TW201407150A - Pathogen and particle detector system and method - Google Patents

Pathogen and particle detector system and method Download PDF

Info

Publication number
TW201407150A
TW201407150A TW102138510A TW102138510A TW201407150A TW 201407150 A TW201407150 A TW 201407150A TW 102138510 A TW102138510 A TW 102138510A TW 102138510 A TW102138510 A TW 102138510A TW 201407150 A TW201407150 A TW 201407150A
Authority
TW
Taiwan
Prior art keywords
light
detector
particles
optical
particle
Prior art date
Application number
TW102138510A
Other languages
Chinese (zh)
Inventor
Michael Morrell
Jien-Ping Jiang
Original Assignee
Biovigilant System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biovigilant System Inc filed Critical Biovigilant System Inc
Priority to TW102138510A priority Critical patent/TW201407150A/en
Publication of TW201407150A publication Critical patent/TW201407150A/en

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The system includes an excitation source for providing a beam of electromagnetic radiation having a source wavelength. A first wavelength selective device is positioned to be impinged by the beam of electromagnetic radiation. The first wavelength selective device is constructed to transmit at least a portion of any radiation having the source wavelength and to reflect radiation of other wavelengths. A medium containing particles is positioned to be impinged by the beam of electromagnetic radiation. At least a portion of the beam of electromagnetic radiation becomes scattered within the medium, the scattered electromagnetic radiation including forward scattered electromagnetic radiation and backward scattered electromagnetic radiation. An optical detector is positioned to receive backward and/or forward scattered electromagnetic radiation.

Description

病原體及顆粒之偵測系統及方法 Pathogen and particle detection system and method

本發明大體上有關於一種用於偵測氣懸顆粒或水懸顆粒的系統和方法,以及更明確而言係關於一種用於偵測氣懸顆粒或水懸顆粒及藉由大小分類該測得顆粒的系統和方法。本發明在偵測和藉由大小分類過敏原和生物戰爭藥劑方面具有特殊用途,以及以下將藉由此用途來說明本發明,但本發明亦可具有其他的用途。 The present invention generally relates to a system and method for detecting aerosol particles or water suspended particles, and more particularly to a method for detecting aerosol particles or water suspended particles and measuring by size classification. Particle systems and methods. The present invention has particular utility in detecting and classifying allergens and biological warfare agents by size, and the invention will be described below by this use, but the invention may have other uses.

涉及釋放如炭疽桿菌(anthrax)等生物戰劑的都市恐怖攻擊行為目前已成為值得關注的問題。武器性炭疽菌孢子由於可進入人類肺部而具有極高的危險性。對於人類而言,炭疽菌孢子的致死吸入劑量LD50(足以殺死50%暴露者的致死劑量)約為2,500至50,000個孢子,參閱T.V.Inglesby等人之標題為「生物武器的炭疽菌」,JAMA第281卷第1735頁,1999的發表文獻。一些其他可能的武器性生物製劑為耶爾辛氏桿菌(鼠疫)、肉毒羧狀芽孢桿菌(肉毒中毒)以及弗蘭斯氏兔熱菌(francisella tularensis)。鑑於此種潛在性的威脅,目前亟需一種能偵測此類攻擊的早期預警系統。 Urban terrorist attacks involving the release of biological warfare agents such as anthrax have now become a concern. Weaponaceous anthrax spores are extremely dangerous due to their access to human lungs. For humans, the lethal inhaled dose LD 50 of anthrax spores (to kill a lethal dose of 50% of the exposed person) is about 2,500 to 50,000 spores. See TVInglesby et al., entitled "Biological Bacteria of Biological Weapons", JAMA Vol. 281, p. 1735, published in 1999. Some other possible weapon biological agents are Yersinia (plague), botulinum botulinum (botulinum poisoning), and francisella tularensis. In view of this potential threat, there is an urgent need for an early warning system that can detect such attacks.

雷射顆粒計數器是已知的偵測工具,其引導雷射光 線通過一樣本,並偵測和分析通過該樣本光線以偵測來自樣本內顆粒的散射光。現行用於偵測散射光之偵測器或顆粒計數器的問題在於必需從入射光源信號中萃取出散射信號。此意味著必需從雜訊極多的背景(來自雷射光源的炫光)中偵測一弱信號(來自細顆粒的散射光)。此特性為長久以來造成雷射顆粒計數器之儀器偵測困難的主要原因。雷射顆粒計數器的習知設計運用高價和費力的方法降低來自雷射光源的眩光以及從大量背景雜訊中測量顆粒散射光,因而使計數器變得極為脆弱和昂貴。目前習知設計的雷射顆粒計數器均極脆弱和昂貴,因此不適用於此應用用途中。用於雷射顆粒計數的習知技術包括測量顆粒速度而推算出顆粒大小的雷射都卜勒(Doppler)法、測定顆粒通過一感應區所需時間的暫態時間法(transient time method)以及僅能夠測定小顆粒的廣角多感測器設計。在T.H.Jeys等人於Proc.IRIS Active Systems期刊第1卷第235頁(1998)中敘述一種利用脈衝紫外線(UV)雷射之雷射誘發螢光的生物感測器。此生物感測器能夠偵測每升空氣中5個顆粒的氣霧濃度,但其造價極為昂貴並且脆弱。其他顆粒計數器的製造商為奧勒岡州Grants Pass市的Met One儀器公司、科羅拉多州Boulder市的顆粒測量系統公司,以及加州Anaheim市的Terra國際股份有限公司。基於設計上的關係,這些顆粒計數器的構造需要極精密的光學校正及極為敏感的感測器和電子儀器。這些產品均朝向實驗室使用的方向發展並且極為昂貴。因此,不適合作為現場使用的偵測器,亦不適合作為專用於生物戰劑偵測的設計。 The laser particle counter is a known detection tool that directs laser light The line passes through the same book and detects and analyzes the light passing through the sample to detect scattered light from the particles within the sample. A problem with current detectors or particle counters for detecting scattered light is that it is necessary to extract the scattered signal from the incident source signal. This means that a weak signal (scattered light from fine particles) must be detected from the background of the noise (the glare from the laser source). This feature is the main reason why the detection of laser particle counters has been difficult for a long time. The conventional design of a laser particle counter uses a costly and laborious method to reduce glare from a laser source and measure particle scattered light from a large amount of background noise, thereby making the counter extremely fragile and expensive. Currently known laser particle counters are extremely fragile and expensive and are therefore not suitable for this application. Conventional techniques for laser particle counting include a laser Doppler method for measuring particle velocity to estimate particle size, a transient time method for determining the time required for particles to pass through a sensing region, and A wide-angle multi-sensor design capable of measuring small particles only. A biosensor utilizing laser-induced fluorescence of a pulsed ultraviolet (UV) laser is described in T. H. Jeys et al., Proc. IRIS Active Systems, Vol. 1, p. 235 (1998). This biosensor is capable of detecting the aerosol concentration of 5 particles per liter of air, but it is extremely expensive and fragile. Other particle counter manufacturers are Met One Instruments Inc. of Grants Pass, Oregon, Particle Measurement Systems, Inc., Boulder, CO, and Terra International, Inc. of Anaheim, California. Based on the design relationship, the construction of these particle counters requires extremely precise optical correction and extremely sensitive sensors and electronics. These products are moving in the direction of laboratory use and are extremely expensive. Therefore, it is not suitable as a detector for field use, and is not suitable as a design dedicated to biological warfare agent detection.

已設計出可偵測流體懸浮過敏原顆粒的各種偵測器,其可在當偵測到空氣樣本中顆粒數目超過一預設最小值時對敏感者提出警告。這些偵測係均描述於Hamburger等人的美國專利案5,646,597、5,969,622、5,986,555、6,008,729和6,087,947號中。這些偵測器均涉及引導一光束通過一環境空氣樣本,使得部分光束將被空氣中的任何顆粒所散射,利用可傳輸對應於預設過敏原大小角度範圍之散射光的光束阻擋裝置,以及一用於偵測該傳輸光線的偵測器。該偵測器所測得的光線若超過一預設值時,則啟動一警報。這些偵測器雖然可根據是否存在有過敏原顆粒來提供警告指示,但是其並不適合用於現場的佈署並且不符合作為偵測生物戰劑之病原偵測器的更嚴格需求。 Various detectors have been devised that detect fluid-suspended allergen particles that alert a sensitive person when it is detected that the number of particles in the air sample exceeds a predetermined minimum. The detections are described in U.S. Patent Nos. 5,646,597, 5,969,622, 5,986,555, 6,008,729, and 6,087,947, each to each of each of each of each Each of these detectors involves directing a beam of light through an ambient air sample such that a portion of the beam will be scattered by any particles in the air, utilizing a beam blocking device that transmits scattered light corresponding to a range of angles of the predetermined allergen size, and a A detector for detecting the transmitted light. If the light measured by the detector exceeds a preset value, an alarm is activated. While these detectors provide warning indications based on the presence or absence of allergen particles, they are not suitable for deployment on site and do not meet the more stringent requirements of pathogen detectors for detecting biological warfare agents.

本發明提供一種改良的病原和顆粒偵測之系統和方法。更明確而言,本發明發展出一種完全利用非彈性散射強度(即來自顆粒的螢光)之獨特角度分佈模式的新穎螢光信號收集方法。理論上和實驗上均已證明顆粒的非彈性散射在後向(最強)和前向(第二強)方向上具有較佳的強度角度分佈(參考文獻1「來自微球簇和色胺酸顆粒的後向強化螢光」Yong-Le Pan等人,四月Opt.第41卷,第2994頁,2002;參考文獻2「微球之散射螢光與不相干拉曼光譜角度和尺寸依賴特性」Igor Veselovskii等人,四月Opt.第41卷,第5783頁,2002)。簡言之,在一實施例中,該系統包括一用以提供具有光源波長之電磁輻射束的激發光源。如二色性分光鏡等第 一波長選擇裝置置於可受到電磁輻射光束照射的位置。第一波長選擇裝置可傳送至少一部分任核具有光源波長的輻射以及反射其他波長的輻射。含顆粒的介質(medium)置於可被電磁輻射光束照射的位置。至少一部分電磁輻射光束在介質內被散射,該散射電磁輻射包括前向散射電磁輻射及後向散射電磁輻射。設置光偵測器以收集前向和後向散射電磁輻射。 The present invention provides an improved system and method for pathogen and particle detection. More specifically, the present invention develops a novel fluorescent signal collection method that utilizes a unique angular distribution pattern of inelastic scattering intensity (i.e., fluorescence from particles). Theoretically and experimentally, it has been demonstrated that the inelastic scattering of particles has a better intensity angular distribution in the backward (strongest) and forward (second strong) directions (Reference 1 "from microsphere clusters and tryptophan particles". Backward Enhanced Fluorescence", Yong-Le Pan et al., April Opt. Vol. 41, p. 2994, 2002; Reference 2, "Scattered and Incompatible Raman Spectral Angle and Size Dependent Characteristics of Microspheres" Igor Veselovskii et al., April Opt. Vol. 41, p. 5783, 2002). Briefly, in one embodiment, the system includes an excitation source for providing a beam of electromagnetic radiation having a source wavelength. A first wavelength selective device such as a dichroic beam splitter is placed at a position where it can be exposed to a beam of electromagnetic radiation. The first wavelength selective device can transmit at least a portion of the radiation having a source wavelength and reflecting other wavelengths. The medium containing the particles is placed in a position that can be illuminated by the beam of electromagnetic radiation. At least a portion of the electromagnetic radiation beam is scattered within the medium, the scattered electromagnetic radiation comprising forward scattered electromagnetic radiation and backscattered electromagnetic radiation. A photodetector is provided to collect forward and backscattered electromagnetic radiation.

本發明亦可視為提供用於偵測病原體及顆粒的方法。在這方面,此類方法的其中一實施例可大略摘要出下列步驟:發射一電磁輻射光束;經由第一波長選擇裝置傳送至少一部分的電磁輻射光束;以該部分電磁輻射光束照射含顆粒之介質,其中該顆粒以前向和後向方向散射該電磁輻射;以第一波長選擇裝置反射至少一部分該後向散射電磁輻射;以及,在第一光學偵測器收集至少一部分該前向和後向散射電磁輻射,從而測定出於前向和後向方向散射該電磁輻射之顆粒的尺寸。 The invention may also be considered to provide methods for detecting pathogens and particles. In this regard, an embodiment of such a method can roughly summarize the steps of: emitting an electromagnetic radiation beam; transmitting at least a portion of the electromagnetic radiation beam via the first wavelength selective device; and irradiating the particle-containing medium with the portion of the electromagnetic radiation beam </ RTI> wherein the particles scatter the electromagnetic radiation in a forward and backward direction; at least a portion of the backscattered electromagnetic radiation is reflected by the first wavelength selective device; and at least a portion of the forward and backward scatter are collected at the first optical detector Electromagnetic radiation, thereby determining the size of the particles that scatter the electromagnetic radiation in the forward and backward directions.

在檢視下列附圖和詳細說明之後,熟習本技術之人士將可更清礎瞭解本發明的其他系統、方法、特徵及優點。本發明的其他此類系統、方法、特徵和優點均屬於本說明書內容及本發明範圍內,並且受到後附申請專利範圍的保護。 Other systems, methods, features, and advantages of the present invention will become apparent to those skilled in the <RTIgt; Other such systems, methods, features and advantages of the present invention are within the scope of the present disclosure and the scope of the present invention and are protected by the scope of the appended claims.

14‧‧‧偵測器 14‧‧‧Detector

60‧‧‧信號 60‧‧‧ signal

62‧‧‧高通濾波器 62‧‧‧High-pass filter

64‧‧‧緩衝器 64‧‧‧buffer

65‧‧‧峰值檢波器 65‧‧‧peak detector

66‧‧‧窗口比較器 66‧‧‧Window Comparator

68‧‧‧數位計數器 68‧‧‧Digital Counter

70‧‧‧顯示板 70‧‧‧ display panel

210‧‧‧光學系統 210‧‧‧Optical system

212‧‧‧激發光源 212‧‧‧Excitation source

214‧‧‧電磁輻射光束 214‧‧‧Electromagnetic radiation beam

216‧‧‧第一波長選擇裝置 216‧‧‧First wavelength selection device

218‧‧‧介質 218‧‧‧Media

220‧‧‧顆粒 220‧‧‧ granules

222‧‧‧前向散射電磁輻射 222‧‧‧ forward scattered electromagnetic radiation

224‧‧‧後向散射電磁輻射 224‧‧‧ Backscattered electromagnetic radiation

226‧‧‧第一光學偵測器 226‧‧‧First optical detector

230A‧‧‧信號除法器 230A‧‧‧Signal divider

230B‧‧‧信號除法器 230B‧‧‧Signal divider

232A‧‧‧放大器 232A‧‧Amplifier

232B‧‧‧放大器 232B‧‧Amplifier

234‧‧‧類比數位轉換器 234‧‧‧ Analog Digital Converter

236‧‧‧窗口比較電路 236‧‧‧Window comparison circuit

238‧‧‧控制輸出顯示器 238‧‧‧Control output display

240‧‧‧低信號偵測電路 240‧‧‧Low signal detection circuit

250‧‧‧功率監控偵測器 250‧‧‧Power Monitoring Detector

252‧‧‧帶通濾光器 252‧‧‧Bandpass filter

254‧‧‧聚焦透鏡 254‧‧‧focus lens

256‧‧‧功率監控透鏡 256‧‧‧Power monitoring lens

260‧‧‧第一光束阻斷透鏡 260‧‧‧First beam blocking lens

262‧‧‧第一光學元件 262‧‧‧First optical component

264‧‧‧第二光束阻斷透鏡 264‧‧‧Second beam blocking lens

266‧‧‧顆粒偵測器 266‧‧‧Particle detector

301‧‧‧顆粒偵測系統 301‧‧‧ particle detection system

310‧‧‧光學系統 310‧‧‧Optical system

312‧‧‧激發光源 312‧‧‧Excitation source

314‧‧‧電磁輻射光束 314‧‧‧Electromagnetic radiation beam

316‧‧‧第一波長選擇裝置 316‧‧‧First wavelength selection device

318‧‧‧介質 318‧‧‧Media

320‧‧‧顆粒 320‧‧‧ particles

322‧‧‧前向散射電磁輻射 322‧‧‧ forward scattered electromagnetic radiation

324‧‧‧後向散射電磁輻射 324‧‧‧ Backscattered electromagnetic radiation

326‧‧‧第一光學偵測器 326‧‧‧First optical detector

330A‧‧‧信號除法器 330A‧‧‧Signal divider

330B‧‧‧信號除法器 330B‧‧‧Signal divider

330C‧‧‧信號除法器 330C‧‧‧Signal divider

332A‧‧‧放大器 332A‧‧Amplifier

332B‧‧‧放大器 332B‧‧Amplifier

332C‧‧‧放大器 332C‧‧Amplifier

334‧‧‧類比數位轉換器 334‧‧‧ Analog Digital Converter

336‧‧‧窗口比較電路 336‧‧‧Window comparison circuit

338‧‧‧控制輸出顯示器 338‧‧‧Control output display

340‧‧‧低信號偵測電路 340‧‧‧Low signal detection circuit

342‧‧‧警報裝置 342‧‧‧Alarm device

350‧‧‧功率監控偵測器 350‧‧‧Power Monitoring Detector

352‧‧‧帶通濾光器 352‧‧‧Bandpass filter

356‧‧‧功率監控透鏡 356‧‧‧Power monitoring lens

360‧‧‧第一光束阻斷透鏡 360‧‧‧First beam blocking lens

364‧‧‧第二光束阻斷透鏡 364‧‧‧Second beam blocking lens

366‧‧‧顆粒偵測器 366‧‧‧Particle detector

370‧‧‧第一光學元件 370‧‧‧First optical component

372‧‧‧第二帶通濾光器 372‧‧‧Second bandpass filter

374‧‧‧聚焦透鏡 374‧‧‧focus lens

376‧‧‧第二光學偵測器 376‧‧‧Second optical detector

參考下列附圖可更加瞭解本發明的多種態樣。圖示內的組件並不需定出其比例尺寸,而是在於清楚圖解本發明之原理。此外,在該數幀附圖中均以相同元件符號來代表相對應的部件。 A wide variety of aspects of the invention will be apparent from the following drawings. The components in the figures are not necessarily to scale, but rather to clearly illustrate the principles of the invention. In addition, the same component symbols are used to denote corresponding components in the drawings.

第1圖係根據本發明第三舉例性實施例之用於一流體懸浮顆粒偵測系統的光學系統。 Figure 1 is an optical system for a fluid suspended particle detection system in accordance with a third exemplary embodiment of the present invention.

第2圖係根據本發明第三實施例並納入第1圖光學系統的顆粒偵測系統方塊圖。 Figure 2 is a block diagram of a particle detection system incorporating the optical system of Figure 1 in accordance with a third embodiment of the present invention.

第3圖係根據本發明第四舉例性實施例之用於一流體懸浮顆粒偵測系統701的光學系統。 Figure 3 is an optical system for a fluid suspended particle detection system 701 in accordance with a fourth exemplary embodiment of the present invention.

第4圖係根據本發明第三實施例並納入第3圖之光學系統的顆粒偵測系統方塊圖。 Figure 4 is a block diagram of a particle detection system of an optical system according to a third embodiment of the present invention and incorporated in Figure 3.

第5圖係米氏散射截面對顆粒半徑的關係圖。 Figure 5 is a plot of the Mie scattering cross section versus particle radius.

第6圖係根據本發明第四舉例性實施例之由類比數位轉換器、窗口比較器電路和控制輸出顯示器所構成之脈波高度測量電路的方塊圖。 Figure 6 is a block diagram of a pulse height measuring circuit constructed by an analog-to-digital converter, a window comparator circuit, and a control output display in accordance with a fourth exemplary embodiment of the present invention.

第7圖係根據本發明第四舉例性實施例之類比數位轉換器的示意圖。 Figure 7 is a schematic diagram of an analog-to-digital converter in accordance with a fourth exemplary embodiment of the present invention.

第7A圖係根據本發明第四舉例性實施例之類比數位轉換器在各點之輸出的圖解說明。 Figure 7A is a graphical illustration of the output of analog-to-digital converters at various points in accordance with a fourth exemplary embodiment of the present invention.

第8圖為說明一粒徑分佈柱狀圖的範例。 Figure 8 is an illustration of an example of a particle size histogram.

第9圖顯示四種代謝物的螢光發光光譜。 Figure 9 shows the fluorescence luminescence spectra of the four metabolites.

第1圖顯示用於根據本發明第一舉例性實施例所作之流體懸浮顆粒偵測器系統中的光學系統。該系統之第一舉例性實施例特別是有關於用來偵測恐怖份子或他人所散播之空氣或水散播性生化恐怖戰劑,但亦可作為都市設施以偵測可能存在於自然界如黴菌或細菌或是如食品和製造工廠等其 他工業設施意外、不慎、自然或刻意釋出有害濃度的其他氣懸或水懸顆粒,以及用於室內清淨的用途被。 Figure 1 shows an optical system for use in a fluid suspended particle detector system in accordance with a first exemplary embodiment of the present invention. The first exemplary embodiment of the system is particularly useful for detecting air or water-dispersing bioterrorism warfare agents spread by terrorists or others, but also as an urban facility to detect possible presence in nature such as mold or Bacteria or such as food and manufacturing plants His industrial facilities are accidentally, inadvertently, naturally or deliberately release other airborne or waterborne particles of harmful concentrations, and for use in indoor cleaning.

「流體傳播顆粒(fluid borne particles)」一詞在此處意指經由空氣和水傳播的顆粒。 The term "fluid borne particles" as used herein means particles that are transmitted via air and water.

「病原體」一詞在此處指任何經由空氣或水媒介的顆粒、生物製劑或毒素,若其在空氣或水源中存在足夠量時可能造成人類潛在性的傷害或甚至死亡。此處「生物製劑(biological agent)」定義為任何的微生物、病原體或感染物質、毒素、生物毒素,或不論來源或製造方法經由任何此類微生物、病原體或感染物質所產生的任何天然、生物工程或合成成分。此類生物製劑包括例如生物毒素、細菌、病毒、立克次氏體、孢子、真菌和原蟲,以及技術中習知的其他任何病原體。 The term "pathogen" as used herein refers to any particle, biological agent or toxin via air or water medium that, if present in sufficient amounts in air or water, may cause potential harm or even death to humans. Herein, "biological agent" is defined as any microorganism, pathogen or infectious substance, toxin, biotoxin, or any natural, bioengineering produced by any such microorganism, pathogen or infectious substance regardless of source or method of manufacture. Or synthetic ingredients. Such biological agents include, for example, biotoxins, bacteria, viruses, rickettsia, spores, fungi, and protozoa, as well as any other pathogen known in the art.

「生物毒素」為活體植物、動物或微生物所產生或衍生出的毒性物質,但亦可藉由化學方法製造或改造。然而,毒素通常由宿主生物所自然產生(即,渦鞭藻毒素係由海藻所產生),但實驗室環境內已可製造出基因改造和/或合成製造的毒素。與微生物相較之下,毒素具有相對較簡單的生化組成物並且無法自我繁殖。在許多方面,生物毒素可視為是一種化學劑。此類生物毒素為例如肉毒素和破傷風毒素、鏈球菌內毒素B、羧黴菌毒素、菎麻毒素(ricin)、渦鞭藻毒素(saxitoxin)、志賀(Shiga)和類志賀毒素、樹突毒素(dendrotoxins)、半環扁尾蛇毒素-b(erabutoxin-b)以及其他已知的毒素。 "Biotoxin" is a toxic substance produced or derived from living plants, animals or microorganisms, but can also be manufactured or modified by chemical methods. However, toxins are usually naturally produced by host organisms (i.e., vortexin is produced by seaweed), but genetically engineered and/or synthetically produced toxins have been produced in the laboratory environment. Compared to microorganisms, toxins have relatively simple biochemical compositions and are unable to self-reproduce. In many ways, a biotoxin can be considered a chemical agent. Such biotoxins are, for example, botulinum toxin and tetanus toxin, streptococcal endotoxin B, carboxytoxin, ricin, saxitoxin, Shiga and Shiga toxin, dendritic toxin ( Dendrotoxins), endocyclic toxin-b (erabutoxin-b) and other known toxins.

該偵測系統的設計為偵測空氣或水傳播的顆粒及產生顯示例如偵測樣本內各種顆粒尺寸範圍中的顆粒數目的輸出值,以及顯示該些顆粒是否為生物性或非生物性顆粒。該系統在顆粒超過正常背景一預設值和/或為可能造成危害之生物有機體或生物製劑時亦可發出警告信號或其他反應。 The detection system is designed to detect air or water-borne particles and to produce an output value that displays, for example, the number of particles in various particle size ranges within the sample, and whether the particles are biological or abiotic particles. The system may also issue a warning signal or other reaction when the particle exceeds a normal background by a predetermined value and/or is a biological organism or biological agent that may cause harm.

第1圖為用於根據本發明第一舉例性實施例之水懸顆粒偵測系統的光學系統210。如第1圖所示,該光學系統210包括一激發光源212,用以提供具有一光源波長的電磁輻射光束214。在一實施例中,第一波長選擇裝置216包括一受到電磁輻射光束214所照射的二色性分光鏡(dichroic beamsplitter)。該第一波長選擇裝置216的構造可傳送至少一部分任何具有該光源波長的輻射以及反射其他波長的輻射。該第一波長選擇裝置216可反射來自激發光源212的可能混附波(spurious spectral emissions)。一部分電磁輻射光束214可被第一波長選擇裝置216反射朝向一功率監控偵測器250。該功率監控偵測器250可與激發光源212聯繫,以及視需要可作為維持該激發光源212恒定輸出功率之反饋迴路中的一部分。可藉由功率監控透鏡256來集中(聚焦)被第一波長選擇裝置216所反射朝向功率監控偵測器250的電磁輻射光束214。 Figure 1 is an optical system 210 for a water suspended particle detection system in accordance with a first exemplary embodiment of the present invention. As shown in FIG. 1, the optical system 210 includes an excitation source 212 for providing an electromagnetic radiation beam 214 having a source wavelength. In one embodiment, the first wavelength selective device 216 includes a dichroic beamsplitter that is illuminated by the beam of electromagnetic radiation 214. The first wavelength selective device 216 is configured to transmit at least a portion of any radiation having the wavelength of the source and to reflect radiation of other wavelengths. The first wavelength selective device 216 can reflect spurious spectral emissions from the excitation source 212. A portion of the electromagnetic radiation beam 214 can be reflected by the first wavelength selective device 216 toward a power monitoring detector 250. The power monitor detector 250 can be coupled to the excitation source 212 and, as needed, as part of a feedback loop that maintains a constant output power of the excitation source 212. The electromagnetic radiation beam 214 that is reflected by the first wavelength selective device 216 toward the power monitoring detector 250 can be concentrated (focused) by the power monitoring lens 256.

含顆粒220的介質218置於可被電磁輻射光束214照射的位置。至少一部分電磁輻射光束214成為在介質218內的散射電磁輻射。該散射電磁輻射包括前向散射電磁輻射222及後向散射電磁輻射224。第一光學偵測器226置於可接 收後向散射電磁輻射224的位置。該後向散射電磁輻射224可藉由第一波長選擇裝置216被反射至第一光學偵測器226。第一波長選擇裝置216和光學偵測器226之間可利用帶通濾光器252以減少來自電磁輻射光束214的任何背向散射光和/或用來選出準備測定之光譜的特定部分。第一波長選擇裝置216和光學偵測器226之間可利用聚焦透鏡254以聚焦朝向光學偵測器226的後向散射電磁輻射224。 The medium 218 containing the particles 220 is placed in a position that can be illuminated by the electromagnetic radiation beam 214. At least a portion of the electromagnetic radiation beam 214 becomes scattered electromagnetic radiation within the medium 218. The scattered electromagnetic radiation includes forward scattered electromagnetic radiation 222 and backscattered electromagnetic radiation 224. The first optical detector 226 is placed in contact The position of the backscattered electromagnetic radiation 224 is received. The backscattered electromagnetic radiation 224 can be reflected to the first optical detector 226 by the first wavelength selective device 216. Bandpass filter 252 may be utilized between first wavelength selective device 216 and optical detector 226 to reduce any backscattered light from electromagnetic radiation beam 214 and/or to select a particular portion of the spectrum to be measured. A focusing lens 254 can be utilized between the first wavelength selective device 216 and the optical detector 226 to focus the backscattered electromagnetic radiation 224 toward the optical detector 226.

如第1圖所示,可引導該前向散射電磁輻射222照射至第一光束阻斷透鏡260。該第一光束阻斷透鏡260的設計可反射電磁輻射光束214中的非散射元素,以避免在光學偵測器上產生眩光。第一光束阻斷透鏡260具有附著於前表面用以反射電磁輻射光束214之非散射元素的材料,例如乙烯。第一光束阻斷透鏡260的其他考量事項已述於專利申請案序號11/193,204內,將其併入於本文中以供參照。 As shown in FIG. 1, the forward scattered electromagnetic radiation 222 can be directed to the first beam blocking lens 260. The first beam blocking lens 260 is designed to reflect non-scattering elements in the electromagnetic radiation beam 214 to avoid glare on the optical detector. The first beam blocking lens 260 has a material, such as ethylene, attached to the front surface for reflecting non-scattering elements of the electromagnetic radiation beam 214. Other considerations for the first beam blocking lens 260 are described in the patent application Serial No. 11/193,204, which is incorporated herein by reference.

該前向散射電磁輻射隨後可被引導至第一光學元件262,其係為一低通濾波器或類似第三舉例性實施例中的波長選擇元件。第一光學元件262容許至少一部分前向散射電磁輻射222通過並反射掉一部分的前向散射電磁輻射222。更明確而言,該第一光學元件262可反射前向散射電磁輻射222的螢光信號部分,同時可讓其餘的前向散射電磁輻射222通過。第二光束阻斷透鏡264可聚焦朝向顆粒偵測器266之前向散射電磁輻射222的通過部分。該顆粒偵測器266可為例如一用於測量該等顆粒220之大小的光二極體(photoiode)。 The forward scattered electromagnetic radiation can then be directed to a first optical element 262, which is a low pass filter or a wavelength selective element like in the third exemplary embodiment. The first optical element 262 allows at least a portion of the forward scattered electromagnetic radiation 222 to pass through and reflect a portion of the forward scattered electromagnetic radiation 222. More specifically, the first optical element 262 can reflect the portion of the fluorescent signal of the forward scattered electromagnetic radiation 222 while allowing the remaining forward scattered electromagnetic radiation 222 to pass. The second beam blocking lens 264 can focus the passing portion of the forward scattered electromagnetic radiation 222 toward the particle detector 266. The particle detector 266 can be, for example, a photodiode for measuring the size of the particles 220.

可引導該前向散射電磁輻射222的反射螢光信號部 分通過介質218而返回後被第一波長選擇裝置216反射朝向光學偵測器226。在第一波長選擇裝置216和光學偵測器226之間可使用聚焦透鏡254來聚焦朝向光學偵測器226的前向散射電磁輻射222之反射螢光信號部分。 a reflective fluorescent signal portion that can direct the forward scattered electromagnetic radiation 222 After being returned through the medium 218, it is reflected by the first wavelength selective device 216 toward the optical detector 226. A focusing lens 254 can be used between the first wavelength selective device 216 and the optical detector 226 to focus the portion of the reflected fluorescent signal toward the forward scattered electromagnetic radiation 222 of the optical detector 226.

第2圖為根據本發明第一舉例性實施例之顆粒偵測系統的方塊圖,其納入第1圖的光學系統210。該光學系統210包括引導電磁輻射光束214進入第一波長選擇裝置216的激發光源212。該電磁輻射光束214通過第一波長選擇裝置216進入介質218,並且一部分的電磁輻射光束214被後向散射至該第一光學偵測器226,以及另一部分的電磁輻射光束214被前向散射朝向該顆粒偵測器266。 2 is a block diagram of a particle detecting system according to a first exemplary embodiment of the present invention, which incorporates the optical system 210 of FIG. The optical system 210 includes an excitation source 212 that directs the beam of electromagnetic radiation 214 into the first wavelength selective device 216. The electromagnetic radiation beam 214 enters the medium 218 through the first wavelength selective device 216, and a portion of the electromagnetic radiation beam 214 is backscattered to the first optical detector 226, and another portion of the electromagnetic radiation beam 214 is forward scattered toward the source. The particle detector 266.

兩個信號除法器(signal divider)230A、230B將第一光學偵測器226和顆粒偵測器266的輸出分別除以功率監控偵測器250的輸出。兩個放大器232A、232B連接至該信號除法器230A、230B的輸出端。一類比數位轉換器234連接至放大器232A、232B。一窗口比較電路(window comparator circuit)236連接至該類比數位轉換器234。一控制輸出顯示器(control and output display unit)238連接至該窗口比較電路236的輸出端。一低信號偵測電路240連接至激發光源212的輸出端,其可提供該電磁輻射光束214的功率強度。該低信號偵測電路240的輸出端亦連接至該控制輸出顯示器238。一警報裝置242亦連接至該控制輸出顯示器238。該控制輸出顯示器238可以是一電腦或客製的軟體/硬體,以控制該顆粒偵測器的操作。 Two signal dividers 230A, 230B divide the outputs of the first optical detector 226 and the particle detector 266 by the output of the power monitor detector 250, respectively. Two amplifiers 232A, 232B are coupled to the output of the signal dividers 230A, 230B. A type of analog to digital converter 234 is coupled to amplifiers 232A, 232B. A window comparator circuit 236 is coupled to the analog to digital converter 234. A control and output display unit 238 is coupled to the output of the window comparison circuit 236. A low signal detection circuit 240 is coupled to the output of the excitation source 212, which provides the power intensity of the beam of electromagnetic radiation 214. The output of the low signal detection circuit 240 is also coupled to the control output display 238. An alarm device 242 is also coupled to the control output display 238. The control output display 238 can be a computer or custom software/hardware to control the operation of the particle detector.

第3圖為用於根據本發明第二舉例性實施例之水懸顆粒偵測系統的光學系統。如第3圖所示,該光學系統310包括激發光源312,以提供具有一光源波長的電磁輻射光束314。一第一波長選擇裝置316,例如二色性分光鏡,係置於可被電磁輻射光束314所照射之位置。該第一波長選擇裝置316的構造可傳送至少一部分之任何具有光源波長的輻射以及反射其他波長的輻射。該第一波長選擇裝置316可反射來自激發光源312的可能混附波。一部分的電磁輻射光束314可被第一波長選擇裝置316反射朝向功率監控偵測器350。該功率監控偵測器350可與激發光源312聯繫,以及視需要可作為維持該激發光源312恒定輸出功率之反饋迴路中的一部分。可藉由功率監控透鏡356來聚焦被第一波長選擇裝置316反射朝向功率監控偵測器350的電磁輻射光束314。 Figure 3 is an optical system for a water suspended particle detecting system according to a second exemplary embodiment of the present invention. As shown in FIG. 3, the optical system 310 includes an excitation source 312 to provide an electromagnetic radiation beam 314 having a source wavelength. A first wavelength selective device 316, such as a dichroic beam splitter, is placed at a position that can be illuminated by the electromagnetic radiation beam 314. The first wavelength selective device 316 is configured to transmit at least a portion of any of the radiation having a source wavelength and to reflect other wavelengths of radiation. The first wavelength selection device 316 can reflect possible aliasing waves from the excitation source 312. A portion of the electromagnetic radiation beam 314 can be reflected by the first wavelength selective device 316 toward the power monitoring detector 350. The power monitor detector 350 can be coupled to the excitation source 312 and, as needed, as part of a feedback loop that maintains a constant output power of the excitation source 312. The electromagnetic radiation beam 314 that is reflected by the first wavelength selective device 316 toward the power monitoring detector 350 can be focused by the power monitoring lens 356.

含顆粒320的介質318置於可被電磁輻射光束314照射的位置。至少一部分電磁輻射光束314可成為該介質318內的散射電磁輻射。該散射電磁輻射包括前向散射電磁輻射322及後向散射電磁輻射324。第一光學偵測器326係設置用以接收後向散射電磁輻射324。該後向散射電磁輻射324可藉由第一波長選擇裝置316被反射至光學偵測器326。第一波長選擇裝置316和光學偵測器326之間可利用帶通濾光器352以減少來自電磁輻射光束314的任何背向散射光和/或用以選出準備測定之光譜的特定部分。第一波長選擇裝置316和光學偵測器326之間可利用聚焦透鏡354以聚焦朝向光學偵測器326的後向散射電磁輻射324。 The medium 318 containing the particles 320 is placed in a position that can be illuminated by the electromagnetic radiation beam 314. At least a portion of the electromagnetic radiation beam 314 can be the scattered electromagnetic radiation within the medium 318. The scattered electromagnetic radiation includes forward scattered electromagnetic radiation 322 and back scattered electromagnetic radiation 324. The first optical detector 326 is configured to receive backscattered electromagnetic radiation 324. The backscattered electromagnetic radiation 324 can be reflected to the optical detector 326 by the first wavelength selective device 316. Bandpass filter 352 may be utilized between first wavelength selective device 316 and optical detector 326 to reduce any backscattered light from electromagnetic radiation beam 314 and/or to select a particular portion of the spectrum to be measured. A focusing lens 354 can be utilized between the first wavelength selective device 316 and the optical detector 326 to focus the backscattered electromagnetic radiation 324 toward the optical detector 326.

如第3圖所示,該前向散射電磁輻射322可被引導而照射至第一光束阻斷透鏡360。該第一光束阻斷透鏡360係設計用以反射電磁輻射光束314的非散射元素,而可避免光學偵測器上的眩光。該前向散射電磁輻射隨後可被引導至一光學元件370,其為第四舉例性實施例中的第二波長選擇裝置316。該第一光學元件370容許至少一部分前向散射電磁輻射322的通過,並反射一部分的前向散射電磁輻射322。更明確而言,該第一光學元件370可反射前向散射電磁輻射322的螢光信號部分,同時可讓其餘的前向散射電磁輻射322通過。第二光束阻斷透鏡364可聚焦朝向顆粒偵測器366的前向散射電磁輻射322之通過部分。該顆粒偵測器366可為例如一用於測定該顆粒320之大小的光二極體。 As shown in FIG. 3, the forward scattered electromagnetic radiation 322 can be directed to illuminate the first beam blocking lens 360. The first beam blocking lens 360 is designed to reflect non-scattering elements of the electromagnetic radiation beam 314 while avoiding glare on the optical detector. The forward scattered electromagnetic radiation can then be directed to an optical element 370, which is the second wavelength selective device 316 in the fourth exemplary embodiment. The first optical element 370 allows passage of at least a portion of the forward scattered electromagnetic radiation 322 and reflects a portion of the forward scattered electromagnetic radiation 322. More specifically, the first optical element 370 can reflect the portion of the fluorescent signal of the forward scattered electromagnetic radiation 322 while allowing the remaining forward scattered electromagnetic radiation 322 to pass. The second beam blocking lens 364 can focus the passing portion of the forward scattered electromagnetic radiation 322 toward the particle detector 366. The particle detector 366 can be, for example, a photodiode for determining the size of the particle 320.

可引導該前向散射電磁輻射322的反射螢光信號部分朝向第二光學偵測器376。第一光學元件370和第二光學偵測器376之間可使用一第二帶通濾光器372,以減少來自電磁輻射光束314的任何背向散射光和/或用以選出準備測定之光譜的特定部分。第一光學元件370和第二光學偵測器376之間可利用聚焦透鏡374以聚焦朝向第二光學偵測器376之前向散射電磁輻射322的反射螢光信號部分。該第二光學偵測器376可例如為一光電倍增管(PMT)光學偵測器。 The portion of the reflected fluorescent signal that can direct the forward scattered electromagnetic radiation 322 is directed toward the second optical detector 376. A second band pass filter 372 can be used between the first optical element 370 and the second optical detector 376 to reduce any backscattered light from the electromagnetic radiation beam 314 and/or to select a spectrum to be measured. a specific part. A focusing lens 374 can be utilized between the first optical element 370 and the second optical detector 376 to focus the portion of the reflected fluorescent signal that scatters the electromagnetic radiation 322 toward the second optical detector 376. The second optical detector 376 can be, for example, a photomultiplier tube (PMT) optical detector.

第4圖為根據本發明第二舉例性實施例之顆粒偵測系統301的方塊圖,其納入第3圖之光學系統310。該光學系統310包括引導電磁輻射光束314進入第一波長選擇裝置316的激發光源312。該電磁輻射光束314通過第一波長選擇裝置 316進入介質318中,並且一部分的電磁輻射光束314被後向散射至該第一光學偵測器326以及另一部分的電磁輻射光束314被前向散射朝向顆粒偵測器366。 4 is a block diagram of a particle detection system 301 in accordance with a second exemplary embodiment of the present invention, which incorporates optical system 310 of FIG. The optical system 310 includes an excitation source 312 that directs a beam of electromagnetic radiation 314 into the first wavelength selective device 316. The electromagnetic radiation beam 314 passes through the first wavelength selection device 316 enters the medium 318 and a portion of the electromagnetic radiation beam 314 is backscattered to the first optical detector 326 and another portion of the electromagnetic radiation beam 314 is forward scatter toward the particle detector 366.

三個信號除法器330A、330B、330C將第一光學偵測器326、顆粒偵測器366和第二光學偵測器376的輸出分別除以功率監控偵測器350的輸出。三個放大器332A、332B、332C連接至該信號除法器330A、330B、330C的輸出。一類比數位轉換器334連接至放大器332A、332B、332C。一窗口比較電路336被連接至該類比數位轉換器334。一控制輸出顯示器338連接至該窗口比較電路336的輸出端。一低信號偵測電路340連接至激發光源312的輸出端,其提供該電磁輻射光束314的功率強度。該低信號偵測電路340的輸出亦連接至該控制輸出顯示器338。一警報裝置342亦連接至該控制輸出顯示器338。該控制輸出顯示器338可以是一電腦或客製化軟體/硬體,用以控制該顆粒偵測器的操作。 The three signal dividers 330A, 330B, 330C divide the outputs of the first optical detector 326, the particle detector 366, and the second optical detector 376 by the output of the power monitor detector 350, respectively. Three amplifiers 332A, 332B, 332C are coupled to the outputs of the signal dividers 330A, 330B, 330C. A type of analog to digital converter 334 is coupled to amplifiers 332A, 332B, 332C. A window comparison circuit 336 is coupled to the analog to digital converter 334. A control output display 338 is coupled to the output of the window comparison circuit 336. A low signal detection circuit 340 is coupled to the output of the excitation source 312, which provides the power level of the beam of electromagnetic radiation 314. The output of the low signal detection circuit 340 is also coupled to the control output display 338. An alarm device 342 is also coupled to the control output display 338. The control output display 338 can be a computer or a customized software/hardware for controlling the operation of the particle detector.

該系統設計係根據顆粒大小相當於光波長的米氏(Mie)散射原理。在米氏散射狀況中,散射光的角度分佈和強度皆與顆粒的大小和形狀密切相關。散射的特徵為具有下列的特性:1)該散射光聚焦於前向和後向之方向;2)該散射光強度的角度分佈情形對散射顆粒的大小極為敏感;以及3)該顆粒的散射截面以單調但複雜的方式與顆粒的大小成比例。利用可見光,例如波長0.67微米之可見雷射二極光輸出光束,該米氏散射法適合用於偵測和定性微米級範圍的懸浮顆粒。第5圖為說明米氏散射截面與顆粒半徑之間的關係圖。 The system design is based on the Mie scattering principle of particle size equivalent to the wavelength of light. In the Mie scattering state, the angular distribution and intensity of the scattered light are closely related to the size and shape of the particles. The scattering is characterized by the following characteristics: 1) the scattered light is focused in the forward and backward directions; 2) the angular distribution of the scattered light intensity is extremely sensitive to the size of the scattering particles; and 3) the scattering cross section of the particle It is proportional to the size of the particles in a monotonous but complex way. Using visible light, such as a visible laser dipole light output beam having a wavelength of 0.67 microns, the Mie scattering method is suitable for detecting and characterizing suspended particles in the micron range. Figure 5 is a graph showing the relationship between the Mie scattering cross section and the particle radius.

該根據本發明第二舉例性實施例,偵測系統301的光學系統310係利用散射角度與顆粒大小成比例的原理,利用置於通過樣本之光路徑上的第一光束阻斷透鏡360來除去預設範圍之外的散射光。由於如第5圖所述與描繪般,該顆粒的散射截面以單調但複雜方式與顆粒大小成比例,該顆粒偵測器366係設計成可藉由分辨所測得之脈波高度的差異來偵測樣本內顆粒大小的分佈情形。因此,從顆粒偵測器366輸出之電脈衝的高度取決於顆粒的尺寸。 According to a second exemplary embodiment of the present invention, the optical system 310 of the detection system 301 is removed using a first beam blocking lens 360 placed on the light path through the sample using the principle that the scattering angle is proportional to the particle size. Scattered light outside the preset range. Since the scattering cross section of the particle is proportional to the particle size in a monotonous but complex manner as depicted and depicted in Figure 5, the particle detector 366 is designed to resolve the difference in measured pulse height by Detect the distribution of particle size within the sample. Therefore, the height of the electrical pulse output from the particle detector 366 depends on the size of the particle.

如第4圖所示,顆粒偵測器366的輸出端係連接至第二信號除法器330B的一輸入端,同時該功率監控偵測器350(其相當於激發光源312)的輸出端連接至第二信號除法器330B的另一輸入端,以及從第二信號除法器330B輸出這些信號的比值。第6圖係由本發明第二舉例性實施例中類比數位轉換器334、窗口比較電路336及控制輸出顯示器338所構成之脈衝高度測量電路的方塊圖,同時第7圖為更詳細說明該類比數位轉換器334的略圖。該顆粒偵測器366的輸出可為一脈衝信號,例如於第6圖中所繪示一系列類比脈衝信號中的信號60,各脈衝代表介質318內一種顆粒的散射光,並且該脈衝之高度與該顆粒的大小成比例。為了除去DC背景,來自顆粒偵測器366的各個輸入脈衝(incoming pluse)均通過一高通濾波器62,然後通過一緩衝器64而抵至峰值檢波器65,其將可測量出該輸入脈衝的高度。峰值檢波器65的輸出將為一系列具有脈衝高度資料的脈衝計數信號。類比數位轉換器334和峰值偵測電路的一實施例詳細說明於第7圖中, 第7A圖繪示該電路中各點的脈衝輸出值。第7A圖中的「PEAK OUT」輸出信號被傳送至窗口比較電路336以進行分類。繪示於第7A圖的其他脈衝為時間和啟動信號,以通知該窗口比較電路336擷取及儲存該數據。 As shown in FIG. 4, the output of the particle detector 366 is coupled to an input of the second signal divider 330B, and the output of the power monitor detector 350 (which is equivalent to the excitation source 312) is coupled to The other input of the second signal divider 330B, and the ratio of the signals output from the second signal divider 330B. Figure 6 is a block diagram of a pulse height measuring circuit composed of an analog-to-digital converter 334, a window comparing circuit 336, and a control output display 338 in the second exemplary embodiment of the present invention, and Figure 7 is a more detailed description of the analogous digits. A sketch of converter 334. The output of the particle detector 366 can be a pulse signal, such as the signal 60 in a series of analog pulse signals depicted in FIG. 6, each pulse representing the scattered light of a particle in the medium 318, and the height of the pulse It is proportional to the size of the particles. In order to remove the DC background, individual input pulses from the particle detector 366 pass through a high pass filter 62 and then through a buffer 64 to the peak detector 65, which will measure the input pulse. height. The output of peak detector 65 will be a series of pulse count signals with pulse height data. An embodiment of the analog to digital converter 334 and the peak detection circuit is illustrated in detail in FIG. Figure 7A shows the pulse output values for each point in the circuit. The "PEAK OUT" output signal in Fig. 7A is sent to the window comparison circuit 336 for classification. The other pulses depicted in Figure 7A are time and enable signals to inform the window comparison circuit 336 to retrieve and store the data.

該窗口比較電路336具有一系列窗口比較器66(第6圖之實施例中標示為1~10),分別用以偵測在預設電壓範圍內(窗電壓,window voltage)之脈衝。各窗口比較器66僅在當該輸入脈衝高度落於其窗電壓範圍(例如,比較器#5為5至7.5毫伏特)內時,傳送一信號至其相關的數位計數器68。該相關數位計數器68(塊,bin)的輸出端係連接至一顯示板70,其將顯示各粒徑尺寸的顆粒數。因此,該控制輸出顯示器338可包括由發光二極體(LED)陣列來點亮的條形圖,該等發光二極體根據各顆粒尺寸來自相關計數器的輸入值而依序點亮,以產生粒徑分佈的柱狀圖。該條形圖中不同粒徑可具有不同的顏色。該輸出值亦可、或者連接至一程式化電腦以在其銀幕上顯示粒徑分佈的柱狀圖。 The window comparison circuit 336 has a series of window comparators 66 (labeled 1 to 10 in the embodiment of FIG. 6) for detecting pulses within a predetermined voltage range (window voltage). Each window comparator 66 transmits a signal to its associated digital counter 68 only when the input pulse height falls within its window voltage range (e.g., comparator #5 is 5 to 7.5 millivolts). The output of the associated digital counter 68 (block) is coupled to a display panel 70 which will display the number of particles of each particle size. Accordingly, the control output display 338 can include a bar graph that is illuminated by an array of light emitting diodes (LEDs) that are sequentially illuminated according to input values from respective counters of respective particle sizes to produce A histogram of the particle size distribution. The different particle sizes in the bar graph can have different colors. The output value can also be connected to a stylized computer to display a histogram of the particle size distribution on its screen.

該窗口比較電路336具有複數個窗口比較器66和數位計數器68以計算在目標範圍內之對應於粒徑的脈衝。在第6圖中,顯示10個此類的塊。然而,從1至7微米的粒徑之間以0.5微米的間隔可提供14塊。若需要較小或較大的粒徑範圍時可提供較少或較多的比較器和計數器,例如介於1至5微米的較窄病原體大小範圍。第8圖為說明粒徑大小分佈之柱狀圖的一實施例。其雖然顯示從1至19微米的分佈範圍,但是應瞭解可程式化控制輸出顯示器338可以顯示1~7微米 較窄範圍或任何所欲範圍的粒徑分佈柱狀圖。該控制輸出顯示器338的輸出端亦可連接至一視覺和/或聽覺警報裝置342,例如位於外殼前端的警示燈及蜂鳴器等。 The window comparison circuit 336 has a plurality of window comparators 66 and a digital counter 68 to calculate pulses corresponding to the particle size within the target range. In Figure 6, 10 such blocks are shown. However, 14 pieces can be provided at intervals of 0.5 μm between the particle sizes of 1 to 7 μm. Fewer or more comparators and counters may be provided if a smaller or larger particle size range is desired, such as a narrower range of pathogen sizes between 1 and 5 microns. Fig. 8 is a view showing an embodiment of a histogram of particle size distribution. Although it shows a distribution range from 1 to 19 microns, it should be understood that the programmable control output display 338 can display 1 to 7 microns. A histogram of particle size distribution over a narrower range or any desired range. The output of the control output display 338 can also be coupled to a visual and/or audible alarm device 342, such as a warning light and buzzer at the front end of the housing.

可使用任何適合的軟體來以產生該輸出顯示柱狀圖,例如德州Austin市國家儀器公司供應的LabView軟體。若一病原體或生物製劑粒徑範圍內的計數量超過正常環境之預設濃度時,此軟體亦可用於產生啟動警報裝置342的輸出。此將有助於降低或甚至消除誤報的危險。該電腦的輸出亦可用於觸發一更精細的生物製劑偵測裝置,例如一利用PCR技術的炭疽菌偵測儀。此結合偵測法將具有成本效益以及進一步降低誤報的危險。 Any suitable software can be used to generate the output display histogram, such as the LabView software supplied by National Instruments, Austin, Texas. The software can also be used to generate an output of the activation alarm 342 if the counted amount within the particle size range of a pathogen or biological agent exceeds a predetermined concentration of the normal environment. This will help reduce or even eliminate the risk of false positives. The computer's output can also be used to trigger a more sophisticated biologic detection device, such as an anthrax detector using PCR technology. This combined detection method will be cost effective and further reduce the risk of false positives.

在本發明的一改良配置中,由於已知道用於處理此類物質的處理程序,並已知對於該處理程序中所使用的儀器具有獨特的識別尺寸分佈模式,因此可將該懸浮顆粒之尺寸分佈的柱狀圖與已知的武器化生物製劑的分佈圖相比較。因此,本發明之偵測系統可提供可能來源之生物製劑製造商的鑑識資訊。 In a modified configuration of the present invention, since the processing procedure for processing such substances is known, and it is known that the instrument used in the processing program has a unique identification size distribution pattern, the size of the suspended particles can be The histogram of the distribution is compared to the profile of known weaponized biological agents. Thus, the detection system of the present invention can provide forensic information from manufacturers of biologics from potentially available sources.

如上所述,最可能被用於恐怖攻擊的生物製劑之粒徑範圍介於1至7微米之間。下表1顯示疾病管制中心所記載之生物恐怖戰劑種類的特性: As noted above, biological agents most likely to be used in terrorist attacks range in size from 1 to 7 microns. Table 1 below shows the characteristics of the bioterrorist agent types documented by the Centers for Disease Control:

環境空氣中自然存在之大小約介於1至7微米的流體懸浮顆粒極微量且具有恒定濃度。都會區域及突然發生的局部粉塵源的煙霧侵入粒徑範圍的峰值分別為0.3微米和5微米。在花季時,空氣中亦可能存在花粉和其他的過敏原,以及過敏原顆粒的大小介於約5至50微米之間。因此,這些天然的懸浮顆粒中僅有少數落在生化戰劑的粒徑範圍內(1至7微米)。此外,黴菌雖然具有約1至5微米的粒徑,但是在任何特定區域內的黴菌顆粒數通常不會突然地改變。因此根據第四舉例性實施例之該偵測系統301的設計可偵測在此特定尺寸範圍內的粒徑,並以0.5微米之間隔來產生代表該粒徑偵測範圍的輸出。任何顆粒尺寸介於1至7微米內之懸浮顆粒數目的突然及區域性增加最可能為刻意地釋出侵略性生物戰劑或病原體。該系統可設定為偵測和儲存所欲顆粒大小範圍內之顆粒天然背景濃度,然後利用此背景濃度作為其後輸出柱狀圖的比較濃度,以在偵測到顆粒突然增加的情形時啟動該警報器。第8圖的粒徑分佈柱狀圖顯示一可能的危險狀態,在圖中,介於1至7微米粒徑範圍內所偵測的顆粒數目已遠超過正常值。 Fluid suspension particles naturally present in ambient air having a size of between about 1 and 7 microns are extremely small and have a constant concentration. The peaks of the smoke intrusion particle size of the metropolitan area and the sudden occurrence of local dust sources are 0.3 micrometers and 5 micrometers, respectively. During the flower season, pollen and other allergens may also be present in the air, and the size of the allergen particles is between about 5 and 50 microns. Therefore, only a few of these natural suspended particles fall within the particle size range of the biochemical warfare agent (1 to 7 microns). Further, although the mold has a particle diameter of about 1 to 5 μm, the number of mold particles in any specific region does not usually change abruptly. Therefore, the detection system 301 according to the fourth exemplary embodiment is designed to detect the particle size within the specific size range and to generate an output representing the particle size detection range at intervals of 0.5 micrometers. The sudden and regional increase in the number of suspended particles with any particle size between 1 and 7 microns is most likely to deliberately release aggressive biological warfare agents or pathogens. The system can be configured to detect and store the natural background concentration of the particles within the desired particle size range and then use the background concentration as the comparative concentration of the subsequent output histogram to initiate the detection of a sudden increase in particle size. Alarm. The particle size distribution histogram of Fig. 8 shows a possible dangerous state in which the number of particles detected in the range of 1 to 7 micron particle size has far exceeded the normal value.

雖然如上所述之顆粒偵測系統無法分辨特定的顆粒,但由於在正常都市空氣環境中,此目標範圍內的懸浮顆 粒通常相對較為稀少,故其可作為警告懸浮生物戰劑攻擊的一種敏感和具成本效益的方法。大小落在此範圍內的顆粒可能侵入人類肺部而產生可能的傷害或甚至造成吸入者死亡。該警報裝置342可對附近民眾提出警告而立刻進行疏散以減少暴露於該毒劑中的危險。 Although the particle detection system described above cannot distinguish specific particles, it is suspended in this target range in a normal urban air environment. Granules are usually relatively sparse, so they can be used as a sensitive and cost-effective method to warn of suspended biological warfare agents. Particles falling within this range may invade the human lungs and cause possible injury or even death of the inhaler. The alarm device 342 can promptly evacuate the nearby population to reduce the risk of exposure to the poison.

該偵測系統301亦可用於偵測工廠中有害粉塵的危險程度。例如,有害石綿纖維的大小約為5微米,其通常具有約5微米或更長的長度以及約1-2微米的直徑。若將大小介於1-5微米間的鈹塵被吸入肺部時亦會造成傷害。該偵測系統301可置於含石綿的建築物內,或當建築工人在此類建築物內工作時,以便在偵測到1至5微米範圍內之異常峰值時產生警告信號,其表示空氣中存在危險量的石綿纖維。同樣,該偵測系統301可置於製造含鈹零件之工人的附近,以便當介於1至5微米的顆粒數目突然增加時產生警告信號,其表示鈹塵可能已達到危險的濃度。該偵測系統301於正常情況下雖然無法分辨在該相同粒徑範圍內的石綿或鈹塵,但是當工作於石綿或鈹環境下時若此粒徑範圍內的顆粒突然增加應聽從可能存在危險狀態的指示立刻疏散該區域之後再作進一步的檢測。 The detection system 301 can also be used to detect the danger of harmful dust in the factory. For example, the harmful asbestos fibers are about 5 microns in size, which typically have a length of about 5 microns or more and a diameter of about 1-2 microns. Damage can also be caused if whisk dust between 1-5 microns is inhaled into the lungs. The detection system 301 can be placed in a building containing asbestos or when a construction worker is working in such a building to generate a warning signal when an abnormal peak in the range of 1 to 5 microns is detected, which represents air There is a dangerous amount of asbestos fibers. Likewise, the detection system 301 can be placed in the vicinity of a worker making a defective part to generate a warning signal when the number of particles between 1 and 5 microns suddenly increases, indicating that the dust may have reached a dangerous concentration. The detection system 301 can not distinguish the asbestos or dust in the same particle size range under normal conditions, but when working in the asbestos or sputum environment, if the particles in the particle size range suddenly increase, it may be dangerous to listen. The indication of the status immediately evacuates the area for further testing.

同樣,該偵測系統301亦可被用於無菌製造工廠,例如食品或醫藥製造廠,以連續監控微生物的溢出,而可在第一時間採取緊急的補救措施。同樣,該偵測系統301已被用作一持續監控系統,以便根據無塵室的要求,提醒工廠管理人有關微生物偵測的歷史數據和趨勢資訊。 Similarly, the detection system 301 can also be used in aseptic manufacturing facilities, such as food or pharmaceutical manufacturing plants, to continuously monitor the spillage of microorganisms, and emergency remedial measures can be taken at the first time. Similarly, the detection system 301 has been used as a continuous monitoring system to alert the plant manager of historical data and trend information regarding microbiological detection based on the requirements of the clean room.

在上述偵測系統301內,係使用兩階段的偵測及鑑別過程,該具有光學系統310的系統首先將落在該包含目標粒徑範圍之預設角度範圍以外的散射光除去。接著,根據脈波高度來識別所偵得輸出脈衝,計算各高度的脈波數目並轉換成例如0.2微米內的粒徑,並將結果顯示為柱狀圖,並且每隔適當的時間間隔便產生一新的柱狀圖以說明顆粒分佈情形的改變。然而,除了以粒徑分佈柱狀圖顯示之外,該偵測系統301的光學部分或可配置成僅將相當於1至7微米粒徑範圍的散射光信號部分引導至偵測器14,以及偵測系統301的其餘部分則配置成當偵測系統301的輸出若超過一預設閥值時會發出一警告信號。此將提供較不準確的輸出,並且無法判斷在該偵測大小範圍內的粒徑識別,但若有相當於已知懸浮病原體、過敏原或如鈹塵或石綿等其他有害顆粒之大小範圍內的顆粒數目不尋常大量增加時,仍能產生一相對準確的警報。第3圖的光學系統301僅需改良成可提供較大的中央阻斷區,以阻斷尺寸大於約7微米之顆粒的散射光,並且該輸出電路被改良成可在顆粒偵測器366的輸出端提供一閥值鑑別器,以在該偵測信號若高於所選擇之閥值時,從該鑑別器提供一輸出信號來啟動一警報器。 In the detection system 301 described above, a two-stage detection and discrimination process is employed, the system having the optical system 310 first removing scattered light that falls outside the predetermined angular range including the target particle size range. Next, the detected output pulse is identified based on the pulse height, the number of pulses at each height is calculated and converted to a particle size of, for example, 0.2 microns, and the result is displayed as a histogram and generated at appropriate intervals. A new histogram to illustrate the change in particle distribution. However, in addition to being displayed in a histogram of particle size distribution, the optical portion of the detection system 301 can be configured to direct only portions of the scattered light signal corresponding to a particle size range of 1 to 7 microns to the detector 14, and The remainder of the detection system 301 is configured to issue a warning signal when the output of the detection system 301 exceeds a predetermined threshold. This will provide a less accurate output and will not be able to determine particle size identification within the detection size range, but if it is within the size range of known suspended pathogens, allergens or other harmful particles such as whisk or asbestos A relatively accurate increase in the number of particles can still produce a relatively accurate alarm. The optical system 301 of FIG. 3 need only be modified to provide a larger central blocking zone to block scattered light of particles larger than about 7 microns in size, and the output circuit is modified to be available in the particle detector 366. The output provides a threshold discriminator to provide an output signal from the discriminator to activate an alarm when the detected signal is above a selected threshold.

本發明的病原體偵測器可用於各種用途。例如,病原體偵測器可實施成現場人員使用的電池供電式可攜、手持偵測器。在此情況下,其外殼可容納光學設備和依尺寸範圍來計算顆粒的電路,以及具有用以顯示各粒徑之目前顆粒計數的顯示器,如一LED顯示器。其亦可包含一傳輸器,以傳 送無線信號至一基地台。其亦可包含一聲音警報器及一用以提示雷射電力不足的警示燈。亦可提供用於辨公大樓等建築物內的獨立式、桌上型儀器。此獨立式、桌上型儀器類似用於現場的機型,但其經由一AC/DC轉換器而使用牆壁上的標準電源插座來供電。在後者的情況,該偵測器可提供對辨公桌上被生物戰劑所污染之信件或包裹的保護。 The pathogen detector of the present invention can be used in a variety of applications. For example, the pathogen detector can be implemented as a battery powered portable, handheld detector for field personnel. In this case, the housing can accommodate optical devices and circuitry for calculating particles by size range, as well as displays having current particle counts for each particle size, such as an LED display. It can also contain a transmitter to transmit Send wireless signals to a base station. It may also include an audible alarm and a warning light to indicate that the laser power is insufficient. Stand-alone, desktop instruments for use in buildings such as buildings are also available. This stand-alone, desktop instrument is similar to the one used in the field, but it is powered by an AC/DC converter using a standard power outlet on the wall. In the latter case, the detector provides protection against letters or parcels contaminated with biological warfare agents on the table.

該偵測器亦可作為一多功能建築物保全系統中的一部分,其包括置於不同房間內並連接至中央監控電腦或控制台的多台偵測器。可程式化該控制台以監控各房間的顆粒數,及分析任何病原體大小顆粒的異常增加來源,以及預測病源體顆粒在該建築物內的可能散播模式。該偵測器可利用實體線路相連接,或具有無線電傳送器以便將資料傳送至中央控制台,以分析任何生物戰劑顆粒增加之來源以及任何生物戰劑煙塵的可能擴散模式。 The detector can also be part of a multi-purpose building security system that includes multiple detectors placed in different rooms and connected to a central monitoring computer or console. The console can be programmed to monitor the number of particles in each room, and to analyze the source of abnormal growth of any pathogen-sized particles, as well as to predict the likely pattern of distribution of pathogen particles within the building. The detector can be connected using a physical line or have a radio transmitter to transmit data to a central console to analyze the source of any increase in biological warfare agent particles and the possible diffusion patterns of any biological warfare agent soot.

揭示於此處的流體懸浮顆粒偵測器亦可用於監控無塵室,以防可能之污染和/或材料損失。 The fluid suspended particle detector disclosed herein can also be used to monitor clean rooms to prevent possible contamination and/or material loss.

較大範圍地利用偵測系統301時,僅在符合下列兩種情況之下啟動該警報裝置342:(1)當偵測到在預設粒徑範圍(約1至約7奈米)內的氣懸顆粒數目突然增加時;以及(2)當利用如下述之雷射誘發螢光偵測到生物有機體、生物戰劑或有機物質時。 When the detection system 301 is used to a greater extent, the alarm device 342 is activated only when the following two conditions are met: (1) when a predetermined particle size range (about 1 to about 7 nm) is detected. When the number of aerosol particles suddenly increases; and (2) when a biological organism, a biological warfare agent, or an organic substance is detected using laser-induced fluorescence as described below.

粒徑感測器本身具有環境顆粒誤報的缺點。若該病原偵測系統301為結合有利用紫外線誘發螢光感測器以分辨生物性或非生生物性顆粒之顆粒尺寸測定能力的生物有機體 或生物戰劑辨認偵測器時,可進一步減少這些誤報的情形。本發明之偵測系統301包括一第一光學偵測器326和一具有雷射誘發螢光感測器以偵測生物有機體之代謝物或如生物戰劑等生物製劑的第二光學偵測器376。更明確而言,該光學系統310包括一可在約270至約410奈米波長,較佳為在約350至約410奈米下操作的激發光源312。當生物製劑含有三種主要代謝物:色胺酸,其通常約270奈米(在約220至約300奈米範圍內)下發出螢光;菸醯胺腺嘌呤雙核苷(NADH),其通常在約340奈米(從約300至約400奈米範圍)下發出螢光;以及核黃素(riboflavin),其通常在約400奈米(從約320至約420奈米範圍)下發出螢光的情況下,選擇約270至約410奈米波長。然而,該激發光源312較佳為具有約350至約410奈米的波長。此波長確保可激發生物製劑內上述三種主要代謝物中的兩種,即生物製劑NADH和核黃素,但不激發其他干擾物質,如柴油引擎廢氣和其他如粉塵或爽身粉等惰性顆粒。因此,在第四實施例中,係使激發光源312的遴選波長範圍能夠保留激發NADH和核黃素之螢光的能力(上述激發色胺酸的能力),同時不激發其他如柴油廢氣等干擾物。此步驟可減少因柴油廢氣(可被如266奈米之光線等短UV波長所激發)而產生的誤報。 The particle size sensor itself has the disadvantage of environmental particle false alarms. If the pathogen detection system 301 is a biological organism that combines the ability to determine the particle size of a biological or non-biobiotic particle using an ultraviolet-induced fluorescence sensor. These false positives can be further reduced when the biological warfare agent recognizes the detector. The detection system 301 of the present invention includes a first optical detector 326 and a second optical detector having a laser-induced fluorescence sensor to detect metabolites of biological organisms or biological agents such as biological warfare agents. 376. More specifically, the optical system 310 includes an excitation source 312 that is operable at a wavelength of from about 270 to about 410 nanometers, preferably from about 350 to about 410 nanometers. When the biologic contains three major metabolites: tryptophan, which typically emits fluorescence at about 270 nm (in the range of about 220 to about 300 nm); the nicotinamide adenine dinucleoside (NADH), which is usually Fluorescence is emitted at about 340 nm (from about 300 to about 400 nm); and riboflavin, which typically emits fluorescence at about 400 nm (from about 320 to about 420 nm) In the case, select about 270 to about 410 nm wavelength. However, the excitation source 312 preferably has a wavelength of from about 350 to about 410 nanometers. This wavelength ensures that two of the three major metabolites in the biologic, the biological agents NADH and riboflavin, can be excited, but do not excite other interfering substances such as diesel engine exhaust and other inert particles such as dust or talcum powder. Therefore, in the fourth embodiment, the selection wavelength range of the excitation light source 312 is capable of retaining the ability to excite the fluorescence of NADH and riboflavin (the above-described ability to excite tryptonic acid) while not exciting other interferents such as diesel exhaust gas. This step reduces false alarms caused by diesel exhaust (which can be excited by short UV wavelengths such as 266 nm).

第9圖顯示上述四種代謝物的螢光光譜。光譜分析,特別該些利用不同激發波長的光譜分析,可探測微生物的組成成份,並可將所產生的資料用於微生物的偵測和分類上。 Figure 9 shows the fluorescence spectra of the above four metabolites. Spectral analysis, especially the spectral analysis using different excitation wavelengths, can detect the composition of microorganisms and can be used to detect and classify microorganisms.

該光學偵測器326、376的輸出端係分別連接至除法器330A、330C,進而經由放大器330A、330C和類比數位轉換器334連接至控制顯示裝置338,從而連接至警報裝置342。 The outputs of the optical detectors 326, 376 are coupled to dividers 330A, 330C, respectively, and are coupled to control display 338 via amplifiers 330A, 330C and analog-to-digital converter 334 for connection to alarm device 342.

必需強調的是,上述本發明實施例,特別指任何「較佳」實施例為可行的實施例,僅為幫助更清礎瞭解本發明之原理而作的說明。上述本發明之實施例可進行許多不同的改良,但其實質上仍未偏離本發明的精神和原理。全部此類的改良和變化均屬於本文揭示內容及本發明範圍內,並且受到下列申請專利範圍的保護。 It is to be understood that the above-described embodiments of the present invention are intended to be illustrative of the preferred embodiments of the invention. Many different modifications of the embodiments of the invention described above are possible without departing from the spirit and scope of the invention. All such improvements and variations are within the scope of the disclosure and the scope of the invention, and are protected by the scope of the following claims.

210‧‧‧光學系統 210‧‧‧Optical system

212‧‧‧激發源 212‧‧‧ excitation source

214‧‧‧電磁輻射束 214‧‧‧Electromagnetic radiation beam

216‧‧‧第一波長選擇裝置 216‧‧‧First wavelength selection device

218‧‧‧介質 218‧‧‧Media

220‧‧‧顆粒 220‧‧‧ granules

222‧‧‧前向散射電磁輻射 222‧‧‧ forward scattered electromagnetic radiation

224‧‧‧後向散射電磁輻射 224‧‧‧ Backscattered electromagnetic radiation

226‧‧‧第一光學偵測器 226‧‧‧First optical detector

250‧‧‧功率監控偵測器 250‧‧‧Power Monitoring Detector

252‧‧‧帶通濾光器 252‧‧‧Bandpass filter

254‧‧‧聚焦透鏡 254‧‧‧focus lens

256‧‧‧功率監控透鏡 256‧‧‧Power monitoring lens

260‧‧‧第一光束阻斷透鏡 260‧‧‧First beam blocking lens

262‧‧‧第一光學元件 262‧‧‧First optical component

264‧‧‧第二光學阻斷透鏡 264‧‧‧Second optical blocking lens

266‧‧‧顆粒偵測器 266‧‧‧Particle detector

Claims (32)

一種顆粒偵測系統,其包含:一取樣區;一光源,位在該取樣區的一側,用於傳送一實質上準直光束通過該取樣區;一光束阻斷裝置,位在該取樣區的一相反側,該光束阻斷裝置具有一非傳遞區用於阻斷由該取樣區出現之未散射光的至少一部分;一第一光學偵測器,置於該光束阻斷裝置後方的光路徑中,配置用來接收與偵測由位在該取樣區中之該些不同粒徑之顆粒以不同角度所散射之前向散射光的一部分,以及產生一含有該些顆粒數目與粒徑資訊的輸出;一第二光學偵測器,置於該取樣區的光源側,配置用來接收與偵測一部分的後向散射光,以及產生一含有該些顆粒數目與來自該些顆粒之螢光資訊的輸出;以及一第一波長選擇裝置,該第一波長選擇裝置配置於該光源與該取樣區之間,其中自該取樣區中出現的後向散射光係進一步被該第一波長選擇裝置所引導,以被該第二光學偵測器所接收。 A particle detecting system comprising: a sampling area; a light source positioned on one side of the sampling area for transmitting a substantially collimated beam of light through the sampling area; a beam blocking device located in the sampling area On the opposite side, the beam blocking device has a non-transfer region for blocking at least a portion of the unscattered light that appears in the sampling region; a first optical detector, the light disposed behind the beam blocking device a path configured to receive and detect a portion of the forward scattered light that is scattered at different angles by the different particle sizes of the particles located in the sampling region, and to generate a quantity containing the number and particle size of the particles An output; a second optical detector disposed on the light source side of the sampling area, configured to receive and detect a portion of the backscattered light, and generate a fluorescent information containing the number of the particles and the particles And a first wavelength selecting device disposed between the light source and the sampling region, wherein a backscattered light system emerging from the sampling region is further selected by the first wavelength The guide is set so as to be received by the second optical detector. 如請求項1所述之系統,更包括一警報器,用以當該預設粒徑範圍內所偵測的顆粒數目超出該預設粒徑範圍內的預設正常值時,提供一警報信號。 The system of claim 1, further comprising an alarm for providing an alarm signal when the number of detected particles in the predetermined particle size range exceeds a preset normal value within the predetermined particle size range . 如請求項1所述之系統,其中該光源發射波長約270奈米至約410奈米的光。 The system of claim 1, wherein the light source emits light having a wavelength of from about 270 nanometers to about 410 nanometers. 如請求項1所述之系統,其中該光源包括一雷射二極體或一發光二極體(LED)。 The system of claim 1, wherein the light source comprises a laser diode or a light emitting diode (LED). 如請求項4所述之系統,更包括一準直鏡,該準直鏡光學性地置於該光源和該第一波長選擇裝置之間。 The system of claim 4, further comprising a collimating mirror optically disposed between the light source and the first wavelength selective device. 如請求項1所述之系統,更包括一與該第一偵測器聯繫之脈波高度鑑別器,一處理器,該處理器連接至該脈波高度鑑別器之一輸出端,用以在一指定時間根據各脈波高度來處理粒徑分佈,而產生一氣懸粒徑分佈的柱狀圖,以及在一輸出裝置上顯示該柱狀圖。 The system of claim 1, further comprising a pulse height discriminator associated with the first detector, a processor coupled to the output of the pulse height discriminator for The particle size distribution is processed according to the height of each pulse wave at a specified time to produce a histogram of the aerosol particle size distribution, and the histogram is displayed on an output device. 如請求項1所述之系統,更包括:一第一光學元件,置於該光束阻斷裝置後方與該第一偵測器前方,以被至少一部分的該前向散射光所照射,其中該第一光學元件僅傳送該部分前向散射光的一特定波帶至該第一偵測器;其中該第一光學元件進一步引導一部分的該前向散射光至該第二光學偵測器,該第二光學偵測器設置用以接收並偵測該第一光學元件引導的一部分前向散射光;及一濾光器,置於該第二偵測器前方; 因而該第二偵測器偵測該前向散射光的一螢光部分並產生一含有來自該些顆粒之螢光資訊的輸出。 The system of claim 1, further comprising: a first optical component disposed behind the beam blocking device and in front of the first detector to be illuminated by at least a portion of the forward scattered light, wherein The first optical element transmits only a specific wave of the portion of the forward scattered light to the first detector; wherein the first optical element further directs a portion of the forward scattered light to the second optical detector, The second optical detector is configured to receive and detect a portion of the forward scattered light guided by the first optical component; and a filter disposed in front of the second detector; The second detector thus detects a fluorescent portion of the forward scattered light and produces an output containing fluorescent information from the particles. 如請求項7所述之系統,更包括一第一透鏡,配置以被該光束照射,其中該第一透鏡更包括一準直鏡。 The system of claim 7, further comprising a first lens configured to be illuminated by the beam, wherein the first lens further comprises a collimating mirror. 如請求項7所述之系統,更包括一功率監控偵測透鏡,設置用以接收和傳送被該第一波長選擇裝置所引導的輻射,以及一功率監控偵測器,該功率監控偵測器設置於用以接收來自該功率監控偵測透鏡的輻射,其中該功率監控偵測器係與該光源聯繫。 The system of claim 7, further comprising a power monitoring detection lens configured to receive and transmit radiation guided by the first wavelength selective device, and a power monitoring detector, the power monitoring detector And configured to receive radiation from the power monitoring detection lens, wherein the power monitoring detector is in contact with the light source. 如請求項7所述之系統,更包括一第三偵測器,其中該第三偵測器係配置於該取樣區後方,且其中該第一光學元件係配置用以引導至少一部分的該前向散射光至該第三偵測器。 The system of claim 7, further comprising a third detector, wherein the third detector is disposed behind the sampling area, and wherein the first optical component is configured to guide at least a portion of the front Scattering light to the third detector. 如請求項7所述之系統,其中該光源波長係介於約350至410奈米之間以及該第一濾光器傳送約低於400奈米的光。 The system of claim 7, wherein the source wavelength is between about 350 and 410 nanometers and the first filter transmits about less than 400 nanometers of light. 如請求項7所述之系統,更包括一第二光束阻斷透鏡,該第二光束阻斷透鏡光學性地設置於該第一光學元件和該第一偵測器之間,其中該第二光束阻斷透鏡傳送散射光以及吸收非散射光。 The system of claim 7, further comprising a second beam blocking lens optically disposed between the first optical component and the first detector, wherein the second The beam blocking lens transmits the scattered light as well as absorbs the non-scattered light. 如請求項1所述之系統,更包括至少一濾光器,該至少一濾光器光學性地設置於該取樣區和該第一偵測器之間,其中該濾光器傳送來自該取樣區的該部分前向散射光以及反射來自該取樣區的該部分散射光。 The system of claim 1, further comprising at least one filter optically disposed between the sampling area and the first detector, wherein the filter transmits the sampling This portion of the region forwards the scattered light and reflects the portion of the scattered light from the sampling region. 如請求項4所述之系統,更包括複數個用於將來自該光源之光線塑造成接近準直光線的光學透鏡。 The system of claim 4, further comprising a plurality of optical lenses for shaping light from the source to be near collimated light. 如請求項1所述之系統,其中該光源包括複數個用於塑形光線和/或將雜訊從該光束中除去的光學透鏡。 The system of claim 1 wherein the source comprises a plurality of optical lenses for shaping the light and/or removing noise from the beam. 請求項1所述之系統,其中該取樣區包括一空氣樣本。 The system of claim 1 wherein the sampling zone comprises an air sample. 如請求項1所述之系統,其中該取樣區包括一水樣本。 The system of claim 1 wherein the sampling zone comprises a sample of water. 如請求項1所述之系統,其中該第一波長選擇裝置包括一二色性分光鏡。 The system of claim 1 wherein the first wavelength selective device comprises a dichroic beam splitter. 如請求項10所述之系統,其中該第一光學元件包括一二色性分光鏡。 The system of claim 10, wherein the first optical component comprises a dichroic beam splitter. 如請求項10所述之系統,其中該第一光學元件係一低通濾波器。 The system of claim 10, wherein the first optical component is a low pass filter. 一種偵測病原體和顆粒的方法,該方法包括下列的步驟:發射一光束;傳送至少一部分的該光束通過一第一波長選擇裝置;以一部分該光束照射一含顆粒的取樣區,其中該等顆粒以前向及後向散射該光線;以一第一光學偵測器接收該前向散射光的至少一部分,藉此基於該前向散射光測量顆粒之粒徑;以及在一第二光學偵測器處接收該後向散射光的至少一部分,藉此偵測來自在後向中散射該光線之顆粒的螢光,且基於該螢光來確定該等顆粒為生物性或非生物性。 A method of detecting pathogens and particles, the method comprising the steps of: emitting a beam; transmitting at least a portion of the beam through a first wavelength selective device; and irradiating a portion of the beam with a particle-containing sampling region, wherein the particles Converging the light forward and backward; receiving at least a portion of the forward scattered light by a first optical detector, thereby measuring a particle size of the particle based on the forward scattered light; and a second optical detector At least a portion of the backscattered light is received, thereby detecting fluorescence from particles that scatter the light in a backward direction, and determining whether the particles are biological or abiotic based on the fluorescence. 如請求項21所述之方法,更包括利用該第一光學元件引導該前向散射光的一部分朝向一第三光學偵測器,其中該第一光學元件是一第二波長選擇裝置。 The method of claim 21, further comprising directing a portion of the forward scattered light toward the third optical detector with the first optical element, wherein the first optical component is a second wavelength selective device. 如請求項21所述之方法,更包括以一第三透鏡聚焦該被傳送通過該第一光學元件朝向該第一光學偵測器的該部分前向散射光,其中該第三透鏡吸收非散射光。 The method of claim 21, further comprising focusing the portion of the forward scattered light that is transmitted through the first optical element toward the first optical detector with a third lens, wherein the third lens absorbs non-scattering Light. 如請求項21所述之方法,更包括以一第四透鏡聚焦被該第一波長選擇裝置引導朝向該第二光學偵測器的該部分後向散射光。 The method of claim 21, further comprising focusing the portion of the backscattered light directed toward the second optical detector by the first wavelength selective device with a fourth lens focus. 如請求項21所述之方法,更包括以一濾光器來過濾被該第一波長選擇裝置引導朝向該第二光學偵測器的該部分後向散射光。 The method of claim 21, further comprising filtering, by a filter, the portion of the backscattered light directed by the first wavelength selective device toward the second optical detector. 如請求項21所述之方法,其中該波長選擇裝置係用來分隔自各個個別顆粒發射之螢光信號與光線散射信號。 The method of claim 21, wherein the wavelength selective means is adapted to separate the fluorescent signal and the light scattering signal emitted from the respective individual particles. 如請求項26所述之方法,其中該系統收集之一顆粒的螢光強度與粒徑資訊係用來確定該顆粒為生物的或非生物的。 The method of claim 26, wherein the system collects the fluorescence intensity and particle size information of one of the particles to determine whether the particle is biological or abiotic. 一種顆粒偵測系統,其包含:一取樣區;一光源,位在該取樣區的一側,用於傳送一實質上準直光束通過該取樣區,藉此位在該取樣區中之該些不同粒徑之顆粒以不同角度散射該光束的數個部分,而該光束之一未散射部分保持未散射;一光束阻斷裝置,位在該取樣區的一相反側,該光束阻斷裝置用於阻斷至少該光束之未散射部分的部分並限制測量顆粒的一範圍;一第一光學偵測器,置於該光束阻斷裝置後方的光路徑中,配置用來偵測一部分的前向散射光,以及產生一含有該 光路徑中在一預設粒徑範圍中之前向散射顆粒之數目資訊的輸出;一第二光學偵測器,置於該取樣區的光源側,配置用來偵測一部分的後向散射光,以及產生一含有該光路徑中在一預設粒徑範圍中之後向散射顆粒之螢光與數目資訊的輸出;以及一第一光學元件,用於僅傳送該前向散射光之部分的一特定波段朝向該第一光學偵測器,其中其餘波段由該濾光器反射而沿著一光路徑朝向該第二光學偵測器。 A particle detection system includes: a sampling area; a light source located on one side of the sampling area for transmitting a substantially collimated beam of light through the sampling area, thereby being located in the sampling area Particles of different particle sizes scatter a plurality of portions of the beam at different angles, and one of the beams is unscattered to remain unscattered; a beam blocking device is located on an opposite side of the sampling region for the beam blocking device Blocking at least a portion of the unscattered portion of the beam and limiting a range of measured particles; a first optical detector disposed in the optical path behind the beam blocking device configured to detect a portion of the forward direction Scattering light, and generating one containing An output of information on the number of forward scatter particles in a predetermined particle size range in the light path; a second optical detector disposed on the light source side of the sampling area configured to detect a portion of the backscattered light, And generating an output containing information on the fluorescence and number of the backscattered particles in a predetermined range of particle sizes; and a first optical element for transmitting only a portion of the portion of the forward scattered light The band faces the first optical detector, wherein the remaining bands are reflected by the filter and along a light path toward the second optical detector. 如請求項28所述之系統,其中該光源發射波長在約270奈米至約410奈米範圍中的光。 The system of claim 28, wherein the light source emits light having a wavelength in the range of from about 270 nanometers to about 410 nanometers. 如請求項28所述之系統,其中該光源包括一雷射二極體或一發光二極體(LED)。 The system of claim 28, wherein the light source comprises a laser diode or a light emitting diode (LED). 請求項28所述之系統,其中該取樣區包括一空氣流通區。 The system of claim 28, wherein the sampling zone comprises an air flow zone. 如請求項28所述之系統,其中該取樣區包括一水流通區。 The system of claim 28, wherein the sampling zone comprises a water flow zone.
TW102138510A 2006-11-14 2006-11-14 Pathogen and particle detector system and method TW201407150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102138510A TW201407150A (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102138510A TW201407150A (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Publications (1)

Publication Number Publication Date
TW201407150A true TW201407150A (en) 2014-02-16

Family

ID=50550429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138510A TW201407150A (en) 2006-11-14 2006-11-14 Pathogen and particle detector system and method

Country Status (1)

Country Link
TW (1) TW201407150A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506264B (en) * 2014-06-24 2015-11-01 China Steel Corp Method of Evaluating Powdery Dust Dispersion by Optical Telemetry
TWI570401B (en) * 2015-04-13 2017-02-11 謝振傑 Method of noninvasively detecting plant pathogenic virus and electronic apparatus thereof
TWI636248B (en) * 2016-09-12 2018-09-21 台達電子國際(新加坡)私人有限公司 Fluorescence detection device
US10450603B2 (en) 2016-09-12 2019-10-22 Delta Electronics Int'l (Singapore) Pte Ltd Fluorescence detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506264B (en) * 2014-06-24 2015-11-01 China Steel Corp Method of Evaluating Powdery Dust Dispersion by Optical Telemetry
TWI570401B (en) * 2015-04-13 2017-02-11 謝振傑 Method of noninvasively detecting plant pathogenic virus and electronic apparatus thereof
US10139396B2 (en) 2015-04-13 2018-11-27 National Taiwan Normal University Method of noninvasively detecting plant pathogenic virus and electronic apparatus thereof
TWI636248B (en) * 2016-09-12 2018-09-21 台達電子國際(新加坡)私人有限公司 Fluorescence detection device
US10450603B2 (en) 2016-09-12 2019-10-22 Delta Electronics Int'l (Singapore) Pte Ltd Fluorescence detection device

Similar Documents

Publication Publication Date Title
JP5112312B2 (en) Pathogen and particulate detection system and detection method
JP4871868B2 (en) Pathogen and particulate detection system and detection method
JP4351676B2 (en) Airborne pathogen detection system
JP5388846B2 (en) Pathogen detection by simultaneous measurement of particle size and fluorescence
AU2002367966B2 (en) System and method for detecting and classifying biological particles
TWI447394B (en) Pathogen detection by simultaneous size/fluorescence measurement
WO2005001436A1 (en) Improvements to fluid borne particle analysers
EP2235736A1 (en) Pathogen detection by simultaneous size/fluorescence measurement
TW201407150A (en) Pathogen and particle detector system and method
TWI424154B (en) Pathogen and particle detector system and method
GB2403289A (en) Detection of airborne biological particles