JP4377090B2 - Titanium carbide powder and manufacturing method thereof - Google Patents
Titanium carbide powder and manufacturing method thereof Download PDFInfo
- Publication number
- JP4377090B2 JP4377090B2 JP2001215170A JP2001215170A JP4377090B2 JP 4377090 B2 JP4377090 B2 JP 4377090B2 JP 2001215170 A JP2001215170 A JP 2001215170A JP 2001215170 A JP2001215170 A JP 2001215170A JP 4377090 B2 JP4377090 B2 JP 4377090B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium carbide
- particle size
- powder
- uniform
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、切削工具等として製造されるサーメットや超硬合金の他、セラミックス等の原料である炭化チタン粉末とその製造方法に関し、詳しくは、高強度の切削用途等の耐磨耗特性を要求される硬質材料のチタン系サーメットの原料となる炭化チタン粉末とその製造方法に関する。
【0002】
また、本発明は、導電性ポリマーなどの高分子樹脂との均一混合性を要求される炭化チタン粉末とその製造方法に関する。
【0003】
【従来の技術】
主に切削用チップとして供せられる、従来のチタンをベースとした4a,5aおよび6a族元素からなるチタン系サーメット焼結体は、チタンおよび4a、5aおよび6a族元素の炭化物粉末、窒化物粉末又は複合炭化物、窒化物をFe、Co,Niなどの結合金属粉末と共に目的の組成に混合した後、高温で焼結することにより製造される。
【0004】
また、炭化チタンは、導電性ポリマーである過電流保護素子などの電子材料として用いられ、ポリエステル等の高分子と混合し製造されている。
【0005】
一般に、炭化チタン粉末の従来の製造方法は、大きく次の3種類が挙げられる。
【0006】
第一の方法は、酸化チタンを原料として用い、炭素粉末を所定量混合し、水素雰囲気中にて1450〜2000℃にて還元・炭化処理後粉砕する方法である。
【0007】
第二の方法は、チタンおよび水素化チタンのいずれかを原料として用い、炭素粉末を所定量混合し、水素雰囲気において1450〜2000℃にて還元・炭化処理後粉砕する方法である。
【0008】
第三の方法は、特公昭54−13440号公報に記載されているように、粗チタン炭化物をアルミニウムおよび鉄族元素の共存下且つ酸化、窒化反応を起こさない雰囲気下にて加熱処理を行い、次いで酸による溶解処理することにより得る方法である。
【0009】
ここで、従来のこの3つの方法で得られた炭化チタンの粒度を比較すると、第一の方法による場合、酸化チタンは1次粒子径は殆どの場合1μm以下の微粒且つ均粒である為、得られた炭化チタンもまたFsss(Fisher社 Sub Sieve Sizer)粒度1μm以下で均粒である特徴がある。
【0010】
一方、第二の方法にて得られる炭化チタンの場合、原料がチタン、水素化チタンであり、原料段階にて微粒とした場合、着火の可能性があり危険である他、加熱処理により数十μm以上の粗大粒子が生成される。粉砕方法としては、超硬ボール等の硬質材料にてボールミル粉砕する方法やジェットミルによる方法があるが、その粉末は微粒・粗粒が混在するばかりか、破砕により角ばった粒子となる。
【0011】
また、Fsss粒度0.8μm以下の微粒粉となった場合、粉砕にて生じる破砕面が酸化し、その酸化熱から着火する怖れがある。また、粒度を揃える為サイクロンによる方法もあるがバグフィルターに微粒子が集まり歩留りが悪くなる等の問題点があった。第三の方法においても同様に微粒・粗粒混在となる特徴がある。
【0012】
以上より酸化チタンを原料とした場合、Fsss粒度1μm以下の微粒・均粒且つ粒子表面が角ばらない粉末は得られ、他方チタンまたは水素化チタンを原料とした場合、微粒・粗粒が混在し且つ粒子形状が角ばった粉末が得られ、Fsss粒度1μm上の粗粒・均粒且つ粒子表面が角ばらない粉末は得られていない。
【0013】
【発明が解決しようとする課題】
炭化チタン粉末を他粉末と混合し硬質な焼結体を得る場合、基本的に粒子は均一な粒径、均一な形状であることが望まく、これにより均一な分散が混合時に得られ緻密な焼結体が製造できる。また、過電流保護素子として用いられる導電性ポリマーにおいても、微粒粉である場合、凝集が起こり易く均一な分散が困難で、均粒・粗粒であることは導電性ポリマーの均一分散性において有用と考えられる。
【0014】
そこで、本発明の技術的課題は、炭化チタンからなるサーメットや超硬合金、セラミックス等の硬質材料に供せられる炭化チタン粉末において、均一な焼結体をもたらす均粒・粗粒の炭化チタン粉末、また導電性ポリマーに供せられる炭化チタン等の分野において均粒・粗粒の炭化チタン粉末とその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、炭化チタン粉末の製造工程において、原料の酸化チタン粉末と炭素粉の他、CoおよびNiの金属粉末の内1種又は2種を炭化チタンのベースで0.1〜0.3重量%添加し、これらの混合粉末を1500〜1750℃にて熱処理することより、均粒・粗粒の炭化チタン粉末を得ることができたものである。
【0016】
本発明によれば、炭化チタン粉末において、CoおよびNiの内1種または2種が炭化チタン粉末の0.1〜0.3重量%含有し、その粒度の範囲は、Fsss値が1.0μm以上であり、且つ1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値))が2.5以下であることを特徴とする炭化チタン粉末が得られる。
【0017】
また、本発明によれば、前記炭化チタン粉末を製造する方法であって、原料として1次粒子が1μm以下でBET値が2m 2 /g以上である酸化チタンおよび炭素として1次粒子が0.5μm以下で連続的に結合していないカーボンブラックを用い、原料の混合工程においてCoおよびNiの内1種又は2種を,炭化チタン粉末のベースで0.1〜0.3重量%となるように添加し、水素雰囲気中で、1500〜1750℃の温度において、回転炉にて還元、炭化することを特徴とする炭化チタン粉末の製造方法が得られる。
【0018】
【0019】
【0020】
【0021】
即ち、本発明では、炭化チタン粉末において、CoまたはNiの金属粉末の内1種又は2種を原料である均粒の酸化チタンおよび炭素粉に添加し、熱処理することにより、これらCo、Niを微粒の炭化チタン中に固溶させ粗粒化且つ均粒化を図ったものであり、得られた粒度の範囲は、1次粒子に対する2次粒子の大きさを表す指標Fsss値/(6/(密度×BET値))が2.5以下である。
【0022】
ここで、Fsss値は2次粒子径、(6/(密度×BET値))は粒子が球形であることを仮定して、BET値より算出された1次粒子径である。Fsss値/(6/(密度×BET))は無次元となる指標であり、この数値が1.0に近い程均粒であることを示すこととなる。本発明者らは、従来酸化チタンを原料として得られたFsss粒度1μm以下の微粒・均粒炭化チタン粉末の場合の均粒度合Fsss値/(6/(密度×BET直))=2.38に相当する均粒の粉末をFsss粒度1μm以上の粗粒粉末にても得ることを目指した。
【0023】
従来のFsss粒度1μm以下の粉末の場合、Fsss値/(6/(密度×BET値))が2.5以下であっても微粒であるが為凝集が起こり易く、また2.5以上の場合、微粒・粗粒が混在する為、微粒粉部が凝集することとなる。
【0024】
よって、本発明はFsss値/(6/(密度×BET値)が2.5以下であり且つFsss粒度が1μm以上の粉末を目指したものである。
【0025】
【発明の実施の形態】
まず、本発明の実施の形態を述べる前に、本発明を更に,具体的に説明する。
【0026】
本発明者は、均粒・粗粒粉を作製する為には、基本的に酸化チタンを原料とすべきと考えた。特に、本発明の狙いのひとつである粒子形状が丸みを帯びた粉末を作製する場合、チタン系原料の形状に角がある場合は困難である。この理由からチタンまたは水素化チタンを原料とした場合Fsss粒度1μm以上の均粒且つ粒子表面が丸みを帯びた炭化チタン粉末を得ることは困難である。
【0027】
例外としてアトマイズ法により得られるチタンまたはこれを利用して得られる水素化チタンは球状粒子ではあるが、本発明で目指したFsss粒度数μmサイズの均粒のもののみを得ることは、現在の篩分技術では困難である。
【0028】
よって、本発明にて目指すFsss粒度は1μm以上であり且つ粉末表面に角がない炭化チタンを得るにはチタン系原料粉末として、粒度が均粒・微粒であり且つ粉末表面が滑らかな酸化チタンが有効と考えた。
【0029】
微粒・均粒の酸化チタンから得られる炭化チタンは、基本的に均粒・微粒である。酸化チタン各メーカーから入手される走査電子顕微鏡写真での1次粒子径1μm以下の各酸化チタンを観察すると全て均粒であり、粒子形状が丸みを帯びていた。これらを原料として炭化チタンを作製する場合、必要とするカーボン組成に合わせて混合し熱処理するが、本発明者らの試験によれば、最高温度1800℃にて熱処理した場合でも、炭化チタンの粒径はFsss粒度にて約1μmの粒径となるに留まった。
【0030】
また、粒度に幅のある0.2〜7μmの1次粒子径である酸化チタンを用い、同様に熱処理した場合、Fsss粒度1.51μmに達することができたが走査電子顕微鏡にて観察される粒子は0.5μm以上の粒子が強固に凝集したものであった。
【0031】
本発明者らは、酸化チタンを原料とし得られる炭化チタンの粒子を粗大化させる方法として金属Co,Niの内1種又は2種微量添加し、熱処理にてこれらを固溶させることが有効であることを見出した。
【0032】
また、本発明者らは、基本として均粒の炭化チタンを得るために、前述の1μm以下の粒度の揃った酸化チタンを用い、炭化チタンに対し、CoまたはNiを0.1〜0.3重量%となるように金属CoまたはNiの内1種又は2種を原料中に添加、また熱処理温度を1500〜1750℃にて制御することにより、Fsss値/(6/(密度×BET値))が2.5以下である炭化チタン粉末を得た。ここで密度は4.94g/cm3とした。
【0033】
次に原料となるカーボンについて記述する。1μm以下の粒度の揃った酸化チタンを炭化する為には、炭素源が必要であり、その為にはカーボンブラックを用いる。このカーボンブラックの選定は、均粒粉末を作製するために重要である。走査電子顕微鏡により観察されるカーボン粒子がフレーク状である場合、混合により酸化チタンの微粒子がこのフレークに食い込む状態となり、熱処理後の粉末は強固に連続的に結合した状態となる。
【0034】
これはCo、Niの添加の有無に拘らず発生し、Co,Ni無添加にてFsss粒度は1.2μm以上に粗大化しひとつひとつの粒子が強固に連続的に結合した形状の全く揃わない粉末が得られることとなる。
【0035】
次に、アセチレンブラックの場合、0.1μm以下の微小カーボン粒子が、連鎖した状態であるためこの連鎖を粉砕工程または混合工程にて切断できれば使用に値するが、この連鎖を切断することは、現在のところ困難である。
【0036】
本発明者らの調査によれば、カーボンブラックは0.5μm以下の各々が独立した粒子である必要がある。このようなカーボンと前述の酸化チタンを用い、均粒な炭化チタンとする為には充分な混合が必要なことは言うまでもない。
【0037】
また、熱処理方法としてはプッシャー炉または回転炉双方にて可能であるが、より均一な特性とする為には、回転炉がより望ましい。プッシャー炉に比較し、熱処理物への熱の加わり方、雰囲気との接し具合共により均一となる。熱処理雰囲気は窒素を含まない雰囲気が必要である。そして、炭化チタンは窒素と結びつき易い為、水素雰囲気にて熱処理後、水素雰囲気または不活性雰囲気中で充分な冷却をした後、空気と接するように留意する必要がある。
【0038】
熱処理温度は1750℃で約30分以下にて充分に炭化できる結果が得られており、1500℃以下では充分な炭化されにくく長時間の熱処理が必要である。1500〜1750℃で熱処理を行う方が経済的にも好ましい。
【0039】
次に、熱処理炉としてプッシャー炉を使用する場合は、酸化チタンおよびカーボン粉末を混合後熱処理ケースに入れ熱処理するが、回転炉を使用する場合は炉内にて流動性が良くなるように造粒する必要がある。造粒体のサイズは雰囲気ガスの流れに影響を受けないサイズが必要であり、押し出し造粒による径1〜5mmのものが好ましい。
【0040】
ここで、本発明のポイントである均粒・粗粒化のためのCo,Niの添加について述べる。添加する状態については、金属CoまたはNiのいずれでも同様の効果が得られる。Co,Niの融点は各々1492℃、1455℃であり熱処理する温度1500〜1750℃は溶融する温度である。添加するCoまたはNiは溶融するが、原料段階で均−に混合した方が均粒化の点においてより良い影響を与える。凝集が起こりにくく且つ全体的に原料と接することができるようにFsss粒度1.5μm以下である方が望ましい。
【0041】
Co又はNiの添加量は炭化チタンに対し0.1〜0.3重量%と微量であり、熱処理した粉末についてX線回折しても検出されないが、Co、Ni共に金属Tiと固溶することは知られている。熱処理された粉末の表面性状から各々の粒子が溶融したCo,Niにより強固に付着しているのでなく、Co,Ni未添加の場合の粒子がそのままの形状にて成長した模様である。これより微粒の炭化チタンにCo、Niが固溶したことが、Co、Niが未添加の場合に比較し粒成長を促進したものと考える。
【0042】
なお、当然のことながら熱処理温度が高い程粒度は粗くなる為、Co,Niの添加量および熱処理温度にて粒度制御が可能となる。加熱のみの場合、炉の構造等により均一な温度が加わり難い為、回転炉等により均一な加熱を図るとともに、均一にCo、Niを添加することにより炭化チタン粒子の成長がより均一に起こり易くなると考える。
【0043】
次にCo、Ni添加量は0.1〜0.3重量%とすることが好ましく、その結果得られる粉末の粒度の範囲は、Fsss粒度1μm以上且つFsss値/(6/(密度×BET値))が2.5以下であった。Fsss粒度が1.0μm以上の均一な平均粒径を有するためにはCo,Ni添加量は0.1重量%以上が必要であり、0.3重量%以上である場合、Co,Niの溶融量の増大に起因すると考えられる凝集が逆に発生する。
【0044】
それでは、本発明の実施の形態について、表を参照しながら説明する。
【0045】
本発明の例、比較例および市販粉末の比較表を下記表1に示した。
【0046】
(例1)
走査電子顕微鏡観察による1次粒子径0.18μm,BET10.2m2/gの均粒の酸化チタンと1次粒子径0.5μm以下のカーボンブラックに炭化チタンベースで0.12重量%となるようにFsss粒度1.4μmの金属Coを添加し、混合、造粒した。得られた直径5mmの造粒体を窒素雰囲気にて回転炉で1500℃で熱処理した。得られた熱処理物を超硬ボールを粉砕媒体とし、ボールミルにて粉砕し、150メッシュにて篩分した。得られた粉末のFsss粒度は1.02μm、BET2.76m2/gであり粒子表面が角張っていない均粒の炭化チタンであった。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値))は2.32であった。
【0047】
(例2)
走査電子顕微鏡観察による1次粒子径0.18μm,BET10.2m2/gの均粒の酸化チタンと1次粒子径0.5μm以下のカーボンブラックに炭化チタンベースで0.15重量%となるようにFsss粒度1.4μmの金属Coを添加し、混合、造粒した。得られた直径4mmの造粒体を水素雰囲気にて回転炉で1700℃で熱処理した。得られた熱処理物を超硬ボールを粉砕媒体としたボールミルにて粉砕し、150メッシュにて篩分した。得られた粉末のFsss粒度は1.16μm,BET2.23m2/gであり、走査電子顕微鏡による粒子観察の結果、凝集粒子最大径(長径)3.6μmの粒子表面が角張っていない均粒の炭化チタンであった。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値)は2.15であった。
【0048】
(例3)
走査電子顕微鏡観察による1次粒子径0.18μm,BET10.2m2/gの均粒の酸化チタンと1次粒子径0.5μm以下のカーボンブラックに炭化チタンベースで0.16重量%となるようにFsss粒度1.3μmの金属Niを添加し、混合、造粒した。得られた直径4mmの造粒体を水素雰囲気にて回転炉で1730℃で熱処理した。得られた熱処理造粒体を超硬ボールを粉砕媒体としたボールミルにて粉砕し、150メッシュにて篩分した。得られた粉末のFsss粒度は2.25μm,BET1.28m2/gであり、粒子表面の角張っていない均粒の炭化チタンであった。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/密度×BET値))は2.37であった。
【0049】
(比較例1)
走査電子顕微鏡観察による1次粒子径0.18μm、BET10.2m2/gの均粒の酸化チタンと1次粒子径0.5μm以下のカーボンブラックを、混合、造粒した。得られた直径5mmの造粒体を水素雰囲気にて回転炉で1500℃で熱処理した。得られた熱処理造粒体を超硬ボールを粉砕媒体としたボールミルにて粉砕し、150メッシュにて篩分した。得られた粉末のFsss粒度0.69μm、BET4.23m2/gであり、粒子表面が角張っていない均粒の炭化チタンであった。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値))は2.38であった。
【0050】
(比較例2)
BET0.25m2/gの水素化スポンジチタンおよび1次粒子径0.5μm以下のカーボンブラックを混合、造粒した。水素雰囲気にて回転炉で1600℃で熱処理した。得られた熱処理造粒体を超硬ボールを粉砕媒体としたボールミルにて粉砕し、150メッシュにて篩分した。得られた粉末のFsss粒度は1.1μm、BET4.23m2/gであり、走査電子顕微鏡による粒子観察の結果凝集粒子最大径(長径)4μmの微粒、粗粒の混在する炭化チタンであった。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値))は3.79であった。
【0051】
(比較例3〜4)
下記表1に市販の炭化チタン粉末の特性値を示した。1次粒子に対する2次粒子の大きさを表わす指標Fsss値/(6/(密度×BET値))は3.0を超える粉末であることが分かった。
【0052】
【表1】
【0053】
【発明の効果】
以上説明したように、本発明によって得られる炭化チタンは、粗粒且つ均粒である為、微粒のみまたは微粒、粗粒の混在した粉末に比較し凝集しにくい粉末であり、特に他材質との均一混合において貢献するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to titanium carbide powder, which is a raw material for ceramics, in addition to cermet and cemented carbide manufactured as a cutting tool, and a method for producing the same, and more specifically, wear resistance characteristics such as high-strength cutting applications are required. The present invention relates to a titanium carbide powder that is used as a raw material for a hard titanium cermet and a method for producing the same.
[0002]
The present invention also relates to a titanium carbide powder that is required to be uniformly mixed with a polymer resin such as a conductive polymer and a method for producing the same.
[0003]
[Prior art]
Conventional titanium-based cermet sintered bodies composed of 4a, 5a and 6a elements based on titanium, which are mainly used as cutting tips, are titanium, carbide powders and nitride powders of 4a, 5a and 6a elements. Alternatively, the composite carbide or nitride is mixed with a binding metal powder such as Fe, Co, or Ni into a target composition and then sintered at a high temperature.
[0004]
Titanium carbide is used as an electronic material such as an overcurrent protection element, which is a conductive polymer, and is manufactured by mixing with a polymer such as polyester.
[0005]
In general, the following conventional methods for producing titanium carbide powder include the following three types.
[0006]
The first method is a method in which titanium oxide is used as a raw material, a predetermined amount of carbon powder is mixed, and reduced and carbonized in a hydrogen atmosphere at 1450 to 2000 ° C. and then pulverized.
[0007]
The second method is a method in which either titanium or titanium hydride is used as a raw material, a predetermined amount of carbon powder is mixed, and pulverized after reduction and carbonization at 1450 to 2000 ° C. in a hydrogen atmosphere.
[0008]
In the third method, as described in Japanese Patent Publication No. 54-1440, crude titanium carbide is subjected to heat treatment in the presence of aluminum and an iron group element and in an atmosphere in which oxidation and nitridation reactions do not occur. Next, it is a method obtained by dissolving with an acid.
[0009]
Here, comparing the particle sizes of titanium carbide obtained by these three conventional methods, in the case of the first method, titanium oxide is mostly fine and uniform in size with a primary particle size of 1 μm or less in most cases. The obtained titanium carbide is also characterized by uniform grain size with a Fsss (Fisher Sub Sieve Sizer) particle size of 1 μm or less.
[0010]
On the other hand, in the case of titanium carbide obtained by the second method, the raw material is titanium or titanium hydride, and if it is made fine particles at the raw material stage, there is a possibility of ignition and it is dangerous. Coarse particles of μm or more are generated. As a pulverization method, there are a ball mill pulverization method using a hard material such as a cemented carbide ball and a jet mill method, but the powder contains not only fine particles and coarse particles, but also pulverized particles by crushing.
[0011]
Moreover, when it becomes a fine powder with an Fsss particle size of 0.8 μm or less, the crushed surface generated by pulverization is oxidized, and there is a fear of ignition from the oxidation heat. In addition, there is a cyclone method in order to make the particle size uniform, but there are problems such as fine particles gathering on the bag filter and the yield is lowered. The third method is also characterized by a mixture of fine particles and coarse particles.
[0012]
From the above, when titanium oxide is used as a raw material, fine and uniform particles with an Fsss particle size of 1 μm or less and a powder having a uniform particle surface are obtained. On the other hand, when titanium or titanium hydride is used as a raw material, fine particles and coarse particles are mixed. In addition, a powder having an angular particle shape is obtained, and a powder having coarse and uniform particles with an Fsss particle size of 1 μm and a particle surface that is not angular is not obtained.
[0013]
[Problems to be solved by the invention]
When titanium carbide powder is mixed with other powders to obtain a hard sintered body, it is basically desirable that the particles have a uniform particle size and a uniform shape. A sintered body can be manufactured. Also, in the case of conductive polymers used as overcurrent protection elements, when they are fine particles, aggregation is likely to occur and uniform dispersion is difficult. Uniform and coarse particles are useful for the uniform dispersibility of conductive polymers. it is conceivable that.
[0014]
Therefore, the technical problem of the present invention is that the titanium carbide powder used in hard materials such as cermet, cemented carbide, and ceramics made of titanium carbide has uniform and coarse-grained titanium carbide powder that provides a uniform sintered body. Another object of the present invention is to provide a uniform and coarse-grained titanium carbide powder and a method for producing the same in the field of titanium carbide used for conductive polymers.
[0015]
[Means for Solving the Problems]
In the production process of titanium carbide powder, the present inventors made 0.1 to 0.00 of one or two of Co and Ni metal powders on the basis of titanium carbide in addition to raw material titanium oxide powder and carbon powder. By adding 3% by weight and heat-treating these mixed powders at 1500 to 1750 ° C., uniform and coarse titanium carbide powder can be obtained.
[0016]
According to the present invention, in the titanium carbide powder, one or two of Co and Ni are contained in an amount of 0.1 to 0.3% by weight of the titanium carbide powder, and the particle size range is 1.0 μm in Fsss value. or more, titanium carbide powder is obtained, characterized in that and index Fsss value / (6 / (density × BET value)) representing the magnitude of the secondary particles to the primary particles is 2.5 or less.
[0017]
In addition, according to the present invention, there is provided a method for producing the titanium carbide powder, wherein the primary particles as a raw material are 1 μm or less and the BET value is 2 m 2 / g or more. Use carbon black of 5 μm or less, which is not continuously bonded, and use one or two of Co and Ni in the raw material mixing step to be 0.1 to 0.3% by weight based on the titanium carbide powder. And a method for producing a titanium carbide powder characterized by reduction and carbonization in a rotary furnace at a temperature of 1500 to 1750 ° C. in a hydrogen atmosphere.
[0018]
[0019]
[0020]
[0021]
That is, in the present invention, in the titanium carbide powder, one or two of Co or Ni metal powders are added to the uniform-sized titanium oxide and carbon powder as raw materials and heat-treated to thereby add these Co and Ni. The particle size range obtained by solid solution in fine titanium carbide was coarse and uniform, and an index Fsss value representing the size of secondary particles relative to primary particles / (6 / ( Density × BET value) is 2.5 or less.
[0022]
Here, the Fss value is the secondary particle diameter, and (6 / ( density × BET value)) is the primary particle diameter calculated from the BET value on the assumption that the particles are spherical. The Fss value / (6 / ( density × BET)) is a dimensionless index, and the closer this value is to 1.0, the more uniform the particle size. The inventors of the present invention have found that the average particle size Fsss value / (6 / ( density × BET straight)) = 2.38 in the case of a fine particle / average particle size titanium carbide powder having a Fss particle size of 1 μm or less obtained from titanium oxide as a raw material. The aim was to obtain a uniform-sized powder corresponding to a coarse powder having an Fsss particle size of 1 μm or more.
[0023]
In the case of a conventional powder with an Fsss particle size of 1 μm or less, although it is fine even if the Fsss value / (6 / ( density × BET value)) is 2.5 or less, aggregation is likely to occur. Since fine particles and coarse particles are mixed, the fine particle portion is aggregated.
[0024]
Therefore, the present invention aims at a powder having an Fsss value / (6 / ( density × BET value) of 2.5 or less and an Fsss particle size of 1 μm or more.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
First, before describing embodiments of the present invention, the present invention will be described more specifically.
[0026]
The present inventor thought that titanium oxide should be basically used as a raw material in order to produce uniform and coarse powder. In particular, when producing a powder having a rounded particle shape, which is one of the aims of the present invention, it is difficult if the shape of the titanium-based raw material has corners. For this reason, when titanium or titanium hydride is used as a raw material, it is difficult to obtain a titanium carbide powder having an Fss particle size of 1 μm or more and a rounded particle surface.
[0027]
As an exception, titanium obtained by the atomization method or titanium hydride obtained by using this is a spherical particle, but it is only possible to obtain a uniform particle having an Fsss particle size of several μm aimed at in the present invention. It is difficult with minute technology.
[0028]
Therefore, in order to obtain titanium carbide having an Fsss particle size of 1 μm or more and having no corners on the powder surface, titanium oxide having a uniform particle size / fine particle size and a smooth powder surface is used as a titanium-based raw material powder. I thought it was effective.
[0029]
Titanium carbide obtained from fine and uniform titanium oxide is basically uniform and fine particles. When each titanium oxide having a primary particle diameter of 1 μm or less in a scanning electron micrograph obtained from each manufacturer of titanium oxide was observed, it was all uniform and the particle shape was rounded. When titanium carbide is produced using these as raw materials, it is mixed and heat-treated in accordance with the required carbon composition, but according to the tests of the present inventors, even when heat-treated at the maximum temperature of 1800 ° C., the titanium carbide grains The diameter remained at a particle size of about 1 μm at the Fsss particle size.
[0030]
Further, when titanium oxide having a primary particle diameter of 0.2 to 7 μm having a wide particle size was used and similarly heat-treated, the Fsss particle size of 1.51 μm could be reached, but observed with a scanning electron microscope. The particles were those in which particles of 0.5 μm or more were strongly aggregated.
[0031]
As a method of coarsening titanium carbide particles obtained using titanium oxide as a raw material, the present inventors can add a trace amount of one or two of metal Co and Ni, and dissolve them by heat treatment. I found out.
[0032]
Further, the present inventors basically use the above-mentioned titanium oxide having a uniform particle size of 1 μm or less in order to obtain uniform-sized titanium carbide, and Co or Ni is 0.1 to 0.3 relative to titanium carbide. By adding one or two of metal Co or Ni to the raw material so as to be in weight%, and controlling the heat treatment temperature at 1500 to 1750 ° C., Fsss value / (6 / ( density × BET value) ) Was 2.5 or less. Here, the density was 4.94 g / cm 3 .
[0033]
Next, carbon as a raw material will be described. In order to carbonize titanium oxide having a uniform particle size of 1 μm or less, a carbon source is required, and carbon black is used for this purpose. The selection of this carbon black is important for producing a uniform particle powder. When the carbon particles observed with a scanning electron microscope are in the form of flakes, the fine particles of titanium oxide bite into the flakes by mixing, and the powder after the heat treatment is firmly and continuously bonded.
[0034]
This occurs regardless of whether Co or Ni is added, and with no Co or Ni added, the Fsss particle size is coarsened to 1.2 μm or more, and each powder is not evenly aligned in a solid and continuous form. Will be obtained.
[0035]
Next, in the case of acetylene black, since fine carbon particles of 0.1 μm or less are in a chained state, it is worth using if this chain can be cut in the pulverization step or the mixing step. It is difficult.
[0036]
According to the investigation by the present inventors, carbon black needs to be independent particles of 0.5 μm or less. Needless to say, sufficient mixing is necessary to obtain uniform titanium carbide using such carbon and the above-described titanium oxide.
[0037]
The heat treatment method can be performed in either a pusher furnace or a rotary furnace, but a rotary furnace is more desirable in order to obtain more uniform characteristics. Compared to the pusher furnace, the heat treatment is more uniform due to the way heat is applied and the contact with the atmosphere. The heat treatment atmosphere must be an atmosphere that does not contain nitrogen. Since titanium carbide is easily combined with nitrogen, it is necessary to pay attention to contact with air after heat treatment in a hydrogen atmosphere and after sufficient cooling in a hydrogen atmosphere or an inert atmosphere.
[0038]
The heat treatment temperature is 1750 ° C., and the result of sufficient carbonization is obtained at about 30 minutes or less. When the heat treatment temperature is 1500 ° C. or less, sufficient carbonization is difficult and a long heat treatment is required. It is economically preferable to perform the heat treatment at 1500 to 1750 ° C.
[0039]
Next, when a pusher furnace is used as a heat treatment furnace, titanium oxide and carbon powder are mixed and then heat-treated in a heat treatment case. When a rotary furnace is used, granulation is performed so that fluidity is improved in the furnace. There is a need to. The size of the granulated body needs to be a size that is not affected by the flow of the atmospheric gas, and preferably has a diameter of 1 to 5 mm by extrusion granulation.
[0040]
Here, the addition of Co and Ni for equalizing and coarsening, which is the point of the present invention, will be described. As for the state of addition, the same effect can be obtained with either metal Co or Ni. The melting points of Co and Ni are 1492 ° C. and 1455 ° C., respectively, and the heat treatment temperature 1500 to 1750 ° C. is the melting temperature. Co or Ni to be added melts, but if it is uniformly mixed in the raw material stage, it has a better influence on the leveling. It is desirable that the Fsss particle size is 1.5 μm or less so that aggregation is unlikely to occur and the entire material can be contacted.
[0041]
The amount of Co or Ni added is as small as 0.1 to 0.3% by weight with respect to titanium carbide, and it cannot be detected by X-ray diffraction of the heat-treated powder, but both Co and Ni are dissolved in metal Ti. Is known. From the surface properties of the heat-treated powder, each particle is not firmly attached by molten Co and Ni, but the particles in the case where Co and Ni are not added appear to have grown as they are. From this, it is considered that the solid growth of Co and Ni in the fine titanium carbide promoted the grain growth as compared with the case where Co and Ni were not added.
[0042]
As a matter of course, the particle size becomes coarser as the heat treatment temperature is higher, so that the particle size can be controlled by the addition amount of Co and Ni and the heat treatment temperature. In the case of heating only, it is difficult to apply a uniform temperature due to the structure of the furnace, etc., so that uniform heating is attempted with a rotary furnace, etc., and uniform addition of Co and Ni facilitates uniform growth of titanium carbide particles. I think.
[0043]
Next, the addition amount of Co and Ni is preferably 0.1 to 0.3% by weight, and the particle size range of the resulting powder is Fsss particle size of 1 μm or more and Fsss value / (6 / ( density × BET value). )) Was 2.5 or less. In order to have a uniform average particle size of Fsss particle size of 1.0 μm or more, the addition amount of Co and Ni needs to be 0.1 wt% or more, and when it is 0.3 wt% or more, the melting of Co and Ni Aggregation, which can be attributed to the increased amount, occurs in reverse.
[0044]
Now, embodiments of the present invention will be described with reference to a table.
[0045]
A comparative table of the examples of the present invention, comparative examples and commercially available powders is shown in Table 1 below.
[0046]
(Example 1)
It is 0.12% by weight based on titanium carbide in a uniform particle size titanium oxide having a primary particle size of 0.18 μm and BET of 10.2 m 2 / g and carbon black having a primary particle size of 0.5 μm or less by scanning electron microscope observation. The metal Co having an Fsss particle size of 1.4 μm was added, mixed and granulated. The obtained granulated body having a diameter of 5 mm was heat-treated at 1500 ° C. in a rotary furnace in a nitrogen atmosphere. The obtained heat-treated product was pulverized with a ball mill using carbide balls as a pulverizing medium, and sieved with 150 mesh. The obtained powder had an Fsss particle size of 1.02 μm and a BET of 2.76 m 2 / g, and was a uniform-sized titanium carbide in which the particle surface was not angular. The index Fsss value representing the size of the secondary particles relative to the primary particles / (6 / ( density × BET value)) was 2.32.
[0047]
(Example 2)
It is 0.15% by weight based on titanium carbide in a uniform particle size titanium oxide having a primary particle size of 0.18 μm and BET of 10.2 m 2 / g and carbon black having a primary particle size of 0.5 μm or less as observed by a scanning electron microscope. The metal Co having an Fsss particle size of 1.4 μm was added, mixed and granulated. The obtained granules having a diameter of 4 mm were heat-treated at 1700 ° C. in a rotary furnace in a hydrogen atmosphere. The obtained heat-treated product was pulverized with a ball mill using carbide balls as a pulverizing medium, and sieved with 150 mesh. The obtained powder has an Fsss particle size of 1.16 μm and a BET of 2.23 m 2 / g. As a result of particle observation by a scanning electron microscope, the particle surface having a maximum aggregated particle diameter (major axis) of 3.6 μm is not uniform. It was titanium carbide. The index Fsss value / (6 / ( density × BET value) representing the size of the secondary particles relative to the primary particles was 2.15.
[0048]
(Example 3)
It is 0.16% by weight based on titanium carbide in a uniform particle size titanium oxide having a primary particle size of 0.18 μm and BET of 10.2 m 2 / g and carbon black having a primary particle size of 0.5 μm or less as observed by a scanning electron microscope. The metal Ni with a Fsss particle size of 1.3 μm was added to and mixed and granulated. The obtained granules having a diameter of 4 mm were heat-treated at 1730 ° C. in a rotary furnace in a hydrogen atmosphere. The obtained heat-treated granulated product was pulverized with a ball mill using cemented carbide balls as a pulverizing medium, and sieved with 150 mesh. The obtained powder had an Fsss particle size of 2.25 μm and a BET of 1.28 m 2 / g, and was a uniform-sized titanium carbide having a non-angular surface. The index Fsss value representing the size of the secondary particles relative to the primary particles / (6 / density × BET value)) was 2.37.
[0049]
(Comparative Example 1)
A uniform particle size titanium oxide having a primary particle size of 0.18 μm and BET of 10.2 m 2 / g as observed by a scanning electron microscope and carbon black having a primary particle size of 0.5 μm or less were mixed and granulated. The obtained granulated body having a diameter of 5 mm was heat-treated at 1500 ° C. in a rotary furnace in a hydrogen atmosphere. The obtained heat-treated granulated product was pulverized with a ball mill using cemented carbide balls as a pulverizing medium, and sieved with 150 mesh. The obtained powder had an Fsss particle size of 0.69 μm and a BET of 4.23 m 2 / g, and was a uniform-sized titanium carbide having a non-angular particle surface. Index Fsss value / (6 / (density × BET value)) representing the magnitude of the secondary particles to the primary particles was 2.38.
[0050]
(Comparative Example 2)
BET 0.25 m 2 / g hydrogenated sponge titanium and carbon black having a primary particle size of 0.5 μm or less were mixed and granulated. Heat treatment was performed at 1600 ° C. in a rotary furnace in a hydrogen atmosphere. The obtained heat-treated granulated product was pulverized with a ball mill using cemented carbide balls as a pulverizing medium, and sieved with 150 mesh. The obtained powder had an Fsss particle size of 1.1 μm and a BET of 4.23 m 2 / g, and as a result of particle observation by a scanning electron microscope, it was a titanium carbide in which fine particles having a maximum aggregated particle size (major axis) of 4 μm and coarse particles were mixed. . The index Fsss value representing the size of the secondary particles relative to the primary particles / (6 / ( density × BET value)) was 3.79.
[0051]
(Comparative Examples 3-4)
Table 1 below shows the characteristic values of commercially available titanium carbide powder. It was found that the index Fsss value representing the size of the secondary particles relative to the primary particles / (6 / ( density × BET value)) exceeded 3.0.
[0052]
[Table 1]
[0053]
【The invention's effect】
As described above, since the titanium carbide obtained by the present invention is coarse and uniform, it is a powder that hardly aggregates compared to a powder containing only fine particles or a mixture of fine particles and coarse particles, especially with other materials. It contributes to uniform mixing.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001215170A JP4377090B2 (en) | 2001-07-16 | 2001-07-16 | Titanium carbide powder and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001215170A JP4377090B2 (en) | 2001-07-16 | 2001-07-16 | Titanium carbide powder and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003026416A JP2003026416A (en) | 2003-01-29 |
JP2003026416A5 JP2003026416A5 (en) | 2006-05-25 |
JP4377090B2 true JP4377090B2 (en) | 2009-12-02 |
Family
ID=19049861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001215170A Expired - Fee Related JP4377090B2 (en) | 2001-07-16 | 2001-07-16 | Titanium carbide powder and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4377090B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101617393B (en) | 2007-02-23 | 2011-05-18 | 积水化学工业株式会社 | Etching method and apparatus |
JP6061929B2 (en) | 2012-06-28 | 2017-01-18 | 日清エンジニアリング株式会社 | Method for producing titanium carbide fine particles |
-
2001
- 2001-07-16 JP JP2001215170A patent/JP4377090B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003026416A (en) | 2003-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107585768B (en) | Method for preparing superfine tungsten carbide powder by oxidation-reduction method | |
WO2011152359A1 (en) | Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same | |
JP5198121B2 (en) | Tungsten carbide powder, method for producing tungsten carbide powder | |
KR100879405B1 (en) | Ultracoarse, Monocrystalline Tungsten Carbide and Method for Producing the Same, and Hard Metal Produced Therefrom | |
JP6913996B2 (en) | Manufacturing method of fine tungsten carbide powder | |
JP2002515543A (en) | Sintered active metal powders and alloy powders for powder metallurgy applications, methods for their production and their use | |
JP4405694B2 (en) | Titanium carbonitride powder and method for producing the same | |
JP2008038163A5 (en) | ||
CN109641806B (en) | Titanium carbonitride powder and method for producing titanium carbonitride powder | |
JP4377090B2 (en) | Titanium carbide powder and manufacturing method thereof | |
JP2008031016A (en) | Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method | |
CN1485450A (en) | Method for producing WC-Fe composite powder of ultra fine grain by tungsten alloy scrap | |
JP3413625B2 (en) | Method for producing titanium carbonitride powder | |
CN114014317B (en) | Plate-shaped crystal tungsten carbide powder, preparation method thereof and hard alloy | |
JP2003026416A5 (en) | ||
JP4406120B2 (en) | Tungsten carbide powder | |
JP6450670B2 (en) | Titanium boride-containing powder, method for producing the same, and method for producing sintered metal | |
JP3102167B2 (en) | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide | |
JP2014077191A (en) | Synthesis method of carbide and carbonitride powder containing binder and cermet obtained thereby | |
JP4489042B2 (en) | Method for producing sintered body for cutting tool | |
JPH05147916A (en) | Production of fine tungsten-based carbide powder | |
WO2020172744A1 (en) | Metallic iron powder | |
JP4406408B2 (en) | Method for producing tungsten carbide powder | |
JP4406409B2 (en) | Method for producing tungsten carbide powder | |
JP2958851B2 (en) | Method for producing fine chromium carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060405 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4377090 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |