TW200900697A - Pathogen detection by simultaneous size/fluorescence measurement - Google Patents

Pathogen detection by simultaneous size/fluorescence measurement Download PDF

Info

Publication number
TW200900697A
TW200900697A TW096123854A TW96123854A TW200900697A TW 200900697 A TW200900697 A TW 200900697A TW 096123854 A TW096123854 A TW 096123854A TW 96123854 A TW96123854 A TW 96123854A TW 200900697 A TW200900697 A TW 200900697A
Authority
TW
Taiwan
Prior art keywords
particle
particles
fluorescence
size
particle size
Prior art date
Application number
TW096123854A
Other languages
Chinese (zh)
Other versions
TWI447394B (en
Inventor
Jian-Ping Jiang
Original Assignee
Biovigilant System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biovigilant System Inc filed Critical Biovigilant System Inc
Publication of TW200900697A publication Critical patent/TW200900697A/en
Application granted granted Critical
Publication of TWI447394B publication Critical patent/TWI447394B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

A method and apparatus for detecting pathogens and particles in a fluid in which particle size and intrinsic fluorescence of a simple particle is determined.

Description

200900697 九、發明說明: 【發明所屬之技術領域】 本發明大體上有關於一種偵測空氣或水中顆粒的方法 與系統’特別是有關於用來偵測空氣或水中顆粒並且將測 得顆粒加以分類(classify)的方法與系統。本發明在偵測與 分類過敏原及生物性戰爭試劑上特別有用,以下將針對此 一用途來說明本發明,但本發明亦可用於其他用途。 【先前技術】 涉及施放諸如炭疽桿菌等生物性戰爭試劑的都會恐怖 攻擊活動是目前備受關懷的問題。由於武器化的炭疽桿菌 孢子能夠進入人體肺部,故極危險。對人類而言,炭疽椁 菌孢子的致死吸入量LD50(足以殺死50%暴露於該菌中之 人類的劑量)估計約2500至50000個孢子,參閱 T.V. Inglesby等人於1999年發表餘JAMA期刊第281卷第1735 頁中標題為「Anthrax as a Biological Weapon」一文。其 他可能的武器化生物試劑還有鼠疫桿菌(yersinia pestis)、 肉毒桿菌(Clostridium botulinum)與土倫法蘭西司桿菌法 (franeisella tularensis)。鑒於此潛在咸脅,目前需要一種 早期警報系統以偵測此類攻擊活動。在醫療、健康與食品 工業中’使用能偵測環境微生物量的即時偵測器有利於公 共衛生與品質的控制及管理。例如,非腸胃道藥物製造商 需要監控其無菌室中的微生物濃度。在這些應用中,能立 即偵測環境中之微生物的設備將會是一項有力的工具,並 5 200900697 且比起需要等待數天讓微生物生長以進行偵測的傳統培養 皿培養法來說更加有益。 顆粒尺寸測量法以及紫外光誘導發光偵測法已用來偵 測空氣中的生物物質。有多項專利描述這些技術可作為偵 測釋放生物武器試劑之恐怖攻擊活動的早期警報器。這些 裝置是由MIT的Lincoln實驗室所發展出來的生物試劑警 報感應器(BAWS)、由Ho等人所提出的螢光生物顆粒偵測 系統(Jim yew-Wah Ho,美國專利案 5701012、5895922 與 683 1279 號)、由 Minnesota 的 TSI 所提出的 FLAPS 與 UV-APS 裝置(Peter P. Hairston 與 Frederick R. Quant,美 國專利案5,999,250號)以及Silcott所發表之螢光感測器 (美國專利案6,885,44〇號)。 T.H. Jeys等人揭示一種使用脈衝紫外光雷射來誘導 勞光的生物感測器(T.H. Jeys,et al·,Proc· IRIS Active Systems, vo 1. 1, p.235,1 998)。此感測器能偵測每公升空 氣中五種顆粒的空氣懸浮浪度(aerosol concentration),但 其設備昂貴又易碎。而諸如美萬儀器公司(Met One Instrument, Inc, of Grants Pass, Oregon)、顆粒測量系統公 司(Particle Measurement Systems, Inc., of Boulder, Colorado)以及泰拉全球股份有限公司(Terra Universal Corp.,of Anaheim, California)則揭示了其.他數種顆粒計 數器。 目前已設計出各種感測器來偵測空氣中的過敏原顆 粒,並且當空氣樣品中的顆粒數量超過一預定最小數量時 6 200900697 對過敏體質的個體提出警告。這些感測器 Hamburger 等人的美國專利案 5646597、 5986555 、 6008729 、 6087947 與 7053783 號 器皆涉及引導光束通過一環境空氣樣品,使 線被空氣中的顆粒散射掉,並且包含一光束 僅有以一預定角度範圍散射的光線通過,該 相應於一預定過敏原尺寸,以及還具有一偵 該通過的光線。 【發明内容】 為了偵測空氣或水中的微生物,須要發展 系統’其能同時測量顆粒尺寸與微生物自身所 營光。本發明提供一種偵測系統,其能逐個释 量顆粒尺寸以及偵測來自代謝物或其他生物分 光。相較於傳統技術,此偵測方法具有數種優 優點是,該系統能提供鑑別顆粒的測量方法以 而非依賴習知技術中用於顆粒識別的統計模式 測量方法比習知方法更能夠明確地指出顆粒相 賴統汁模式。其亦可減少微生物偵測誤判的月 可將尺寸大於微生物的花粉以及尺寸小於微生 :排除在偵測範圍之外。再者,It系統亦允奇 —單獨顆粒上所收集到的數據以鑑定該顆粒, 粒的營光訊號強度與顆粒戴面或體積有關,c 的生物狀態。 揭示於授予 5969622 、 '。這些感測 -一部分的光 -檔器用以讓 i定角度範圍 '器用以偵測 出一種有效 產生出來的 粒地同時測 子的自身螢 點。其中一 識別顆粒, °該鑑別性 'It且較不依 能性,例如 物的煙霧顆 、細節分析從 例如來自顆 剛定該顆粒 7 200900697 本發明包含三種主要構件:(1) 一第一光學系統’用以 測量一單獨顆粒的尺寸;(2) —第二光學系統,用以偵測來 自該單獨顆粒的紫外光誘導發光的自身螢光訊號;以及(3) 一用以將顆粒尺寸與螢光強度指派給一單獨顆粒的數據紀 錄格式(data recording format),以及電腦可讀程式碼’用 以區分(differentiating)微生物與非微生物’非微生物係例 如惰性灰塵顆粒。 本發明之光學組件具有兩種光學子組件:(a)—光學 機構(〇 p t i c a 1 s e t u p)以測量顆粒尺寸’舉例而言’本發明一 較佳實施例中以新的方式來使用該習知且常用的米氏散射 偵測機構(Mie scattering detection scheme),使的該系統能 夠高度精準地測量空氣中尺寸介於0.5微米至2 0微米之間 的顆粒。由於不同種類的微生物具有不同的顆粒尺寸範 圍’因此能夠良好區分顆粒尺寸的能力是很重要的,其能 用以判定微生物的種類;(b)測量顆粒尺寸的同時,一光 學設備用來測定來自該待測顆粒的螢光量,舉例來說,本 發明較佳實施例中使用一橢圓鏡’其設置用來收集從該已 測量尺寸之同一顆粒所發出的螢光。 【實施方式】 第4圖顯示一光學系統的示意圖,其可用於根據本發 明第一示範實施例的流體顇粒偵測系統。使系統的第一示 範實施例係設計例如用來偵測恐怖份子或他人釋放在空氣 或水中的生物試劑,但亦可用來偵測空氣中自然存在、意 8 200900697 外、不慎或刻意釋出之黴菌或細菌等有害顆粒濃度等通常 用途,或者應用於諸如食品與藥物製造工廠及無菌室等工 業應用用途。 「流體懸浮顆粒(fluid borne particles)」一詞在此處 係指空氣懸浮顆粒與水中懸浮顆粒兩種。 「病原體(Pathogen)」一詞在此係指任何空氣或水中 懸浮顆粒、生物試劑或有毒物質,如果該等顆粒在空氣或 水中存在足夠數量’則可能傷害或甚至殺死暴露於該等顆 粒中的人類。 「生物試劑(biological agent)」一詞係定義為任何微 生物(microorganism)、病原體或感染性物質(infecti〇us substance)、毒素、生物毒素,或是微生物、病原體或感染 性物質的任何天然、生物工程或人工合成成分,而不論其 來源或製造方法為何。此類生物試劑包括例如生物毒性、 細菌、病毒 '立克次體(rickettsiae)、孢子、真菌以及單細 胞動物(pr〇t〇zoa,原生動物)以及其他習知物種。 「生物毒素(Biological toxins)」一詞係指從活植物、 動物或微生物所生產或衍生出, 衍生出’但也可藉由化學方法製造200900697 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to a method and system for detecting particles in air or water, particularly relating to the detection of particles in air or water and the classification of measured particles. (classify) methods and systems. The present invention is particularly useful in the detection and classification of allergens and biological warfare agents. The invention will be described below for this purpose, but the invention may also be used for other purposes. [Prior Art] Metropolitan terrorist attacks involving the application of biological warfare agents such as Bacillus anthracis are currently a concern. As weaponized Bacillus anthracis spores can enter the human lungs, it is extremely dangerous. For humans, the lethal inhalation LD50 of anthrax spores (a dose sufficient to kill 50% of humans exposed to the bacteria) is estimated to be between 2,500 and 50,000 spores. See TV Inglesby et al., 1999, JAMA Journal Volume 281, page 1735, is entitled "Anthrax as a Biological Weapon". Other possible weapon biological agents are yersinia pestis, Clostridium botulinum and franeisella tularensis. In view of this potential salty threat, an early warning system is currently needed to detect such attacks. The use of instant detectors capable of detecting environmental microbial populations in the medical, health and food industries facilitates public health and quality control and management. For example, manufacturers of parenteral drugs need to monitor the concentration of microorganisms in their sterile rooms. In these applications, devices that immediately detect microbes in the environment will be a powerful tool, and 5 200900697 is more traditional than the traditional culture dish culture method that requires several days to grow microbes for detection. Good. Particle size measurements and UV-induced luminescence detection have been used to detect biological material in the air. A number of patents describe these techniques as early warning agents for terrorist attacks that detect the release of biological weapons agents. These devices are biological reagent alarm sensors (BAWS) developed by Lincoln Laboratories of MIT, and fluorescent bioparticle detection systems proposed by Ho et al. (Jim yew-Wah Ho, U.S. Patent No. 5,701101, 5895922 and 683 1279), FLAPS and UV-APS devices proposed by TSI of Minnesota (Peter P. Hairston and Frederick R. Quant, US Patent No. 5,999,250) and fluorescent sensors published by Silcott (US Patent 6,885) , 44 )). T.H. Jeys et al. disclose a biosensor that uses pulsed ultraviolet lasers to induce burn light (T.H. Jeys, et al., Proc. IRIS Active Systems, vo 1. 1, p. 235, 1 998). The sensor detects the aerosol concentration of five particles per liter of air, but the equipment is expensive and fragile. And such as Met One Instrument, Inc. of Grants Pass, Oregon, Particle Measurement Systems, Inc., of Boulder, Colorado, and Terra Universal Corp. Of Anaheim, California) reveals several of his particle counters. Various sensors have been designed to detect allergen particles in the air, and when the number of particles in the air sample exceeds a predetermined minimum number 6 200900697 warns individuals with allergies. U.S. Patent Nos. 5,646,597, 5,986,555, 6,008,729, 6,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The light scattered by the predetermined angular range passes, which corresponds to a predetermined allergen size, and also has a light that is detected to pass. SUMMARY OF THE INVENTION In order to detect microorganisms in air or water, it is necessary to develop a system that can simultaneously measure the particle size and the light that the microorganisms themselves operate. The present invention provides a detection system that can modulate particle size one by one and detect spectrometry or other bio-spectroscopy. Compared with the conventional technology, this detection method has several advantages in that the system can provide a measurement method for discriminating particles instead of relying on the statistical mode measurement method for particle identification in the prior art, which is more clear than the conventional method. The ground points out that the particles are in the same way. It can also reduce the number of months of micro-detection misjudgment. Pollen larger than microbes and smaller than micro-small: excluded from detection. Furthermore, the It system also allows the data collected on individual particles to identify the particle, the intensity of the light signal of the grain is related to the particle surface or volume, and the biological state of c. Revealed in grant 5969622, '. These sensing - part of the light-gearer is used to allow the i-angle range to be used to detect an effective fire-generating particle at the same time. One of the identification particles, ° the discriminating 'It and less responsive, such as the smoke particles of the object, the detail analysis from, for example, from the particle just 7 the 200900697 invention comprises three main components: (1) a first optical system 'to measure the size of a single particle; (2) a second optical system for detecting ultraviolet light-induced luminescence from the individual particles; and (3) one for particle size and firefly The light intensity is assigned to a separate particle data recording format, and the computer readable code 'is used to differentiate microorganisms from non-microbial 'non-microbial systems such as inert dust particles. The optical assembly of the present invention has two optical subassemblies: (a) an optical mechanism (〇ptica 1 setup) to measure particle size 'exemplary' in a preferred manner in a preferred embodiment of the invention. The commonly used Mie scattering detection scheme enables the system to measure particles in the air between 0.5 microns and 20 microns in a highly accurate manner. Since different types of microorganisms have different particle size ranges', it is important to be able to distinguish the particle size well, which can be used to determine the type of microorganism; (b) while measuring the particle size, an optical device is used to determine the The amount of fluorescence of the particles to be tested, for example, in the preferred embodiment of the invention, uses an elliptical mirror that is configured to collect the fluorescence emitted by the same particle of the measured size. [Embodiment] Fig. 4 is a view showing an optical system which can be used for a fluid particle detecting system according to a first exemplary embodiment of the present invention. The first exemplary embodiment of the system is designed, for example, to detect biological agents released by terrorists or others in air or water, but can also be used to detect natural presence in the air, intentionally or intentionally released. It is used for general purposes such as the concentration of harmful particles such as mold or bacteria, or for industrial applications such as food and drug manufacturing plants and sterile rooms. The term "fluid borne particles" as used herein refers to both airborne particles and suspended particles in water. The term "Pathogen" as used herein means any suspended particles, biological agents or toxic substances in air or water which, if present in the air or in water, may harm or even kill exposure to such particles. Human. The term "biological agent" is defined as any microorganism, pathogen or infectious substance (infecti〇us substance), toxin, biotoxin, or any natural or biological organism of a microorganism, pathogen or infectious substance. Engineering or synthetic ingredients, regardless of their source or method of manufacture. Such biological agents include, for example, biological toxicity, bacteria, viruses 'rickettsiae, spores, fungi, and monocytogenes (pr〇t〇zoa, protozoa) and other conventional species. "Biological toxins" means the production or derivation of a living plant, animal or microorganism, but can also be produced by chemical means.

9 200900697 (tetanus toxins)、 金黃色葡萄球菌 B 型腸毒素 (staphylococcal enterotoxin B)、黴菌毒素(tricothocene mycotoxins)、箆麻毒素(ricin)、貝毒素(saxitoxin)、志賀 菌素(Shiga)與類志賀菌素、綠樹眼鏡蛇毒(dendrotoxins)、 扁尾蛇毒素(erabutoxin b)以及其他習知毒素 本發明偵測系統係設計用來偵測空氣或水中懸浮顆 粒,並且產生多個輸出值以指示例如偵測樣品中各種顆粒 尺寸範圍内的顆粒數量,以及指示該等顆粒是生物性或非 生物性顆粒。若顆粒的數量及/或生物有機體、生物試劑與 潛在危險物質超過一高於正常背景濃度之預定數值時,該 系統亦可產生一警示訊號或其他反應。 第4圖顯示根據本發明實施例之流體顆粒偵測系統 1〇。如第4圖所示,該系統1〇包含一紫外光(UV)激發光 源1 2 ’例如能提供電磁輻射束1 4的雷射且具有紫外光波 長。該UV光源可加以選擇,使其具有能夠激發微生物内 部代謝物質之自身螢光的波長。舉例而言,該激發光源1 2 的較佳操作波長介於約270奈米(nm)至約4 1 0奈米之間、 或較佳介於約3 5 0奈米至約4 1 0奈米之間。可假設該些微 生物包含三種主要代謝物:色胺酸(tryptophan),其正常螢 光約270奈米且範圍介於約220至約300奈米;菸醯胺腺 不吟一核皆(nicotinamide adenine dinucleotide,NADH), 其正常螢光約340奈米且範圍約介於320至約420奈米之 間’以及核黃素(riboflavin),其正常螢光約為400奈米且 範圍介於約3 2 0奈米至約4 2 0奈米之間,故可選擇介於約 10 200900697 2 7 0至約4 1 0奈米的波長。然而較佳者,該激發光源丨2具 有介於約350至約410奈米之間的波長。此波長確保能激 發生物試劑中三種主要代謝物中的其中兩種,即NADH與 核黃酸’但不會與諸如來自柴油引擎廢氣與如灰塵或爽身 粉等其他惰性顆粒之間發生干擾的情形。因此,在本發明 一較佳實施例中可根據能夠激發NADH與核黃素(或激發 色胺酸)之螢光同時不會發生如柴油引擎廢氣之干擾激發 情形的能力來選擇激發光源1 2的波長範圍。此步驟是用來 減少因柴油廢氣所造成的誤報機率,其中柴油廢氣的紫外 光激發波長為266奈米。 在第4圖所繪示的系統1 〇中,係透過一顆粒採樣喷嘴 1 6將環境空氣或液體樣品注入該系統中。喷嘴1 6在其中 間區段具有一開孔1 8,以允許雷射光束通過該顆粒流。該 雷射光束下游是一米氏散射顆粒尺寸偵測器(Mie scattering particle-size detector)20。米氏散射顆粒尺寸偵 測器20包含一光束阻擋鏡22、一準直器透鏡24(collimator lens)以及一聚光鏡26,用以將一部分的光束14聚焦在顆 粒偵測器2 8上。 偏離該雷射光束 14之轴處,一橢圓鏡(elliptical mirror) 3 0設置在顆粒採樣區域處,如此一來,該注入顆粒 流與該雷射光束的相交點係位在該橢圓之兩交點的其中一 交點處,同時一螢光偵測器32(在此範例中為光電倍增管) 則佔據在另一交點處。此種設計係利用從該橢圓鏡兩交點 其中一者發出的光源點將會聚焦至另一交點上的原理所設 11 200900697 計而得。在此種光學設計中’橢圓鏡30將來自微生物的螢 光訊號集中起來,並將之聚焦在螢光摘測器32上。光學渡 片(filter)34設置於該螢光偵測器的前方,以阻擔已散射的 紫外光,並使誘發出來螢光通過該濾片。 光束阻擋鏡22係設計用以反射該雷射光束14的非 散射先部分並具有諸如乙烯系的材料黏附在一前表面上’ 以反射調該電磁輻射束中的非散射部分。該光束阻擋鏡22 的其他特徵與考量揭示於如上所列之Hamburger等人的較 早美國專利案中,以及PCT申請案PCT/US200602763 8號 中’在此以引用方式納入該等參考文獻以供參考。 該顆粒偵測器 20可包含例如一光電二極管 (photodiode),用以測定顆粒尺寸,例如於上述Hamburger 等人的美國美國專利案中所述者’並將該等文獻以引用方 式納入本文中。 本發明使用米氏散射亦有例於光學構件的配置,用於 偵測紫外光發光作用以同時檢查單獨顆粒是否存在有 NADH、核黃素等代謝物及其他生物分子,這些代謝物是 活有機體之代謝作用中的必要中間產物,因此其會存在於 諸如細菌與真菌等微生物中。若有這些化學物質存在於生 物懸浮物中,則該些物質會被紫外光子能量所激發,隨後 會放出自身螢光而可利用根據上述偵測系統所做成之設備 來測量之。雖然上述機構不能識別微生物的屬別或種類, 並且病毒亦因顆粒太小且缺乏用以偵測的代謝作用,因此 該偵測系統還能同時測量每個顆粒的尺寸,並且根據是否 12 200900697 測出微生物性或惰性顆粒,會指示使用者是否發生微生物 污染。9 200900697 (tetanus toxins), Staphylococcal enterotoxin B, tricothocene mycotoxins, ricin, saxitoxin, Shiga and Shiga The bacteriocin, dendrotoxins, erabutoxin b, and other conventional toxins of the present invention are designed to detect suspended particles in air or water and produce multiple output values to indicate, for example, The number of particles in various particle size ranges in the sample is detected and the particles are indicated as biological or abiotic particles. The system may also generate a warning signal or other reaction if the number of particles and/or biological organisms, biological agents and potentially hazardous substances exceed a predetermined value above the normal background concentration. Figure 4 shows a fluid particle detection system in accordance with an embodiment of the present invention. As shown in Fig. 4, the system 1 includes an ultraviolet (UV) excitation light source 1 2 ', for example, which provides a laser beam of electromagnetic radiation 14 and has an ultraviolet wavelength. The UV light source can be selected to have a wavelength that stimulates the self-fluorescence of the metabolic material within the microorganism. For example, the preferred operating wavelength of the excitation source 12 is between about 270 nanometers (nm) and about 4,100 nanometers, or preferably between about 305 nanometers and about 4,100 nanometers. between. It can be assumed that the microorganisms contain three major metabolites: tryptophan, which has a normal fluorescence of about 270 nm and ranges from about 220 to about 300 nm; the nicotinamide gland does not have a nucleus (nicotinamide adenine). Dinucleotide, NADH), which has a normal fluorescence of about 340 nm and a range of between about 320 and about 420 nm 'and riboflavin, which has a normal fluorescence of about 400 nm and a range of about 3 Between 20 nm and about 4 200 nm, a wavelength of about 10 200900697 2 7 0 to about 4 1 0 nm can be selected. Preferably, however, the excitation source 丨2 has a wavelength between about 350 and about 410 nm. This wavelength ensures that two of the three major metabolites in the biological reagent, namely NADH and riboflavin, are not excited, but do not interfere with interference from diesel engine exhaust gases and other inert particles such as dust or talcum powder. . Therefore, in a preferred embodiment of the present invention, the excitation light source 1 2 can be selected according to the ability to excite the fluorescence of NADH and riboflavin (or excited tryptophan acid) without causing an interference excitation situation such as diesel engine exhaust gas. The wavelength range. This step is used to reduce the chance of false alarms caused by diesel exhaust, which has a UV excitation wavelength of 266 nm. In the system 1 绘 depicted in Figure 4, an ambient air or liquid sample is injected into the system through a particle sampling nozzle 16. Nozzle 16 has an opening 18 in its intermediate section to allow a laser beam to flow through the particle. Downstream of the laser beam is a Mie scattering particle size detector 20. The Mie scattering particle size detector 20 includes a beam blocking mirror 22, a collimator lens 24, and a concentrating mirror 26 for focusing a portion of the beam 14 onto the particle detector 28. Deviating from the axis of the laser beam 14, an elliptical mirror 30 is disposed at the particle sampling region, such that the intersection of the injected particle stream and the laser beam is at the intersection of the ellipse At one of the intersections, a fluorescent detector 32 (in this example, a photomultiplier) occupies another intersection. This design is based on the principle that the point of the light source from one of the two intersections of the elliptical mirror will be focused to another intersection. In this optical design, the elliptical mirror 30 concentrates the fluorescent signals from the microorganisms and focuses them on the fluorescent stalker 32. An optical filter 34 is disposed in front of the fluorescent detector to block the scattered ultraviolet light and induce the fluorescent light to pass through the filter. The beam blocking mirror 22 is designed to reflect the non-scattering portion of the laser beam 14 and has a material such as a vinyl-based material adhered to a front surface to reflect the non-scattering portion of the beam of electromagnetic radiation. </ RTI> <RTIgt reference. The particle detector 20 can comprise, for example, a photodiode for determining the particle size, as described, for example, in U.S. Patent No. 5, which is incorporated herein by reference. The use of Mie scattering in the present invention is also exemplified in the configuration of optical members for detecting ultraviolet light luminescence to simultaneously check whether individual particles have NADH, riboflavin and other metabolites and other biomolecules, which are living organisms. The necessary intermediate in the metabolism, so it will be present in microorganisms such as bacteria and fungi. If these chemicals are present in the biological suspension, they will be excited by the ultraviolet photon energy, which will then emit their own fluorescence and can be measured using equipment made according to the above detection system. Although the above mechanism does not recognize the genus or species of the microorganism, and the virus is too small and lacks the metabolic effect for detection, the detection system can simultaneously measure the size of each particle, and according to whether it is 12 200900697 Microbial or inert particles are indicated to indicate to the user whether microbial contamination has occurred.

參閱第5圖,本發明系統能同時測定顆粒尺寸與測 量螢光的功能係以圖表來顯示其偵測結果。該系統之操作 原理如下:一設備持續監控環境空氣或液體,以即時測量 每個個別空氣懸浮顆粒的尺寸,並且同時判定該顆粒是否 發出螢光。並且為螢光訊號設定一檻值(threshold)。若該 螢光訊號低於該設定檻值,則將該顆粒標示為惰性顆粒。 此螢光訊號檻值可為螢光訊號強度,螢光強度與顆粒截面 積或顆粒體積成函數關係。若螢光訊號檻值超過該設定 值,則將顆粒標示為生物性顆粒。由顆粒尺寸與螢光訊號 強度所組合而得的資料將用來逐個顆粒地判定是否為微生 物。第2(a)與2(b)圖顯示根據本發明之偵測器的功能。該 等圖顯示出利用此偵測系統所測得的環境空氣懸浮顆粒數 據。在個別圖式中,圖的上半部分係以對數座標,來繪示 出顆粒濃度(每公升空氣)對顆粒尺寸(從1至1 3微米)做圖 的直條圖;其中實心直條代表惰性顆粒,而斜紋直條則代 表微生物。圖的下半部分則是在一秒内所偵測顆粒的即時 截圖:每個針狀標記(spike)代表單一個顆粒,而針狀標記 的高度則相應於顆粒的尺寸。第2 (a)圖是對乾淨空氣進行 測試的結果,因此圖中僅顯示出惰性顆粒而沒有微生物。 在第二個實驗中,則在空氣中加入貝克氏酵母菌粉末 (Saccharomyces cerevisiae)。此試驗镇測到微生物的存 在,並且繪示成第2(b)圖中的斜紋直條。 13 200900697 第3圖顯示當將摻有7微米螢光染料的塑膠顆粒注 入能同時測量顆粒尺寸與螢光的偵測器中時所獲得的資料 組。該些斜紋直條顯示出在這些顆粒中的分佈在7微米顆 粒尺寸處的顆粒發出螢光。 需強調的是,上述多個本發明實施例,特別是較佳實 施例,僅是本發明的數個可行範例,用以清楚說明本發明 原理。然而在不偏離本發明精神與原理之下,當可對上述 多個實施例進行修改與變化。所有的修改與變化亦為本文 揭示内容與本發明範圍所涵蓋,且受後附申請專利範圍所 保護。 【圖式簡單說明】 可從上述敘述配合附圖說明來了解本發明的進一步特 徵與優點,附圖如下: 第1圖顯示數種空氣中之惰性顆粒與微生物顆粒的顆 粒尺寸範圍。 第2(a)圖為同時測定顆粒尺寸與螢光所得測量值的直 條圖,顯示不含微生物之空氣的顆粒分佈情形; 第2(b)圖顯示對含有貝克氏酵母菌粉末之空氣同時測 量顆粒尺寸與螢光所得測量值的直條圖; 第3圖為摻雜了 7微米之螢光染料後同時測量顆粒尺 寸與螢光之測量值的直條圖; 第4圖為根據本發明之光學系統的示意圖,其可執行 同時測量顆粒尺寸與螢光的方法;以及 14 200900697 第5圖為第4圖之光學系統的方塊圖。 【主要元件符號說明】 10偵測系統 1 4電磁輻射束 1 8開孔 2 2光束阻擋鏡 26聚光鏡 30橢圓鏡 1 2激發光源 1 6喷嘴 20散射顆粒尺寸偵測器 24準直器透鏡 28顆粒偵測器 3 2螢光偵測器 15Referring to Figure 5, the system of the present invention is capable of simultaneously measuring the particle size and measuring the function of the fluorescence to graphically display the detection results. The system operates as follows: A device continuously monitors ambient air or liquid to instantly measure the size of each individual airborne particle and simultaneously determine if the particle is emitting fluorescence. And set a threshold for the fluorescent signal. If the fluorescent signal is below the set threshold, the particles are labeled as inert particles. The fluorescence signal 槛 value can be the fluorescence signal intensity, and the fluorescence intensity is a function of the particle cross-section or particle volume. If the fluorescence signal threshold exceeds the set value, the particles are labeled as biological particles. The data obtained by combining the particle size and the intensity of the fluorescent signal will be used to determine whether the microorganism is a particle by particle. Figures 2(a) and 2(b) show the function of the detector according to the invention. The figures show ambient airborne particle data measured using this detection system. In the individual figures, the upper half of the figure is plotted as a logarithmic coordinate to plot the particle concentration (per liter of air) versus the particle size (from 1 to 13 microns); the solid straight bar represents Inert particles, while diagonal straight bars represent microorganisms. The bottom half of the figure is a snapshot of the particles detected in one second: each needle represents a single particle, and the height of the needle mark corresponds to the size of the particle. Figure 2 (a) shows the results of testing clean air, so only the inert particles are shown in the figure without microorganisms. In the second experiment, Bacillus cerevisiae powder (Saccharomyces cerevisiae) was added to the air. The presence of microorganisms was measured in this test town and is shown as a diagonal straight strip in Figure 2(b). 13 200900697 Figure 3 shows the data set obtained when a plastic particle doped with a 7 micron fluorescent dye was injected into a detector capable of simultaneously measuring particle size and fluorescence. The diagonal stripes show that the particles distributed in the particles at the 7 micron particle size emit fluorescence. It is to be understood that the various embodiments of the present invention, particularly preferred embodiments, are merely illustrative of the embodiments of the invention. However, various modifications and changes may be made to the various embodiments described above without departing from the spirit and scope of the invention. All such modifications and variations are encompassed by the scope of the disclosure and the scope of the invention, and are protected by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Further features and advantages of the present invention will become apparent from the above description in conjunction with the accompanying drawings. FIG. 1 shows a range of particle sizes of inert particles and microbial particles in several airs. Figure 2(a) is a bar graph showing the simultaneous measurement of particle size and fluorescence, showing the distribution of particles containing no microorganisms; Figure 2(b) shows the simultaneous presence of air containing Baker's yeast powder. A bar graph for measuring the particle size and the measured value obtained by fluorescence; FIG. 3 is a bar graph for simultaneously measuring the particle size and the measured value of the fluorescence after doping the fluorescent dye of 7 μm; FIG. 4 is a diagram according to the present invention; A schematic diagram of an optical system that can perform simultaneous measurement of particle size and fluorescence; and 14 200900697 Figure 5 is a block diagram of the optical system of Figure 4. [Main component symbol description] 10 detection system 1 4 electromagnetic radiation beam 1 8 aperture 2 2 beam blocking mirror 26 condensing mirror 30 elliptical mirror 1 2 excitation light source 1 6 nozzle 20 scattering particle size detector 24 collimator lens 28 particles Detector 3 2 fluorescent detector 15

Claims (1)

200900697 十、申請專利範圍: 1. 一種區分一流體中之生物顆粒與惰性顆粒的方法,其包 含同時測量顆粒尺寸以及偵測來自該顆粒的自身螢光。 2. 如申請專利範圍第1項所述之方法,其中測量螢光強度 並指定一數值,以及包括根據顆粒尺寸與螢光強度來分類 該顆粒是惰性顆粒或生物顆粒的步驟。 3 .如申請專利範圍第2項所述之方法,其中該顆粒的尺寸 資訊係用來分類該顆粒是否為微生物。 4.如申請專利範圍第3項所述之方法,其中該顆粒的尺寸 資訊是藉由測定該顆粒的截面積或體積而得。 5 .如申請專利範圍第4項所述之方法,其中藉著測定該顆 粒的直徑,並且根據該直徑計算出該顆粒的體積。 6. 如申請專利範圍第2項所述之方法,其中從一單獨顆粒 得來的顆粒尺寸與螢光強度數據能用來從微生物中區別出 花粉與過敏原。 7. 如申請專利範圍第2項所述之方法,其中從一單獨顆粒 得來的顆粒尺寸與螢光強度數據能用來估計出該等生物顆 16 200900697 粒内部的生物化學物質的相對含量 8. 如申請專利範圍第2項所述之方法,其中從一單獨顆粒 得來的顆粒尺寸與螢光強度數值係以該顆粒之尺寸或體積 加以常態化(normalized),且用來區分微生物與惰性顆粒。 9. 如申請專利範圍第2項所述之方法,其中從一單獨顆粒 得來的顆粒尺寸與螢光強度數值係以該顆粒之尺寸或體積 加以常態化,且用來從微生物中區分出花粉與過敏原。 1 0.如申請專利範圍第1項所述之方法,其中 該流體包括空氣。 11. 如申請專利範圍第1項所述之方法,其中該流體包括 水。 12. —種偵測與分類一液體或氣體中之顆粒的方法,其包 括以一紫外光源照射該顆粒,並且同時測量該顆粒的尺寸 以及任何來自該顆粒的自身螢光。 1 3 .如申請專利範圍第1 2項所述之方法,其中該顆粒包括 生物顆粒。 17 200900697 1 4.如申請專利範圍第1 2項所述之方法,其中該生物顆粒 包括一微生物。 15.如申請專利範圍第12項所述之方法,其中該生物顆粒 選自於由細菌、黴菌、真菌及孢子所構成之群組中。 1 6.如申請專利範圍第1 2項所述之方法,包括測量螢光強 度的步驟。 1 7.如申請專利範圍第1 2項所述之方法,包括比較顆粒尺 寸資訊與螢光強度以分類該顆粒為惰性來源或微生物來源 的步驟。 1 8 ·如申請專利範圍第1 2項所述之方法,包括區分該顆粒 為細菌、黴菌、真菌或孢子的步驟。 1 9.如申請專利範圍第1 2項所述之方法,包括區分該顆粒 為花粉或一過敏原的步驟。 2 0.如申請專利範圍第1 8項所述之方法,包括根據該顆粒 的螢光反應來分類該顆粒的步驟。 2 1.如申請專利範圍第1 9項所述之方法,包括根據該顆粒 18 200900697 的螢光反應來分類該顆粒的步驟。 2 2.如申請專利範圍第1 8項所述之方法,包括根據該顆粒 的直徑或體積來分類該顆粒的步驟。 2 3 .如申請專利範圍第1 8項所述之方法,包括根據該顆粒 已使用其直徑或體積加以常態化後的螢光強度,來分類該 顆粒的步驟。 24·如申請專利範圍第1 9項所述之方法,包括根據該顆粒 的直徑或體積來分類該顆粒的步驟。 2 5.如申請專利範圍第1 9項所述之方法,包括根據該顆粒 已使用其直徑或體積加以常態化後的螢光強度,來分類該 顆粒的步驟。 2 6. —種顆粒偵測系統,包括: 一樣品槽; 一光源,其位於該樣品槽的一側,用以輸出一聚焦光 束通過該樣品,藉此該樣品區域中各種尺寸的顆粒會以各 種角度散射一部分光束,並且該光束未被散射掉的部分則 保持未散射狀態; 一光束阻檔器,其位在該樣品槽的一相反側上,用以 19 200900697 至少阻擋掉該光線未被散射的部分,以限制所測定的顆粒 範圍; 一第一偵測器,設置於該光線路徑中且位於該光束阻 檔器之後,用以偵測一部分向前散射的光線,以及產生一 輸出值,該輸出值包含在該光束路徑内落在一預定尺寸範 圍中之單一顆粒的尺寸資訊; 一第二偵測器,設置於偏離該光束軸處,用以偵測來 f 自該單一顆粒的自身螢光。 η 27.如申請專利範圍第26項所述之系統,其中一橢圓鏡位 於一顆粒採樣區域中*使得該光束與該通入顆粒流的相父 點位在該橢圓的一焦點處,並且該第二偵測器位在該另一 焦點處。 2 8.如申請專利範圍第2 6項所述之系統,更包括一警示單 ^ 元,用以當偵測到介於該預定尺寸範圍内的一顆粒,且亦 發出螢光時,提供一警示訊號。 29.如申請專利範圍第26項所述之系統,其中該光源發出 紫外光。 3 0.如申請專利範圍第2 6項所述之系統,其中該光源包含 一 LED。 20 200900697 3 1.如申請專利範圍第3 0項所述之系統,更包括一準直儀 透鏡,其光學性地設置在該光源與該第一偵測器之間。 3 2.如申請專利範圍第2 6項所述之系統,更包括一處理單 元,用以處理一指定時間内的顆粒尺寸分布與顆粒螢光, 並將該顆粒的長條圖顯示於一輸出裝置上。 3 3 .如申請專利範圍第2 6項所述之系統,其中該第一偵測 器包含一光電二極管(photodiode)。 3 4.如申請專利範圍第2 6項所述之系統,其中該樣品槽包 括一空氣樣品槽。 3 5 ·如申請專利範圍第2 6項所述之系統,其中該樣品槽包 括一水樣品槽。 3 6.如申請專利範圍第2 6項所述之系統,更包括電腦可讀 程式碼,用以積分(integrating)所測得的顆粒尺寸以及所測 得的自身螢光。 21200900697 X. Patent Application Range: 1. A method of distinguishing between biological particles and inert particles in a fluid, comprising simultaneously measuring particle size and detecting self-fluorescence from the particles. 2. The method of claim 1, wherein measuring the fluorescence intensity and specifying a value, and the step of classifying the particle as an inert particle or a biological particle based on particle size and fluorescence intensity. 3. The method of claim 2, wherein the particle size information is used to classify whether the particle is a microorganism. 4. The method of claim 3, wherein the size information of the particles is obtained by measuring the cross-sectional area or volume of the particles. 5. The method of claim 4, wherein the particle diameter is determined by the diameter of the particle and the volume of the particle is calculated based on the diameter. 6. The method of claim 2, wherein the particle size and fluorescence intensity data obtained from a single particle can be used to distinguish pollen from the allergen from the microorganism. 7. The method of claim 2, wherein the particle size and fluorescence intensity data obtained from a single particle can be used to estimate the relative amount of biochemicals within the bioparticle 16 200900697 particle 8 The method of claim 2, wherein the particle size and the fluorescence intensity value obtained from a single particle are normalized by the size or volume of the particle, and are used to distinguish between microorganisms and inertia. Particles. 9. The method of claim 2, wherein the particle size and fluorescence intensity values obtained from a single particle are normalized by the size or volume of the particle and are used to distinguish pollen from the microorganism. With allergens. The method of claim 1, wherein the fluid comprises air. 11. The method of claim 1, wherein the fluid comprises water. 12. A method of detecting and classifying particles in a liquid or gas, comprising irradiating the particles with an ultraviolet light source and simultaneously measuring the size of the particles and any self-fluorescence from the particles. The method of claim 12, wherein the particles comprise biological particles. The method of claim 12, wherein the biological particle comprises a microorganism. The method of claim 12, wherein the biological particles are selected from the group consisting of bacteria, molds, fungi, and spores. 1 6. The method of claim 12, comprising the step of measuring the intensity of the fluorescence. 1 7. The method of claim 12, comprising the step of comparing particle size information to fluorescence intensity to classify the particle as an inert source or a microbial source. 1 8 The method of claim 12, comprising the step of distinguishing the particles as bacteria, mold, fungus or spores. 1 9. The method of claim 12, comprising the step of distinguishing the particles from pollen or an allergen. The method of claim 18, comprising the step of classifying the particles according to a fluorescence reaction of the particles. 2 1. The method of claim 19, comprising the step of classifying the particles according to a fluorescence reaction of the particles 18 200900697. 2 2. The method of claim 18, comprising the step of classifying the particles according to the diameter or volume of the particles. The method of claim 18, which comprises the step of classifying the particles based on the normalized fluorescence intensity of the particles using their diameter or volume. 24. The method of claim 19, comprising the step of classifying the particles based on the diameter or volume of the particles. 2. The method of claim 19, comprising the step of classifying the particles based on the normalized fluorescence intensity of the particles using their diameter or volume. 2 6. A particle detecting system comprising: a sample tank; a light source located on one side of the sample tank for outputting a focused beam of light through the sample, whereby particles of various sizes in the sample region are A portion of the beam is scattered at various angles, and the portion of the beam that is not scattered remains in an unscattered state; a beam blocker that is positioned on an opposite side of the sample cell for 19 200900697 to block at least the light is not a portion of the scattering to limit the measured particle range; a first detector disposed in the ray path and behind the beam blocker for detecting a portion of the forward scattered light and producing an output value The output value includes size information of a single particle falling within a predetermined size range in the beam path; a second detector disposed at an offset from the beam axis for detecting f from the single particle Self-fluorescent. The system of claim 26, wherein an elliptical mirror is located in a particle sampling region* such that a phase of the beam and the parent particle of the incoming particle stream is at a focus of the ellipse, and The second detector is located at the other focus. 2 8. The system of claim 26, further comprising a warning unit for providing a particle when the particle is within the predetermined size range and also emitting fluorescence Warning signal. 29. The system of claim 26, wherein the source emits ultraviolet light. The system of claim 26, wherein the light source comprises an LED. 20 200900697 3 1. The system of claim 30, further comprising a collimator lens optically disposed between the light source and the first detector. 3 2. The system of claim 26, further comprising a processing unit for processing particle size distribution and particle fluorescence for a specified time period, and displaying the bar graph of the particle at an output On the device. The system of claim 26, wherein the first detector comprises a photodiode. 3. The system of claim 26, wherein the sample trough comprises an air sample trough. The system of claim 26, wherein the sample tank comprises a water sample tank. 3. The system of claim 26, further comprising computer readable code for integrating the measured particle size and the measured self fluorescence. twenty one
TW096123854A 2006-06-27 2007-06-29 Pathogen detection by simultaneous size/fluorescence measurement TWI447394B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80596206P 2006-06-27 2006-06-27

Publications (2)

Publication Number Publication Date
TW200900697A true TW200900697A (en) 2009-01-01
TWI447394B TWI447394B (en) 2014-08-01

Family

ID=40839579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096123854A TWI447394B (en) 2006-06-27 2007-06-29 Pathogen detection by simultaneous size/fluorescence measurement

Country Status (2)

Country Link
CN (1) CN101479592B (en)
TW (1) TWI447394B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120071453A (en) * 2010-12-23 2012-07-03 삼성전자주식회사 Apparatus for detection of microorganism
FR2986237A1 (en) * 2012-01-27 2013-08-02 Advencis DEVICE FOR RAPID DETECTION OF MICROORGANISMS
CN103063555A (en) * 2012-12-31 2013-04-24 战仁军 Smoke particle measuring system
CN103196806A (en) * 2013-04-03 2013-07-10 中国科学院电工研究所 Real-time monitoring system and method of particle concentration and fluorescence intensity data of air
CN105699263B (en) * 2013-04-03 2019-02-15 中国科学院电工研究所 The real-time monitoring system and monitoring method of air particles concentration and fluorescence intensity data
JP2015227805A (en) * 2014-05-30 2015-12-17 アズビル株式会社 Device and method for detecting particle in liquid
DE102014215735A1 (en) * 2014-08-08 2016-02-11 Robert Bosch Gmbh Method for operating a room ventilation system, sensor and room ventilation system
WO2017013653A1 (en) * 2015-07-21 2017-01-26 Alex Keinan System and method for detection of particles in liquid or in air
CN105510297A (en) * 2015-12-29 2016-04-20 北京华泰诺安探测技术有限公司 Raman fluorescence spectrum testing system and optical signal collector thereof
CN105628667A (en) * 2016-03-24 2016-06-01 深圳市开天源自动化工程有限公司 On-line fluorescence detection device
CN110567902A (en) * 2018-06-06 2019-12-13 中国科学院长春光学精密机械与物理研究所 Mould detection device and detection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540494A (en) * 1994-06-03 1996-07-30 Purvis, Jr.; Norman B. Method and apparatus for determining absolute particle size, surface area and volume normalized fluorescence using forward angle light scatter intensity in flow cytometry
US5895922A (en) * 1996-03-19 1999-04-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Fluorescent biological particle detection system
CA2331897C (en) * 1998-05-14 2008-11-18 Luminex Corporation Multi-analyte diagnostic system and computer implemented process for same
WO2002004527A2 (en) * 2000-07-11 2002-01-17 Sri International Encoding methods using up-converting phosphors for high-throughput screening of catalysts
CN2530263Y (en) * 2002-03-08 2003-01-08 中国科学院上海光学精密机械研究所 Optical fibre sensor for detecting bioluminescence
US7441703B2 (en) * 2002-08-20 2008-10-28 Illumina, Inc. Optical reader for diffraction grating-based encoded optical identification elements
US7122384B2 (en) * 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
US6936828B2 (en) * 2003-02-14 2005-08-30 Honeywell International Inc. Particle detection system and method
WO2005029046A2 (en) * 2003-04-29 2005-03-31 S3I, Llc A multi-spectral optical method and system for detecting and classifying biological and non-biological particles
GB2420616B (en) * 2004-11-17 2010-10-13 Victor Higgs A pollution monitoring unit for monitoring local air quality

Also Published As

Publication number Publication date
CN101479592B (en) 2013-05-22
TWI447394B (en) 2014-08-01
CN101479592A (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US8647860B2 (en) Pathogen detection by simultaneous size/fluorescence measurement
KR101581056B1 (en) Pathogen detection by simultaneous size/fluorescence measurement
TWI447394B (en) Pathogen detection by simultaneous size/fluorescence measurement
US8628976B2 (en) Method for the detection of biologic particle contamination
US7738099B2 (en) Pathogen and particle detector system and method
US7430046B2 (en) Pathogen and particle detector system and method
US10345216B2 (en) Systems, devices, and methods for flow control and sample monitoring control
EP2758767B1 (en) Systems for characterizing an aerosol particle flow
WO2009108223A2 (en) Pathogen detection by simultaneous size/fluorescence measurement
TW201407150A (en) Pathogen and particle detector system and method
TWI424154B (en) Pathogen and particle detector system and method
Luoma et al. Fluorescence particle detector for real-time quantification of viable organisms in air