TW200902884A - Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism - Google Patents

Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism Download PDF

Info

Publication number
TW200902884A
TW200902884A TW096148562A TW96148562A TW200902884A TW 200902884 A TW200902884 A TW 200902884A TW 096148562 A TW096148562 A TW 096148562A TW 96148562 A TW96148562 A TW 96148562A TW 200902884 A TW200902884 A TW 200902884A
Authority
TW
Taiwan
Prior art keywords
electric motor
transmission
transmission mechanism
ratio
value
Prior art date
Application number
TW096148562A
Other languages
Chinese (zh)
Other versions
TWI335392B (en
Inventor
Kazutoshi Ishioka
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Publication of TW200902884A publication Critical patent/TW200902884A/en
Application granted granted Critical
Publication of TWI335392B publication Critical patent/TWI335392B/en

Links

Abstract

To provide a transmission in which it is possible to estimate the heat value of an electric motor with a simple constitution. A motorcycle 1 is provided with a transmission 20. The transmission 20 has a transmission mechanism 20a and an ECU 7. The transmission mechanism 20a includes: a crankshaft 11 as an input shaft, a driven shaft 27 as an output shaft, and an electric motor 30. The electric motor 30 changes continuously the transmission ratio between the crankshaft 11 and the driven shaft 27. The ECU 7 estimates the heat value of the motor 30 from the rate of change in the transmission ratio.

Description

200902884 九、發明說明: 【發明所屬之技術領域】 本發明關於:―種用於一傳動機構的控制裝置, 動機構,-種具備該機構之車輛,一種控制該傳動 方法’及-種估算該傳動機構中電動馬達之熱值的 特別是’本發明關於-種用於-電子控制式傳動機 制褒置’且其傳動比藉由—電動馬達改變,一種電 r 式傳動機構,且其傳動比藉由一電動馬達改變,一 機構之車輛,一種控制該電子控制式傳動機構之 且其傳動比藉由該電動馬達改變,及一種估算該電 式傳動機構内之電動馬達之熱值的方法,且其傳動 該電動馬達改變。 【先前技術】 -無段變速器已屬習知,即其傳動比可利用一電動馬達200902884 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to: a control device for a transmission mechanism, a moving mechanism, a vehicle having the mechanism, a method of controlling the transmission, and an estimation of the In particular, the heat value of the electric motor in the transmission mechanism is 'the invention relates to the electronic control type transmission mechanism' and its transmission ratio is changed by the electric motor, an electric r-type transmission mechanism, and the transmission ratio thereof By means of an electric motor, a vehicle of a mechanism, a method of controlling the electronically controlled transmission and varying its transmission ratio by the electric motor, and a method of estimating the heating value of the electric motor in the electric transmission mechanism, And it drives the electric motor to change. [Prior Art] - A stepless transmission is conventionally known, that is, an electric motor can be utilized for the transmission ratio

L 一種傳 機構之 方法。 構的控 子控制 種具備 方法, 子控制 比藉由 =段式改變(文後稱為ECVT,其全名為··電子式無段變速 器)(如專利文件i所述)。 [專利文件1 ] JP-A-2004-19740 在電子式無段變速器(ECVT)中,電動馬達常因傳動比改 1而反向驅動。結果,較大之熱量即由電動馬達產生,導 電動馬達與其驅動電路之溫度、及馬達性能降低之可能 性升高。 較佳為監視馬達之溫度或熱值,使馬達之溫度不 超過馬逵夕 ^ 谷許使用溫度範圍。例如,一估算馬達溫度 127664.doc 200902884 之方法即可以考慮’其中溫度感測器設置於馬達、其驅動 電路等上。因為馬達之熱值係與流過馬達之電流之平方成 比例,所以另-可以考慮的估算馬達溫度之方法為設置— 電流感測n以量測流過馬達之電流,並從量測到之電流估 算出馬達之熱值。 、惟’上述該等方法皆需要設置各別溫度感測器與電流感 測器。結果,ECVT之構造及控制會不必要地變得複雜。 【發明内容】 本發明係鑑於以上諸,點而發展出纟。因在匕,本發明之一 目的在提供一種變速器,其可利用一簡便構造以估算電動 馬達之熱值。 附帶地’儘管欲解決之問題在本文内是以ecvt舉例說 明,欲解決之問題大體上仍為利用—㈣馬達以改變傳動 比之變速器。 本發明之控制裝置為一無段變速傳動機構之一控制裝 置,其由一輸入軸、一輸出#、及一用於改變該輸入軸盥 該輸出軸之間之一傳動比的電動馬達構成。本發明之控制 裝置係在該傳動比之-變化率基礎上估算該電動 值。 … 本發明之無段變速器係由—無段變速傳動機構、及一控 制段構成。該無段變速傳動機構包括—輸人軸、—輸出 軸、及-電動馬達。該電動馬達無段式改變該輸入轴㈣ 輸出軸之間之-傳動比。該控制段係在該傳動比之變化率 基礎上估算該電動馬達之熱值。 127664.doc 200902884 本發明之車輛包括本發明之無段變逮器。 本夯月之控制方法係一控制該無段變 法,該無段變速傳動機構包括一輸入軸、二:動機構之方 用於無段式改變該輸入軸與該輸出轴之間:輸:轴、及一 動馬達。葬由太旅傳動比的電 該傳動比之變化率估算』方法,该電動馬達之熱值係從 本發明之估算電動馬達之熱值的方 器中估算電動馬達之熱值的方法,該無段變速 :軸;一輸出軸、及一用於無段式改變該輸入轴Μ輸Γ 馬==Γ動馬達構成。根據本發明之估算㈣ =值的方法,該電動馬達之熱值係從該傳動比之變 [本發明之實效] 其利用一簡便構造以估算電動 本發明可達成一變速器 馬達之熱值。 【實施方式】 [第一實施例] (本實施例之概略說明) 本發明人係因致力研究的結果,發現電動馬達之熱值與 傳動比之變化率之間之—相互關係,並進而構成本實施 本發明之一較佳實施例之範例係利用一摩托車丨舉例詳 細說明。儘管本實施例揭述時使用俗稱速克達型摩托車工 為例,本發明之車輛並不限於速克達型摩托車。本發明之 127664.doc 200902884 車輛可以是速克達型摩托車以外者。更明確地說,本發明 之二輪式車輛可以是越野車型、摩托車型、速克達型、或 俗稱之機11腳踏車型。再者,本發明之車輛可以是跨坐型 車輛,而非摩托車。更明確地說,關於本發明之車輛例如 可以是越野沙灘車(ATV)。再者,本發明之車輛可以是跨 坐型車輛以外者,例如四輪傳動車輛。 [根據實施例之摩托車丨之詳細說明] (摩托車1之概略構造) 圖!係摩托軺之側視圖。摩托^具備—車身骨架㈣ 引擎單元2安裝於車身骨架上。-後輪3接附於 早几之後部。在本實施例中,後輪3係由引擎單元2 驅動之驅動輪。 /亥車身骨架具有一從握把4朝下延伸之頭管(圖中未 不卜;前又5連接於該頭管之下端部。前輪6接附於前又5L A method of transmitting a mechanism. The control sub-control has a method in which the sub-control is changed by a = segment (hereinafter referred to as ECVT, the full name of which is an electronic stepless transmission) (as described in patent document i). [Patent Document 1] JP-A-2004-19740 In an electronic stepless transmission (ECVT), an electric motor is often driven in reverse by a gear ratio change of 1. As a result, a large amount of heat is generated by the electric motor, and the possibility of lowering the temperature of the electric motor and its drive circuit and the performance of the motor is increased. Preferably, the temperature or heat value of the motor is monitored so that the temperature of the motor does not exceed the temperature range of the horse. For example, a method of estimating the motor temperature 127664.doc 200902884 can be considered as the case where the temperature sensor is disposed on the motor, its drive circuit, or the like. Since the calorific value of the motor is proportional to the square of the current flowing through the motor, another method that can be considered to estimate the motor temperature is to set the current sense n to measure the current flowing through the motor and measure it. The current estimates the calorific value of the motor. However, all of the above methods require the provision of separate temperature sensors and current sensors. As a result, the construction and control of the ECVT is unnecessarily complicated. SUMMARY OF THE INVENTION The present invention has been developed in view of the above. Accordingly, it is an object of the present invention to provide a transmission that utilizes a convenient configuration to estimate the heating value of an electric motor. Incidentally, although the problem to be solved is exemplified herein by ecvt, the problem to be solved is generally still to utilize the (four) motor to change the transmission ratio of the transmission. The control device of the present invention is a control device for a stepless speed change transmission mechanism comprising an input shaft, an output #, and an electric motor for changing a gear ratio between the input shaft and the output shaft. The control device of the present invention estimates the electric value based on the rate-change rate of the gear ratio. The segmentless transmission of the present invention is composed of a stepless shifting transmission mechanism and a control section. The stepless transmission mechanism includes an input shaft, an output shaft, and an electric motor. The electric motor changes the transmission ratio between the output shafts of the input shaft (4) without a segment. The control section estimates the heating value of the electric motor based on the rate of change of the transmission ratio. 127664.doc 200902884 The vehicle of the present invention includes the stepless catcher of the present invention. The control method of the month is to control the stepless transformation method. The stepless transmission mechanism includes an input shaft and a second mechanism for changing the input shaft and the output shaft without a segment: the input shaft And a moving motor. The method for estimating the rate of change of the transmission ratio of the electric power ratio of the electric motor is the method for estimating the heating value of the electric motor from the square of estimating the heating value of the electric motor according to the present invention. Segment shifting: shaft; an output shaft, and a for the stepless change of the input shaft Γ = = = = Γ 马达 motor. According to the method of estimating (four) = value of the present invention, the heating value of the electric motor is changed from the transmission ratio [Effect of the present invention], which utilizes a simple configuration to estimate electric power. The present invention can achieve the heating value of a transmission motor. [Embodiment] [First Embodiment] (Summary of the present embodiment) The present inventors discovered the relationship between the heating value of the electric motor and the rate of change of the transmission ratio, and further constituted the result of the research. An example of a preferred embodiment of the present invention is described in detail by way of a motorcycle. Although the present invention is exemplified as a scooter type motorcycle, the vehicle of the present invention is not limited to a Scooter type motorcycle. 127664.doc 200902884 of the present invention The vehicle may be other than a Scooter type motorcycle. More specifically, the two-wheeled vehicle of the present invention may be an off-road vehicle, a motorcycle type, a scooter type, or a conventionally known 11-foot type vehicle. Furthermore, the vehicle of the present invention may be a straddle type vehicle, not a motorcycle. More specifically, the vehicle relating to the present invention may be, for example, an off-road ATV. Further, the vehicle of the present invention may be other than a straddle type vehicle, such as a four-wheel drive vehicle. [Detailed description of the motorcycle 根据 according to the embodiment] (Summary structure of the motorcycle 1) A side view of the motorcycle. Motorcycle ^ - Body frame (4) The engine unit 2 is mounted on the body frame. - The rear wheel 3 is attached to the back of the morning. In the present embodiment, the rear wheel 3 is a drive wheel driven by the engine unit 2. /Heil body frame has a head tube extending downward from the grip 4 (not shown in the figure; the front 5 is connected to the lower end of the head tube. The front wheel 6 is attached to the front and 5

L ,下端# ’以利於旋轉。前輪6並未連接於引擎單元2且其 係一可自由旋轉之輪。 、 (引擎單元2之構造) 引擎單元2之構造將參考圖2及3說明於後。 (引擎10之構造) 如圖2及3所示,引擎 速器2〇。在本眚^ (内燃)弓1擎10及-變 也列中,引擎10被揭述為一強制氣冷式四 仃%引擎。惟, 擎10可以是其他型式。例如,引擎10可 疋水冷式。引擎10也可以是二行程型。 如圖3所示’引擎10具有一曲柄軸u。一槽輪12係與曲 127664.doc 200902884 柄軸11之外周緣以齒條嚙合。槽輪12透過一軸承Μ而由一 殼體14支撐,以利於旋轉。一連接於一電動馬達3〇之單向 離合器31接附於槽輪12周圍。 (變速器2 0之構造) r 變速器20係由一傳動機構2〇a、及一作為一控制段以控 制傳動機構2〇a之引擎控制單元(ECU)7組成。在本實施例 中,傳動機構20a被揭述為電子式無段變速器(ecvt)之一 皮帶型式’以作為—範例。ECVT之皮帶可以是一樹脂皮 帶、一金屬皮帶、或任意皮帶。再者,傳動機構2〇&並不 限於ECVT之皮帶型式。傳動機構2〇a例如可以是之 螺官型式。再者,傳動機構2〇a可以不是ecvt。 傳動機構2〇a具有一主槽輪21、一副槽輪22、及一 V形皮 帶23。V形皮帶23繞行於主槽輪21與副槽輪^。該v形皮 帶具有一概呈V形截面。 —主槽輪21係與曲柄軸U —體地旋轉。主槽輪21係由-固 定式槽輪半體2U及-可動式槽輪半體m組成。固定式槽 輪半體2U固接於曲柄軸u之—端。可動式槽輪半體⑽設 置相對立於固定式槽輪半體21a。可動式槽輪半體加可在 曲柄轴U之轴向移動。固定式槽輪半體2U及可動式槽輪 半體m之相對立表面形成—皮帶槽2u,以供v形皮帶 ,仃於其内。皮帶槽21c趨向於主槽輪^之徑向外側而變 寬。 如圖3所不’可動式槽輪半體2ib備有一圓筒形突轂部 2Η’以供曲柄軸11通過。-圓筒形滑動件24固接於突轂 127664.doc 200902884 部2 Id之内側。滑動件24與可動式槽輪半體2 lb形成一整合 體,以利於曲柄軸11之軸向移動。因此,皮帶槽21c之槽 寬可以改變。 主槽輪21之皮帶槽21c之槽寬係隨著可動式槽輪半體21b 由電動馬達30驅動於曲柄軸^之軸向中而改變。在本實施 例中’電動馬達30假設由脈衝寬度調變(pwM)驅動。惟, 電動馬達3 0之驅動型式並無限制。馬達3 〇可以是一步進馬 達。L, lower end # ' to facilitate rotation. The front wheel 6 is not connected to the engine unit 2 and is a freely rotatable wheel. (Configuration of Engine Unit 2) The configuration of the engine unit 2 will be described later with reference to Figs. (Structure of Engine 10) As shown in Figs. 2 and 3, the engine speed is 2〇. In the 眚^ (internal combustion) bow 1 engine 10 and-variation, the engine 10 is disclosed as a forced air-cooled 仃% engine. However, the engine 10 can be other types. For example, the engine 10 can be water cooled. The engine 10 can also be a two-stroke type. As shown in Fig. 3, the engine 10 has a crankshaft u. A sheave 12 is engaged with the outer periphery of the arbor 11 by a tang. The sheave 12 is supported by a housing 14 through a bearing weir to facilitate rotation. A one-way clutch 31 coupled to an electric motor 3 is attached around the sheave 12. (Configuration of Transmission 20) r The transmission 20 is composed of a transmission mechanism 2A, and an engine control unit (ECU) 7 as a control section for controlling the transmission mechanism 2A. In the present embodiment, the transmission mechanism 20a is described as one of the electronic stepless transmissions (ecvt) belt type as an example. The ECVT belt can be a resin belt, a metal belt, or any belt. Furthermore, the transmission mechanism 2& is not limited to the ECVT belt type. The transmission mechanism 2A can be, for example, a screw type. Furthermore, the transmission mechanism 2A may not be ecvt. The transmission mechanism 2A has a main sheave 21, a pair of sheaves 22, and a V-shaped belt 23. The V-belt 23 is wound around the main sheave 21 and the auxiliary sheave. The v-shaped belt has a generally V-shaped cross section. - The main sheave 21 is rotated integrally with the crankshaft U. The main sheave 21 is composed of a fixed sheave half 2U and a movable sheave half m. The fixed sheave half 2U is fixed to the end of the crankshaft u. The movable sheave half (10) is disposed opposite to the fixed sheave half 21a. The movable sheave half body is movable in the axial direction of the crankshaft U. The fixed sheave half 2U and the movable sheave half of the opposite body surface form a belt groove 2u for the v-belt to be placed therein. The belt groove 21c tends to be widened toward the radially outer side of the main groove. As shown in Fig. 3, the movable sheave half 2ib is provided with a cylindrical boss portion 2'' for the crankshaft 11 to pass. - The cylindrical slider 24 is fixed to the inside of the hub 127664.doc 200902884 Part 2 Id. The slider 24 forms an integral body with the movable sheave half 2b to facilitate axial movement of the crankshaft 11. Therefore, the groove width of the belt groove 21c can be changed. The groove width of the belt groove 21c of the main sheave 21 is changed as the movable sheave half 21b is driven by the electric motor 30 in the axial direction of the crankshaft. In the present embodiment, the electric motor 30 is assumed to be driven by pulse width modulation (pwM). However, the drive type of the electric motor 30 is not limited. The motor 3 〇 can be a stepper motor.

副槽輪22配置於主槽輪2丨後方。副槽輪22透過一離心式 離合器25而接附於一從動軸27。細言之,副槽輪22係由一 固定式槽輪半體22a及一可動式槽輪半體22b組成。可動式 槽輪半體22b相對立於固定式槽輪半體22&。可動式槽輪半 體22b可在;k動轴27之軸向移動。固定式槽輪半體22a及可 動式槽輪半體22b之相對立表面形成一皮帶槽22c,以供v 形皮帶23運行於其内。皮帶槽22c趨向於副槽輪22之徑向 外侧而變寬。 可動式槽輪半體22b係由一彈菁26彈壓於將皮帶槽Me之 槽寬減小之方向中。因此,當電動馬達30驅動,且主槽輪 21之皮帶槽21e之槽寬減小時,主槽輪上之v形皮帶23之 曲率半徑增加’且副槽輪22侧上之v形皮帶23係沿徑向朝 内拉、’口 |卩動式槽輪半體22b移動以抵抗彈簧Μ在使 皮帶槽22c變寬之方向中社 _ 〒之力、、、°果,運行於副槽輪22上 之V形皮帶2 3之曲率丰麻、、士丨 . ▲ + k減小,使仔傳動機構2〇a之傳動比 127664.doc 10- 200902884 離心式離合器25依據固定式槽輪半體22a之旋轉而結合 或脫離。亦即’當固定式槽輪半體22a之旋轉在一指定值 以下時’離心式離合器25脫離。因此,固定式槽輪半體 22a之旋轉並不傳送至從動轴27。另方面,當固定式槽輪 半體22a之旋轉到達或超過一指定旋轉時,離心式離合器 25即結合’使得固定式槽輪半體22&之旋轉傳送至從動軸 27 = 從動軸27連接於一減速機構28。從動軸27透過一輪軸29 而連接於減速機構28。輪軸29則接附於後輪3。因此,當 k動軸27旋轉時,後輪3即與輪軸29 一起旋轉。 (用於摩托車1之控制系統) 其次’用於摩托車丨之控制系統之細部結構將參考圖4說 明於後。 (用於摩托車1之控制系統之概略說明) 如圖4所不,ECU 7連接於一槽輪位置感測器4〇。槽輪位 置感測器40偵測出主槽輪21之可動式槽輪半體21b與其固 定式槽輪半體21a之相對位置。易言之,其偵測出固定式 槽輪半體21a與可動式槽輪半體21b之間在曲柄軸u之軸向 中之距離(1)。槽輪位置感測器4〇將偵測到之距離作為 一偵測槽輪位置信號,以輸出至ECU 7。在此,槽輪位置 感測器40例如可由一電位計或類似者構成。 ECU 7亦連接於-主槽輪旋轉感測器43、—副槽輪旋轉 感測器41、及-車速感測器42。主槽輪旋轉感測器伯測 主槽輪21之旋轉。主槽輪旋轉感測㈣將偵測到之主槽輪 127664.doc 11 200902884 之旋轉作為—槽輪旋轉信號,以輸出至ECU 7。副槽輪 旋轉感'則器41偵測副槽輪22之方走轉。副槽輪旋轉感測器4 1 、!之剎槽輪2 2之旋轉作為一槽輪旋轉信號,以輸出 至ECU 7。車速感測器42偵測後輪3之旋轉。車速感測器42 將依據債測到之旋轉所得的車速信號輸出至ECU 7。 CU 7連接於一接附在駕驶握把4之握把開關。當一騎乘 者操作時,該握把開關即輸出一握把開關信號。 如上所述,一節流閥開啟度感測器1 8a將一節流閥開啟 度信號輸出至ECU 7。 (控制傳動機構20a) ECU 7依據車速信號等而執行主槽輪21之可動式槽輪半 體21b之槽輪位置之回授控制。易言之,ECU 7依據車速信 號等而執行距離(1)之回授控制。更明確地說,如圖5所 不’一目標傳動比係從節流閥開啟度與車速以在Ecu 7中 決定。ECU 7從預定之目標傳動比計算出槽輪目標位置。 易吕之,ECU 7從預定之目標傳動比計算出可動式槽輪半 體21b與固定式槽輪半體21a之間之目標距離(1卜為了將可 動式槽輪半體21b移動至該槽輪目標位置,ECU 7將一對應 於可動式槽輪半體2 lb目前位置與該槽輪目標位置之脈衝 寬度調變信號(PWM信號)輸出至一驅動電路8,如圖4所 示。驅動電路8將一對應於該pwm信號之脈衝電壓施加至 電動馬達30。結果,可動式槽輪半體2 lb被驅動以調整傳 動比。 (估算電動馬達30之熱值) 127664.doc •12- 200902884 其次’估算電動馬達3 0之熱值的方法說明於後。首先, 在揭述一估算電動馬達30之熱值的具體方法之前,先說明 該方法之原理。 (估算由電動馬達3〇產生之熱量的原理) 本發明人係因致力研究的結果,發現電動馬達30之熱值 與傳動機構20a之傳動比變化率之間之一相互關係。更明 確地說’本發明人進而發現熱量與傳動機構2如之傳動比 之變化率之間相互關係之概念’其結果即說明於後: U電動馬達30之熱值係與施加於電動馬達30且用於電動 馬達30之熱產生的一部分有效電壓之平方呈線性相互關 係。 2) 用於電動馬達3〇之熱產生的電壓量係藉由從施加於電 動馬達30之有效電壓減去用於移動可動式槽輪半體2ib之 感應電壓來決定。 3) 該用於移動可動式槽輪半體21b之感應電壓係與傳動 機構2〇a之傳動比變化率呈線性相互關係。 從本發明人之以上發現可知,電動馬達3〇之熱值可利用 以下方程式(1)估算: [方程式1 ] ^β{νΑ - α· (dr/dt)}2.dt ⑴ 其中 β : —常數。 VA :施加於電動馬達30之有效電壓。 dr/dt .傳動機構2〇a之傳動比變化率。 127664.doc 200902884 -常數’或由以下方程式(3a)或(3b)表示之變數: a = [d{f(l)}/d\yl..... (3a) α = [d{g(r)}/dr]..... (3b) 其中 f(l):代表傳動比之距離1之一函數。 r :傳動比 g(r):傳動比r之一函數,或上述函數f〇)之一反函數。 在本實施例中,以上方程式(3a)4(3b)彼此相等。 在本實施例中,因為電動馬達3()係如上所述由脈衝寬度 調變控制’因此以上方程式⑴中之〜可由方程式⑺表示 如下: VA = Vp-(DUTY)..... (2) 其中 VP ’施加於電動馬達3 〇之脈衝電壓之大小。 DUTY :施加於電動馬達3〇之脈衝電壓之工作比。 因此,方程式(1)可從方程式(2)轉變成以下方程式(4): [方程式2] ip{Vp(DUTY) - a»(dr/dt)}2dt.....(4) 其中 β : —常數。 VP .施加於電動馬達3 〇之脈衝電壓之大小。 DUTY :施加於電動馬達3〇之脈衝電壓之工作比。 a: —常數’或由以下方程式(3&)或(313)表示之變數: a = [dffCOl/dl]·1..... (3a) 127664.doc 14 200902884 (3b) α = [d{g(r)}/dr].. 其中 f(1).代表傳動比之距離1之一函數 r :傳動比 g()傳動比Γ之-函數,或上述函數(⑴之一反函數。The auxiliary sheave 22 is disposed behind the main sheave 2 . The auxiliary sheave 22 is attached to a driven shaft 27 through a centrifugal clutch 25. In detail, the auxiliary sheave 22 is composed of a fixed sheave half 22a and a movable sheave half 22b. The movable sheave half 22b is opposed to the fixed sheave half 22& The movable sheave half 22b is movable in the axial direction of the k-moving shaft 27. The opposite surfaces of the fixed sheave half 22a and the movable sheave half 22b define a belt groove 22c for the v-belt 23 to operate therein. The belt groove 22c tends to widen toward the radially outer side of the auxiliary sheave 22. The movable sheave half 22b is biased by an elastic cyanine 26 in a direction in which the groove width of the belt groove Me is reduced. Therefore, when the electric motor 30 is driven and the groove width of the belt groove 21e of the main sheave 21 is decreased, the radius of curvature of the v-belt 23 on the main sheave is increased 'and the v-belt 23 on the side of the auxiliary sheave 22 is Pulling inward in the radial direction, the 'mouth|flip-type sheave half 22b moves to resist the spring Μ in the direction in which the belt groove 22c is widened, and the force is operated on the auxiliary sheave 22 The curvature of the V-belt 2 3 is rich, and the 丨 + ▲ is reduced, so that the transmission ratio of the transmission mechanism 2〇a is 127664.doc 10- 200902884 The centrifugal clutch 25 is based on the fixed sheave half 22a The rotation is combined or disengaged. That is, 'the centrifugal clutch 25 is disengaged when the rotation of the fixed sheave half 22a is below a specified value. Therefore, the rotation of the fixed sheave half 22a is not transmitted to the driven shaft 27. On the other hand, when the rotation of the fixed sheave half 22a reaches or exceeds a specified rotation, the centrifugal clutch 25 combines 'to cause the rotation of the fixed sheave half 22& to the driven shaft 27 = the driven shaft 27 Connected to a speed reduction mechanism 28. The driven shaft 27 is coupled to the speed reduction mechanism 28 via an axle 29. The axle 29 is attached to the rear wheel 3. Therefore, when the k moving shaft 27 rotates, the rear wheel 3 rotates together with the axle 29. (For the control system of the motorcycle 1) Next, the detailed structure of the control system for the motorcycle 将 will be described later with reference to Fig. 4 . (Schematic Description of Control System for Motorcycle 1) As shown in Fig. 4, the ECU 7 is connected to a sheave position sensor 4A. The sheave position sensor 40 detects the relative position of the movable sheave half 21b of the main sheave 21 to her fixed sheave half 21a. In other words, it detects the distance (1) between the fixed sheave half 21a and the movable sheave half 21b in the axial direction of the crankshaft u. The sheave position sensor 4 detects the distance as a detecting sheave position signal for output to the ECU 7. Here, the sheave position sensor 40 may be constituted by, for example, a potentiometer or the like. The ECU 7 is also connected to the - main sheave rotation sensor 43, the sub-groove rotation sensor 41, and the vehicle speed sensor 42. The main sheave rotation sensor detects the rotation of the main sheave 21 . The main sheave rotation sensing (4) detects the rotation of the main sheave 127664.doc 11 200902884 as a sheave rotation signal for output to the ECU 7. The sub-slot rotation feeling unit 41 detects the rotation of the sub-groove 22 . The rotation of the brake pulley 2 2 of the auxiliary sheave rotation sensor 4 1 , ! is used as a sheave rotation signal to be output to the ECU 7. The vehicle speed sensor 42 detects the rotation of the rear wheel 3. The vehicle speed sensor 42 outputs a vehicle speed signal obtained by the rotation of the debt measurement to the ECU 7. The CU 7 is connected to a grip switch attached to the driving grip 4. The grip switch outputs a grip switch signal when a rider operates. As described above, the throttle opening degree sensor 18a outputs a throttle opening degree signal to the ECU 7. (Control Transmission Mechanism 20a) The ECU 7 performs feedback control of the sheave position of the movable sheave half 21b of the main sheave 21 in accordance with the vehicle speed signal or the like. In other words, the ECU 7 performs the feedback control of the distance (1) in accordance with the vehicle speed signal or the like. More specifically, as shown in Fig. 5, a target gear ratio is determined from the throttle opening degree and the vehicle speed in Ecu 7. The ECU 7 calculates the sheave target position from the predetermined target gear ratio. Yi Luzhi, the ECU 7 calculates the target distance between the movable sheave half 21b and the fixed sheave half 21a from the predetermined target gear ratio (1) in order to move the movable sheave half 21b to the slot The wheel target position, the ECU 7 outputs a pulse width modulation signal (PWM signal) corresponding to the current position of the movable sheave half 2 lb and the target position of the sheave to a drive circuit 8, as shown in FIG. The circuit 8 applies a pulse voltage corresponding to the pwm signal to the electric motor 30. As a result, the movable sheave half 2 lb is driven to adjust the gear ratio. (Estimation of the electric value of the electric motor 30) 127664.doc • 12- 200902884 Next, the method of estimating the heating value of the electric motor 30 is described later. First, before deriving a specific method for estimating the heating value of the electric motor 30, the principle of the method will be described. (Evaluation is generated by the electric motor 3〇 The inventor of the present invention found a correlation between the heating value of the electric motor 30 and the rate of change of the transmission ratio of the transmission mechanism 20a as a result of the research. More specifically, the inventor further discovered the heat and transmission The concept of the relationship between the rate of change of the transmission ratio of the mechanism 2 is described as follows: The heat value of the U electric motor 30 is a part of the effective voltage applied to the electric motor 30 and used for the heat generation of the electric motor 30. The square of the square is linearly related to each other. 2) The amount of voltage generated by the heat of the electric motor 3 is determined by subtracting the induced voltage for moving the movable sheave half 2ib from the effective voltage applied to the electric motor 30. . 3) The induced voltage of the movable sheave half 21b is linearly related to the rate of change of the transmission ratio of the transmission mechanism 2a. From the above findings of the present inventors, it is known that the calorific value of the electric motor 3 can be estimated by the following equation (1): [Equation 1] ^β{νΑ - α· (dr/dt)}2.dt (1) where β : — constant. VA : The effective voltage applied to the electric motor 30. Dr/dt. Transmission ratio change rate of transmission mechanism 2〇a. 127664.doc 200902884 - Constant 'or a variable represented by the following equation (3a) or (3b): a = [d{f(l)}/d\yl..... (3a) α = [d{g (r)}/dr]..... (3b) where f(l): represents a function of the distance 1 of the gear ratio. r : transmission ratio g(r): one of the transmission ratio r functions, or one of the above functions f〇). In the present embodiment, the above equations (3a) 4 (3b) are equal to each other. In the present embodiment, since the electric motor 3() is controlled by the pulse width modulation as described above, the above equation (1) can be expressed by the following equation (7): VA = Vp-(DUTY)..... (2 Where VP ' is applied to the pulse voltage of the electric motor 3 〇. DUTY: The duty ratio of the pulse voltage applied to the electric motor 3〇. Therefore, equation (1) can be transformed from equation (2) to equation (4) below: [equation 2] ip{Vp(DUTY) - a»(dr/dt)}2dt.....(4) where β : — Constant. VP . The magnitude of the pulse voltage applied to the electric motor 3 〇. DUTY: The duty ratio of the pulse voltage applied to the electric motor 3〇. a: —constant' or a variable represented by the following equation (3&) or (313): a = [dffCOl/dl]·1..... (3a) 127664.doc 14 200902884 (3b) α = [d {g(r)}/dr].. where f(1). represents the distance of the gear ratio 1 function r: the gear ratio g() gear ratio Γ-function, or the inverse function of the above function ((1).

I根據本實施例’電動馬達30之熱值係制方程式⑷估 r說月於後。傳動機構1之傳動比變化率係從由槽輪位 置感測器40偵測到之距離1計算。 在上方程式(4)中,^Ί=ί>⑴係依據皮帶槽21c及皮帶 槽22c之形狀而決定。如圖6所示,函數r=f⑴可以是一朝 下凸之指數函數。易言之’函數r=f(l)可被設定以致使傳 動比r之變化相對於距離1之變化可隨著距離1增加及皮帶 槽21ci度增加而變得較緩和。易言之,函數r=f(i)可被設 定使得傳動比r之變化相對於距離丨之變化可隨著傳動比朝 向高側變化而變得較緩和。在此例子中,方程式(4)中之α 值易隨著距離1增加而變小。 或者’函數r=f(l)可以是一朝上凸之指數函數,如圖7所 不。易言之’函數r=f(l)可被設定以致使傳動比r之變化相 對於距離1之變化可隨著距離1增加及皮帶槽21c寬度增加 而變得較陡峭。易言之,函數r=f(l)可被設定使得傳動比r 之變化相對於距離1之變化可隨著傳動比朝向高側變化而 變得較陡峭。在此例子中,方程式(4)中之α值易隨著距離i 增加而變大。 再者,函數r=f(l)也可以呈線性,如圖8所示。易言之 I27664.doc •15- 200902884 函數r=f(丨)可被設定成定值,而無關於距離1及皮帶槽2ι( 之值。易言之,函數r=f(1)可被設定成定值,而無關於傳 動比。在此例子中,方程式(4)中之α值不變,而無關於距 離1。亦即,α為一常數。 (估算電動馬達3 0之熱值的方法及控制電動馬達3 〇的方 法) 圖9係流程圖,其代表估算電動馬達3〇之熱值的方法及 控制電動馬達30的方法。如圖9所示,首先在步驟si中, 其估算電動馬達30之熱值。更明確地說,在步驟“中,電 動馬達30之熱值係利用以上方程式(4)估算。 其次,在步驟S2中,其決定步驟S1中之電動馬達%之估 算熱值是否較大於一指定值。因為電動馬達3〇之熱值係與 電動馬達3 0之溫度有相互關係,大體上,電動馬達3 〇之熱 值越大,則電動馬達30之溫度亦越高。因此,可以決定電 動馬達30之溫度是否在指定值以上,或者根據步驟μ中之 決定"電動馬達30之估算熱值是否較大於一指定熱值"。易 言之,電動馬達30之溫度是否在指定值以上主要是在步驟 S2中之決定。 附帶地,步驟S2中之"指定熱值"可以根據電動馬達”及 驅動電路8之特徵而適當地指定。例如"指定熱值”可以指 定於一值,在此值以上則電動馬達3〇及驅動電路8中即發According to the present embodiment, the equation (4) of the calorific value of the electric motor 30 is estimated to be after the month. The gear ratio change rate of the transmission mechanism 1 is calculated from the distance 1 detected by the sheave position sensor 40. In the upper program (4), ^Ί=ί> (1) is determined according to the shape of the belt groove 21c and the belt groove 22c. As shown in Fig. 6, the function r = f(1) can be an exponential function that is convex downward. It is easy to say that the function r = f(l) can be set such that the change in the ratio of the transmission ratio r with respect to the distance 1 can be made gentle as the distance 1 increases and the belt groove 21ci increases. In other words, the function r = f(i) can be set such that the change in the ratio r with respect to the distance 丨 can be made gentle as the gear ratio changes toward the high side. In this example, the alpha value in equation (4) tends to become smaller as the distance 1 increases. Or the 'function r=f(l) can be an upwardly convex exponential function, as shown in Figure 7. It is easy to say that the function r = f(l) can be set such that the change of the gear ratio r with respect to the distance 1 can become steeper as the distance 1 increases and the width of the belt groove 21c increases. In other words, the function r = f(l) can be set such that the change in the ratio r with respect to the distance 1 can become steeper as the gear ratio changes toward the higher side. In this example, the alpha value in equation (4) tends to become larger as the distance i increases. Furthermore, the function r=f(l) can also be linear, as shown in FIG. I27664.doc •15- 200902884 The function r=f(丨) can be set to a fixed value, regardless of the distance 1 and the belt slot 2ι. (In other words, the function r=f(1) can be Set to a fixed value, regardless of the gear ratio. In this example, the value of α in equation (4) is constant, regardless of distance 1. That is, α is a constant. (Estimate the calorific value of electric motor 30 Method and method for controlling the electric motor 3 )) Fig. 9 is a flowchart representing a method of estimating the heating value of the electric motor 3〇 and a method of controlling the electric motor 30. As shown in Fig. 9, first in step si, The calorific value of the electric motor 30 is estimated. More specifically, in the step ", the calorific value of the electric motor 30 is estimated by the above equation (4). Next, in step S2, it determines the electric motor % in the step S1. It is estimated whether the heating value is larger than a specified value. Since the heating value of the electric motor 3 is related to the temperature of the electric motor 30, in general, the larger the heating value of the electric motor 3, the temperature of the electric motor 30 is also The higher, therefore, it can be determined whether the temperature of the electric motor 30 is at a specified value Or according to the decision in step μ, "the estimated heating value of the electric motor 30 is greater than a specified heating value". In other words, whether the temperature of the electric motor 30 is above a specified value is mainly determined in step S2. Incidentally, the "specified calorific value" in step S2 can be appropriately specified according to the characteristics of the electric motor" and the drive circuit 8. For example, "specified calorific value" can be specified at a value above which the electric motor 3〇 and the driver circuit 8

生估算出性能降低。易言之,”指定熱值',可以指定於IStudents estimate the performance degradation. Easy to say, "specified calorific value" can be specified in I

值,在此值以上則電動馬達3〇之溫度被估算出超過—容 使用溫度範圍。 S 127664.doc -16- 200902884 當如圖9所示在步驟S2中電動馬達3〇之熱值被決定為較 大於指定熱值時,程序進行至步驟S3。在步驟以中,電動 馬達30之操作受到限制或者停止。 隨後’程序進行至步㈣,以決定在電動馬達30之操作 受到限制或者停止後,一指定之時間週期是否已終了。易 :之:在步驟S4中決定在電動馬達3〇之操作受到限制或者 停止後’ -指定之時間週期是否已終了且電動馬達%之溫 度是否已充分降低。在此,"指定之時間週期”例如可指定 於-將電動馬達30之溫度充分降低時所需之時間週期。因 此將電動馬達30之溫度充分降低時所需之時間週期係依 據步驟S3中所作之控制内容而有所差異。例如,當電動馬 達3〇之操作停止時,電動馬達3〇之溫度較快降低,使"指 定之時間週期"可以指定為較短暫。 當在步驟S4中決定限制或者停止電動馬達%之操作後, -指定之時間週期尚未終了時,程序回到步。另方 面,當在步驟S4中決定限制或者停止電動馬達%之操作 後’-指定之時間週期已終了時’程序進行至步驟以,且 電動馬達3G之操作恢復到步驟S3中所作之限制或者停止之 前。 對比於上述者,當在步驟82中決定電動馬達Μ之熱值係 較小於該指定值時,程序即結束而不執行步驟S3至S5。 附帶地’在步驟S3中電動馬達30之限制或停止操作的控 制並不限於特定方式’只要該控制被執行,使電動馬達3〇 之熱值較小於電動馬達3〇正常操作時者即可。例如,電動 127664.doc 17 200902884 馬達30之操作可被停止。易言之,改變傳動比可受限制。 另如,電動馬達30之旋轉上限及轉矩上限之至少一者可受 易=之,傳動機構2〇a之傳動比變化率上限可降 低。亦即,對於傳動機構2〇a之傳動比變化率超過其上限 時之控制,可以使傳動比之變化率向下限制到上限速度。 又如,電動馬達30之容許旋轉範圍可以窄縮。再如,可以 突然僅使改變傳動比之動作無效,如同一降檔動作。更明The value above this value is estimated to exceed the temperature range of the electric motor. S 127664.doc -16- 200902884 When the heating value of the electric motor 3 is determined to be larger than the specified heating value in step S2 as shown in Fig. 9, the routine proceeds to step S3. In the step, the operation of the electric motor 30 is restricted or stopped. Then the program proceeds to step (4) to determine whether a specified time period has elapsed after the operation of the electric motor 30 is restricted or stopped. EASY: It is determined in step S4 whether or not the operation of the electric motor 3 is restricted or stopped. - The specified time period has elapsed and the temperature of the electric motor % has been sufficiently lowered. Here, the "specified time period" can be specified, for example, at a time period required to sufficiently lower the temperature of the electric motor 30. Therefore, the time period required for sufficiently reducing the temperature of the electric motor 30 is in accordance with step S3. The control content varies depending on the content of the control. For example, when the operation of the electric motor 3 is stopped, the temperature of the electric motor 3 is lowered rapidly, so that the "specified time period" can be designated as relatively short. When in step S4 After the operation of limiting or stopping the electric motor % is determined, - when the specified time period has not expired, the program returns to the step. On the other hand, when it is decided in step S4 to limit or stop the operation of the electric motor % - the specified time period When it is finished, the program proceeds to the step, and the operation of the electric motor 3G returns to the limit made in step S3 or before the stop. In contrast to the above, when it is determined in step 82 that the electric value of the electric motor is smaller than the When the value is specified, the program ends without performing steps S3 to S5. Incidentally, the control of the restriction or stop operation of the electric motor 30 in step S3 is not limited to The specific mode 'as long as the control is executed, the electric value of the electric motor 3 is less than that of the electric motor 3 〇. For example, the electric motor 127664.doc 17 200902884 The operation of the motor 30 can be stopped. For example, at least one of the upper limit of rotation and the upper limit of the torque of the electric motor 30 can be easily controlled, and the upper limit of the rate of change of the transmission ratio of the transmission mechanism 2〇a can be reduced. The control of the ratio change rate of the mechanism 2〇a beyond the upper limit thereof can limit the rate of change of the transmission ratio to the upper limit speed. For another example, the allowable rotation range of the electric motor 30 can be narrowed. Invalidate the action of changing the gear ratio, such as the same downshift action.

確地況,其適用在Ecu 7不輸出大卫作比之脈衝寬度調變 信號時。 (功能及效果) 藉由上述之本實施例,電動馬達3〇之熱值係從傳動機構 之傳動比變化率估I。因此,電動馬達30之熱值即藉 由傳動機構20a内通常設置用於量測傳動比之感測器以時 間差谓測到之傳動比,而得到的傳動比變化率來估算。更 明確地說’在本實施例中’電動馬達3G之熱值係使用從槽 輪:置感測器4 G㈣到之距離i計算出的傳動比變化率來 估算。因吾人可以使用廉價、簡便之構造估算電動馬 達30之熱值,而不使用額外感測器,例如溫度感測器或電 流感測器。 當電動馬達30之熱值超過該指定熱值且電動馬達3〇之溫 度被估算出已升高超過該容許使用溫度範圍時,電動馬達 3〇之操作即被限制或停止。其限制電動馬達3()不升溫到該 容許使用溫度㈣以上。結果,電動馬達30與驅動電路8 之性能降低及損害可以有效限制。 127664.doc -18- 200902884 特別是藉由降低傳動機構 限制電動馬達30之操作的…動比變化率之上限而 I® » m a ^ 、 ' 、 佳,儘管傳動比之變化變 ,因為傳動比是根據 變 影響。 又燹且摩托車1因而較不受 Π樣因為本實施例,當雷 一 P 田電動馬達30之操作限制或停止後 才a疋之時間週期終了時, 告△ 抒冑動馬達3G之操作即恢復到限 制或V止之前。因此,告雷翻 電料達3G之操作限制或停止後Exactly, it applies when the Ecu 7 does not output David's pulse width modulation signal. (Function and Effect) With the above-described embodiment, the heating value of the electric motor 3 is estimated from the transmission ratio of the transmission mechanism. Therefore, the heating value of the electric motor 30 is estimated by the gear ratio change rate obtained by the ratio of the time difference detected by the sensor which is normally provided for measuring the gear ratio in the transmission mechanism 20a. More specifically, the heat value of the electric motor 3G in the present embodiment is estimated using the ratio of the change ratio of the gear ratio calculated from the pulley: the distance 4 from the sensor 4 G(4). Because we can estimate the calorific value of the electric motor 30 using an inexpensive and simple construction, without using an additional sensor, such as a temperature sensor or an electric flu detector. When the heating value of the electric motor 30 exceeds the specified heating value and the temperature of the electric motor 3 is estimated to have risen above the allowable use temperature range, the operation of the electric motor 3 is restricted or stopped. It restricts the electric motor 3 () from heating up to the allowable use temperature (four) or more. As a result, the performance degradation and damage of the electric motor 30 and the drive circuit 8 can be effectively limited. 127664.doc -18- 200902884 In particular, by lowering the upper limit of the rate of change of the ratio of the operation of the electric motor 30 by the transmission mechanism, I® » ma ^ , ' , preferably, although the transmission ratio changes, because the transmission ratio is According to the influence. Moreover, the motorcycle 1 is thus less susceptible to the same. In the present embodiment, when the operation of the Ray-P field electric motor 30 is limited or stopped, the operation of the motor 3G is notified. Revert to the limit or before the V. Therefore, after the lightning limit is turned over, the operating limit of 3G is limited or stopped.

該和疋之時間週期終了, 雷 且電動馬達30之溫度被估算出已 降低到該容許使用溫度範圍時, 固門吁窀動馬達30之操作變回 正常f月況。依此方式,五人w w +高士 〇人了以在需要時才限制或停止電 動馬達30之操作,否則可以迅速操作電動馬㈣,且以較 尚速度改變傳動比。結果,高品質之傳動性即可達成。 (其他變化範例) 傳動機構20a並不限於ECVT之皮帶型式。例如,傳動機 構可以是ECVT之螺管型式。再者,傳動機構2〇a可以 不是CVT。亦即,傳動機構20a之型式並無限制,只要其 為電子控制式即可。惟,因為電動馬達30之反向傳動常發 生在ECVT ’因此本發明特別有利於ecvt。 在摩托車1使用由PWM控制之電動馬達3〇且傳動機構 為如上所述實施例中之ECVT皮帶型式的例子中,電動馬 達30之熱值可以使用上述方程式(4)估异。例如在電動馬達 30並不由PWM控制且傳動機構20a並非ECVT皮帶型式的例 子中’電動馬達30之熱值可以使用一較普通之方程式估 算,即方程式(1)。在該例子中,當然,方程式(〗)可以根 127664.doc •19· 200902884 據傳動機構20a轉變。易言之,方程式⑴可以廣泛應用於 任意傳動機構20a,只要其係使用一電動馬達以電子控制 式改變傳動比即可。使用方程式⑴即可估算電動馬達之 熱值,而無關於電子控制之傳動機構2〇a之型式。因此, 本實施例對於傳動機構2〇a之型式並無限制,只要該傳動 機構是使用一電動馬達作電子控制即可。At the end of the time period of the sum of the gongs, and the temperature of the electric motor 30 is estimated to have decreased to the allowable use temperature range, the operation of the slamming motor 30 is returned to the normal condition. In this way, five people w w + Coats are stunned to limit or stop the operation of the electric motor 30 when needed, otherwise the electric horse (4) can be quickly operated and the transmission ratio can be changed at a higher speed. As a result, high-quality transmission can be achieved. (Other Variations Example) The transmission mechanism 20a is not limited to the ECVT belt type. For example, the transmission mechanism can be a solenoid type of ECVT. Furthermore, the transmission mechanism 2A may not be a CVT. That is, the type of the transmission mechanism 20a is not limited as long as it is of an electronically controlled type. However, the present invention is particularly advantageous for ecvt because the reverse drive of the electric motor 30 often occurs at the ECVT'. In the case where the motorcycle 1 uses the PWM-controlled electric motor 3 and the transmission mechanism is the ECVT belt type in the embodiment described above, the heating value of the electric motor 30 can be estimated using the above equation (4). For example, in the case where the electric motor 30 is not controlled by PWM and the transmission mechanism 20a is not an ECVT belt type, the heating value of the electric motor 30 can be estimated using a more conventional equation, that is, equation (1). In this example, of course, the equation (〗) can be transformed according to the transmission mechanism 20a by 127664.doc •19·200902884. In other words, the equation (1) can be widely applied to any of the transmission mechanisms 20a as long as it uses an electric motor to electronically change the transmission ratio. The heating value of the electric motor can be estimated using equation (1) without regard to the type of transmission mechanism 2〇a for electronic control. Therefore, the present embodiment is not limited to the type of the transmission mechanism 2A, as long as the transmission mechanism is electronically controlled using an electric motor.

本發明之車輛可以是速克達㈣托車以外者。本發明之 ,輛可以是越野車型、摩托車型、速克達型、或俗稱之機 益腳踏車型。再者,本發明之車輛可以是跨坐型車輛,而 非摩托車。更明確地說,關於本發明之車輛例如可以是越 野沙灘車(ATV)。再者,本發明之車輛可以是跨坐型車輛 以外者,例如四輪傳動車輛。 儘管上述實施例係使用具備内燃引擎1〇之摩托車1作為 -較佳範例說明’本發明之車輛也可以是具備一非引擎驅 動源之任意車輛。例如,本發明之車輛可以具備一電動馬 達以取代引擎10。 ^ 電動馬達30並不限於由pWM控制。例如,電動馬達3〇可 以是由脈衝振幅調變(PAM)控制者。馬達30可以是一步 馬達。 , (本文所用措辭之定義) 步驟S2中之,,指定熱值,,一詞可以根據電動馬達及驅動 :路8之特徵而適當地指定。例如,,指定熱值”可以指定於 值在此值以上則電動馬達3 0及驅動電路8中即發生估 异出性能降低。易言之指定熱值”可以指定於一值,在 127664.doc •20- 200902884 此值以上則電動馬達30之溫度被估算出超過電動馬達之 一容許使用溫度範圍。 步驟S4tm時間週期,I 一詞可以根據在步驟幻中執 行以限制或停止電動達30之操作的控制細節而適當地指 定。例如’步驟S4中之”指定時間週期”可以指定於一在電 動馬達30之操作限制或停止後之時間週期,即電動馬達3〇 之溫度可經決定以妥為降低至電動馬達3〇之容許使用溫度 範圍内。 ”可動式槽輪半體22b與固定式槽輪半體22a之間之距離,, 一词係可動式槽輪半體22b上之一定點與固定式槽輪半體 22a上之一定點之間的距離。這些定點可以任意設定,只 要其各由單-意旨決定即可。如圖3所示,,,可動式槽輪半 體22b與固定式槽輪半體22a之間之距離,,可以定義成可動 式槽輪半體22b之徑向最外端與固定式槽輪半體22a之徑向 最外端之間的距離。 ”脈衝電壓之大小"一詞是指輸入脈衝電壓之大小。 ”有效電壓”一詞是指將輸入脈衝電壓乘以工作比所得之 電壓。 [工業上之實用性] 本發明對於具備一 ECVT之車輛極為實用。 【圖式簡單說明】 圖1係一供本發明施加之摩托車之側視圖。 圖2係一引擎單元之載面圖。 圖3係局部截面圖,揭示一ECVT之構造。 127664.doc -21 - 200902884 圖4係方塊圖,代表摩托車之-控制系統。 圖5係方塊圖,代表槽輪位置控制。 W 6係函數r=f⑴作為—範例之圖表。 圖7係函數r=f〇)作為另一範例之圖表。 圖8係函數r=f(l)作為又一範例之圖表。 圖9係机程圖,揭示估算電動馬達之熱值的方法及控制 電動馬達的方法。The vehicle of the present invention may be other than the Scooter (4). According to the invention, the vehicle can be an off-road vehicle, a motorcycle type, a speed-cable type, or a commonly known pedal-type vehicle. Furthermore, the vehicle of the present invention may be a straddle type vehicle, not a motorcycle. More specifically, the vehicle relating to the present invention may be, for example, a Wilderness ATV. Further, the vehicle of the present invention may be other than a straddle type vehicle, such as a four-wheel drive vehicle. Although the above embodiment uses the motorcycle 1 having the internal combustion engine 1 as a preferred example, the vehicle of the present invention may be any vehicle having a non-engine drive source. For example, the vehicle of the present invention may be provided with an electric motor to replace the engine 10. ^ The electric motor 30 is not limited to being controlled by the pWM. For example, the electric motor 3〇 can be controlled by pulse amplitude modulation (PAM). Motor 30 can be a one-step motor. (Definition of wording used herein) In step S2, the term "heat value" is specified, and the term can be appropriately specified according to the characteristics of the electric motor and the drive: path 8. For example, the specified heating value may be specified when the value is above this value, and the electric motor 30 and the drive circuit 8 are estimated to have a different performance degradation. The specified heating value can be specified at a value of 127,664. • 20- 200902884 Above this value, the temperature of the electric motor 30 is estimated to exceed the allowable operating temperature range of the electric motor. In the step S4tm time period, the term I can be appropriately specified in accordance with the control details of the operation of limiting or stopping the motor up to 30 in the step illusion. For example, 'the specified time period in step S4' may be specified in a time period after the operation limit or stop of the electric motor 30, that is, the temperature of the electric motor 3〇 may be determined to be properly lowered to the electric motor 3〇. Use within the temperature range. The distance between the movable sheave half 22b and the fixed sheave half 22a, between the point on the movable sheave half 22b and a certain point on the fixed sheave half 22a The distances can be set arbitrarily as long as they are determined by a single-intention. As shown in Fig. 3, the distance between the movable sheave half 22b and the fixed sheave half 22a can be Defined as the distance between the radially outermost end of the movable sheave half 22b and the radially outermost end of the fixed sheave half 22a. The term "pulse voltage" refers to the magnitude of the input pulse voltage. . The term "effective voltage" refers to the voltage obtained by multiplying the input pulse voltage by the duty ratio. [Industrial Applicability] The present invention is extremely practical for a vehicle having an ECVT. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a side view of a motorcycle for use in the present invention. Figure 2 is a loading diagram of an engine unit. Figure 3 is a partial cross-sectional view showing the construction of an ECVT. 127664.doc -21 - 200902884 Figure 4 is a block diagram representing the motorcycle-control system. Figure 5 is a block diagram showing the position control of the sheave. The W 6 system function r = f (1) as a graph of the example. Figure 7 is a graph of the function r = f 〇) as another example. Fig. 8 is a graph showing a function r = f(l) as another example. Figure 9 is a machine diagram showing a method of estimating the heating value of an electric motor and a method of controlling the electric motor.

【主要元件符號說明】 摩托車 引擎單元 後輪 駕驶握把 前又 前輪 引擎控制單元(ECU) 驅動電路 引擎 曲柄轴 槽輪 軸承 殼體 1 2 3 4 5 6 7 8 10 11 12 13 14 18a 20 20a 節流閥開啟度感測器 變速器 傳動機構 127664.doc -22- 200902884 21 主槽輪 21a、 22a 固定式槽輪半體 21b 、 22b 可動式槽輪半體 21c、 22c 皮帶槽 21d 突轂部 22 副槽輪 23 V形皮帶 24 滑動件 25 離心式離合器 26 彈簧 27 從動軸 28 減速機構 29 輪軸 30 電動馬達 31 單向離合器 40 槽輪位置感測器 41 副槽輪旋轉感測器 42 車速感測器 43 主槽輪旋轉感測器 127664.doc -23 -[Main component symbol description] Motorcycle engine unit Rear wheel driving grip Front front engine control unit (ECU) Drive circuit engine Crankshaft grooved wheel bearing housing 1 2 3 4 5 6 7 8 10 11 12 13 14 18a 20 20a Throttle opening degree sensor transmission transmission mechanism 127664.doc -22- 200902884 21 main sheave 21a, 22a fixed sheave half 21b, 22b movable sheave half 21c, 22c belt groove 21d boss portion 22 Sub-groove 23 V-belt 24 Slide 25 Centrifugal clutch 26 Spring 27 Drive shaft 28 Reduction mechanism 29 Axle 30 Electric motor 31 One-way clutch 40 Slot wheel position sensor 41 Sub-slot rotation sensor 42 Sense of speed Detector 43 Main sheave rotation sensor 127664.doc -23 -

Claims (1)

200902884 十、申請專利範圍: 1. 一種用於一傳動機構之控制裝置,該傳動機構包含: 一輸入軸, 一輸出軸,及 一電動馬達,其用於改變該輪入軸與該輸出軸之間之 一傳動比, 其中該控制裝置係從該傳動比之一變化率估算該電動馬 達之一熱值。 ~200902884 X. Patent application scope: 1. A control device for a transmission mechanism, the transmission mechanism comprising: an input shaft, an output shaft, and an electric motor for changing the wheel input shaft and the output shaft One of the ratios, wherein the control device estimates a heating value of the electric motor from a rate of change of the transmission ratio. ~ 1. 2. 如凊求項1之控制裝置,其中當該電動馬達之估算熱值 到逹或超過—指定值時,該f動馬達之操作即受限制或 停止。 3·如請求項2之㈣裝置,其中當該電動馬達之估算熱值 到達或超過-指定值時,該電動馬達之操作係藉由降低 該傳動比變化率之-上限而限制。 - 4·如請求項2之控制梦番 廿丄, . 利展置’其中當該電動馬達之估算熱值 到達或超過一指定信η主 &值時’該電動馬達之操作係藉由窄縮 該傳動比之容許範圍而限制。 5 ·如β青求項2之控制梦番 * 1 我置’其中該電動馬達之操作係在從 該電動馬達操作之限法丨丨+产 卜·^限制或停止起經歷一指定時間後重新 開始。 6 ·如請求項1之控制駿置 以下方程式(1)估算: [方程式1] 其中該電動馬達之熱值係使用 ίβ{ΥΑ - a*(dr/dt)}2.dt 127664.doc (1) 200902884 其中 β ·· —常數 νΑ:施加於該電動馬達之有 dr/dt :該傳動比之變化率 效電壓 α 由以下方程式(3b)表示之常數: a = [d{g(r)}/dr]..... 其中 (3b)1. 2. The control device of claim 1, wherein the operation of the motor is restricted or stopped when the estimated heating value of the electric motor reaches or exceeds a specified value. 3. The apparatus of claim 4, wherein when the estimated heating value of the electric motor reaches or exceeds a specified value, operation of the electric motor is limited by reducing an upper limit of the rate of change of the transmission ratio. - 4 · If the control of claim 2 is controlled by Meng Pan, . . . , when the estimated calorific value of the electric motor reaches or exceeds a specified letter η main & value, the operation of the electric motor is narrow Reducing the transmission ratio is limited by the allowable range. 5 ·If the control of the β green item 2 is controlled by the dream fan* 1 I set the operation of the electric motor to be restarted after a specified time from the limit of the operation of the electric motor Start. 6 · If the control of claim 1 is estimated by the following equation (1): [Equation 1] where the electric value of the electric motor is ίβ{ΥΑ - a*(dr/dt)}2.dt 127664.doc (1 200902884 where β ·· —constant νΑ:dr/dt applied to the electric motor: the change rate of the gear ratio α is a constant expressed by the following equation (3b): a = [d{g(r)} /dr]..... where (3b) g(r):傳動比r之一函數。 如請求項ό之控制裝置,1 ,、進 步包含一驅動電路,用 於施加一脈衝電壓至該電動 电助馬違且付合以下方程式(2):VA = Vp-(DUTY).....⑺ 其中 1; Vp :脈衝電壓之大小 DUTY :脈衝電壓之工作比。 8.如請求項1之控制裝置, 其中該傳動機構包含: 一主槽輪’其設置於該輸入軸上, 一副槽輪,其設置於該輸出軸上,及 一 V形皮帶,其繞行於該一次及該副槽輪, 5亥主槽輪包含: —可動式槽輪半體’其相對立於該固定式槽輪^ 體j可在該輸入軸之軸向移位,及與該固定式槽輪半體 一併構成一供該V形皮帶繞行通過之V形槽, 127664.doc 200902884 體而移動該 而改變該傳 該電動馬達藉由相對於該固定式槽輪半 可動式槽輪半體以改變該v形槽之一寬度, 動比,及 該電動馬達之熱值係使用以下方程式(1)估算: [方程式1] ' ίβ{νΑ - a.(dr/dt)}2.dt..... (i) 其中 β : —常數 Va .把加於该電動馬達之有效電壓 dr/dt :該傳動比之變化率 α : —由以下方程式(3勾或(3b)表示之常數: «= [d{f〇)}/dl]^..... (3a) « = [d{g(r)}/dr]..... (3b) 其中 fO).代表該傳動比之距離i之一函數g(r): A function of the ratio r. For example, the control device of the request item, 1, the progress includes a driving circuit for applying a pulse voltage to the electric electric horse and paying the following equation (2): VA = Vp-(DUTY).... (7) where 1; Vp: the magnitude of the pulse voltage DUTY: the working ratio of the pulse voltage. 8. The control device of claim 1, wherein the transmission mechanism comprises: a main sheave that is disposed on the input shaft, a pair of sheaves disposed on the output shaft, and a V-belt that wraps around In the primary and the secondary sheaves, the 5H main sheave comprises: - a movable sheave half body which is axially displaceable relative to the fixed sheave body j in the input shaft, and The fixed sheave half body together constitutes a V-shaped groove for the V-belt to pass around, and the 127664.doc 200902884 body is moved to change the transmission of the electric motor by being semi-movable relative to the fixed sheave. The slotted wheel half is used to change the width of one of the v-shaped grooves, the dynamic ratio, and the heating value of the electric motor are estimated using the following equation (1): [Equation 1] ' ίβ{νΑ - a.(dr/dt) }2.dt..... (i) where β: - constant Va. The effective voltage dr/dt applied to the electric motor: the rate of change of the gear ratio α: - by the following equation (3 hook or (3b) ) Constant expressed: «= [d{f〇)}/dl]^..... (3a) « = [d{g(r)}/dr]..... (3b) where fO) a function representing the distance i of the gear ratio 9. 10. g(r).傳動比之一函數,函數f⑴之—反函數 如請求項8之控制裴置, 其中α係隨著距離1增加而增加。 如凊求項8之控制裝置, 其中α係隨著距離1增加而減小。 11 ·如凊求項8之控制裝置, 其中α係無關於距離1之常數。 12. —種變速器包含: 一傳動機構,其包含:一輸入軸 ~輪出軸 及一電 127664.doc 200902884 13. 14. 15. 動馬達,其用於改變該輸入軸與該輸出軸 比,及 之間之 傳動 該傳動比之變化率基礎上估算 一種車輛,其包含如請求項12之變速器。 -種用於-傳動機構之控制方法,該傳動機構包含: —輸入軸, 控制段,其用於在 電動馬達之一熱值。 一〜山昇言亥 一輸出軸,及 —電動馬達,其用於改變該 傳動比, 輪入軸與該輸出軸之間之 該控制方法包含:在該傳動比 7此之一變化率基礎 該電動馬達之一熱值。 一種在一傳動機構中估算一電動 切馬運之一熱值的方法, 該傳動機構包含: 一輸入軸, 一輸出軸,及 -電動馬達’其用於改變該輪入軸與該輸出軸之間之 一傳動比, 該方法包含在該傳動比之m /. , ^ 吁 支化率基礎上估算該電動 馬達之熱值。 上估算 127664.doc9. 10. g(r). One of the gear ratio functions, the inverse of the function f(1), as in the control set of claim 8, where the α system increases as the distance 1 increases. For example, the control device of item 8, wherein the α system decreases as the distance 1 increases. 11. The control device of claim 8, wherein the α system has no constant for the distance 1. 12. The transmission includes: a transmission mechanism comprising: an input shaft to a wheel output shaft and an electric 127664.doc 200902884 13. 14. 15. A motor for changing the ratio of the input shaft to the output shaft, And a transmission between the transmission ratios based on the rate of change of the transmission ratio estimating a vehicle comprising the transmission of claim 12. - A control method for a transmission mechanism comprising: - an input shaft, a control section for heating the heat value of one of the electric motors. a control shaft for an output shaft, and an electric motor for changing the transmission ratio, the control method between the wheel input shaft and the output shaft includes: at a rate of change of the transmission ratio 7 One of the electric motors has a heating value. A method for estimating a heating value of an electric cut horse in a transmission mechanism, the transmission mechanism comprising: an input shaft, an output shaft, and an electric motor for changing the wheel input shaft and the output shaft In one of the transmission ratios, the method includes estimating the heating value of the electric motor based on the m /. , ^ call rate of the transmission ratio. Estimated 127664.doc
TW096148562A 2007-01-31 2007-12-19 Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism TWI335392B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007022217 2007-01-31
JP2007277115A JP5406444B2 (en) 2007-01-31 2007-10-25 Transmission mechanism control device, transmission device, vehicle equipped with the same, transmission mechanism control method, and motor heat generation amount estimation method in transmission mechanism

Publications (2)

Publication Number Publication Date
TW200902884A true TW200902884A (en) 2009-01-16
TWI335392B TWI335392B (en) 2011-01-01

Family

ID=39785452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096148562A TWI335392B (en) 2007-01-31 2007-12-19 Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism

Country Status (5)

Country Link
JP (1) JP5406444B2 (en)
CN (1) CN101235894B (en)
AT (1) ATE538332T1 (en)
ES (1) ES2377676T3 (en)
TW (1) TWI335392B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250631A (en) * 1996-03-19 1997-09-22 Nissan Motor Co Ltd Shift control device of cvt
JP3659092B2 (en) * 1999-11-05 2005-06-15 日産自動車株式会社 Shift control device for continuously variable transmission
JP3766028B2 (en) * 2001-04-04 2006-04-12 本田技研工業株式会社 Control device for electric motor and control device for hybrid vehicle
JP3685146B2 (en) * 2002-04-02 2005-08-17 日産自動車株式会社 Control device for hybrid vehicle
JP4158925B2 (en) * 2005-01-19 2008-10-01 三菱電機株式会社 Transmission control device for motorcycles

Also Published As

Publication number Publication date
CN101235894A (en) 2008-08-06
ATE538332T1 (en) 2012-01-15
JP5406444B2 (en) 2014-02-05
JP2008208987A (en) 2008-09-11
TWI335392B (en) 2011-01-01
ES2377676T3 (en) 2012-03-29
CN101235894B (en) 2011-09-28

Similar Documents

Publication Publication Date Title
EP1972836B1 (en) Electronically-controlled continuously variable transmission
EP1953367A2 (en) Vehicle engine idle speed control
JP5253786B2 (en) Transmission, power unit including the same, vehicle, transmission control device, and transmission control method
JP2008095901A (en) Device and method for controlling continuously variable transmission, program for materializing method thereof and recording medium recording program thereof
JP2008185186A (en) Continuously variable transmission, vehicle equipped with it, control device of continuously variable transmission, and its control method
US7688557B2 (en) Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism
JP2008089146A (en) Continuously variable transmission control device, control method, program for actualizing the same, and recording medium recording the same
JP5286426B2 (en) Vehicle, control device thereof, and control method thereof
TW200902884A (en) Control apparatus for transmission mechanism, transmission, vehicle provided therewith, method of controlling the transmission mechanism, and method of estimating heat value of electric motor in the transmission mechanism
JP4148008B2 (en) Control device for continuously variable transmission
JP6254367B2 (en) Control device
JP4106992B2 (en) Rotational speed estimation device
JP2008045576A (en) Continuously variable transmission
US10883597B2 (en) Vehicle control device, vehicle, and vehicle control method
JP5495661B2 (en) Motor drive device
JP2010078022A (en) Belt slip detecting device for continuously variable transmission
JP2000303899A (en) Driving force estimating equipment for vehicle having continuously variable transmission
JP4339565B2 (en) Shift control device for continuously variable transmission
JP4161594B2 (en) Slip detection device for continuously variable transmission
JP4483420B2 (en) Control device for vehicle start clutch
JP4251037B2 (en) Control device for continuously variable transmission
JP2004232711A (en) Controller for vehicle
JP2004278663A (en) Control device for continuously variable transmission
JP2004076769A (en) Continuously variable transmission controller
JP4281675B2 (en) Powertrain control device