TW200903019A - Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer - Google Patents

Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer Download PDF

Info

Publication number
TW200903019A
TW200903019A TW96124766A TW96124766A TW200903019A TW 200903019 A TW200903019 A TW 200903019A TW 96124766 A TW96124766 A TW 96124766A TW 96124766 A TW96124766 A TW 96124766A TW 200903019 A TW200903019 A TW 200903019A
Authority
TW
Taiwan
Prior art keywords
coating
coating layer
layer
light attenuation
reflection
Prior art date
Application number
TW96124766A
Other languages
Chinese (zh)
Other versions
TWI342407B (en
Inventor
zheng-jie Zhang
xiu-feng Liu
Bi-Rui Guo
Original Assignee
Innovation & Infinity Global
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovation & Infinity Global filed Critical Innovation & Infinity Global
Priority to TW96124766A priority Critical patent/TWI342407B/en
Publication of TW200903019A publication Critical patent/TW200903019A/en
Application granted granted Critical
Publication of TWI342407B publication Critical patent/TWI342407B/en

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

A low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer includes a substrate and a coating module. The coating module is formed on a front surface of the substrate. The coating module is composed of a plurality of mixture coating layer and a plurality of metal coating layer that are alternately stacked with each other. The mixture coating layer includes both silicon carbide compound and Ti-based oxide.

Description

200903019 九、發明說明: 【發明所屬之技術鎖域】 社 本發明係爲1_結構及其 種具有可穿透的表面導電声之低法尤其係指 構(二)及其製作方法』 先衣減抗反射塗層 【先前技術】 習知的抗反射光學塗層的多層系 通則爲該光學塗層的表層的物質具有—低折射f ’該 Si〇2 ’折射率爲L46 ’或MgF2,折射率爲-138。缺而:丨: 將該抗反射塗層運用于顯示器工業時,例如呈 命丄田 之電腦螢幕或用於液晶顯示哭或電喂顯_ „/、几赇电政果 貝口續不器之低反射破墻 時、’在大1生産的過程中,存在—些瓶頸,其原因是該 學塗層結制導電層係由―絕緣層(例如叫或Mgy 燒製而成。 2200903019 IX. Description of the invention: [Technical lock domain to which the invention belongs] The invention is a low-method of a structure and a kind of penetrating surface conduction sound, especially a structure (2) and a manufacturing method thereof Anti-reflective coating [Prior Art] The multilayer system of the conventional anti-reflective optical coating generally has a low refractive index f 'the refractive index of the surface layer of the optical coating is 'L46' or MgF2, refractive The rate is -138. Lack of: 丨: When the anti-reflective coating is applied to the display industry, for example, it is a computer screen for life, or for liquid crystal display, crying or electric feeding _ „/, a few 赇 赇 果 贝 续When low-reflection breaks the wall, there are some bottlenecks in the process of production of large 1 because the conductive layer of the coating is made of an insulating layer (for example, called Mgy or 2gy. 2

一抗反射塗層的基本設計規則爲,佈置於一基板表面 的第一層爲具尚折射率之物質所構成(標示爲H),其後接 著一具低折射率之物質所構成(標示爲L)的第二層,因 此’習知的抗反射塗層的多層結構之規則爲HLHL或 HLHLHL,以高折射率(H)之物質爲IT0而低折射率(L) 之物質爲Si〇2爲例子,該四層結構分別爲 Glass/ITO/Si〇2/ITO/Si〇2。因爲ITO是·一透明的導電物質, 該多層結構的塗層的導電性低於每平方100歐姆(Ω),而 且當該導電塗層連結至地時,可用於電磁干擾(EMI)頻障 200903019 ⑨而’問題是該習知的光學多層結構的表面 物貝為s1〇2,且其厚度爲麵埃(A), ==具有惰?和一良好之電絕緣層,找用傳統The basic design rule for an anti-reflective coating is that the first layer disposed on the surface of a substrate is composed of a material having a refractive index (indicated as H), followed by a substance having a low refractive index (marked as The second layer of L), therefore the rule of the multilayer structure of the conventional anti-reflective coating is HLHL or HLHLHL, the substance with high refractive index (H) is IT0 and the material with low refractive index (L) is Si〇2 As an example, the four-layer structure is respectively Glass/ITO/Si〇2/ITO/Si〇2. Because ITO is a transparent conductive material, the coating of the multilayer structure has a conductivity of less than 100 ohms per square ohm (Ω), and can be used for electromagnetic interference (EMI) frequency barrier when the conductive coating is bonded to ground 200903019 9 and 'the problem is that the surface of the conventional optical multilayer structure is s1 〇 2, and its thickness is enamel (A), == has inertia and a good electrical insulation layer, find the tradition

SiO戶所pal於顯不益工業的過程中’電性接觸由外部之 2 0 ^之该燒製的1τ〇層是困難的,在使一金屬接In the process of SiO households in the process of industrial development, it is difficult to electrically contact the 1τ〇 layer which is fired by the outside.

Γ=〇層Γ地過程中,需要使用一超音波焊接製程去 二制以/ 2 a,以確保錫球與該ΙΤ0層產生良好接觸,此 -农程爲大量生産抗反射塗層的瓶頸。 ^另方面,由於液態錫和超音波的曝露能量的緣故, ,超音波,接製程微細的污染物,此外,該超音波焊接製 私亦έ於每匯流線上産生非持久性的接觸阻抗,這是因 爲超音波焊接製程無法保證㈣均勻的以相同的深度打破 该絕緣層而得到一均勻的接觸阻抗。 、上述之缺點會降低在運用習知的抗電磁干擾和抗反射 塗層的製私的良率和可靠.度。 【發明内容】 本發明之主要目的是提供一種具有可穿透的表面導電 層之低電阻光农減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)(二)’該低電阻 光衰減抗反射塗層可運用於半導體、光學頭、液晶顯示器、 陰極射線管、建築玻璃、觸控式感測器、螢幕濾波器、塑 膠網板塗層等工業。 本發明之另一目的是提供一種具有可穿透的表面導電 200903019 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(二)’該低電阻 光衰減抗反射塗層之表層的物質爲一可穿透的表面導電 層’而該可穿透的表面導電層的光反射率低於0.5%,該低 電阻光衰減抗反射塗層的阻抗介於每平方0.5Ω與0.7Ω之 間,而其穿透率爲55%至70%。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光哀減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)(二),本發明之 塗層結構其具有高導電性之特性,當其運用於電漿顯示器 之製造時,其具有電磁干擾屏障、光學視角低反射、高表 面硬度抗刮性、適度的光衰減效應等優點。例如,本發明 之塗層結構之表面阻抗介於每平方〇·5Ω與〇.7Ω之間,以 及具有足夠硬度去通過軍事標準]VQL-C-48497之耐刮測 試。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光哀減抗反射塗層結構(l〇w. resistivity light attenuation anti-reflection coating structure )(二),於完成塗 層換組之製作後,首先,設置一遮板(shutter)於該塗層模 組之上表面,其中該遮板的尺寸係小於該塗層模組,以使 得該塗層模組的上表面之邊緣曝露出來;然後,塗佈一層 導電層(conductive layer)於該塗層模組的上表面之邊緣, 以供接地(ground),而達到良好的電性接觸。其中,該導 電層係可為銀漿(silver paste )。 200903019 為了達成上述目的,本發明係提供一種具有可穿透的 表面導電層之低電阻光衰減抗反射塗層結構(1〇λν resistivity light attenuation anti-reflection coating structure )(二),其 包括有·· 一基板(substrate )及一塗層模組(coating module)。其中,該塗層模組係形成於該基板之一前表面 上’並且该塗層模組係由複數層碳;s夕化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide)的混合物塗層 (mixture coating layer)與複數層金屬塗層(metal coating layer)交替相疊而組成。 為了達成上述目的,本發明係提供一種具有可穿透的 表面&电層之低電阻光哀減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作方 法(一)’其步驟包括有:首先’提供一基板(substrate); 然後’形成一塗層模組(coating module)於該基板之一前 表面上’其中該塗層模組係由複數層;ε炭矽化合物(silic〇n carbide compound)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer)與複數層金屬塗層(metai coating layer )交替相疊而組成。 在一實施例中,該具有可穿透的表面導電層之低電阻 光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(二)包括有 9 層,第一塗 層、第一塗層、第三塗層、第四塗層、第五塗層、第六塗 層、第七塗層、第八塗層和第九塗層依序排列在基板上, 母一層將以物理厚度或光學厚度來描述,光學厚度係爲層 200903019 厚度與折射率之數學乘積,而爲設計波長的分數,在本發 明中,該設計波長爲520nm。 第一塗層或稱爲表面層係為可穿透的碳矽化合物 (silicon carbide compound)與含鈦氧化物(Ti_based 〇xide) 的混合物塗層(mixture coating layer),該碳矽化合物塗層 爲碳化矽(sic),該含鈦氧化物係為二氧化鈦(Ti〇2),並 且該碳矽化合物與含鈦氧化物的比例係為4〇%: 6〇%,該混 合物僅吸收些微的可見光,當波長爲52〇nm時,該表面層 之折射率係為2.5之間,而物理厚度爲3〇nm。 第一塗層係為一金屬塗層如gla声),該金 士塗層為銀(Ag),其僅吸收些微的可見光,當波長爲52〇腿 ^折射率介於“至。之間,而物理厚度 弟二塗層係為可穿透的碳石夕化合物(silicon carbide Τ3—1"0與含鈦氧化物(Ti-based。涵)的混合物塗層 layer)’該碳石夕化合物塗層爲碳化石夕 化合物盘H f化物料二氧化鈦(™2),並且該碳石夕 收i微的;見ΐ匕t以係為40%:60%,^^^ 係為2.5之間,而時,該表面層之折射率 第四塗層係為—金;H66nm。 屬塗層為銀(Ag),j:僅成土層(metalC〇atmglayer)’該金 時,其折射率介於/〇 i u收些微的可見光’當波長爲520nm 第五塗層係為可、〇.5之間’而物理厚度爲15-。 compound)與含鈦氧 勺石反矽化合物(仙⑽carbide 物(L-based oxide)的混合物塗層 200903019 (mixture coating layer ),該碳矽化合物塗層爲碳化石夕 (SiC),該含鈦氧化物係為二氧化鈦(Ti〇2),並且該石炭石夕 化合物與含鈦氧化物的比例係為4〇%: 6〇%,該混合物僅吸 收些微的可見光,當波長爲520nm時,該表面層之折射率 係為2.5之間’而物理厚度爲6〇nm。 第六塗層係為一金屬塗層(metal c〇ating layer),該金 屬塗層為銀(Ag)’其僅吸收些微的可見光,當波長爲520nm f 時,其折射率介於0.1至0.5之間,而物理厚度爲15nm。 第七塗層係為可穿透的碳石夕化合物(silic〇n carbide compound)與含鈦氧化物(Ti_based 〇xide)的混合物塗層 (mixture coating layer ),該碳矽化合物塗層爲碳化矽 (sic),該含鈦氧化物係為二氧化鈦(Ti〇2),並且該碳矽 化合物與含鈦氧化物的比例係為4〇%: 6〇%,該混合物僅吸 收t U的可見光,當波長爲52〇nm時,該表面層之折射率 係為2.5之間,而物理厚度爲7〇麵。 〇 、第八塗層係為一金屬塗層(metalC0atmglayer),該金 屬塗層為銀(Ag),其僅吸收些微的可見光,當波長爲 520nm k ί折射率介於0·1至0.5之間,而物理厚度爲15nm。 弟塗層係為可牙透的碳石夕化合物(siiicon carbide C〇mP〇Und)與含鈦氧化物(Ti-based oxide)的混合物塗層 j . C〇ating layer ),該碳石夕化合物塗層爲碳_化矽In the process of Γ=〇 layer Γ, an ultrasonic welding process is required to take 2 / 2 a to ensure good contact between the solder ball and the ΙΤ 0 layer. This - agricultural process is the bottleneck for mass production of anti-reflective coating. On the other hand, due to the exposure energy of liquid tin and ultrasonic waves, ultrasonic waves are used to process fine contaminants. In addition, the ultrasonic welding also produces non-persistent contact impedance on each bus line. This is because the ultrasonic welding process cannot guarantee (4) to uniformly break the insulating layer at the same depth to obtain a uniform contact resistance. These shortcomings reduce the yield and reliability of conventional anti-electromagnetic interference and anti-reflective coatings. SUMMARY OF THE INVENTION The main object of the present invention is to provide a low-resistance light-emitting anti-reflection coating structure (2) with a transparent surface conductive layer (2) Resistive light attenuating anti-reflective coatings can be used in industries such as semiconductors, optical heads, liquid crystal displays, cathode ray tubes, architectural glass, touch sensors, screen filters, plastic screen coatings, and the like. Another object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (2) having a transparent surface conduction 200903019 layer (the low resistance light attenuation anti-reflection) The material of the surface layer of the coating is a permeable surface conductive layer' and the light reflectivity of the permeable surface conductive layer is less than 0.5%, and the impedance of the low-resistance light-attenuating anti-reflective coating is between 0.5 and 0.5 Ω is between 0.7Ω and its penetration is 55% to 70%. Another object of the present invention is to provide a resistive light attenuation anti-reflection coating structure (II) having a transparent surface conductive layer. The structure has high conductivity characteristics, and when it is applied to the manufacture of a plasma display, it has the advantages of electromagnetic interference barrier, low optical reflection angle reflection, high surface hardness scratch resistance, moderate light attenuation effect and the like. For example, the coating structure of the present invention has a surface resistance of between 5 Ω and 〇7 Ω per square , and a sufficient hardness to pass the scratch test of the military standard VQL-C-48497. Another object of the present invention is to provide a resistive light attenuation anti-reflection coating structure (II) having a permeable surface conductive layer. After the manufacturing of the group, first, a shutter is disposed on the upper surface of the coating module, wherein the size of the shutter is smaller than the coating module, so that the upper surface of the coating module The edge is exposed; then, a conductive layer is applied to the edge of the upper surface of the coating module for grounding to achieve good electrical contact. Wherein, the conductive layer can be a silver paste. In order to achieve the above object, the present invention provides a low-resistance light-attenuation anti-reflection coating structure (2) having a permeable surface conductive layer, which includes · A substrate and a coating module. Wherein, the coating module is formed on a front surface of the substrate and the coating module is composed of a plurality of layers of carbon; a silicon carbide compound and a titanium-containing oxide (Ti-based oxide) The mixture coating layer is formed by alternately overlapping a plurality of metal coating layers. In order to achieve the above object, the present invention provides a method for fabricating a resistive light attenuation anti-reflection coating structure (1) having a permeable surface & 'The steps include: firstly providing a substrate; then forming a coating module on the front surface of one of the substrates, wherein the coating module is composed of a plurality of layers; The compound (silic〇n carbide compound) and the titanium-containing oxide (Ti-based oxide) mixture coating layer and a plurality of metal coating layers are alternately stacked. In one embodiment, the low resistivity light attenuation anti-reflection coating structure (II) having a transparent surface conductive layer comprises 9 layers, a first coating layer, and a first A coating layer, a third coating layer, a fourth coating layer, a fifth coating layer, a sixth coating layer, a seventh coating layer, an eighth coating layer and a ninth coating layer are sequentially arranged on the substrate, and the mother layer will be physically Described as thickness or optical thickness, the optical thickness is the mathematical product of the thickness of the layer 200903019 and the refractive index, and is the fraction of the design wavelength, which in the present invention is 520 nm. The first coating layer or surface layer is a mixture of a silicon carbide compound and a titanium-containing oxide (Ti_based 〇xide), and the carbon ruthenium compound coating is Sb, the titanium-containing oxide is titanium dioxide (Ti〇2), and the ratio of the carbonium compound to the titanium-containing oxide is 4%: 6〇%, and the mixture absorbs only a small amount of visible light. When the wavelength is 52 〇 nm, the surface layer has a refractive index of between 2.5 and a physical thickness of 3 〇 nm. The first coating is a metal coating such as gla, and the gold coating is silver (Ag), which absorbs only a small amount of visible light, when the wavelength is 52 〇 leg ^ refractive index is between "to," The physical thickness of the second coating is a penetrable carbon stone compound (silicon carbide Τ 3 - 1 " 0 and titanium-containing oxide (Ti-based han) mixture coating layer) 'the carbon stone compound coating The layer is a carbonized carbide compound disk H f material titanium dioxide (TM2), and the carbon stone is collected in the evening; see ΐ匕t is 40%: 60%, ^^^ is 2.5, and When the refractive index of the surface layer is the fourth coating is - gold; H66nm. The coating is silver (Ag), j: only the soil layer (metalC〇atmglayer) 'the gold, the refractive index is / 〇iu receives some microscopic visible light 'when the wavelength is 520nm, the fifth coating system is between 〇,5.' and the physical thickness is 15-. compound) and the titanium-containing oxygen sputum compound (Xian (10) carbide (L- a mixture of based oxides 200903019 (mixture coating layer), the carbon ruthenium compound coating is carbon carbide (SiC), and the titanium-containing oxide is titanium dioxide ( Ti〇2), and the ratio of the carboniferous compound to the titanium-containing oxide is 4%: 6〇%, the mixture absorbs only a small amount of visible light, and when the wavelength is 520 nm, the refractive index of the surface layer is Between 2.5 and a physical thickness of 6 〇 nm. The sixth coating is a metal c〇ating layer, which is silver (Ag)' which absorbs only a small amount of visible light when the wavelength is At 520 nm f, the refractive index is between 0.1 and 0.5, and the physical thickness is 15 nm. The seventh coating is a penetrating silic 〇n carbide compound and a titanium-containing oxide (Ti_based 〇) a mixture coating layer of xide), the carbon ruthenium compound coating is bismuth carbide (sic), the titanium-containing oxide system is titanium dioxide (Ti〇2), and the carbon ruthenium compound and titanium-containing oxide The ratio is 4〇%: 6〇%, and the mixture absorbs only visible light of t U. When the wavelength is 52〇nm, the surface layer has a refractive index of 2.5 and a physical thickness of 7〇. The eighth coating is a metal coating (metalC0atmglayer), the metal coating is silver (Ag), It absorbs only a small amount of visible light, when the wavelength is 520nm k ί, the refractive index is between 0·1 and 0.5, and the physical thickness is 15nm. The younger coating is a opaque carbonaceous compound (siiicon carbide C〇mP〇). Und) and a coating containing a titanium-containing oxide (Ti-based oxide), the carbon coating is carbon 矽

SiC ’該含鈦氧化物係為二氧化鈦(观),並且該碳石夕 化σ物與3鈦氧化物的比例係為4〇% : _,該混合物僅吸 收二微的可見光’當波長爲5施m時,該表面層之折射率 10 200903019 係為2.5之間’而物理厚度爲40nm。 因爲本發明之塗層結構的表層有良好的導電特性,上 具有可穿透的表面導電層之低電阻光衰減抗反射塗層結^ (low resistivity light attenuation anti-reflection c · structure)可以降低接地製程所需的工作負荷和增加大量= 産的良率和可靠度’其可運用於液晶顯示器或電製顯示器 之玻璃基板或塑膠基板上。 °SiC 'the titanium-containing oxide is titanium dioxide (view), and the ratio of the carbon stone to the titanium oxide is 4%: _, the mixture absorbs only two microscopic visible light' when the wavelength is 5 When m is applied, the surface layer has a refractive index of 10 200903019 of between 2.5 and a physical thickness of 40 nm. Since the surface layer of the coating structure of the present invention has good electrical conductivity, the low resistivity light attenuation anti-reflection c (structure) having a transparent surface conductive layer can reduce the grounding. The workload required for the process and the increase in mass = yield and reliability' can be applied to glass substrates or plastic substrates for liquid crystal displays or electro-displays. °

為了能更進一步瞭解本發明為達成預定目的所採取之技 術、手段及功效’請參閱以下有關本發明之詳細說明與附圖,相 信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭 解’然而所附圖式僅提供參考與說明用,並非用來對本發明加以 限制者。 【實施方式】 請參考第一圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(l〇w resistiv^y light attenuation anti-reflection coating structure )(二)之会士 構示意圖。由圖中可知,本發明所揭露之低電阻光衰減抗 反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(二)係包括有:一基板(substrate) s 及一塗層模組(coating module ) M。 其中,該基板S係可為一塑膠薄膜(Plastic film)或一 玻璃(glass)。而該塗層模組Μ係可為電漿顯示器(plasma display )或液晶顯示器(liquid crystal display)之基本塗層。 11 200903019 再者,該塗層模組Μ係包括:一第一塗層(first coating layer) 1,其形成於該基板S之一前表面上;一第二塗層 (second coating layer) 2,其形成於該第一塗層1上;一 第三塗層(third coating layer) 3,其形成於該第二塗層2 上;一第四塗層(fourth coating layer) 4,其形成於該第 三塗層3上;一第五塗層(fifth coating layer) 5,其形成 於該第四塗層4上;一第六塗層(sixth coating layer) 6, 其形成於該第五塗層5上;一第七塗層(seventli coating layer) 7,其形成於該第六塗層6上;一第八塗層(eighth coating layer) 8,其形成於該第七塗層7上;以及一第九 塗層(ninthcoatinglayer) 9,其形成於該第八塗層8上。 此外,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9皆為碳矽化合物(silicon carbide compound)與含鈦氧化物(Ti_based〇xide)的混合 物塗層(mixture coating layer),並且該第二塗層2、該第 四塗層4、該第六塗層6、及該第八塗層8皆為金屬塗層 (metal coating layer)。其中,該碳矽化合物係為破化矽 (sic),該含鈦氧化物係為二氧化鈦(Ti〇2),該碳矽化合 物(silicon carbide compound)與該含鈦氧化物(Ti-based oxide)的比例係為40% : 60%。並且該等金屬塗層係為銀 (Ag)。該等混合物塗層的折射率(refracdve index)係高 於該等金屬塗層。 因此,該塗層模組Μ係形成於該基板3之一前表面 上,並且該塗層模組Μ係由複數層碳矽化合物(silicon 12 200903019 carbide compound)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer)與複數層金屬塗層(metal coating layer)交替相疊而組成。 再者,該第一塗層、該第三塗層、該第五塗層、該第 七塗層、及該第九塗層的折射率(refractive index )皆為2.5, 並且該第二塗層、該第四塗層、該第六塗層、及該第八塗 層的折射率(refractive index)皆介於0.1〜0.5之間。另外, 該第一塗層的厚度係為30nm ;該第二塗層的厚度係介於 15nm;該第三塗層的厚度係為66nm;該第四塗層的厚度係 介於15nm ;該第五塗層的厚度係為60nm ;該第六塗層的 厚度係介於15nm ;該第七塗層的厚度係為70nm ;該第八 塗層的厚度係介於15nm;以及該第九塗層的厚度係為 40nm。 此外,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9之混合物塗層皆由直流或 脈衝直流減:鐘法(DC or AC magnetron sputtering method) 所形成,並且該第二塗層2、該第四塗層4、該第六塗層 6、及該第八塗層8之金屬塗層皆由直流或脈衝直流濺鍍 法(DC or AC magnetron sputtering method)所形成。並且, 該第一塗層1至該第九塗層9係由同軸或滾子對滾子真空 系統之蒸鑛或滅鑛製程(in-line or roll-to-roll vacuum evaporation/sputtering method )戶斤开> 成。 請參閱第二圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity 13 200903019 light attenuation anti-reflection coating structure)(二)之上 視示意圖。由圖中可知,本發明之低電阻光衰減抗反射塗 層結構更進一步包括:一塗佈於該塗層模組;Μ上表面的四 周邊緣之導電層(conductive layer) C,以供接地(ground)。 亦即,該用於接地之導電層C係塗佈於該塗層模組Μ之第 九塗層9之上表面的四周邊緣。換言之,於完成該塗層模 組Μ之製作後’首先’設置一遮板(Shutter) Β於該塗層模 組Μ之上表面,其中該遮板B的尺寸係小於該塗層模組 Μ,以使得該塗層模組Μ的上表面之邊緣曝露出來;然後, 塗佈一層導電層(conductive layer) C於該塗層模組Μ的上 表面之邊緣,以供接地(ground),而達到良好的電性接觸。 最後,移除該遮板B。其中,該導電層C係可為銀漿(silver paste) ° 請參閱第三圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光哀減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )之製作方法 (二)之流程圖。由流程圖可知,本發明之低電阻光衰減 抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方法,其步驟包括 有: S200 :提供一基板(substrate) S ; S202:形成一第一塗層(first coating layer) 1 於該基 板S之該前表面上,其中該第一塗層1係為碳 石夕化合物(silicon carbide compound)與含鈦氧 14 200903019 化物(Ti-based oxide)的混合物塗層(mixture coating layer); S204 :形成一第二塗層(second coating layer ) 2 於該 第一塗層1上,其中該第二塗層2係為金屬塗 層(metal coating layer ); S206 ··形成一第三塗層(third coating layer ) 3於該第 二塗層2上,其中該第三塗層3係為碳矽化合 物(silicon carbide compound)與含欽氧化物 (Ti-based oxide)的混合物塗層(mixture coating layer); S208 :形成一第四塗層(fourth coating layer) 4 於該 第三塗層3上,其中該第四塗層4係為金屬塗 層(metal coating layer); S210:形成一第五塗層(fifth coating layer) 5於該第 四塗層4上,其中該第五塗層5係為碳矽化合 物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide )的混合物塗層(mixture coating layer); S212:形成一第六塗層(sixth coating layer) 6於該第 五塗層5上,其中該第六塗層6係為金屬塗層 (metal coating layer ); S214 :形成一第七塗層(seventh coating layer) 7 於該 第六塗層6上,其中該第七塗層7係為碳石夕化 合物(silicon carbide compound)與含鈦氧化物 15 200903019 (Ti-based oxide )的混合物塗層(mixture coating layer); S216 :形成一第八塗層(eighth coating layer) 8 於該 第七塗層7上,其中該第八塗層8係為金屬塗 層(metal coating layer);以及 S218:形成一第九塗層(ninth coating layer) 9於該第 八塗層8上,其中該第九塗層9係為碳矽化合 物(silicon carbide compound)與含鈦氧化物 (Ti-based oxide)的混合物塗層(mixture coating layer) ° 综上所述,該低電阻光衰減抗反射塗層可運用於半導 體、、光學頭、液晶顯示器、陰極射線管、建築玻璃、觸控 式感測存、螢幕濾波器、塑膠網板塗層等工業。 此外,e亥低屯阻光衰減抗反射塗層之表層的物質爲一 I穿透的表面‘弘層,而該可穿透的表面導電層的光反射 二,於0_5% ’雜電阻絲減抗反射塗層的阻抗介於每平 ^與〇·7Ω之間’而其穿透率爲55%至70%。 1運用tit發明之塗層結構其具有高導電性之特性,當 其具有電磁干擾屏障、光 優點。例如,本發^、適度的綠減效應等 與0.7Ω之門、主層、、、°構之表面阻抗介於每平方0.5Ω mIL-C,497 3之耐二:J。有足約硬度去通過軍事標準 因爲本發明之塗層結構的表層有良好的導電特性,該 16 200903019 具有可穿透絲面導f層之低修絲減抗反射塗層結構 O〇w resistl_ hght att咖ation anti_refiecti〇n c⑽— structure )可以降低接地製程所需的工作負荷和增加大量生 産的良率和可靠度’其可運用於液晶顯示器或電聚顯示器 之玻璃基板或塑膠基板上。 ,惟’以上所述,僅為本發明最佳之一的具體實施例之 詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用 以限制本發明,本發明之所有範圍應以下述之申請專利範 圍為準,凡合於本發明申請專利範圍之精神與其類似變化 =貫施例’皆應包含於本發明L巾,任何熟悉該項技 藝者在本發明之領域内,可輕易思及之變化或修飾皆可涵 蓋在以下本案之專利範圍。 【圖式簡單說明】 第一圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)(二)之結構示意圖; 第二圖係為本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(二)之上視示意圖; 以及 第三圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方法(二) 17 200903019 之流程圖。 【主要元件符號說明】In order to further understand the technology, means and functions of the present invention for achieving the intended purpose, the following detailed description of the present invention and the accompanying drawings, which are believed to be The invention is not to be construed as limiting the invention. [Embodiment] Please refer to the first figure, which is a low-resistance light-attenuation anti-reflection coating structure having a transparent surface conductive layer of the present invention. (2) Schematic diagram of the association. As shown in the figure, the low resistivity light attenuation anti-reflection coating structure (2) of the present invention includes: a substrate s and a coating module ( Coating module ) M. The substrate S can be a plastic film or a glass. The coating module can be a basic coating of a plasma display or a liquid crystal display. 11 200903019 Furthermore, the coating module comprises: a first coating layer 1 formed on a front surface of the substrate S; a second coating layer 2, Formed on the first coating layer 1; a third coating layer 3 formed on the second coating layer 2; a fourth coating layer 4 formed on the a third coating layer 3; a fifth coating layer 5 formed on the fourth coating layer 4; a sixth coating layer 6 formed on the fifth coating layer 5; a seventh coating (seventli coating layer) 7, formed on the sixth coating 6, an eighth coating (eighth coating layer) 8, formed on the seventh coating 7; A ninth coating layer 9, which is formed on the eighth coating layer 8. In addition, the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are both a silicon carbide compound and a titanium-containing compound. a mixture coating layer of an oxide (Ti_based 〇xide), and the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 are all metal coated Metal coating layer. Wherein, the carbonium compound is a sic, the titanium-containing oxide is titanium dioxide (Ti〇2), the silicon carbide compound and the titanium-containing oxide (Ti-based oxide) The ratio is 40%: 60%. And the metal coating is silver (Ag). The refractive index of the coatings of the mixtures is higher than the metal coatings. Therefore, the coating module is formed on one of the front surfaces of the substrate 3, and the coating module is composed of a plurality of carbon monoxide compounds (silicon 12 200903019 carbide compound) and titanium-containing oxides (Ti-based). The oxide coating layer is formed by alternately overlapping a plurality of metal coating layers. Furthermore, the first coating layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer each have a refractive index of 2.5, and the second coating layer The fourth coating layer, the sixth coating layer, and the eighth coating layer have a refractive index of between 0.1 and 0.5. In addition, the thickness of the first coating layer is 30 nm; the thickness of the second coating layer is 15 nm; the thickness of the third coating layer is 66 nm; the thickness of the fourth coating layer is 15 nm; The thickness of the five coating layer is 60 nm; the thickness of the sixth coating layer is 15 nm; the thickness of the seventh coating layer is 70 nm; the thickness of the eighth coating layer is 15 nm; and the ninth coating layer The thickness is 40 nm. In addition, the mixture coating of the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 is reduced by DC or pulsed DC: Formed by DC or AC magnetron sputtering method, and the metal coating of the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 are all DC or pulsed. Formed by DC or AC magnetron sputtering method. And, the first coating layer 1 to the ninth coating layer 9 are in-line or roll-to-roll vacuum evaporation/sputtering method of the coaxial or roller-to-roller vacuum system Jin Jian > into. Please refer to the second figure, which is a low resistivity anti-reflection coating structure of the present invention having a transparent surface conductive layer (low resistivity 13 200903019 light attenuation anti-reflection coating structure) schematic diagram. As can be seen from the figure, the low-resistance light-attenuation anti-reflective coating structure of the present invention further comprises: a conductive layer C coated on the periphery of the upper surface of the coating layer for grounding ( Ground). That is, the conductive layer C for grounding is applied to the peripheral edges of the upper surface of the ninth coating layer 9 of the coating module. In other words, after the fabrication of the coating module is completed, a first shutter is disposed on the upper surface of the coating module, wherein the size of the shutter B is smaller than the coating module. So that the edge of the upper surface of the coating module is exposed; then, a conductive layer C is applied to the edge of the upper surface of the coating module for grounding, and Achieve good electrical contact. Finally, the shutter B is removed. Wherein, the conductive layer C can be a silver paste. Please refer to the third figure, which is a low-resistance light-reducing anti-reflective coating structure having a transparent surface conductive layer of the present invention (low) Resistivity light attenuation anti-reflection coating structure (2). The method for fabricating the low resistivity light attenuation anti-reflection coating structure of the present invention includes the following steps: S200: providing a substrate S; S202: forming a first coating layer 1 on the front surface of the substrate S, wherein the first coating layer 1 is a silicon carbide compound and a titanium-containing oxygen 14 200903019 compound (Ti-based a mixture coating layer; S204: forming a second coating layer 2 on the first coating layer 1, wherein the second coating layer 2 is a metal coating layer S206 · forming a third coating layer 3 on the second coating layer 2, wherein the third coating layer 3 is a silicon carbide compound and a salt-containing oxide ( a mixture coating layer of the Ti-based oxide; S208: forming a fourth coating layer 4 on the third coating layer 3, wherein the fourth coating layer 4 is a metal coating layer (metal coating l A210); S210: forming a fifth coating layer 5 on the fourth coating layer 4, wherein the fifth coating layer 5 is a silicon carbide compound and a titanium-containing oxide (Ti) a mixture coating layer of a -based oxide; S212: forming a sixth coating layer 6 on the fifth coating layer 5, wherein the sixth coating layer 6 is a metal coating layer ( Metal coating layer; S214: forming a seventh coating layer 7 on the sixth coating layer 6, wherein the seventh coating layer 7 is a silicon carbide compound and titanium oxide a mixture coating layer of 200903019 (Ti-based oxide); S216: forming an eighth coating layer 8 on the seventh coating layer 7, wherein the eighth coating layer 8 a metal coating layer; and S218: forming a ninth coating layer 9 on the eighth coating layer 8, wherein the ninth coating layer 9 is a carbon carbide compound ) a coating with a mixture of titanium-containing oxides (mixture co) At least the light-resistant anti-reflective coating can be applied to semiconductors, optical heads, liquid crystal displays, cathode ray tubes, architectural glass, touch sensing storage, screen filters, plastic nets. Board coating and other industries. In addition, the material of the surface layer of the low-lying light-blocking anti-reflective coating is an I-penetrating surface, and the light-reflecting of the transparent surface conductive layer is at 0_5% 'hybrid resistance minus The anti-reflective coating has an impedance between every ^·7·Ω and a penetration of 55% to 70%. 1 The coating structure invented by tit has high conductivity characteristics when it has an electromagnetic interference barrier and light advantage. For example, the surface of the method, the moderate green reduction effect, and the 0.7Ω gate, the main layer, and the surface impedance of the structure are between 0.5Ω mIL-C per square, and 497 3 is resistant to two: J. There is sufficient hardness to pass the military standard. Because the surface layer of the coating structure of the present invention has good electrical conductivity, the 16 200903019 has a low-filament anti-reflective coating structure that can penetrate the silk surface guide layer. O〇w resistl_ hght Att caation anti_refiecti〇n c(10)—structure) can reduce the workload required for the grounding process and increase the yield and reliability of mass production. It can be applied to glass substrates or plastic substrates for liquid crystal displays or electro-convex displays. And the present invention is not limited thereto, and is not intended to limit the present invention, and all the scope of the present invention should be limited to the above description. In the following claims, the spirit of the invention and the similar changes to the scope of the invention shall be included in the invention, and any one skilled in the art may be in the field of the invention. Any changes or modifications that are easily thought of can be covered in the scope of the patents in this case below. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of the structure of a low-resistance light-sensitive anti-reflection coating structure (2) having a transparent surface conductive layer of the present invention. The second figure is a top view of a low resistivity light attenuation anti-reflection coating structure (2) having a transparent surface conductive layer of the present invention; and a third figure A method for fabricating a low resistivity light attenuation anti-reflection coating structure (II) 17 200903019, which is a transparent surface conductive layer of the present invention. [Main component symbol description]

基板 S 塗層模組 Μ 第一塗層 1 第二塗層 2 第三塗層 3 第四塗層 4 第五塗層 5 第六塗層 6 第七塗層 7 第八塗層 8 第九塗層 9 遮板 Β 導電層 C 18Substrate S coating module Μ first coating 1 second coating 2 third coating 3 fourth coating 4 fifth coating 5 sixth coating 6 seventh coating 7 eighth coating 8 ninth coating Layer 9 Β Β Conductive layer C 18

Claims (1)

200903019 十、申請專利範圍: 1、 一種具有可穿透的表面導電層之低電阻光衰減抗反射 塗層結構(low resistivity light attenuation anti-reflection coating structure)(二),其包括有: 一基板(substrate);以及 一塗層模組(coating module),其形成於該基板之一前 表面上,並且該塗層模組係由複數層碳矽化合物 (silicon carbide compound )與含鈦氧化物(Ti-based oxide)的混合物塗層(mixture coating layer)與複 數層金屬塗層(metal coating layer)交替相疊而組成。 2、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該基板係為一塑膠薄膜(plastic film)。 3、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該基板係為一玻璃(glass)。 4、 如申請專利範圍第1項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該塗層模組係包括: 一第一塗層(first coating layer),其形成於該基板之一 前表面上; 19 200903019 一弟一塗層(second coating layer ),其形成於該第一塗 層上; 一第二塗層(third coating layer),其形成於該第二塗 層上; 一弟四塗層(fourth coating layer),其形成於該第三塗 層上; 一苐五塗層(fifth coating layer ),其形成於該第四塗層 上; 一弟六塗層(sixth coating layer),其形成於該第五塗 層上; 一弟七塗層(seventh coating layer ),其形成於該第六 塗層上; 一苐八塗層(eighth coating layer ),其形成於該第七塗 層上;以及 一弟九塗層(ninth coating layer ),其形成於該第八塗 層上; 其中’該第一塗層、該第三塗層、該第五塗層、該第 七塗層、及該第九塗層皆為碳矽化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide) 的混合物塗層(mixture coating layer),並且該第二 塗層、該第四塗層、該第六塗層、及該第八塗層皆 為金屬塗層(metal coating layer )。 如申請專利範圍第4項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity 20 200903019 light attenuation anti-reflection coating structure )(二.), 其中該碳矽化合物係為碳化矽(SiC),該含鈦氧化物 係為二氧化鈦(Ti02),並且該等金屬塗層係為銀(Ag)。 6、 如申請專利範圍第4項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該碳石夕化合物(silicon carbide compound)與該含 鈦氧化物(Ti-basedoxide)的比例係為40% : 60%。 7、 如申請專利範圍第4項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該專混合物塗層的折射率(refractiVe index )係高 於該等金屬塗層。 8、 如申請專利範圍第4項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 其中該第一塗層、該第三塗層、該第五塗層、該第七 塗層、及該弟九塗層的折射率(refractiVe index )皆為 2.5,並且該第二塗層、該第四塗層、該第六塗層、及 該第八塗層的折射率(refractive index)皆介於0.1〜0.5 之間。 9、 如申請專利範圍第4項所述之具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 21 200903019 其中: 該第一塗層的厚度係為3〇nm ; §亥第一塗層的厚度係介於15nm ; 該第三塗層的厚度係為66nm ; 該第四塗層的厚度係介於15nm ; §亥弟五塗層的厚度係為6〇nm ; 該第六塗層的厚度係介於15nm ; 該第七塗層的厚度係為70nm ; 該第八塗層的厚度係介於15nm ;以及 該第九塗層的厚度係為40nm。 1 0、如申請專利範圍第1項所述之具有可穿透的表面導 電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )(二), 更進一步包括:一塗佈於該塗層模組上表面的四周邊 緣之導電層(conductive layer ),以供接地(ground )。 1 1、一種具有可穿透的表面導電層之低電阻光衰減抗反 射塗層結構(low resistivity light attenuation anti-reflection coating structure )之製作方法(二),其 步驟包括有: 提供一基板(substrate);以及 形成一塗層模組(coating module)於該基板之一前表 面上,其中該塗層模組係由複數層碳矽化合物 (silicon carbide compound )與含鈦氧化物(Ti-based oxide)的混合物塗層(mixture coating layer)與複 22 200903019 數層金屬塗層(metal coating layer)交替相疊而組成。 1 2、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光哀減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作 方法(一)’其中該基板係為一塑膠薄膜(plastic film)。 1 3、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(l〇w resistivity light attenuation anti-reflection coating structure)之製作 方法(一)’其中該基板係為一玻璃(glass )。 1 4、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作 方法(二)’其中該形成該塗層模組之步驟係包括: 形成一第一塗層(first coating layer )於該基板之該前 表面上,其中該第一塗層係為;δ炭妙化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide) 的混合物塗層(mixture coating layer ); 形成一第二塗層(second coating layer)於該第一塗層 上,其中該第二塗層係為金屬塗層(metal coating layer); 形成一第三塗層(third coating layer)於該第二塗層 上’其中該第三塗層係為碳石夕化合物(silicon carbide c〇mp〇und)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer ); 23 200903019 形成一第四塗層(fourth coating layer)於該第三塗層 上’其中該第四塗層係為金屬塗層(metal coating layer); 形成一第五塗層(fifth coating layer )於該第四塗層上, 其中該第五塗層係為碳石夕化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer); 形成一第六塗層(sixth coating layer)於該第五塗層 上,其中該第六塗層係為金屬塗層(metal coating layer); 形成一第七塗層(seventh coating layer )於該第六塗層 上,其中該第七塗層係為碳;ε夕化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer); 形成一第八塗層(eighth coating layer)於該第七塗層 上,其中該第八塗層係為金屬塗層(metal coating layer);以及 形成一第九塗層(ninth coating layer)於該第八塗層 上,其中該第九塗層係為碳石夕化合物(silicon carbide compound)與含鈦氧化物(Ti-based oxide)的混合 物塗層(mixture coating layer )。 1 5、如申請專利範圍第1 4項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )之製作 24 200903019 人/卜—)’其中該碳矽化合物係為碳化矽(SiC),該 含欽氧化物係為二氧化鈦(Ti02),並且該等金屬塗層 係為銀(Ag)。 1 6:如申請專利範圍第14項所述之具有可穿透的表面 V電層之低电阻光衣減抗反射塗層結構(l〇w resistivity llght attenuation anti-reflection coating structure)(二), 其中该奴矽化合物(silicon carbide compound)與該含 鈦氧化物(Ti_based oxide)的比例係為40% : 60%。 1 7、如申請專利範圍第1 4項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層 結構(low resistivity light attenuation anti-reflection coating structure)之製作 方法(一)’其中該等混合物塗層的折射率(refractive index)係高於該等金屬塗層。 1 8、如申請專利範圍第1 4項所述之具有可穿透的表面 導電層之低電阻光哀減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作 方法(二)’其中該第一塗層、該第三塗層、該第五塗 層、該第七塗層、及該第九塗層的折射率(refractiVe index)皆為2.5,並且該第二塗層、該第四塗層、該第 六塗層、及該第八塗層的折射率(refractive index )皆 介於0.1〜0.5之間。 1 9、如申請專利範圍第14項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作 25 200903019 方法(二),其中: 該第一塗層的厚度係為30nm ; 該第二塗層的厚度係介於15nm ; 該弟二塗層的厚度係為66nm, 該第四塗層的厚度係介於15nm ; 該第五塗層的厚度係為60nm ; 該第六塗層的厚度係介於15nm ; 該第七塗層的厚度係為70nm ; 該第八塗層的厚度係介於15nm;以及 該第九塗層的厚度係為40nm。 2 0、如申請專利範圍第1 1項所述之具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製4乍 方法(二),更進一步包括: 設置一遮板(shutter)於該塗層模組之上表面,其中該 遮板的尺寸係小於該塗層模組,以使得該塗層模組 的上表面之邊緣曝露出來;以及 塗佈一層導電層(conductive layer)於該塗層模組的上 表面之邊緣,以供接地(ground)。 26200903019 X. Patent application scope: 1. A low resistivity light attenuation anti-reflection coating structure (2) having a transparent surface conductive layer, comprising: a substrate ( Substrate; and a coating module formed on a front surface of the substrate, and the coating module is composed of a plurality of layers of a silicon carbide compound and a titanium-containing oxide (Ti) The -based oxide composite coating layer is formed by alternately overlapping a plurality of metal coating layers. 2. A low resistivity light attenuation anti-reflection coating structure (2) according to the first aspect of the invention, wherein the substrate is A plastic film. 3. A low resistivity light attenuation anti-reflection coating structure (2) according to the first aspect of the invention, wherein the substrate is A glass. 4. A low resistivity light attenuation anti-reflection coating structure (2), wherein the coating mode is as described in claim 1, wherein the low resistivity light attenuation anti-reflection coating structure (2) The system includes: a first coating layer formed on a front surface of the substrate; 19 200903019 a second coating layer formed on the first coating layer; a third coating layer formed on the second coating layer; a fourth coating layer formed on the third coating layer; a fifth coating layer And formed on the fourth coating layer; a sixth coating layer formed on the fifth coating layer; a seventh coating layer formed on the sixth a coating on the coating; an eighth coating layer formed on the seventh coating; and a ninth coating layer formed on the eighth coating; wherein First coating, the The third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer are all a mixture coating of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide). And the second coating, the fourth coating layer, the sixth coating layer, and the eighth coating layer are all metal coating layers. a low resistivity 20 200903019 light attenuation anti-reflection coating structure (II.), wherein the carbon enthalpy has a penetrable surface conductive layer as described in claim 4 The compound is tantalum carbide (SiC), the titanium-containing oxide is titanium dioxide (Ti02), and the metal coating is silver (Ag). 6. A low resistivity light attenuation anti-reflection coating structure (2) according to claim 4, wherein the carbon stone The ratio of the silicon carbide compound to the titanium-containing oxide is 40%: 60%. 7. A low resistivity light attenuation anti-reflection coating structure (II) according to claim 4, wherein the special mixture is coated The refractive index of the layer (refractiVe index) is higher than the metal coating. 8. A low resistivity light attenuation anti-reflection coating structure (II) according to claim 4, wherein the first coating The refractive index (refractiVe index) of the layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer are both 2.5, and the second coating layer, the fourth coating layer, The sixth coating layer and the eighth coating have a refractive index of between 0.1 and 0.5. 9. A low resistivity light attenuation anti-reflection coating structure (II) as described in claim 4 of the patent application scope, 21 200903019 wherein: The thickness of the first coating layer is 3 〇 nm; the thickness of the first coating layer is 15 nm; the thickness of the third coating layer is 66 nm; the thickness of the fourth coating layer is 15 nm; The thickness of the fifth coating is 6 〇 nm; the thickness of the sixth coating is 15 nm; the thickness of the seventh coating is 70 nm; the thickness of the eighth coating is 15 nm; The thickness of the nine coatings was 40 nm. A low resistivity light attenuation anti-reflection coating structure (2) having a permeable surface conductive layer as described in claim 1, further comprising: A conductive layer applied to the peripheral edge of the upper surface of the coating module for grounding. 1 . A method for fabricating a low resistivity light attenuation anti-reflection coating structure having a permeable surface conductive layer (2), the steps comprising: providing a substrate (substrate And forming a coating module on a front surface of the substrate, wherein the coating module is composed of a plurality of layers of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide) The mixture coating layer is formed by alternately overlapping a plurality of 2009 200919 metal coating layers. 1 2, a method for manufacturing a low-resistance light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 11 ( a) 'where the substrate is a plastic film. 1 3, a method for manufacturing a resistive light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 11 (1) ) 'where the substrate is a glass. 1 . A method for fabricating a low resistivity light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 1 (2) The step of forming the coating module includes: forming a first coating layer on the front surface of the substrate, wherein the first coating layer is; δ carbon compound (silicon carbide compound) And a titanium-containing oxide (Ti-based oxide) mixture coating layer; forming a second coating layer on the first coating layer, wherein the second coating layer is a metal a metal coating layer; forming a third coating layer on the second coating, wherein the third coating is a carbon carbide c〇mp〇und and a titanium-titanium oxide (mixture coating layer); 23 200903019 forming a fourth coating layer on the third coating, wherein the fourth coating is a metal coating Forming a fifth coating layer on the fourth coating layer, wherein the fifth coating layer is a silicon carbide compound and a titanium-containing oxide (Ti- a mixture coating layer; forming a sixth coating layer on the fifth coating layer, wherein the sixth coating layer is a metal coating layer; a seventh coating layer on the sixth coating layer, wherein the seventh coating layer is carbon; a mixture of a silicon carbide compound and a titanium-containing oxide (Ti-based oxide) is coated a (method coating layer); forming an eighth coating layer on the seventh coating layer, wherein the eighth coating layer is a metal coating layer; and forming a ninth coating layer And a ninth coating layer on the eighth coating layer, wherein the ninth coating layer is a mixture coating layer of a silicon carbide compound and a Ti-based oxide. . 1 5, the production of a low resistivity light attenuation anti-reflection coating structure having a penetrable surface conductive layer as described in claim 14 of the patent application No. 24 200903019 -) ' wherein the carbonium compound is tantalum carbide (SiC), the tantalum oxide is titanium dioxide (Ti02), and the metal coating is silver (Ag). 1 6: l〇w resistivity llght attenuation anti-reflection coating structure (2), as described in claim 14 of the patent application scope, The ratio of the silicon carbide compound to the titanium oxide (Ti_based oxide) is 40%: 60%. 1. A method for fabricating a low resistivity light attenuation anti-reflection coating structure (1) as described in claim 14 of the patent application scope having a permeable surface conductive layer. Wherein the refractive index of the coating of the mixture is higher than the metal coating. 18. A method for fabricating a low resistivity light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 14 (2) The refractive index (refractiVe index) of the first coating layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer are both 2.5, and the second coating layer, The fourth coating layer, the sixth coating layer, and the eighth coating layer have a refractive index of between 0.1 and 0.5. Manufacture of a low resistivity light attenuation anti-reflection coating structure having a permeable surface conductive layer as described in claim 14 of the patent application 25 200903019 Method (2) Wherein: the thickness of the first coating is 30 nm; the thickness of the second coating is 15 nm; the thickness of the second coating is 66 nm, and the thickness of the fourth coating is 15 nm; The thickness of the fifth coating layer is 60 nm; the thickness of the sixth coating layer is 15 nm; the thickness of the seventh coating layer is 70 nm; the thickness of the eighth coating layer is 15 nm; and the ninth coating layer The thickness of the layer was 40 nm. 20, a low resistivity light attenuation anti-reflection coating structure having a penetrable surface conductive layer as described in claim 11 (2) And further comprising: providing a shutter on the upper surface of the coating module, wherein the shutter is smaller in size than the coating module, so that the edge of the upper surface of the coating module is exposed And coating a layer of a conductive layer on the edge of the upper surface of the coating module for grounding. 26
TW96124766A 2007-07-06 2007-07-06 Anti-reflection coating structure and method of making the same TWI342407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96124766A TWI342407B (en) 2007-07-06 2007-07-06 Anti-reflection coating structure and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96124766A TWI342407B (en) 2007-07-06 2007-07-06 Anti-reflection coating structure and method of making the same

Publications (2)

Publication Number Publication Date
TW200903019A true TW200903019A (en) 2009-01-16
TWI342407B TWI342407B (en) 2011-05-21

Family

ID=44722021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96124766A TWI342407B (en) 2007-07-06 2007-07-06 Anti-reflection coating structure and method of making the same

Country Status (1)

Country Link
TW (1) TWI342407B (en)

Also Published As

Publication number Publication date
TWI342407B (en) 2011-05-21

Similar Documents

Publication Publication Date Title
JP6106756B2 (en) Transparent conductive substrate and method for producing transparent conductive substrate
TW201211858A (en) Touch panel
JP2011134464A (en) Transparent conductive laminate and method of manufacturing the same, as well as touch panel
TW201539276A (en) Transparent conductor and touch panel
JPWO2014115770A1 (en) Transparent conductive substrate and method for producing the same
JP2011138135A (en) Transparent conductive film and display filter including the same
JP2007163995A (en) Substrate with transparent conductive film and manufacturing method thereof
WO2014156889A1 (en) Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film
JP2015219690A (en) Transparent conductive device and touch panel
TW200903019A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
TWI356184B (en) Low resistivity light attenuation anti-reflection
JP5777611B2 (en) Transparent conductive substrate
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP4162425B2 (en) Transparent substrate with conductive anti-reflection coating
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2009282256A (en) Coating layer structure of low resistance optical attenuation antireflection for making blue optical transmissivity improve, and manufacturing method therefor
TWI322277B (en)
TWI344012B (en) Anti-reflection coating structure and method of making the same
JP5987045B2 (en) Light transmissive conductive film, method for producing the same, and use thereof
WO2015011928A1 (en) Method for producing transparent conductive body
JP2009045752A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
TW200903521A (en) Low resistivity light attenuation anti-reflection coating with a transparent surface conductive layer
TW200938874A (en) Extreme low resistivity light attenuation anti-reflection coating structure for increasing light transmittance for blue light and manufacturing method thereof
JP2009045753A (en) Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
WO2014181538A1 (en) Transparent conductor and method for producing same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees