200903017 九、發明說明: 【發明所屬之技術領域] 本發明係爲一種塗居处i隹;Q # A , 種具有可穿透的表面導^層 尤其係‘ 構(一)及其製作方法(―)。 先衮減抗反射塗層結 【先前技術】 通則光學塗層的多層系統皆利用-通則,亨 該先學塗層的表層的物質具有―低折射率: 率爲1,46,或MgF2,折射率爲U8。然而,: 丄:抗反射塗層運用於顯示器工業時,例如具抗靜電效: ,綱用於液晶顯示器或物示器^ =在大量生產的過程中,存在—些瓶頸,其原因 構的導電層係由—絕緣層(例如叫或峨)所 -抗反射塗層的基本設計規則爲’佈置於一基板表面 的弟-層爲具高折射率之物質所構成(標示爲幻,盆後接 著-具低折射率之物質所構成(標示爲L)㈣二層,因 此’習知的抗反射塗層的多層結構之規則爲hlhl或 HLHLHL,以高折射率(H)之物質爲IT〇而低折射率⑴ 之物質爲Si〇2爲例子,該四層結構分別爲 Glass/ITO/Si〇2/ITO/Si〇2。因爲IT0是一透明的導電物質, 該多層結構的塗層的導電性低於每平方1〇〇歐姆(Ω),而 且當該導電塗層連結至地時,可用於電磁干擾(ΕΜι)頻障 或靜電放電。然而’問題是該習知的光學多層結構的表面 200903017 物貝爲Si02 ’且其厚度爲1〇〇〇埃(人) 性爲高密度、具有惰性和一良好之 ;Sl〇2的物質特 之抗反射塗層於顯干哭T f k ’在運用傳統 曰π顯不态工業的過程中,電性 Μ02層所隔離之該燒製的™層Μ難的,ί由^之 觸謂層的接地過程中,需要使用一超二 打破該现層,以確保錫球與該1则産 -製程爲大量生産抗反射塗層的瓶頸。 味觸,此 )f —方面’由於液態錫和超音波的曝露能量的緣故, ,超曰波焊接製程微細的污染物,此外,該超音波焊接雙 程亦會於每m産生料久㈣接觸阻抗,這是^ 爲超音波焊接製程無法保證能夠均自的以相同的深度打破 该絕緣層而得到一均勻的接觸阻抗。 、上述之缺點會降低在運用習知的抗電磁干擾和抗反射 塗層的製程的良率和可靠度。 【發明内容】 本發明之主要目的是提供一種具有可穿透的表面導電 層之低電阻光农減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)( —),該低電 阻光衰減抗反射塗層可運用於半導體、光學頭、液晶顯示 器、陰極射線管、建築玻璃、觸控式感測器、螢幕濾波器、 塑膠網板塗層等工業。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(一)’ 該低電 6 200903017 阻光衰減抗反射塗層之表層的物質爲一可穿透的表面導電 層,而該可穿透的表面導電層的光反射率低於0.5%,該低 電阻光衰減抗反射塗層的阻抗介於每平方0.5Ω與〇·7Ω之 間,而其穿透率爲55°/。至70%。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光哀減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)( —),本發明 之塗層結構其具有高導電性之特性,當其運用於電漿顯示 器之製造時’其具有電磁干擾屏障、光學視角低反射、高 表面硬度抗刮性、適度的光衰減效應等優點。例如,本發 明之塗層結構之表面阻抗介於每平方0.5Ω與0.7Ω之間, 以及具有足夠硬度去通過軍事標準MIL-C-48497之耐刮測 試。 本發明之另一目的是提供一種具有可穿透的表面導電 層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(一),於完成 塗層模組之製作後,首先,設置一遮板(shutter)於該塗層 模組之上表面,其中該遮板的尺寸係小於該塗層模組,以 使得該塗層模組的上表面之邊緣曝露出來;然後,塗佈一 層導電層(conductive layer)於該塗層模組的上表面之邊 緣,以供接地(ground),而達到良好的電性接觸。其中, 該導電層係可為銀漿(silver paste)。 為了達成上述目的,本發明係提供一種具有可穿透的 表面導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(一)’ 其 7 200903017 包括有.'基板(substrate )及—塗層模組(coating module)。其中’該塗層模組係形成於該基板之一前表面 上,並且該塗層模組係由複數層碳矽化合物塗層(silicon carbide compound coating layer)與複數層金屬塗層(metal coating layer )交替相疊而組成。 為了達成上述目的,本發明係提供一種具有可穿透的 表面導電層之低電阻光衣減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方 法(一)’其步驟包括有:首先’提供一基板(substrate); 然後,形成一塗層模組(coating module)於該基板之一前 表面上,其中該塗層模組係由複數層碳矽化合物塗層 (silicon carbide compound coating layer)與複數層金屬塗 層(metal coating layer)交替相疊而組成。 在一實施例中,該具有可穿透的表面導電層之低電阻 光衰減抗反射塗層結構(一)包括有9層,第一塗層、第 二塗層、第三塗層、第四塗層、第五塗層、第六塗層、第 七塗層、第八塗層和第九塗層依序排列在基板上,每一層 將以物理厚度或光學厚度來描述,光學厚度係爲層厚度與 折射率之數學乘積,而爲設計波長的分數,在本發明中, 該設計波長爲520nm。 第一塗層或稱爲表面層係為可穿透的碳矽化合物塗層 (silicon carbide compound coating layer),該碳矽化合物塗 層爲碳化矽(S i C),其僅吸收些微的可見光,當波長爲5 2 〇 n m 時,該表面層之折射率係為2.6之間,而物理厚度爲3〇nm。 200903017 第二塗層係為一金屬塗層(metal coating layer ),該金 屬塗層為銀(Ag),其僅吸收些微的可見光,當波長爲520nm 時,其折射率介於0.1至0.5之間,而物理厚度爲10nm到 18nm ° 弟二塗層係為可穿透的石反石夕化合物塗層(silicon carbide compound coating layer) ’該碳矽化合物塗層爲碳化 矽(SiC),其僅吸收些微的可見光,當波長爲52〇nm時, 該表面層之折射率係為2.6之間,而物理厚度爲66nm。 弟四塗層係為一金屬塗層(metal coating layer ),該金 屬塗層為銀(Ag) ’其僅吸收些微的可見光,當波長爲52〇nm 時’其折射率介於0.1至0.5之間,而物理厚度爲i〇nm到 18nm ° 第五塗層係為可穿透的碳矽化合物塗層(smc〇n carbide compound coating layer),該碳石夕化合物塗層爲碳化 石夕(sic),其僅吸收些微的可見光’當波長爲52〇nm時, 該表面層之折射率係為2.6之間,而物理厚度爲6〇nm。 第六塗層係為一金屬塗層(metal coating layer),該金 屬塗層為銀(Ag),其僅吸收些微的可見光,當波長爲52〇nm 時’其折射率介於0.1至0.5之間,而物理厚度爲1〇nm到 18nm。 第七塗層係為可穿透的碳矽化合物塗層(silic〇n carbide compound coating layer) ’該碳矽化合物塗層爲碳化 石夕(slC),其僅吸收些微的可見光,當波長爲52〇enm時, 该表面層之折射率係為2.6之間’而物理厚度爲7〇nm。 200903017 第八塗層係為一金屬塗層(metal coating layer),該金 屬塗層為銀(Ag),其僅吸收些微的可見光,當波長爲52〇nm 時’其折射率介於0.1至0.5之間’而物理厚度爲1 〇nm到 18nm。 第九塗層係為可穿透的碳矽化合物塗層(silic〇n carbide compound coating layer),該碳矽化合物塗層爲碳化 石夕(SiC),其僅吸收些微的可見光’當波長爲52〇nm時, 該表面層之折射率係為2.6之間,而物理厚度爲40nm。 因爲本發明之塗層結構的表層有良好的導電特性,該 具有可穿透的表面導電層之低電阻光衰減抗反射塗層結構 (low resistivity light attenuation anti-reflection coating structure)可以降低接地製程所需的工作負荷和增加大量生 産的良率和可靠度,其可運用於液晶顯示器或電漿顯示器 之玻璃基板或塑膠基板上。 為了胃b更進一步瞭解本發明為達成預定目的所採取之技 術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相 (: 信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭 解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以 限制者。 【實施方式】 凊爹考第-圖所示’其係為本發明具有可穿透的表面 .導電層之低電阻光衰減抗反射塗層結構(1〇w細也吻 light attenuation antl-reflecti〇n coating 也⑽⑽)(一)之結 構示意圖。由圖中可知,本發明所揭露之低電阻光衰減& 10 200903017 反射塗層結構(low resistivity light attenuation anti-reflection coating structure)( —)係包括有:一基板(substrate) S 及一塗層模組(coating module) M。 其中,該基板S係可為一塑膠薄膜(plasticfilm)或一 玻璃(glass)。而該塗層模組Μ係可為電漿顯示器(plasma display)或液晶顯示器(liquid crystal display)之基本塗層。 再者’該塗層模組Μ係包括:一第一塗層(first coating layer) 1,其形成於該基板S之一前表面上;一第二塗層 (second coating layer) 2,其形成於該第一塗層1上;一 第三塗層(third coating layer) 3,其形成於該第二塗層2 上;一第四塗層(fourth coating layer) 4,其形成於該第 三塗層3上;一第五塗層(fifth coating layer) 5,其形成 於該第四塗層4上;一第六塗層(sixth coating layer) 6, 其形成於該第五塗層5上;一第七塗層(seventh coating layer) 7,其形成於該第六塗層6上;一第八塗層(eighth coating layer) 8,其形成於該第七塗層7上;以及一第九 塗層(ninth coating layer) 9,其形成於該第八塗層8上。 此外,該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9皆為碳矽化合物塗層 (silicon carbide compound coating layer) ’ 並且該第二塗層 2、該第四塗層4、該第六塗層6、及該第八塗層8皆為 金屬塗層(metal coating layer)。其中,該等碳石夕化合物塗 層係為碳化矽(SiC),並且該等金屬塗層係為銀(Ag)。該 等石炭矽化合物塗層的折射率(refractive index )係高於該等 金屬塗層。 11 200903017 因此,該塗層模組Μ係形成於該基板S之一前表面 上’並且該塗層模組Μ係由複數層碳石夕化合物塗層(silicon carbide compound coating layer)與複數層金屬塗層(metal coating layer )交替相疊而組成。 再者,該第一塗層、該第三塗層、該第五塗層、該第 七塗層、及該第九塗層的折射率(refractive index)皆為2.6, 並且該第二塗層、該第四塗層、該第六塗層、及該第八塗 層的折射率(refractive index)皆介於0,1〜0.5之間。另外, 該第一塗層的厚度係為30nm ;該第二塗層的厚度係介於 10nm〜18nm之間;該第三塗層的厚度係為66nm ;該第四 塗層的厚度係介於10nm〜18nm之間;該第五塗層的厚度 係為60nm ;該第六塗層的厚度係介於l〇nm〜I8nm之間; 該第七塗層的厚度係為70nm ;該第八塗層的厚度係介於 10nm〜18nm之間;以及該第九塗層的厚度係為40nm。 此外’該第一塗層1、該第三塗層3、該第五塗層5、 該第七塗層7、及該第九塗層9之碳矽化合物塗層皆由直 流或脈衝直流錢鑛法(DC or AC magnetron sputtering method)所形成,並且該第二塗層2、該第四塗層4、該 第六塗層6、及該第八塗層8之金屬塗層皆由直流或脈衝 直流濺鍍法(DC or AC magnetron sputtering method)所形 成。並且,該第一塗層1至該第九塗層9係由同軸或滾子 對滾子真空系統之蒸鑛或藏鑛製程(in-line or roll-to-roll vacuum evaporation/sputtering method)戶斤形成。 請參閱第二圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity 12 200903017 light attenuation anti-reflection coating structure)(一)之上 視示意圖。由圖中可知,本發明之低電阻光衰減抗反射塗 層結構更進一步包括:一塗佈於該塗層模組Μ上表面的四 周邊緣之導電層(conductive layer ) C,以供接地(ground )。 亦即,該用於接地之導電層C係塗佈於該塗層模組μ之第 九塗層9之上表面的四周邊緣。換言之,於完成該塗層模 組Μ之製作後,首先,設置一遮板(shutter) Β於該塗層模 組Μ之上表面,其中該遮板B的尺寸係小於該塗層模組 Μ,以使得該塗層模組Μ的上表面之邊緣曝露出來;然後, 塗佈一層導電層(conductive layer) C於該塗層模組Μ的上 表面之邊緣,以供接地(ground) ’而達到良好的電性接觸。 最後,移除該遮板B。其中,該導電層C係可為銀漿(silver paste) 〇 請參閱第三圖所示,其係為本發明具有可穿透的表面 導電層之低電阻光衰減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure )之製作方法 (一)之流程圖。由流程圖可知,本發明之低電阻光衰減 抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方法,其步驟包括 有: S100 :提供一基板(substrate) S ; S102:形成一第一塗層(first coating layer) 1 於該基 板S之該前表面上,其中該第一塗層1係為碳 石夕化合物塗層(silicon carbide compound coating layer); 13 200903017 S104:形成一第二塗層(second coating layer) 2 於該 第一塗層1上,其中該第二塗層2係為金屬塗 層(metal coating layer); SI06:形成一第三塗層(third coating layer) 3於該第 ' 二塗層2上,其中該第三塗層3係為碳矽化合 物塗層(silicon carbide compound coating layer); S108 :形成一第四塗層(fourth coating layer) 4 於該 第三塗層3上,其中該第四塗層4係為金屬塗 層(metal coating layer); S110:形成一第五塗層(fifth coating layer) 5於該第 四塗層4上,其中該第五塗層5係為碳矽化合 物塗層 C silicon carbide compound coating layer); S112:形成一第六塗層(sixth coating layer) 6於該第 五塗層5上,其中該第六塗層6係為金屬塗層 (metal coating layer); i S114 :形成一第七塗層(seventh coating layer) 7 於該 第六塗層6上,其中該第七塗層7係為碳石夕化 合物塗層(silicon carbide compound coating layer); SI 16 :形成一第八塗層(eighth coating layer) 8 於該 第七塗層7上,其中該第八塗層8係為金屬塗 層(metal coating layer);以及 S118:形成一第九塗層(ninth coating layer) 9於該第 14 200903017 八塗層8上,其中該第九塗層9係為碳石夕化合 物皇層(silicon carbide compound coating layer)。 _二^所述’該低電阻光衰減抗反射塗層可運用於半導 員、液aa顯示器、陰極射線管、建築玻璃、觸控 ί之/、态、螢幕濾波器、塑膠網板塗層等工業。 ,该低電阻光衰減抗反射塗層之表層的物質爲一200903017 IX. Description of the invention: [Technical field to which the invention pertains] The present invention is a coating site i隹; Q # A , a type having a permeable surface conductive layer, particularly a structure (a) and a manufacturing method thereof ( ―). Firstly reduce the anti-reflective coating knot [Prior Art] General The multi-layer system of optical coating utilizes the general rule that the material of the surface layer of the coating has a low refractive index: 1,46, or MgF2, refraction The rate is U8. However: 丄: Anti-reflective coatings used in the display industry, for example, with antistatic effect: , for liquid crystal displays or display devices ^ = in the process of mass production, there are some bottlenecks, the reason for the conductive The basic design rule of the layer is made of an insulating layer (such as 峨 or 峨) - anti-reflective coating is 'the layer disposed on the surface of a substrate is composed of a substance with a high refractive index (marked as illusion, followed by a basin) - a material with a low refractive index (labeled as L) (four) two layers, so the rule of the multilayer structure of the conventional anti-reflective coating is hlhl or HLHLHL, and the substance with high refractive index (H) is IT〇 The material of low refractive index (1) is Si〇2, which is respectively Glass/ITO/Si〇2/ITO/Si〇2. Since IT0 is a transparent conductive material, the coating of the multilayer structure is conductive. The property is less than 1 ohm (Ω) per square, and can be used for electromagnetic interference (ΕΜι) frequency barrier or electrostatic discharge when the conductive coating is bonded to the ground. However, the problem is the surface of the conventional optical multilayer structure. 200903017 The object is SiO 2 ' and its thickness is 1 〇〇〇 ( Human) is high-density, inert and good; Sl〇2's special anti-reflective coating is used in the process of using the traditional 曰π-display industry, the electric Μ02 layer The isolation of the fired TM layer is difficult, and the grounding process of the touch layer is required to use a super-two to break the current layer to ensure that the solder ball and the one-production-process are mass-produced anti-reflection The bottleneck of the coating. Taste, this) f - aspect 'Because of the exposure energy of liquid tin and ultrasonic waves, the super-chopper welding process has fine contaminants. In addition, the ultrasonic welding will also produce materials per m. For a long time (four) contact impedance, this is ^ for the ultrasonic welding process can not guarantee that the insulation layer can be broken at the same depth to obtain a uniform contact impedance. The above disadvantages reduce the yield and reliability of the process using conventional anti-electromagnetic interference and anti-reflective coatings. SUMMARY OF THE INVENTION The main object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (-) having a transparent surface conductive layer, the low resistance light Attenuated anti-reflective coatings can be used in industries such as semiconductors, optical heads, liquid crystal displays, cathode ray tubes, architectural glass, touch sensors, screen filters, and plastic screen coatings. Another object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (1) having a permeable surface conductive layer. The low light 6 200903017 light blocking attenuation The surface layer of the anti-reflective coating is a penetrable surface conductive layer, and the light transmissive surface conductive layer has a light reflectance of less than 0.5%, and the low-resistance light-attenuating anti-reflective coating has an impedance of between The square is between 0.5Ω and 〇·7Ω, and its penetration is 55°/. Up to 70%. Another object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (-) having a permeable surface conductive layer, the coating structure of the present invention It has the characteristics of high conductivity, when it is used in the manufacture of plasma display, it has the advantages of electromagnetic interference barrier, low optical reflection angle, high surface hardness scratch resistance, moderate light attenuation effect and so on. For example, the coating structure of the present invention has a surface impedance between 0.5 Ω and 0.7 Ω per square, and has sufficient hardness to pass the scratch test of the military standard MIL-C-48497. Another object of the present invention is to provide a low resistivity light attenuation anti-reflection coating structure (1) having a transparent surface conductive layer. First, a shutter is disposed on the upper surface of the coating module, wherein the size of the shutter is smaller than the coating module, so that the edge of the upper surface of the coating module is exposed; Then, a conductive layer is applied to the edge of the upper surface of the coating module for grounding to achieve good electrical contact. Wherein, the conductive layer can be a silver paste. In order to achieve the above object, the present invention provides a low resistivity light attenuation anti-reflection coating structure (a) having a permeable surface conductive layer. [7, 200903017 includes. Substrate and coating module. Wherein the coating module is formed on a front surface of the substrate, and the coating module is composed of a plurality of layers of a carbon carbide compound coating layer and a metal coating layer. ) alternately stacked to form. In order to achieve the above object, the present invention provides a method for fabricating a low resistivity light attenuation anti-reflection coating structure (a) having a transparent surface conductive layer. There is: firstly providing a substrate; then forming a coating module on a front surface of the substrate, wherein the coating module is composed of a plurality of carbon carbide coatings (silicon carbide The compound coating layer is formed by alternately overlapping a plurality of metal coating layers. In one embodiment, the low resistance light attenuating anti-reflective coating structure (1) having a penetrable surface conductive layer comprises 9 layers, a first coating layer, a second coating layer, a third coating layer, and a fourth coating layer. The coating, the fifth coating, the sixth coating, the seventh coating, the eighth coating, and the ninth coating are sequentially arranged on the substrate, and each layer will be described by physical thickness or optical thickness, and the optical thickness is The mathematical product of the layer thickness and the refractive index is the fraction of the design wavelength, which in the present invention is 520 nm. The first coating, or surface layer, is a penetrable carbon carbide compound coating layer, and the carbonium compound coating is tantalum carbide (S i C), which absorbs only a small amount of visible light. When the wavelength is 5 2 〇 nm, the surface layer has a refractive index of 2.6 and a physical thickness of 3 〇 nm. 200903017 The second coating is a metal coating layer, which is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 520 nm, the refractive index is between 0.1 and 0.5. And the physical thickness is 10 nm to 18 nm °, the second coating is a penetrable silicon carbide compound coating layer. The carbon bismuth compound coating is tantalum carbide (SiC), which only absorbs A slight amount of visible light, when the wavelength is 52 〇 nm, the surface layer has a refractive index of 2.6 and a physical thickness of 66 nm. The fourth coating is a metal coating layer, which is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 52 〇nm, its refractive index is between 0.1 and 0.5. Between the physical thickness and the thickness of i〇nm to 18nm °, the fifth coating is a smc〇n carbide compound coating layer, and the carbon coating is a carbonized stone sic (sic ), which absorbs only a small amount of visible light'. When the wavelength is 52 〇 nm, the surface layer has a refractive index of 2.6 and a physical thickness of 6 〇 nm. The sixth coating is a metal coating layer, which is silver (Ag), which absorbs only a small amount of visible light, and has a refractive index of 0.1 to 0.5 when the wavelength is 52 〇 nm. The physical thickness is between 1 〇 nm and 18 nm. The seventh coating is a silic〇n carbide compound coating layer. The carbon ruthenium compound coating is carbon carbide (slC), which absorbs only a small amount of visible light when the wavelength is 52. In the case of 〇enm, the surface layer has a refractive index of between 2.6 and a physical thickness of 7 〇 nm. 200903017 The eighth coating is a metal coating layer, which is silver (Ag), which absorbs only a small amount of visible light. When the wavelength is 52 〇nm, its refractive index is between 0.1 and 0.5. Between 'the physical thickness is 1 〇 nm to 18 nm. The ninth coating is a silic〇n carbide compound coating layer, which is a carbonized stone (SiC), which absorbs only a small amount of visible light' when the wavelength is 52. At 〇nm, the surface layer has a refractive index of between 2.6 and a physical thickness of 40 nm. Since the surface layer of the coating structure of the present invention has good electrical conductivity, the low resistivity light attenuation anti-reflection coating structure having a transparent surface conductive layer can reduce the grounding process. The required workload and increased yield and reliability of mass production can be applied to glass substrates or plastic substrates for liquid crystal displays or plasma displays. For a better understanding of the techniques, means, and effects of the present invention in order to achieve the intended purpose, refer to the following detailed description of the invention and the accompanying drawings, in which: The present invention is to be understood as being limited and not limited by the scope of the invention. [Embodiment] Permeable surface. Low-resistance light-attenuation anti-reflective coating structure of conductive layer (1〇w) also shows the structure of light attenuation antl-reflecti〇n coating (10)(10)) (1). As can be seen from the figure, the present invention discloses The low resistivity light attenuation anti-reflection coating structure (-) includes: a substrate S and a coating module M. The substrate S can be a plastic film or a glass, and the coating module can be a plasma display or a liquid crystal display. The basic coating of the liquid crystal display. The coating module comprises: a first coating layer 1 formed on a front surface of the substrate S; a second a second coating layer 2 formed on the first coating layer 1; a third coating layer 3 formed on the second coating layer 2; a fourth coating layer (fourth coating layer) a coating layer 4 formed on the third coating layer 3; a fifth coating layer 5 formed on the fourth coating layer 4; a sixth coating layer 6 Formed on the fifth coating layer 5; a seventh coating layer 7 formed on the sixth coating layer 6; an eighth coating layer 8 formed on The seventh coating layer 7; and a ninth coating layer 9 formed on the eighth coating layer 8. Further, the first coating layer 1, the third coating layer 3, the first layer The fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are both a carbon carbide compound coating layer' and the second Layer 2, the fourth layer 4, a coating 6 of the sixth, eighth and the coating 8 are both a metal coating (metal coating layer). Wherein, the carbon coatings are tantalum carbide (SiC), and the metal coatings are silver (Ag). The refractive index of the coating of the anthrax compounds is higher than that of the metal coatings. 11 200903017 Therefore, the coating module is formed on one of the front surfaces of the substrate S and the coating module is composed of a plurality of layers of a silicon carbide compound coating layer and a plurality of layers of metal The metal coating layers are alternately stacked to form. Furthermore, the first coating layer, the third coating layer, the fifth coating layer, the seventh coating layer, and the ninth coating layer each have a refractive index of 2.6, and the second coating layer The refractive index of the fourth coating layer, the sixth coating layer, and the eighth coating layer are all between 0, 1 and 0.5. In addition, the thickness of the first coating layer is 30 nm; the thickness of the second coating layer is between 10 nm and 18 nm; the thickness of the third coating layer is 66 nm; the thickness of the fourth coating layer is between Between 10 nm and 18 nm; the thickness of the fifth coating layer is 60 nm; the thickness of the sixth coating layer is between 10 nm and I8 nm; the thickness of the seventh coating layer is 70 nm; The thickness of the layer is between 10 nm and 18 nm; and the thickness of the ninth coating is 40 nm. In addition, the first coating layer 1, the third coating layer 3, the fifth coating layer 5, the seventh coating layer 7, and the ninth coating layer 9 are coated with a direct current or a pulsed direct current money. a DC or AC magnetron sputtering method is formed, and the metal coating of the second coating layer 2, the fourth coating layer 4, the sixth coating layer 6, and the eighth coating layer 8 are all DC or Formed by DC or AC magnetron sputtering method. And, the first coating layer 1 to the ninth coating layer 9 are in-line or roll-to-roll vacuum evaporation/sputtering method households of a coaxial or roller-to-roller vacuum system. Jin is formed. Please refer to the second figure, which is a low resistivity anti-reflection coating structure of the present invention having a transparent surface conductive layer (low resistivity 12 200903017 light attenuation anti-reflection coating structure) (1) schematic diagram. As can be seen from the figure, the low-resistance light-attenuation anti-reflective coating structure of the present invention further comprises: a conductive layer C applied to the peripheral edge of the upper surface of the coating module for grounding (ground ). That is, the conductive layer C for grounding is applied to the peripheral edges of the upper surface of the ninth coating layer 9 of the coating module μ. In other words, after the fabrication of the coating module is completed, first, a shutter is disposed on the upper surface of the coating module, wherein the size of the shutter B is smaller than the coating module. So that the edge of the upper surface of the coating module is exposed; then, a conductive layer C is applied to the edge of the upper surface of the coating module for grounding' Achieve good electrical contact. Finally, the shutter B is removed. The conductive layer C may be a silver paste. Please refer to the third figure, which is a low-resistance light-attenuation anti-reflective coating structure having a transparent surface conductive layer of the present invention (low resistivity). Light attenuation anti-reflection coating structure (a). The method for fabricating the low resistivity light attenuation anti-reflection coating structure of the present invention includes the following steps: S100: providing a substrate S; S102: forming a first coating layer 1 on the front surface of the substrate S, wherein the first coating layer 1 is a silicon carbide compound coating layer; 13 200903017 S104: forming a first coating layer a second coating layer 2 on the first coating layer 1, wherein the second coating layer 2 is a metal coating layer; SI06: forming a third coating layer 3, on the 'second coating 2, wherein the third coating 3 is a carbon carbide compound coating layer; S108: forming a fourth coating layer 4 a third coating layer 3, wherein the fourth coating layer 4 is a metal coating layer; S110: forming a fifth coating layer 5 on the fourth coating layer 4, wherein the Five-coat 5 series is carbon矽a silicon coating compound coating layer; S112: forming a sixth coating layer 6 on the fifth coating layer 5, wherein the sixth coating layer 6 is a metal coating layer a S7: forming a seventh coating layer 7 on the sixth coating layer 6, wherein the seventh coating layer 7 is a carbon carbide compound coating layer; SI 16 : forming an eighth coating layer 8 on the seventh coating layer 7, wherein the eighth coating layer 8 is a metal coating layer; and S118: forming a ninth coating layer A ninth coating layer 9 is on the 14th 200903017 eight-coat layer 8, wherein the ninth coating layer 9 is a silicon carbide compound coating layer. _二^The 'low-resistance light-attenuation anti-reflective coating can be applied to semi-conductor, liquid aa display, cathode ray tube, architectural glass, touch ί /, state, screen filter, plastic stencil coating And other industries. The low-resistance light attenuates the surface layer of the anti-reflective coating layer
率低於面導電層,而該可穿透的表面導電層的光反射 ';·5/°,该低電阻光衰減抗反射塗層的阻抗介於每平 方 與〇.7Ω之間,而其穿透率爲55%至70%。 ,再者,本發明之塗層結構其具有高導電性之特性,當 二運用於*顯不器之製造時,其具有電磁干擾屏障、光 4*視角低反射、⑤表面硬度抗刮性、適度的光衰減效應等 優點。例如,本發明之塗層結構之表面阻抗介於每平方0.5Ω 與0.7Ω之間’以及具有足夠硬度去通過軍事標準 MIL-C-48497之耐刮測試。The rate is lower than the surface conductive layer, and the light reflection of the penetrable surface conductive layer is '5·°, the impedance of the low resistance light attenuating anti-reflective coating is between 每.7Ω per square, and The penetration rate is 55% to 70%. Furthermore, the coating structure of the present invention has high conductivity characteristics, and when it is used in the manufacture of a display device, it has an electromagnetic interference barrier, a light 4* viewing angle, low reflection, and 5 surface hardness scratch resistance. Moderate light attenuation effects and other advantages. For example, the coating structure of the present invention has a surface impedance between 0.5 Ω and 0.7 Ω per square and has sufficient hardness to pass the scratch test of the military standard MIL-C-48497.
因爲本發明之塗層結構的表層有良好的導電特性,該 具有可穿透的表面導電層之低電阻光衰減抗反射塗層結構 (low resistivity light attenuation anti-reflection coating structure )可以降低接地製程所需的工作負荷和增加大量生 産的良率和可罪度’其可運用於液晶顯示器或電漿顯示器 之玻璃基板或塑膠基板上。 惟,以上所述,僅為本發明最佳之一的具體實施例之 詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用 15 200903017 以限制本發明,本發明之財範_灯述之申 圍為準’凡合於本發明申請專利範圍之精;: 2施例’皆應包含於本發明之謝,任何熟;= ^在本發明之領域内,可輕易思及之變化或㈣皆可涵 盍在以下本案之專利範圍。 【圖式簡單說明】 第一圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(l〇w resistivity light attenuati〇n anti-reflection coating structure)(一)之結構示意 圖; 第一圖係為本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)(一)之上視示意 圖;以及 第三圖係爲本發明具有可穿透的表面導電層之低電阻光衰 減抗反射塗層結構(low resistivity light attenuation anti-reflection coating structure)之製作方法(一) 之流程圖。 【主要元件符號說明】 基板 S 塗層模組 Μ 第一塗層 1 弟二塗層 2 16 200903017 第三塗層 第四塗層 第五塗層 第六塗層 第七塗層 第八塗層 第九塗層 遮板Since the surface layer of the coating structure of the present invention has good electrical conductivity, the low resistivity light attenuation anti-reflection coating structure having a permeable surface conductive layer can reduce the grounding process. The required workload and increased yield and sin of mass production can be applied to glass substrates or plastic substrates for liquid crystal displays or plasma displays. However, the above description is only a detailed description and a detailed description of the specific embodiments of the present invention, but the features of the present invention are not limited thereto, and the present invention is not limited by the use of 15 200903017. _ The description of the syllabus is based on the essence of the patent application scope of the present invention; 2 The application examples should be included in the present invention, any cooked; = ^ in the field of the invention, can be easily considered The changes or (4) may be covered by the following patents in this case. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a low-resistance light-attenuation anti-reflective coating structure (1) of the present invention having a transparent surface conductive layer. The first diagram is a schematic diagram of a low resistivity light attenuation anti-reflection coating structure (1) of the present invention having a transparent surface conductive layer; and a third The figure is a flow chart of a method (1) for fabricating a low resistivity light attenuation anti-reflection coating structure having a transparent surface conductive layer. [Main component symbol description] Substrate S coating module Μ First coating 1 Second coating 2 16 200903017 Third coating Fourth coating Fifth coating Sixth coating Seventh coating Eightth coating Nine-coated shutter