CN103196806A - Real-time monitoring system and method of particle concentration and fluorescence intensity data of air - Google Patents

Real-time monitoring system and method of particle concentration and fluorescence intensity data of air Download PDF

Info

Publication number
CN103196806A
CN103196806A CN2013101158215A CN201310115821A CN103196806A CN 103196806 A CN103196806 A CN 103196806A CN 2013101158215 A CN2013101158215 A CN 2013101158215A CN 201310115821 A CN201310115821 A CN 201310115821A CN 103196806 A CN103196806 A CN 103196806A
Authority
CN
China
Prior art keywords
data
fluorescence intensity
module
intensity data
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101158215A
Other languages
Chinese (zh)
Inventor
高莹莹
韩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN2013101158215A priority Critical patent/CN103196806A/en
Priority to CN201610011627.6A priority patent/CN105486618B/en
Priority to CN201610146228.0A priority patent/CN105699263B/en
Publication of CN103196806A publication Critical patent/CN103196806A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种空气粒子浓度和荧光强度数据的实时监测系统及监测方法,所述系统包括监控端和检测装置,监控端和检测装置之间通过有线或无线方式连接,检测装置用于根据控制指令来检测和输出空气粒子浓度和荧光强度数据;监控端用于向检测装置发送控制指令,并接收由所述检测装置输出的空气粒子浓度和荧光强度数据,对该数据进行处理后进行实时显示。监控端包括显示模块和绘图模块,显示模块用于根据由绘图模块发送的绘图数据显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形。本发明在同一时间能实时对多通道粒子浓度数据和荧光强度数据图形化处理,用于提高尘埃粒子计数的效率,对空气质量实时快速分析和判断。

Figure 201310115821

The invention discloses a real-time monitoring system and monitoring method for air particle concentration and fluorescence intensity data. The system includes a monitoring terminal and a detection device. The monitoring terminal and the detection device are connected in a wired or wireless manner. Control instructions to detect and output air particle concentration and fluorescence intensity data; the monitoring terminal is used to send control instructions to the detection device, and receive the air particle concentration and fluorescence intensity data output by the detection device, and process the data in real time show. The monitoring terminal includes a display module and a drawing module, and the display module is used to display real-time multi-channel particle number distribution graphs and multi-channel fluorescence intensity data distribution graphs according to the drawing data sent by the drawing module. The invention can graphically process multi-channel particle concentration data and fluorescence intensity data in real time at the same time, and is used to improve the efficiency of dust particle counting and analyze and judge air quality rapidly in real time.

Figure 201310115821

Description

空气粒子浓度和荧光强度数据的实时监测系统和监测方法Real-time monitoring system and monitoring method for air particle concentration and fluorescence intensity data

技术领域technical field

本发明属于粒子浓度和荧光强度数据检测技术领域,具体涉及一种对空气粒子浓度和荧光强度数据进行实时测量和监控的系统和方法。The invention belongs to the technical field of particle concentration and fluorescence intensity data detection, in particular to a system and method for real-time measurement and monitoring of air particle concentration and fluorescence intensity data.

背景技术Background technique

在医药、电子、精密机械、彩管制造、微生物等等行业,对厂房内的空气洁净度有很高的要求,洁净厂房的洁净级别常以单位体积的空气中最大允许的颗粒数即粒子数浓度来衡量。In industries such as medicine, electronics, precision machinery, color tube manufacturing, and microorganisms, there are high requirements for the cleanliness of the air in the workshop. The cleanliness level of the clean workshop is often determined by the maximum number of particles allowed in the air per unit volume, that is, the number of particles concentration to measure.

现有技术中采用尘埃粒子计数器来测量空气中各种粒径的尘埃粒子数,其中,由尘埃粒子计数器的后续处理电路输出被测空气中各种粒径的尘埃粒子数的数据,再利用LED显示屏显示尘埃粒子数数据中某一粒径通道的粒子数。尘埃粒子计数器再通过一个粒径切换键(粒径键)来切换多种尘埃粒径的多个通道。In the prior art, a dust particle counter is used to measure the number of dust particles of various particle sizes in the air, wherein the subsequent processing circuit of the dust particle counter outputs the data of the number of dust particles of various particle sizes in the measured air, and then the LED is used to measure the number of dust particles in the air. The display screen shows the number of particles in a certain particle size channel in the dust particle number data. The dust particle counter switches multiple channels of various dust particle sizes through a particle size switching key (particle size key).

现有技术的尘埃粒子数据给出了不同的尘埃粒径的粒子数,诸如0.3μm、0.5μm、0.7μm、1.0μm、2.0μm、5.0μm、……,其中每个粒径范围也称为一个粒径通道。假设通道总数为N,N为自然数,n为某个通道的通道号,则通道号n为1~N的自然数。这样,例如,通过粒径键选择粒径通道号n=1时,则在LED显示屏显示尘埃粒径为0.3μm的粒子数;通过粒径键选择粒径通道n=2时,在LED显示屏显示尘埃粒径为0.5μm的粒子数;以此类推。即,现有技术中依据粒径通道号n的顺序在LED显示屏显示第n粒径通道的对应粒子数。The dust particle data of the prior art gives the number of particles of different dust particle sizes, such as 0.3 μm, 0.5 μm, 0.7 μm, 1.0 μm, 2.0 μm, 5.0 μm, ..., wherein each particle size range is also called A particle size channel. Assuming that the total number of channels is N, N is a natural number, and n is the channel number of a certain channel, then the channel number n is a natural number from 1 to N. In this way, for example, when the particle diameter channel number n=1 is selected through the particle diameter key, the number of particles with a dust particle diameter of 0.3 μm will be displayed on the LED display; The screen displays the number of particles with a dust particle size of 0.5 μm; and so on. That is, in the prior art, the number of particles corresponding to the nth particle size channel is displayed on the LED display screen according to the order of the particle size channel number n.

由此可以看出,现有的尘埃粒子计数器每按一次粒径键只能选择一个粒径通道,只能显示该一个粒径通道的粒子数,不能在同一时间对多种粒径通道的粒子数量变化进行监测。It can be seen from this that the existing dust particle counter can only select one particle size channel every time the particle size button is pressed, and can only display the number of particles in this one particle size channel, and cannot monitor the particles of multiple particle size channels at the same time. Quantitative changes are monitored.

此外,空气监测仪也被用于测量空气质量,例如在一种空气监测仪中,其将空气质量划分为0~250个不同档别,根据不同的档别范围显示红、黄、绿、蓝四种指示灯,当红灯和蓝灯亮的时候会报警。同时,它还例如将挥发性有机气体划分为0~99个不同档别;将有害气体划分为0~99个不同档别,并在不同的档别范围内显示为红黄绿三种指示灯,显示灯红色的时候会报警。In addition, air monitors are also used to measure air quality. For example, in an air monitor, it divides the air quality into 0 to 250 different levels, and displays red, yellow, green, and blue according to different ranges. Four indicator lights, when the red light and blue light are on, it will alarm. At the same time, it also, for example, divides volatile organic gases into 0 to 99 different grades; divides harmful gases into 0 to 99 different grades, and displays red, yellow and green indicators in different ranges. , when the display light is red, it will alarm.

可见,现有的空气监测仪只能将空气中的成份进行分级和报警,对空气中的粒子数不能高精度监测,不能精确地观察空气中各通道的粒子数和荧光强度数据的变化。It can be seen that the existing air monitors can only classify and alarm the components in the air, but cannot monitor the number of particles in the air with high precision, and cannot accurately observe the changes in the number of particles and fluorescence intensity data in each channel in the air.

荧光技术可以用来鉴别荧光物质,每一种荧光物质都有其特定的激发光谱和发射光谱。Fluorescence technology can be used to identify fluorescent substances, each fluorescent substance has its specific excitation spectrum and emission spectrum.

固定发射波长,在不同波长下所记录到的样品发射荧光的相对强度,即得激发光谱,激发光谱确定荧光物质适宜的激发波长的依据,就是反映物质受到激发以后的情况,反映出该物质对于外来激发光的响应,反映其自身辐射波长随激发波长的变化关系。Fix the emission wavelength, and record the relative intensity of fluorescence emitted by the sample at different wavelengths, that is, the excitation spectrum. The basis for determining the appropriate excitation wavelength of the fluorescent substance is to reflect the situation after the substance is excited, and to reflect the effect of the substance on The response to external excitation light reflects the relationship between its own radiation wavelength and the excitation wavelength.

固定激发波长,记录在不同波长所发射的荧光的相对强度,即得发射光谱,物体发光直接产生的光谱叫做发射光谱,发射光谱确定荧光物质检测波长的依据。Fix the excitation wavelength, record the relative intensity of the fluorescence emitted at different wavelengths, that is, the emission spectrum, the spectrum directly produced by the object’s light emission is called the emission spectrum, and the emission spectrum determines the basis for the detection wavelength of the fluorescent substance.

荧光强度是荧光物质发射荧光的光量子数,荧光物质的荧光效率决定其荧光强度,它同时决定荧光物质检测的灵敏度。因而荧光强度可以用来检测荧光物质,在低浓度等条件下,样品浓度(也即空气粒子数)和荧光强度呈线性关系。Fluorescence intensity is the number of light quanta emitted by a fluorescent substance. The fluorescence efficiency of a fluorescent substance determines its fluorescence intensity, which also determines the sensitivity of fluorescent substance detection. Therefore, the fluorescence intensity can be used to detect fluorescent substances. Under conditions such as low concentration, the sample concentration (that is, the number of air particles) has a linear relationship with the fluorescence intensity.

综上所述,现有技术不能对空气粒子浓度或荧光强度数据进行实时地监测和显示,特别是不能对二者同时进行实时地监测和显示,因此无法满足人们对于空气质量日益提高的要求。To sum up, the existing technology cannot monitor and display air particle concentration or fluorescence intensity data in real time, especially both at the same time, so it cannot meet people's increasing requirements for air quality.

发明内容Contents of the invention

(一)要解决的技术问题(1) Technical problems to be solved

本发明所要解决的技术问题现有的空气监测装置不能多通道实时地显示空气粒子数和荧光强度数据,不能达到当前对于空气质量监测的要求。Technical Problems to be Solved by the Invention The existing air monitoring devices cannot display the number of air particles and fluorescence intensity data in multiple channels in real time, and cannot meet the current requirements for air quality monitoring.

(二)技术方案(2) Technical solution

为解决上述技术问题,本发明提出一种空气粒子浓度和荧光强度数据的实时监测系统,包括监控端和检测装置,所述监控端和检测装置之间通过有线或无线方式连接,所述检测装置用于根据控制指令来检测和输出空气粒子浓度和荧光强度数据;所述监控端用于向检测装置发送控制指令,并接收由所述检测装置输出的空气粒子浓度和荧光强度数据,对该数据进行处理后进行实时显示。In order to solve the above technical problems, the present invention proposes a real-time monitoring system for air particle concentration and fluorescence intensity data, including a monitoring terminal and a detection device, the monitoring terminal and the detection device are connected by wired or wireless means, and the detection device It is used to detect and output air particle concentration and fluorescence intensity data according to the control instructions; the monitoring terminal is used to send control instructions to the detection device, and receive the air particle concentration and fluorescence intensity data output by the detection device. Real-time display after processing.

根据本发明的一种具体实施方式,所述监控端包括主控模块、输入输出模块、数据解析模块、粒子数最大值查找模块、荧光强度最大值查找模块、绘图模块和显示模块,其中,所述输入输出模块用于将来自主控模块的控制指令发送给检测装置,并接收由所述检测装置发送来的数据;所述数据解析模块用于对所述输入输出模块接收的检测数据进行解析,从中分别提取空气粒子数数据和荧光强度数据,并将所提取的空气粒子数数据分别输入到所述粒子数最大值查找模块和绘图模块,将所提取的荧光强度数据则分别输入到荧光强度最大值查找模块和绘图模块;所述粒子数最大值查找模块用于从所述空气粒子数数据包含的各通道的粒子数数据中查找其中的最大值,并输入到所述绘图模块;所述荧光强度最大值查找模块用于从所述荧光强度数据包含的各通道的荧光强度数据中查找其中的最大值,并输入到所述绘图模块;所述绘图模块用于根据从所述数据解析模块接收到的数据,以及从粒子数最大值查找模块和荧光强度最大值查找模块接收到的所述最大值,生成实时的绘图数据后输出到显示模块;所述显示模块用于根据由所述绘图模块发送的绘图数据显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形。According to a specific embodiment of the present invention, the monitoring terminal includes a main control module, an input and output module, a data analysis module, a maximum particle number search module, a fluorescence intensity maximum search module, a drawing module and a display module, wherein the The input and output module is used to send the control instruction from the main control module to the detection device, and receive the data sent by the detection device; the data analysis module is used to analyze the detection data received by the input and output module , extract the air particle number data and the fluorescence intensity data respectively, and input the extracted air particle number data into the particle number maximum value search module and the drawing module respectively, and then input the extracted fluorescence intensity data into the fluorescence intensity A maximum value search module and a drawing module; the particle number maximum search module is used to find the maximum value from the particle number data of each channel contained in the air particle number data, and input it to the drawing module; the The fluorescence intensity maximum value search module is used to find the maximum value from the fluorescence intensity data of each channel contained in the fluorescence intensity data, and input it to the drawing module; The data received, and the maximum value received from the particle number maximum value search module and the fluorescence intensity maximum value search module, generate real-time drawing data and then output to the display module; The drawing data sent by the module displays real-time multi-channel particle number distribution graph and multi-channel fluorescence intensity data distribution graph.

根据本发明的一种具体实施方式,系统还包括主控模块,所述主控模块用于通过所述输入输出模块向所述检测装置发送控制指令,并控制所述数据解析模块、绘图模块和显示模块的运行。According to a specific embodiment of the present invention, the system further includes a main control module, the main control module is used to send control instructions to the detection device through the input and output modules, and control the data analysis module, drawing module and Displays the operation of the module.

根据本发明的一种具体实施方式,所述主控模块还连接有一个用户输入模块,该用户输入模块用于接收用户的输入,并根据用户输入的信息来生成用于发送给所述检测装置的控制指令。According to a specific implementation manner of the present invention, the main control module is also connected with a user input module, which is used to receive user input, and generate information for sending to the detection device according to the information input by the user. control instructions.

根据本发明的一种具体实施方式,所述绘图模块还用于生成一个用户操控界面数据,所述显示模块用于根据该用户操作界面数据显示用户操控界面,用户可通过该用户操控界面可以向所述主控模块输入数据。According to a specific implementation manner of the present invention, the drawing module is also used to generate a user manipulation interface data, and the display module is used to display the user manipulation interface according to the user manipulation interface data, and the user can use the user manipulation interface to The main control module inputs data.

根据本发明的一种具体实施方式,所述输入模块是鼠标,所述主控模块还用于将该鼠标输入的鼠标位置数据转送到所述绘图模块中;所述绘图模块还用于根据该鼠标位置数据生成用户标注线数据;所述显示模块还用于根据该用户标注线数据在所述多通道粒子数分布图形和多通道荧光强度数据分布图形中显示用户标注线,所述用户标注线是指由用户实时标注且高亮显示的某一个粒径通道的粒子数图形标注线和荧光强度数据图形标注线。According to a specific embodiment of the present invention, the input module is a mouse, and the main control module is also used to transfer the mouse position data input by the mouse to the drawing module; The mouse position data generates user labeling line data; the display module is also used to display user labeling lines in the multi-channel particle number distribution graph and multi-channel fluorescence intensity data distribution graph according to the user labeling line data, and the user labeling line Refers to the particle number graphic labeling line and the fluorescence intensity data graphic labeling line of a certain particle size channel marked and highlighted by the user in real time.

根据本发明的一种具体实施方式,所述绘图模块还用于根据数据解析模块解析得到的空气粒子数数据和荧光强度数据生成空气粒子总浓度数据和触发次数数据,触发次数是指各荧光强度通道对应的粒子数。According to a specific embodiment of the present invention, the drawing module is also used to generate air particle total concentration data and trigger times data according to the air particle number data and fluorescence intensity data analyzed by the data analysis module, where the trigger times refer to each fluorescence intensity The number of particles corresponding to the channel.

根据本发明的一种具体实施方式,所述绘图模块还用于根据所述空气粒子总浓度数据和触发次数数据生成空气粒子总浓度图形指示数据和触发次数图形指示数据;所述显示模块根据该空气粒子总浓度图形指示数据和触发次数图形指示数据显示空气粒子总浓度和触发次数的显示条。According to a specific embodiment of the present invention, the drawing module is also used to generate the total air particle concentration graphic indication data and the trigger number graphic indication data according to the total air particle concentration data and the trigger number data; the display module according to the The graphic indication data of the total concentration of air particles and the number of triggers The graphic indication data shows the total concentration of air particles and the display bar of the number of triggers.

此外,本发明还提供一种空气粒子浓度和荧光强度数据的实时监测方法,其应用于前述的空气粒子浓度和荧光强度数据的实时监测系统,该系统包括监控端和检测装置,所述监控端和检测装置之间通过有线或无线方式连接,该方法包括如下步骤:S1、监控端向检测装置发送控制指令,要求检测装置检测并发送当前的各粒径通道的空气粒子数和荧光强度数据;S2、检测装置根据所述控制命令检测当前的各粒径通道的空气粒子数和荧光强度数据,并将其进行数字化和编码后作为检测数据发送给所述监控端;S3、所述监控端对所述检测数据进行解析,分别得到各粒径通道的空气粒子数数据和荧光强度数据;S4、所述监控端根据所述各粒径通道的空气粒子数数据和荧光强度数据实时显示多通道空气粒子数分布图形和多通道荧光强度数据分布图形。In addition, the present invention also provides a real-time monitoring method for air particle concentration and fluorescence intensity data, which is applied to the aforementioned real-time monitoring system for air particle concentration and fluorescence intensity data. The system includes a monitoring terminal and a detection device. The monitoring terminal The connection with the detection device is by wire or wireless, and the method includes the following steps: S1. The monitoring terminal sends a control command to the detection device, requiring the detection device to detect and send the current data on the number of air particles and the fluorescence intensity of each particle size channel; S2. The detection device detects the current number of air particles and the fluorescence intensity data of each particle diameter channel according to the control command, and digitizes and codes it and sends it to the monitoring terminal as detection data; S3. The monitoring terminal The detection data is analyzed to obtain air particle number data and fluorescence intensity data of each particle size channel respectively; S4, the monitoring terminal displays the multi-channel air particle number data and fluorescence intensity data of each particle size channel in real time. Particle number distribution graph and multi-channel fluorescence intensity data distribution graph.

根据本发明的一种具体实施方式,所述步骤S4还包括显示指示条、用户标注线、用户操控界面、用户标注数据显示区中的至少一种。According to a specific embodiment of the present invention, the step S4 further includes displaying at least one of an indicator bar, a user annotation line, a user manipulation interface, and a user annotation data display area.

(三)有益效果(3) Beneficial effects

本发明在同一时间能实时对多通道粒子浓度数据和荧光强度数据图形化处理,用于提高尘埃粒子计数的效率,对空气质量实时快速分析和判断。The invention can graphically process multi-channel particle concentration data and fluorescence intensity data in real time at the same time, and is used to improve the efficiency of dust particle counting and analyze and judge air quality rapidly in real time.

并且,本发明允许用户点击鼠标二维坐标系上的某点,能在显示框中实时观测该点处所处的通道上的粒子浓度和荧光强度数据。Moreover, the present invention allows the user to click a certain point on the two-dimensional coordinate system of the mouse, and the particle concentration and fluorescence intensity data on the channel where the point is located can be observed in real time in the display frame.

附图说明Description of drawings

图1是本发明的一个实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图;Fig. 1 is the frame diagram of the real-time monitoring system of air particle concentration and fluorescence intensity data of an embodiment of the present invention;

图2是本发明的另一实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图;Fig. 2 is the frame diagram of the real-time monitoring system of air particle concentration and fluorescence intensity data of another embodiment of the present invention;

图3是本发明的监控端的一个实施例的模块组成架构图;Fig. 3 is a module structure diagram of an embodiment of the monitoring terminal of the present invention;

图4是本发明的一个实施例的显示模块所显示的多通道粒子数分布在某一时刻的显示图形;Fig. 4 is the display graph of the multi-channel particle number distribution displayed by the display module of an embodiment of the present invention at a certain moment;

图5是本发明的一个实施例的显示模块在同一显示界面上显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形;Fig. 5 shows the real-time multi-channel particle number distribution graph and multi-channel fluorescence intensity data distribution graph displayed on the same display interface by the display module of an embodiment of the present invention;

图6是本发明的一个实施例的显示条图形;Figure 6 is a display bar graph of an embodiment of the present invention;

图7是本发明的一个实施例的用户标注线图形;Fig. 7 is a user's marked line graphic of an embodiment of the present invention;

图8是本发明的一个实施例的由显示模块显示的整体图形;Fig. 8 is an overall graphic displayed by a display module according to an embodiment of the present invention;

图9是利用本发明的监控系统的监控方法的流程图。FIG. 9 is a flowchart of a monitoring method using the monitoring system of the present invention.

具体实施方式Detailed ways

为了解决上述技术问题,本发明提出一种空气粒子浓度和荧光强度数据的实时监测系统,以及利用该系统实时监测空气粒子浓度和荧光强度数据的方法。In order to solve the above technical problems, the present invention proposes a real-time monitoring system for air particle concentration and fluorescence intensity data, and a method for real-time monitoring of air particle concentration and fluorescence intensity data using the system.

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

图1是本发明的一个实施例空气粒子浓度和荧光强度数据的实时监测系统的架构图。如图1所示,本发明的监测系统包括监控端1和检测装置2,检测装置2也称下位机,其能够根据控制指令实时输出空气粒子浓度和荧光强度数据的检测数据。监控端1也称上位机,用于向检测装置2发送控制指令,并接收由检测装置2输出的检测数据,对该检测数据进行处理后进行实时显示。Fig. 1 is an architecture diagram of a real-time monitoring system for air particle concentration and fluorescence intensity data according to an embodiment of the present invention. As shown in Figure 1, the monitoring system of the present invention includes a monitoring terminal 1 and a detection device 2, the detection device 2 is also called a lower computer, which can output the detection data of air particle concentration and fluorescence intensity data in real time according to control instructions. The monitoring terminal 1 is also called the upper computer, which is used to send control instructions to the detection device 2, and receive the detection data output by the detection device 2, and display the detection data in real time after processing the detection data.

根据本发明,监控端1和检测装置2之间可以通过有线或无线方式连接,并且可以采用现有的各种通信接口和协议,例如串口、LAN、蓝牙、WiFi、USB等。According to the present invention, the monitoring terminal 1 and the detection device 2 can be connected in a wired or wireless manner, and various existing communication interfaces and protocols can be used, such as serial port, LAN, Bluetooth, WiFi, USB, etc.

根据本发明的另一种实施例,如图2所示,本发明的实时监测系统也可以包括多个检测装置2、2’、2”,其均可通过有线或无线方式与监控端1连接。由此,各个检测装置2可以置放于各个不同空气环境中,例如一个城市的多个不同地段,以便实时检测多个地段的空气质量。According to another embodiment of the present invention, as shown in Figure 2, the real-time monitoring system of the present invention may also include a plurality of detection devices 2, 2', 2", which can be connected to the monitoring terminal 1 by wired or wireless means Thus, each detection device 2 can be placed in different air environments, for example, in multiple different sections of a city, so as to detect the air quality of multiple sections in real time.

根据本发明,所述检测装置2输出的检测数据是数字化并经编码的数据。也就是说,检测装置2将其检测到的空气粒子数和荧光强度数据进行特定的编码后生成一个数据流后进行输出。并且,检测装置2以一定的时间间隔发送所述编码的检测数据,该时间间隔可以是固定的0.5秒、1秒、3秒等,也可以根据实际需要手动设定。According to the present invention, the detection data output by the detection device 2 is digitized and coded data. That is to say, the detection device 2 encodes the data of the number of air particles and the fluorescence intensity detected by it to generate a data stream for output. Moreover, the detection device 2 sends the coded detection data at a certain time interval, which may be fixed at 0.5 second, 1 second, 3 seconds, etc., or may be manually set according to actual needs.

图3是本发明的监控端1一个实施例的模块组成架构图。如图3所示,本发明的监控端1包括主控模块10、输入输出模块11、数据解析模块12、粒子数最大值查找模块13、荧光强度最大值查找模块14、绘图模块15和显示模块16。FIG. 3 is a block diagram of an embodiment of the monitoring terminal 1 of the present invention. As shown in Figure 3, the monitoring terminal 1 of the present invention includes a main control module 10, an input and output module 11, a data analysis module 12, a particle number maximum value search module 13, a fluorescence intensity maximum value search module 14, a drawing module 15 and a display module 16.

输入输出模块11用于输入和输出数据,在本发明的该实施例中,其用于将来自主控模块10的控制指令发送给检测装置2,并接收由检测装置2发送来的检测数据。如前所述,本发明的检测数据是经编码的空气粒子数据和荧光强度数据组成的数据流。The input and output module 11 is used for inputting and outputting data. In this embodiment of the present invention, it is used for sending control commands from the main control module 10 to the detection device 2 and receiving detection data sent by the detection device 2 . As mentioned above, the detection data of the present invention is a data stream composed of encoded air particle data and fluorescence intensity data.

数据解析模块12用于对输入输出模块11接收的检测数据进行解析,从中分别提取空气粒子数数据和荧光强度数据。由于检测数据是编码的数据,因此数据解析模块12按照数据的编码格式进行解码。例如,在一种具体实施方式中,所述检测数据是多通道检测数据,所述的多通道检测数据是一组以255,1开头和以255,2结尾的6764个数据的数据链,如果判断一组6764个数据链的开头为255,1,结尾为255,2,那么所述的多通道检测数据即是有效的数据,可以对此多通道检测数据进行解析并得到空气粒子数数据和荧光强度数据。举例来说,数据解析模块12的解析方法如下:通过解析每个数据链的固定位置即可得到空气粒子数数据和荧光强度数据,例如读取空气粒子数据11FF,它是在数据链的第512,513位置的数据,512位置存放的是高位数据1100,513位置存放的是低位数据FF,高位和低位相加得到11FF数据,该数据即是所得到的空气粒子数据11FF。The data analysis module 12 is used for analyzing the detection data received by the input and output module 11, and extracting air particle number data and fluorescence intensity data respectively therefrom. Since the detection data is encoded data, the data parsing module 12 performs decoding according to the encoding format of the data. For example, in a specific implementation manner, the detection data is multi-channel detection data, and the multi-channel detection data is a data chain of 6764 data starting with 255,1 and ending with 255,2, if Judging that the beginning of a group of 6764 data links is 255, 1, and the end is 255, 2, then the multi-channel detection data is valid data, and the multi-channel detection data can be analyzed to obtain the air particle number data and Fluorescence intensity data. For example, the analysis method of the data analysis module 12 is as follows: by analyzing the fixed position of each data link, the air particle number data and fluorescence intensity data can be obtained, such as reading the air particle data 11FF, which is in the 512th part of the data link , the data at position 513, the high-order data 1100 stored at position 512, the low-order data FF stored at position 513, and the high-order and low-order data are added to obtain 11FF data, which is the obtained air particle data 11FF.

数据解析模块12将所提取的空气粒子数数据分别输入到粒子数最大值查找模块13和绘图模块15,将所提取的荧光强度数据则分别输入到荧光强度最大值查找模块14和绘图模块15。The data analysis module 12 inputs the extracted air particle number data to the maximum particle number search module 13 and the drawing module 15 respectively, and inputs the extracted fluorescence intensity data to the maximum fluorescence intensity search module 14 and the drawing module 15 respectively.

粒子数最大值查找模块13用于从空气粒子数数据包含的各通道的粒子数数据中查找其中的最大值,并输入到绘图模块15;同样,荧光强度最大值查找模块14则用于从荧光强度数据包含的各通道的荧光强度数据中查找其中的最大值,也输入到绘图模块15;The particle number maximum value search module 13 is used to find the maximum value from the particle number data of each channel included in the air particle number data, and input to the drawing module 15; similarly, the fluorescence intensity maximum value search module 14 is used to obtain the maximum value from the fluorescence Find the maximum value among the fluorescence intensity data of each channel included in the intensity data, and also input it to the drawing module 15;

所述绘图模块15根据从数据解析模块13接收到的检测数据,以及从粒子数最大值查找模块13和荧光强度最大值查找模块14接收到的最大值,生成实时的绘图数据后输出到显示模块16。The drawing module 15 generates real-time drawing data and outputs it to the display module according to the detection data received from the data analysis module 13 and the maximum value received from the particle number maximum value search module 13 and the fluorescence intensity maximum search module 14 16.

根据本发明的一种实施方式,所述绘图数据包括空气粒子数坐标数据、荧光强度数据坐标数据、空气粒子数多通道分布数据以及荧光强度数据多通道分布数据。According to an embodiment of the present invention, the drawing data includes air particle number coordinate data, fluorescence intensity data coordinate data, air particle number multi-channel distribution data, and fluorescence intensity data multi-channel distribution data.

空气粒子数据坐标数据是指用于绘制空气粒子数分布图形的坐标轴的数据,包括横坐标数据以及纵坐标数据,横坐标表示各个空气粒径通道的空气粒径,纵坐标表示空气粒子数。由于一般来说,检测装置2检测得到的通道数N是固定的,因此横坐标的刻度值通常是固定的,而所检测到的各通道的粒子数的值可能因所检测的空气环境而存在很大差异,因此需要为纵坐标设定合适的坐标值。根据本发明,绘图模块15根据粒子数最大值查找模块13得到的粒子数最大值来设定纵坐标的刻度值,例如,如果粒子数最大值查找模块13查到的粒子数最大值为867,那么就将粒子数最大值对10向上取整得到870,绘图模块15则设定870为纵坐标的最大刻度值。The air particle data coordinate data refers to the data used to draw the coordinate axis of the air particle number distribution graph, including abscissa data and ordinate data. The abscissa indicates the air particle size of each air particle size channel, and the ordinate indicates the number of air particles. Generally speaking, the number N of passages detected by the detection device 2 is fixed, so the scale value of the abscissa is usually fixed, and the value of the number of particles in each passage detected may exist due to the detected air environment. There is a big difference, so it is necessary to set a suitable coordinate value for the vertical axis. According to the present invention, the drawing module 15 sets the scale value of the ordinate according to the particle number maximum value obtained by the particle number maximum value search module 13, for example, if the particle number maximum value found by the particle number maximum value search module 13 is 867, Then, the maximum number of particles is rounded up to 10 to obtain 870, and the drawing module 15 sets 870 as the maximum scale value of the ordinate.

荧光强度数据坐标数据是指用于绘制荧光强度数据分布图形的坐标轴的数据,也包括横坐标数据以及纵坐标数据,横坐标表示各个荧光强度的通道,纵坐标表示荧光强度通道对应的粒子数。同样,横坐标的刻度值通常是固定的,而所检测到的各通道的荧光强度数据的值可能因所检测的空气环境而存在很大差异,因此需要为纵坐标设定合适的坐标值。根据本发明,绘图模块15根据荧光强度最大值查找模块14得到的荧光强度最大值来设定纵坐标的刻度值,例如,如果荧光强度最大值查找模块14查到的粒子数最大值为867,那么就将粒子数最大值对10向上取整得到870,绘图模块15则设定870为荧光强度数据纵坐标的最大刻度值。Fluorescence intensity data coordinate data refers to the data used to draw the coordinate axis of the fluorescence intensity data distribution graph, including abscissa data and ordinate data, the abscissa indicates the channel of each fluorescence intensity, and the ordinate indicates the number of particles corresponding to the fluorescence intensity channel . Similarly, the scale value of the abscissa is usually fixed, and the detected fluorescence intensity data values of each channel may vary greatly due to the detected air environment, so it is necessary to set an appropriate coordinate value for the ordinate. According to the present invention, the plotting module 15 sets the scale value of the ordinate according to the maximum value of fluorescence intensity obtained by the maximum value of fluorescence intensity search module 14, for example, if the maximum value of the number of particles found by the maximum value of fluorescence intensity search module 14 is 867, Then, the maximum number of particles is rounded up to 10 to obtain 870, and the drawing module 15 sets 870 as the maximum scale value of the ordinate of the fluorescence intensity data.

空气粒子数多通道分布数据以及荧光强度数据多通道分布数据是将数据解析模块12解析得到的空气粒子数数据和荧光强度数据进行图形化转换得到的数据,例如,可以将各通道的空气粒子数数据和荧光强度数据表示为一种柱状图形或折线图形等,则空气粒子数多通道分布数据以及荧光强度数据多通道分布数据即为用于绘制该图形的数据。The multi-channel distribution data of the number of air particles and the multi-channel distribution data of the fluorescence intensity data are the data obtained by graphically converting the air particle number data and the fluorescence intensity data analyzed by the data analysis module 12, for example, the air particle number of each channel can be The data and the fluorescence intensity data are expressed as a columnar graph or a line graph, etc., and the multi-channel distribution data of the number of air particles and the multi-channel distribution data of the fluorescence intensity data are the data used to draw the graph.

显示模块16根据由绘图模块15发送的绘图数据显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形。图4是本发明的显示模块16所显示的多通道粒子数分布在某一时刻的显示图形。如图所示,在该实施例中,空气粒子数的数组包含维度为52个通道的数据。粒子数量数组也即包含52种粒径的粒子数量的数组,空气粒子数二维坐标系的x方向坐标的刻度意义为52维通道的粒径大小。在打印绘制空气粒子浓度二维坐标系x方向坐标的刻度的时候,仅取10个通道粒径大小坐标值以示意粒径大小的横坐标分布。这十个通道粒径大小的x方向坐标刻度值分别为0.5,0.7,1,2,3,4,5,6,10,15。荧光强度数据二维坐标系x方向坐标的通道数为65个,设每5个通道打印一次x方向坐标的刻度值,即在荧光强度数据二维坐标系x方向坐标上显示13个通道刻度值。x方向坐标上的刻度的通道数不仅限于65个,可以是根据需要选择通道数。图4表示的是空气粒子二维坐标系,横坐标表示对应的粒径大小,比如横坐标的粒径大小为4.696μm,该横坐标对应的纵坐标数即是粒径大小为4.696μm的粒子的粒子数。The display module 16 displays real-time multi-channel particle number distribution graphs and multi-channel fluorescence intensity data distribution graphs according to the drawing data sent by the drawing module 15 . FIG. 4 is a display graph at a certain moment of the multi-channel particle number distribution displayed by the display module 16 of the present invention. As shown, in this embodiment, the array of air particle counts contains data with a dimensionality of 52 channels. The particle number array is also an array of particle numbers containing 52 particle sizes. The scale of the x-direction coordinate of the air particle number two-dimensional coordinate system means the particle size of the 52-dimensional channel. When printing and drawing the scale of the x-direction coordinates of the two-dimensional coordinate system of air particle concentration, only 10 channel particle size coordinate values are taken to indicate the abscissa distribution of particle size. The x-direction coordinate scale values of the particle sizes of these ten channels are 0.5, 0.7, 1, 2, 3, 4, 5, 6, 10, and 15, respectively. The number of channels in the x-direction coordinates of the two-dimensional coordinate system of the fluorescence intensity data is 65, and the scale value of the x-direction coordinates is printed every 5 channels, that is, the scale values of 13 channels are displayed on the x-direction coordinates of the two-dimensional coordinate system of the fluorescence intensity data . The number of channels of the scale on the x-direction coordinates is not limited to 65, and the number of channels can be selected according to needs. Figure 4 shows the two-dimensional coordinate system of air particles. The abscissa indicates the corresponding particle size. For example, the particle size of the abscissa is 4.696 μm, and the number of the ordinate corresponding to the abscissa is the particle with a particle size of 4.696 μm. the number of particles.

根据本发明的优选实施方式,所述显示模块16在同一显示界面上显示实时的图形,如图5所示。通过同时显示,多通道粒子数分布图形和多通道荧光强度数据分布,可以对检测数据进行对比观察,分析。根据本发明的更优选实施方式,所述绘图模块15还用于根据数据解析模块12解析得到的空气粒子数数据和荧光强度数据生成空气粒子总浓度数据和触发次数数据,触发次数是指各荧光强度通道对应的粒子数。并且,绘图模块15根据所生成的空气粒子总浓度数据和触发次数数据生成空气粒子总浓度图形指示数据和触发次数图形指示数据,所述图形指示数据例如是用于显示如图6所示的指示条的数据。在图6中,所述指示条的功能实现了对空气粒子总浓度和触发次数的图形显示,指示条的刻度设置是以指数为增量的设置,避免由于数据值过大而造成的显示不便。According to a preferred embodiment of the present invention, the display module 16 displays real-time graphics on the same display interface, as shown in FIG. 5 . By simultaneously displaying multi-channel particle number distribution graphics and multi-channel fluorescence intensity data distribution, the detection data can be compared, observed and analyzed. According to a more preferred embodiment of the present invention, the drawing module 15 is also used to generate air particle total concentration data and trigger times data according to the air particle number data and fluorescence intensity data analyzed by the data analysis module 12, and the trigger times refer to each fluorescent light. The number of particles corresponding to the intensity channel. And, the drawing module 15 generates the total air particle concentration graphic indication data and the trigger number graphic indication data according to the generated total air particle concentration data and the trigger times data, and the graphic indication data is for example used to display the indication as shown in FIG. 6 bar data. In Fig. 6, the function of the indicator bar realizes the graphic display of the total concentration of air particles and the number of triggers, and the scale setting of the indicator bar is set with an index as an increment to avoid display inconvenience caused by excessive data values .

指示条的颜色,指示条的背景颜色为深灰色,在空气质量正常时指示条红色条高度对应的刻度值即为数据值,当数据值过大时,指示条灰色色条被红色色条覆盖,并且将红色指示条用红色方框框起,用于表示警示空气质量问题。The color of the indicator bar. The background color of the indicator bar is dark gray. When the air quality is normal, the scale value corresponding to the red bar height of the indicator bar is the data value. When the data value is too large, the gray color bar of the indicator bar is covered by the red color bar , and the red indicator bar is framed by a red box, which is used to indicate the warning of air quality problems.

但本发明并不限于此,本发明还可以采用其他的指示图形来表示。并且,显示模块16也可以在同一界面上显示所述指示图形、所述多通道粒子数分布图形和多通道荧光强度数据分布图形。But the present invention is not limited thereto, and the present invention can also be represented by other indicating graphics. Moreover, the display module 16 can also display the indication graph, the multi-channel particle number distribution graph and the multi-channel fluorescence intensity data distribution graph on the same interface.

所述主控模块10是监控端1的主要控制模块,用于通过所述输入输出模块11向检测装置2发送控制指令,并控制所述数据解析模块12、绘图模块15和显示模块16的运行。例如,当所述检测数据是以一定的时间间隔由检测装置2发送的,则主控模块10控制所述数据解析模块12、绘图模块15和显示模块16也以一定的时间间隔来更新多通道粒子数分布图形和多通道荧光强度数据分布图形。The main control module 10 is the main control module of the monitoring terminal 1, which is used to send control instructions to the detection device 2 through the input and output module 11, and control the operation of the data analysis module 12, the drawing module 15 and the display module 16 . For example, when the detection data is sent by the detection device 2 at a certain time interval, the main control module 10 controls the data analysis module 12, the drawing module 15 and the display module 16 to also update the multi-channel data at a certain time interval. Particle number distribution graph and multi-channel fluorescence intensity data distribution graph.

根据本发明的一种优选实施方式,所述主控模块10还连接有一个用户输入模块17,其例如可以是键盘、鼠标、操控按纽等。该用户输入模块17用于接收用户的输入,并根据用户输入的信息来生成用于发送给检测装置2的控制指令,以及根据用户输入的信息来控制输入输出装置11、数据解析模块12、查找模块13、14、绘图模块15和显示模块16的工作状态(运行或停止)和图形更新的频率等显示参数。According to a preferred embodiment of the present invention, the main control module 10 is also connected with a user input module 17, which can be, for example, a keyboard, a mouse, or a manipulation button. The user input module 17 is used to receive the user's input, and generate a control instruction for sending to the detection device 2 according to the information input by the user, and control the input and output device 11, the data analysis module 12, and the search device 2 according to the information input by the user. Modules 13, 14, drawing module 15 and display module 16's working status (running or stopping) and the frequency of graphics update and other display parameters.

在该实施方式中,所述绘图模块15还用于生成一个用户操控界面数据,例如菜单项、操作按纽、选择框等的数据,并通过显示模块16显示。由此,用户通过该用户操控界面可以向主控模块输入数据,以实现对于监控端1的控制。In this embodiment, the drawing module 15 is also used to generate a user manipulation interface data, such as data of menu items, operation buttons, selection boxes, etc., and display it through the display module 16 . Thus, the user can input data to the main control module through the user control interface, so as to control the monitoring terminal 1 .

根据本发明的另一优选实施方式,所述输入模块17是鼠标,所述主控模块10将鼠标输入的鼠标位置数据转送到绘图模块15中,所述绘图模块15根据该鼠标位置数据生成用户标注线数据,并且,显示模块16根据用户标注线数据在所述多通道粒子数分布图形和多通道荧光强度数据分布图形中显示用户标注线。所述用户标注线是指由用户实时标注且高亮显示的某一个粒径通道的粒子数图形标注线和荧光强度数据图形标注线。图7显示了在多通道粒子数分布图形中的用户标注线的一个示例。According to another preferred embodiment of the present invention, the input module 17 is a mouse, and the main control module 10 transfers the mouse position data input by the mouse to the drawing module 15, and the drawing module 15 generates the user input data according to the mouse position data. Mark the line data, and the display module 16 displays the user marked line in the multi-channel particle number distribution graph and the multi-channel fluorescence intensity data distribution graph according to the user marked line data. The user labeling line refers to the particle number graphic labeling line and fluorescence intensity data graphic labeling line of a certain particle size channel marked and highlighted by the user in real time. Figure 7 shows an example of user callout lines in a multi-channel particle number distribution graph.

如图7所示,用户标注线18包括垂直相交的两条高亮的实线,两条实线的交点表示用户所选择的空气粒子通道下的空气粒子数数值大小。横线用于更加明显地显示其与其他粒径通道的粒子数的比较关系。As shown in FIG. 7 , the user marking line 18 includes two highlighted solid lines perpendicularly intersecting, and the intersection of the two solid lines represents the numerical value of the number of air particles under the air particle channel selected by the user. The horizontal line is used to more clearly show its comparison with the number of particles of other particle size channels.

鼠标可以实时在坐标系内移动,并且实时显示移动位置的横坐标值和纵坐标值。如果不移动时,随着数据量每隔一定时间(如3秒)更新一次,也会实时显示固定位置时的更新数据。The mouse can move in the coordinate system in real time, and display the abscissa and ordinate values of the moving position in real time. If it is not moving, as the amount of data is updated every certain period of time (such as 3 seconds), the updated data at the fixed position will also be displayed in real time.

在该实施方式中,绘图模块15还用于在生成用户标注数据显示区数据,显示模块16根据该显示区数据来显示用户标注线所在位置的空气粒子数数据和荧光强度数据。In this embodiment, the drawing module 15 is also used to generate the data in the display area of the user's annotation data, and the display module 16 displays the data of the number of air particles and the data of the fluorescence intensity at the location of the user's annotation line according to the data in the display area.

图8是本发明的一个实施例的由显示模块显示的整体图形。如图8所示,21是多通道粒子数分布图形,22是多通道荧光强度数据分布图形,20是指示条,18是用户标注线,19是用户操控界面,23是用户标注数据显示区。应当注意的是,图8所示的是仅仅是本发明的一种示例,根据本发明,还可以以其他的界面来显示上述的各种数据。Fig. 8 is an overall graphic displayed by a display module according to an embodiment of the present invention. As shown in Figure 8, 21 is a multi-channel particle number distribution graph, 22 is a multi-channel fluorescence intensity data distribution graph, 20 is an indicator bar, 18 is a user marking line, 19 is a user control interface, and 23 is a user marking data display area. It should be noted that what is shown in FIG. 8 is only an example of the present invention, and according to the present invention, other interfaces may also be used to display the above-mentioned various data.

在本发明的其他实施方式中,所述监控端1还可以包括缓存模块和或存储模块,缓存模块可用于临时性地存储由用户输入输出模块11得到的检测数据,而存储模块则可用于永久性地存储由用户输入输出模块11接收的检测数据、由绘图模块15生成的绘图数据,以及由用户输入的用户输入信息等。In other embodiments of the present invention, the monitoring terminal 1 may also include a cache module and or a storage module, the cache module can be used to temporarily store the detection data obtained by the user input and output module 11, and the storage module can be used for permanent The detection data received by the user input and output module 11, the drawing data generated by the drawing module 15, the user input information input by the user, etc. are permanently stored.

以上描述了本发明的监控系统的具体实施例,下面对本发明的所述监控系统的监控方法进行进一步说明。The specific embodiments of the monitoring system of the present invention have been described above, and the monitoring method of the monitoring system of the present invention will be further described below.

当应用本发明的监控系统,所述监控方法主要包括如下步骤,如图9所示。When the monitoring system of the present invention is applied, the monitoring method mainly includes the following steps, as shown in FIG. 9 .

S1、监控端1向检测装置2发送控制指令,要求检测装置2检测并发送当前的各粒径通道的空气粒子数和荧光强度数据;S1. The monitoring terminal 1 sends a control instruction to the detection device 2, requiring the detection device 2 to detect and send the current data on the number of air particles and the fluorescence intensity of each particle size channel;

S2、检测装置2根据所述控制命令检测当前的各粒径通道的空气粒子数和荧光强度数据,并将其进行数字化和编码后作为检测数据发送给所述监控端1;S2. The detection device 2 detects the current number of air particles and the fluorescence intensity data of each particle diameter channel according to the control command, and digitizes and codes it and sends it to the monitoring terminal 1 as detection data;

S3、所述监控端1对所述检测数据进行解析,分别得到各粒径通道的空气粒子数数据和荧光强度数据;S3. The monitoring terminal 1 analyzes the detection data, and respectively obtains air particle number data and fluorescence intensity data of each particle diameter channel;

S4、所述监控端1根据所述各粒径通道的空气粒子数数据和荧光强度数据实时显示多通道空气粒子数分布图形和多通道荧光强度数据分布图形。S4. The monitoring terminal 1 displays a multi-channel air particle number distribution graph and a multi-channel fluorescence intensity data distribution graph in real time according to the air particle number data and fluorescence intensity data of each particle diameter channel.

与前类似,步骤S1中所述的控制指令优选为由监控端1接受用户输入信息后根据用户输入信息而生成。并且,监控端1优选为要求检测装置2以一定的时间间隔检测和发送检测数据。Similar to the above, the control instruction described in step S1 is preferably generated according to the user input information after the monitoring terminal 1 accepts the user input information. Moreover, the monitoring terminal 1 preferably requires the detection device 2 to detect and send detection data at a certain time interval.

在步骤S4中,所述监控端1在显示多通道空气粒子数分布图形和多通道荧光强度数据分布图形时,也可显示上述指示条20、用户标注线18、用户操控界面19、用户标注数据显示区23,等等。在显示用户标注线18和用户标注数据显示区23时,标注线18十字中心对应的位置是用户标注数据显示区23的横坐标值和纵坐标值(粒径值和粒子数值,荧光强度数据通道和粒子数值)。In step S4, when the monitoring terminal 1 displays the multi-channel air particle number distribution graph and the multi-channel fluorescence intensity data distribution graph, it may also display the above-mentioned indicator bar 20, user marking line 18, user control interface 19, and user marking data. display area 23, and so on. When displaying the user labeling line 18 and the user's labeling data display area 23, the position corresponding to the center of the cross of the labeling line 18 is the abscissa value and the ordinate value (particle diameter value and particle value, fluorescence intensity data channel) of the user's labeling data display area 23 and particle values).

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.

Claims (10)

1.一种空气粒子浓度和荧光强度数据的实时监测系统,包括监控端(1)和检测装置(2),所述监控端(1)和检测装置(2)之间通过有线或无线方式连接,其特征在于:1. A real-time monitoring system for air particle concentration and fluorescence intensity data, comprising a monitoring terminal (1) and a detection device (2), connected by wired or wireless mode between the monitoring terminal (1) and the detection device (2) , characterized by: 所述检测装置(2)用于根据控制指令来检测和输出空气粒子浓度和荧光强度数据;The detection device (2) is used to detect and output air particle concentration and fluorescence intensity data according to control instructions; 所述监控端(1)用于向检测装置(2)发送控制指令,并接收由所述检测装置(2)输出的空气粒子浓度和荧光强度数据,对该数据进行处理后进行实时显示。The monitoring terminal (1) is used to send control instructions to the detection device (2), receive air particle concentration and fluorescence intensity data output by the detection device (2), and display the data in real time after processing the data. 2.如权利要求1所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:2. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 1, is characterized in that: 所述监控端(1)包括主控模块(10)、输入输出模块(11)、数据解析模块(12)、粒子数最大值查找模块(13)、荧光强度数据最大值查找模块(14)、绘图模块(15)和显示模块(16),其中,The monitoring terminal (1) includes a main control module (10), an input and output module (11), a data analysis module (12), a particle number maximum value search module (13), a fluorescence intensity data maximum value search module (14), Drawing module (15) and display module (16), wherein, 所述输入输出模块(11)用于将来自主控模块(10)的控制指令发送给检测装置(2),并接收由所述检测装置(2)发送来的数据;The input and output module (11) is used to send control instructions from the main control module (10) to the detection device (2), and receive data sent by the detection device (2); 所述数据解析模块(12)用于对所述输入输出模块(11)接收的检测数据进行解析,从中分别提取空气粒子数数据和荧光强度数据,并将所提取的空气粒子数数据分别输入到所述粒子数最大值查找模块(13)和绘图模块(15),将所提取的荧光强度数据则分别输入到荧光强度数据最大值查找模块(14)和绘图模块(15);The data analysis module (12) is used to analyze the detection data received by the input and output module (11), extract air particle number data and fluorescence intensity data therefrom, and input the extracted air particle number data into the The maximum particle number search module (13) and the drawing module (15) input the extracted fluorescence intensity data into the fluorescence intensity data maximum search module (14) and the drawing module (15) respectively; 所述粒子数最大值查找模块(13)用于从所述空气粒子数数据包含的各通道的粒子数数据中查找其中的最大值,并输入到所述绘图模块(15);The particle number maximum value search module (13) is used to find the maximum value from the particle number data of each channel contained in the air particle number data, and input it to the drawing module (15); 所述荧光强度数据最大值查找模块(14)用于从所述荧光强度数据包含的各通道的荧光强度数据中查找其中的最大值,并输入到所述绘图模块(15);The fluorescence intensity data maximum value search module (14) is used to find the maximum value from the fluorescence intensity data of each channel contained in the fluorescence intensity data, and input it to the drawing module (15); 所述绘图模块(15)用于根据从所述数据解析模块(12)接收到的数据,以及从粒子数最大值查找模块(13)和荧光强度数据最大值查找模块(14)接收到的所述最大值,生成实时的绘图数据后输出到显示模块(16);The drawing module (15) is used for receiving the data from the data analysis module (12) and the maximum particle number search module (13) and the fluorescence intensity data maximum search module (14). The above maximum value is output to the display module (16) after generating real-time drawing data; 所述显示模块(16)用于根据由所述绘图模块(15)发送的绘图数据显示实时的多通道粒子数分布图形和多通道荧光强度数据分布图形。The display module (16) is used for displaying real-time multi-channel particle number distribution graphs and multi-channel fluorescence intensity data distribution graphs according to the drawing data sent by the drawing module (15). 3.如权利要求2所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:还包括主控模块(10),所述主控模块(10)用于通过所述输入输出模块(11)向所述检测装置(2)发送控制指令,并控制所述数据解析模块(12)、绘图模块(15)和显示模块(16)的运行。3. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 2, is characterized in that: also comprise main control module (10), and described main control module (10) is used for through described input and output module (11) Sending control instructions to the detection device (2), and controlling the operation of the data analysis module (12), drawing module (15) and display module (16). 4.如权利要求3所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:所述主控模块(10)还连接有一个用户输入模块(17),该用户输入模块(17)用于接收用户的输入,并根据用户输入的信息来生成用于发送给所述检测装置(2)的控制指令。4. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 3, is characterized in that: described main control module (10) is also connected with a user input module (17), and this user input module (17 ) is used to receive user input, and generate a control instruction for sending to the detection device (2) according to the information input by the user. 5.如权利要求4所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:5. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 4, is characterized in that: 所述绘图模块(15)还用于生成一个用户操控界面数据,The drawing module (15) is also used to generate a user manipulation interface data, 所述显示模块(16)用于根据该用户操作界面数据显示用户操控界面,用户可通过该用户操控界面可以向所述主控模块(10)输入数据。The display module (16) is used for displaying a user operation interface according to the user operation interface data, and the user can input data to the main control module (10) through the user operation interface. 6.如权利要求4所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:6. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 4, is characterized in that: 所述输入模块(17)是鼠标,所述主控模块(10)还用于将该鼠标输入的鼠标位置数据转送到所述绘图模块(15)中;The input module (17) is a mouse, and the main control module (10) is also used to transfer the mouse position data input by the mouse to the drawing module (15); 所述绘图模块(15)还用于根据该鼠标位置数据生成用户标注线数据;The drawing module (15) is also used to generate user annotation line data according to the mouse position data; 所述显示模块(16)还用于根据该用户标注线数据在所述多通道粒子数分布图形和多通道荧光强度数据分布图形中显示用户标注线,所述用户标注线是指由用户实时标注且高亮显示的某一个粒径通道的粒子数图形标注线和某一个荧光强度通道的图形标注线。The display module (16) is also used for displaying user marking lines in the multi-channel particle number distribution graph and multi-channel fluorescence intensity data distribution graph according to the user marking line data, and the user marking lines refer to real-time marking by the user And the marked line of the particle number graph of a certain particle size channel and the graphical marked line of a certain fluorescence intensity channel are highlighted. 7.如权利要求1至6中任一项所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:7. The real-time monitoring system of air particle concentration and fluorescence intensity data as described in any one in claim 1 to 6, it is characterized in that: 所述绘图模块(15)还用于根据数据解析模块(12)解析得到的空气粒子数数据和荧光强度数据生成空气粒子总浓度数据和触发次数数据,触发次数是指各荧光强度通道对应的粒子数。The drawing module (15) is also used to generate air particle total concentration data and trigger times data according to the air particle number data and fluorescence intensity data analyzed by the data analysis module (12), and the trigger times refers to the particles corresponding to each fluorescence intensity channel number. 8.如权利要求7所述的空气粒子浓度和荧光强度数据的实时监测系统,其特征在于:所述绘图模块(15)还用于根据所述空气粒子总浓度数据和触发次数数据生成空气粒子总浓度图形指示数据和触发次数图形指示数据;8. the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 7, is characterized in that: described drawing module (15) is also used for generating air particle according to described air particle total concentration data and trigger times data Graphical indication data of total concentration and graphic indication data of trigger times; 所述显示模块(16)根据该空气粒子总浓度图形指示数据和触发次数图形指示数据显示空气粒子总浓度和触发次数的显示条。The display module (16) displays the display bar of the total concentration of air particles and the number of triggers according to the graphic indication data of the total air particle concentration and the graphic indication data of the number of triggers. 9.一种空气粒子浓度和荧光强度数据的实时监测方法,其应用于如权利要求1所述的空气粒子浓度和荧光强度数据的实时监测系统,该系统包括监控端(1)和检测装置(2),所述监控端(1)和检测装置(2)之间通过有线或无线方式连接,其特征在于该方法包括如下步骤:9. A real-time monitoring method of air particle concentration and fluorescence intensity data, which is applied to the real-time monitoring system of air particle concentration and fluorescence intensity data as claimed in claim 1, the system comprising monitoring terminal (1) and detection device ( 2), the monitoring terminal (1) and the detection device (2) are connected in a wired or wireless manner, characterized in that the method includes the following steps: S1、所述监控端(1)向检测装置(2)发送控制指令,要求所述检测装置(2)检测并发送当前的各粒径通道的空气粒子数和荧光强度数据;S1. The monitoring terminal (1) sends a control command to the detection device (2), requiring the detection device (2) to detect and send the current air particle number and fluorescence intensity data of each particle diameter channel; S2、所述检测装置(2)根据所述控制命令检测当前的各粒径通道的空气粒子数和荧光强度数据,并将其进行数字化和编码后作为检测数据发送给所述监控端(1);S2. The detection device (2) detects the current number of air particles and the fluorescence intensity data of each particle diameter channel according to the control command, and digitizes and encodes them as detection data and sends them to the monitoring terminal (1) ; S3、所述监控端(1)对所述检测数据进行解析,分别得到各粒径通道的空气粒子数数据和荧光强度数据;S3. The monitoring terminal (1) analyzes the detection data, and respectively obtains air particle number data and fluorescence intensity data of each particle diameter channel; S4、所述监控端(1)根据所述各粒径通道的空气粒子数数据和荧光强度数据实时显示多通道空气粒子数分布图形和多通道荧光强度数据分布图形。S4. The monitoring terminal (1) displays a multi-channel air particle number distribution graph and a multi-channel fluorescence intensity data distribution graph in real time according to the air particle number data and fluorescence intensity data of each particle size channel. 10.如权利要求9所述的空气粒子浓度和荧光强度数据的实时监测方法,其特征在于:所述步骤S4还包括显示指示条(20)、用户标注线(18)、用户操控界面(19)、用户标注数据显示区(23)中的至少一种。10. the real-time monitoring method of air particle concentration and fluorescence intensity data as claimed in claim 9, is characterized in that: described step S4 also comprises display indicating bar (20), user mark line (18), user control interface (19 ), at least one of the user annotation data display area (23).
CN2013101158215A 2013-04-03 2013-04-03 Real-time monitoring system and method of particle concentration and fluorescence intensity data of air Pending CN103196806A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2013101158215A CN103196806A (en) 2013-04-03 2013-04-03 Real-time monitoring system and method of particle concentration and fluorescence intensity data of air
CN201610011627.6A CN105486618B (en) 2013-04-03 2013-04-03 air quality real-time monitoring system and monitoring method
CN201610146228.0A CN105699263B (en) 2013-04-03 2013-04-03 Real-time monitoring system and monitoring method for air particle concentration and fluorescence intensity data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101158215A CN103196806A (en) 2013-04-03 2013-04-03 Real-time monitoring system and method of particle concentration and fluorescence intensity data of air

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201610011627.6A Division CN105486618B (en) 2013-04-03 2013-04-03 air quality real-time monitoring system and monitoring method
CN201610146228.0A Division CN105699263B (en) 2013-04-03 2013-04-03 Real-time monitoring system and monitoring method for air particle concentration and fluorescence intensity data

Publications (1)

Publication Number Publication Date
CN103196806A true CN103196806A (en) 2013-07-10

Family

ID=48719498

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610011627.6A Active CN105486618B (en) 2013-04-03 2013-04-03 air quality real-time monitoring system and monitoring method
CN2013101158215A Pending CN103196806A (en) 2013-04-03 2013-04-03 Real-time monitoring system and method of particle concentration and fluorescence intensity data of air

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610011627.6A Active CN105486618B (en) 2013-04-03 2013-04-03 air quality real-time monitoring system and monitoring method

Country Status (1)

Country Link
CN (2) CN105486618B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157124A (en) * 2014-08-28 2014-11-19 无锡硅奥科技有限公司 Laser dust particle counting and monitoring system based on Zigbee
CN104458522A (en) * 2014-11-27 2015-03-25 中盟科创(深圳)科技发展有限公司 Atmospheric particulate detection system based on mobile terminal and detection method
CN105486618A (en) * 2013-04-03 2016-04-13 中国科学院电工研究所 Air quality real-time monitoring system and method
CN105699263A (en) * 2013-04-03 2016-06-22 中国科学院电工研究所 Real-time monitoring system and method for air particle concentration and fluorescence intensity data
CN111504870A (en) * 2020-05-15 2020-08-07 中国计量科学研究院 Non-labeling method for detecting concentration of aggregate particles in sample at target particle size

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895922A (en) * 1996-03-19 1999-04-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Fluorescent biological particle detection system
CN101398367A (en) * 2007-09-26 2009-04-01 中国人民解放军军事医学科学院微生物流行病研究所 Aerated solids particle laser analyzer
US20090168051A1 (en) * 2005-07-21 2009-07-02 Respiratory Management Technology Particle counting and dna uptake system and method for detection, assessment and further analysis of threats due to nebulized biological agents
CN101479592A (en) * 2006-06-27 2009-07-08 百维吉伦特系统有限公司 Pathogen detection by simultaneous size/fluorescence measurement
CN102116728A (en) * 2010-01-06 2011-07-06 北京汇丰隆生物科技发展有限公司 Circuit system of continuous laser particle analytical instrument
CN102608004A (en) * 2012-03-14 2012-07-25 北京汇丰隆生物科技发展有限公司 Aerodynamic size spectrometer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891848A (en) * 1973-12-27 1975-06-24 Nasa Fluorescence detector for monitoring atmospheric pollutants
US6947134B2 (en) * 1999-08-09 2005-09-20 The United States Of America As Represented By The Secretary Of The Army Method and instrumentation for measuring fluorescence spectra of individual airborne particles sampled from ambient air
US7416701B2 (en) * 2001-09-12 2008-08-26 Ecolab Inc. Calibrator for fluorosensor
WO2010014505A1 (en) * 2008-07-28 2010-02-04 Sensors For Medicine & Science, Inc. Systems and methods for optical measurement of analyte concentration
JP2011083214A (en) * 2009-10-14 2011-04-28 Sharp Corp Microorganism detection apparatus and detection method
CN101858847B (en) * 2010-05-20 2013-06-12 中国科学院上海光学精密机械研究所 Double-channel real-time bioaerosol monitoring method and device
CN105486618B (en) * 2013-04-03 2018-11-16 中国科学院电工研究所 air quality real-time monitoring system and monitoring method
CN105699263B (en) * 2013-04-03 2019-02-15 中国科学院电工研究所 Real-time monitoring system and monitoring method for air particle concentration and fluorescence intensity data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895922A (en) * 1996-03-19 1999-04-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Fluorescent biological particle detection system
US20090168051A1 (en) * 2005-07-21 2009-07-02 Respiratory Management Technology Particle counting and dna uptake system and method for detection, assessment and further analysis of threats due to nebulized biological agents
CN101479592A (en) * 2006-06-27 2009-07-08 百维吉伦特系统有限公司 Pathogen detection by simultaneous size/fluorescence measurement
CN101398367A (en) * 2007-09-26 2009-04-01 中国人民解放军军事医学科学院微生物流行病研究所 Aerated solids particle laser analyzer
CN102116728A (en) * 2010-01-06 2011-07-06 北京汇丰隆生物科技发展有限公司 Circuit system of continuous laser particle analytical instrument
CN102608004A (en) * 2012-03-14 2012-07-25 北京汇丰隆生物科技发展有限公司 Aerodynamic size spectrometer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486618A (en) * 2013-04-03 2016-04-13 中国科学院电工研究所 Air quality real-time monitoring system and method
CN105699263A (en) * 2013-04-03 2016-06-22 中国科学院电工研究所 Real-time monitoring system and method for air particle concentration and fluorescence intensity data
CN104157124A (en) * 2014-08-28 2014-11-19 无锡硅奥科技有限公司 Laser dust particle counting and monitoring system based on Zigbee
CN104458522A (en) * 2014-11-27 2015-03-25 中盟科创(深圳)科技发展有限公司 Atmospheric particulate detection system based on mobile terminal and detection method
CN111504870A (en) * 2020-05-15 2020-08-07 中国计量科学研究院 Non-labeling method for detecting concentration of aggregate particles in sample at target particle size
CN111504870B (en) * 2020-05-15 2021-01-29 中国计量科学研究院 Non-labeling method for detecting concentration of aggregate particles in sample at target particle size

Also Published As

Publication number Publication date
CN105486618B (en) 2018-11-16
CN105486618A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105486618B (en) air quality real-time monitoring system and monitoring method
US11841313B2 (en) Power management for optical particle counters
US11416123B2 (en) Firmware design for facility navigation, and area and location data management of particle sampling and analysis instruments
CN204789548U (en) Food detection device
CN105954493B (en) A kind of soil collection detecting system
CN105659058A (en) Unified data collection and reporting interface for equipment
CN205786543U (en) Agricultural product quality and safety sample detecting system
CN105074435A (en) Microparticle analyzing device, microparticle analyzing method, program, and microparticle analyzing system
CN210923401U (en) Dust-free environment particle testing system
CN203573149U (en) Intelligent environment monitoring device
CN105699263A (en) Real-time monitoring system and method for air particle concentration and fluorescence intensity data
CN107493377B (en) Thermotechnical parameter acquisition device and method based on mobile terminal application
CN103454378A (en) Multifunctional air quality detector
JPWO2018168431A1 (en) Automatic analysis system
CN203490207U (en) Multichannel ozone detecting instrument for ring main unit
JP5841315B2 (en) Fine particle analyzer
JP2022510791A (en) Information processing equipment, information processing methods and programs
CN207586167U (en) A kind of Electrochemial luminescence detecting instrument of food security
CN106774054A (en) GIS device analysis system and method based on the identification of complicated unstructured data
CN104897770A (en) Steel wire rope nondestructive testing system
JP5975074B2 (en) Data display method, program, data analysis apparatus, and fine particle analysis system
CN106094688B (en) A kind of humidity sensor control system
CN207704252U (en) A kind of Reservoir Water Quality on-line monitoring system based on industrial network
CN112882915B (en) Object binding-based monitoring measuring point misconnection automatic detection method
EP2960640B1 (en) Particle detecting device and particle detecting method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130710