TW200849147A - High speed optical monitoring system using a rotatable mirror - Google Patents

High speed optical monitoring system using a rotatable mirror Download PDF

Info

Publication number
TW200849147A
TW200849147A TW96145830A TW96145830A TW200849147A TW 200849147 A TW200849147 A TW 200849147A TW 96145830 A TW96145830 A TW 96145830A TW 96145830 A TW96145830 A TW 96145830A TW 200849147 A TW200849147 A TW 200849147A
Authority
TW
Taiwan
Prior art keywords
light
unit
target
mirror
monitoring system
Prior art date
Application number
TW96145830A
Other languages
Chinese (zh)
Inventor
Dong-Youn Shin
Kyung-Hyun Hwang
Original Assignee
Korea Inst Of Machinery & Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070055565A external-priority patent/KR100845301B1/en
Priority claimed from KR1020070122909A external-priority patent/KR20090055989A/en
Application filed by Korea Inst Of Machinery & Materials filed Critical Korea Inst Of Machinery & Materials
Publication of TW200849147A publication Critical patent/TW200849147A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

The present invention provides a high speed optical monitoring system for monitoring at least one subject. The system includes at least one subject source for generating the subject; a subject source support for aligning and supporting the subject source so as to position the subject in an identical focal space plane; an image acquisition unit having an imaging device for monitoring and imaging the subject at an aligned position; a mirror mounted between the subject an the image acquisition unit such that a rotational angle of the mirror can be changed; a focus compensation lens arranged between the subject and the mirror; an image processing unit for processing an image acquired by the image acquisition unit into digital data; a lighting unit for illuminating the subject; and a system control unit for controlling the lighting unit and driving of the subject source, the image acquisition unit and the mirror. According to the present invention thus constructed, a plurality of subjects can be monitored in a high speed manner, and at the same time, a clear monitored image can be obtained from the subjects.

Description

200849147 九、發明說明 【發明所屬之技術領域】 本發明係有關一種高速光學監視系統,尤有關一種可 以高速方式,清晰地監視配置於一相同焦點空間平面上之 至少一目標的高速光學監視系統。 【先前技術】 一用來監視複數目標之習知目標監視系統構成一目標 監視攝影機120安裝於至少一移動載台13〇上,並沿X 方向及/或Y方向移動,俾依序監視存在於一相同焦點空 間平面F中之監視目標1 1 0。 替代地,在攝影機120固定狀態下,一產生諸目標 1 1 〇之目標源1 1 1藉至少一移動載台1 3 1,沿X方向及/或 Y方向移動,與一移動載台130以其移動,俾攝影機12〇 可依序並個別監視諸目標1 1 0。 同時’攝影機120及諸目標1 10配置成諸目標〗1〇可 藉攝影機1 2 0依序監視,惟用於攝影機〗2 〇之移動載台 130及用於目標源ill之移動載台13 1二者及目標源支 撐1 1 2相互移動。 惟於上述習知目標監視設備中,由於.諸目標受到監 視’攝影機及/或諸目標藉移動載台移動,因此,依移動 載台之移動距離而定,監視時間延遲所需持續時間,造成 難以高速監視諸目標。 更具體而言,由於諸移動載台反覆沿X方向及/或γ -4- 200849147 方向移動往復移動以週期性監視複數目標’因此’有因移 動載台及待移動之物體之慣性力量而實際上難以筒速又無 振動地往復移動移動載台及待移動之物體的問邊°因此’ 有攝影機所監視之諸目標之影像畸變’且諸目標無法高速 監視的問題。 【發明內容】 技術問題 因此,本發明之一目的在於提供一種可以高速方式監 視至少一目標,同時,可自目標獲得清晰之監視影像之高 速光學監視系統。 技術解決方案 爲達成該目的,根據本發明之一態樣,提供一種用來 監視至少一目標之筒速光學監視系統,包括:至少一目標 源,用來產生目標;一目標源支撐,用來對準並支撐目標 源,俾將目標定位於一相同焦點空間平面中;一影像擷取 單元’具有一用來於一對準位置監視目標並將其成像之成 像裝置;一鏡’安裝於目標與影像擷取單元之間,俾可改 變鏡的旋轉角度;一焦點補償透鏡,配置於目標與鏡之 間;一影像處理單元,用來將影像擷取單元所擷取之影像 處理成數位資料;一發光單元,用來照射目標;以及一系 統控制單元,用來控制發光單元,以及目標源、影像擷取 單元及鏡之驅動。 -5- 200849147 該至少一目標包括複數目標,且該等目標可固定或被 移動,或可以週期或準週期方式移產生,並動態地被移 動。 該高速光學監視系統可進一步包括一目標源對準單元 ,聯結於目標源支撐,俾沿X/Y/Z軸移動目標源,並使目 標源繞X/Y/Z軸傾斜或旋轉。 該影像擷取單元可爲一具有CCD或CMOS成像裝置 之攝影機。 該鏡可包括:一鏡本體,由一平面鏡構成,該平面鏡 具有至少一單一鏡面;以及一鏡驅動單元,用來於某一旋 轉角度內旋轉鏡本體。 該鏡可包括·一鏡本體,由一多邊形鏡構成,該多邊 形鏡具有複數鏡面;以及一鏡驅動單元,用來於某一旋轉 角度內旋轉鏡本體。 該焦點補償透鏡可設成單一 F- 0非球面透鏡、複數 非球面透鏡或球面透鏡/非球面透鏡之組合。 可移動該目標,且該發光單元可使用與移動目標之移 動有關之脈衝型發光二極體或雷射二極體。 該高速光學監視系統可進一步包括一光量變化補償單 元,設在目標與影像擷取單元間之一光通路中,以補償發 光單元之光量變化。 該發光單兀可D又在目標後面或影像擷取單元中,以照 射目標。且若該發光單元設在影像擷取單元中,即於目標 後面設置一反射板。 -6 - 200849147 該發光單元可包括一氣冷式或水冷式冷卻裝置,用來 阻隔一發光源所產生的熱。 該冷卻裝置可包括至少一 IR(紅外線)濾波器及二色性 濾波器。 該冷卻裝置可爲一帕耳帖(Peltier)元件。 一紅外線阻隔濾波器、一偏振濾波器、一彩色濾波器 及一帶通濾波器之至少一濾波器設在目標與影像擷取單元 間之一光通路上。 該高速光學監視系統可進一步包括一參考樣本,配置 在相同焦點空間平面中,俾檢查並校準目標與影像擷取單 元間以及鏡本體與焦點補償透鏡間之光學對準關係。 該高速光學監視系統可進一步包括一參考樣本支撐, 配置在相同焦點空間平面中,俾支撐參考樣本,其中該參 考樣本支撐可拆卸地聯結於相同焦點空間平面中,或安裝 成可移動於參考樣本支撐配置在相同焦點空間平面中之〜 位置與相同焦點空間平面外之另一位置間。 該參考樣本支撐可手動或自動定位於相同焦點空間平 面中。 該參考樣本可具有一圖案,該圖案對應於目標,並形 成於一由透明、半透明或不透明材料製成之基板上。 該爹考樣本之圖案可藉影像擺取單元擷取,形成___ ^ 像’俾可使用影像與圖案尺寸間之相互關係來校準目標與 影像擷取單元間以及鏡與焦點補償透鏡間之光學對準關 係,以及校準影像處理性能。 200849147 該鏡驅動單元可將用於鏡本體之旋轉角度之電檢測信 號傳輸至系統控制單元,且系統控制單元可接收鏡本體之 旋轉角度之電檢測信號,並控制鏡驅動單元之驅動,以控 制鏡本體之旋轉角度。 該高速光學監視系統可進一步包括:一光束輻射單 元,用來將光線輻射於鏡本體;以及一鏡反射光檢測用感 測器,用來感測鏡本體上反射之光,其中系統控制單元可 根據自鏡反射光檢測用感測器傳來之感測値,控制鏡驅動 單元之驅動,以控制鏡本體之旋轉角度。 該系統控制單元可藉影像擷取單元,依發光單元之頻 率、脈衝時間、驅動電壓或電流而定,獲得發光單元之光 量及光量變化,或發光單元之諸光源之光量及諸發光源間 之光量變化,接著,以軟體方式測定光量及光量變化,以 控制發光單元或諸發光源之光量及光單元之諸發光源間之 光量變化,或補償影像擷取單元所補獲,惟因光量及光量 變化而畸變之影像。 該系統控制單元可對自發光單元發出之光的一部分進 行分光作業’接著,藉由使用一光學感測器,依發光單元 之頻率、脈衝時間、驅動電壓或電流而定,測定發光單元 之光量及光量變化,或發光單元之諸發光源之光量及諸發 光源間之光量變化,以控制發光單元或諸發光源之光量及 發光單元之諸發光源間之光量變化,或補償該影像擷取單 元所補獲,惟因光量及光量變化而畸變之影像。 該影像處理單元使用數位資料來處理包含目標之尺 -8- 200849147 寸、軌跡、速度及位置之時間及空間資訊。 該影像處理單元藉由根據一即時〇s(作業系統)埋設 於一板上,裝載於板上。 該系統控制單元根據數位資料,反饋控制目標源之目 標之產生、鏡之旋轉角度之調整、影像擷取單元之成像作 業之驅動以及發光單元之光量、脈衝時間及脈衝時序。 優異效果 根據上述本發明,可以高速方式監視複數目標,同 時,可自諸目標獲得清楚的監視影像。 【實施方式】 圖2係顯示根據本發明,一高速光學監視系統之配置 之示意圖,且圖3係根據本發明,高速光學監視系統之控 制方塊圖。如以上圖式所示,根據本發明,一高速光學監 視系統包括:一目標源支撐1 0,用來支撐產生至少一目 標5之至少一目標源1 1 ; 一影像擷取單元2 0,用來於一 固定位置監視目標5並將其成像;一鏡3 0及一焦點補償 透鏡40,其等配置於目標5與影像擷取單元20之間,用 來於目標5及影像擷取單元20固定狀態下,改變光通 路,將目標5之影像傳輸至影像擷取單元20 ; —發光單 元70,用來將某一數量的光發給目標5 ; —影像處理單元 50,用來將影像擷取單元20所擷取之數位影像處理成資 料;以及一系統控制單元60,用來控制目標源1 1、影像 -9- 200849147 擷取單元20、鏡30及影像處理單元50之驅動。 目標源支撐1 〇將諸目標源1 1成直線支撐於一預定長 度範圍,俾諸目標5可位於一相同焦點空間平面F中,並 可包含一目標源對準單元80,其必要的話,可沿X/Y/Z 軸移動目標源1 1,並繞X/Y/Z軸旋轉目標源1 1,俾諸目 標可精細對準,以定位於相同焦點空間平面F中。 在此,各目標源11所產生之諸目標5可固定或移動 於相同焦點空間平面中,或可以其週期性時間特徵移動。 若待監視之目標5係諸如油墨滴之液體,其等即可透明、 半透明或不透明。進而,諸目標5可使光折射、衍射、反 射或散射,並且較佳地,於一暗視野或一明視野中監視。 例如,若目標源1 1係噴墨頭,且諸目標5係自噴墨 頭排出之油墨粒子,諸目標5之每一者即可具有約5 // m 至100 // m之尺寸以及約lm/s至20m/s之排出移動速度。 進而,應一次監視之諸目標5之數目可自1個至200個, 且諸目標5可具有在約100HZ至l〇〇kHZ範圍內之週期性 移動特徵。 上述目標5之形狀僅用來解說’且目標5之尺寸、移 動速度、週期性時間特徵及產生源可變化。 進而,目標源對準單元8 0使目標源1 1於空間中移動 或傾斜,俾將諸目標5定位於稍後將說明之影像擷取單元 2 0所辨識之相同焦點空間平面F中’並因此’目標源對 準單元用來將目標源1 1所產生之一個以上目標5對準於 相同焦點空間平面F中。更具體而§ ’目標源對準單兀 -10- 200849147 80容許一聯結於目標源支撐10之載台沿χ/γ/ζ軸移動, 並繞Χ/Υ/Ζ軸旋轉目標源11,使目標源11沿Χ/Υ/Ζ軸移 動,並繞Χ/Υ/Ζ軸旋轉。 在此,目標源對準單元80可使用一習知6軸手動載 台系統,該6軸手動載台系統係例如旋轉形成有某些螺距 之螺紋的圓筒形桿,俾沿6軸方向旋轉以驅動載台者。顯 然,目標源對準單元80可使用一自動對準單元,其中藉 由使用諸如蝸輪、斜齒輪、步進馬達等,沿6軸方向驅動 聯結於目標源1 1之載台。 而且,目標源對準單元80可藉由操作按鈕等之自動 作業驅動,或可藉系統控制單元60之自動控制來驅動對 準,於該系統控制單元6 0中使用一程式化軟體或包含一 視覺辨識系統。此時,目標源對準單元8 0可設成,個別 目標源1 1可獨立沿6軸方向移動。 安裝此一目標源對準單元8 0,於最初裝配時,將目 標源1 1所產生之諸目標5定位於相同焦點空間平面F 中,俾在目標源支撐1 〇與影像擷取單元2 0相互對準狀態 下,諸目標5可藉影像擷取單元2 0精細成像。 影像擷取單元20藉由監視諸目標5並將其等成像, 獲得影像,而且,可使用具有CCD(電荷耦合裝置)或 CMOS (補償金屬氧半導體)成像裝置之攝影機作爲影像擷 取單元20。 在此,較佳係使用一具可擷取高畫質影像之成像裝置 之攝影機,該高畫質度影像具有3 0幀/秒或在此以上之高 -11 - 200849147 幀率及高解晰度。進而,較佳地,攝影機包含一高放大手 動或自動變焦透鏡,其可依目標5之尺寸而調整之放大率 爲 3倍或更大,並可進一步包含用來增加放大率之雙透 鏡。而且,攝影機可進一步包含一用來調整光線深度及量 之光闌。 較佳地,可使用一長焦距高放大透鏡,俾包含鏡3 0 及焦點補償透鏡40之稍後將說明之光學濾波器及光學零 件可配置在目標5與攝影機,亦即影像擷取單元20之 間。此時,透鏡與光學零件之種類及組合可變化,且只要 不會影響本發明之精神,即可自由作種種變更。 此外,攝影機及透鏡可包含一變焦單元及一自動或手 動調焦單元以進行對目標5之精密調焦。此時,爲獲得最 佳影像品質,較佳係影像擷取單元20對目標5之光學焦 深至少爲待監視目標5之最大長度的2倍。 顯然,除了 CCD攝影機或CMOS攝影機外,可使用 種種影像擷取單元來作爲影像擷取單元2 0,只要其等能 藉由監視目標5並將其成像來擷取目標5之影像即可。 鏡3 0包含:一鏡本體3 1,用來改變目標5與影像擷 取單元2 0間之光通路;以及一鏡驅動單元3 3,用來旋轉 驅動鏡本體3 1。 鏡本體3 1可如圖2設成具有至少複數鏡面之多邊形 鏡,惟必要的話,可如圖4設成具有單一鏡面之平面鏡。 在此,較佳係鏡驅動單元3 3使用可精細調整鏡本體3 1之 旋轉角度之諸如步進馬達的可逆馬達。 -12- 200849147 於此一鏡3 0中,鏡驅動單元3 3之驅動改變鏡本體 3 1之旋轉角度’使自目標5前進之光通路折回影像擷取 單元20。因此,待監視之目標5可於影像擷取單元2〇與 目標源1 1相互對準狀態下成像。 此時,鏡驅動單元3 3將一用於鏡本體3 1之旋轉角度 之電檢測信號傳輸至系統控制單元60,俾系統控制單元 60可控制鏡驅動單元33之驅動,將鏡本體3 1之旋轉角 度最佳化。 焦點補償透鏡40補償影像擷取單元20與目標5之間 光通路上的距離,其藉鏡3 0改變以使諸目標5上諸焦點 一致。藉此,補償攝影機,亦即影像擷取單元2 0與存在 於相同焦點空間平面F中至少一目標5間的焦點,俾目標 5之影像可精密地聚焦於攝影機’亦即影像擺取單元20。 在此,較佳係如圖2所示,使用一 F - 0非球面透鏡 作爲焦點補償透鏡40。必要的話,如圖5所示,焦點補 償透鏡4 0設成複數非球面透鏡或球面透鏡/非球面透鏡之 組合,俾可補償諸如色差及折射象差之光學缺點。此時, 只要影像擷取單元2 0與目標5之間光通路的差異可補 償,焦點補償透鏡40之配置或構造即可可變地改變。 發光單元7 0將充份光量射向諸目標5,以確保諸如 攝影機之影像擷取單元成像所需亮度。 較佳係發光單元70使用與目標5之移動有關,諸如 脈衝型LED(發光二極體)或脈衝型雷射二極體之發光裝 置,其中隨著目標5之移動速度變快,需要充份量的光及 -13- 200849147 較短脈衝來獲得清晰影像。在此’充份光量及較短脈衝之 條件意指目標5透過試驗’以最清晰方式聚焦於影像擷取 單元20之光量及脈衝。 進而,爲確保攝影機之有限幀率內的充份光量,較佳 係選擇一具有較高瞬間照亮度之發光單元’以及在目標5 不受光學敏感度影響範圍內,對攝影機之成像裝置具有更 高敏感度的波長範圍。此時,較佳地,選擇避免牽涉到對 目標5之光學反應之波長範圍,作爲發光單元70之主要 波長範圍。 如圖2至5所示,發光單元70與目標源支撐10設成 一體,俾整體照射諸目標源1 1所產生之諸目標5,或者 (於圖式中雖未顯示)發光單元可設在各目標源11所產生 之諸目標5後方,俾各目標源1 1所產生之諸目標5可獨 立以光照射。替代地,於圖式中雖未顯示,發光單元7 0 卻可設成可移動至僅有一對應於影像擷取單元20之影像 辨認區域的目標5可以光照射的位置。 同時,如圖6所示,發光單元70可設在影像擷取單 元20以照射諸目標5。此時,發光單元70可設成可拆卸 地安裝於影像擷取單元20之種種閃光燈。替代地,於圖 式中雖未顯示,發光單元70可設成一體包含於影像擷取 單元20中之閃光燈。 此時’如圖7所示,較佳係發光單元70設成連接於 攝影機,亦即影像擷取單元2 0之透鏡鏡筒的構造,以照 射目標5。在此,尤佳者係一反射板75可設在目標5後 _ 14- 200849147 方,俾連接於透鏡鏡筒之發光單元7 〇所發出的光可反射 於反射板75上以照射目標5,藉此,容許影像擷取單元 20更有效擷取一影像。 此時,爲補償發光單元70之光量變化,一包含準直 儀、均勻器及漫射器之至少一者可配置於目標5與影像擷 取單元20間之光通路上。替代地,當如圖2、3及5所 示,發光單元70配置於目標之後方時,光強度變化補償 單元(未圖示)可配置於發光單元與目標間,或聯結於發 光單元的前面。 進而,於圖式中雖未顯示,發光單元70可個別設在 一與目標5隔預定距離之位置,以間接照射目標。此時, 爲根據發光單元70之位置,將自發光單元70發出的光導 至目標5,可使用一具有彎曲透鏡鏡筒構造之發光導引構 件,該彎曲透鏡鏡筒構造包含菱鏡、反射板等。 而且,發光單元70可包含一用來阻隔自一發光源所 產生之熱的冷卻裝置。於圖式中雖未顯示,自一發光單元 所產生之熱可藉由冷卻裝置爲IR(紅外線)濾波器及二 色光學濾波器9 1之至少一者,設於發光單元70與目標5 間之光通路上,予以移除;或設成個別安裝之諸如冷卻扇 或冷卻碁鰭片之氣冷式冷卻裝置、水冷式冷卻裝置或帕耳 帖(Peltier)元件。藉此,可有效避免目標源1 1及目標5 因發光單元70所產生之熱而變形。 同時,影像處理單元5 0將攝影機,亦即影像擷取單 兀2 0所擷取之目標5之影像數位化;並使用此數位化之 -15- 200849147 影像資料來處理目標5之諸如尺寸、軌跡、速度及位置等 時間及空間資訊。 影像處理單元5 0可由軟體及諸如幀接收機或電腦之 硬體構成,並可透過一即時OS(作業系統),使用一超高 速處理系統,該即時〇 S傳統上由一專用於高速影像處理 的電路板來代表。 進而,影像處理單元50可設成種種形式,於其中處 理至少一目標5之擷取影像,並經由具備載有即時OS之 專用電路板,將目標5之尺寸、速度、軌跡及狀態之資訊 傳輸至影像擷取單元20。 同時,於圖8所示高速光學監視系統1中,較佳係一 光學濾波器9 1配置在形成於目標5與影像擷取單元20間 之光通路上,以改進用於目標5之光學特徵,藉此,容許 影像擷取單元20擷取更清晰及更精確之所欲高品質影 像。 此時,光學濾波器9 1可爲紅外線阻隔濾波器、偏振 濾波器、彩色濾波器及帶通濾波器,或其組合之任一者。 進而,較佳地,光學濾波器9 1配置在焦點補償透鏡40與 鏡3 0間之光通路之一區域中。惟,必要的話,光學濾波 器9 1可配置於目標5與焦點補償透鏡40間之光通路之一 區域、焦點補償透鏡40與鏡30間之光通路之一區域、鏡 3〇與影像擷取單元20間之光通路之一區域中任一者。替 代地,複數光學濾波器可組合配置於二個以上區域中。 同時,圖式中雖未顯示,較佳卻係於根據本發明,高 -16- 200849147 速光學監視系統1中,一額外光學零件配置在形成於目標 5與焦點補償透鏡40間之光通路上,俾擷取高品質影 像。 此時,光學零件可爲擴展器、準直儀、均勻器、漫射 器或其組合。 進而,光學零件以配置於焦點補償透鏡40與鏡30間 之光通路之一區域較佳。惟,必要的話,光學零件可配置 於目標5與焦點補償透鏡40間之光通路之一區域、焦點 補償透鏡4 0與鏡3 0間之光通路之一區域、鏡3 0與影像 擷取單元20間之光通路之一區域中任一者。替代地,複 數光學零件可組合配置於二個以上區域中。 同時,如圖9所示,根據本發明,高速光學監視系統 可進一步包含一參考樣本95,其配置在目標5之相同焦 點空間平面F中,以檢查並校準目標5與影像擷取單元 20間以及鏡30與焦點補償透鏡40間的光學對準關係。 此時,參考樣本95藉一參考樣本支撐95a支撐,其 中參考樣本支撐95a可設成可拆卸地安裝於目標5之相同 焦點空間平面F中之構造。進而,用來支撐參考樣本95 之參考樣本支撐95a可設成手動或自動定位於目標5之相 同焦點空間平面F中。 較佳地,參考樣本95具有一圖案95b,該圖案95b 形成於由透明、半透明或不透明材料製成之基板95c上’ 並對應於目標5。藉影像擷取單元2 0擷取參考樣本9 5之 圖案95b作爲影像,使用影像與參考樣本95之圖案95b -17- 200849147 之實際已知尺寸間的相互關係來檢查並校準目標5與影像 擷取單元20間以及鏡30與焦點補償透鏡40間的光學對 準關係。 進而,使用參考樣本95之圖案95b來檢查並校準影 像處理單元50之性能。 同時,系統控制單元60控制影像擷取單元20、鏡30 及發光單元70之驅動,以最佳化諸如焦點位置及發光狀 態之成像條件,藉此,容許目標5藉影像擷取單元20成 像。 爲此,影像擷取單元20、鏡30及發光單元70之每 一者可包含一諸如感測器之驅動控制模組9 8,用來將諸 元件之每一者的驅動狀態傳輸至系統控制單元60。系統 控制單元60接收並處理自諸驅動控制模組98之每一者傳 來的信號,並根據信號,以最佳方式進行用於影像擷取單 元20之驅動控制、鏡30之驅動角度控制、發光單元70 之光量控制等的反饋控制。 在此,於諸驅動控制模組9 8間有一鏡控制模組,用 來將鏡3 0之驅動狀態傳輸至系統控制單元60。如以上所 述,鏡控制模組可爲一設在鏡驅動單元3 3本身中之模 組,將一用於鏡本體3 1之旋轉角度之電檢測信號傳輸至 系統控制單元60。 替代地,於圖式中雖未顯示,鏡控制模組可設成一模 組,其具有:一光束輻射單元,用來輻射光線於鏡本體 3 1 ;以及一鏡反射光檢測用感測器,用來感測於鏡本體 -18- 200849147 31上反射的光,並將一感測値傳輸至系統控制單元 系統控制單元60可藉由根據鏡反射光檢測用感測器 出感測値驅動鏡驅動單元3 3,控制鏡本體3 1之旋 度。 自鏡控制模組傳來的信號容許系統控制單元60 地控制鏡本體3 1之旋轉角度。 進而,驅動控制模組9 8可設成一發光控制模組 來將發光單元70之驅動狀態傳輸至系統控制單元60 中發光控制模組可爲諸如光學感測器之模組,用來測 自發光單元70的光,並將對應於所檢出光量的信號 至系統控制單元60。 在此,發光單元70之光量依發光單元70之頻率 衝時間、驅動電壓或電流而定產生。如以上所述,光 藉諸如光學感測器之發光控制模組檢測,並傳輸至系 制單元60,藉由使用影像擷取單元20所擷取影像之 資訊,以軟體方式測定發光單元70之光量,並接著 統控制單元60控制。 此時,系統控制單元60可修正業已因影像擷取 20所擷取影像之光量及光量變化而畸變的影像。當 如上述,在系統控制單元60藉由使用一光學感測器 並測定發光單元70之光量及光量變化之後,其可依 變化而定,調整發光單元70之光量,並修正畸變影傷 根據業已藉影像處理單元5 0處理之目標5之諸 寸、軌跡、速度及位置等時間及空間資訊,系統控制 60 〇 所檢 轉角 最佳 ,用 ,其 定發 傳輸 、脈 量可 統控 亮度 藉系 單元 然, 檢測 光量 I 〇 如尺 單元 -19- 200849147 6 0進行目標源1 1產生目標5之反饋控制,俾目標5之諸 如尺寸、軌跡、速度及位置等時間及空間物理量以及發光 單元70之光量、脈衝時間及脈衝時序等可以反饋方式控 制。爲此,目標源11可包含一目標產生控制器1 5。 其次’將說明根據本發明,藉由使用高速光學監視系 統1監視複數目標5之方法。 將目標源1 1所產生之諸目標5週期地於相同焦點空 間平面F中移動預定移動距離。在此,諸目標5之移動可 意指諸目標自目標源1 1排出,接著滴落或排至預定平 面。 此時,當對準影像擷取單元20之位置時,影像擷取 單元20藉一透過用於鏡3 0之被系統控制單元60所控制 之旋轉角度調整作業形成之光通路 Α及焦點補償透鏡 40,精密地聚焦在成直線配置之諸目標5在相同焦點空間 平面F中之一區域,接著將於對應區域中移動之諸目標5 準確成像。 接著,當對準影像擷取單元2 0之位置時,影像擷取 單元20藉透過用於鏡3 0之被系統控制單元60所控制之 旋轉角度調整作業改變之光通路A、B及C及焦點補償透 鏡40,快速並精密地聚焦在成直線配置之諸目標5在相 同焦點空間平面F中的其他區域’接著將於對應區域中移 動之諸目標5準確成像。 當調整鏡3 0之旋轉角度時’藉影像擷取單元2 0 ’於 影像擷取單元20與目標源1 1相互對準之位置’將諸目標 -20- 200849147 5快速並精密成像。 同時,藉影像處理單元5 0將影像擷取單元2 0所形成 之目標5之影像處理成數位化影像資料,俾可確認諸目標 5之諸如尺寸、軌跡、速度及位置等時間及空間物理量。 接著,系統控制單元60藉由使用目標產控制器1 5, 根據目標5之數位化時間及空間資訊,進行對目標源之反 饋控制,俾目標5之諸如尺寸、軌跡、速度及位置等時間 及空間物理量可均一產生。進而,系統控制單元60可控 制發光單元70之光量、脈衝時間及脈衝時序。 如上述,根據本發明,高速光學監視系統藉由使用在 諸目標及諸如攝影機之影像擷取單元固定狀態下,用於鏡 及焦點補償透鏡之光通路改變作業,監視諸目標,俾諸目 標可精密且高速監視並成像,藉此,根據諸影像,控制目 標源,造成對目標源之諸目標產生的主動控制。 根據本發明所提議之筒速光學監視系統之一較佳實施 例,目標源1 1可爲一噴墨頭,目標5可爲自噴墨頭之噴 嘴排出之墨滴’且局速光學監視系統1可爲一噴墨高速光 學監視系統’其中藉由使用可旋轉鏡3 0及焦點補償透鏡 4 〇,以高速方式監視自噴墨頭之噴嘴排出之墨滴。 【圖式簡單說明】 圖1係一習知光學監視系統之示意立體圖。 Η 2係根據本發明,一咼速光學監視系統之配置之示 意立體圖。 -21 - 200849147 圖3係根據本發明,高速光學監視系統之控制方塊 圖。 圖4至9係顯示根據本發明其他實施例,高速光學監 視系統之配置之示意圖。 【主要元件符號說明】 1 :高速光學監視系統 5 :目標 1 0 :目標源支撐 1 1 :目標源 1 5 :目標產生控制器 2 0 :影像擷取單元 30 :鏡 3 1 :鏡本體 3 3 :鏡驅動單元 40 :焦點補償透鏡 5 〇 :影像處理單元 6 0 :系統控制單元 70 :發光單元 7 5 :反射板 8 〇 :目標源對準單元 90 :光量變化補償單元 9 1 :光學濾波器 9 5 :參考樣本 -22- 200849147 95a:參考樣本支撐 9 5 b :圖案 9 5 c :基板 9 8 :驅動控制模組 1 〇 1 :習知目標監視設備 1 1 〇 :目標 1 1 1 :目標源 1 1 2 :目標源支撐 120 :目標監視攝影機 1 3 0,1 3 1 :移動載台 A,B,C :光通路 F :相同焦點空間平面 -23BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed optical monitoring system, and more particularly to a high-speed optical monitoring system capable of clearly monitoring at least one target disposed on a plane of the same focus space in a high speed manner. [Prior Art] A conventional target monitoring system for monitoring a plurality of targets constitutes a target surveillance camera 120 mounted on at least one of the moving stages 13 and moving in the X direction and/or the Y direction, and sequentially monitoring the presence of A monitoring target 1 1 0 in the same focus space plane F. Alternatively, in the fixed state of the camera 120, a target source 1 1 1 that generates the targets 1 1 借 is moved in the X direction and/or the Y direction by at least one moving stage 1 3 1 , and a moving stage 130 With its movement, the camera 12 can sequentially monitor the targets 1 10 0 individually. At the same time, the 'camera 120 and the targets 1 10 are arranged as targets 〗 1 〇 can be monitored sequentially by the camera 1 2 0, but the mobile stage 130 for the camera 2 2 移动 and the mobile stage 13 1 for the target source ill Both and the target source support 1 1 2 move each other. However, in the above-mentioned conventional target monitoring device, since the targets are monitored, the camera and/or the objects are moved by the moving stage, and therefore, depending on the moving distance of the moving stage, the monitoring time delay is required, resulting in It is difficult to monitor targets at high speed. More specifically, since the moving stages repeatedly move back and forth in the X direction and/or the γ -4- 200849147 direction to periodically monitor the complex target 'therefore' because of the inertial force of the moving stage and the object to be moved, the actual It is difficult to reciprocate the moving stage and the object to be moved by the speed of the tube without vibration. Therefore, there is a problem that the image of the target monitored by the camera is distorted and the targets cannot be monitored at high speed. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a high speed optical monitoring system that can monitor at least one target at a high speed while obtaining a clear monitoring image from a target. Technical Solution To achieve the object, according to one aspect of the present invention, a tube speed optical monitoring system for monitoring at least one target is provided, comprising: at least one target source for generating a target; and a target source support for Aligning and supporting the target source, positioning the target in a same focal space plane; an image capturing unit 'having an imaging device for monitoring and imaging the target at an aligned position; a mirror' is mounted on the target Between the image capturing unit and the image capturing unit, the rotation angle of the mirror can be changed; a focus compensation lens is disposed between the target and the mirror; and an image processing unit is configured to process the image captured by the image capturing unit into digital data. a lighting unit for illuminating the target; and a system control unit for controlling the lighting unit, and driving the target source, the image capturing unit and the mirror. -5- 200849147 The at least one target includes a plurality of targets, and the targets may be fixed or moved, or may be generated in a periodic or quasi-periodic manner and dynamically moved. The high speed optical monitoring system can further include a target source aligning unit coupled to the target source support for moving the target source along the X/Y/Z axis and tilting or rotating the target source about the X/Y/Z axis. The image capture unit can be a camera having a CCD or CMOS imaging device. The mirror may comprise: a mirror body comprised of a planar mirror having at least one single mirror surface; and a mirror drive unit for rotating the mirror body within a certain angle of rotation. The mirror may comprise a mirror body consisting of a polygonal mirror having a plurality of mirrors and a mirror drive unit for rotating the mirror body within a certain angle of rotation. The focus compensating lens can be provided as a single F-0 aspherical lens, a complex aspherical lens or a combination of a spherical lens/aspherical lens. The target can be moved, and the illumination unit can use a pulse-type light-emitting diode or a laser diode associated with the movement of the moving object. The high speed optical monitoring system may further include a light amount variation compensating unit disposed in the optical path between the target and the image capturing unit to compensate for the change in the amount of light of the light emitting unit. The illuminating unit D can be in the back of the target or in the image capturing unit to illuminate the target. And if the light emitting unit is disposed in the image capturing unit, a reflecting plate is disposed behind the target. -6 - 200849147 The lighting unit may comprise an air-cooled or water-cooled cooling device for blocking the heat generated by an illumination source. The cooling device may include at least one IR (infrared) filter and a dichroic filter. The cooling device can be a Peltier element. At least one filter of an infrared blocking filter, a polarization filter, a color filter and a band pass filter is disposed on an optical path between the target and the image capturing unit. The high speed optical monitoring system can further include a reference sample disposed in the same focal space plane to inspect and align the optical alignment between the target and the image capturing unit and between the mirror body and the focus compensating lens. The high speed optical monitoring system can further include a reference sample support disposed in the same focal space plane, the raft supporting the reference sample, wherein the reference sample support is detachably coupled in the same focal space plane, or mounted to be movable to the reference sample The support is arranged between the ~ position in the same focus space plane and another position outside the plane of the same focus space. The reference sample support can be manually or automatically positioned in the same focus space plane. The reference sample can have a pattern corresponding to the target and formed on a substrate made of a transparent, translucent or opaque material. The pattern of the reference sample can be captured by the image capturing unit to form a ___^ image. The relationship between the image and the pattern size can be used to calibrate the optical between the target and the image capturing unit and between the mirror and the focus compensating lens. Align relationships and calibrate image processing performance. 200849147 The mirror driving unit can transmit an electrical detection signal for the rotation angle of the mirror body to the system control unit, and the system control unit can receive the electrical detection signal of the rotation angle of the mirror body and control the driving of the mirror driving unit to control The angle of rotation of the mirror body. The high-speed optical monitoring system may further include: a beam radiating unit for radiating light to the mirror body; and a mirror-reflecting light detecting sensor for sensing the reflected light on the mirror body, wherein the system control unit may According to the sensing 传 transmitted from the sensor for detecting the reflected light, the driving of the mirror driving unit is controlled to control the rotation angle of the mirror body. The system control unit can use the image capturing unit to obtain the light quantity and the light quantity change of the light emitting unit according to the frequency, the pulse time, the driving voltage or the current of the light emitting unit, or the light quantity of the light sources of the light emitting unit and the light source The amount of light is changed, and then the amount of light and the amount of light are measured in a soft manner to control the amount of light of the light-emitting unit or the light-emitting sources and the amount of light between the light-emitting sources of the light unit, or compensated by the image capturing unit, but due to the amount of light and An image of distortion caused by changes in light quantity. The system control unit can perform a splitting operation on a part of the light emitted from the self-illuminating unit. Then, by using an optical sensor, the amount of light of the light emitting unit is determined according to the frequency, pulse time, driving voltage or current of the light emitting unit. And a change in the amount of light, or a change in the amount of light of the light-emitting sources of the light-emitting unit and the amount of light between the light-emitting sources, to control the amount of light of the light-emitting unit or the light-emitting sources and the amount of light between the light-emitting sources of the light-emitting unit, or to compensate for the image capture An image obtained by a unit that is distorted by changes in light quantity and amount of light. The image processing unit uses digital data to process time and space information including the target's -8-200849147 inch, trajectory, speed and position. The image processing unit is mounted on the board by being embedded on a board according to an instant 〇s (operation system). The system control unit feedbacks the generation of the target of the target source, the adjustment of the rotation angle of the mirror, the driving of the imaging operation of the image capturing unit, and the light quantity, pulse time and pulse timing of the light unit according to the digital data. Excellent effect According to the present invention described above, the plurality of targets can be monitored at a high speed, and at the same time, clear monitoring images can be obtained from the targets. [Embodiment] Fig. 2 is a view showing the configuration of a high speed optical monitoring system according to the present invention, and Fig. 3 is a control block diagram of the high speed optical monitoring system according to the present invention. As shown in the above figure, according to the present invention, a high-speed optical monitoring system includes: a target source support 10 for supporting at least one target source 1 1 that generates at least one target 5; an image capture unit 20; The target 5 is monitored and imaged at a fixed position; a mirror 30 and a focus compensating lens 40 are disposed between the target 5 and the image capturing unit 20 for the target 5 and the image capturing unit 20 In the fixed state, the optical path is changed, and the image of the target 5 is transmitted to the image capturing unit 20; the light emitting unit 70 is used to send a certain amount of light to the target 5; the image processing unit 50 is used to image the image The digital image captured by the unit 20 is processed into data; and a system control unit 60 is used to control the driving of the target source 1 1 , the image -9 - 200849147 capturing unit 20 , the mirror 30 , and the image processing unit 50 . The target source support 1 成 supports the target sources 1 1 in a predetermined length range, and the targets 5 may be located in a same focus space plane F, and may include a target source aligning unit 80, if necessary, Move the target source 1 1 along the X/Y/Z axis and rotate the target source 1 1 around the X/Y/Z axis. The targets can be finely aligned to be positioned in the same focus space plane F. Here, the targets 5 generated by the respective target sources 11 may be fixed or moved in the same focal space plane, or may be moved by their periodic time characteristics. If the target 5 to be monitored is a liquid such as an ink droplet, it may be transparent, translucent or opaque. Further, the targets 5 can refract, diffract, reflect or scatter light, and preferably, monitor in a dark field or a bright field. For example, if the target source 11 is an inkjet head and the targets 5 are ink particles discharged from the inkjet head, each of the targets 5 may have a size of about 5 // m to 100 // m and about The moving speed of lm/s to 20m/s. Further, the number of targets 5 to be monitored at one time may be from 1 to 200, and the targets 5 may have periodic movement characteristics in the range of about 100 Hz to 10 〇〇 kHZ. The shape of the above object 5 is only used to illustrate ' and the size, moving speed, periodic time characteristics, and generation source of the target 5 may vary. Further, the target source aligning unit 80 moves or tilts the target source 11 in the space, and positions the targets 5 in the same focus space plane F recognized by the image capturing unit 20 which will be described later. Therefore, the 'target source aligning unit is used to align one or more targets 5 generated by the target source 11 into the same focal space plane F. More specifically, § 'Target source alignment 兀-10- 200849147 80 allows a stage coupled to the target source support 10 to move along the χ/γ/ζ axis and rotate the target source 11 around the Χ/Υ/Ζ axis, so that The target source 11 moves along the Χ/Υ/Ζ axis and rotates around the Χ/Υ/Ζ axis. Here, the target source aligning unit 80 can use a conventional 6-axis manual stage system, for example, a cylindrical rod that is rotated to form a thread with a certain pitch, and the cymbal rotates in the 6-axis direction. To drive the stage. It is apparent that the target source aligning unit 80 can use an automatic aligning unit in which the stage coupled to the target source 11 is driven in the six-axis direction by using, for example, a worm gear, a helical gear, a stepping motor or the like. Moreover, the target source aligning unit 80 can be driven by an automatic operation of an operation button or the like, or can be driven by the automatic control of the system control unit 60, and a stylized software is used in the system control unit 60 or includes a Visual identity system. At this time, the target source aligning unit 80 may be set such that the individual target sources 11 can be independently moved in the six-axis direction. The target source aligning unit 80 is installed. When initially assembled, the targets 5 generated by the target source 11 are positioned in the same focus space plane F, and the target source supports 1 〇 and the image capturing unit 2 0. In the mutually aligned state, the objects 5 can be finely imaged by the image capturing unit 20. The image capturing unit 20 obtains an image by monitoring the objects 5 and imaging them, and a camera having a CCD (Charge Coupled Device) or CMOS (Compensated Metal Oxygen Semiconductor) imaging device can be used as the image capturing unit 20. Here, it is preferable to use a camera capable of capturing an image forming apparatus of a high-quality image having a frame rate of 30 frames per second or higher and a high resolution of -11 - 200849147. Further, preferably, the camera comprises a high-magnification manual or automatic zoom lens which is adjustable by a factor of 3 or more depending on the size of the target 5, and further includes a double lens for increasing the magnification. Moreover, the camera can further include a stop for adjusting the depth and amount of light. Preferably, a long focal length high magnification lens can be used, and the optical filter and the optical component, which will be described later, including the mirror 30 and the focus compensating lens 40, can be disposed on the target 5 and the camera, that is, the image capturing unit 20 between. In this case, the types and combinations of the lenses and the optical components can be changed, and various changes can be made as long as they do not affect the spirit of the present invention. In addition, the camera and lens may include a zoom unit and an automatic or manual focus unit for precise focusing of the target 5. At this time, in order to obtain the best image quality, it is preferable that the optical depth of the image capturing unit 20 to the target 5 is at least twice the maximum length of the target 5 to be monitored. Obviously, in addition to a CCD camera or a CMOS camera, various image capturing units can be used as the image capturing unit 20 as long as they can capture the image of the target 5 by monitoring the target 5 and imaging it. The mirror 30 includes a mirror body 3 1 for changing the light path between the target 5 and the image capturing unit 20, and a mirror driving unit 33 for rotating the mirror body 31. The mirror body 31 can be arranged as a polygonal mirror having at least a plurality of mirrors as shown in Fig. 2, but if necessary, it can be arranged as a plane mirror having a single mirror surface as shown in Fig. 4. Here, the preferred mirror driving unit 33 uses a reversible motor such as a stepping motor which can finely adjust the rotation angle of the mirror body 31. -12- 200849147 In this mirror 30, the driving of the mirror driving unit 3 3 changes the rotation angle of the mirror body 3 1 to cause the optical path advancing from the target 5 to be folded back to the image capturing unit 20. Therefore, the target 5 to be monitored can be imaged in a state in which the image capturing unit 2 is aligned with the target source 11. At this time, the mirror driving unit 33 transmits an electrical detection signal for the rotation angle of the mirror body 31 to the system control unit 60, and the system control unit 60 can control the driving of the mirror driving unit 33, and the mirror body 3 1 The angle of rotation is optimized. The focus compensating lens 40 compensates for the distance on the optical path between the image capturing unit 20 and the target 5, which is changed by the mirror 30 to make the focal points on the targets 5 coincide. Thereby, the compensation camera, that is, the image capturing unit 20 and the focus between the at least one target 5 in the same focus space plane F, the image of the target 5 can be precisely focused on the camera 'that is, the image capturing unit 20 . Here, as shown in Fig. 2, an F - 0 aspherical lens is preferably used as the focus compensating lens 40. If necessary, as shown in Fig. 5, the focus compensation lens 40 is provided as a combination of a plurality of aspherical lenses or spherical lenses/aspherical lenses, which can compensate for optical disadvantages such as chromatic aberration and refractive aberration. At this time, as long as the difference in the optical path between the image capturing unit 20 and the target 5 can be compensated, the configuration or configuration of the focus compensating lens 40 can be variably changed. The illumination unit 70 directs a sufficient amount of light toward the targets 5 to ensure that the image capturing unit such as the camera images the desired brightness. Preferably, the light-emitting unit 70 uses a light-emitting device related to the movement of the target 5, such as a pulse-type LED (light-emitting diode) or a pulse-type laser diode, in which the amount of charge is required as the moving speed of the target 5 becomes faster. Light and -13 - 200849147 Short pulses to get a clear image. Here, the condition of the sufficient amount of light and the shorter pulse means that the target 5 transmits the amount of light and the pulse of the image capturing unit 20 in the clearest manner through the test. Furthermore, in order to ensure the amount of sufficient light in the limited frame rate of the camera, it is preferred to select a light-emitting unit having a higher instantaneous brightness and to be within the range of the target 5 from the optical sensitivity, and the imaging device for the camera has A range of wavelengths with higher sensitivity. At this time, preferably, the wavelength range in which the optical reaction to the target 5 is involved is selected as the main wavelength range of the light-emitting unit 70. As shown in FIGS. 2 to 5, the light-emitting unit 70 is integrally formed with the target source support 10, and the target unit 5 generated by the target source 11 is entirely irradiated, or (not shown in the drawings) the light-emitting unit may be disposed. Behind the targets 5 generated by the respective target sources 11, the targets 5 generated by the respective target sources 11 can be independently illuminated by light. Alternatively, although not shown in the drawings, the light-emitting unit 70 may be set to be movable to a position where only the target 5 corresponding to the image recognition area of the image capturing unit 20 can be illuminated by light. Meanwhile, as shown in FIG. 6, the light emitting unit 70 may be disposed in the image capturing unit 20 to illuminate the objects 5. At this time, the light emitting unit 70 can be provided as a variety of flash lamps detachably mounted to the image capturing unit 20. Alternatively, although not shown in the drawings, the light emitting unit 70 may be provided as a flash unit integrally included in the image capturing unit 20. At this time, as shown in Fig. 7, the preferred light-emitting unit 70 is connected to the camera, that is, the configuration of the lens barrel of the image capturing unit 20 to illuminate the target 5. Here, it is preferred that a reflector 75 can be disposed on the side of the target 5 _ 14- 200849147, and the light emitted from the illuminating unit 7 俾 connected to the lens barrel can be reflected on the reflector 75 to illuminate the target 5, Thereby, the image capturing unit 20 is allowed to capture an image more efficiently. At this time, in order to compensate for the change in the amount of light of the light-emitting unit 70, at least one of the collimator, the homogenizer and the diffuser may be disposed on the optical path between the target 5 and the image capturing unit 20. Alternatively, when the light emitting unit 70 is disposed behind the target as shown in FIGS. 2, 3 and 5, the light intensity variation compensating unit (not shown) may be disposed between the light emitting unit and the target, or coupled to the front of the light emitting unit. . Further, although not shown in the drawings, the light-emitting unit 70 may be individually disposed at a predetermined distance from the target 5 to indirectly illuminate the target. At this time, in order to guide the light emitted from the light emitting unit 70 to the target 5 according to the position of the light emitting unit 70, a light guiding member having a curved lens barrel structure including a prism and a reflecting plate may be used. Wait. Moreover, the illumination unit 70 can include a cooling device for blocking the heat generated from a source of illumination. Although not shown in the drawings, the heat generated from a light-emitting unit may be provided between the light-emitting unit 70 and the target 5 by at least one of an IR (infrared) filter and a two-color optical filter 91 by a cooling device. The light path is removed; or it is provided as an individually mounted air-cooled cooling device such as a cooling fan or a cooling fin, a water-cooled cooling device or a Peltier element. Thereby, it is possible to effectively prevent the target source 1 1 and the target 5 from being deformed by the heat generated by the light-emitting unit 70. At the same time, the image processing unit 50 digitizes the image of the target 5 captured by the camera, that is, the image capturing unit 20; and uses the digitized -15-200849147 image data to process the target 5 such as size, Time and space information such as track, speed and position. The image processing unit 50 can be composed of a software body and a hardware such as a frame receiver or a computer, and can use an ultra-high speed processing system through an instant OS (operation system), which is conventionally dedicated to high speed image processing. The board is represented. Furthermore, the image processing unit 50 can be configured in various forms, in which the captured image of at least one target 5 is processed, and the information of the size, speed, trajectory and state of the target 5 is transmitted via a dedicated circuit board carrying the instant OS. To the image capturing unit 20. Meanwhile, in the high-speed optical monitoring system 1 shown in FIG. 8, an optical filter 91 is preferably disposed on the optical path formed between the target 5 and the image capturing unit 20 to improve the optical characteristics for the target 5. Thereby, the image capturing unit 20 is allowed to capture a clearer and more accurate desired high quality image. At this time, the optical filter 91 may be any one of an infrared blocking filter, a polarization filter, a color filter, and a band pass filter, or a combination thereof. Further, preferably, the optical filter 91 is disposed in a region of the optical path between the focus compensating lens 40 and the mirror 30. However, if necessary, the optical filter 91 can be disposed in a region of the optical path between the target 5 and the focus compensating lens 40, a region of the optical path between the focus compensating lens 40 and the mirror 30, the mirror 3 and the image capture. Any one of the regions of the light path between cells 20. Alternatively, the complex optical filters may be combined in more than two regions. Meanwhile, although not shown in the drawings, it is preferable to arrange an additional optical component in the optical path formed between the target 5 and the focus compensating lens 40 in the high-16-200849147 speed optical monitoring system 1 according to the present invention. , capture high quality images. At this point, the optical component can be an expander, a collimator, a homogenizer, a diffuser, or a combination thereof. Further, the optical component is preferably provided in a region of the light path disposed between the focus compensating lens 40 and the mirror 30. However, if necessary, the optical component can be disposed in a region of the optical path between the target 5 and the focus compensating lens 40, a region of the optical path between the focus compensating lens 40 and the mirror 30, the mirror 30 and the image capturing unit. Any of the 20 light paths in one of the areas. Alternatively, the plurality of optical components may be combined in more than two regions. Meanwhile, as shown in FIG. 9, the high speed optical monitoring system may further include a reference sample 95 disposed in the same focus space plane F of the target 5 to inspect and calibrate between the target 5 and the image capturing unit 20, as shown in FIG. And an optical alignment relationship between the mirror 30 and the focus compensating lens 40. At this time, the reference sample 95 is supported by a reference sample support 95a, wherein the reference sample support 95a can be configured to be detachably mounted in the same focal space plane F of the target 5. Further, the reference sample support 95a for supporting the reference sample 95 can be set to be manually or automatically positioned in the same focus space plane F of the target 5. Preferably, the reference sample 95 has a pattern 95b formed on a substrate 95c made of a transparent, translucent or opaque material and corresponding to the target 5. The image capturing unit 20 captures the pattern 95b of the reference sample 9.5 as an image, and uses the correlation between the image and the actual known size of the pattern 95b-17-200849147 of the reference sample 95 to check and calibrate the target 5 and the image 撷The optical alignment between the cells 20 and between the mirror 30 and the focus compensating lens 40 is taken. Further, the pattern 95b of the reference sample 95 is used to check and calibrate the performance of the image processing unit 50. At the same time, the system control unit 60 controls the driving of the image capturing unit 20, the mirror 30, and the light emitting unit 70 to optimize imaging conditions such as the focus position and the light-emitting state, thereby allowing the target 5 to be imaged by the image capturing unit 20. To this end, each of the image capturing unit 20, the mirror 30, and the light emitting unit 70 may include a driving control module 198 such as a sensor for transmitting the driving state of each of the components to the system control. Unit 60. The system control unit 60 receives and processes the signals transmitted from each of the drive control modules 98, and performs drive control for the image capture unit 20, drive angle control of the mirror 30, and the mirror 30 in an optimal manner according to the signals. Feedback control of the light amount control of the light emitting unit 70 or the like. Here, a mirror control module is provided between the drive control modules 98 for transmitting the drive state of the mirror 30 to the system control unit 60. As described above, the mirror control module can be a module provided in the mirror driving unit 3 itself, and an electrical detection signal for the rotation angle of the mirror body 31 is transmitted to the system control unit 60. Alternatively, although not shown in the drawings, the mirror control module may be configured as a module having: a beam radiating unit for radiating light to the mirror body 3 1 ; and a mirror reflecting light detecting sensor For sensing the light reflected on the mirror body -18-200849147 31, and transmitting a sensing 値 to the system control unit. The system control unit 60 can sense the 値 driving according to the sensor for detecting the reflected light of the mirror. The mirror driving unit 33 controls the rotation of the mirror body 31. The signal from the mirror control module allows the system control unit 60 to control the angle of rotation of the mirror body 31. In addition, the driving control module 98 can be configured as an illuminating control module to transmit the driving state of the illuminating unit 70 to the system control unit 60. The illuminating control module can be a module such as an optical sensor for measuring The light of the light unit 70 is illuminated, and a signal corresponding to the detected amount of light is sent to the system control unit 60. Here, the amount of light of the light-emitting unit 70 is generated depending on the frequency of the light-emitting unit 70, the driving voltage, or the current. As described above, the light is detected by the light-emitting control module such as the optical sensor, and transmitted to the system unit 60. The information of the image captured by the image capturing unit 20 is used to determine the light-emitting unit 70 in a software manner. The amount of light is controlled by the control unit 60. At this time, the system control unit 60 can correct the image that has been distorted due to the change in the amount of light and the amount of light of the captured image. As described above, after the system control unit 60 determines the amount of light and the amount of light of the light-emitting unit 70 by using an optical sensor, the amount of light of the light-emitting unit 70 can be adjusted according to the change, and the distortion of the image is corrected. By means of the time and space information of the target 5, the trajectory, the speed and the position of the target 5 processed by the image processing unit 50, the system controls the optimal detection angle of 60 〇, and the fixed transmission and the pulse quantity can control the brightness. Unit, the detected light quantity I, such as the rule unit -19- 200849147 6 0, the target source 1 1 generates the feedback control of the target 5, the time and space physical quantities such as size, trajectory, speed and position of the target 5 and the light-emitting unit 70 Light quantity, pulse time and pulse timing can be controlled in a feedback manner. To this end, the target source 11 can include a target generation controller 15. Next, a method of monitoring the complex target 5 by using the high speed optical monitoring system 1 will be explained in accordance with the present invention. The targets 5 generated by the target source 11 are periodically moved by a predetermined moving distance in the same focal space plane F. Here, the movement of the objects 5 may mean that the objects are discharged from the target source 11 and then dropped or discharged to a predetermined plane. At this time, when the position of the image capturing unit 20 is aligned, the image capturing unit 20 passes through a light path and a focus compensation lens formed by the rotation angle adjustment operation controlled by the system control unit 60 for the mirror 30. 40, precisely focusing on the target 5 in a straight line configuration in one of the same focal space planes F, and then accurately imaging the targets 5 moving in the corresponding area. Then, when the position of the image capturing unit 20 is aligned, the image capturing unit 20 changes the light paths A, B, and C through the rotation angle adjustment operation controlled by the system control unit 60 for the mirror 30. The focus compensating lens 40, which quickly and precisely focuses on the other regions of the target 5 in the same focal plane plane F, is then accurately imaged by the targets 5 moving in the corresponding regions. When the rotation angle of the mirror 30 is adjusted, the objects -20-200849147 5 are quickly and precisely imaged by the image capturing unit 2 0 ' at a position where the image capturing unit 20 and the target source 1 are aligned with each other. At the same time, the image processing unit 50 processes the image of the target 5 formed by the image capturing unit 20 into digital image data, and confirms the temporal and spatial physical quantities of the objects 5 such as size, trajectory, speed and position. Next, the system control unit 60 performs feedback control on the target source according to the digitized time and space information of the target 5 by using the target production controller 15, and the time, such as size, trajectory, speed, and position of the target 5 and The physical quantities of space can be uniformly generated. Further, the system control unit 60 can control the amount of light, the pulse time, and the pulse timing of the light-emitting unit 70. As described above, according to the present invention, the high-speed optical monitoring system monitors the targets by using the light path changing operation for the mirror and the focus compensation lens in a fixed state of the target and the image capturing unit such as the camera, and the targets can be monitored. Precise and high-speed monitoring and imaging, whereby the target source is controlled based on the images, resulting in active control of the targets of the target source. According to a preferred embodiment of the proposed barrel speed optical monitoring system of the present invention, the target source 11 can be an ink jet head, and the target 5 can be an ink droplet discharged from the nozzle of the ink jet head and the local speed optical monitoring system 1 may be an ink jet high speed optical monitoring system 'where the ink droplets discharged from the nozzles of the ink jet head are monitored in a high speed manner by using the rotatable mirror 30 and the focus compensating lens 4 。. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic perspective view of a conventional optical monitoring system. Η 2 is a schematic perspective view of the configuration of an idle optical monitoring system in accordance with the present invention. -21 - 200849147 Figure 3 is a control block diagram of a high speed optical monitoring system in accordance with the present invention. 4 to 9 are views showing the configuration of a high speed optical monitoring system according to other embodiments of the present invention. [Main component symbol description] 1 : High-speed optical monitoring system 5 : Target 1 0 : Target source support 1 1 : Target source 1 5 : Target generation controller 2 0 : Image capture unit 30 : Mirror 3 1 : Mirror body 3 3 : Mirror drive unit 40 : focus compensation lens 5 〇 : image processing unit 6 0 : system control unit 70 : illumination unit 7 5 : reflection plate 8 〇 : target source alignment unit 90 : light amount variation compensation unit 9 1 : optical filter 9 5 : Reference sample-22- 200849147 95a: Reference sample support 9 5 b : Pattern 9 5 c : Substrate 9 8 : Drive control module 1 〇 1 : Conventional target monitoring device 1 1 〇: Target 1 1 1 : Target Source 1 1 2 : Target source support 120: Target surveillance camera 1 3 0, 1 3 1 : Mobile stage A, B, C: Light path F: Same focal plane plane -23

Claims (1)

200849147 十、申請專利範圍 1 · 一種高速光學監視系統,係用來監視至少一目標, 該系統包括: 至少一目標源,用來產生該目標; 一目標源支撐,用來對準並支撐該目標源,俾將該目 標定位於一相同焦點空間平面中; 一影像擷取單元,具有一用來於一對準位置監視該目 標並將其成像之成像裝置; 一鏡’安裝於該目標與該影像擷取單元之間,俾可改 變該鏡的旋轉角度; 一焦點補償透鏡,配置於該目標與該鏡之間; 一影像處理單元,用來將該影像擷取單元所擷取之影 像處理成數位資料; 一發光單元,用來照射該目標;以及 一系統控制單元,用來控制該發光單元,以及該目標 源、該影像擷取單元及該鏡之驅動。 2.如申請專利第1項之高速光學監視系統,其中,該 至少一目標包括複數目標,且該等目標固定或被移動,或 _以週期或準週期方式產生’並動態地被移動。 3 .如申請專利第1項之高速光學監視系統,其進一步 包括一目標源對準單元,聯結於該目標源支撐,俾沿 X/Y/Z軸移動該目標源,並使該目標源繞X/Y/Z軸傾斜或 旋轉。 4.如申請專利第1項之高速光學監視系統,其中,該 -24- 200849147 影像擷取單元係一具有CCD或CMOS成像裝置之攝影 機。 5 ·如申請專利第1項之高速光學監視系統,其中,該 鏡包括: 一鏡本體,由一平面鏡構成,該平面鏡具有至少一單 一鏡面;以及 一鏡驅動單元,用來於某一旋轉角度內旋轉該鏡本 體。 6·如申請專利第1項之高速光學監視系統,其中,該 鏡包括: 一鏡本體,由一多邊形鏡構成,該多邊形鏡具有複數 鏡面;以及 一鏡驅動單元,用來於某一旋轉角度內旋轉該鏡本 體。 7 ·如申請專利第1項之高速光學監視系統,其中,該 焦點補償透鏡設成單一 F- Θ非球面透鏡、複數非球面透 鏡或球面透鏡/非球面透鏡之組合。 8 ·如申請專利第1項之局速光學監視系統’其中’移 動該目標,且該發光單元使用與移動目標之移動有關之脈 衝型發光二極體或雷射二極體。 9 ·如申請專利第1或8項之筒速光學監視系統,其進 一步包括一光量變化補償單元’設在該目標與該影像擷取 單元間之一光通路中’以補償該發光單元之光量變化。 1 〇.如申請專利第1或8項之高速光學監視系統,其 -25- 200849147 中,該發光單元設在該目標後面或該影像擷取單元中,以 照射該目標;且 若該發光單元設在該影像擷取單元中,即於該目標後 面設置一反射板。 1 1 ·如申請專利第1項之高速光學監視系統,其中, 該發光單元包括一氣冷式或水冷式冷卻裝置,用來阻隔一 發光源所產生的熱。 1 2 ·如申請專利第1 1項之高速光學監視系統,其中, 該冷卻裝置包括IR(紅外線)濾波器及二色性濾波器之至少 一者。 1 3 ·如申請專利第1 1項之高速光學監視系統,其中, 該冷卻裝置係一帕耳帖(Peltier)元件。 1 4 ·如申請專利第1項之筒速光學監視系統,其中, 一紅外線阻隔濾波器、一偏振濾波器、一彩色濾波器及一 帶通濾波器之至少一濾波器設在該目標與該影像擷取單元 間之一光通路上。 1 5 ·如申請專利第5項之高速光學監視系統,其進一 步包括一參考樣本,配置在該相同焦點空間平面中,俾檢 查並校準該目標與該影像擷取單元間以及該鏡本體與該焦 點補償透鏡間之光學對準關係。 1 6 ·如申請專利第1 5項之高速光學監視系統,其進一 步包括一參考樣本支撐,配置在該相同焦點空間平面中, 俾支撐該參考樣本,其中該參考樣本支撐可拆卸地聯結於 該相同焦點空間平面中,或安裝成可移動於該參考樣本支 -26- 200849147 撐配置在該相同焦點空間平面中之一位置與該相同焦點空 間平面外之另一位置間。 17.如申請專利第16項之高速光學監視系統,其中, 該參考樣本支撐手動或自動定位於該相同焦點空間平面 中。 1 8 ·如申請專利第1 5至1 7項中任一項之高速光學監 視系統,其中,該參考樣本具有一圖案,該圖案對應於該 目標,並形成於一由透明、半透明或不透明材料製成之基 板上。 1 9 .如申請專利第1 8項之高速光學監視系統,其中, 該參考樣本之圖案藉該影像擷取單元擷取,形成一影像, 俾可使用該影像與該圖案尺寸間之相互關係來校準該目標 與該影像擷取單元間以及該鏡與該焦點補償透鏡間之光學 對準關係,以及校準影像處理性能。 20.如申請專利第5項之高速光學監視系統,其中, 該鏡驅動單元將用於該鏡本體之旋轉角度之電檢測信號傳 輸至該系統控制單元,且該系統控制單元接收該鏡本體之 旋轉角度之該電檢測信號,並控制該鏡驅動單元之驅動, 以控制該鏡本體之旋轉角度。 2 1 ·如申請專利第5項之高速光學監視系統,其進一 步包括:一光束輻射單元,用來將光線輻射於該鏡本體; 以及一鏡反射光檢測用感測器,用來感測該鏡本體上反射 之光,其中該系統控制單元根據自該鏡反射光檢測用感測 器傳來之感測値,控制該鏡驅動單元之驅動,以控制該鏡 -27- 200849147 本體之旋轉角度。 22.如申請專利第1項之高速光學監視系統,其中, 該系統控制單元藉該影像擷取單元,依該發光單元之頻 率、脈衝時間、驅動電壓或電流,獲得該發光單元之光量 及光量變化,或該發光單元之諸發光源之光量及該等發光 源間之光量變化,接著,以軟體方式測定光量及光量變 化,以控制該發光單元或該等發光源之光量及該發光單元 之該等發光源間之光量變化,或補償該影像擷取單元所補 獲,惟因光量及光量變化而畸變之影像。 23 .如申請專利第1項之高速光學監視系統,其中, 該系統控制單元對自該發光單元發出之光的一部分進行分 光作業,接著,藉由使用一光學感測器,依該發光單元之 頻率、脈衝時間、驅動電壓或電流,測定該發光單元之光 量及光量變化,或該發光單元之諸發光源之光量及該等發 光源間之光量變化,以控制該發光單元或該等發光源之光 量及該發光單元之該等發光源間之光量變化,或補償該影 像擷取單元所補獲,惟因光量及光量變化而畸變之影像。 24.如申請專利第1項之高速光學監視系統,其中, 該影像處理單元使用數位資料來處理包含該目標之尺寸、 軌跡、速度及位置之時間及空間資訊。 2 5.如申請專利第24項之高速光學監視系統,其中, 該影像處理單元藉由根據一即時OS(作業系統)埋設於一 板上,裝載於板上。 26.如申請專利第1項之高速光學監視系統,其中, -28- 200849147 該系統控制單元根據數位資料,而執行反饋控制該目標源 之該目標之產生、該鏡之旋轉角度之調整、該影像擷取單 元之成像作業之驅動以及該發光單元之光量、脈衝時間及 脈衝時序。 -29-200849147 X. Patent application scope 1 · A high-speed optical monitoring system for monitoring at least one target, the system comprising: at least one target source for generating the target; a target source support for aligning and supporting the target Source, 定位 positioning the target in a same focus space plane; an image capture unit having an imaging device for monitoring and imaging the target at an aligned position; a mirror mounted to the target and the Between the image capturing units, 俾 can change the rotation angle of the mirror; a focus compensation lens is disposed between the target and the mirror; an image processing unit is used to process the image captured by the image capturing unit Digital data; an illumination unit for illuminating the target; and a system control unit for controlling the illumination unit, and the target source, the image capture unit, and the mirror. 2. The high speed optical monitoring system of claim 1, wherein the at least one target comprises a plurality of targets, and the targets are fixed or moved, or are generated in a periodic or quasi-periodic manner and dynamically moved. 3. The high speed optical monitoring system of claim 1, further comprising a target source aligning unit coupled to the target source support, moving the target source along the X/Y/Z axis, and causing the target source to be wound The X/Y/Z axis is tilted or rotated. 4. The high speed optical monitoring system of claim 1, wherein the -24-200849147 image capturing unit is a camera having a CCD or CMOS imaging device. 5. The high-speed optical monitoring system of claim 1, wherein the mirror comprises: a mirror body, consisting of a plane mirror having at least one single mirror surface; and a mirror driving unit for a rotation angle The mirror body is rotated inside. 6. The high speed optical monitoring system of claim 1, wherein the mirror comprises: a mirror body, consisting of a polygon mirror having a plurality of mirror surfaces; and a mirror driving unit for a rotation angle The mirror body is rotated inside. 7. The high-speed optical monitoring system of claim 1, wherein the focus compensating lens is provided as a single F-Θ aspheric lens, a plurality of aspherical lenses, or a combination of a spherical lens/aspheric lens. 8. The speed-of-speed optical monitoring system of the patent application No. 1 therein moves the target, and the light-emitting unit uses a pulse-type light-emitting diode or a laser diode related to the movement of the moving object. 9. The tube speed optical monitoring system of claim 1 or 8, further comprising a light amount variation compensating unit 'located in an optical path between the target and the image capturing unit' to compensate for the amount of light of the light emitting unit Variety. 1 〇. The high-speed optical monitoring system of claim 1 or 8, wherein in the -25-200849147, the illuminating unit is disposed behind the target or in the image capturing unit to illuminate the target; and if the illuminating unit It is disposed in the image capturing unit, that is, a reflecting plate is disposed behind the target. The high-speed optical monitoring system of claim 1, wherein the light-emitting unit comprises an air-cooled or water-cooled cooling device for blocking heat generated by a light source. The high-speed optical monitoring system of claim 11, wherein the cooling device comprises at least one of an IR (infrared) filter and a dichroic filter. A high-speed optical monitoring system as claimed in claim 11, wherein the cooling device is a Peltier element. 1 4. The tube speed optical monitoring system of claim 1, wherein at least one filter of an infrared blocking filter, a polarization filter, a color filter and a band pass filter is disposed on the target and the image Draw on one of the light paths between the units. The high-speed optical monitoring system of claim 5, further comprising a reference sample disposed in the same focus space plane, 俾 checking and calibrating the target and the image capturing unit, and the mirror body and the mirror The optical alignment relationship between the focus compensation lenses. The high-speed optical monitoring system of claim 15, further comprising a reference sample support disposed in the same focal space plane, wherein the reference sample is supported, wherein the reference sample support is detachably coupled to the reference sample support In the same focal space plane, or mounted to be movable between the reference sample branch -26-200849147, one position in the same focus space plane and another position outside the same focus space plane. 17. The high speed optical monitoring system of claim 16, wherein the reference sample support is manually or automatically positioned in the same focus space plane. The high-speed optical monitoring system of any one of claims 15 to 17, wherein the reference sample has a pattern corresponding to the target and formed in a transparent, translucent or opaque On a substrate made of material. The high-speed optical monitoring system of claim 18, wherein the pattern of the reference sample is captured by the image capturing unit to form an image, and the relationship between the image and the pattern size can be used. The optical alignment between the target and the image capturing unit and between the mirror and the focus compensating lens is calibrated, and the image processing performance is calibrated. 20. The high speed optical monitoring system of claim 5, wherein the mirror driving unit transmits an electrical detection signal for a rotation angle of the mirror body to the system control unit, and the system control unit receives the mirror body The electrical detection signal of the rotation angle controls the driving of the mirror driving unit to control the rotation angle of the mirror body. The high-speed optical monitoring system of claim 5, further comprising: a beam radiating unit for radiating light to the mirror body; and a mirror reflected light detecting sensor for sensing the a light reflected on the mirror body, wherein the system control unit controls the driving of the mirror driving unit according to the sensing flaw transmitted from the mirror detecting light detecting sensor to control the rotation angle of the mirror -27-200849147 body . 22. The high-speed optical monitoring system of claim 1, wherein the system control unit obtains the light quantity and the amount of light of the light-emitting unit by the image capturing unit according to the frequency, the pulse time, the driving voltage or the current of the light-emitting unit. Changing, or the amount of light of the light-emitting sources of the light-emitting unit and the amount of light between the light-emitting sources, and then measuring the amount of light and the amount of light in a soft manner to control the amount of light of the light-emitting unit or the light-emitting sources and the light-emitting unit The amount of light between the light sources changes, or compensates for the image that is captured by the image capturing unit, but is distorted by changes in the amount of light and the amount of light. The high-speed optical monitoring system of claim 1, wherein the system control unit performs a splitting operation on a portion of the light emitted from the light emitting unit, and then, by using an optical sensor, according to the light emitting unit Frequency, pulse time, driving voltage or current, measuring the amount of light and the amount of light of the light-emitting unit, or the amount of light of the light-emitting sources of the light-emitting unit and the amount of light between the light-emitting sources to control the light-emitting unit or the light-emitting sources The amount of light and the amount of light between the light sources of the light-emitting unit are changed, or the image captured by the image capturing unit is compensated for, but the image is distorted due to changes in the amount of light and the amount of light. 24. The high speed optical monitoring system of claim 1, wherein the image processing unit uses digital data to process time and space information including the size, trajectory, velocity, and position of the target. 2. The high-speed optical monitoring system of claim 24, wherein the image processing unit is mounted on the board by being embedded on a board according to a real-time OS (operation system). 26. The high-speed optical monitoring system of claim 1, wherein the system control unit performs feedback to control the generation of the target of the target source, the adjustment of the rotation angle of the mirror, according to the digital data, Driving of the imaging operation of the image capturing unit and the amount of light, pulse time and pulse timing of the light emitting unit. -29-
TW96145830A 2007-06-07 2007-12-03 High speed optical monitoring system using a rotatable mirror TW200849147A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070055565A KR100845301B1 (en) 2007-06-07 2007-06-07 High speed optical monitoring system
KR1020070122909A KR20090055989A (en) 2007-11-29 2007-11-29 High speed optical monitoring system using a rotatable mirror

Publications (1)

Publication Number Publication Date
TW200849147A true TW200849147A (en) 2008-12-16

Family

ID=40093839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96145830A TW200849147A (en) 2007-06-07 2007-12-03 High speed optical monitoring system using a rotatable mirror

Country Status (2)

Country Link
TW (1) TW200849147A (en)
WO (1) WO2008150050A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655103B (en) * 2016-08-31 2019-04-01 東友科技股份有限公司 Inkjet printer and inspecting apparatus thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460835B (en) * 2017-08-14 2019-07-05 邯郸市博达交通安全设施有限公司 A kind of traffic camera mounting device and its construction method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283681A (en) * 1989-04-28 1994-02-01 Canon Kabushiki Kaisha Scanning optical equipment
US5282121A (en) * 1991-04-30 1994-01-25 Vari-Lite, Inc. High intensity lighting projectors
US5539441A (en) * 1993-11-09 1996-07-23 Xerox Corporation Jitter reduction in an overfilled raster output polygon scanner system
US6060677A (en) * 1994-08-19 2000-05-09 Tiedemanns-Jon H. Andresen Ans Determination of characteristics of material
US6914678B1 (en) * 1999-03-19 2005-07-05 Titech Visionsort As Inspection of matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655103B (en) * 2016-08-31 2019-04-01 東友科技股份有限公司 Inkjet printer and inspecting apparatus thereof

Also Published As

Publication number Publication date
WO2008150050A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
US11822022B2 (en) Methods and systems for LIDAR optics alignment
JP5469843B2 (en) Laser surveying apparatus and distance measuring method
JP6284629B2 (en) Apparatus and method for determining the focal position of a high energy beam
US8226551B2 (en) Scanning endoscope, scanning endoscope processor, and scanning endoscope apparatus
TWI497031B (en) Optical apparatus and method for creating an image of an object
KR101573681B1 (en) Focus regulator and focus regulating method of camera module
JP5658917B2 (en) Imaging device
JP2018032005A (en) Autofocus system, method and image inspection device
TW200849147A (en) High speed optical monitoring system using a rotatable mirror
KR101013156B1 (en) High speed optical monitoring system
JP2927179B2 (en) 3D shape input device
KR20090055989A (en) High speed optical monitoring system using a rotatable mirror
US7484849B2 (en) Ophthalmologic observation apparatus
US9319638B1 (en) On-axis guide system
TWI470299B (en) Method and apparatus for auto-focusing
KR100845301B1 (en) High speed optical monitoring system
JP2982757B2 (en) 3D shape input device
JP2004522936A5 (en)
KR101225121B1 (en) Apparatus for monitoring inkjet printer head
KR101566347B1 (en) Substrate inspecting apparatus
JP2004215210A (en) Spot zoom ccd camera
JP2021144139A (en) Imaging device, method of controlling the same, and optical device
JP2006226869A (en) Optical measurement apparatus, optical microscope, and optical measurement method
JP2003214985A (en) Ftheta LENS SELECTING DEVICE FOR LASER SCANNING OPTICAL SYSTEM