the control section controls the length of the ::, the third potential period and the high impedance period, and the opening, the first, second, and third potentials The high-impedance period is provided by the cycle-'conversion of different cycles. 128552.doc
TW097114917A 2007-05-17 2008-04-23 Driving apparatus TWI388207B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007132098 2007-05-17
JP2007206000A JP4356781B2 (en) 2007-05-17 2007-08-08 Drive device

Publications (2)

Publication Number Publication Date
TW200904168A true TW200904168A (en) 2009-01-16
TWI388207B TWI388207B (en) 2013-03-01

Family

ID=40125546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114917A TWI388207B (en) 2007-05-17 2008-04-23 Driving apparatus

Country Status (4)

Country Link
JP (1) JP4356781B2 (en)
KR (1) KR101464749B1 (en)
CN (1) CN101309347A (en)
TW (1) TWI388207B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478905B2 (en) 2009-01-30 2014-04-23 キヤノン株式会社 Solid-state imaging device
KR101854187B1 (en) 2011-07-28 2018-05-08 삼성전자주식회사 Light sensing apparatus and method of driving the light sensing apparatus, and optical touch screen apparatus including the light sensing apparatus
JP6112963B2 (en) * 2013-05-10 2017-04-12 キヤノン株式会社 Imaging device
JP6349897B2 (en) * 2014-04-11 2018-07-04 株式会社デンソー Timing adjustment method for drive circuit and timing adjustment circuit for drive circuit
JP6838566B2 (en) * 2016-01-22 2021-03-03 ソニー株式会社 Transmitter, transmission method, and communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884057A (en) * 1994-09-13 1996-03-26 Toshiba Corp Output circuit device and its design method
JP3600103B2 (en) * 2000-02-04 2004-12-08 三洋電機株式会社 Buffer circuit and driver including buffer circuit
JP3667214B2 (en) * 2000-08-25 2005-07-06 キヤノン株式会社 Solid-state imaging device and driving method thereof
JP4797558B2 (en) * 2005-10-17 2011-10-19 ソニー株式会社 Solid-state imaging device, driving method thereof, and camera module

Also Published As

Publication number Publication date
JP4356781B2 (en) 2009-11-04
TWI388207B (en) 2013-03-01
JP2008312182A (en) 2008-12-25
KR101464749B1 (en) 2014-11-24
KR20080101768A (en) 2008-11-21
CN101309347A (en) 2008-11-19

Similar Documents

Publication Publication Date Title
JP4912000B2 (en) Shift register circuit and image display apparatus including the same
KR101768485B1 (en) Shift register
JP6340310B2 (en) Semiconductor integrated circuit device and wearable device
JP4499110B2 (en) Level shifter circuit, drive circuit, and display device
TW533400B (en) Shift register and liquid crystal display having the same
JP6952619B2 (en) Semiconductor device
JP5853104B2 (en) Level shift circuit
TW200904168A (en) Driving apparatus
US9276574B2 (en) Scan flip-flop circuits and scan test circuits including the same
TW559833B (en) Semiconductor device
WO2013089071A1 (en) Shift register, scan signal line driver circuit, display panel and display device
US7800575B2 (en) Display device
JP5530344B2 (en) Level shift circuit and drive circuit having the same
JP2005044493A (en) Shift register and display using same
US9966956B2 (en) Semiconductor integrated circuit device
JP2012124703A (en) Nonvolatile latch circuit and semiconductor integrated circuit
US10978154B2 (en) Semiconductor device
JP6630803B2 (en) Non-volatile memory block decoder and level shifter
TWI230509B (en) Latch-based pulse generator
JP3511355B2 (en) Output circuit
JP2006279883A (en) Driver circuit
JP6030741B2 (en) Level shift circuit
JP2012235381A (en) Output buffer circuit and input/output buffer circuit
TW471222B (en) Register and latch circuits
TW200405343A (en) Semiconductor memory