TW200901654A - Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same - Google Patents

Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same Download PDF

Info

Publication number
TW200901654A
TW200901654A TW97105194A TW97105194A TW200901654A TW 200901654 A TW200901654 A TW 200901654A TW 97105194 A TW97105194 A TW 97105194A TW 97105194 A TW97105194 A TW 97105194A TW 200901654 A TW200901654 A TW 200901654A
Authority
TW
Taiwan
Prior art keywords
matrix
precoding matrix
precoding
phase
phase shift
Prior art date
Application number
TW97105194A
Other languages
Chinese (zh)
Other versions
TWI416888B (en
Inventor
Moon-Il Lee
Bin-Chul Ihm
Jin-Young Chun
Wook-Bong Lee
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070037008A external-priority patent/KR20070113967A/en
Priority claimed from KR1020070095279A external-priority patent/KR20080076683A/en
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW200901654A publication Critical patent/TW200901654A/en
Application granted granted Critical
Publication of TWI416888B publication Critical patent/TWI416888B/en

Links

Abstract

A method for performing a precoding based on a generalized phase shift or a precoding based on an extended phase shift in a Multi-Input Multi-Output (MIMO) system employing several sub-carriers, and a transceiver for supporting the same are disclosed. A phase-shift-based precoding matrix is generalized by multiplying a diagonal matrix for a phase shift by a unitary matrix for maintaining orthogonality between sub-carriers. In this case, a diagonal matrix part may be extended by multiplying a precoding matrix for removing interference between sub-carriers by a diagonal matrix for a phase shift. By generalization and extension of the phase-shift-based precoding, a transceiver is more simplified, and communication efficiency increases.

Description

200901654 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於在使用複數副載波之多輸入夕 輸出(Multi-input Multi-Output,ΜΙΜΟ)系絲由 . '、研*干藉由 基於一般相移施行預編碼來傳輸及接收資料的 ▽々戍,以及 用於支援相同方法之傳收器。 【先前技術】 近來,隨著資訊通訊技術之日漸發展,已發展出各種 夕媒體服務、及各種尚品質服務並引入市場中,因此對於 無線通訊服務之需求係遍及全世界迅速地增加。為了積極 應付日増之需求’必須增加通訊系統的容量。 已考慮過用於增加無線通訊之通訊容量的許多方法, 例如’一種用於在所有頻帶中搜尋新的可用頻帶之方法, 及一種用於增加有限資源之效率的方法。至於後—方法的 代表性實例’ 一種包括複數天線以利用資源保證額外空 間’以致獲取分集增益之傳收器,或用於藉著經由平行之 個別天線傳輸資料來增加傳輸容量的ΜΙΜΟ通訊技術,已 由許多公司或開發者發展出。 尤其係,下文中將參考第1圖描述一種自ΜΙΜΟ通訊技 術中基於正交分頻多工(Frequency Division Multiplexing,OFDM)之多輸入多輸出(ΜΙΜΟ)系統。 第 1 圖係說明配有 多傳輸 / 接收 (transmission/reception, Tx/Rx)天線之〇FDM 系統200901654 IX. Description of the Invention: [Technical Field] The present invention relates to a multi-input multi-output (ΜΙΜΟ) cable for use in a plurality of subcarriers. A buffer for transmitting and receiving data based on general phase shift precoding, and a transceiver for supporting the same method. [Prior Art] Recently, with the development of information communication technology, various media services and various quality services have been developed and introduced into the market. Therefore, the demand for wireless communication services has rapidly increased throughout the world. In order to actively cope with the needs of the future, it is necessary to increase the capacity of the communication system. A number of methods have been considered for increasing the communication capacity of wireless communications, such as a method for searching for new available frequency bands in all frequency bands, and a method for increasing the efficiency of limited resources. As for a representative example of the post-method, a transceiver that includes a plurality of antennas to utilize the resources to guarantee additional space to obtain diversity gain, or a communication technology for increasing transmission capacity by transmitting data via parallel individual antennas, It has been developed by many companies or developers. In particular, a multi-input multiple-output (MIMO) system based on Orthogonal Frequency Division Multiplexing (OFDM) in a self-communication communication technology will be described hereinafter with reference to FIG. Figure 1 illustrates an FDM system with multiple transmission/reception (Tx/Rx) antennas.

200901654 的方塊圖。 參考第1圖,在傳齡·祕士 寻輸端中’―通道編碼器101將一冗餘 位元附接至一 Tx資料位开,|V決, 兀* 乂減少一通道或雜訊之負面影 響。一映射器103將資料相;答〜μ ^ 貪料位το資訊轉換成資料符號資訊。一 串歹J至並行(serlal~to_parallel,s/p)轉換器lo5將資 料符號轉換成-平行資料符冑,以致平行資料符號可載於 若干副載波上。一 ΜΙΜΟ編碼器107將平行資料符號轉換成 空間時間訊號。 在一接收端中,一 ΜΙΜΟ解碼器109、一並列至串列(p/s) 轉換器111、一解映射器113及一通道解碼器115具有與傳輸 端中之ΜΙΜΟ編碼器1〇7、S/P轉換器105、映射器1〇3及通道 編碼器101相反之功能。 ΜΙΜΟ-OFDM系統需求各種技術以提升資料傳輸可靠 性。至於用於增加空間分集增益之方案,已有空間時間碼 (space-time code,STC)、循環延遲分集(cyclic delay diversity, CDD)或類似者。至於用於增加訊號雜訊比 (signal t o noise ratio, SNR)之方案,係有束成形 (beamforming, BF)、預編碼或類似者。在此情況下,空 間時間碼或循環延遲分集方案通常係用以提供用於一開放 迴路之強健性,其中回授資訊由於通道之快速時間更新而 無法在傳輸端處使用。相反的,該束成形或預編踢通常係 用於一封閉迴路系統,以藉由使用包括一空間通道性質之 回授資訊使訊號雜訊比最大。 至於在以上所述方案中一用於增加空間分集增益之方 7 200901654 案及一用於增加訊號雜訊比之方案’以下將會詳細解釋擴 環延遲分集及預編碼° 當一配有多Τχ天線之系統傳輸0FDM訊號時’ CDD方 案允許天線傳輸具有不同延遲或振幅的〇FDM訊號,因此 、 一接收端可獲取頻率分集增益° 第2圖係說明一基於CDD方案之MIM0系統的傳輸端 之方塊圖。 參考第2圖,一 OFDM符號係經由S/P轉換器及ΜΙΜΟ編 碼器分配至個別天線,一用於防止一在通道間干擾之循環 前綴(Cyclic Prefix,CP)被附接至OFDM符號’且接著 具有該CP之產生OFDM符號被傳輸至一接收端。在此情況 下’一傳輸至一第一天線之資料序列被應用至接收端而無 任何改變,且與第一天線相比’傳輸至一第二天線之其他 資料序列係藉由一預定數目的樣本而循環延遲,因此經循 環延遲之資料序列被傳輸至第二天線。 同時,若CDD方案在一頻域中實施’循環延遲可藉由 C; 相位序列之乘積(或乘法)指示。其詳細說明將會在下文中 參考第3圖描述。 第3圖係說明基於習知相移分集(phase shift . diversity,PSD)方案之ΜΙΜΟ系統的傳輸端之方塊圖。 參考第3圖,個別天線之不同相位序列(相位序列1至相 « 位序列Μ)係藉由一頻域中之個別資料序列相乘,一快速傅 立葉反轉換(Inverse Fast Fourier Transform,IFFT) 係在經相乘結果上施行,且將經IFFT相乘資料傳輸至一接 8 200901654 收端。第3圖之以上所述方法係稱為相移式分集方案。 在使用相移式分集方案之情況下,可將一平衰落通 改變成頻率選擇通道,一頻率分集增益可藉由一通道編 程序獲得,或一多使用者分集增益可藉由一頻率選擇排 . 程序獲得。 . 同時,若一封閉迴路系統包括有限回授資訊,則可 用兩預編碼方案,即一碼薄式預編碼方案及一用於量化 ζ) 道資訊及回授該經量化通道資訊的方案。碼薄式預編碼 案將一預編碼矩陣之索引(其已藉由傳輸/接收端辨識) 授至傳輪/接收端,以致其可獲得SNR增益。 第4圖係說明一基於碼薄式預編碼之μ IΜ Ο系統的 輸/接收端之方塊圖。 參考第4圖,傳輸/接收端之各者具有一有限預編碼 陣(Λ至尸〇。接收端使用通道資訊將一最佳預編碼矩陣索 (/)回授至傳輸端’且該傳輪端將一對應於回授索引之預 碼矩陣應用至傳輸資料(以至/⑷)。為了參考’下表1顯示 ί , 3位元之回授資訊係用於—配有兩Τχ天線,以支援空間 工率為2的IEEE 802.1 6e系統時所使用之範例性碼薄。 道 碼 程 使 通 方 回 傳 矩 引 編 當 多 [表1] 陣索引I行1 矩陣索引 (二進制) 行1 行2 矩陣索引 (二進制) 行1 行2 000 1 0 — 100 0.7941 0.6038-j0.0689 0 1 0.6038+j0.0689 -0.7941 001 0.7940 ΤοΓ^· 0.3289 0.6614-j06740 -0.5801+j0.18I8 -0.7940 0.6614+j0.6740 -0.3289 010 0.7940 0.0579-j0.6051 uo 0.5112 0.4754+j0.7160 0.0579+j0.6051 -0.7940 0.4754-j0.7160 -0.5112 011 0.7941 -0.2978+j0.5298 Τη- 0.3289 •0.877州 0-3481 -0.2978-j0.5298 -0.7941 -0.8779-j0.3481 -0.3289 9Block diagram of 200901654. Referring to Fig. 1, in the age-old secret search terminal, the channel encoder 101 attaches a redundant bit to a Tx data bit, and |V determines, 兀* 乂 reduces one channel or noise. Negative impact. A mapper 103 converts the data phase; the A~μ^ greet bit το information into data symbol information. A series of parallel to (serlal~to_parallel, s/p) converters lo5 convert the data symbols into parallel-parameter data so that parallel data symbols can be carried on several subcarriers. An encoder 107 converts the parallel data symbols into spatial time signals. In a receiving end, a decoder 109, a parallel-to-serial (p/s) converter 111, a demapper 113, and a channel decoder 115 have a chirp encoder 1〇7 in the transmission end, The S/P converter 105, the mapper 1〇3, and the channel encoder 101 have opposite functions. ΜΙΜΟ-OFDM systems require various technologies to improve data transmission reliability. As for the scheme for increasing the spatial diversity gain, there is a space-time code (STC), a cyclic delay diversity (CDD) or the like. As for the scheme for increasing the signal to noise ratio (SNR), there is beamforming (BF), precoding or the like. In this case, the space time code or cyclic delay diversity scheme is typically used to provide robustness for an open loop where the feedback information cannot be used at the transmission end due to fast time updates of the channel. Conversely, the beam shaping or pre-kicking is typically applied to a closed loop system to maximize signal to noise ratio by using feedback information including a spatial channel property. As for the scheme for increasing the spatial diversity gain in the above-mentioned scheme, 7 200901654 and a scheme for increasing the signal-to-noise ratio, 'the expansion delay diversity and pre-coding will be explained in detail below. When the antenna system transmits the 0FDM signal, the CDD scheme allows the antenna to transmit 〇FDM signals with different delays or amplitudes. Therefore, a receiving end can obtain the frequency diversity gain. FIG. 2 illustrates the transmission end of a MIM0 system based on the CDD scheme. Block diagram. Referring to FIG. 2, an OFDM symbol is allocated to an individual antenna via an S/P converter and a chirp encoder, and a Cyclic Prefix (CP) for preventing inter-channel interference is attached to the OFDM symbol 'and The resulting OFDM symbol with the CP is then transmitted to a receiving end. In this case, a data sequence transmitted to a first antenna is applied to the receiving end without any change, and the other data sequence transmitted to a second antenna is compared with the first antenna. A predetermined number of samples are cyclically delayed, so the cyclically delayed data sequence is transmitted to the second antenna. At the same time, if the CDD scheme is implemented in a frequency domain, the 'cycle delay' can be indicated by the product of the C; phase sequence (or multiplication). A detailed description thereof will be described below with reference to FIG. Figure 3 is a block diagram showing the transmission end of a system based on a conventional phase shift diversity (PSD) scheme. Referring to Figure 3, the different phase sequences of individual antennas (phase sequence 1 to phase sequence Μ) are multiplied by individual data sequences in a frequency domain, an Inverse Fast Fourier Transform (IFFT) system. Execution is performed on the multiplied result, and the IFFT multiplied data is transmitted to the end of one connection 8 200901654. The method described above in Figure 3 is referred to as a phase shifting diversity scheme. In the case of a phase-shifting diversity scheme, a flat fading pass can be changed to a frequency selective channel, a frequency diversity gain can be obtained by a channel programming, or a multi-user diversity gain can be selected by a frequency selection. The program is obtained. Meanwhile, if a closed loop system includes limited feedback information, two precoding schemes, that is, a code thin precoding scheme and a scheme for quantifying the channel information and feeding back the quantized channel information may be used. The codebook precoding encodes the index of a precoding matrix (which has been identified by the transmission/receiver) to the transmitting/receiving end so that it can obtain the SNR gain. Figure 4 is a block diagram showing the input/receive end of a μ IΜ system based on code thin precoding. Referring to FIG. 4, each of the transmission/reception terminals has a finite precoding matrix (the squad to the corpse. The receiving end uses channel information to feed back an optimal precoding matrix cable (/) to the transmitting end' and the transmitting wheel The terminal applies a pre-code matrix corresponding to the feedback index to the transmission data (to /(4)). For reference, the following table shows the ί, 3-bit feedback information is used for - with two antennas to support An exemplary codebook used in the IEEE 802.1 6e system with a space power ratio of 2. The channel code is used to make the back-to-back moments of the channel as multiple [Table 1] Array index I line 1 Matrix index (binary) Line 1 line 2 Matrix Index (Binary) Line 1 Line 2 000 1 0 — 100 0.7941 0.6038-j0.0689 0 1 0.6038+j0.0689 -0.7941 001 0.7940 ΤοΓ^· 0.3289 0.6614-j06740 -0.5801+j0.18I8 -0.7940 0.6614+j0. 6740 -0.3289 010 0.7940 0.0579-j0.6051 uo 0.5112 0.4754+j0.7160 0.0579+j0.6051 -0.7940 0.4754-j0.7160 -0.5112 011 0.7941 -0.2978+j0.5298 Τη- 0.3289 •0.877 State 0-3481 -0.2978 -j0.5298 -0.7941 -0.8779-j0.3481 -0.3289 9

200901654 以上所述相移分集方案可在一開放迴路中獲取一 選擇分集增益,且可在一封閉迴路中獲取一頻率排 益。由於相移分集方案具有此等優點,許多開發者已 移分集方案中實行密集研究。然而,相移分集方案之 多工率為1,以致其無法獲取高傳送率。並且,若資源 係固定,相移分集方案難以獲取頻率選擇分集增益及 排程增益。 碼簿式預編碼方案在使用一高空間多工率的同時 需求小量回授資訊(即索引資訊),因此其可有效地傳 料。然而,因為必須保證一用於回授資訊之穩定通道 不適用於具有突然改變通道的行動環境,而僅可用於 閉迴路系統。 【發明内容】 因此,本發明係關於相移式預編碼方法,以及用 援相同方法之傳收器,其實質上消除由於相關技術之 及缺點產生的一或多數問題。_ 本發明之一目的在於提供一種用於解決相移分集 及預編碼方案的問題之相移式預編碼方法,及一種用 由一般化或延伸一相移式預編碼矩陣依各種方式應用 移式預編碼方案的方法。 本發明之額外優點、目的及特徵將部分在以下說 提出,且部分可由熟習此項技術人士自審視下文時瞭 可自實現本發明時習得。本發明之目的及其他優點可 頻率 程增 在相 空間 配置 頻率 ,僅 輸資 ,其 一封 於支 限制 方案 於藉 該相 明中 解或 藉由 10 200901654 在本發明之書面說明與其申請專利範圍以及附圖中特別指 出之結構來實現與達成。 為達成此等目的及其他優點且依據本發明之目的,本 發明之一態樣係提供一種用於在使用複數副載波之多輸入 多輸出(ΜΙΜΟ)系統中傳輸一資料的方法,該方法包含決定 一預編碼矩陣作為一相移式預編碼矩陣之一部分,決定一 用於一相移之第一對角矩陣作為該相移式預編碼矩陣之一 部分,決定一單位矩陣作為該相移式預編碼矩陣之一部 分,且藉由將該相移式預編碼矩陣乘以每資源一傳輸符號 來預編碼,其中該相移式預編碼矩陣係藉由將該預編碼矩 陣、該第一對角矩陣及該單位矩陣三者相乘來決定。 在本發明之另一態樣中,係提供一種用於在使用複數 副載波之多輸入多輸出(ΜΙΜΟ)系統中傳輸一資料的傳收 器,該傳收器包含:一預編碼矩陣決策模組,其決定一預 編碼矩陣作為一相移式預編碼矩陣之一部分,決定一用於 一相移之第一對角矩陣作為該相移式預編碼矩陣之一部 分,決定一單位矩陣作為該相移式預編碼矩陣之一部分, 且藉由將該預編碼矩陣、該第一對角矩陣及該單位矩陣三 者相乘來決定該相移式預編碼矩陣;及一預編碼模組,其 係用於藉由將該相移式預編碼矩陣乘以每資源一傳輸符號 來預編碼。 在本發明之另一態樣中,係提供一種用於在使用複數 副載波之多輸入多輸出(ΜΙΜΟ)系統中接收一資料的方 11200901654 The phase shift diversity scheme described above can obtain a selective diversity gain in an open loop and can obtain a frequency gain in a closed loop. Due to the advantages of phase shift diversity schemes, many developers have implemented intensive research in shift diversity schemes. However, the phase shift diversity scheme has a multiplex rate of 1, so that it cannot obtain a high transfer rate. Moreover, if the resources are fixed, the phase shift diversity scheme is difficult to obtain the frequency selective diversity gain and the scheduling gain. The codebook precoding scheme requires a small amount of feedback information (i.e., index information) while using a high spatial multiplex rate, so that it can be efficiently transmitted. However, because it is necessary to ensure that a stable channel for feedback information is not applicable to an action environment with abrupt changes in the channel, it can only be used in closed loop systems. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a phase shifting precoding method, and a transceiver that employs the same method, which substantially obviates one or more of the problems due to the disadvantages of the related art. An object of the present invention is to provide a phase shift precoding method for solving the problem of phase shift diversity and precoding scheme, and a method for applying a shift by using a generalized or extended phase shift precoding matrix in various ways. The method of precoding scheme. Additional advantages, objects, and features of the invention will be set forth in part in the <RTIgt; The object and other advantages of the present invention are that the frequency range is increased in the phase space configuration frequency, and only the capital is allocated, and a one-to-one limitation scheme is solved by the same or by 10 200901654 in the written description of the invention and the scope of the patent application. And the structure specifically indicated in the drawings is realized and achieved. To achieve these and other advantages and in accordance with the purpose of the present invention, an aspect of the present invention provides a method for transmitting a data in a multiple input multiple output (MIMO) system using a plurality of subcarriers, the method comprising Determining a precoding matrix as a part of a phase shift precoding matrix, determining a first diagonal matrix for a phase shift as part of the phase shift precoding matrix, and determining a unit matrix as the phase shifting pre Encoding a portion of the matrix, and precoding by multiplying the phase-shifted precoding matrix by a transmission symbol per resource, wherein the phase-shifted precoding matrix is obtained by using the precoding matrix, the first diagonal matrix And the unit matrix is multiplied to determine. In another aspect of the present invention, there is provided a transceiver for transmitting a data in a multiple input multiple output (MIMO) system using a plurality of subcarriers, the transceiver comprising: a precoding matrix decision mode a group, which determines a precoding matrix as a part of a phase shift precoding matrix, determines a first diagonal matrix for a phase shift as part of the phase shift precoding matrix, and determines a unit matrix as the phase a portion of the precoding matrix, and determining the phase shifting precoding matrix by multiplying the precoding matrix, the first diagonal matrix, and the unit matrix; and a precoding module For precoding by multiplying the phase shift precoding matrix by a transmission symbol per resource. In another aspect of the present invention, a method for receiving a data in a multiple input multiple output (MIMO) system using a plurality of subcarriers is provided.

200901654 法,該方法包含以下步驟:決定一預編碼矩陣作為一相移 式預編碼矩陣之一部分,決定一用於一相移之第一對角矩 陣作為該相移式預編碼矩陣之一部分,決定一單位矩陣作 為該相移式預編碼矩陣之一部分,且基於該相移式預編碼 矩陣將每資源一傳輸符號解碼,其中該相移式預編碼矩陣 係藉由將該預編碼矩陣、該第一對角矩陣及該單位矩陣三 者相乘來決定。 在本發明之另一態樣中,係提供一種用於在使用複數 副載波之多輸入多輸出(ΜΙΜΟ)系統中接收一資料的方 法,該方法包含以下步驟:決定一預編碼矩陣作為一相移 式預編碼矩陣之一部分,決定一用於一相移之第一對角矩 陣作為該相移式預編碼矩陣之一部分,決定一單位矩陣作 為該相移式預編碼矩陣之一部分,且基於該相移式預編碼 矩陣將每資源一傳輸符號解碼,其中該相移式預編碼矩陣 係藉由將該預編碼矩陣、該第一對角矩陣及該單位矩陣三 者相乘來決定。 根據以上所述態樣之傳輸及接收方法及傳收器,預編 碼矩陣可加以選擇以根據資源索引(k)在一第一碼薄中循 環重複^ 該預編碼矩陣可選擇以根據以一預定單位重複之資源 索引在一第一碼薄令循環重複。該預定單位可在考慮空間 多工率下決定。 該預編碼矩陣可從該第一碼薄之一部分中選擇。或 者,預編碼矩陣係從一包含該第一碼薄之一部分的第二碼 12 200901654 薄中選出。 該預編碼矩陣可基於從一接收端接收之回授資訊從該 第一碼薄中選出。並且該回授資訊可包括一關聯該碼薄之 預編碼矩陣索引(precoding matrix index,PMI) » 應暸解本發明之前述一般性說明及以下詳細說明兩者 係範例性及說明性,且係意於提供所宣稱的本發明之進一 步解說。 本發明提供一種相移式預編碼技術用於解決習知 CDD、PSD、及預編碼方法的問題,該方法導致有效通訊 的執行。明確言之,相移式預編碼技術係一般化或延伸, 傳收器之設計被簡化或通訊效率增加。 【實施方式】 現將詳細參考本發明之較佳具體實施例,其實例係於 附圖中說明。盡可能在全部圖式中’相同元件符號將用以 指相同或相似部分。 在描述本發明之前’應注意係大多數在本發明中揭示 之術語對應於此項技術中為人熟知的一般術語,但一些術 語已由申請人視需要選擇’及以下將在本發明之以下描述 中揭示。因此,較佳係由申請人定義的術語係基於其在本 發明中之意義來理解。 為了描述方便及更佳理解本發明,將省略此項技術中 為人熟知的一般結構及裝置或由方塊圖或流程圖指示。盡 13In the method of 200901654, the method includes the following steps: determining a precoding matrix as a part of a phase shift precoding matrix, and determining a first diagonal matrix for a phase shift as a part of the phase shift precoding matrix, determining An unit matrix is used as a part of the phase-shifted precoding matrix, and each resource-received symbol is decoded based on the phase-shifted pre-coding matrix, wherein the phase-shifted pre-coding matrix is obtained by using the pre-coding matrix The diagonal matrix and the unit matrix are multiplied to determine. In another aspect of the present invention, a method for receiving a data in a multiple input multiple output (MIMO) system using a plurality of subcarriers is provided, the method comprising the steps of: determining a precoding matrix as a phase Part of the shift precoding matrix, determining a first diagonal matrix for a phase shift as part of the phase shift precoding matrix, determining a unit matrix as part of the phase shift precoding matrix, and based on the The phase-shifted precoding matrix decodes each resource-one transmission symbol, wherein the phase-shifted pre-coding matrix is determined by multiplying the pre-coding matrix, the first diagonal matrix, and the unit matrix. According to the transmission and reception method and the receiver of the above aspect, the precoding matrix can be selected to be cyclically repeated in a first codebook according to the resource index (k). The precoding matrix can be selected to be based on a predetermined The resource index of the unit repeat is repeated in a first code order. The predetermined unit can be determined taking into account the space multiplex rate. The precoding matrix can be selected from a portion of the first codebook. Alternatively, the precoding matrix is selected from a second code 12 200901654 containing a portion of the first codebook. The precoding matrix is selectable from the first codebook based on feedback information received from a receiving end. And the feedback information may include a precoding matrix index (PMI) associated with the codebook. The foregoing general description of the present invention and the following detailed description are both exemplary and illustrative, and are intended to be Further explanation of the claimed invention is provided. The present invention provides a phase shifting precoding technique for solving the problems of conventional CDD, PSD, and precoding methods that result in efficient communication execution. In particular, phase-shifted precoding techniques are generalized or extended, and the design of the transceiver is simplified or the communication efficiency is increased. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments embodiments Wherever possible, the same reference numerals will be used to refer to the Before the present invention is described, it should be noted that most of the terms disclosed in the present invention correspond to general terms well known in the art, but some terms have been selected by the applicant as needed and the following will be below the present invention. Revealed in the description. Therefore, the terms defined by the applicant are preferably understood based on their meaning in the present invention. For the convenience of the description and a better understanding of the present invention, the general structures and devices well known in the art are omitted or indicated by block diagrams or flowcharts. Do 13

200901654 可能全部圖式中使用之相同元件符號將用以指相同或相似 部分。 &lt;第一具體實施例&gt; 相移式預編碼矩陣 第5圖係說明一用於根據本發明施行相移式預編碼方 案之傳收器的主要組件之方塊圖。 相移式預編碼方案將所有串流乘以具有不同相位之序 列,及經由所有天線傳輸經相乘之串流。大體上,從接收 器之觀點,若一相位序列係以一小循環延遲值產生,則一 通道可具有頻率選擇性,且通道之大小根據一頻域的部分 變得更大或更小。 如從第5圖中可見,一傳輸器將一使用者設備(user equipment, UE)配置給一以一相對較小循環延遲值波動之 頻帶的一特定部分,以致其自該特定部分獲取一排裎增 益,其中一頻率增加以實施一穩定通道狀態。在此情況下, 為了應用一規則地增加或減少之循環延遲值至個別天線’ 傳輸器使用相移式預編碼矩陣。 相移式預編碼矩陣(P)可藉由以下方程式1表示: [方程式1]200901654 The same component symbols used in all figures will be used to refer to the same or similar parts. &lt;First Embodiment&gt; Phase Shift Precoding Matrix Fig. 5 is a block diagram showing main components of a transmitter for performing a phase shift type precoding scheme according to the present invention. A phase-shifted precoding scheme multiplies all streams by a sequence of different phases and transmits the multiplied stream via all antennas. In general, from the perspective of the receiver, if a phase sequence is generated with a small cyclic delay value, then one channel can have frequency selectivity and the size of the channel becomes larger or smaller depending on the portion of a frequency domain. As can be seen from FIG. 5, a transmitter configures a user equipment (UE) to a specific portion of a frequency band that fluctuates with a relatively small cyclic delay value such that it acquires a row from the particular portion. The gain is increased by one of the frequencies to implement a stable channel state. In this case, a phase shift precoding matrix is used in order to apply a regularly increasing or decreasing cyclic delay value to the individual antenna&apos; transmitter. The phase shift precoding matrix (P) can be expressed by the following equation 1: [Equation 1]

Pn,xR &lt;2 'Λ VN„R. VN„2 其中k係一副載波索引或特定頻帶之索引(k=l、2、3、 14Pn,xR &lt;2 'Λ VN„R. VN„2 where k is a subcarrier index or an index of a specific frequency band (k=l, 2, 3, 14

Ο ^precoefing = l〇g2(det(Iw 如可從方程式3見到 須為一單位矩陣,因此 方程式4 : 200901654 4、…)或(k = 0、1、2、3、…),θί(ί=卜 2、3、4),心卜卜…、Ο ^precoefing = l〇g2 (det (Iw can be seen as a unit matrix from Equation 3, so Equation 4: 200901654 4,...) or (k = 0, 1, 2, 3, ...), θί ( ==Bu 2, 3, 4), heart Bubu...,

Nt,j = 1、...、R)係由「k」決定之一複數加權,Nt係Τχ天線 的數目,而R係一空間多工率。 在此情況下’該複數加權可根據一藉由天線相乘之 OFDM符號或一對應副載波索引而具有不同值。複數加權 可藉由一通道狀態及回授資訊之存在或缺乏中至少一者來 決定。 同時,較佳係方程式1之相移式預編碼矩陣(尸)係以單 位矩陣之形式組態,以在ΜΙΜΟ系統中減少通道容量之損 失。在此情況下,為了決定單位矩陣之構成條件,可藉由 方程式2表示一 ΜΙΜΟ開放迴路系統之通道容量: [方程式2] C„(H) = l〇g2(det(IAfr +^ΗΗΗ)) 其中Η係一(NrxNt)大小之ΜΙΜΟ通道矩陣,且队係Rx 天線的數目。若相移式預編碼矩陣p係應用於方程式^,以 下方程式3係成為: [方程式3] + ™ΗΡΡηΗη» ’為了防止通遒容量損壞,户尸η必 相移式預編碼矩陣ρ必須滿足以下 [方程式4] 15Nt, j = 1, ..., R) are weighted by a complex number determined by "k", Nt is the number of antennas, and R is a spatial multiplex rate. In this case, the complex weighting may have different values depending on an OFDM symbol or a corresponding subcarrier index multiplied by the antenna. The complex weighting can be determined by at least one of the presence or absence of a channel state and feedback information. At the same time, the phase shifting precoding matrix (corpse) of Equation 1 is preferably configured in the form of a unit matrix to reduce the loss of channel capacity in the system. In this case, in order to determine the constitutional condition of the unit matrix, the channel capacity of an open loop system can be expressed by Equation 2: [Equation 2] C„(H) = l〇g2(det(IAfr +^ΗΗΗ)) Among them, the channel matrix of the size of NrxNt and the number of Rx antennas of the team. If the phase-shifted precoding matrix p is applied to the equation ^, the following equation 3 becomes: [Equation 3] + TMΗΡΡηΗη» ' In order to prevent the damage of the overnight capacity, the phase-shifted precoding matrix ρ of the household η must satisfy the following [Equation 4] 15

200901654 ΡΡη=ιΝ 其中Iw係η X n單位矩陣。 為了依一單位矩陣形式組態相移式預編碼矩陣Ρ,必 須同時滿足以下兩條件,即,一功率限制條件及一正交限 制條件。功率限制條件允許一矩陣之各行的大小係「1」, 及可由以下方程式5表示: [方程式5] ^ίι| +Κ,ι| +···+^„ι|=1»200901654 ΡΡη=ιΝ where Iw is the η X n unit matrix. In order to configure the phase-shifted precoding matrix 依 in a unit matrix form, the following two conditions must be met, namely, a power limiting condition and an orthogonal limiting condition. The power limit condition allows the size of each row of a matrix to be "1" and can be expressed by Equation 5 below: [Equation 5] ^ίι| +Κ,ι| +···+^„ι|=1»

1 + |&lt;21 + …+ 4,2 = L +|Ί +.··+Μ4,β =1 正交限制條件允許個別行在其間具有正交性,及可由 以下方程式6表示: [方程式6] &lt;&lt;2+&lt;Α2+-·· + &lt;Λ,2=0^ « + « + …+ «3 = 0, W\,\W\,R + W2,lW2Jt +· + ^N„lWN„R = 0 其次,以下將會詳述一(2 X 2)大小相移式預編碼矩陣之 一般化方程式及一用於滿足以上所述兩條件之方程式。 以下方程式7顯示一在2個TX天線下具有空間多工率 為2之相移式預編碼矩陣: [方程式7] k 0^风 2x2 一 16 200901654 4)係一 一單位 下方程 其中Cl,及儿·(卜1、2)為一實數,0Ki=l、2、3、 相位值,而係一 OFDM符號之副載波索引。為了依 矩陣之形式組態以上所述預編碼矩陣,必須滿足以 式8之功率限制條件及以下方程式9的正交限制條件 [方程式8] a,e a,e \p^ejk-\β^1 + |&lt;21 + ...+ 4,2 = L +|Ί +.··+Μ4, β =1 The orthogonal constraint allows individual rows to have orthogonality therebetween, and can be expressed by Equation 6 below: [Equation 6] &lt;2+&lt;Α2+-·· + &lt;Λ,2=0^ « + « + ...+ «3 = 0, W\,\W\,R + W2,lW2Jt +· + ^ N„lWN„R = 0 Next, a generalized equation of a (2×2) size-shifted precoding matrix and an equation for satisfying the above two conditions will be detailed below. Equation 7 below shows a phase-shifted precoding matrix with a spatial multiplex rate of 2 under two TX antennas: [Equation 7] k 0^Win 2x2 A 16 200901654 4) One-to-one unit lower equation where Cl, and (Bu 1, 2) is a real number, 0Ki = 1, 2, 3, phase value, and is a subcarrier index of an OFDM symbol. In order to configure the precoding matrix described above in the form of a matrix, the power constraint condition of Equation 8 and the orthogonal constraint condition of Equation 9 below must be satisfied [Equation 8] a, e a, e \p^ejk-\β^

[方程式9] +(fi2ejkei),a2em =0 其中「*」係一共軛複數。 陣的一 滿足方程式8及9之(2x2)大小相移式預編碼矩 實例係由以下方程式1 0表示: [方程式10] 1 1 ejk&amp;2 私2=7?(严1)[Equation 9] + (fi2ejkei), a2em =0 where "*" is a conjugate complex number. A sequence of (2x2) phase-shifted precoding moments satisfying equations 8 and 9 is represented by the following equation 10: [Equation 10] 1 1 ejk&amp;2 private 2=7? (strict 1)

U 其中02及θ3間之關係由以下方程式11表示: [方程式11] k6l = -k02 + π 致經碼 記憶體 .陣。 訊之存 係設定 至少一預編碼矩陣可依一碼簿之形式組態,以 簿格式化預編碼矩陣可儲存在一傳輸端或接收端之 中。碼薄可包括由各種不同有限θ2值產生之預編碼海 在此情況下,「θ2」可藉由一通道狀態及回授資 在或缺乏適當地建立。若使用回授資訊,則「θ2」 17 200901654 至一低值。若回授資訊不使用,則「θ2」被設定至一高值。 結果’可得一高頻率分集增益。 同時,可根據應用於相移式預編碼之延遲樣本大小獲 取一頻率分集增益或頻率排程增益。 • 第6圖圖示根據本發明之相移式預編碼或一相移分集 _ 的兩應用。 . 如從第6圖可見,若使用一大值的延遲樣本(或循環延 〇 遲),則一頻率選擇週期變得更短,因此一頻率選擇性增加 且一通道碼可獲得一頻率分集增益。因此,較佳係將大值 延遲樣本用於一開放迴路系統,其中回授資訊之可靠性由 於隨時間之一突然通道變化而惡化》 若使用一小值之延遲樣本,則一其中通道大小變得更 大的第一部分及一其中通道大小變得更小之第二部分,會 發生在一從平衰落通道(flat-fading channel)改變之頻率選 擇通道中。因此,通道大小在OFDM訊號之一預定副載波 區域中變得更大,且在其他副載波區域中變得更小。 在此情況下,若在一容納多使用者之正交分頻多工存 取(Orthogonal Frequency Division Multiple Access,OFDM A)系統處,一目標訊號係經由一用於各使 * 用者之較大通道大小頻帶進行傳輸,一訊號雜訊比(SNR) . 可能增加。並且,各使用者極可能經常具有不同之較大通 道大小頻帶,因此該系統可獲取一多使用者分集排程增 益。從接收端之觀點,其可僅傳輸一副載波區域之通道品 質指示符(Channel Quality Indicator, CQI)資訊以配置資 18 200901654 源作為回授資訊’因此回授資訊之量係相對地減少。 用於相移式預編碼之,延遲樣本(或循環延遲)可在傳 收器中預定,或可從一接收器回授至一傳輸器。 另外,亦可在傳收器中預定空間多工率R。然而,— 接收器週期性地辨識一通道狀態’計算空間多工率,及回 授經S十算空間多工率至一傳輸器。或者,該傳輸器可使用 從接收器回授之通道資訊來計算或改變空間多工率。 &lt;第二具體實施例&gt; 一般化相移分集拓陣 在用於一其中天線數係Nt(Nt係一高於2之自然數)且空 間多工率係R之系統中的情況下,以上所述相移式預編竭 矩陣可由以下方程式12表示:U The relationship between 02 and θ3 is represented by the following equation 11: [Equation 11] k6l = -k02 + π The code memory. The setting of at least one precoding matrix can be configured according to a codebook. The formatted precoding matrix can be stored in a transmitting end or a receiving end. The codebook may include precoded seas generated from a variety of different finite θ2 values. In this case, "θ2" may be properly established by a channel state and re-investment or lack of resources. If feedback information is used, "θ2" 17 200901654 to a low value. If the feedback information is not used, "θ2" is set to a high value. As a result, a high frequency diversity gain can be obtained. At the same time, a frequency diversity gain or frequency scheduling gain can be obtained based on the delay sample size applied to the phase shift precoding. • Figure 6 illustrates two applications of phase shift precoding or one phase shift diversity _ according to the present invention. As can be seen from Fig. 6, if a large value of delayed samples (or cyclic delay) is used, a frequency selection period becomes shorter, so a frequency selectivity increases and a frequency diversity gain can be obtained for one channel code. . Therefore, it is preferable to use a large-valued delay sample for an open loop system in which the reliability of the feedback information is deteriorated due to a sudden channel change with time. If a small value of the delayed sample is used, then the channel size is changed. The larger first portion and a second portion in which the channel size becomes smaller will occur in a frequency selection channel that changes from a flat-fading channel. Therefore, the channel size becomes larger in one of the predetermined subcarrier regions of the OFDM signal, and becomes smaller in the other subcarrier regions. In this case, if an Orthogonal Frequency Division Multiple Access (OFDM A) system is accommodated in a multi-user, a target signal is transmitted through a larger one for each user. The channel size band is transmitted, and a signal to noise ratio (SNR) may increase. Moreover, each user most likely has a different large channel size band, so the system can obtain a multi-user diversity schedule gain. From the perspective of the receiving end, it can transmit only the Channel Quality Indicator (CQI) information of a subcarrier area to configure the source as the feedback information, so the amount of feedback information is relatively reduced. For phase-shifted precoding, the delayed samples (or cyclic delays) can be predetermined in the transmitter or can be fed back from a receiver to a transmitter. In addition, the spatial multiplex rate R can also be predetermined in the transceiver. However, the receiver periodically recognizes a channel state' to calculate the spatial multiplex rate, and returns the singular space multiplex rate to a transmitter. Alternatively, the transmitter can use the channel information fed back from the receiver to calculate or change the spatial multiplex rate. &lt;Second embodiment&gt; In general, a phase shift diversity topology is used in a system in which the antenna number system Nt (Nt is a natural number higher than 2) and the spatial multiplex rate system R The phase shift pre-completion matrix described above can be expressed by Equation 12 below:

[方程式12][Equation 12]

方程式12可視為習知相移分集方案之一般化格式,因 此方程式12中所示之ΜΙΜΟ方案以下將指一般化相移分集 (Generalized Phase Shift Diversity, GPSD)方案。 在方程式12中Equation 12 can be considered as a generalized format for a conventional phase shift diversity scheme, so the scheme shown in Equation 12 will be referred to below as a Generalized Phase Shift Diversity (GPSD) scheme. In Equation 12

方係一具有凡個Tx天線及 的 空間多工率為R的MIMO-OFDM訊號之第k個副栽波 19 200901654The k-th sub-carrier with the MIMO-OFDM signal with the space multiplex rate of R and the Tx antenna 19 200901654

GPSD矩陣。並且,¢/㈣係一滿足= 之單位矩陣 (即,第二矩陣),及經調適以使對應於個別天線之副載波 符號間的干擾減至最少。明確言之,為了維持一用於一相 移之對角矩陣(即,第一矩陣)無任何變化,較佳係%π可 滿足單位矩陣的條件。在方程式12中,一頻域之相位角 θί(ι=1、..、Nt)及一時域之延遲時間Ti(i = 1、、⑽具有預定 關係,其係由以下方程式13表示: [方程式13] 其中Nffi係一 OFDM訊號之副載波的數目。 方程式12之一修改實例係顯示在以下方程式η中,因 此GPSD矩陣可由方程式14計算出:GPSD matrix. Also, ¢/(4) is an identity matrix that satisfies = (i.e., the second matrix), and is adapted to minimize interference between subcarrier symbols corresponding to individual antennas. Specifically, in order to maintain a diagonal matrix (i.e., the first matrix) for one phase shift without any change, it is preferable that the condition %π satisfies the condition of the identity matrix. In Equation 12, the phase angle θί (ι=1, .., Nt) of a frequency domain and the delay time Ti(i = 1, , (10) of a time domain have a predetermined relationship, which is expressed by the following Equation 13: [Equation 13] where Nffi is the number of subcarriers of an OFDM signal. A modified example of Equation 12 is shown in the following equation η, so the GPSD matrix can be calculated by Equation 14:

[方程式14][Equation 14]

ΘΘ

若GPSD矩陣係由方程式14造成,則各資料流(或〇fdM 副載波)之符號係偏移相同相位’因此可易於組態GPSD矩 陣。換句話說’方程式14之GPSD矩陣包含具有相同相位的 行,而方程式12之GPSD矩陣包含具有相同相位的列,因此 個別副載波符號係偏移相同相位。若方程式1 4被延伸,則 20 200901654 GPSD矩陣可由以下方程式15計算出: [方程式15]If the GPSD matrix is caused by Equation 14, the signage of each data stream (or 〇fdM subcarrier) is offset by the same phase' so that the GPSD matrix can be easily configured. In other words, the GPSD matrix of Equation 14 contains rows having the same phase, while the GPSD matrix of Equation 12 contains columns having the same phase, so the individual subcarrier symbols are offset by the same phase. If Equation 14 is extended, then 20 200901654 the GPSD matrix can be calculated by Equation 15 below: [Equation 15]

(UA 〇psd^r= f f *. ·* V雜 0 …〇 0 … 0、 Θ 0 fitik \ 0 0 · ·. \ § (¾箱j &gt;·. · * 0 Q 0 Θ Λ 如 從 方 程式 1 5可 見,GPSD矩陣 之列 及行具有 獨立 相 位,因 此 可 獲取 各種 頻率分集 增益。 作 為 方 程式 12、 14或1 5之 實例 使用 兩T X天線及1位(UA 〇psd^r= ff *. ·* V miscellaneous 0 ...〇0 ... 0, Θ 0 fitik \ 0 0 · ·. \ § (3⁄4 box j &gt;·. · * 0 Q 0 Θ Λ as from the equation It can be seen that the columns and rows of the GPSD matrix have independent phases, so various frequency diversity gains can be obtained. As an example of Equation 12, 14 or 15, two TX antennas and one bit are used.

元碼簿之系統的GPSD矩陣方程式可由以下方程式16表示: [方程式16] GPS^^[j-a\ ^ + ^ = 1 在方程式16中,若「α」已決定,則「β」可輕易決定。 因此,可將「α」之值固定至兩適當值,且關聯「α」之值 的資訊可視需要回授至一碼薄索引。例如,可在一傳輸器 及一接收器間規定兩條件,即,若回授索引係「〇」則「α」 設定至「0.2」的一條件,及若回授索引係「1」則「α」設 定至「0.8」的另一條件。 可將一用於獲取SNR增益之預定預編碼矩陣用作方程 式12、14或15中之單位矩陣的一實例。可將一 Walsh 21 200901654The GPSD matrix equation of the system of the codebook can be expressed by the following equation 16: [Equation 16] GPS^^[j-a\^ + ^ = 1 In Equation 16, if "α" has been determined, "β" can be easily determined. Therefore, the value of "α" can be fixed to two appropriate values, and the information associated with the value of "α" can be fed back to a codebook index as needed. For example, two conditions can be specified between a transmitter and a receiver, that is, if the index is "〇", then "α" is set to a condition of "0.2", and if the index is "1", then " α is set to another condition of "0.8". A predetermined precoding matrix for obtaining the SNR gain can be used as an example of the unit matrix in Equation 12, 14 or 15. Can be a Walsh 21 200901654

Hadamard矩陣或一 DFT矩陣用作以上所述預編瑪矩陣。若 使用Walsh Hadamard矩陣’可由以下方程式17表示方程式 12之GPSD矩陣的一實例:A Hadamard matrix or a DFT matrix is used as the pre-matrix matrix described above. If an Walsh Hadamard matrix is used, an example of the GPSD matrix of Equation 12 can be represented by Equation 17 below:

[方程式17] η ο ο 1 f i i i 1、 GPSDkAx4- ^ 0 ^ 0 0 0 0 α 1-1 1 -1 1 l—l—i L 0 0 0 e:_J U-i-i iJ 方程式17係在一系統具有4個Tx天線及空間多工率為 4的假設下造成。在此情況下,第二矩陣係適當地重建,因 此可選定一特定Tx天線(即天線選擇)或可調講空間多工率 (即等級調適)。 同時,方程式I2、I4或I5之單位矩陣可依一瑪薄 之形式組態’因此經碼薄格式化之單位矩陣係儲存在一傳 輸或接收端中。在此情況下,傳輸端從接收端接收碼薄索 引資訊,從其本身之碼薄中選擇一對應索引的預編碼矩 陣,及使用方程式12、14或15組態一相移式預編碼矩陣。 右一(2x2)或(4x4)大小之Walsh碼係用作方程式12、 或1 5之單位矩陣%π ’則係獲取GPSD矩陣之一實例,如 表2及3所表示: 下 [表2] 22[Equation 17] η ο ο 1 fiii 1, GPSDkAx4- ^ 0 ^ 0 0 0 0 α 1-1 1 -1 1 l - l - i L 0 0 0 e: _J Uii iJ Equation 17 is in a system with 4 The Tx antenna and the space multiplex rate of 4 are assumed. In this case, the second matrix is properly reconstructed so that a particular Tx antenna (i.e., antenna selection) or adjustable spatial multiplex rate (i.e., level adaptation) can be selected. At the same time, the identity matrix of equations I2, I4 or I5 can be configured in a singular form. Thus the unit matrix formatted by the thin code is stored in a transmission or reception. In this case, the transmitting end receives the code index information from the receiving end, selects a precoding matrix corresponding to the index from its own codebook, and configures a phase shift precoding matrix using Equations 12, 14 or 15. The right one (2x2) or (4x4) size Walsh code is used as the unit matrix %π ' of Equation 12, or 15 to obtain an example of a GPSD matrix, as shown in Tables 2 and 3: [Table 2] twenty two

200901654 ::t通 Rate 1 Rate 2 1 1 i Γ 1 1 1 [表3] 4 Tx Rate 1 Rate 2 Rate 4 r ψ η 1 ,ί i ' —1 I 1 1 ^ 1 1 1 2 2 2 ' ρ/Ψ ·- τ &lt;第三具體實施例&gt; 時變一般化相移分集 在方程式12、14或15之GPSD矩陣中,一對角矩陣之相 位角(θ〇及/或一單位矩陣(U)可隨時間改變。例如,方程式 12之一時變GPSD可由以下方程式18表示: [方程式1 8] GPSDkNtXR(t&gt; 〇 m 藝 0; eJ^(t)k &gt;:* 丨f ο '· 0 t 0 0 0寒娜 幻 Ntxlid 23 200901654 其令係一在一特定時間⑴處具有风個Τχ天線 及一空間多工率為r的MIM〇_〇FDM訊號之第k副載波的 GPSD矩陣。[/々以)係—滿足之單位矩陣(即第 四矩陣)’且係調適以使在對應於個別天線之副載波符號間 . 的干擾減至最少。 / 明確言之’為了維持一用於相移之對角矩陣(即,第三 . 矩陣)的單位矩陣之特徵沒有任何改變,較佳係可滿 Ο 足單位矩陣的條件。在方程式1 8中,一相位角0i(t)(i=l、.,、200901654 ::T pass Rate 1 Rate 2 1 1 i Γ 1 1 1 [Table 3] 4 Tx Rate 1 Rate 2 Rate 4 r ψ η 1 , ί i ' —1 I 1 1 ^ 1 1 1 2 2 2 ' ρ /Ψ ·- τ &lt;Third embodiment&gt; Time-varying generalized phase shift diversity In the GPSD matrix of Equation 12, 14 or 15, the phase angle of a pair of angular matrices (θ〇 and/or a unit matrix ( U) may change with time. For example, one time-varying GPSD of Equation 12 may be expressed by Equation 18 below: [Equation 1 8] GPSDkNtXR(t> 〇m 艺0; eJ^(t)k &gt;:* 丨f ο '· 0 t 0 0 0 寒娜幻 Ntxlid 23 200901654 It is a GPSD matrix of a k-subcarrier of a MIM〇_〇FDM signal with a wind Τχ antenna and a spatial multiplex rate r at a specific time (1). [/々) is the unit matrix (ie, the fourth matrix) that satisfies and is adapted to minimize interference between subcarrier symbols corresponding to individual antennas. / Clearly, in order to maintain one for The characteristics of the unit matrix of the diagonal matrix of the phase shift (ie, the third matrix) are not changed, and preferably the unit matrix of the phase matrix is sufficient. Member. In Equation 18, a phase angle 0i (t) (i = l,. ,,

Nt)及一延遲時間T:i(t)(i=l、..、Nt)具有預定關係,其係由以 下方程式19表示: [方程式19] m=—2nA想颂 其中Nfft係一 OFDM訊號之副載波的數目。 如從方程式18及19可見,一時間延遲樣本值及一單位 矩陣可隨時間改變。在此情況下,可將時間之一單位設定 rNt) and a delay time T:i(t) (i=l, .., Nt) have a predetermined relationship, which is represented by the following equation 19: [Equation 19] m=−2nA where Nfft is an OFDM signal The number of subcarriers. As can be seen from Equations 18 and 19, a time delayed sample value and a unit matrix can change over time. In this case, one of the time units can be set r

I 成一 OFDM符號或一預定單位時間。 若一用於獲取一時變GpSD之單位矩陣係由一基於 (2x2)大小Walsh碼之GPSD矩陣表示,則以下GPSD矩陣可 * 如下表4中所示建立: . [表 4] 24I is an OFDM symbol or a predetermined unit time. If a unit matrix for acquiring a time-varying GpSD is represented by a GPSD matrix based on a (2x2) size Walsh code, the following GPSD matrix can be established as shown in Table 4 below: . [Table 4] 24

200901654200901654

Rate 1 Rate 2 l 1 I y猶七嘛 若一用於獲取一時變GPSD之單位矩陣係由一基於 (4x4)大小Walsh碼之GPSD矩陣表示,則以下GPSD矩陣可 如下表4中所示建立: [表5] 4Tx Rate 1 Rate 2 賺4 Γ 1 y物丨 ·:Λ r : r— fn 1 1 〆%(0* CO* __e τ'— ' 1 1 1 i 1 ^微七聯 g?-微.:七働 雖然以上所述第三具體實施例已揭示關聯方程式1 2之 時變GPSD矩陣,應瞭解該時變GPSD矩陣亦可應用至方程 式1 4及1 5之對角矩陣及單位矩陣。因此,雖然以下具體實 施例將參考方程式1 2描述,熟習此項人士明瞭以下具體實 施例之範圍不限於方程式1 2,且亦可應用至方程式1 4及1 5。 &lt;第四具體實施例&gt; 25 陣之第三矩陣係加至由 的該GPSD矩陣中,則 一對角 一延伸Rate 1 Rate 2 l 1 I y If the unit matrix used to obtain the time-varying GPSD is represented by a GPSD matrix based on a (4x4) size Walsh code, the following GPSD matrix can be established as shown in Table 4 below: [Table 5] 4Tx Rate 1 Rate 2 Earn 4 Γ 1 y object Λ::Λ r : r— fn 1 1 〆%(0* CO* __e τ'— ' 1 1 1 i 1 ^微七联g?- Micro.: VII. Although the third embodiment of the above has revealed the time-varying GPSD matrix of the correlation equation 12, it should be understood that the time-varying GPSD matrix can also be applied to the diagonal matrix and the unit matrix of Equations 14 and 15. Therefore, although the following specific embodiments will be described with reference to Equation 12, it is apparent to those skilled in the art that the scope of the following specific embodiments is not limited to the equations 12 and can also be applied to the equations 14 and 15. [Fourth implementation Example> The third matrix of 25 arrays is added to the GPSD matrix, and the pair of corners is extended.

200901654 移分集之 若一對應於一預編碼矩 矩陣及一單乜矩陣兩者組成 GPSD矩陣可如以下方程式2〇中所示建立 [方程式20] GPSD· R 突•寧。 與方程式12比較,方程式20之延伸GPSD矩陣更包括一 位於對角矩陣前之(NtXR)大小的預編碼矩陣(p)。因此,該 對角矩陣之大小係改變成(rxR)大小。 可將所增加預編碼矩陣為不同地指定至一特定頻 帶或一特定副載波符號。較佳係,在一開放迴路系統之情 況下’可將所増加預編碼矩陣及設定至一固定矩陣。 Ρ 藉由增加預編碼矩陣f與X及,可獲取最佳SNR增益。 一傳輸端或接收端可具有一配有複數預編碼矩陣(P) 的碼薄。 同時,在延伸GPSD矩陣中,預編碼矩陣(P)、對角矩 陣之相位角(Θ)、及單位矩陣(U)中至少一者可隨時間改 變。由於此目的,若下一預編碼矩陣P之一索引係以一預 定時間單位或預定副載波單位進行回授,則一對應於該索 引之特定預編崎矩陣p可從一預定碼薄中選出。 根據第四具體實施例之延伸GPSD矩陣可由以下方程 26200901654 Shift diversity If one corresponds to a precoding matrix and a single matrix, the GPSD matrix can be established as shown in Equation 2 below [Equation 20] GPSD·R. Compared with Equation 12, the extended GPSD matrix of Equation 20 further includes a (NtXR) size precoding matrix (p) located before the diagonal matrix. Therefore, the size of the diagonal matrix is changed to the (rxR) size. The added precoding matrix can be assigned differently to a particular frequency band or a particular subcarrier symbol. Preferably, in the case of an open loop system, the precoding matrix can be added and set to a fixed matrix.最佳 The best SNR gain can be obtained by increasing the precoding matrix f and X. A transmitting end or receiving end may have a codebook equipped with a complex precoding matrix (P). Meanwhile, in the extended GPSD matrix, at least one of the precoding matrix (P), the phase angle (Θ) of the diagonal matrix, and the unit matrix (U) may change with time. For this purpose, if one index of the next precoding matrix P is fed back in a predetermined time unit or a predetermined subcarrier unit, a specific pre-synthesis matrix p corresponding to the index can be selected from a predetermined codebook. . The extended GPSD matrix according to the fourth embodiment may be as follows:

^ (%xi?(0) e! J^ (%xi?(0) e! J

[方程式23][Equation 23]

0 … 技卿汝... ♦· ·' 0 *·* (DFT以R) 200901654 式21表示: [方程式21] 师。… 戲確』):〜淵I ’f)、:: 〈〇 ο · “ 至於延伸GPSD矩陣之一實例,一包括兩或四個Tx天線 之ΜΙΜΟ系統的矩陣方程式係在以下方程式22及23中顯 示: [方程式22] gpsd^ 2 m = (p2 x 2 (ί))( J Jit )k )(^¾ x^) 0 ' · .·· 在方程式22及23中,雖然一 DFT矩陣係用作一單位矩 陣,但本發明之範圍不限於該D FT矩陣,且亦可應用於能 滿足一如Walsh Hadamard碼之給定單位條件之其他矩陣。 至於延伸GPSD矩陣之另一實例,一包括四個Tx天線之 ΜΙΜΟ系統的矩陣方程式係顯示在以下方程式24中: [方程式24] 27 2009016540 ... Technician 汝... ♦· ·' 0 *·* (DFT to R) 200901654 Equation 21 means: [Equation 21] Division. ... 戏 』):~渊 I 'f),:: 〇 · · · "As an example of extending the GPSD matrix, a matrix equation of a system including two or four Tx antennas is in Equations 22 and 23 below. Display: [Equation 22] gpsd^ 2 m = (p2 x 2 (ί))( J Jit )k )(^3⁄4 x^) 0 ' · .·· In Equations 22 and 23, although a DFT matrix is used As a unit matrix, the scope of the present invention is not limited to the D FT matrix, and can also be applied to other matrices that satisfy a given unit condition of a Walsh Hadamard code. As for another example of extending the GPSD matrix, one includes four The matrix equations of the system of Tx antennas are shown in Equation 24 below: [Equation 24] 27 200901654

與方程式12比較,方程式24之延伸GPSD矩陣更包括— (NtxN〇大小對角矩陣(D1)及一(NtxR)大小預編碼矩陣(p),其 係位於一對角矩陣(D2)之前。因此,對角矩陣(D2)之大小 被改變成(RxR)大小。 可將所增加預編碼矩陣與%爲不同地指定予一特定頻 帶或一特定副載波符號。較佳係,在開放迴路系統之情況 下,可將所增加預編碼矩陣父丑設定成一固定矩陣❶藉 由增加預編碼矩陣爲,可獲取最佳SNR增益。 較佳係,一傳輸端或一接收端可具有一配有複數預編 碼矩陣(P)之碼薄。Compared with Equation 12, the extended GPSD matrix of Equation 24 further includes - (NtxN〇 size diagonal matrix (D1) and one (NtxR) size precoding matrix (p), which is located before the pair of angular matrices (D2). The size of the diagonal matrix (D2) is changed to the (RxR) size. The added precoding matrix can be assigned to a specific frequency band or a specific subcarrier symbol differently from %. Preferably, in the open loop system In this case, the added precoding matrix parent ugly can be set to a fixed matrix, and the optimal SNR gain can be obtained by adding the precoding matrix. Preferably, a transmitting end or a receiving end can have a complex pre-prepared The code matrix of the coding matrix (P).

Q … 9 0 a ϊ * · Q 0 0 D1 (AxsOO)Q ... 9 0 a ϊ * · Q 0 0 D1 (AxsOO)

在此情況下,藉由對角矩陣D1及D2,一相位角可在單 一系統中依兩方式偏移》例如’若一低值相移係由對角矩 陣D1使用,則可獲取一多使用者分集排程增益。若一高值 相移係由對角矩陣D2使用,則可獲取一頻率分集增益。對 角矩陣D 1經調適以增加系統性能,而另一對角矩陣經調 適以平均串流間之一通道。 並且,一高值相移係由對角矩陣D 1使用,因此可增加 頻率分集增益。一高值相移分集係由對角矩陣D2使用,故 可平均串流間之一通道。此增益可從方程式21獲取。 在此情況下,方程式2 1之矩陣P必須基於一副載波單 28 200901654 元或頻率資源單元進行改變,及係接著使用而無回授資 訊。此修改格式可由以下方程式25表示: [方程式25] GP^(X,(〇 = (P^,(〇) ο ei9z{t)k Ο :·. 〇 (1) Ο ej0Ri,)k ^ 〇 在方程式25中,校乂)係指一特定情況,其中個別資源 索引(k)使用不同預編碼矩陣。因而,一頻率分集增益藉由 每資源索引(k)使用不同預編碼矩陣來增加,且一在串流間 之通道係藉由使用一對角矩陣及一單位矩陣(U)來平均。 &lt;第五具體實施例&gt; 碼薄子集限制方案 碼薄子集限制方案係被限制以使用一碼薄之一些部 分。若碼薄之所有預編碼矩陣的數目係Wc,根據碼薄子集 限制方案係僅可用AUirW預編碼矩陣。碼薄子集限制方案可 用來減少多單元干擾或系統複雜性。在此情況下,必須滿 足由iVc指示的預定條件。 例如,若碼薄之所有預編碼矩陣的數目係#c=6,一所 有集之一碼薄Α,χβ及一用於僅允許使用來自6預編碼矩陣 中之4預編碼矩陣的特定碼薄可由以下方程式26表示: [方程式26] p __ i p〇 pi p2 p3 p4 n5 ) - \ΓΝ^Κ^ rNtxR^rNixR^jrNtxR^&gt;rNi&gt;cR^rNixRj^ 29 200901654 = {Pn,xR&gt; P^Pn,,rA^} = = [K^ Kx^K^K^} 在方程式26中,%係碼薄Pgr的等效碼薄。 &lt;第六具體實施例&gt; 預編碼矩陣循環重複方案In this case, by the diagonal matrices D1 and D2, a phase angle can be shifted in two ways in a single system. For example, if a low-value phase shift is used by the diagonal matrix D1, a multi-use can be obtained. The diversity of the scheduling gain. If a high value phase shift is used by the diagonal matrix D2, a frequency diversity gain can be obtained. The diagonal matrix D 1 is adapted to increase system performance, while the other diagonal matrix is adapted to average one channel between streams. Also, a high value phase shift is used by the diagonal matrix D 1 , so the frequency diversity gain can be increased. A high value phase shift diversity is used by the diagonal matrix D2, so that one channel between the streams can be averaged. This gain can be obtained from Equation 21. In this case, the matrix P of Equation 21 must be changed based on a subcarrier 28 200901654 element or a frequency resource unit, and then used without feedback. This modified format can be expressed by the following equation 25: [Equation 25] GP^(X,(〇=(P^,(〇) ο ei9z{t)k Ο :·. 〇(1) Ο ej0Ri,) k ^ 〇 In Equation 25, the calibration refers to a specific case in which individual resource indices (k) use different precoding matrices. Thus, a frequency diversity gain is increased by using a different precoding matrix per resource index (k), and a channel between streams is averaged by using a pair of angular matrices and a unit matrix (U). &lt;Fifth Embodiment&gt; Codebook Subset Restriction Scheme The codebook subset restriction scheme is limited to use some portions of a codebook. If the number of all precoding matrices of the codebook is Wc, only the AUirW precoding matrix can be used according to the codebook subset restriction scheme. A thin code subset restriction scheme can be used to reduce multi-cell interference or system complexity. In this case, the predetermined condition indicated by iVc must be satisfied. For example, if the number of all precoding matrices of the codebook is #c=6, one set of all codes is thin, χβ and one are used to allow only a specific codebook from 4 precoding matrices in the 6 precoding matrix. It can be expressed by the following equation 26: [Equation 26] p __ ip〇pi p2 p3 p4 n5 ) - \ΓΝ^Κ^ rNtxR^rNixR^jrNtxR^&gt;rNi&gt;cR^rNixRj^ 29 200901654 = {Pn,xR&gt; P^ Pn,,rA^} = = [K^ Kx^K^K^} In Equation 26, the equivalent code thin of the codebook Pgr is %. &lt;Sixth embodiment&gt; Precoding matrix cyclic repeating scheme

例如,若在Tx/Rx時間期間決定之一預編碼矩陣集係 在一特定時間處預定義,則此情況可由以下方程式2 7表示: [方程式27] ρΉ“·..,制For example, if one of the precoding matrix sets is predefined at a particular time during the Tx/Rx time, then this can be represented by Equation 27 below: [Equation 27] ρΉ "·..,

GPSDkNiXR K:GPSDkNiXR K:

kmodNc xR ο ej咕 Ο 在方程式27中,該預編碼矩陣集包括iVc預編碼矩陣。 方程式27可依方程式28之形式簡化: [方程式28] I’* P' xfi = χΛ,A xi?,_ · Ά,χΛ } GP^/X,=(P^r〇nL, T%kvs\odNc 在方程式27及方程式28中,厂ν,π 係指示一根據包括 - 在碼簿\χΛ中之价預編碼矩陣中之一副載波索引或一資源 索引k來循環重複的預編碼矩陣。 在方程式2 8中,n^xi?係調適以混合資料流,且可稱為 一旋轉矩陣。如從方程式28中可見,Π^χΛ可根據一空間多 工率(R)選出。亦可易於由以下方程式29表示: 30 200901654 [方程式29] 空間多工率:2 nk2x2 ίο 1 1 ο \kkmodNc xR ο ej咕 Ο In Equation 27, the precoding matrix set includes an iVc precoding matrix. Equation 27 can be simplified in the form of Equation 28: [Equation 28] I'* P' xfi = χΛ, A xi?, _ · Ά, χΛ } GP^/X,=(P^r〇nL, T%kvs\ odNc In Equation 27 and Equation 28, the factory ν, π indicates a precoding matrix that is cyclically repeated according to one of the subcarrier indices or a resource index k included in the price precoding matrix in the codebook. In Equation 28, n^xi? is adapted to mix data streams and can be referred to as a rotation matrix. As can be seen from Equation 28, Π^χΛ can be selected according to a spatial multiplex rate (R). Equation 29 below represents: 30 200901654 [Equation 29] Spatial multiplex rate: 2 nk2x2 ίο 1 1 ο \k

e财 ο \e财 ο \

JJ

空間多工率:3Space multiplex rate: 3

nL &quot;0 1 0、 k ri 0 0、 0 0 1 或 0 e難 0 0 0J 0 ej' DF\ x3 空間多工率:4 x4nL &quot;0 1 0, k ri 0 0, 0 0 1 or 0 e difficult 0 0 0J 0 ej' DF\ x3 Space multiplex rate: 4 x4

4^4 &quot;0 1 0 0、 k (\ 0 0 0 N 0 0 1 0 或 0 0 0 0 0 0 1 0 0 e歸 0 0 0 0, 0 0 ej' DFT4 此外,在一配有N。個預編碼矩陣之碼薄中,若一僅能 使用根據節點B或使用者設備(UE)之碼簿的一特定部分之 碼薄子集限制方案係應用於以上所述碼薄,則Nc個預編碼 矩陣必須減少至Nrestrict個預編碼矩陣,且接著加以使用。 因此,在使用等效碼薄WV,之情況下,方程式2 8可由 以下方程式30表示: [方程式30] =Μ,- ρ2¥,ρ3ν,…piR}=研啊=4^4 &quot;0 1 0 0, k (\ 0 0 0 N 0 0 1 0 or 0 0 0 0 0 0 1 0 0 e return 0 0 0 0, 0 0 ej' DFT4 In addition, in one with N In the codebook of a precoding matrix, if a codebook subset restriction scheme based on a specific portion of the codebook of the Node B or the User Equipment (UE) can be applied to the codebook described above, then Nc The precoding matrices must be reduced to Nrestrict precoding matrices and then used. Therefore, in the case of using the equivalent codebook WV, Equation 28 can be expressed by Equation 30 below: [Equation 30] = Μ, - ρ2 ¥,ρ3ν,...piR}=研啊=

GPSDkNiXR=(w^fN^)nkRxR 其中「k」係一副載波索引或一頻率資源索引。在方程 31 200901654 ύττ k mod Λ 式30中,队恤时係4。且在方程式30中,^,χΛ 係指示根 據包括在碼簿PGT或内之Nrestrict個預編碼矩陣中的一副 載波索引或一資源索引k來循環重複之預編碼矩陣。 &lt;第六具體實施例-1&gt;GPSDkNiXR=(w^fN^)nkRxR where "k" is a subcarrier index or a frequency resource index. In Equation 31 200901654 ύττ k mod 式 Equation 30, the team is tied to 4. And in Equation 30, the system indicates that the repeated precoding matrix is cyclically repeated according to a subcarrier index or a resource index k included in the Nrestrict precoding matrix included in or within the codebook PGT. &lt;Sixth embodiment-1&gt;

藉由一預定單元之預編碼矩陣循環重複方案 並且,方程式2 8亦可根據頻率資源之一設置由以下方 程式3 1表示: [方程式31] GPSDkN冲 或 〇PSDkNiXR = modA^The scheme is repeated by a precoding matrix of a predetermined unit. Further, Equation 28 can also be represented by the following program 3 1 according to one of the frequency resources: [Equation 31] GPSDkN rush or 〇 PSDkNiXR = modA^

PP

—modAfc N,xR—modAfc N,xR

lRxR ΠlRxR Π

k RxRk RxR

在方程式31中,「k」可為一副載波索引或一虛擬資源 索引,且可根據開始之索引k為何而在方程式3 1中於 2方式間選出。 在方程式3 1中,若「k」係副載波索引,一預編碼矩陣 係重複用於v副載波且預編碼矩陣係根據包括在碼薄βν,π 中之iVc個預編碼矩陣中的一副載波索引k來循環重複。 每副載波之預編碼矩陣索引的範例性列表係如下: [1 122334455 1 122334455...] 或[0001 1 1222333444 0001 1 1222333444...] 第一者表示v = 2,7\^ = 5及1^=1、2、…、K之情況,且第 32 200901654 二者表示v = 3,iVc = 5,k = 0、1、…、Κ-l的情況。在此’ Κ 係一副訊框中之資源數目。 方程式3 1顯示一預編碼矩陣係在Nc個預編碼矩陣中 不同地建立之特定情況。該v之值可藉由考慮預編碼矩陣之 一空間多工率來決定。例如,v之值可藉由v = 指示。In Equation 31, "k" may be a subcarrier index or a virtual resource index, and may be selected between Equation 2 in Equation 31 according to the starting index k. In Equation 31, if "k" is a subcarrier index, a precoding matrix is repeated for v subcarriers and the precoding matrix is based on a pair of iVc precoding matrices included in the codebook βν,π The carrier index k is cyclically repeated. An exemplary list of precoding matrix indices per subcarrier is as follows: [1 122334455 1 122334455...] or [0001 1 1222333444 0001 1 1222333444...] The first one represents v = 2,7\^ = 5 and The case of 1^=1, 2, ..., K, and the 32nd 200901654 both represent the case where v = 3, iVc = 5, k = 0, 1, ..., Κ-l. Here, the number of resources in a sub-frame. Equation 31 shows a specific case in which a precoding matrix is differently established in Nc precoding matrices. The value of v can be determined by considering a spatial multiplex rate of the precoding matrix. For example, the value of v can be indicated by v = .

另外,在使用方程式26之碼薄子集限制方案的情況 下,預編碼矩陣亦可基於副載波單元之預定數目或頻率資 源單元的預定數目來改變。此格式可由以下方程式32表示: [方程式32] nresirict _ f p〇 p2 p3 p5 1 _ \y - iw° W1 W2 W3 \ rNtxR \rNtxR^ rN,xR^rNtxR^rNtxR] ~ YYNtxR ~~ \n N,xR^ n NtxR^n Nt^R^rr NtxR j GPSDkNM =In addition, in the case of using the code thin subset restriction scheme of Equation 26, the precoding matrix may also be changed based on a predetermined number of subcarrier units or a predetermined number of frequency resource units. This format can be expressed by the following equation 32: [Equation 32] nresirict _ fp〇p2 p3 p5 1 _ \y - iw° W1 W2 W3 \ rNtxR \rNtxR^ rN,xR^rNtxR^rNtxR] ~ YYNtxR ~~ \n N, xR^ n NtxR^n Nt^R^rr NtxR j GPSDkNM =

k RxR Π 或k RxR Π or

GPSDGPSD

NtxRNtxR

比較方程式31,方程式32之預編碼矩陣亦可藉由V單元 改變。不同於方程式31,方程式32之預編碼矩陣係在預編 碼矩陣的S D數中改變。 同時,頻率分集增益可根據循環重複預編碼矩陣之數 目或包括在碼薄中之預編碼矩陣的數目來改變。因此,在 碼簿子集限制方案及預編碼矩陣循環重複方案係調適在一 起如方程式32中表示之情況下,用於決定碼薄子集之各種 方案係描述於下。 &lt;第五具體實施例-1&gt; 33 200901654Comparing Equation 31, the precoding matrix of Equation 32 can also be changed by the V unit. Unlike Equation 31, the precoding matrix of Equation 32 varies in the S D number of the precoding matrix. At the same time, the frequency diversity gain can be varied depending on the number of cyclically repeating precoding matrices or the number of precoding matrices included in the codebook. Therefore, in the case where the codebook subset restriction scheme and the precoding matrix loop repetition scheme are adapted as shown in Equation 32, various schemes for determining the codebook subset are described below. &lt;Fifth Specific Embodiment-1&gt; 33 200901654

根攄空間多工率R 碼薄子集可根據空間多工率R不同地決定。例如, 一低空間多工率之情況下,碼薄子集之大小係決定為大 以致頻率分集增益可達到最大。且在一高空間多工率之 況下,碼薄子集之大小係決定為小,以致複雜性可降低 維持性能。The root multiplex rate R code thin subset can be determined differently according to the spatial multiplex rate R. For example, in the case of a low space multiplex rate, the size of the codebook subset is determined to be so large that the frequency diversity gain can be maximized. And in a high space multiplex rate, the size of the code subset is determined to be small, so that complexity can reduce the maintenance performance.

在 9 情 而 況 在使用根據空間多工率R所決定之碼薄子集的情 下,該實例方法可由以下方程式3 3表示: [方程式33] x2 = {x2» ^N, x2 &gt; ^N, x2 &gt; x2 } » ^restrict = ^ WW(X3 = = 3 〜χ4 中;,4,KsMct =1 f m D \ , -modNnslriaIn the case of using a subset of codebooks determined according to the spatial multiplex rate R, the example method can be expressed by the following equation 3: [Equation 33] x2 = {x2» ^N, x2 &gt; ^N , x2 &gt; x2 } » ^restrict = ^ WW(X3 = = 3 ~χ4;, 4, KsMct =1 fm D \ , -modNnslria

GPSDkNiXR= WN:XRGPSDkNiXR= WN:XR

or

GPSDkNGPSDkN

xR w, modNrRe! '.strictxR w, modNrRe! '.strict

NtxR ΠNtxR Π

RxR 其中係由根據空間多工率R所決定之碼薄子集 預編碼矩陣數目指示。因此,在一藉由碼簿子集限制方 調適之碼簿的預編碼矩陣係由循環重複使用之情況下’ 改進一系統性能及系統複雜性。 &lt;第五具體實施例-2&gt; 根攄通道編碼率 的 案 可 34RxR is indicated by the number of codebook subset precoding matrices determined by the spatial multiplex rate R. Therefore, a system performance and system complexity are improved in the case where the precoding matrix of the codebook adjusted by the codebook subset is cyclically reused. &lt;Fifth Specific Embodiment-2&gt; The scheme of the root channel coding rate is available.

200901654 碼薄子集可根據通道編碼率不同地決定。例如, 上,當通道編碼率低時頻率分集增益可增加。因此, 同空間多工率之環境中,可使用具有不同預編碼矩陣 簿子集,較佳係依低通道編碼率的預編碼矩陣,以致 進系統性能及系統複雜性。 &lt;第五具體實施例-3&gt; 根據再傳輸 碼簿子集可根據再傳輸不同地決定。例如,一在 輸處使用之碼薄子集具有之預編碼矩陣,係與已在初 輸處所用之碼薄子集的預編碼矩陣不同。即,根據是 傳輸或再傳輸之數目等等,可使用不同組成的碼薄子 因而,可增加再傳輸的成功率。 &lt;第七具體實施例&gt; 用於每傳輸天線之功率控制的一般化相移分集之 I) 至於各種預編碼方案,可將每TX天線之不同功率 於頻率或時間變化中。因而,增加系統性能及有效功 用隹可能。例如,每Tx天線之功率控制係能以方程式 3 0、3 1及3 2之預編碼方案使用。 尤其,使用一包括I個預編碼矩陣之碼薄的方程 之實例,係由以下方程式3 4表示: [方程式34]200901654 Codebook subsets can be determined differently depending on the channel coding rate. For example, the frequency diversity gain can be increased when the channel coding rate is low. Therefore, in an environment with spatial multiplex rate, a precoding matrix with different precoding matrix subsets, preferably based on a low channel coding rate, can be used to achieve system performance and system complexity. &lt;Fifth Embodiment 3&gt; The retransmission codebook subset can be determined differently according to retransmission. For example, a subset of codebooks used at the input has a precoding matrix that is different from the precoding matrix of the subset of codebooks that have been used at the inception. That is, depending on the number of transmissions or retransmissions, etc., code samples of different compositions can be used, and thus, the success rate of retransmission can be increased. &lt;Seventh embodiment&gt; Generalized phase shift diversity for power control per transmission antenna I) As for various precoding schemes, different powers per TX antenna can be varied in frequency or time. Therefore, it is possible to increase system performance and effective functions. For example, the power control per Tx antenna can be used with the precoding schemes of Equations 30, 31 and 32. In particular, an example of an equation using a codebook including one precoding matrix is represented by the following equation 34: [Equation 34]

PjV, χβ = X/?,χΛ,· Ά,χΛ } 大體 在相 之碼 可改 再傳 始傳 否再 集0 值用 率使 28 ' 式31 35 200901654PjV, χβ = X/?,χΛ,· Ά,χΛ } General The code in the phase can be changed and then transmitted. No further set 0 value rate 28 ' type 31 35 200901654

GPSDkNiXR=OmNiXNi(t) 或GPSDkNiXR=OmNiXNi(t) or

rNtxR GPSDkNiXR = OmNiXNi (〇 v(,)DU’)=: ΠrNtxR GPSDkNiXR = OmNiXNi (〇 v(,)DU’)=: Π

RxR r I μ λ modi^e n:&gt; 0 a; {t) ΠRxR r I μ λ modi^e n:&gt; 0 a; {t) Π

RxH 0 0 0 在方程式3 4中,Π^χΛ經調適以混合資料流,及亦可稱 為一旋轉矩陣,且n^xi?亦可易於由方程式29表示。且 (0係藉由一功率控制對角矩陣指示,以致使各TX天 線根據第m頻率區及/或t時間用不同功率傳輸一資料流。 &lt;,(/)係由一用於第iTx天線、第m頻率區及/或t時間之功率 控制元件指示。RxH 0 0 0 In Equation 34, Π^χΛ is adapted to mix data streams, and may also be referred to as a rotation matrix, and n^xi? may also be easily represented by Equation 29. And (0 is indicated by a power control diagonal matrix, so that each TX antenna transmits a data stream with different power according to the mth frequency region and/or t time. &lt;, (/) is used by the iTx Power control element indication of the antenna, the mth frequency zone and/or t time.

使用一包括iVwinc( S iVc)個預編碼矩陣之碼簿的方程式 3 2之實例係由以下方程式3 5表示: [方程式35]An example of Equation 3 2 using a codebook comprising iVwinc (S iVc) precoding matrices is represented by Equation 35 below: [Equation 35]

xR I ^restrict „ f p〇 p2 p3 p5 l - W - iw° Wl W2 W3 rNt 乂 R ~\rM^R^rN^R9rNtxR^rN,xRj-~ N,xR ~~ \n N,xR^&gt; n N,xR^r N,xR^rr N( G^X,=DU) restrictxR I ^restrict „ fp〇p2 p3 p5 l - W - iw° Wl W2 W3 rNt 乂R ~\rM^R^rN^R9rNtxR^rN,xRj-~ N,xR ~~ \n N,xR^&gt; n N,xR^r N,xR^rr N( G^X,=DU) restrict

xRxR

lRxR 或 GPSDkNiXR=OmNiXNi(t) W, mod 4 •strictlRxR or GPSDkNiXR=OmNiXNi(t) W, mod 4 •strict

NtxR ΠNtxR Π

RxR 36 200901654 f &lt;(t) du〇 = 0 0&lt;(〇 0 0 0 0 0 ··· 在方程式35及中, ΠRxR 36 200901654 f &lt;(t) du〇 = 0 0&lt;(〇 0 0 0 0 0 ··· In Equation 35 and ,, Π

k RxR 冰⑺及之各者與方 程式34之相同符號意義相同。 () &lt;第八具體實施例&gt; 用於施行相移式預編碼的傳收器 大體上,一通訊系統包括一傳輸器及一接收器。在此 情況下,傳輸器及接收器可視為係一傳收器。為了明瞭一 回授功能,用於傳輸一般資料之一部分係傳輸器,且用於 將回授資料傳輸至傳輸器之其他部分係接收器。 在下行鏈路中,傳輸器可為一節點B之一部分,或該 接收器可為一使用者設備(UE)的一部分。在一上行鏈路 中,傳收器亦可為UE之一部分,或接收器可為節點B的一 〇 部分。節點B可包括複數接收器及複數傳輸器。並且,使 用者設備(UE)亦可包括複數接收器及複數傳輸器。 第7圖係說明一根據本發明基於相移式預編碼方案的 - SCW OFDM傳輸器的方塊圖。第8圖係說明一根據本發明之 MCW OFDM傳輸器的方塊圖。 參考第7及8圖,通道編碼器510及610、交插器520及 620,IFFT(快速傅立葉反轉換)單元550及650、及類比轉換 器560與660等等係與第1圖之該等相同,因此為了描述方便 37 200901654 而在此將省略其詳細描述。下文將僅詳述預編碼器540及 640 ° 預編碼器540包括一預編碼矩陣決策模组541及一預編 碼模組542。預編碼器640包括一預編碼矩陣決策模組64 1 及一預編碼模組642。 預編碼矩陣決策模組(541、641)係依方程式12、14及 ' 15之一第一群或方程式20及21的第二群紐態之形式組態, Q 且決定一相移式預編碼矩陣。一用於決定預編碼矩陣之詳 細方法已在第二至第四具體實施例中描述,因此為了描述 方便將在此省略其詳述。基於方程式12、14及15的第一群 或方程式20及21的第二群之相移式預編碼矩陣,可改變— 用於防止副載波間干擾之預编碼矩陣,時間中之一對角矩 陣之相位角及/或單位矩陣,係如方程式1 8中顯示。 預編碼矩陣決策模組(541、641)可基於一接收端之回 授資訊選擇預編碼矩陣及單位矩陣中至少之一。在此情沉 下,較佳係該回授資訊可包括一預定碼簿之一矩陣索引。 (J 預編碼模組(542、642)將一 OFDM符號乘以經決定相移 式預編碼矩陣’及在經相乘結果上施行預編碼。 大體上,一接收器之個別組件具有與傳輸器的該等級 • 件相反之功能。將會描述一使用相移式預編碼矩陣之 MIMO-OFDM系統中的接收器。 » 首先’接收器從傳輸器接收引導訊號及使用接收到弓丨 導訊號達成ΜΙΜΟ通道資訊。且接著,接收器藉由將—相 移式預編碼矩陣乘以經達成MlM〇通道資訊,以達成等欵 38 200901654k RxR Ice (7) and each of them have the same meanings as in the program 34. (8) The eighth embodiment relates to a transmitter for performing phase shift precoding. Generally, a communication system includes a transmitter and a receiver. In this case, the transmitter and receiver can be considered as a transceiver. In order to clarify the feedback function, one of the parts for transmitting general data is a transmitter, and is used to transmit the feedback data to other parts of the transmitter. In the downlink, the transmitter can be part of a Node B, or the receiver can be part of a User Equipment (UE). In an uplink, the transceiver can also be part of the UE, or the receiver can be a part of Node B. Node B can include a complex receiver and a complex transmitter. Also, the user equipment (UE) may also include a plurality of receivers and a plurality of transmitters. Figure 7 is a block diagram showing a SCW OFDM transmitter based on a phase shift precoding scheme in accordance with the present invention. Figure 8 is a block diagram showing a MCW OFDM transmitter in accordance with the present invention. Referring to Figures 7 and 8, channel encoders 510 and 610, interleavers 520 and 620, IFFT (Fast Fourier Transform) units 550 and 650, analog converters 560 and 660, etc., and those of Figure 1 The same, so for the convenience of description 37 200901654, a detailed description thereof will be omitted herein. Only the precoder 540 and the 640 ° precoder 540 will include a precoding matrix decision module 541 and a precoding module 542. The precoder 640 includes a precoding matrix decision module 64 1 and a precoding module 642. The precoding matrix decision module (541, 641) is configured according to the first group of equations 12, 14 and '15, or the second group of equations 20 and 21, Q and determines a phase shift precoding matrix. A detailed method for determining the precoding matrix has been described in the second to fourth embodiments, and thus the detailed description thereof will be omitted herein for convenience of description. The phase-shifted precoding matrix based on the first group of Equations 12, 14 and 15 or the second group of Equations 20 and 21 can be changed - a precoding matrix for preventing inter-subcarrier interference, one of the diagonals in time The phase angle and/or unit matrix of the matrix is shown in Equation 18. The precoding matrix decision module (541, 641) may select at least one of the precoding matrix and the unit matrix based on the feedback information of a receiving end. In this case, preferably, the feedback information may include a matrix index of a predetermined codebook. (The J precoding module (542, 642) multiplies an OFDM symbol by the determined phase shifted precoding matrix' and performs precoding on the multiplied result. In general, the individual components of a receiver have a transmitter This level • the opposite function. A receiver in a MIMO-OFDM system using a phase-shifted precoding matrix will be described. » First, the receiver receives the pilot signal from the transmitter and uses the received bow signal to achieve ΜΙΜΟChannel information. And then, the receiver multiplies the phase-shifted precoding matrix by the MlM channel information to achieve the equal 欵38 200901654

Mmo通道資訊。相移式預編碼可基於來自傳輪器之空間 多工率(或等級)資訊及預編碼矩陣資訊中至少之一決定。 接收器可使用從傳輸器接收之等效mim〇通道資訊及 訊號向量擷取資料訊號。且通道解碼係對於所擷取資料訊 號施行用於錯誤偵測/校正,接 輸資料。根據ΜΙΜΟ接收方案 或可更包含額外解碼操作。 著最後可達成藉由傳輸器傳 ’預描述操作可重複地使用 方案之接收器可經調適 因而,ΜΙΜΟ接收方案Mmo channel information. The phase shift precoding can be determined based on at least one of spatial multiplex rate (or level) information and precoding matrix information from the wheel. The receiver can use the equivalent mim channel information and signal vector received from the transmitter to retrieve the data signal. And the channel decoding system performs error detection/correction for the captured data signal and transmits the data. According to the ΜΙΜΟ receiving scheme or may include additional decoding operations. Finally, the receiver that can be repeatedly used by the transmitter to transmit the pre-description operation can be adapted, thus, the receiving scheme

Ο 根據本發明基於相移式預編碼 而無須修改以符合ΜΙΜΟ接收方索 的進一步細節係節略。 ”,啊不之術語係在考 本發明之功能下定[且可根據熟習此項技術 圖 或通常實施選擇不同的術語…,較佳係以上所述2 係基於本發明中揭示的所有内容來理解。 熟習此項技術人士應會瞭解可 修改及變化,巾不脫離本發明㈣2 進行各種 明旨於涵蓋由隨附申請專利範圍及本發 的本發明之修改及變化。 提供 工業應用性 如自以上說明可瞭解’本發 之問題的相移式預編碼於解決習知 其:實施有效通訊。明…,該相移式預編 二 -般化或延伸,一傳收器之設計已簡化或通訊效率増加已經 39 200901654 雖然本發明之較佳具體實施例已揭示用於說明性目 的,但熟習此項技術人士將會瞭解各種修改、增加及置換 係可能,而不脫離隨附申請專利範圍令所揭示的本發明範 圍及精神。 【圖式簡單說明】Further details of the further details based on phase-shifted precoding without modification to conform to the receiving party are made according to the invention. ", the terminology is determined in accordance with the function of the present invention [and can be selected according to the technical drawing or the usual implementation of the terminology ..., preferably the above 2 is based on the disclosure of the present invention. Those skilled in the art will appreciate that modifications and variations can be made without departing from the invention. (4) 2 Various modifications and variations of the present invention are intended to cover the scope of the appended claims and the present invention. Explain that the phase-shift pre-coding of the problem of the present issue is solved by the conventional method: implementing effective communication. The phase-shifting pre-programming is generalized or extended, and the design of a transceiver has been simplified or communicated. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The scope and spirit of the invention disclosed. [Simplified illustration]

本文所包括之附圖提供對本發明之進一步瞭解,其說 明本發明之具體實施例且連同該說明用以解說本發明之原 理。 圖式中: 第1圖係一配有多傳輸/接收(Tx/Rx)天線之OFDM系統 的方塊圖, 第2圖係說明一基於習知循環延遲分集(CDD)方案之 ΜΙΜΟ系統的傳輸端之方塊圖; 第3圖係說明一基於習知相移分集(PSD)方案之ΜΙΜΟ 系統的傳輸端之方塊圖; 第4圖係說明一基於預編碼方案之ΜΙΜΟ系統的傳收 Is之方塊圖, 第5圖係說明一用於根據本發明施行相移式預編碼方 案之傳收器的主要組件之方塊圖; 第6圖以圖示根據本發明之相移式預編碼或相移分集 的兩應用; 第7圖係說明一用於根據本發明基於相移式預編碼方 案之SCW OFDM傳輸器的方塊圖;及 40 200901654 第8圖係說明一根據本發明之MCW OFDM傳輪器 塊圖。 【主要元件符號說明】 101 通道編碼器 103 映射器 105 串列至並行(S/P)轉換器 105 ΜΙΜΟ編碼器 109 ΜΙΜΟ解碼器 111 並列至串列(P/S)轉換器 113 解映射器 115 通道解碼器 510 通道編碼器 520 交插器 530 映射器 540 預編碼器 541 預編碼矩陣決策模組 542 預編碼模组 550 IFFT(快速傅立葉反轉換)單元 560 類比轉換器 610 通道編碼器 620 交插器 630 映射器 640 預編碼器 641 預編碼矩陣決策模組 642 預編碼模組 650 IFFT(快速傅立葉反轉換)單元 660 類比轉換器The accompanying drawings are included to provide a In the drawings: Figure 1 is a block diagram of an OFDM system equipped with a multi-transmission/reception (Tx/Rx) antenna, and Figure 2 illustrates a transmission end of a system based on a conventional cyclic delay diversity (CDD) scheme. Block diagram; Figure 3 illustrates a block diagram of the transmission end of the system based on the conventional phase shift diversity (PSD) scheme; Figure 4 illustrates a block diagram of the transmission Is based on the precoding scheme. Figure 5 is a block diagram showing the main components of a transmitter for performing a phase-shifted precoding scheme according to the present invention; Figure 6 is a diagram illustrating the phase shifting precoding or phase shifting diversity according to the present invention. FIG. 7 is a block diagram showing an SCW OFDM transmitter based on a phase shift precoding scheme according to the present invention; and 40 200901654 FIG. 8 is a block diagram showing an MCW OFDM carrier according to the present invention. . [Main Element Symbol Description] 101 Channel Encoder 103 Mapper 105 Tandem to Parallel (S/P) Converter 105 ΜΙΜΟ Encoder 109 ΜΙΜΟ Decoder 111 Parallel to Serial (P/S) Converter 113 Demapper 115 Channel decoder 510 channel encoder 520 interleaver 530 mapper 540 precoder 541 precoding matrix decision module 542 precoding module 550 IFFT (fast Fourier inverse conversion) unit 560 analog converter 610 channel encoder 620 interleaving 630 Mapper 640 Precoder 641 Precoding Matrix Decision Module 642 Precoding Module 650 IFFT (Fast Fourier Transform) 660 Analog Converter

Claims (1)

200901654 十、申請專利範圍: 1. 一種用於在使用複數副載波之一多輸入多輸出 (Multi-Input Multi-Output, ΜΙΜΟ)系統中傳輸一 資料的方法,該方法包含以下步驟: . 決定一預編碼矩陣,作為一相移式預編碼矩陣之一 . 部分; 決定一用於一相移之第一對角矩陣,作為該相移式 ζ\ 預編碼矩陣之一部分; 決定一單位矩陣,作為該相移式預編碼矩陣之一部 分;及 藉由將該相移式預編碼矩陣乘以每資源一傳輸符 號來預編碼, 其中該相移式預編碼矩陣係藉由將該預編碼矩 陣、該第一對角矩陣及該單位矩陣三者相乘來決定。 2. 如申請專利範圍第1項所述之方法,其中: (J 該預編碼矩陣係選擇以根據一資源索引(k)在一第 一碼薄中循環重複。 3. 如申請專利範圍第1項所述之方法,其中: 該預編碼矩陣係選擇以根據以一預定單位重複之 該資源索引在一第一碼薄中循環重複。 4. 如申請專利範圍第3項所述之方法,其中: 42 200901654 該預定單位係由考慮一空間多工率來決定。 5.如申請專利範圍第2項所述之方法,其中: 該預編碼矩陣係從該第一碼薄之一部分中選出 C 6. 如申請專利範圍第2項所述之方法,其中: 該預編碼矩陣係從一包含該第一碼薄之一部分的 第二碼薄中選出。 7. 如申請專利範圍第1項所述之方法,其中: 該相移式預編碼矩陣係由以下一方程式表示: [方程式] 0φ 0 m VtXR J Ο e • · :· 鲁 、Ο ο :.:χ 藤 οο .· jdRk J Μ 其中'w係該預編碼矩陣,iVt係τχ天線之數 ,係該單位矩陣,r k」係一資源索引,0i(i 1、2、3、4)係一相位角值,而R係一空間多工率。 8.如申請專利範圍第1項所述之方法,更包含以下步驟: 決定一用於一相移之第二對角矩陣,作為該相移式 預編碼矩陣之一部分,其中 43 200901654 該相移式預編碼矩陣係藉由將該第二對角矩陣、該 預編碼矩陣、該第一對角矩陣及該單位矩陣四者相乘來 決定。 9.如申請專利範圍第2項所述之方法,其中: 該預編碼矩陣係基於從一接收端接收之回授資 訊,從該第一碼薄中選出。200901654 X. Patent application scope: 1. A method for transmitting a data in a multi-input multi-output (MIMO) system using a plurality of subcarriers, the method comprising the following steps: a precoding matrix as one of a phase shifting precoding matrix. Part; determining a first diagonal matrix for a phase shift as part of the phase shifting ζ\precoding matrix; determining a unit matrix as a portion of the phase-shifted precoding matrix; and precoding by multiplying the phase-shifted precoding matrix by a transmission symbol per resource, wherein the phase-shifting precoding matrix is obtained by using the precoding matrix The first diagonal matrix and the unit matrix are multiplied to determine. 2. The method of claim 1, wherein: (J the precoding matrix is selected to be cyclically repeated in a first codebook according to a resource index (k). 3. The method of claim 3, wherein: the precoding matrix is selected to be cyclically repeated in a first codebook according to the resource index repeated in a predetermined unit. 4. The method of claim 3, wherein : 42 200901654 The predetermined unit is determined by considering a spatial multiplex rate. 5. The method of claim 2, wherein: the precoding matrix selects C 6 from a portion of the first codebook The method of claim 2, wherein: the precoding matrix is selected from a second codebook comprising a portion of the first codebook. 7. The method of claim 1 The method, wherein: the phase shifting precoding matrix is represented by the following program: [Equation] 0φ 0 m VtXR J Ο e • · :· Lu, Ο ο :.: 藤 藤 οο.· jdRk J Μ where 'w The precoding matrix, iVt system τχ The number of lines is the unit matrix, rk" is a resource index, 0i (i 1, 2, 3, 4) is a phase angle value, and R is a spatial multiplex rate. 8. As claimed in the patent scope The method of the present invention further includes the steps of: determining a second diagonal matrix for a phase shift as part of the phase shifting precoding matrix, wherein 43 200901654 the phase shifting precoding matrix is The second diagonal matrix, the precoding matrix, the first diagonal matrix, and the unit matrix are multiplied together. 9. The method of claim 2, wherein: the precoding matrix is Based on the feedback information received from a receiving end, it is selected from the first codebook. 10.—種用於在使用複數副載波之一多輸入多輸出(ΜΙΜΟ) 系統中傳輸一資料的傳收器,該傳收器包含: 一預編碼矩陣決策模組,其決定一預編碼矩陣作為 一相移式預編碼矩陣之一部分,決定一用於一相移之第 一對角矩陣作為該相移式預編碼矩陣之一部分,決定一 單位矩陣作為該相移式預編碼矩陣之一部分,及藉由將 該預編碼矩陣、該第一對角矩陣及該單位矩陣三者相乘 來決定該相移式預編碼矩陣;及10. A transceiver for transmitting a data in a multiple input multiple output (MIMO) system using a plurality of subcarriers, the transceiver comprising: a precoding matrix decision module that determines a precoding matrix As a part of a phase shift precoding matrix, a first diagonal matrix for a phase shift is determined as a part of the phase shift precoding matrix, and a unit matrix is determined as a part of the phase shift precoding matrix. And determining the phase shift precoding matrix by multiplying the precoding matrix, the first diagonal matrix, and the unit matrix; and 一預編碼模組,用於藉由將該相移式預編碼矩陣乘 以每資源一傳輸符號來預編碼。 1 1.如申請專利範圍第1 〇項所述之傳收器,其中: 該預編碼矩陣係選擇以根據該資源索引(k)在一碼 薄中循環重複。 1 2 ·如申請專利範圍第1 0項所述之傳收器,其中: 44 200901654 該預編碼矩陣係藉由模數操作一具有一碼簿大小 (N)之對應副載波的一索引(k)選出。 13.如申請專利範圍第10項所述之傳收器,其中: 該相移式預編碼矩陣係由以下一方程式表示: [方程式] e X QP·: 0他…ο .6 Tfi... ο 0 :...¾ Λ 其中' 係該預編碼矩陣,iVt係τχ天線之數 目,、係該單位矩陣,「k」係一資源索引,0i(i 1、2、3、4)係一相位角值,而R係一空間多工率。 14.如申請專利範圍第10項所述之傳收器,其中: 該預編碼矩陣決策模組決定一用於一相移之第二 對角矩陣作為該相移式預編碼矩陣之一部分,其中 該相移式預編碼矩陣係藉由將該第二對角矩陣、該 預編碼矩陣、該第一對角矩陣及該單位矩陣四者相乘來 決定。 1 5 .如申請專利範圍第11項所述之傳收器,其中: 該預編碼矩陣係基於從一接收端接收之回授資訊 45A precoding module is configured to precode by multiplying the phase shift precoding matrix by a transmission symbol per resource. 1 1. The transceiver of claim 1, wherein: the precoding matrix is selected to be cyclically repeated in a codebook according to the resource index (k). 1 2 · The transceiver according to claim 10, wherein: 44 200901654 the precoding matrix is operated by an analog to operate an index of a corresponding subcarrier having a codebook size (N) (k) ) selected. 13. The transceiver of claim 10, wherein: the phase shifting precoding matrix is represented by the following program: [Equation] e X QP·: 0 he... ο .6 Tfi... ο 0 :...3⁄4 Λ where ' is the precoding matrix, iVt is the number of τ χ antennas, is the unit matrix, "k" is a resource index, 0i (i 1, 2, 3, 4) is a Phase angle value, and R is a spatial multiplex rate. 14. The transceiver of claim 10, wherein: the precoding matrix decision module determines a second diagonal matrix for a phase shift as part of the phase shift precoding matrix, wherein The phase shift precoding matrix is determined by multiplying the second diagonal matrix, the precoding matrix, the first diagonal matrix, and the unit matrix. The transceiver of claim 11, wherein: the precoding matrix is based on feedback information received from a receiving end. 200901654 選出。 16.如申請專利範圍第15項所述之傳收器,其中: 該回授資訊包括一關聯該碼薄之預編碼矩陣索引 (precoding matrix index, ΡΜΙ) 〇 17.—種用於在使用複數副載波之一多輸入多輸出(ΜΙΜΟ) 系統中接收一資料的方法,該方法包含以下步驟·· 決定一預編碼矩陣,作為一相移式預編碼矩陣之一 部分; 決定一用於一相移之第一對角矩陣,作為該相移式 預編碼矩陣之一部分; 決定一單位矩陣,作為該相移式預編碼矩陣之一部 分;及 基於該相移式預編碼矩陣,將每資源一傳輸符號解 碼, 其中該相移式預編碼矩陣係藉由將該預編碼矩 陣、該第一對角矩陣及該單位矩陣三者相乘來決定。 18. 如申請專利範圍第17項所述之方法,其中: 該預編碼矩陣係選擇以根據該資源索引在一碼薄 中循環重複。 19. 一種用於在使用複數副載波之一多輸入多輸出(ΜΙΜΟ) 46 200901654 系統中傳輸一資料的方法,該方法包含以下步驟: 決定一預編碼矩陣,作為一相移式預編碼矩陣之一 部分; 根據一空間多工率決定一旋轉矩陣,作為該相移式 預編碼矩陣之一部分;及 藉由將該相移式預編碼矩陣乘以每資源一傳輸符 號來預編碼, 其中該相移式預編碼矩陣係藉由將該預編碼矩陣 及該旋轉矩陣二者相乘來決定。 20.如申請專利範圍第19項所述之方法,其中: 該預編碼矩陣係從一第一碼簿之一部分中選出。 2 1.如申請專利範圍第1 9項所述之方法,其中: 該預編碼矩陣係從一包含一第一碼薄之一部分的 第二碼薄中選出。200901654 Selected. 16. The transceiver of claim 15, wherein: the feedback information comprises a precoding matrix index (ΡΜΙ) associated with the codebook (〇). A method for receiving a data in a multiple input multiple output (MIMO) system of subcarriers, the method comprising the steps of: determining a precoding matrix as part of a phase shifting precoding matrix; determining one for a phase shift a first diagonal matrix as part of the phase shifting precoding matrix; determining a unit matrix as part of the phase shifting precoding matrix; and transmitting a symbol per resource based on the phase shifting precoding matrix Decoding, wherein the phase shifting precoding matrix is determined by multiplying the precoding matrix, the first diagonal matrix, and the unit matrix. 18. The method of claim 17, wherein: the precoding matrix is selected to cyclically repeat in a codebook based on the resource index. 19. A method for transmitting a data in a system using multiple input multiple output (ΜΙΜΟ) 46 200901654 of a plurality of subcarriers, the method comprising the steps of: determining a precoding matrix as a phase shifting precoding matrix Part of: determining a rotation matrix as a part of the phase shift precoding matrix according to a spatial multiplex rate; and precoding by multiplying the phase shift precoding matrix by a transmission symbol per resource, wherein the phase shift The precoding matrix is determined by multiplying the precoding matrix and the rotation matrix. 20. The method of claim 19, wherein: the precoding matrix is selected from a portion of a first codebook. 2. The method of claim 19, wherein: the precoding matrix is selected from a second codebook comprising a portion of a first codebook. 22. 如申請專利範圍第21項所述之方法,其中: 該第二碼簿係由考慮以下至少一者來決定:該空間 多工率、通道編碼率及再傳輸。 23. 如申請專利範圍第19項所述之方法,其中: 該旋轉矩陣包含用於一相移之一對角矩陣與一單 位矩陣之一乘積。 47 200901654 24.如申請專利範圍第19項所述之方法,其中: 該預編碼矩陣係選擇以根據以一預定單位重複之 該資源索引在一第一碼薄中循環重複° 2 5.如申請專利範圍第24項所述之方法,其中: 該預定單位係在考慮該空間多工率下決定。 26.如申請專利範圍第19或20項所述之方法,更包含以下步 驟: 決定一用於一功率控制之對角矩陣,作為該相移式 預編碼矩陣之一部分,其中 該相移式預編碼矩陣係藉由將該預編碼矩陣、該旋 轉矩陣及用於一.功率控制之該對角矩陣三者相乘決定。22. The method of claim 21, wherein: the second codebook is determined by considering at least one of: spatial multiplex rate, channel coding rate, and retransmission. 23. The method of claim 19, wherein: the rotation matrix comprises a product of one phase diagonal matrix and one unit matrix for one phase shift. 47. The method of claim 19, wherein: the precoding matrix is selected to cyclically repeat in a first codebook according to the resource index repeated in a predetermined unit. The method of claim 24, wherein: the predetermined unit is determined in consideration of the spatial multiplex rate. 26. The method of claim 19 or 20, further comprising the steps of: determining a diagonal matrix for a power control as part of the phase shifting precoding matrix, wherein the phase shifting pre- The coding matrix is determined by multiplying the precoding matrix, the rotation matrix, and the diagonal matrix for a power control. 4848
TW097105194A 2007-02-14 2008-02-14 Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same TWI416888B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US88989107P 2007-02-14 2007-02-14
US89466507P 2007-03-13 2007-03-13
KR1020070037008A KR20070113967A (en) 2006-05-26 2007-04-16 Phase shift based precoding method and tranceiver supporting the same
KR1020070042717A KR20070113972A (en) 2006-05-26 2007-05-02 Phase shift based precoding method and tranceiver supporting the same
KR20070051579 2007-05-28
KR1020070095279A KR20080076683A (en) 2007-02-14 2007-09-19 Phase shift based precoding method and tranceiver supporting the same
US2162108P 2008-01-16 2008-01-16
US2343708P 2008-01-25 2008-01-25

Publications (2)

Publication Number Publication Date
TW200901654A true TW200901654A (en) 2009-01-01
TWI416888B TWI416888B (en) 2013-11-21

Family

ID=42306656

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097105194A TWI416888B (en) 2007-02-14 2008-02-14 Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same

Country Status (3)

Country Link
JP (1) JP5111524B2 (en)
AT (1) ATE539499T1 (en)
TW (1) TWI416888B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479377B (en) * 2010-04-07 2013-08-14 Toshiba Res Europ Ltd Dual indicator scheme for channel state information feedback
KR101754669B1 (en) 2010-07-29 2017-07-06 엘지전자 주식회사 Method and device for sending and receiving precoded signals on a wireless communication system
KR101480531B1 (en) * 2010-09-13 2015-01-08 한국전자통신연구원 Apparatus and method for controling subcarrier spacing in wireless communication system
CA3168049A1 (en) * 2011-02-18 2012-08-23 Sun Patent Trust Method of signal generation and signal generating device
US8917787B2 (en) * 2011-03-22 2014-12-23 Hitachi, Ltd. Systems and methods for creating a downlink precode for communication system with per-antenna power constraints
US8971432B2 (en) * 2011-04-19 2015-03-03 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447268B2 (en) * 2004-03-31 2008-11-04 Intel Corporation OFDM system with per subcarrier phase rotation
US7656842B2 (en) * 2004-09-30 2010-02-02 Motorola, Inc. Method and apparatus for MIMO transmission optimized for successive cancellation receivers
US20070041457A1 (en) * 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
KR20070113967A (en) * 2006-05-26 2007-11-29 엘지전자 주식회사 Phase shift based precoding method and tranceiver supporting the same
US8780771B2 (en) * 2007-02-06 2014-07-15 Qualcomm Incorporated Cyclic delay diversity and precoding for wireless communication

Also Published As

Publication number Publication date
TWI416888B (en) 2013-11-21
ATE539499T1 (en) 2012-01-15
JP5111524B2 (en) 2013-01-09
JP2010517463A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP4972687B2 (en) Phase transition based precoding method and transceiver supporting the same
RU2446574C2 (en) Method for data transmission and receive using based on phase shift of precoding and transceiver to support same
KR100934666B1 (en) Data Transceiving Method Using Phase-Transition-Based Precoding and Transceivers Supporting It
US8175182B2 (en) Method for transmitting data using phase shift based precoding and transceiver supporting the same
JP5236753B2 (en) Signal transmission and reception method in open loop spatial multiplexing mode
EP2084844A2 (en) Method for transmitting data using cyclic delay diversity
WO2009002093A2 (en) Transmit methods with delay diversity and space-frequency diversity
KR20080026019A (en) Phase shift based precoding method and tranceiver supporting the same
KR20080036499A (en) Method for transmitting data using cyclic delay diversity
TW200901654A (en) Data transmitting and receiving method using phase shift based precoding and transceiver supporting the same
JP2010517463A5 (en)
CN103560818B (en) Use the data transmission and reception method and the transceiver of support the method for the precoding based on phase shift
KR20090101804A (en) Open-loop spatial multiplexing for 4tx system with rank adaptation
KR20080036508A (en) Method for transmitting data using cyclic delay diversity