TW200901310A - Etching method and apparatus, and subject to be processed - Google Patents

Etching method and apparatus, and subject to be processed Download PDF

Info

Publication number
TW200901310A
TW200901310A TW97106278A TW97106278A TW200901310A TW 200901310 A TW200901310 A TW 200901310A TW 97106278 A TW97106278 A TW 97106278A TW 97106278 A TW97106278 A TW 97106278A TW 200901310 A TW200901310 A TW 200901310A
Authority
TW
Taiwan
Prior art keywords
processed
etching
less
speed
moving speed
Prior art date
Application number
TW97106278A
Other languages
Chinese (zh)
Other versions
TWI409876B (en
Inventor
Tomohiro Otsuka
Tetsuya Ishii
Setsuo Nakajima
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of TW200901310A publication Critical patent/TW200901310A/en
Application granted granted Critical
Publication of TWI409876B publication Critical patent/TWI409876B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate

Abstract

To suppress process nonuniformity and improve uniformity in silicon etching. A processing head (39) including a jetting section (41) is horizontally moved in the both ways or in one way with respect to a subject (10) to be processed, while blowing a processing gas, which contains hydrogen fluoride and ozone, to the subject (10) from the jetting section (41), under a pressure which is substantially atmospheric pressure, and silicon formed on a surface of the subject (10) is etched. The moving speed is set at a prescribed speed, preferably at 3-4m/min or higher to have the thickness (t) of a condensed layer (18) formed on the surface of the subject (10) at a prescribed value or lower.

Description

200901310 九、發明說明: 【發明所屬之技術領域】 本發明係關於在約大氣壓下對形成於被處理物上之非晶 石夕等石夕層進行蝕刻之方法及裝置、以及經蝕刻之被處理 物。 【先前技術】 例如,於專利文獻1、2中揭示有一方法,利用〇3使晶圓 表面之矽氧化(式11)後,使用HF進行蝕刻。200901310 IX. Description of the Invention: [Technical Field] The present invention relates to a method and apparatus for etching an amorphous layer formed on a workpiece at about atmospheric pressure, and processed by etching Things. [Prior Art] For example, Patent Documents 1 and 2 disclose a method of etching ruthenium on the surface of a wafer by using ruthenium 3 (Formula 11), followed by etching using HF.

於專利文獻3中揭示有一方法,藉由在eh等氟系氣體中 引起大氣壓附近放電而生成HF,並利用該HF對氧化矽進 行蝕刻(式12)。 (式 11)Patent Document 3 discloses a method of generating HF by causing discharge in the vicinity of atmospheric pressure in a fluorine-based gas such as eh, and etching yttrium oxide by the HF (Formula 12). (Formula 11)

Si+2〇3->Si02+2〇2Si+2〇3->Si02+2〇2

Si02+4HF+H2〇->SiF4+3H20 (式 12 [專利文獻1]日本專利特開2〇〇3_26416〇號公報 [專利文獻2]曰本專利特開2〇〇4_55753號公報 [專利文獻3]曰本專利特開2〇〇〇_585〇8號公報 【發明内容】 [發明所欲解決之問題] 如圖所示,於先前之㈣刻中,當—方面對被處理物 10進行相對掃描’ 一方面將含有職〇3之處理氣體噴至 被處理物10上時’存在如下問題:例如即使於⑽層13 出之階段,石夕層16亦會根據部位情況而呈斑點狀殘留,從 而造成處理不均。物層16容易形成於例如 之間極線12對應之部分的周邊上所設置之_部19#處 I29080.doc 200901310 [解決問題之技術手段] 本發明者為了解決上述問題而進行了積極研究、考察。 於被處理物表面上㈣有處理氣體之區域,處理氣體中 之尺及敍刻反應中生成之水暫時凝結而形成凝結層,此現 象已為人所知。於該凝結層中戰〇3溶解擴散並到達被 處理物之表面,以此維持韻刻反應。另一方面,認為被處 理物上根據部位情況會存在凝結層易彙集而形成水窪狀之 部分。例如圖12之隅角部19即為如此’但平坦面上亦存在 形成水窪之部分。於上述部分中,自03溶解直至到達被處 理物表面為止所需之擴散距離增大,由此造成被處理物表 面上之03反應減少。因此,钱刻並不進展,從而引起處理 不均。 本發明係根據上述研宑而A 士、 唧九而70成,其係於約大氣壓下,將 3有敦化氫及臭氧之處理氣體喷至被處理物上,以將形成 :上述被處理物表面上之石夕敍刻之方法,且包括以下步 2使喷出上述處理氣體之1個或排列在一方向之„個 喷出部相對於上述被處理物心上述—方向相 =動(掃描);以及將上述移動速度設定為特定值以上 值以使形成於上述被處理物表面上之凝結層的厚 虔為特定值以下之方式,炎 予 以上,或者較好的是,以使!個嘖中Μ “巧特疋值 ,...^ ^ 史1個賀出部每一次相對通過盥 述被處理物對向之位置時的上述石夕之敍刻深度為值 以下之方式,來將上述移動速度設定為特定值以上。 又,本發明之敍刻裝置係於約大氣愿下’將含有氣化氫 129080.doc 200901310 及臭氧之處理氣體喷至被處理物上 理物上之矽進行蝕刻, 、7成於上迷被處 該蝕刻裝置具備: 0又置°卩,用以配置上述被處理物; 1個或排列於—方向之複 氣體; ⑽一 ’其喷出上述處理 掃描機構,其使上述i個或 士二 域數個嘴出部相對於上述設 置°卩》0 一方向相對往復或單程移動;以及 設定部’其將上述掃描機構之移動速度以為特定值以 上。 现δ又疋部較好 之 V巩"、丄处饭屣理物表面上 凝、.,口層的厚度為特定值 一… 方式,來將上述掃描機構 /動速度設定為特定值以上,或者上述設定部較好的 疋’以使1個喷出部每—次相對通過與上述被處理物對向 之位置時的上述矽之蝕刻深度為特定值以下之方式,來將 上述掃描機構之移動速度設定為特定值以上。 藉由適當地設定上述移動速度,可防止凝結層形成水蓬 狀。其結果可抑制處理不均,從而可提高蝕刻品質,並且 可確保均一性。 可將上述移動速度設定為,使得上述凝結層之厚度較好 的是2 μιη以下,更好的u μ_τ,再好的是G 5㈣以 下,進一步好的是60 Α以下。上述凝結層之厚度之下限較 好的是20 A左右。藉此可使蝕刻反應可靠地進行(參照圖 8)。更好的是,以使上述凝結層之厚度為2〇〜6〇 A之方式 129080.doc 200901310 上述速度’且使上述嘴出部與上述被處理物對向時 、出。卩與被處理物之間的間隔(間隙)為2 m m以下。 被處理物上形成有上述凝結層之處所 :::π行時間性轉移。上述凝結層主要:: 部t表面中與處理氣體接觸之部分。處理氣體所接觸之 刀亦以處理氣體直接噴附之部分的周邊上,凝結層 予度相對較大’愈遠離該處’凝結層之厚度隨之越小。 處理物上之任何位置,較好的是,以當該位置 層厚度為最大時,其最大厚度不超過上述特定厚 又 式,來设定上述相對移動之速度。 、/疑結層之厚度例如可使用光學干涉儀來測定。又,由於 之厚度與蝕刻深度具有固定關係(圖9),故可藉由測 疋蝕刻深度來推算凝結層之厚度。 „ =相對移動速度(掃描逮度)可設定為3 m/min以上,亦 :::為4 m/min以上’還可設定為6 m/min以上,並且還 ί. °〜為m/mln以上。藉此,可確實抑制上述凝結層之 厚度變得過大’並且可確實防止處理㈣,從 ^ 刻品質。 风问蚀 —上述㈣速度之上限可考慮裝置之掃描能力等因素而設 二境=?:度增大時’—部與被處 兄*1體置會增加,由此而導致處理氣體之 度降低’攸而無法維持凝結層。因此較好的是’移動速度 '上限根據上述噴出部與上述被處理物對向時的喷出部與 被處里物之間的間隔(間隙)來設定。間隙越小時,移動速 129080.doc -10- 200901310 度之上限可設定為越大(圖10)。 在將上述喷出部與上述被處理物對向時的喷出部與被處 理物之間的間隔設為1 mm以下或者約丨mm時,可將上= 移動速度設定為3 m/min以上70 m/min以下之範圍。 在將上述喷出部與上述被處理物對向時的喷出部與被處 理物之間的間隔設為2 mm以下或者約2爪瓜時,可將上述 移動速度設定為3 m/min以上15 m/min以下之範圍。 在將上述喷出部與上述被處理物對向時的噴出部與被處 理物之間的間隔設為3 mm以下或者約3爪爪時,可將上述 移動速度^又疋為3 m/min以上8 m/m iri以下之範圍。 在將上述噴出部與上述被處理物對向時的喷出部與被處 理物之間的間隔設為4麵以下或者約4咖時,可將上述 移動速度設定為3 m/min以上4 m/min以下之範圍。 藉由上述速度設定,使得丨次單程移動即往移動或複移 :(將其稱為!掃描)所蝕刻之量減少,故相應地可增加掃描 車又好的疋,使母掃描丨次之蝕刻深度不超過15 〇 a。 '相對於石夕層厚度每! _ A,婦描次數較好的是設為 ★ 人以上,更好的是設為5〜8次以上,再好的是設為6〜7 、 進步好的疋设為9次以上,再進一步好的是設 為10次以上(每掃描1次的蝕刻深度為100 A以下p當間隙 :2職以下時,可將每掃描1次之蝕刻深度設為H)〜50 邮每掃描1 -人之蝕刻深度可根據反應長度來設定。此處, 月反應長度’係指自噴出部噴出之處理氣體沿著被處理 表面流動之距離’當噴出部與吸引部成對時,反應長度 129〇8〇-Cj〇c 200901310 與喷出部和吸引部之間的距離實質上相等,而當挾持噴出 部並於其兩側配置吸引部時,反應長度與兩側之吸引部之 間的距離實質上相等。 J之tm貝(處理殘餘之有無)亦依存於上述處理氣體之 原料中的水濃度。於該濃度較小時,即使將上述移動速度 °又定為例如1〜3 m/min之比較小的範圍,亦可進行良好之 蚀刻(實施例1之表1及表2)。 、、'勺大氣壓下使含有乱原料及水之氟化氫原料氣體電漿 化而生成上述氟化氫時,若上述氟化氫原料氣體之露點為 乂下,則亦可藉由使1個喷出部每一次相對通過與上 述被處理物對向之位置時的上述矽之蝕刻深度為100 A以 下之方式,來設定上述速度。此時之速度範圍可設為i m/min以上(實施例1之表1)。 若上述敗化氫原料氣體之露點為14t:以下,則亦可藉由 使上述蝕刻深度為60 A以下之方式來設定上述速度。此時 之速度範圍可設為2 m/min以上(實施例〗之表2)。 右上述氟化氫原料氣體之露點為16〇c以下,則較好的 疋,以使上述蝕刻深度為40人以下之方式來設定上述速 度此時之速度範圍設為5 m/min以上較佳(實施例工之 3)。 、 θ若上述氟化氫原料氣體之露點為18T:以下,則較好的 疋’以使上述蝕刻深度為25 Α以下之方式來設定上述速 度此時之速度範圍設為10 m/min以上較佳(實施例丨之表 129080.doc -12- 200901310 較好的是,於上述氟化氫生成後,將含有臭氧之氣體混 合到含有該氟化氫之氣體中’生成上述處理氣體。 掃描次數之上限可考慮應餘刻之石夕的厚度、裝置之掃p 月b力、處理時間(takt time)等因素而適當設定。 附帶提及,一般的大氣壓電漿處理中之掃描速度為 m/min左右,相對於矽層厚度每1〇〇〇 A的掃描次數〜2次 左右。Si02+4HF+H2〇->SiF4+3H20 (Patent Document 1) Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. 3] 专利 专利 特 〇〇〇 〇 〇 〇 〇 〇 〇 〇 〇 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ The relative scanning 'on the one hand, when the processing gas containing the job 3 is sprayed onto the workpiece 10', there is a problem that, for example, even at the stage of the (10) layer 13 out, the stone layer 16 will remain as a spot according to the location. In order to solve the above problem, the object layer 16 is easily formed on the periphery of the portion corresponding to the portion of the pole line 12, for example, at the portion 19#I29080.doc 200901310 [Technical means for solving the problem] The problem has been actively studied and investigated. It is known that on the surface of the object to be treated (4) in the region where the gas is processed, the ruler in the treatment gas and the water generated in the characterization reaction temporarily condense to form a coagulation layer. In the condensation layer, the trench 3 dissolves and spreads to The surface of the object to be treated is maintained to maintain the rhythm reaction. On the other hand, it is considered that the surface of the object to be treated may be aggregated to form a watery portion depending on the site. For example, the corner portion 19 of FIG. 'But there is also a portion forming a water raft on the flat surface. In the above portion, the diffusion distance required from the dissolution of 03 until reaching the surface of the object to be treated is increased, thereby causing a decrease in the 03 reaction on the surface of the object to be treated. The money does not progress, resulting in uneven processing. The present invention is based on the above-mentioned research, A, Shi, and 70%, which is sprayed at about atmospheric pressure, and the treatment gas of 3 hydrogen and ozone is sprayed to the treated On the object, a method of forming a stone on the surface of the object to be processed, and including the following step 2, ejecting one of the processing gases or arranging the ejection units in one direction with respect to the above-mentioned Processing the object center-direction phase = motion (scanning); and setting the moving speed to a value of a specific value or more so that the thickness of the condensation layer formed on the surface of the object to be processed is a specific value or less, It is better, or better, to make a 啧 啧 Μ 巧 巧 巧 巧 巧 巧 巧 ... ... ... ... ... ... 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史 史The above-mentioned moving speed is set to a specific value or more, and the above-mentioned moving speed is set to be equal to or lower than the atmosphere. The gas is sprayed onto the object on the object to be etched, and 70% is placed on the object. The etching device is provided with: 0 and set to 卩, for arranging the object to be processed; (10) a process of ejecting the processing scanning mechanism, wherein the plurality of mouth portions of the i or two fields are relatively reciprocated or one-way with respect to the direction of the setting; and the setting portion The moving speed of the scanning mechanism is equal to or greater than a specific value. Now, the V-grain is better than the δ, and the thickness of the mouth layer is set to a specific value by the method of setting the scanning mechanism/moving speed to a specific value or more. Or the scanning unit is preferably configured such that the etching depth of the crucible when the one ejecting portion passes through the position facing the object to be processed is equal to or less than a specific value. The moving speed is set to a specific value or more. By appropriately setting the above moving speed, it is possible to prevent the condensation layer from being formed in a water-like shape. As a result, uneven processing can be suppressed, the etching quality can be improved, and uniformity can be ensured. The moving speed can be set such that the thickness of the above-mentioned condensed layer is preferably 2 μηη or less, more preferably u μ_τ, more preferably G 5 (four) or less, further preferably 60 Α or less. The lower limit of the thickness of the above-mentioned coagulation layer is preferably about 20 A. Thereby, the etching reaction can be reliably performed (refer to Fig. 8). More preferably, the thickness of the coagulation layer is 2 〇 to 6 〇 A, and the above-mentioned mouth portion is opposed to the object to be processed. The interval (gap) between the crucible and the object to be treated is 2 m or less. The :: π line temporal transition is formed on the object to be treated. The above-mentioned coagulation layer mainly has: a portion of the surface of the portion t that is in contact with the processing gas. The knives in contact with the process gas are also on the periphery of the portion where the process gas is directly sprayed, and the condensed layer is relatively large. The farther away from the place, the smaller the thickness of the condensed layer. Preferably, at any position on the treatment, the speed of the relative movement is set such that when the thickness of the position layer is maximum, the maximum thickness does not exceed the specific thickness. The thickness of the / suspect layer can be measured, for example, using an optical interferometer. Moreover, since the thickness has a fixed relationship with the etching depth (Fig. 9), the thickness of the condensed layer can be estimated by measuring the etching depth. „ = Relative movement speed (scanning catch) can be set to 3 m/min or more, also::: 4 m/min or more ' can also be set to 6 m/min or more, and also ί. °~ is m/mln Therefore, it is possible to surely suppress the thickness of the above-mentioned coagulation layer from becoming too large and to surely prevent the treatment (4) from the quality of the engraving. Wind erosion - the upper limit of the above (4) speed can be considered in consideration of factors such as the scanning ability of the device. =?: When the degree is increased, the - part and the body of the brother *1 will increase, which will result in a decrease in the degree of processing gas '攸 and cannot maintain the condensation layer. Therefore, it is better to have the upper limit of the 'moving speed' according to the above. The discharge portion is set to a gap (gap) between the discharge portion and the object to be treated when the workpiece is opposed. When the gap is small, the upper limit of the movement speed 129080.doc -10- 200901310 can be set larger. (Fig. 10) When the distance between the discharge portion and the workpiece when the discharge portion is opposed to the workpiece is 1 mm or less or about 丨 mm, the upper = movement speed can be set to a range of 3 m/min or more and 70 m/min or less. The above-described discharge portion and the object to be treated are paired When the interval between the ejecting portion and the workpiece to be treated is 2 mm or less or about 2 claws, the moving speed can be set to a range of 3 m/min or more and 15 m/min or less. When the distance between the discharge portion and the workpiece when the output portion is opposed to the workpiece is 3 mm or less or about 3 claws, the moving speed can be reduced to 3 m/min or more and 8 m/ When the distance between the discharge portion and the workpiece when the discharge portion is opposed to the workpiece is four or less or about four, the movement speed can be set to three. The range of m/min or more and 4 m/min or less. With the above speed setting, the single-pass movement is moved or re-shifted: the amount of etching (referred to as !scan) is reduced, so the scan can be increased accordingly. The car is good, so that the etching depth of the mother scanning is no more than 15 〇a. 'Compared to the thickness of the stone layer every time! _ A, the number of women's tracing is better than ★ people, better is set For 5~8 times or more, the best is set to 6~7, the progress is good, it is set to 9 times or more, and further better is set to 10 times or more (the etching depth per scan is 100 A or less p. When the gap is 2 or less, the etching depth per scan can be set to H) ~ 50. The etching depth per scan of 1 - person can be based on The reaction length is set. Here, the monthly reaction length 'refers to the distance from the processing gas ejected from the ejection portion along the surface to be treated'. When the ejection portion is paired with the suction portion, the reaction length is 129 〇 8 〇 - Cj 〇 c 200901310 The distance between the discharge portion and the suction portion is substantially equal, and when the discharge portion is held and the suction portion is disposed on both sides thereof, the distance between the reaction length and the suction portions on both sides is substantially equal. The tm shell of J (the presence or absence of the treatment residue) also depends on the water concentration in the raw material of the above treatment gas. When the concentration is small, even if the moving speed ° is set to a relatively small range of, for example, 1 to 3 m/min, good etching (Table 1 and Table 2 of the first embodiment) can be performed. When the hydrogen fluoride raw material gas containing the disordered raw material and water is plasma-formed under the atmospheric pressure to form the hydrogen fluoride, if the dew point of the hydrogen fluoride raw material gas is under the enthalpy, one of the discharge portions may be relatively opposed to each other. The speed is set such that the etching depth of the crucible at the position facing the object to be processed is 100 A or less. The speed range at this time can be set to i m/min or more (Table 1 of Embodiment 1). When the dew point of the deuterated hydrogen source gas is 14t: or less, the above-described speed may be set by setting the etching depth to 60 A or less. The speed range at this time can be set to 2 m/min or more (Table 2 of the embodiment). When the dew point of the hydrogen fluoride raw material gas on the right side is 16 〇c or less, the enthalpy is preferably set so that the etch depth is 40 or less, and the speed range is preferably 5 m/min or more. 3) of the workmanship. θ, if the dew point of the hydrogen fluoride source gas is 18T: or less, the preferred 疋' is set such that the etch depth is 25 Α or less, and the speed range is preferably 10 m/min or more. [Table 129080.doc -12- 200901310] Preferably, after the hydrogen fluoride is generated, the ozone-containing gas is mixed into the gas containing the hydrogen fluoride to generate the processing gas. The upper limit of the number of scans may be considered. The thickness of the engraved stone, the p-b force of the device, and the takt time are appropriately set. It is mentioned that the scanning speed in the general atmospheric piezoelectric slurry treatment is about m/min, as opposed to 矽The number of scans per layer of layer thickness is about ~2 times.

被處理物強制乾燥。 可於比1個喷出部更偏向上述移動方向之下游側,設置 用以促進上述被處理物乾燥之強制乾燥部。當喷出部:列 有複數料,可對每個喷出部分別設置強制乾燥部,亦可 對複數個噴出部僅設置1個強制乾燥部。 藉此’可使比喷有處理氣體之部分更偏向下游側之部分 的凝結層確實衰減或消失,從而可防止每次掃描時凝^ 均會累積。 σ曰 、上述乾燥部可為喷出乾燥氣體之乾燥氣體供給部,亦可 為加熱被處理物之加熱部。 二:發明提供一種以上述餘刻方法或者於上述钱刻裝 置中被钱刻之被處理物。 本發明可應用於在約大氣壓下進行處理。 所謂約大氣壓’係指 υ·663χ1〇4 Pa之範圍,去 慮到壓力調整之容易化及裝置構 成之W易化,較好的Η 1.333x 1〇4〜1〇,664xl〇4pa, 罕乂好的疋 的疋 9.33ΐχ1〇4 〜1〇.397χ1〇4 129080.doc -13- 200901310The treated material is forced to dry. The forced drying portion for promoting the drying of the workpiece may be provided on the downstream side of the moving direction more than the one discharge portion. In the discharge portion: a plurality of materials are arranged, a forced drying portion may be provided for each of the discharge portions, and only one forced drying portion may be provided for the plurality of discharge portions. Thereby, the condensed layer which is more inclined to the downstream side than the portion where the processing gas is sprayed can be surely attenuated or disappeared, so that condensation can be prevented from accumulating every scan. σ曰 The drying unit may be a drying gas supply unit that discharges a dry gas, or may be a heating unit that heats the workpiece. Two: The invention provides an object to be processed which has been engraved in the above-described residual method or in the above-mentioned money engraving apparatus. The invention is applicable to processing at about atmospheric pressure. The so-called "atmospheric pressure" refers to the range of χ·663χ1〇4 Pa, taking into account the ease of pressure adjustment and the device composition. It is better to be 1.333x 1〇4~1〇,664xl〇4pa, rare Good 疋 疋 9.33 ΐχ 1 〇 4 〜 1 〇. 397 χ 1 〇 4 129080.doc -13- 200901310

Pa ° [發明之效果] 依據本發明,可藉由芎宁 空狀^ ^ 4 ° 動速度而防止凝結層形成水 ,圭狀。其結果可抑制處理 7 從而可提尚I虫刻之品質, 並且可確保均一性。 【實施方式】 以下’對本發明之實施形態加以說明。 [第1實施形態]Pa ° [Effects of the Invention] According to the present invention, it is possible to prevent the formation of water by the coagulation layer by the turbulent velocity of the crucible. As a result, the treatment 7 can be suppressed, so that the quality of the insect can be improved and the uniformity can be ensured. [Embodiment] Hereinafter, embodiments of the present invention will be described. [First Embodiment]

如圖1所示,钮刻裝罟M目 J褒置Μ具有:設置部20、處理氣體供 給部30、掃描機構6〇(移動撼播 „ ^ ^ . ν π勒機構)、及設定部7〇(設定單 元)。 δ又置部2 0上設置有被處;1 η ., j. 碉饭慝理物10。被處理物1 0之基座例如 係由玻璃基板11所構成,但並非限定於此。 如圖2⑷所示,於玻璃基板11之表面上,設有閘極線U 之圖案,再自下而上依序積層有8丨版層13、心§丨層14、及 η層15在η +層1 5上之與閘極線12對應之部分上,設有抗 蝕劑1 7。 α-Si層14係由非晶矽構成。η+層15係向矽中摻雜磷(ρ)而 形成者。該等α-Si層14與n+層15構成本發明之蝕刻對象即 矽16。a-Si層14與n+層15之合計厚度即矽層16之厚度例如 為2000 A左右。 處理氣體供給部30具備氟化氫生成部3丨與臭氧生成部 36 ° 氟化氫生成部3 1具有氟系原料供給部32、水添加部34、 129080.doc •14- 200901310 及電衆生成部33。於原料供給部32所供給之Ch中添加來 自水添加部34之水蒸汽_),生成敗系原料氣體,然後 將該氟系原料氣體導入至電漿生成部33中。 亦可於原料供給部32中以情性氣體來稀釋cf4,並於添 . 加部34中向其中添加邮,以獲得氟系原料氣體。作為惰 • 性氣體’可使用Ar、He、Ne等稀有氣體或n2。 電漿生成部33包含-對電極35。於該等電極伙間施加 r、冑場,由此產生大氣壓輝光放電。上述施加電場可為例如 ㈣波(間歇波)’但並非⑯定於此,亦可為連續波狀之高頻 波。向上述電極35間之空間中導入上述氣系原料氣體 (CF4+H2〇),藉此使原料氣體電漿化,產生下式(1)之反 應’從而生成含有氟化氫(HF)之蝕刻劑。 CF4+2H20-,4HF+C02 …式⑴ 臭氧生成部36具備氧源37及臭氧發生器38。使用來自氧 源37之氧(ο。,利用臭氧發生器38生成臭氧⑴ I 於電漿生成部33之一對電極35之下游側,將含有來自臭 氧發生器38之臭氧的氣體與含有來自一對電極邱之氣化 • 氫的氣邮刻劑)加以混合,生成以氟化氫與臭氧作為主 成分之處理氣體。 電漿生成邛33之下側s又有噴嘴部4〇。噴嘴部配置於設 置部20之被處理物1〇的上方。由電聚生成苦…及嗔嘴部扣 構成處理頭3 9。 圖令,噴嘴部4G之下表面與被處理物1()之上表面之間的 距離(間隙g)被放大。 129080.doc -15- 200901310 出 伸 嘴嘴部40上形成有噴出口 41(喷出部)、以及挾持該嗔出 41而設置於其左右側的一 口 41及吸引口 42沿著與圖 對吸引口 42(吸引部)。該等噴 1之紙面正交之前後方向而延 將上述處理氣體(HF+〇3)導入至噴出口 41 ’並向下方噴 出。 、As shown in FIG. 1, the button mounting device has a setting portion 20, a processing gas supply portion 30, a scanning mechanism 6A (moving broadcast „^^. ν π勒 mechanism), and a setting unit 7 〇 (setting unit) δ is placed on the vacant portion 20; 1 η ., j. 碉 慝 10 10. The pedestal of the object 10 is composed of, for example, a glass substrate 11, but not As shown in Fig. 2 (4), a pattern of gate lines U is provided on the surface of the glass substrate 11, and 8 丨 layers 13, 心 丨 layers 14, and η are sequentially laminated from bottom to top. The layer 15 is provided with a resist 17 on a portion of the η + layer 15 corresponding to the gate line 12. The α-Si layer 14 is composed of amorphous germanium. The n + layer 15 is doped into the germanium. Phosphorus (ρ) is formed. The α-Si layer 14 and the n+ layer 15 constitute the etching target of the present invention, that is, the crucible 16. The total thickness of the a-Si layer 14 and the n+ layer 15 is the thickness of the germanium layer 16, for example, 2000. The processing gas supply unit 30 includes a hydrogen fluoride generating unit 3 and an ozone generating unit 36°. The hydrogen fluoride generating unit 31 has a fluorine-based raw material supply unit 32, a water adding unit 34, 129080.doc • 14-200901310, and an electric generating unit. 33 The water vapor_) from the water addition unit 34 is added to the Ch supplied from the raw material supply unit 32 to generate a raw material gas, and the fluorine-based raw material gas is introduced into the plasma generating unit 33. In 32, cf4 is diluted with an inert gas, and a post is added to the addition portion 34 to obtain a fluorine-based material gas. As the inert gas, a rare gas such as Ar, He, or Ne or n2 can be used. The slurry generating unit 33 includes a counter electrode 35. R and a field are applied between the electrode groups to generate an atmospheric pressure glow discharge. The applied electric field may be, for example, a (four) wave (intermittent wave) 'but not 16 The gas-based source gas (CF4+H2〇) may be introduced into the space between the electrodes 35, thereby causing the material gas to be plasma-formed to generate a reaction of the following formula (1) to form a content. An etchant for hydrogen fluoride (HF): CF4+2H20-, 4HF+C02 Formula (1) The ozone generating unit 36 includes an oxygen source 37 and an ozone generator 38. Oxygen from the oxygen source 37 is used (obtained by the ozone generator 38) Ozone (1) I is downstream of the counter electrode 35 at one of the plasma generating portions 33 On the side, a gas containing ozone from the ozone generator 38 is mixed with a gas etchant containing a vaporized hydrogen from a pair of electrodes to form a processing gas containing hydrogen fluoride and ozone as main components. The lower side s of the 33 has a nozzle portion 4A. The nozzle portion is disposed above the workpiece 1〇 of the installation portion 20. The treatment head is formed by electrocoagulation and the nozzle portion is formed. The distance (gap g) between the surface under 4G and the upper surface of the object 1 () is enlarged. 129080.doc -15- 200901310 The nozzle opening portion 40 is formed with a discharge port 41 (discharge portion), and a port 41 and a suction port 42 provided on the left and right sides of the protrusion 41 are attracted along the drawing. Port 42 (attraction). The paper surface of the jets 1 is orthogonal to the front and rear directions. The processing gas (HF + 〇 3) is introduced into the discharge port 41' and ejected downward. ,

吸引口 42連接於包含真空泵等之吸引單元5〇。將吸弓丨口 42之下端周邊之氣體吸入至吸引口 42,並利用吸引單元 進行吸引排氣。 包含噴嘴部4〇之處理頭39連接於掃描機構6〇。掃描機構 6〇具有馬達等驅動部及滑件導座等,使處理頭39於圖 之左右方向上往復移動(掃描)。掃描機構60之輸出速度可 在例如0〜20 m/min之範圍内增減。掃描機構6〇上連接有設 定郤70。可利用該設定部7〇來設定掃描機構6〇之輸出即處 理頭3 9之往復移動速度。 圖3係表示掃描機構60之一例。掃描機構6〇具有馬達 61、經由傳輸機構62而連結於該馬達61之導螺桿。、及滑 件導座64。傳輸機構62包括··連接於馬達61之輸出軸的滑 輪62a ;連接於導螺桿63之一端部的滑輪以^^ ;以及架設於 忒等π輪62a、62b上的無端皮帶62c。亦可使用齒輪列等 來作為傳輸機構62,並且亦可將導螺桿63直接連接地馬達 之輸出轴。導螺桿63向左右延伸,設置於處理頭39之套 部39B上的螺帽65螺合於導螺桿63,滑件導座以以與導螺 才干63平行之方式延伸,設置於套部39b上之滑件μ可滑動 129080.doc -16 - 200901310 地扣合於滑件導座64。 馬達6〗上連核古 ⑽、馬達驅動/器”。控制器71包括未圖示之 動電路及設定部70。設定部70传出 面板及撥盤等構成。藉由對該設定部70進行摔作而::摸 頭-之掃描逮度進行設定輸入。控制器"係為了 61之轉速、佶俨由„ ~』力郎馬達 制。 侍處理頭39以設定速度進行掃描而加以控 知,機構6G之構成並非限定於以上所述,例如可由液 致動器來使處理頭3 9移動 移動此外可採用各種公知之移動機 構0 較好的疋’處理碩39往復移動之範圍與被處理物1 〇之 理靶圍相對應。更好的是,使移動範圍大於處理範圍,且 使喷出口 41於比處理範圍更外側處折回。 亦可替代上述情況,將掃描機構60連接於設置部20,使 ,置部2〇移動,另-方面可將處理頭39固定。於此情形 時’亦可使用滾輪式輸送機及帶式輸送機來作為掃描機構 60及設置部20。 以下對上述構成之蝕刻裝置Μ的矽蝕刻方法加以說明。 設置步驟 壓力環境設為約大氣 於設置部20上設置被處理物ι〇。 壓’較好的是設為大氣壓。 調溫步驟 被處理物10之溫度較好的是調節為2〇〜6〇。〇,更好的是 調節為25〜35°c。 129080.doc -17- 200901310 處理氣體供給步驟 利用處理氣體供給部30而生成以抑及〇3為主成分之處 理氣體’並將其自噴出口41噴出。此時,相對於被處理物 W之前後方向(與圖i之紙面正交之方向)長度每i m,來自 a系原料供給部32之eh的流量較好的是設為5〜2〇 sim, 更好的是設為5〜10 slm。 由添加部34進行的水瘵汽之添加量較好的是設定為其大 部分經式⑴之電聚化反應而消耗之量,具體而t,較好的 是设為H2O/(CF4+H2O)=10〜50 vol%,更好的是設為1〇〜25 vol。/。。亦可視需要’以Ar、N2、He、心等惰性氣體進行 稀釋。 電漿生成部33之電極35間的電場強度較好的是設為卜別 kV/mm更好的是设為5〜10 kV/mm,頻率較好的是設為 5〜100 KHz ’更好的是設為10〜50 KHz。 臭氧生成部36之臭氧生成量設為爆炸極限以下,具體而 言,較好的是於臭氧發生器38之出口處〇3/(〇2+〇3)=1〜1〇 vol% ’更好的是5〜8 ν〇ι〇/0。 來自噴出口 41之處理氣體的喷出流量較好的是,相對於 喷出口 41之韵後(與圖1之紙面正交之方向)每單位長度(1 m)而设疋為10〜5〇〇 slm,更好的是設定為1〇〇〜2〇〇 “η。 來自喷出口 41之處理氣體中的HF濃度相對於處理氣體 王體例如可設為0.1〜5 vol%,亦可設為〇·3〜1 ν〇ι〇/0。HF 濃度之下限值相對於處理氣體全體,較好的是0.1 v〇l%以 上,更好的是1 v〇l%以上。HF濃度之上限值相對於處理氣 129080.doc -18- 200901310 體全體,較好的是8 vol%以下,更好的是5 ν〇ι%以下。hf 濃度過大時,亦會難以控制凝結層。HF濃度之最佳值可根 據噴嘴部40之下表面與被處理物1〇之上表面之間的距離 (間隙g)及移動速度而設定。 來自噴出口 41之處理氣體巾的〇3濃度相對於處理氣體全 體,較好的是設為1〜5 ν〇1%,更好的是設為3〜4 ν〇ι%。來 自喷出口 41之處理氣體中的水分濃度較好的是 〇.〇〇卜〇.〇1%(以水蒸汽分壓表示為0 〇1 kpa〜〇丨kpa)。 自喷出口 41喷出之處理痛+ 处埋轧體向左右之吸引口 42流動,並 由s矣專吸引口 42吸引。因此,姑 口此被處理物1 0之表面的對應於 左右吸引口 42的部分之間,成為與處理氣體之接觸區域 (反應區域)R1。於該反應區域Rlt,暫時形成有凝結層 18。凝結層18係處理氣體中夕M ^斗、个1 ㈣τ之Η2〇或下述反應式⑺右邊第 2項之2ΗζΟ凝結而形成。圖1中, 口〒凝結層U之厚度被放大表 示。凝結層18之厚度在噴出口41 ® 41之正下方附近為最大,隨 著靠近吸引口 42之正下方附近而變薄。以了,僅提及凝結 層18之厚度時’只要無特別說明,是指其最大厚度。於該 凝結層18中,處理氣體中之Hp、为 HF办解,從而凝結層18成為 HF水溶液。進而’ 〇3溶解。藉 稽宙上述被處理物10之溫度 設定而可將〇3之溶解速度維持為充分高速。 所溶解之〇3在凝結層18中擴散 τ爾政,並到達被處理物1〇之表 面之矽(n+層15及α-Si層U),佶俨 使侍该矽氧化。該氧化矽盥 HF反應。由此’全體產生式f 式(2)所不之反應,從而矽被蝕 刻。 129080.doc 19 200901310 …式(2) 4HF+203 + Si^SiF4+2H20+202 移動步驟The suction port 42 is connected to a suction unit 5A including a vacuum pump or the like. The gas around the lower end of the suction port opening 42 is sucked into the suction port 42, and suction and exhaust are performed by the suction unit. The processing head 39 including the nozzle portion 4 is connected to the scanning mechanism 6A. The scanning mechanism 6 has a driving portion such as a motor, a slider guide, and the like, and reciprocates (scans) the processing head 39 in the horizontal direction of the drawing. The output speed of the scanning mechanism 60 can be increased or decreased in the range of, for example, 0 to 20 m/min. A setting 70 is connected to the scanning mechanism 6A. The setting unit 7〇 can be used to set the reciprocating speed of the processing unit 3〇, which is the output of the scanning unit 6〇. FIG. 3 shows an example of the scanning mechanism 60. The scanning mechanism 6A has a motor 61 and a lead screw coupled to the motor 61 via a transmission mechanism 62. And the slider guide 64. The transport mechanism 62 includes a pulley 62a connected to the output shaft of the motor 61, a pulley connected to one end of the lead screw 63, and an endless belt 62c spanned on the π wheels 62a, 62b. A gear train or the like can also be used as the transmission mechanism 62, and the lead screw 63 can also be directly connected to the output shaft of the motor. The lead screw 63 extends to the left and right, and the nut 65 disposed on the sleeve portion 39B of the processing head 39 is screwed to the lead screw 63. The slider guide extends in parallel with the guide screw 63 and is disposed on the sleeve portion 39b. The slider μ is slidable 129080.doc -16 - 200901310 and is fastened to the slider guide 64. The motor 6 is connected to the core (10) and the motor drive unit. The controller 71 includes a moving circuit (not shown) and a setting unit 70. The setting unit 70 transmits a panel, a dial, etc., and the setting unit 70 is configured. Falling into the :: Touching the head - the scanning catch is set to input. The controller " is for the speed of 61, and the „ is made by „~』力郎电机. The servo head 39 is scanned at a set speed and is controlled. The configuration of the mechanism 6G is not limited to the above. For example, the liquid actuator can be moved by the liquid actuator, and various known moving mechanisms can be used. The range of the reciprocating movement of the 疋 'process 硕 39 corresponds to the target area of the object to be treated. More preferably, the movement range is made larger than the treatment range, and the discharge port 41 is folded back beyond the treatment range. Instead of the above, the scanning mechanism 60 may be connected to the installation portion 20 to move the portion 2, and the processing head 39 may be fixed. In this case, a roller conveyor and a belt conveyor can be used as the scanning mechanism 60 and the installation unit 20. Hereinafter, a ruthenium etching method of the etching apparatus 上述 having the above configuration will be described. Setting Procedure The pressure environment is set to approximately atmosphere. The object to be processed is placed on the setting portion 20. The pressure ' is preferably set to atmospheric pressure. Temperature adjustment step The temperature of the object to be treated 10 is preferably adjusted to 2 〇 to 6 〇. Oh, it is better to adjust to 25~35°c. 129080.doc -17-200901310 Process gas supply step The process gas supply unit 30 generates a process gas which suppresses 〇3 as a main component and ejects it from the discharge port 41. At this time, the flow rate of the eh from the a-type raw material supply unit 32 is preferably 5 to 2 〇 sim per im, with respect to the length of the object W in the front-rear direction (the direction orthogonal to the paper surface of FIG. i). More preferably, it is set to 5 to 10 slm. The amount of water vapor added by the adding portion 34 is preferably set to be a large amount consumed by the electropolymerization reaction of the formula (1), and specifically, t is preferably set to H2O/(CF4+H2O). ) = 10~50 vol%, more preferably set to 1〇~25 vol. /. . It may also be diluted with an inert gas such as Ar, N2, He or heart as needed. The electric field intensity between the electrodes 35 of the plasma generating portion 33 is preferably set to be kV/mm, more preferably set to 5 to 10 kV/mm, and the frequency is preferably set to 5 to 100 KHz. It is set to 10~50 KHz. The amount of ozone generated by the ozone generating unit 36 is set to be below the explosion limit. Specifically, it is preferably at the outlet of the ozone generator 38 〇3/(〇2+〇3)=1~1〇vol% 'better. It is 5~8 ν〇ι〇/0. The discharge flow rate of the process gas from the discharge port 41 is preferably set to 10 to 5 per unit length (1 m) with respect to the rhyme of the discharge port 41 (direction orthogonal to the plane of the paper of Fig. 1). 〇slm is more preferably set to 1 〇〇 to 2 〇〇 "η. The HF concentration in the processing gas from the discharge port 41 can be set to 0.1 to 5 vol%, for example, in the processing gas king body, and can also be set to 〇·3~1 ν〇ι〇/0. The lower limit of the HF concentration is preferably 0.1 v〇l% or more, more preferably 1 v〇l% or more, above the HF concentration. The limit value is preferably 8 vol% or less, more preferably 5 ν〇ι% or less, relative to the treatment gas 129080.doc -18- 200901310. When the concentration of hf is too large, it is difficult to control the condensation layer. The optimum value can be set according to the distance (gap g) between the lower surface of the nozzle portion 40 and the upper surface of the workpiece 1〇 and the moving speed. The concentration of the 〇3 of the processing gas towel from the discharge port 41 is relative to the treatment. The entire gas is preferably set to 1 to 5 ν 〇 1%, more preferably 3 to 4 ν 〇 % %. In the process gas from the discharge port 41 The better concentration is 〇.〇〇卜〇.〇1% (expressed as water vapor partial pressure is 0 〇1 kpa~〇丨kpa). Treatment pain from the spray outlet 41 + buried body to the left and right The suction port 42 flows and is attracted by the s矣-specific suction port 42. Therefore, the portion of the surface of the object to be treated 10 corresponding to the left and right suction ports 42 becomes a contact region with the processing gas (reaction region). R1. The coagulation layer 18 is temporarily formed in the reaction region Rlt. The coagulation layer 18 is formed by condensation of the first gas in the processing gas, or the enthalpy of the first (2) τ or the second term of the second reaction of the following reaction formula (7). In Fig. 1, the thickness of the mouth condensed layer U is enlarged. The thickness of the condensed layer 18 is largest near the immediate vicinity of the discharge port 41 ® 41, and becomes thinner as it approaches the vicinity of the suction port 42. When only the thickness of the coagulation layer 18 is mentioned, 'the maximum thickness is' unless otherwise specified. In the coagulation layer 18, Hp in the process gas is HF, and the condensed layer 18 becomes an HF aqueous solution. Further ' 3 Dissolved. By the temperature setting of the above-mentioned processed object 10, 〇3 The dissolution rate is maintained at a sufficiently high speed. The dissolved ruthenium 3 diffuses in the condensed layer 18 and reaches the surface of the surface of the object to be treated (n+ layer 15 and α-Si layer U). The ruthenium is oxidized, and the ruthenium oxide HF is reacted, thereby producing a reaction of the formula (2), and thus the ruthenium is etched. 129080.doc 19 200901310 (2) 4HF+203 + Si^SiF4+2H20 +202 move step

與喷出處理氣體之動作並行,利用掃描機構6〇使處理頭 39相對於被處理物10進行往復移動(掃描)。在外觀上,凝 結層18亦跟隨該處理頭39而在被處理物⑺之表面上移動。 於通常之㈣中,掃描次數為丨次〜2次。與此相對,本發 明中,較好的是將掃描次數設為3〜4次以上,更好的是設 為5〜8次以上,進而好的是設為9次以上。此處,所謂】次 掃描,係指單側移動,即在往方向上移動丨次或者在複方 向上移動1次,而丨次往復係與2次掃描相對應。 移動速度設定步称 此處,利用設定部70將處理頭39之移動速度(掃描速度) 設定為特定值以上,以使凝結層18之厚度t為特定值以 下。凝結層18之厚度t較好的 t=0,5〜2 μηι’亦可設為1=〇.5〜1 的疋设為t=20〜60 Α。 是設為2 μιη以下,可設為 。凝結層1 8之厚度t較好 處理頭39之移動速度之 右’可设定為3〜9 m/min, 下限較好的是設定為3 m/miη左 亦可設定為6〜9 m/min。 處理頭39之移動速度之上限還依存於掃描機構⑼之能 力’可設為9〜2〇 m/min ’亦可設為10〜15 m/min。若移動 «增大,職理頭39與被處理物1Q之間的環境氣體之捲 入里會增大’從而處理氣體被稀釋,因此移動速度之上限 較好的是根據處理頭Μ與被處 設定。當處理頭39與被處理 理物丨〇之間的間隔(間隙g)來 物10之間的間隔(間隙g)g=l 129080.doc -20· 200901310 mm左右時,可設為70 m/min以下;當間隙g=2 mm左右 時,可設為15 m/min以下;當間隙g=3 mm左右時,可設定 為8 m/min以下之範圍;當間隙g=4 mm左右時,可設為4 m/min以下。藉此,可抑制處理頭39與被處理物ι〇之間的 環境氣體之捲入量’從而可確實進行蝕刻(圖1〇)。 Γ 藉由上述速度設定,於被處理物1〇上之任一部位,凝結 層18中之a均可確實到達被處理物1〇之表面,從而可確實 進行蝕刻反應。因此,如圖2(b)所示,可確實去除設有抗 蝕劑17之部分以外的矽層16。亦可將隅角部19之矽層“確 實除去。其結果可防止產生處理不均(蝕刻殘餘),從而可 使蝕刻品質良好,且可提高均勻性。 藉由上述移動速度設定,可使1次掃描(於往方向上之移 動或者於複方向上之移動)所蝕刻之矽層16之厚度達到 100〜50G A左纟。因此,進行上述次數之掃描,則可對石夕 層16全體(厚度2〇〇〇A)進行蝕刻。 凝結層之厚度、與卜欠掃描即喷出部41每一次相對通過 與被處理物!〇對向之位置時㈣之敍刻深度之間具有固定 關係(圖9)。因&,亦可以使上述蝕刻深度為特定值以下之 方式’將處理頭39之移動速度設定為特定值以上。關於上 述:刻深度之上限’較好的是根據册生成部31之氟系原料 風體之露點(水蒸汽漠度)來設定。當露點較小時,即便移 =度比較小,亦可獲得良好之姓刻品質(實施…之表1 及表2)。冑氟系原料氣體之露點為饥 述钱刻深度為⑽A以下之方式來……?使上 乃八水6又疋速度,此時之移動 129080.doc 200901310 速f之下限可設為1 m/min左右(實施例1之表1)。當氟系原In parallel with the operation of ejecting the processing gas, the processing head 39 is reciprocated (scanned) with respect to the workpiece 10 by the scanning mechanism 6?. In appearance, the condensation layer 18 also moves along the surface of the object to be treated (7) following the processing head 39. In the usual (four), the number of scans is 丨~2 times. On the other hand, in the present invention, it is preferable to set the number of scans to 3 to 4 or more, more preferably 5 to 8 or more, and more preferably 9 or more. Here, the term "secondary scanning" refers to a one-side movement, that is, moving one time in the forward direction or one time in the compound direction, and the one-time reciprocating system corresponds to two times of scanning. Movement speed setting step. Here, the movement speed (scanning speed) of the processing head 39 is set to a specific value or more by the setting unit 70 so that the thickness t of the condensation layer 18 is equal to or lower than a specific value. The thickness t of the coagulation layer 18 is preferably t = 0, 5 to 2 μηι', and the enthalpy of setting 1 = 〇.5 to 1 is set to t = 20 to 60 Α. It is set to 2 μηη or less and can be set to . The thickness t of the condensation layer 18 is better than the right speed of the processing head 39 can be set to 3 to 9 m/min, and the lower limit is preferably set to 3 m/miη. The left side can also be set to 6 to 9 m/ Min. The upper limit of the moving speed of the processing head 39 depends on the ability of the scanning mechanism (9) to be 9 to 2 〇 m/min ’ or 10 to 15 m/min. If the movement «increases, the entrapment of the ambient gas between the occupational head 39 and the treated object 1Q will increase" and the processing gas is diluted, so the upper limit of the moving speed is better according to the processing head and the being set up. When the interval between the processing head 39 and the workpiece (gap g) 10 (gap g) g = l 129080.doc -20 · 200901310 mm or so, it can be set to 70 m / Below min; when the gap g=2 mm or so, it can be set to 15 m/min or less; when the gap g=3 mm or so, it can be set to a range of 8 m/min or less; when the gap g=4 mm or so, Can be set to 4 m/min or less. Thereby, the amount of entrapment of the ambient gas between the processing head 39 and the workpiece ι can be suppressed, and etching can be surely performed (Fig. 1A).藉 By the above-described speed setting, a of the condensed layer 18 can surely reach the surface of the workpiece 1 at any portion of the workpiece 1 ,, and the etching reaction can be surely performed. Therefore, as shown in Fig. 2(b), the ruthenium layer 16 other than the portion where the resist 17 is provided can be surely removed. The ruthenium layer of the corner portion 19 can also be "removed. As a result, uneven processing (etching residue) can be prevented, so that the etching quality can be improved and the uniformity can be improved. By the above moving speed setting, 1 can be made. The thickness of the ruthenium layer 16 etched by the sub-scan (movement in the forward direction or in the complex direction) reaches 100~50G A left 纟. Therefore, by performing the above-mentioned scanning, the entire thickness of the shi layer 16 (thickness) can be 2〇〇〇A) etching is performed. The thickness of the condensed layer has a fixed relationship with the depth of the etched portion 41, which is opposite to the position of the object to be processed, ( (4). 9). The movement speed of the processing head 39 may be set to a specific value or more by the above-described etching depth, and the upper limit of the engraving depth is preferably based on the album generating unit 31. The dew point of the fluorine-based raw material body (water vapor infiltration) is set. When the dew point is small, even if the degree of shift is small, a good surviving quality can be obtained (Table 1 and Table 2 of the implementation). The dew point of the fluorine-based raw material gas is The depth of the money is less than (10)A.... The speed of the upper water is 6 疋, and the movement is 129080.doc 200901310 The lower limit of the speed f can be set to about 1 m/min (Table 1 of Example 1) When the fluorine is used

:斗'乱體之露點為14。。左右時,可以使上述蝕刻深度為60 A 以下之方式來設定速度,此時之移動速度之下限可設為2 m/min左右(實施例1之表2)。當氟系原料氣體之露點為16°c 工右寺可以使上述蝕刻深度為40 A以下之方式來設定速 度,此時之移動速度之下限較好的是設為5 m/min左右(實 幻之表3)。當氟系原料氣體之露點為1 8 °C左右時,可: The dew's dew point is 14. . In the case of the right and left, the speed can be set such that the etching depth is 60 A or less, and the lower limit of the moving speed at this time can be set to about 2 m/min (Table 2 of the first embodiment). When the dew point of the fluorine-based raw material gas is 16 °c, the Gongyou Temple can set the speed by the above etching depth of 40 A or less. The lower limit of the moving speed at this time is preferably set to about 5 m/min (realistic Table 3). When the dew point of the fluorine-based raw material gas is about 18 ° C,

乂使上述蝕刻深度為25 A以下之方式來設定速度,此時之 移動速度之下限較好的是設為10 m/min左右(實施例丨之表 4) 〇 八人對其他實施形態加以說明。於以下實施形態中, 關於與已述之實施形態重複之構成,纟圖式中附上相同符 號而省略說明c [第2實施形態] 於圖4所示之蝕刻裝置河2中,設有噴嘴部4〇之乾燥氣體 仏、’。口 8 1 (乾燥氣體供給部)。乾燥氣體供給口 8丨形成為沿 著噴嘴部40下表面之周緣之仰視呈四邊形環狀。 乾燥氣體供給口 81上連結有乾燥氣體供給源8 〇。於乾燥 氣體供給源80中’調節為特定溫度及濕度之氮氣或空氣等 乾燥氣體自乾燥氣體供給口 81噴出。乾燥氣體之溫度較好 的是20〜10(TC左右’更好的是2〇〜3(rc左右。乾燥氣體之 相對濕度較好的是0〜1%左右,更好的是〇〜〇 〇1%左右。 藉此,可於被處理物w之蝕刻劑接觸區域R1之外部促進 乾燥’從而可使凝結層1 8衰減而確實消失。因此,可防止 129080.doc -22- 200901310 凝結層18隨著掃描次數之^ 厚度t確實抑制為特定值以下。累積且可將凝結層】8之 當凝結層之厚度為〇」㈣以下時,即便無塵室中之相對 濕度為观左右,亦可以卜2秒以下之時間進行乾2相對 。對於㈣劑接觸區域R1,亦可僅自掃描方向下游側之乾 燥氣體供給口 8 1噴出乾螵氣體。 [第3實施形態] 於圖5所不之蝕刻裝置⑷中,於噴嘴部4〇左右之吸引口 42的更㈣,設有—對加熱㈣。加熱部 成,亦可由紅外、料㈣加熱器構^ U構 "根據該實知幵八悲’可利用加熱部9〇對被處理物界之處理 氣體接觸區域⑴卜側之部分進行加熱,以促進乾燥。藉 此,可防止凝結層18隨著掃描次數之增加而累積,且可^ 凝結層1 8之厚度t確實抑制為特定值以下。 加熱邠90對被處理物丨〇之加熱溫度較好的是2〇〜1⑻。◦左 右,更好的是25〜5(TC左右,進而好的是25〜3〇。〇,亦可設 為30〜50°C左右。 亦可對於處理氧體接觸區域R 1,僅接通掃描方向下游側 之加熱部90,並且僅對處理氣體接觸區域R1下游側之部分 進行加熱。藉此,可防止處理氣體喷出前被處理物10之高 溫化,從而可防止蝕刻率降低。 加熱部90並非僅限於配置在喷嘴部4〇之比吸引口 42更外 側,亦可配置在噴出口 41與吸引口 42之間,亦可配置在噴 令部40之除噴出口 41及吸引口 42以外之整個區域,還可僅 129080.doc -23- 200901310 =於左右任—方,亦可離開處理頭39而配置於 加熱部90亦可自背側(下側)對被處理物Μ進行加熱。 [第4實施形態] 於圖6所示之银刻裝置_中,左右(移動方向)隔開 間隔而設置有複數個(圖中僅 疋 甲僅圖不3個)處理頭3 3〇中,吸引Π42僅設於嗔 各處理頭 ^ , 出41之早側(此處為右側)。自 喷出口 41噴出之處理氣妒 J;自 η… 孔體之大致全部量向右側流動,並由 1個吸引口 42吸弓卜被處理… 由 . 向上的各處理頭39之 贺出口 41與吸引口 42之間 之 吓耵應之邛分成為反應區 掃描機構難由設置部2〇而使被處理物ι〇自左 動。因此,被處理物10上之處理 札骚"IL動方向與相對 理頭39之被處理物10之移動方向相互一致。 f於處 亦可使用滾輪式輸送機等搬送輸送機來作為設置部20及 掃描機構60。亦可钱被處㈣m與 同之方式使處理頭39移動。 也々L相 鄰接之處理頭39、39相互之間隔設定為如下程度:被處 :物H)之表面上之各點自該等處理頭Μ,中上流側之處 理頭39的反應區域向下游側之處理頭39的反應區域移動之 期間,凝結層可乾燥。上述間隔 ,,, 佩乾知所需之時間 (例如數秒)及被處理物1 〇之移動速度的乘積而长 再者,上述間隔充分大於處理頭39與被處理物1 間隔(間隙g)。圖中,間隙g被放大。 該第4實施形態中,可於1次掃描(單程移動)中進行與處 理碩39之台數相應的钮刻。因此,在增加處理物之台數 129080.doc -24- 200901310 後’僅進行1次掃描即可對被蝕刻膜16之全體進行蝕刻。 圖7係將圖6之裝置模型化,模擬移動速度與凝結層1 8之 厚度間的關係。各條件如下所述。 反應區域R1之長度(自喷出口 41至吸引口 42為止之距 離):4 cm 處理氣體流量:7.9 L/min(每單位處理寬度(與圖!之紙 面正交之方向的1 m)) HF濃度:2.25 vol% 臭氧濃度:3 vo 1 %设定Set the speed so that the etching depth is 25 A or less. The lower limit of the moving speed at this time is preferably about 10 m/min (Table 4 of the example). Eight other people explain the other embodiments. . In the following embodiments, the configuration is the same as the embodiment described above, and the same reference numerals are attached to the drawings, and the description c is omitted. [Second Embodiment] In the etching apparatus river 2 shown in Fig. 4, a nozzle is provided. Part 4: dry gas 仏, '. Port 8 1 (dry gas supply unit). The dry gas supply port 8 is formed in a quadrangular ring shape in a bottom view along the periphery of the lower surface of the nozzle portion 40. A dry gas supply source 8 is connected to the dry gas supply port 81. In the dry gas supply source 80, a dry gas such as nitrogen gas or air adjusted to a specific temperature and humidity is ejected from the dry gas supply port 81. The temperature of the drying gas is preferably 20 to 10 (about TC is better than 2 〇 to 3 (rc). The relative humidity of the drying gas is preferably about 0 to 1%, more preferably 〇~〇〇. Thereby, the drying can be promoted outside the etchant contact region R1 of the workpiece w, so that the condensed layer 18 can be attenuated and surely disappeared. Therefore, the condensed layer 18 can be prevented from being 129080.doc -22-200901310 The thickness t of the number of scans is surely suppressed to a specific value or less. When the thickness of the condensed layer of the condensed layer 8 is less than or equal to (4), even if the relative humidity in the clean room is around, In the case of the (four)-agent contact region R1, the dry gas may be ejected only from the dry gas supply port 8 1 on the downstream side in the scanning direction. [Third Embodiment] FIG. In the etching device (4), more (four) of the suction port 42 on the right and left sides of the nozzle portion 4 is provided with heating (four). The heating portion may be formed by infrared or material (four) heaters. Sorrow' can use the heating part 9〇 to treat the gas contact area of the object boundary (1) The portion on the side of the pad is heated to promote drying. Thereby, the condensation layer 18 can be prevented from accumulating as the number of scans increases, and the thickness t of the condensed layer 18 can be suppressed to a specific value or less. The heating temperature of the object to be treated is preferably 2〇~1(8). About ◦, preferably 25~5 (about TC, and further preferably 25~3〇. 〇, can also be set to 30~50° For the treatment oxygen contact region R1, only the heating portion 90 on the downstream side in the scanning direction is turned on, and only the portion on the downstream side of the processing gas contact region R1 is heated. Thereby, the processing gas can be prevented from being ejected. The temperature of the pre-treated material 10 is increased to prevent the etching rate from being lowered. The heating unit 90 is not limited to being disposed outside the suction port 42 of the nozzle portion 4A, and may be disposed between the discharge port 41 and the suction port 42. It may be disposed in the entire area other than the discharge port 41 and the suction port 42 of the spray unit 40, and may be disposed only in the heating unit by leaving the processing head 39 only in the left or right side of the 129080.doc -23-200901310. 90 can also break into the object from the back side (lower side) [Fourth Embodiment] In the silver engraving apparatus shown in Fig. 6, a plurality of processing heads are provided in the left and right (moving directions) at intervals, and only three processing heads are provided. In the middle, the suction Π 42 is only disposed on the early side of the processing head ^, the front side of the 41 (here, the right side). The processing gas 喷J ejected from the ejection outlet 41; from the η... the substantially total amount of the aperture body flows to the right side, and The suction port is sucked by one suction port 42. The smashing between the outlets 41 and the suction ports 42 of the upward processing heads 39 becomes a reaction zone scanning mechanism which is difficult to be provided by the setting unit 2 The object to be treated is moved from the left. Therefore, the processing direction of the workpiece 10 in the processing object 10 coincides with the moving direction of the workpiece 10 of the counter head 39. f The conveyance conveyor such as a roller conveyor may be used as the installation unit 20 and the scanning mechanism 60. It is also possible to move the processing head 39 in the same manner as the money (4) m. Also, the distance between the adjacent processing heads 39 and 39 is set to the extent that the points on the surface of the object H) are from the processing heads of the processing heads, and the reaction areas of the processing heads 39 on the upper-stream side are While the reaction zone of the processing head 39 on the downstream side moves, the coagulation layer can be dried. The interval is longer than the product of the required time (e.g., several seconds) and the moving speed of the workpiece 1 再. Further, the interval is sufficiently larger than the interval between the processing head 39 and the workpiece 1 (gap g). In the figure, the gap g is enlarged. In the fourth embodiment, the button corresponding to the number of the processing masters 39 can be performed in one scan (one-way movement). Therefore, the entire etching film 16 can be etched by performing only one scanning after increasing the number of processed materials 129080.doc -24 - 200901310. Figure 7 is a model of the apparatus of Figure 6 simulating the relationship between the speed of movement and the thickness of the condensed layer 18. Each condition is as follows. Length of reaction zone R1 (distance from discharge port 41 to suction port 42): 4 cm Process gas flow rate: 7.9 L/min (per unit processing width (1 m in the direction orthogonal to the paper surface of Fig.)) HF Concentration: 2.25 vol% Ozone concentration: 3 vo 1 %

環境溫度:2 5 °C 相對濕度:50% 間隙.g=l~4 mm 移動速度.〇·25〜102.5 m/min 處理頭3 9之台數.於1次掃描(單程移動)中對石夕層1 6全 體進行姓刻之台數 如圖7所示,若移動速度較小,則凝結層形成得較厚。 隨著移動速度增大,凝結層之厚度會變小。於移動速度為 2 m/min以下之區域,隨著移動速度增大,凝結層之厚度 急遽減小。當移動速度為3 m/min左右時,凝結層之厚^ 充分減小(約60 A以下)。於移動速度高於3 m/min之高速: 域,凝結層之厚度一點一點地逐漸減小。 處理頭39與被處理物10之間的間隙g越小,則凝結層之 厚度越大。 再者’省略了圖表顯示,處理妓紐run 处理礼體接觸區域以之長度越 129080.doc -25- 200901310 大,則凝結層之厚度越會增大。 圖8係模擬與圖7相同之條件下的凝結層之厚度與矽之蝕 刻量(每i m寬度的體積)間的關係。圖8之縱轴::每單位 處理寬度(與圖6之紙面正交方向的(m)及每單位時間⑽) 被钮刻之⑦的體積,其係心刻深度與掃描速度 而計算出(圖10中相同)。 、 如圖8所示’當凝結層之厚度為。時,钱刻體積亦為〇, 不產生蝕刻反應。當凝結層之厚度約為2〇人時,蝕刻體積 急遽上升’產生蝕刻反應。因此,較好的&,以使凝結層 之厚度至少約為2G A以上之方式來設定掃描速度。 於凝結層為100〜150 A以下之區域,隨著凝結層增大, 姓刻體積逐漸減少,其係由於臭氧之擴散控制發揮作用。 即’在凝結層變厚時,凝結層中溶解後之臭氧難以到達被 處理物1G之表面’從而造成臭氧與被處理物ig之反 少。 處理頭39與被處理物1G之間的間隙g越小,則触刻體積 越大。 再者,省略了圖表顯示,反應區域R1之長度越大,則蝕 刻體積越會增大。 圖9係模擬與圖7相同之條件下的凝結層之厚度與每1次 掃描之蝕刻深度間的關係。隨著凝結層之厚度變大,蝕刻 之冰度亦變大。間隙g越小,則蝕刻深度越大。 再者,省略了圖表顯示,反應區域R1之長度越大,則蝕 刻深度越會增大。 129080.doc -26 · 200901310 如上所述’凝結層之厚度與蝕刻深度具有固定關係。因 此’可藉由測定蝕刻深度來推算凝結層之厚度。 圖10係模擬與圖7相同之條件下的移動速度與蝕刻體積 (每單位處理寬度(與圖6之紙面正交之方向的1 m)及每單位 時間(1秒))之間的關係。 隨著移動速度自低速區域增大,蝕刻體積會增大,此係 凝結層變薄而促進反應之效果、與速度增大而擴大蝕刻面 積之效果相互作用的結果。當移動速度達到某一速度之時 刻,蝕刻體積達到峰值,由此開始在高速側,蝕刻體積隨 著速度增大而減少,此係由於外部之環境氣體(外氣)捲入 至喷嘴部40與被處理物1〇之間。當移動速度達到某一速度 後,蝕刻體積不連續地為〇,此係由於上述捲入量過度增 大而導致不生成凝結層,從而不產生反應。 上述捲入量除依存於移動速度以外,還依存於處理頭39 與被處理物10之間的間隙g之大小。間隙g越小,則捲入量 越少,從而處理氣體之濃度降低得以抑制。因此,隨著間 隙g變小,蝕刻體積會增大,且蝕刻體積成為〇的移動速度 向高速側偏移。 再者’省略了圖表顯示,反應區域R1之長度越大,則蝕 刻體積之峰值越會增大,但蝕刻體積不連續地為0的移動 速度並不依存於反應區域R1之長度,若間隙g相同,則上 述移動速度大致固定。 根據圖i〇,當間隙g=1咖左右時,若移動速度為70 — η以下,則可充分確保㈣反應。當f«g=2 _左右 I29080.doc •27· 200901310 時’若移動速度為15 m/min以下,則可充分確保蝕刻反 應。當間隙g=3 mm左右時,若移動速度為8 m/min以下, 則可充分確保蝕刻反應。當間隙§=4 mm左右時,若移動 速度為4 m/min以下,則可充分確保蝕刻反應。g=i〜4 mm、尤其是g=2〜3 mm之間隙量以及與其相對應之移動速 度,利用滾輪式輸送機等簡易之搬送裝置可容易實現。若 g=2〜3 mm左右,則可充分吸收經時變化引起之滚筒的移 動等現象’在成本方面的優點亦較大。 [第5實施形態] 於圖11所示之蝕刻裝置M5中,隔開固定間隔而設有複 數個處理頭39 ^該等處理頭39沿著掃描機構6〇之移動方向 而排列成一行。鄰接之處理頭39、39相互之間隔係以與第 4實施形態相同之方式而設定為如下程度:被處理物丨❻之 表面上之各點通過該等處理頭39、39之間時,凝結層可乾 燥。各處理頭39上設有噴出口41及吸引口42。此處,與第 1實施形態同樣地挾持噴出口 41而於其兩側配置有吸引口 42。自各喷出口 41噴出與第1實施形態(圖丨)等量之處理氣 體’並且由各吸引口 42吸引。 掃描機構60經由設置部2〇而使被處理物1〇移動,亦可替 代此,使複數個處理頭39統一移動。 該第5實施形態中,與第4實施形態同樣地,可於丨次掃 私(早程移動)中進行與處理頭39之台數相應的蝕刻。因 此對於僅有1台處理頭39時(例如第1實施形態(圖丨,可 將掃描次數設為i次,與處理頭39之纟數相應。例如,當 129080.doc -28. 200901310 裝置M5之處理頭39之數暑 39m 數夏為10台時,對於僅以!台處理頭 3U要㈣欠之㈣16,進行1Q次掃描即可。又淨 裝置M5之處理頭39之數量A 田 a 4 里為100 口蚪,對於僅以1台處理 要掃描_次之㈣16,進行1次掃描即可。即,僅 在在方向上進行單程移動即可完成餘刻。 本發明並非限定於上述實施形態,其可進行各種改變。 列如’册之氟原料並非限定於CF4,亦可使用哪、 物,還可使用氟V體::4…SF6、NF3等含氟化合 之Γ合之物氯原料並非限定於邮’亦可使用醇等含有娜 作為HF之供給單元,可使用儲存有氟 亦可使用將氫氟酸水溶液氣儲轧瓶 後以載體氣體搬送之 氫了。’、、、風氟酸之氣化方法,可使載體氣體通過 =水溶液,或者對編水溶液加熱以使其氣化,再 :乳化之氣化氫與載體氣體接觸。作為氫 法,可使氫氟酸水溶液於載體氣 務匕万 ㈣中務化。作為載體氣 體了使用He、Ne、Ar等稀有氣體或化。 亦可使用電漿生成裝置來作為臭氧生成部 :可:上述第!〜第5實施剛之2個以上實施互 ’ Γ例如’可將第2實施形態之乾燥氣體供給與第3實施 形恶之強制加熱加以組合,亦可 燥機構併入到第4、第5實剌^ 43實施形態之乾 』弟4 實施形態之各處理頭外上 可減小鄰接之處理頭39、39相互之間隔。 曰, 】29080.doc -29· 200901310 [實施例1 ] 以下對實施例加以說明’當然’本發明並非限定於該實 施例。 使用與圖1所示之裝置M實質上相同之裝置,對被處理 物10之矽層16進行蝕刻。裝置構成及處理條件如下所述。 噴出口 41之寬度(圖i之左右方向的尺寸):2mm 喷出口 41之長度(與圖1之紙面正交之方向的尺寸):100 mm 吸引口 42之寬度(圖1之左右方向的尺寸):0.7 mm 吸引口 42之長度(與圖1之紙面正交之方向的尺寸):ι〇〇 mm 喷出口 41與左側吸引口 42之間的距離:2〇 mm 喷出口 41與右側吸引口 42之間的距離:2〇 mm 噴嘴部40之下表面與被處理物1 〇之間的間隔(工作距離 即間隙9) : g=l mm 對電極35之施加電壓:Vpp = 135 v(脈波電壓) 一對電極3 5之間的距離:1 mm 上述施加電壓之頻率:20 kHz 上述施加電壓之脈波寬度:1 〇 μ8 被處理物1 〇之溫度:3 〇 〇c 處理氣體 導入至電漿生成部33中的氟系原料氣體: CF4+H20+Ar約 0.5 slm 對各成分記述為: 129080.doc -30- 200901310 CF4 . 0.05 slmAmbient temperature: 2 5 °C Relative humidity: 50% Clearance.g=l~4 mm Movement speed. 〇·25~102.5 m/min Number of processing heads 39. In one scan (one-way movement) As shown in Fig. 7, the number of the first layer of the entire layer is as shown in Fig. 7. If the moving speed is small, the condensation layer is formed thick. As the moving speed increases, the thickness of the condensation layer becomes smaller. In the region where the moving speed is 2 m/min or less, as the moving speed increases, the thickness of the condensed layer is sharply reduced. When the moving speed is about 3 m/min, the thickness of the condensed layer is sufficiently reduced (about 60 A or less). At a high speed of movement speed higher than 3 m/min: the thickness of the condensation layer gradually decreases little by little. The smaller the gap g between the treatment head 39 and the workpiece 10, the larger the thickness of the condensation layer. Furthermore, the graph display is omitted, and the thickness of the condensed layer is increased as the length of the contact area of the 礼 Newrun processing ritual is 129080.doc -25- 200901310. Fig. 8 is a graph showing the relationship between the thickness of the condensed layer and the etch amount of ruthenium (volume per m m width) under the same conditions as those of Fig. 7. The vertical axis of Fig. 8: the processing width per unit ((m) in the direction orthogonal to the plane of the paper of Fig. 6 and the unit time (10) per unit time) is calculated by the depth of the button and the scanning speed ( The same in Figure 10). , as shown in Figure 8 'When the thickness of the condensation layer is . At the time, the volume of the money is also 〇, and no etching reaction occurs. When the thickness of the condensed layer is about 2 Å, the etching volume rises sharply, and an etching reaction is generated. Therefore, it is preferred that the scanning speed is set such that the thickness of the coagulation layer is at least about 2 G A or more. In the region where the condensation layer is 100 to 150 A or less, as the condensation layer increases, the volume of the surname is gradually reduced, which is controlled by the diffusion of ozone. That is, when the condensed layer is thick, it is difficult for the dissolved ozone in the condensed layer to reach the surface of the object to be treated 1G, resulting in a decrease in ozone and the object to be treated ig. The smaller the gap g between the processing head 39 and the workpiece 1G, the larger the etched volume. Further, the graph display is omitted, and the larger the length of the reaction region R1, the larger the etching volume is. Fig. 9 is a graph showing the relationship between the thickness of the coagulation layer and the etching depth per one scan under the same conditions as those in Fig. 7. As the thickness of the condensed layer becomes larger, the ice of the etching also becomes larger. The smaller the gap g, the greater the etching depth. Further, the graph display is omitted, and the larger the length of the reaction region R1, the larger the etching depth is. 129080.doc -26 · 200901310 As mentioned above, the thickness of the condensation layer has a fixed relationship with the etching depth. Therefore, the thickness of the condensed layer can be estimated by measuring the etching depth. Fig. 10 is a graph showing the relationship between the moving speed and the etching volume (the unit processing width (1 m in the direction orthogonal to the sheet of Fig. 6) and the unit time (1 second) in the same conditions as in Fig. 7. As the moving speed increases from the low-speed region, the etching volume increases, and this is a result of the effect that the condensed layer is thinned to promote the reaction and the effect of increasing the speed and enlarging the etching area. When the moving speed reaches a certain speed, the etching volume reaches a peak, thereby starting on the high speed side, the etching volume decreases as the speed increases, because the external ambient gas (outer air) is drawn into the nozzle portion 40 and The object to be treated is between 1 〇. When the moving speed reaches a certain speed, the etching volume is discontinuously 〇, which is because the above-mentioned excessive amount of entrainment causes no formation of a coagulation layer, and no reaction occurs. In addition to the moving speed, the above-described winding amount depends on the size of the gap g between the processing head 39 and the workpiece 10. The smaller the gap g is, the smaller the amount of entrapment is, and the decrease in the concentration of the processing gas is suppressed. Therefore, as the gap g becomes smaller, the etching volume increases, and the etching volume becomes the moving speed of the crucible shift toward the high speed side. Furthermore, the graph is omitted, and the larger the length of the reaction region R1 is, the larger the peak of the etching volume is. However, the moving speed at which the etching volume is discontinuously zero does not depend on the length of the reaction region R1. The same, the above moving speed is substantially fixed. According to Fig. 1, when the gap g = 1 or so, if the moving speed is 70 - η or less, the reaction can be sufficiently ensured. When f«g=2 _ around I29080.doc •27· 200901310' If the moving speed is 15 m/min or less, the etching reaction can be sufficiently ensured. When the gap g is about 3 mm, if the moving speed is 8 m/min or less, the etching reaction can be sufficiently ensured. When the clearance is §=4 mm or so, if the moving speed is 4 m/min or less, the etching reaction can be sufficiently ensured. The amount of gage of g = i 4 mm, especially g = 2 to 3 mm, and the corresponding moving speed can be easily realized by a simple conveying device such as a roller conveyor. If g = 2 to 3 mm, the phenomenon of the movement of the drum due to the change with time can be sufficiently absorbed, and the cost advantage is also large. [Fifth Embodiment] In the etching apparatus M5 shown in Fig. 11, a plurality of processing heads 39 are provided at regular intervals. The processing heads 39 are arranged in a line along the moving direction of the scanning mechanism 6A. The distance between the adjacent processing heads 39 and 39 is set to be similar to that of the fourth embodiment in such a manner that when the points on the surface of the object to be processed pass between the processing heads 39 and 39, condensation occurs. The layer can be dried. Each of the processing heads 39 is provided with a discharge port 41 and a suction port 42. Here, the discharge port 41 is held in the same manner as in the first embodiment, and the suction port 42 is disposed on both sides thereof. Each of the discharge ports 41 discharges the same amount of the process gas as the first embodiment (Fig. 2) and is sucked by the respective suction ports 42. The scanning mechanism 60 moves the workpiece 1〇 via the installation unit 2〇, and instead, the plurality of processing heads 39 are moved in unison. In the fifth embodiment, similarly to the fourth embodiment, etching in accordance with the number of the processing heads 39 can be performed in the second-time scanning (early movement). Therefore, when there is only one processing head 39 (for example, in the first embodiment (Fig. 丨, the number of scans can be set to i times, which corresponds to the number of turns of the processing head 39. For example, when 129080.doc -28. 200901310 device M5 When the number of processing heads 39 is 39m and the number is 10 in summer, the number of processing heads 39 of the cleaning device M5 may be 1Q scanning for only the (4) owing (4) 16 of the processing head 3U. In the case of 100 蚪, it is only necessary to scan _ times (four) 16 for one processing, and one scan is performed. That is, the single-pass movement can be performed only in the direction to complete the reticle. The present invention is not limited to the above embodiment. It can be changed in various ways. The fluorine raw materials listed in the booklet are not limited to CF4, and which materials can be used, and fluorine V bodies can also be used: 4...SF6, NF3, etc. It is not limited to the postal use. It is also possible to use a supply unit containing hexane as an HF, and it is also possible to use hydrogen stored in a hydrofluoric acid aqueous solution after the storage of fluorine, and then transport the hydrogen as a carrier gas. Acid gasification method, the carrier gas can pass through = aqueous solution, or The aqueous solution is heated to vaporize, and the emulsified hydrogenated hydrogen is contacted with the carrier gas. As a hydrogen method, the hydrofluoric acid aqueous solution can be made into a carrier gas (four). As a carrier gas, He, Ne, A rare gas such as Ar may be used. The plasma generating device may be used as the ozone generating unit: two or more of the above-described fifth to fifth embodiments may be implemented, for example, the dry gas supply of the second embodiment may be In the third embodiment, the forced heating is combined, and the drying mechanism can be incorporated into the fourth and fifth embodiments. The processing heads of the embodiments can be reduced on the outside of the processing heads. 39 is spaced from each other. 曰, 29029080.doc -29· 200901310 [Embodiment 1] Hereinafter, the embodiment will be described. Of course, the present invention is not limited to the embodiment. The device M shown in Fig. 1 is used substantially. The same device is used to etch the layer 16 of the object to be processed 10. The device configuration and processing conditions are as follows: The width of the discharge port 41 (the dimension in the left-right direction of Fig. i): the length of the 2 mm discharge port 41 (Fig. 1) The direction perpendicular to the paper Inch): 100 mm width of the suction port 42 (dimension in the left and right direction of Fig. 1): 0.7 mm length of the suction port 42 (dimension in the direction orthogonal to the paper surface of Fig. 1): 〇〇mm mm discharge port 41 and left side Distance between the suction ports 42: 2 mm The distance between the discharge port 41 and the right suction port 42: 2 mm The interval between the lower surface of the nozzle portion 40 and the workpiece 1 (the working distance is the gap 9) : g=l mm Applied voltage to electrode 35: Vpp = 135 v (pulse voltage) Distance between a pair of electrodes 3 5: 1 mm Frequency of applied voltage: 20 kHz Pulse width of the above applied voltage: 1 〇μ8 Temperature of the workpiece 1 〇: 3 〇〇c The fluorine-based material gas introduced into the plasma generating unit 33 by the processing gas: CF4+H20+Ar is about 0.5 slm. Each component is described as: 129080.doc -30- 200901310 CF4 . 0.05 slm

Ar · 0.45 slm h2〇 · 0.0070-0.01 17 slm 上述氣系原料氣體之露點:1 2〜2〇t: 含有來自臭氧生成部36之臭氧的氣體〇3 + 〇2 : ο」slm 上述含有臭氧之氣體的〇3濃度(〇3/(〇3 + 〇2)) : 8 v〇1% 即,〇2為 0,276 slm , 〇3為 0.024 slmAr · 0.45 slm h2 〇 · 0.0070-0.01 17 slm Dew point of the above gas-based raw material gas: 1 2~2〇t: Gas containing ozone from the ozone generating unit 36 〇3 + 〇2 : ο"slm The above-mentioned ozone-containing 〇3 concentration of gas (〇3/(〇3 + 〇2)): 8 v〇1% ie 〇2 is 0,276 slm and 〇3 is 0.024 slm

來自左右吸引口 42之合計吸引流量:h5 slm 掃描機構60之相對移動速度:500〜10000 mm/min 掃描次數:直至SiNx層13析出為止 矽層16之厚度:2000 A 此處,露點為12°C時的上述氟系原料氣體中之H2〇流量 為0.0070 slm。露點為14t時的上述氟系原料氣體中之Η" 流量為0.0080 slm。露點為16。〇時的上述氟系原料氣體中 之邮流量為〇.()〇91如。露點為的時的上述氟系原料氣 體中之H2〇流量為0.0103 slm。露點為2〇t>c時的上述氟系原 料氣體中之H20流量為0.0117 sim。 將結果示於下述表1〜表5中。 [表1] 氣體露點 12°C 速度(mm/min) 500 1000 1500 2000 5000 10000 掃描次數 10 21 30 45 112 224 蝕刻殘餘 有 0% 0% 0% 0% 0% 129080.doc 200901310 [表2] 氣體露點 14°C 速度(mm/min) 500 1000 1500 2000 5000 10000 掃描次數 8 17 25 34 85 170 蝕刻殘餘 有 有 有 0% 0% 0% [表3] 氣體露點 16°C 速度(mm/min) 500 1000 1500 2000 5000 10000 掃描次數 6 11 15 22 55 110 蝕刻殘餘 有 有 有 有 0% 0% [表4] 氣體露點 18。。 速度(mm/min) 500 1000 1500 2000 5000 10000 掃描次數 5 10 14 19 46 93 蝕刻殘餘 有 有 有 有 有 0% [表5] 氣體露點 20°C 速度(mm/min) 500 1000 1500 2000 5000 10000 掃描次數 — 5 9 13 17 43 88 蝕刻殘餘 有 有 有 有 有 有Total suction flow rate from the left and right suction ports 42: h5 slm Relative movement speed of the scanning mechanism 60: 500 to 10000 mm/min Number of scans: Thickness of the layer 16 until the SiNx layer 13 is deposited: 2000 A Here, the dew point is 12° The flow rate of H 2 〇 in the fluorine-based source gas at the time of C was 0.0070 slm. The flow rate in the above fluorine-based raw material gas at a dew point of 14 t was 0.0080 slm. The dew point is 16. The mail flow rate in the above fluorine-based raw material gas at the time of 〇 is 〇. The flow rate of H 2 上述 in the fluorine-based raw material gas at the time of the dew point was 0.0103 slm. The H20 flow rate in the above fluorine-based raw material gas at a dew point of 2 〇 t > c was 0.0117 sim. The results are shown in Tables 1 to 5 below. [Table 1] Gas dew point 12 ° C Speed (mm / min) 500 1000 1500 2000 5000 10000 Scan times 10 21 30 45 112 224 Etching residue 0% 0% 0% 0% 0% 129080.doc 200901310 [Table 2] Gas Dew Point 14°C Speed (mm/min) 500 1000 1500 2000 5000 10000 Number of Scans 8 17 25 34 85 170 There are 0% 0% 0% of the etching residue [Table 3] Gas Dew Point 16°C Speed (mm/min ) 500 1000 1500 2000 5000 10000 Number of scans 6 11 15 22 55 110 There are 0% 0% of the etching residue [Table 4] Gas dew point 18. . Speed (mm/min) 500 1000 1500 2000 5000 10000 Scan times 5 10 14 19 46 93 There are 0% of etch residues [Table 5] Gas dew point 20 °C Speed (mm/min) 500 1000 1500 2000 5000 10000 Number of scans — 5 9 13 17 43 88 There are some etch residues

上述表1〜5中之「蝕刻殘餘」係表示在顯微鏡觀察時見 到的因處理不均而造成的殘留矽之有無情況。所謂〇0/〇, 係指幾乎未觀測到殘留矽之狀態,為較理想之狀態。 藉此可確認,隨著掃描機構60之移動速度增大,處理之 129080.doc •32· 200901310 均一性提高,·並且可確認,導入至電漿生成部33中的加濕 氟系原料氣體(CF4+H2〇+Ar)之露點越低,即來自水添加部 3 4之Η2 Ο的添加量越小,則越可減小處理不均,即便移動 速度小時;還可確認’移動速度可對應於h2〇之添加量而 設為1 m/min〜10 m/min以上,較好的是設為5 m/min〜1〇 m/min以上。 詳細而言,根據表1而確認,在氟系原料氣體之露點為 12°C以下時,若以使每掃描丨次之蝕刻深度為1〇〇 A以下之 方式來設定速度,則可充分確保蝕刻品質。此時之移動速 度的下限可設為1 m/min左右。 根據表2而確認,在氟系原料氣體之露點為14。〇左右 時,若以使每掃描1次之蝕刻深度為60 A以下之方式來設 定速度’則可充分確保蝕刻品質。此時之移動速度的下限 可設為2 m/min左右。 根據表3而確認,在氟系原料氣體之露點為阶左右 時,若以使每掃壯欠之姓刻深度為4〇入 定速度,則可充分確保㈣品f。此時之移動速度約^ m/min以上。 根據表4而確認,在篛系甩 a 虱糸原枓軋體之露點為丨8。〇左右 時,若以使每掃描丨次之钱彳 d冰度為25人以下之方式來設 疋速度,則可充分確保蝕刻品 貞此呀之移動速度約為1 〇 m/min以上。 使用與圖4所示之裝置Μ2實質上相同之裝置,對被心 129080.doc -33- 200901310The "etching residue" in the above Tables 1 to 5 indicates the presence or absence of residual defects caused by uneven processing observed in the microscope observation. The term "〇0/〇" refers to a state in which no residual enthalpy is observed, which is a desirable state. By the way, it is confirmed that the uniformity of the 129080.doc •32·200901310 is improved as the moving speed of the scanning mechanism 60 is increased, and the humidified fluorine-based material gas introduced into the plasma generating unit 33 can be confirmed ( The lower the dew point of CF4+H2〇+Ar), that is, the smaller the amount of addition of Η2 来自 from the water addition unit 34, the smaller the processing unevenness can be, and even if the moving speed is small, it can be confirmed that the 'moving speed can correspond The amount of addition to h2 is set to be 1 m/min to 10 m/min or more, and preferably 5 m/min to 1 〇m/min or more. In detail, it is confirmed that when the dew point of the fluorine-based source gas is 12° C. or less, the speed is set so that the etching depth per scan is 1 〇〇A or less, and it can be sufficiently ensured. Etching quality. The lower limit of the moving speed at this time can be set to about 1 m/min. It was confirmed from Table 2 that the dew point of the fluorine-based source gas was 14. In the case of 〇, when the etch depth is set to 60 A or less per scan, the etching quality can be sufficiently ensured. The lower limit of the moving speed at this time can be set to about 2 m/min. According to Table 3, when the dew point of the fluorine-based material gas is about the order, if the depth of the surviving surcharge is 4 〇, the product f can be sufficiently ensured. The moving speed at this time is about ^ m/min or more. It is confirmed from Table 4 that the dew point of the tantalum crucible is a 丨8. In the case of 〇, when the speed is set to 25 or less per scan, the oscillating speed of the etched product can be sufficiently ensured to be about 1 〇 m/min or more. Using the device substantially the same as the device Μ2 shown in Fig. 4, the heart is 129080.doc -33- 200901310

。自乾燥氣體供給口 8 j哈+ M. Self-drying gas supply port 8 jha + M

&之溫度設為25°C, 2作為 乾燥氣體供給 相對濕度設為 物10之矽層16進行蝕刻。自 乾燥氣體。關於N2之流 口 8 1全體設為2 sim。之 0.1 °/〇以下。 其他裝置構成及處理條件與實施例i相同。其中,掃描 機構60之相對移動速度全部設為1〇〇〇〇 ,並 110次掃描。 其結果確認’幾乎未出現處理不均,從而可進行均—地 #刻。 [產業上之可利用性] 本發明可於例如半導體晶圓或液晶等平板玻璃等之製造 中’應用於對表面矽層進行蝕刻。 【圖式簡單說明】 圖1係本發明第丨實施形態之蝕刻裝置之概略構成圖。 圖2係上述裝置之被處理物之放大剖面圖,其中,圖2(a) 表示石夕姓刻前之狀態,圖2(b)表示矽蝕刻後之狀態。 圖3係表示上述裝置之掃描機構之一例的正視圖。 圖4係本發明第2實施形態之姓刻裝置之概略構成圖。 圖5係本發明第3實施形態之|虫刻裝置之概略構成圖。 圖6係本發明第4實施形態之钮刻裝置之概略構成圖。 圖7係表示移動速度與凝結層厚度間的關係之圖表。 圖8係表示凝結層厚度與每單位處理寬度及每單位時間 之姓刻體積間的關係之圖表。 圖9係表示凝結層厚度與每掃描1次之蝕刻深度間的關係 129080.doc -34- 200901310 之圖表。 圖10係表示移動速度與每單位處理寬度及每單位時間之 敍刻體積間的關係之圖表。 圖11係本發明第5實施形態之蝕刻裝置之概略構成圖。 圖12係經先前之矽蝕刻的被處理物之放大剖面圖,以雙 點劃線來表示钮刻前之石夕層。 【主要元件符號說明】The temperature of & is set to 25 ° C, and 2 is etched as a dry gas supply with a relative humidity of 10 for the layer 10. Self-drying gas. Regarding the flow port of N2, 8 1 is set to 2 sim. 0.1 ° / 〇 or less. Other device configurations and processing conditions are the same as in the embodiment i. Among them, the relative moving speed of the scanning mechanism 60 is all set to 1 〇〇〇〇 and 110 scans. As a result, it was confirmed that there was almost no processing unevenness, and it was possible to carry out the uniform-grounding. [Industrial Applicability] The present invention can be applied to etching a surface tantalum layer in the production of flat glass such as a semiconductor wafer or a liquid crystal. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic configuration diagram of an etching apparatus according to a third embodiment of the present invention. Fig. 2 is an enlarged cross-sectional view showing the object to be processed of the above apparatus, wherein Fig. 2(a) shows the state before the stone eve, and Fig. 2(b) shows the state after the ruthenium etching. Fig. 3 is a front elevational view showing an example of a scanning mechanism of the above apparatus. Fig. 4 is a schematic block diagram showing a device of the surname according to the second embodiment of the present invention. Fig. 5 is a schematic block diagram of a weaving apparatus according to a third embodiment of the present invention. Fig. 6 is a schematic block diagram showing a button engraving apparatus according to a fourth embodiment of the present invention. Fig. 7 is a graph showing the relationship between the moving speed and the thickness of the condensed layer. Fig. 8 is a graph showing the relationship between the thickness of the coagulation layer and the processing volume per unit processing width and the unit time per unit time. Figure 9 is a graph showing the relationship between the thickness of the coagulation layer and the etching depth per scan, 129080.doc -34- 200901310. Fig. 10 is a graph showing the relationship between the moving speed and the processing volume per unit and the volume per unit time. Figure 11 is a schematic configuration diagram of an etching apparatus according to a fifth embodiment of the present invention. Fig. 12 is an enlarged cross-sectional view of the object to be processed which has been etched by the previous ruthenium, and the dashed line before the button is indicated by a two-dot chain line. [Main component symbol description]

Μ、M2、M3、M4、 Μ5 蝕刻裝置 10 被處理物 11 玻璃基板 12 閘極線 13 SiNx 層 14 a-Si 層 15 n+層 16 矽層 17 抗钮劑 18 凝結層 20 設置部 30 處理氣體供給部 31 氟化氫生成部 32 碳化氟供給部 33 電漿生成部 34 水添加部 35 電極 129080.doc -35- 臭氧生成部 氧供給部 臭氧發生器 處理頭 喷嘴部 噴出口(喷出部) 吸引口(吸引部) 吸引單元 掃描機構(移動機構) 設定部(設定單元) 乾燥氣體供給源 乾燥氣體供給口(強制乾燥部) 加熱部(強制乾燥部) 與處理氣體之接觸區域(反應 區域) 凝結層之厚度 36-Μ, M2, M3, M4, Μ5 etching apparatus 10 processed object 11 glass substrate 12 gate line 13 SiNx layer 14 a-Si layer 15 n+ layer 16 矽 layer 17 button 18 condensed layer 20 setting portion 30 processing gas supply Part 31 Hydrogen fluoride generating unit 32 Carbonized fluorine supply unit 33 Plasma generating unit 34 Water adding unit 35 Electrode 129080.doc -35- Ozone generating unit Oxygen supply unit Ozone generator processing head Nozzle portion discharge port (discharging portion) Suction port ( Suction unit) suction unit scanning mechanism (moving mechanism) setting unit (setting unit) Dry gas supply source drying gas supply port (forced drying unit) Heating unit (forced drying unit) Contact area with process gas (reaction area) Condensation layer Thickness 36-

Claims (1)

200901310 十、申請專利範圍: 1. 一種蝕刻方法,其特徵在於: -系於、勺大氣壓下,將含有氟化氫及臭氧之處理氣體 喷至被處理物上’以將形成於上述被處理物表面之矽蝕 • 刻者’且包括以下步驟: • 使噴出上述處理氣體之1個或排列於一方向之複數 個喷出邻相對於上述被處理物沿上述一方向相對往復或 單程移動,以及 ^ .將上述移動速度設定為特定值以上,以使形成於上 述被處理物表面之凝結層的厚度為特定值以下。 2. 如請求項1之蝕刻方法,其中 以使上述凝結層之厚度為2 μιη以下之方式進行上述速 度設定。 3 _如請求項1或2之蝕刻方法,其中 以使上述凝結層之厚度為20 Α〜60人之方式進行上述 速度設定。 4 ·如請求項1之蝕刻方法,其中 將上述相對移動之速度設定為3 m/min以上。 • 5·—種蝕刻方法,其特徵在於: 其係於約大氣壓下,將含有氟化氫及臭氧之處理氣體 噴至被處理物上,以將形成於上述被處理物表面上之矽 姓剡者’且包括以下步驟: 使喷出上述處理氣體之丨個或排列於一方向之複數 個噴出部相對於上述被處理物沿上述一方向相對往復或 129080.doc 200901310 單程移動,以及 將上述移動速度設定為特定值以上,以使丨個噴出 部每一次相對通過與上述被處理物對向之位置時的上述 石夕之餘刻深度為特定值以下。 6·如請求項5之蝕刻方法,其中 於約大氣壓下使含有氟原料及水且露點為12它以下之 氟化氫原料氣體電聚化,藉此生成上述就化氫,並且 以使上述蝕刻深度為100 A以下之方式進行上述速度 設定。 7_如請求項5之蝕刻方法,其中 於約大氣壓下使含有氟原料及水且露點為14t:以下之 氟化氫原料氣體電衆化,藉此生成上述氟化氫,並且 以使上述蝕刻深度為6〇 A以下之方式進行上述速度設 定。 8·如請求項5之蝕刻方法,其中 ^於約大氣壓下使含有氟原料及水且露點為16它以下之 氣化氯原料氣體電漿化,藉此生成上述氟化氫,並且 —以使上述蝕刻深度為40 A以下之方式進行上述速度設 定。 9·如請求項5之蝕刻方法,其中 於約大氣壓下使含有氟原料及水且露點為18它以下之 氟化氫原料氣體電漿化,藉此生成上述氟化氫,並且 定以使上述蝕刻深度為25 A以下之方式進行上述速度設 129080.doc 200901310 I 〇.如請求項5之蝕刻方法,其中 將上述相對移動之速度設定為3 m/min以上。 II · 一種蝕刻方法,其特徵在於·· .其係於約大氣壓下,將含有氟化氫及臭氧之處理氣體 噴至被處理物上,以將形成於上述被處理物表面上之矽 蚀刻者, 其係使噴出上述處理氣體之丨個或排列於一方向之複 數個喷出部相對於上述被處理物沿上述一方向相對往復 或早程移動,並且 將上述移動速度設定為3 m/min以上。 12 ’如明求項4、1 〇、丨i中任一項之飯刻方法,其中 使上述噴出部與上述被處理物對向時之噴出部與被處 理物間的間隔為1 mm以下,並且 將上述移動速度設定為3 m/min以上7〇 m/min以下之範 〇 13_如請求項4、1〇、n中任一項之敍刻方法,其中 使上述噴出部與上述被處理物對向時之嗔出部與被處 理物間的間隔為2 mm以下,並且 將上述移動速度設定為3 m/min以上15 m/min以下之範 ' 圍。 Kb % |項4 ' 1() ' u中任—項之餘刻方法,其中 理^述嘴出部與上述被處理物對向時之噴出部與被處 理物間的間隔為3 mm以下,並且 將上述移動速度設定為3 —以上8 —以下之範 129080.doc 200901310 圍。 15. 如請求項4、m中任-項之姓刻方法,其中 理物門2噴出部與上述被處理物對向時之噴出部與被處 理物間的間隔為4_以下,並且 圍將上述移動速度設定為3 m/min以上4 m/min以下之範 16. 如請求項卜5、u中任一項之蝕刻方法,其中 在上述移動方向比&quot;固喷出部更下游 理物強制乾_。 被處 17. —種蝕刻裝置,其特徵在於: 約大氣壓下’將含有氟化氫及臭氧之處理氣體 子处理物上,以將形成於上述被處理物上之矽蝕刻 者;包含: 0又置。P,用以配置上述被處理物; :個或排列於一方向之複數個喷出部,其喷出上述 處理氣體; …知描機構,其使上述】個或複數個喷出部相對於上 述設置部沿-方向相對往復或單程移動;以及 設定部,其將上述掃描機構所產生之移動速度設定 :特定值以上’以使形成於上述被處理物表面上之凝結 層的厚度為特定值以下。 18. —種蝕刻裝置,其特徵在於: 其係於約大氣壓下,將会右A &amp; 喷至被處理物上,W成=臭氧之處理氣體 以將形成於上述被處理物上之矽蝕刻 I29080.doc 200901310 者,且包含: 没置部’用以配置上述被處理物; 1個或排列於一方向之複數個噴出部,其噴出上述 處理氣體; 掃描機構 述設置部沿一 設定部, 為特定值以上 被處理物對向 下。 ,其使上述1個或複數個喷出部相對於上 方向相對往復或單程移動;以及200901310 X. Patent application scope: 1. An etching method, characterized in that: - spraying a treatment gas containing hydrogen fluoride and ozone onto a workpiece under a pressure of a scoop at atmospheric pressure to be formed on the surface of the object to be treated矽 • 刻 刻 刻 刻 刻 刻 刻 刻 刻 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括The moving speed is set to a specific value or more so that the thickness of the condensed layer formed on the surface of the object to be processed is a specific value or less. 2. The etching method according to claim 1, wherein the speed setting is performed such that the thickness of the condensation layer is 2 μηη or less. The etching method according to claim 1 or 2, wherein the speed setting is performed in such a manner that the thickness of the condensation layer is from 20 Α to 60. 4. The etching method according to claim 1, wherein the speed of the relative movement is set to be 3 m/min or more. </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> etching a process gas containing hydrogen fluoride and ozone onto the object to be treated at about atmospheric pressure to form a surname on the surface of the object to be treated And comprising the steps of: moving a plurality of ejection units that are ejected from the processing gas or arranged in one direction with respect to the object to be processed in a one-way relative reciprocation or 129080.doc 200901310, and setting the moving speed The specific depth is equal to or greater than a specific value when the ejecting portion passes through the position facing the object to be processed. 6. The etching method according to claim 5, wherein the hydrogen fluoride raw material gas containing fluorine raw material and water and having a dew point of 12 or less is electropolymerized at about atmospheric pressure, thereby generating the above hydrogenation, and the etching depth is The above speed setting is performed in a manner of 100 A or less. 7. The etching method according to claim 5, wherein the hydrogen fluoride raw material gas containing a fluorine raw material and water and having a dew point of 14t: or less is electrically electrified at about atmospheric pressure, thereby generating the hydrogen fluoride, and the etching depth is 6〇. The speed setting described above is performed in the following manner. 8. The etching method according to claim 5, wherein the vaporized chlorine raw material gas containing the fluorine raw material and water and having a dew point of 16 or less is plasma-formed at about atmospheric pressure, thereby generating the hydrogen fluoride, and - for etching The above speed setting is performed in such a manner that the depth is 40 A or less. 9. The etching method according to claim 5, wherein the hydrogen fluoride raw material gas containing the fluorine raw material and water and having a dew point of 18 or less is plasma-formed at about atmospheric pressure, thereby generating the hydrogen fluoride, and the etching depth is set to 25 The above-described speed setting is performed in the following manner: 129080.doc 200901310 I. The etching method of claim 5, wherein the speed of the relative movement is set to be 3 m/min or more. II. An etching method, characterized in that a treatment gas containing hydrogen fluoride and ozone is sprayed onto a workpiece at about atmospheric pressure to form an etcher formed on the surface of the object to be treated, The plurality of ejecting portions that eject the processing gas or arranged in one direction are relatively reciprocated or early moved in the one direction with respect to the object to be processed, and the moving speed is set to be 3 m/min or more. The method of the meal of any one of the above-mentioned discharge parts and the object to be processed, wherein the distance between the discharge part and the object to be processed is 1 mm or less, And the above-described moving speed is set to a range of 3 m/min or more and 7 〇m/min or less. The elaboration method of any one of the claims 4, 1 and n, wherein the above-described ejection unit is processed as described above The distance between the ejected portion and the object to be processed in the opposite direction is 2 mm or less, and the moving speed is set to be a range of 3 m/min or more and 15 m/min or less. Kb % | Item 4 ' 1 () 'The remainder of the term "u", wherein the interval between the ejection portion and the object to be processed when the nozzle portion is opposed to the object to be processed is 3 mm or less. And the above moving speed is set to 3 - 8 or more - 129080.doc 200901310. 15. The method of engraving the item of any one of the items 4 and m, wherein the interval between the ejecting portion and the object to be processed when the salient portion 2 is opposed to the object to be processed is 4_ or less, and the surrounding The moving speed is set to be 3 m/min or more and 4 m/min or less. 16. The etching method according to any one of the items 5, u, wherein the moving direction is more downstream than the solid-injecting portion Forced to dry _. The apparatus is characterized in that: an etching apparatus for containing a treatment gas of hydrogen fluoride and ozone at about atmospheric pressure to form a ruthenium etchant formed on the object to be processed; P, for arranging the object to be processed; or a plurality of ejection portions arranged in one direction, which eject the processing gas; and a scanning mechanism for causing the above-mentioned one or a plurality of ejection portions to be opposite to the above The setting portion moves relative to the reciprocating or one-way direction in the - direction; and the setting portion sets the moving speed generated by the scanning mechanism to a specific value or more 'so that the thickness of the coagulation layer formed on the surface of the object to be processed is a specific value or less . 18. An etching apparatus characterized in that: it is sprayed at about atmospheric pressure, and a right A &amp; is sprayed onto the object to be treated, and a treatment gas of ozone is formed to etch the tantalum formed on the object to be treated. I29080.doc 200901310, and comprising: a portion for disposing the object to be processed; one or a plurality of ejection portions arranged in one direction, wherein the processing gas is ejected; and the scanning portion is disposed along a setting portion For a specific value or more, the object to be processed is down. Equivalently reciprocating or one-way movement of the one or more ejection portions with respect to the upper direction; 19. 其將上述掃描機才冓所產移動速度設定 ,以使1個噴出部每一次相對通過與上述 之位置時的上述硬之㈣深度為特定值以 一種蝕刻裝置,其特徵在於: 其係於約大氣屢 噴至被處理物上, 者’且包含: 下,將含有氟化氫及臭氧之處理氣體 以將形成於上述被處理物上之矽蝕刻 1個或排列於-方向之複數個噴出部 處理氣體;以及 丹賀出上述 …掃描機構,其使上述】個或複數個喷出部相對於上 述叹置部沿-方向相對往復或單程移動;且 、 將上述移動速度設定為3m/min以上。 20.—種被處理物,A 任-項之❹ 在於:其係以請求項卜5、!】中 項之韻刻方法或者於請求項Η 钱刻裝置中所蝕刻。 19尹任一項之 129080.doc19. The etching speed of the scanner is set such that each of the ejection portions relatively passes through the hard (four) depth at the position and the position is an etching device, and is characterized by: When the atmosphere is repeatedly sprayed onto the object to be treated, the process includes: a process gas containing hydrogen fluoride and ozone to etch one of the ruthenium formed on the object to be processed or a plurality of vents arranged in the - direction a processing gas; and a scanning mechanism for causing the above-mentioned one or a plurality of ejection portions to relatively reciprocate or one-way in the − direction with respect to the slanting portion; and setting the moving speed to 3 m/min or more . 20. - The object to be treated, A is the term of the item: it is the request item 5,! The rhyme method of the middle item is etched in the request item. 19 Yin any one of the 129080.doc
TW97106278A 2007-02-23 2008-02-22 Etching method and device TWI409876B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043574 2007-02-23

Publications (2)

Publication Number Publication Date
TW200901310A true TW200901310A (en) 2009-01-01
TWI409876B TWI409876B (en) 2013-09-21

Family

ID=39710081

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97106278A TWI409876B (en) 2007-02-23 2008-02-22 Etching method and device

Country Status (5)

Country Link
JP (1) JP4180109B2 (en)
KR (1) KR100944340B1 (en)
CN (1) CN101617393B (en)
TW (1) TWI409876B (en)
WO (1) WO2008102807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396484B (en) * 2010-11-05 2013-05-11 Zhen Ding Technology Co Ltd Etching apparatus and method for etching substrate using same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT2569802T (en) * 2010-05-11 2017-12-27 Ultra High Vacuum Solutions Ltd. T/A Nines Engineering Method to control surface texture modification of silicon wafers for photovoltaic cell devices
JP2013251289A (en) * 2010-09-28 2013-12-12 Sekisui Chem Co Ltd Conveying device for surface treatment
KR101362632B1 (en) * 2010-09-28 2014-02-12 세키스이가가쿠 고교가부시키가이샤 Etching method, and device
JP5735393B2 (en) * 2011-09-30 2015-06-17 積水化学工業株式会社 Surface roughening method and surface roughening apparatus
JP6073172B2 (en) * 2013-03-29 2017-02-01 岩谷産業株式会社 Etching method
JP2019071407A (en) * 2017-10-10 2019-05-09 積水化学工業株式会社 Surface treatment method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06168922A (en) * 1992-06-25 1994-06-14 Texas Instr Inc <Ti> Vapor etching method of silicon
JP4377090B2 (en) 2001-07-16 2009-12-02 株式会社アライドマテリアル Titanium carbide powder and manufacturing method thereof
JP2003264160A (en) * 2002-03-11 2003-09-19 Dainippon Screen Mfg Co Ltd Method and apparatus for silicon etching
JP2004055753A (en) * 2002-07-18 2004-02-19 Dainippon Screen Mfg Co Ltd Residue-removing method and residue-removing device
TW200707511A (en) * 2005-06-23 2007-02-16 Tokyo Electron Ltd Substrate Processing method and substrate processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396484B (en) * 2010-11-05 2013-05-11 Zhen Ding Technology Co Ltd Etching apparatus and method for etching substrate using same

Also Published As

Publication number Publication date
CN101617393A (en) 2009-12-30
KR20090094404A (en) 2009-09-04
JP4180109B2 (en) 2008-11-12
KR100944340B1 (en) 2010-03-02
TWI409876B (en) 2013-09-21
CN101617393B (en) 2011-05-18
JPWO2008102807A1 (en) 2010-05-27
WO2008102807A1 (en) 2008-08-28

Similar Documents

Publication Publication Date Title
KR101200139B1 (en) Method for etching silicon-containing film
TW200901310A (en) Etching method and apparatus, and subject to be processed
JP5476152B2 (en) Silicon nitride etching method and apparatus
US8322045B2 (en) Single wafer apparatus for drying semiconductor substrates using an inert gas air-knife
JP2002237480A (en) Method of treating base material with discharge plasma
JP4924038B2 (en) Method for producing fluorocarbon film
TW200924052A (en) Method for ethcing silicon
TW201142937A (en) Etching method and device
TW201227816A (en) System and method for cleaning substrate
JP4180706B2 (en) Substance / Material Processing Method
KR20110050530A (en) Method and apparatus for etching silicon-containing film
JPWO2014181855A1 (en) GLASS FILM MANUFACTURING METHOD AND ELECTRONIC DEVICE MANUFACTURING METHOD
JP2009224366A (en) Etching apparatus
JP7032095B2 (en) Surface treatment method and equipment
JP2002176050A (en) Method of forming silicon oxide film and system thereof
KR101362632B1 (en) Etching method, and device
JP2010062433A (en) Method and apparatus for etching silicon-containing film
JP5576779B2 (en) Glass plate edge processing method and apparatus
JP2009200112A (en) Method of producing group iii element added zinc oxide, and substrate
WO2014170972A1 (en) Film forming method
JP2010245405A (en) Method for roughening silicon surface
TWI477644B (en) Film forming method
KR101591863B1 (en) Method For Surface Planarizing Low Temperature Poly-Silicon Substrate using Atmospheric Pressure Plasma Treatment
JP2006339520A (en) Device and method for forming oxide film
JP2010245404A (en) Surface treatment apparatus