JP2006226869A - Optical measurement apparatus, optical microscope, and optical measurement method - Google Patents

Optical measurement apparatus, optical microscope, and optical measurement method Download PDF

Info

Publication number
JP2006226869A
JP2006226869A JP2005041795A JP2005041795A JP2006226869A JP 2006226869 A JP2006226869 A JP 2006226869A JP 2005041795 A JP2005041795 A JP 2005041795A JP 2005041795 A JP2005041795 A JP 2005041795A JP 2006226869 A JP2006226869 A JP 2006226869A
Authority
JP
Japan
Prior art keywords
light
image
optical
measurement object
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041795A
Other languages
Japanese (ja)
Inventor
Sadao Noda
貞雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2005041795A priority Critical patent/JP2006226869A/en
Publication of JP2006226869A publication Critical patent/JP2006226869A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical measurement apparatus, an optical microscope, and an optical measurement method allowing measurement of the two-dimensional depth of an object to be measured W, using a simple structure. <P>SOLUTION: Light successively emitted from in-line light-emitting elements of an LD array 11 is allowed to pass through an image rotator 15, which is arranged rotatably with different rotation angles to rotate an image of light passed through according to the rotation angle. The light is then allowed to converge by a converging lens 16 and irradiated on the object to be measured W. The light, reflected off the object to be measured W, is allowed to pass through the image rotator 15 again and return to the direction of the image of light at light emission. The reflected light is received by a one-dimensional image sensor 17, in which light-receiving elements are arranged in a single row. On the basis of the amount of light received in the one-dimensional image sensor 17, two-dimensional depth on the surface of the object to be measured W is measured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学測定装置、光学顕微鏡及び光学測定方法に関する。   The present invention relates to an optical measurement device, an optical microscope, and an optical measurement method.

従来より、ステージ上に載置された測定対象物表面の深度(深さ,膜厚)を測定する光学測定装置を備えた光学顕微鏡が知られている。   2. Description of the Related Art Conventionally, an optical microscope including an optical measurement device that measures the depth (depth, film thickness) of the surface of a measurement object placed on a stage is known.

この種のものには、投光素子から投光された光をガルバノミラーを駆動させることで測定対象物表面を1次元的に走査し、当該測定対象物表面で反射した光を1次元イメージセンサにて受光し、その受光量に基づいて測定対象物表面の深度を測定するものがある。
特許3544019号公報
In this type, the surface of the measurement object is scanned one-dimensionally by driving the galvano mirror with the light projected from the light projecting element, and the light reflected on the surface of the measurement object is one-dimensional image sensor. And measuring the depth of the surface of the measurement object based on the amount of the received light.
Japanese Patent No. 3544019

しかしながら、上記構成では、測定対象物表面の1次元的な深度しか測定することができず、測定対象物表面の2次元的な深度を測定したい場合には、1次元的に走査した後に、測定対象物を90度回転させて走査しなければならないため、かかる作業が余計に必要となる。   However, in the above configuration, only the one-dimensional depth of the surface of the measurement object can be measured, and when it is desired to measure the two-dimensional depth of the surface of the measurement object, the measurement is performed after one-dimensional scanning. Since the object must be scanned by rotating it 90 degrees, this work is necessary.

また、2つのガルバノミラーを駆動させて測定対象物表面を2次元的に走査することも考えられるが、かかる場合には、2次元イメージセンサで受光させることになるため、1次元イメージセンサよりも機械的及び電気的な構造が複雑になる。   In addition, it is conceivable to drive the two galvanometer mirrors to scan the surface of the measurement object two-dimensionally. In such a case, the light is received by the two-dimensional image sensor. The mechanical and electrical structure is complicated.

さらに、ガルバノミラーを駆動させて測定対象物表面を走査する構成では、ガルバノミラーを駆動させるための駆動機構が必要になり、装置が大型化してしまう。   Furthermore, in the configuration in which the galvanometer mirror is driven to scan the surface of the measurement object, a driving mechanism for driving the galvanometer mirror is required, and the apparatus becomes large.

本発明は上記のような事情に基づいて完成されたものであって、簡易な構成で測定対象物の2次元的な深度を測定可能な光学測定装置、光学顕微鏡及び光学測定方法を提供することを目的とする。   The present invention has been completed based on the above circumstances, and provides an optical measurement apparatus, an optical microscope, and an optical measurement method capable of measuring a two-dimensional depth of a measurement object with a simple configuration. With the goal.

上記の目的を達成するための手段として、請求項1の発明に係る光学測定装置は、投光素子が配されてなる投光手段からライン状の平行に投光した光(ライン状の像の形成される平行光)を収束レンズにより平行光から収束させて測定対象物に照射し、前記測定対象物で反射した光が対物レンズを通って平行光となり、この平行光が収束されて光の像に対応して複数の受光素子が一列状に配されてなる受光手段に受光され、前記受光手段における受光量に基づいて前記測定対象物表面の深度を測定する光学測定装置であって、
前記投光手段と前記収束レンズとの間の光路上及び前記対物レンズと前記受光手段との間の光路上には、回転角度に応じて透過した光の像を回転させる像回転手段が光軸を中心として回転可能に備えられている構成としたところに特徴を有する。
As a means for achieving the above object, an optical measuring apparatus according to the invention of claim 1 is directed to a light (line-shaped image of a line-like image) projected from a light-projecting means provided with a light-projecting element. Formed parallel light) is converged from the parallel light by the converging lens and irradiated to the measurement object, and the light reflected by the measurement object becomes parallel light through the objective lens, and the parallel light is converged to An optical measuring device that receives light by a light receiving means that is arranged in a line corresponding to an image, and measures the depth of the measurement object surface based on the amount of light received by the light receiving means,
On the optical path between the light projecting unit and the converging lens and on the optical path between the objective lens and the light receiving unit, an image rotating unit that rotates an image of light transmitted according to a rotation angle is an optical axis. It is characterized in that it is configured so as to be rotatable around the center.

なお、投光手段から「所定の順序」で投光させるとは、投光素子を所定の順番で1つずつ投光させることだけでなく、複数の投光素子を同時に投光させる動作を所定の順序で行われること等が含まれる。   Note that “projecting in a predetermined order” from the light projecting means not only projects the projecting elements one by one in a predetermined order, but also performs an operation of projecting a plurality of projecting elements simultaneously. To be performed in the order.

請求項2の発明は、請求項1に記載のものにおいて、前記収束レンズは、前記対物レンズを兼ねる構成とされるとともに、前記投光手段と前記収束レンズとの間の光路上には前記測定対象物側に向かう光と前記測定対象物からの反射光との双方を透過させる1個の前記像回転手段が前記収束レンズと同軸上に配されており、
前記測定対象物からの反射光は前記像回転手段を透過して分岐手段により分岐され、当該分岐された光が前記受光手段に受光されるところに特徴を有する。
According to a second aspect of the present invention, in the first aspect, the converging lens is configured to also serve as the objective lens, and the measurement is provided on an optical path between the light projecting unit and the converging lens. One image rotating means that transmits both the light toward the object side and the reflected light from the measurement object is arranged coaxially with the convergent lens,
The reflected light from the measurement object passes through the image rotating means and is branched by the branching means, and the branched light is received by the light receiving means.

請求項3の発明は、請求項2に記載のものにおいて、前記投光手段と前記像回転手段との間の光路上には、投光された光を平行光にするとともに、前記測定対象物からの反射光を収束させる結像レンズが設けられているところに特徴を有する。   According to a third aspect of the present invention, in the apparatus according to the second aspect, the projected light is converted into parallel light on the optical path between the light projecting means and the image rotating means, and the measurement object It is characterized in that an imaging lens for converging the reflected light from is provided.

請求項4の発明は、請求項1ないし請求項3のいずれかに記載のものにおいて、前記投光素子は、可視光領域の波長帯の光を出射するところに特徴を有する。   According to a fourth aspect of the present invention, there is provided the method according to any one of the first to third aspects, wherein the light projecting element emits light in a wavelength band of a visible light region.

請求項5の発明は、請求項1ないし請求項4のいずれかに記載のものにおいて、前記投光手段は、ライン状に投光される光のうち略中間部分の光の投光状態が略中間部分以外の光の投光状態とは異なるところに特徴を有する。   According to a fifth aspect of the invention, there is provided the projector according to any one of the first to fourth aspects, wherein the light projecting means has a light projection state of a substantially middle portion of the light projected in a line shape. It is characterized in that it is different from the light projection state except for the intermediate portion.

請求項6の発明は、請求項1ないし請求項5のいずれかに記載のものにおいて、前記像回転手段は、イメージローテータからなるところに特徴を有する。   A sixth aspect of the invention is characterized in that the image rotating means comprises an image rotator in any one of the first to fifth aspects.

請求項7の発明は、請求項1ないし請求項6のいずれかに記載のものにおいて、投光手段から投光される波長帯の光を撮像可能であって、前記測定対象物からの反射光を撮像し、この撮像位置に応じた撮像信号を出力する撮像手段と、
前記撮像手段からの撮像信号を受けて、前記撮像位置に応じた情報を表示する表示手段と、を更に備えるところに特徴を有する。
A seventh aspect of the present invention is the method according to any one of the first to sixth aspects, wherein the light in the wavelength band projected from the light projecting means can be imaged, and the reflected light from the measurement object. Imaging means for imaging and outputting an imaging signal corresponding to the imaging position;
It is characterized by further comprising display means for receiving an imaging signal from the imaging means and displaying information corresponding to the imaging position.

請求項8の発明は、前記測定対象物は、ステージ上に配されており、
請求項1ないし請求項7のいずれかに記載の光学測定装置は、前記ステージの高さ又は前記収束レンズの軸方向の位置を変えることにより前記収束レンズと前記測定対象物との相対的な位置を変化させる駆動手段を備えた光学顕微鏡であって、
前記駆動手段を駆動させることにより、前記複数の受光素子のうちの所定の受光素子の受光量が最大となる位置に前記ステージ又は前記収束レンズを移動させるステージ制御手段を備えるところに特徴を有する。
In the invention of claim 8, the measurement object is arranged on a stage,
The optical measurement apparatus according to claim 1, wherein the relative position between the convergent lens and the measurement object is changed by changing a height of the stage or an axial position of the convergent lens. An optical microscope equipped with a driving means for changing
It is characterized in that it comprises stage control means for moving the stage or the converging lens to a position where the amount of light received by a predetermined light receiving element among the plurality of light receiving elements is maximized by driving the driving means.

請求項9の発明に係る光学測定方法は、投光手段からライン状の平行に投光した光(ライン状の像の形成される平行光)を像回転手段により回転させて測定対象物に照射し、前記測定対象物にて反射した光を像回転手段により回転させて受光手段の一列状の受光素子に受光させ、前記受光手段における受光量に基づいて前記測定対象物表面の深度を測定するところに特徴を有する。   The optical measuring method according to the ninth aspect of the invention irradiates the measurement object by rotating the light projected in parallel in a line shape from the light projecting means (parallel light forming a line-shaped image) by the image rotating means. Then, the light reflected by the measurement object is rotated by the image rotation means and received by a line of light receiving elements of the light receiving means, and the depth of the surface of the measurement object is measured based on the amount of light received by the light receiving means. However, it has characteristics.

<請求項1及び請求項9の発明>
本構成によれば、像回転手段の回転角度に応じて、投光手段からライン状の平行に投光された光が測定対象物に照射される角度を変えることができる。また、測定対象物から反射した光の像を像回転手段により回転させることで反射光を一列状に配される受光手段の受光素子に受光させることができる。したがって、2次元的に受光素子が配される受光手段を設けなくてもよいから、2次元的に受光素子を配する構成と比較して低コストで測定対象物表面の深度(1次元的な断面形状)を2次元的に(極座標系において)あらゆる方向から測定することができる。また、2次元平面座標系における深度(二次元的な凹凸形状)を測定することができる。
<Invention of Claims 1 and 9>
According to this configuration, the angle at which the measurement object is irradiated with the light projected in parallel in a line shape from the light projecting unit can be changed according to the rotation angle of the image rotating unit. Further, by rotating the image of the light reflected from the measurement object by the image rotating means, the reflected light can be received by the light receiving elements of the light receiving means arranged in a line. Therefore, since it is not necessary to provide a light receiving means in which the light receiving elements are arranged two-dimensionally, the depth of the surface of the measurement object (one-dimensional (Cross-sectional shape) can be measured two-dimensionally (in a polar coordinate system) from all directions. Moreover, the depth (two-dimensional uneven | corrugated shape) in a two-dimensional plane coordinate system can be measured.

また、例えば、ガルバノミラー等を動作させて投光手段からの光を測定対象物に一列状に照射する場合には、ガルバノミラー等を駆動させるための機械的構成等が必要になり構成が複雑になってしまう。一方、本構成によれば、投光手段からライン状に投光するという簡素な構成であらゆる方向から測定対象物表面の深度(1次元的な断面形状や二次元的な凹凸形状)を測定することができる。   In addition, for example, when a galvanometer mirror or the like is operated to irradiate light to be measured on the measurement object in a line, a mechanical configuration for driving the galvanometer mirror or the like is required, and the configuration is complicated. Become. On the other hand, according to the present configuration, the depth (one-dimensional cross-sectional shape or two-dimensional uneven shape) of the measurement object surface is measured from any direction with a simple configuration in which light is projected from the light projecting means. be able to.

<請求項2の発明>
本構成によれば、測定対象物への照射時と、測定対象物からの反射時とで像回転手段(及びレンズ)を共通化することができるから、部品点数を削減することができる。
<Invention of Claim 2>
According to this configuration, the image rotation means (and the lens) can be shared between the irradiation of the measurement object and the reflection from the measurement object, so that the number of parts can be reduced.

<請求項3の発明>
投光手段から測定範囲に応じた幅の平行光を出射する必要ないから、投光手段の長手方向の距離を短くすることができる。
<Invention of Claim 3>
Since it is not necessary to emit parallel light having a width corresponding to the measurement range from the light projecting means, the distance in the longitudinal direction of the light projecting means can be shortened.

<請求項4の発明>
本構成によれば、可視光領域の波長帯の光を出射するから、投光された光の認識が容易になる。
<Invention of Claim 4>
According to this configuration, since light in the wavelength band of the visible light region is emitted, it is easy to recognize the projected light.

<請求項5の発明>
本構成によれば、ライン状に投光される光の略中間部分の投光状態が異なることにより、測定対象物に照射される光の像の中心位置を把握しやすいから、照射位置の位置あわせが容易になる。
<Invention of Claim 5>
According to this configuration, it is easy to grasp the center position of the image of the light irradiated to the measurement object because the projection state of the substantially intermediate portion of the light projected in a line shape is different. Matching becomes easy.

<請求項6の発明>
本構成によれば、簡素な構成で像を所定角度だけ回転させることができる。
<Invention of Claim 6>
According to this configuration, the image can be rotated by a predetermined angle with a simple configuration.

<請求項7の発明>
本構成によれば、測定対象物の位置や測定対象物上における光の照射位置等を把握しやすくなる。
<Invention of Claim 7>
According to this configuration, it becomes easy to grasp the position of the measurement object, the light irradiation position on the measurement object, and the like.

<請求項8の発明>
本構成によれば、照射される光の焦点位置を測定対象物の表面位置に合わせることができる。
<Invention of Claim 8>
According to this configuration, the focal position of the irradiated light can be matched with the surface position of the measurement object.

<実施形態1>
以下、本発明の実施形態1の光学測定装置を図1ないし図4を参照しつつ説明する。
1.光学測定装置の構成
光学測定装置10は、光学顕微鏡等に用いられるものであり、レーザ光源からの光をステージ25上の測定対象物Wの表面に照射し、測定対象物Wの表面からの反射光に基づいて測定対象物Wの表面の深度(深さ,膜厚)を測定するものである。
<Embodiment 1>
Hereinafter, an optical measurement apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 4.
1. Configuration of Optical Measuring Device The optical measuring device 10 is used in an optical microscope or the like, and irradiates light from a laser light source onto the surface of the measuring object W on the stage 25 and reflects it from the surface of the measuring object W. The depth (depth, film thickness) of the surface of the measuring object W is measured based on light.

レーザ光源は、例えば、赤色のレーザ光(可視光領域の波長帯の光)を出射するHe−Neレーザからなる多数の投光素子が一列状(図3のY軸方向)に配されてなるLDアレイ11が用いられており、光源駆動回路21からの信号を受けて順次投光するようになっている。   The laser light source includes, for example, a large number of light projecting elements made of a He—Ne laser that emits red laser light (light having a wavelength band in the visible light region) arranged in a line (Y-axis direction in FIG. 3). An LD array 11 is used to receive light from the light source driving circuit 21 and sequentially project light.

レーザの光軸上(LDアレイ11の下方)には、ビームスプリッタ12、1/4波長板13、結像レンズ14、イメージローテータ15、収束レンズ16が同軸上に設けられており、LDアレイ11から順次出射されたレーザ光Lは、ビームスプリッタ12及び1/4波長板13を透過して結像レンズ14にて平行光(ライン状の平行に投光した光(ライン状の像を形成する平行光))となってイメージローテータ15を透過した後、収束レンズ16で収束して測定対象物W表面に照射される。また、測定対象物W表面からの反射光は収束レンズ16で平行光となってイメージローテータ15を透過し、結像レンズ14にて収束されつつビームスプリッタ12にて側方に反射して、ビームスプリッタ12の側方に設けられ多数の受光素子が上下(Z軸方向)に一列状に配された一次元イメージセンサ17に受光される。   On the optical axis of the laser (below the LD array 11), a beam splitter 12, a quarter wavelength plate 13, an imaging lens 14, an image rotator 15, and a converging lens 16 are provided on the same axis. The laser light L emitted sequentially from the laser beam L passes through the beam splitter 12 and the quarter-wave plate 13 and is converted into parallel light (line-shaped parallel projected light (forms a line-shaped image) by the imaging lens 14. After being transmitted through the image rotator 15, the light is converged by the converging lens 16 and irradiated onto the surface of the measuring object W. Reflected light from the surface of the measurement object W is converted into parallel light by the converging lens 16 and transmitted through the image rotator 15, and is reflected by the beam splitter 12 while being converged by the imaging lens 14. A number of light receiving elements provided on the side of the splitter 12 are received by the one-dimensional image sensor 17 arranged in a line in the vertical direction (Z-axis direction).

イメージローテータ15は、ダブプリズムとも称されるもので、図2の上面15Aおよび底面15Bが平坦かつ平行であり、両端側(図2の左右)は裾拡がりとなるように同方向(図2の下方)に傾斜する傾斜端面15C,15Dを備えている。このイメージローテータ15は、図3に示すように、その基準軸Sの方向が中心軸A(光軸)と直交するよう縦向きの姿勢で中心軸A上に配されており、その側面(周面)が回転駆動部23(図1参照)により回転可能に保持されることで、中心軸Aを軸心として回転可能になっている。   The image rotator 15 is also referred to as a Dove prism, and the upper surface 15A and the bottom surface 15B of FIG. Inclined end surfaces 15C and 15D that are inclined downward). As shown in FIG. 3, the image rotator 15 is arranged on the central axis A in a vertical orientation so that the direction of the reference axis S is orthogonal to the central axis A (optical axis). The surface) is rotatably held by the rotation drive unit 23 (see FIG. 1), so that the center axis A can be rotated.

そして、図2に示すように、一方の傾斜端面15C(図3のLDアレイ11側の傾斜端面)からの入射光は傾斜端面15Cで屈折した後、底面15Bで全反射し、さらに他方の傾斜端面15D(図3の測定対象物W側の傾斜端面)で屈折してイメージローテータ15を透過する。その結果、図4(a)に示すように、一方の傾斜端面15Cから測定対象物W側に向けて観測した場合、当該入射光の像の向きがイメージローテータ15の向き(基準軸Sの方向)に一致(同図a1)していると、他方の傾斜端面15Dからは入射時と反対向きの像(a2)の光が出射される。   Then, as shown in FIG. 2, incident light from one inclined end surface 15C (the inclined end surface on the LD array 11 side in FIG. 3) is refracted by the inclined end surface 15C, then totally reflected by the bottom surface 15B, and the other inclined The light is refracted at the end face 15D (the inclined end face on the measurement object W side in FIG. 3) and passes through the image rotator 15. As a result, as shown in FIG. 4A, when observed from one inclined end face 15C toward the measuring object W, the direction of the image of the incident light is the direction of the image rotator 15 (the direction of the reference axis S). ) (A1) in the same figure), the other inclined end face 15D emits the light of the image (a2) in the direction opposite to that at the time of incidence.

一方、測定対象物Wからの反射光は、他方の傾斜端面15Dから再びイメージローテータ15内に入射し、イメージローテータ15内を入射時(測定対象物W側への投光時)と同じ光路上で反対向きに透過し(図2参照)、一方の傾斜端面15Cから出射する。これにより、傾斜端面15Cから出射したときの光の像の向きは入射時と同じ向きに戻り(a3)、ビームスプリッタ12にて反射して当該像と同じ向き(Z軸方向)に配された一次元イメージセンサ17に受光される(a4)。そして、測定対象物Wの深度に応じて受光素子の受光量が異なるから、一次元イメージセンサ17における受光位置と受光量とに基づいてY軸方向の測定対象物W表面の深度を求めることができる。   On the other hand, the reflected light from the measurement object W is incident on the image rotator 15 again from the other inclined end face 15D, and on the same optical path as when entering the image rotator 15 (when projecting to the measurement object W side). Then, the light passes through in the opposite direction (see FIG. 2) and exits from one inclined end face 15C. As a result, the direction of the image of the light emitted from the inclined end surface 15C returns to the same direction as that at the time of incidence (a3), and is reflected by the beam splitter 12 and arranged in the same direction (Z-axis direction) as the image. The light is received by the one-dimensional image sensor 17 (a4). Since the amount of light received by the light receiving element varies depending on the depth of the measurement target W, the depth of the surface of the measurement target W in the Y-axis direction can be obtained based on the light reception position and the amount of light received by the one-dimensional image sensor 17. it can.

回転駆動部23は、それぞれ図示はしないが、イメージローテータ15を保持する保持部材と、この保持部材を軸回動自由に支持する軸受部と、保持部材の外周に形成された歯車と噛み合う駆動歯車と、この駆動歯車を正逆駆動するパルスモータとから構成されている。パルスモータは回転制御回路22から駆動パルスの供給を受け、供給されたパルス数に応じてイメージローテータ15を任意の角度だけ軸回動させる。   Although not shown in the drawings, each of the rotation driving units 23 includes a holding member that holds the image rotator 15, a bearing portion that supports the holding member so as to freely pivot, and a drive gear that meshes with a gear formed on the outer periphery of the holding member. And a pulse motor that drives the drive gear forward and reverse. The pulse motor receives a drive pulse from the rotation control circuit 22 and rotates the image rotator 15 by an arbitrary angle according to the number of pulses supplied.

ここで、イメージローテータ15は、イメージローテータ15を透過した光の像を、イメージローテータ15の回転角度(軸Aを中心とした回転)の2倍の回転角度で回転させるものである。したがって、イメージローテータ15の基準軸Sの方向が、XY座標平面のY軸方向を向くときの回転角度θをゼロとした場合に、イメージローテータ15を回転角度θ=0の位置から所定の角速度で軸回転させると、透過像は前記角速度の2倍の角速度で同方向へ回転する。すなわちこのイメージローテータ15は、その回転角度θに対して透過像の回転角度φが2θとなるような特性を有するものである。   Here, the image rotator 15 rotates the image of the light transmitted through the image rotator 15 at a rotation angle that is twice the rotation angle of the image rotator 15 (rotation around the axis A). Therefore, when the rotation angle θ when the direction of the reference axis S of the image rotator 15 faces the Y axis direction of the XY coordinate plane is zero, the image rotator 15 is moved from the position where the rotation angle θ = 0 to a predetermined angular velocity. When the shaft is rotated, the transmitted image is rotated in the same direction at an angular velocity twice the angular velocity. That is, the image rotator 15 has a characteristic such that the transmission image has a rotation angle φ of 2θ with respect to the rotation angle θ.

具体的には、図4(b)に示すように、イメージローテータ15の一方の傾斜端面15Cから測定対象物W側に向けて観測した場合、イメージローテータ15の向き(基準軸Sの方向)が入射光の像の向きよりも例えば、45度回転(イメージローテータ15の回転角度θ=45度)している場合(同図b1)には、他方の傾斜端面15Dからはその像が180+90(45×2)度回転した向き(即ち、X軸の負方向)の透過像の光が出射される(b2)。
イメージローテータ15を透過した光は、収束レンズ16で収束されて測定対象物W表面の回転角度に応じて180+90(45×2)度回転した向きの像(X軸の負方向)となるようにレーザ光Lが照射される。そして、測定対象物W表面にて反射した光は、収束レンズ16で平行光とされて再びイメージローテータ15に照射される。
Specifically, as shown in FIG. 4B, when observed from one inclined end face 15C of the image rotator 15 toward the measuring object W, the orientation of the image rotator 15 (the direction of the reference axis S) is the same. For example, when the image is rotated 45 degrees (rotation angle θ of the image rotator 15 = 45 degrees) from the direction of the image of the incident light (b1 in the figure), the image is 180 + 90 (45 from the other inclined end face 15D. The light of the transmitted image in the direction rotated by (2) degrees (that is, the negative direction of the X axis) is emitted (b2).
The light transmitted through the image rotator 15 is converged by the converging lens 16 and becomes an image (a negative direction of the X axis) in a direction rotated by 180 + 90 (45 × 2) degrees according to the rotation angle of the surface of the measurement object W. Laser light L is irradiated. Then, the light reflected from the surface of the measuring object W is converted into parallel light by the converging lens 16 and irradiated again to the image rotator 15.

イメージローテータ15に入射した反射光は、イメージローテータ15内で入射時と同じ光路を反対に通り、イメージローテータ15を透過したレーザ光Lは、その像がー180ー90(45×2)度回転(b3。即ち投光時の像と同じ向き)してビームスプリッタ12で一次元イメージセンサ17に向けて反射する。即ち、反射時にもイメージローテータ15の回転角度をθ=45度のまま固定しておけば、イメージローテータ15の一方の傾斜端面15Cからは入射時(投光時)と同じ向きの像が出射されるようになっている。   The reflected light incident on the image rotator 15 passes through the same optical path as the incident light in the image rotator 15 in the opposite direction, and the image of the laser light L transmitted through the image rotator 15 is rotated by −180 to 90 (45 × 2) degrees. (B3, that is, the same direction as the image at the time of light projection), and is reflected by the beam splitter 12 toward the one-dimensional image sensor 17. That is, if the rotation angle of the image rotator 15 is fixed at θ = 45 degrees even during reflection, an image in the same direction as that at the time of incidence (light projection) is emitted from one inclined end face 15C of the image rotator 15. It has become so.

そして、ビームスプリッタ12で反射したレーザ光Lは、ビームスプリッタ12により像の向きが一次元イメージセンサ17と同じ向きに変えられて(図3参照)、順次一次元イメージセンサ17に受光される(b4)。そして、測定対象物Wの深度に応じて各受光素子の受光量が異なるから、一次元イメージセンサ17における受光位置と受光量とに基づいてX軸方向の測定対象物W表面の深度を求めることができる。なお、イメージローテータ15の回転角度をθ=45度としたが、回転角度θを変えることにより、2次元的に(極座標系において)あらゆる方向から1次元的な断面形状(2次元的な凹凸形状)を測定することができる。   Then, the laser beam L reflected by the beam splitter 12 is changed to the same direction as that of the one-dimensional image sensor 17 by the beam splitter 12 (see FIG. 3) and sequentially received by the one-dimensional image sensor 17 ( b4). Since the amount of light received by each light receiving element varies depending on the depth of the measurement object W, the depth of the surface of the measurement object W in the X-axis direction is obtained based on the light reception position and the amount of light received by the one-dimensional image sensor 17. Can do. Although the rotation angle of the image rotator 15 is set to θ = 45 degrees, by changing the rotation angle θ, a one-dimensional cross-sectional shape (two-dimensional uneven shape) can be obtained two-dimensionally (in the polar coordinate system) from any direction. ) Can be measured.

ステージ25は、ステージ駆動機構25Aにより上下方向(Z軸方向)に移動するようになっており、これによりステージ25上に載置された測定対象物Wが上下に移動し、収束レンズ16で収束されたレーザ光Lのスポット位置に対して測定対象物Wの表面位置がZ軸(上下)方向に相対的に可変するようになっている。そして、ステージ制御回路24(ステージ制御手段)からの駆動信号をステージ駆動機構25Aが受けると、ステージ25を所定周期で上下に移動(振動)させる。   The stage 25 is moved in the vertical direction (Z-axis direction) by the stage drive mechanism 25 </ b> A, whereby the measuring object W placed on the stage 25 moves up and down and is converged by the converging lens 16. The surface position of the measurement object W is relatively variable in the Z-axis (vertical) direction with respect to the spot position of the laser beam L. When the stage drive mechanism 25A receives a drive signal from the stage control circuit 24 (stage control means), the stage 25 is moved up and down (vibrated) at a predetermined cycle.

2.光学測定装置の制御
光学測定装置10による制御について図1を参照して説明する。なお、始めにイメージローテータ15は、回転角度θ=0度の位置に配されている。
同期回路20は、操作スイッチ(図示しない)等から測定開始の信号を受けると、光源駆動回路21,回転制御回路22,ステージ制御回路24,CCD駆動回路26に同期信号を送出する。
2. Control of Optical Measuring Device Control by the optical measuring device 10 will be described with reference to FIG. First, the image rotator 15 is disposed at a position where the rotation angle θ = 0 degrees.
When the synchronization circuit 20 receives a measurement start signal from an operation switch (not shown) or the like, the synchronization circuit 20 sends a synchronization signal to the light source drive circuit 21, the rotation control circuit 22, the stage control circuit 24, and the CCD drive circuit 26.

光源駆動回路21は、同期回路20から同期信号を受けると、LDアレイ11の投光素子を所定の投光間隔で順次投光させる。そして、投光動作が一巡すると、所定時間(イメージローテータ15の異なる角度への回転時間)経過後に、再びLDアレイ11の投光素子を所定の投光間隔で順次投光させる。
ステージ制御回路24は、同期回路20から同期信号を受けると、投光タイミングに同期してステージ駆動機構25Aを駆動させ、ステージ25を上下(Z軸方向。収束レンズ16の焦点位置(受光量が最大となる位置)が含まれる高さの範囲)に振動(移動)させる動作を、所定の間隔(往復する周期の間隔)で投光される光の数だけ繰り返させる。1周期(一巡)経過後は所定時間(イメージローテータ15の異なる角度への回転時間)経過後に、再びステージ25を上下に振動させる動作を所定の間隔で投光される光の数だけ繰り返させる。
CCD駆動回路26は同期回路20から同期信号を受けると、一次元イメージセンサ17に受光されたレーザ光Lを、一次元イメージセンサ17の各素子に蓄積された電荷を読出し用クロックパルスに基づいて読み出し、ゲイン制御回路27およびA/Dコンバータ28を介して、光量信号をマイコン30に出力する。
When the light source driving circuit 21 receives the synchronization signal from the synchronization circuit 20, the light source driving circuit 21 sequentially projects the light projecting elements of the LD array 11 at a predetermined light projecting interval. When the light projecting operation is completed, the light projecting elements of the LD array 11 are sequentially projected again at a predetermined light projecting interval after a predetermined time (rotation time of the image rotator 15 to a different angle) elapses.
When receiving the synchronization signal from the synchronization circuit 20, the stage control circuit 24 drives the stage drive mechanism 25A in synchronization with the light projection timing, and moves the stage 25 up and down (in the Z-axis direction. The operation of oscillating (moving) within the height range including the maximum position) is repeated by the number of lights projected at a predetermined interval (interval of the reciprocating period). After one cycle (one round) has elapsed, after a predetermined time (rotation time of the image rotator 15 to a different angle) elapses, the operation of vibrating the stage 25 up and down again is repeated by the number of lights projected at a predetermined interval.
When the CCD drive circuit 26 receives the synchronization signal from the synchronization circuit 20, the laser light L received by the one-dimensional image sensor 17 is read based on the read clock pulse. The light amount signal is output to the microcomputer 30 via the read and gain control circuit 27 and the A / D converter 28.

回転制御回路22は、同期回路20から同期信号を受けると、予めメモリに記憶されているLDアレイ11の投光動作が一巡するまでの時間の経過後に、回転駆動部23を駆動させて、イメージローテータ15を回転角度θ=45度まで回転させる。   When the rotation control circuit 22 receives the synchronization signal from the synchronization circuit 20, the rotation control unit 22 drives the rotation drive unit 23 after the elapse of time until the light projecting operation of the LD array 11 previously stored in the memory is completed. The rotator 15 is rotated to a rotation angle θ = 45 degrees.

マイコン30は、受光タイミング(同期タイミング)に基づいて測定対象物Wの高さ(ステージ25のZ軸方向の位置)が求められるから、一次元イメージセンサ17の最大の受光光量の得られる測定対象物Wの深度(高さ)を検出し、連続する深度の情報から測定対象物Wの(表面の)断面形状をモニタ(図示しない)等の表示部に表示させる。   Since the microcomputer 30 calculates the height of the measurement object W (the position of the stage 25 in the Z-axis direction) based on the light reception timing (synchronization timing), the measurement object from which the maximum light reception amount of the one-dimensional image sensor 17 can be obtained. The depth (height) of the object W is detected, and the (surface) cross-sectional shape of the measurement object W is displayed on a display unit such as a monitor (not shown) from the information on the continuous depth.

3.本実施形態の効果
本実施形態によれば、イメージローテータ15(像回転手段)の回転角度に応じて、LDアレイ11(投光手段)から1列状(ライン状)に投光されたレーザ光Lが測定対象物Wに照射される角度を変えることができる。また、測定対象物Wから反射した光の像をイメージローテータ15により回転させることで反射光を一列状に配される一次元イメージセンサ17(受光手段)の受光素子に受光させることができる。したがって、2次元的に受光素子が配される受光手段を設けなくてもよいから、2次元的に受光素子を配する構成と比較して低コストで測定対象物W表面の深度(1次元的な断面形状)を2次元的に(極座標系において)あらゆる方向から測定することができる。また、2次元平面座標系における深度(二次元的な凹凸形状)を測定することができる。
3. Effects of this Embodiment According to this embodiment, the laser light projected in one row (line shape) from the LD array 11 (light projection means) according to the rotation angle of the image rotator 15 (image rotation means). The angle at which L irradiates the measurement object W can be changed. Further, by rotating the image of the light reflected from the measurement object W by the image rotator 15, the reflected light can be received by the light receiving element of the one-dimensional image sensor 17 (light receiving means) arranged in a line. Accordingly, since it is not necessary to provide a light receiving means in which the light receiving elements are two-dimensionally arranged, the depth of the surface of the measurement object W (one-dimensional) can be reduced at a lower cost compared to a configuration in which the light receiving elements are two-dimensionally arranged. Can be measured two-dimensionally (in a polar coordinate system) from any direction. Moreover, the depth (two-dimensional uneven | corrugated shape) in a two-dimensional plane coordinate system can be measured.

また、例えば、ガルバノミラー等を動作させて投光手段からの光を測定対象物Wに一列状に照射する場合には、ガルバノミラー等を駆動させるための機械的構成等が必要になり構成が複雑になってしまう。一方、本実施形態によれば、LDアレイ11から一列状(ライン状)に投光するという簡素な構成であらゆる方向から測定対象物表面の深度(1次元的な断面形状や二次元的な凹凸形状)を測定することができる。   Further, for example, when the galvanometer mirror or the like is operated to irradiate the measurement object W with light in a line, a mechanical configuration for driving the galvanometer mirror or the like is required. It becomes complicated. On the other hand, according to the present embodiment, the depth of the measurement object surface (one-dimensional cross-sectional shape or two-dimensional unevenness) from any direction with a simple configuration in which light is projected from the LD array 11 in a single line (line shape). Shape) can be measured.

<実施形態2>
実施形態2の光学測定装置40は、測定対象物Wの外観を拡大して観察するための観察光学系を備えて構成されている。なお、以下の実施例において、実施形態1と同一の構成については同一の符号を付して説明を省略し異なる部分のみを説明する。
<Embodiment 2>
The optical measuring device 40 according to the second embodiment includes an observation optical system for magnifying and observing the appearance of the measurement object W. In the following examples, the same components as those of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.

具体的には、実施形態1の構成に加えて、白色光を出射するランプから41なる観察用光源を備え、ランプ41の光軸上には、集光レンズ42及び第1ハーフミラー43及び第2ハーフミラー44が配設されている。   Specifically, in addition to the configuration of the first embodiment, an observation light source 41 including a lamp that emits white light is provided. On the optical axis of the lamp 41, a condenser lens 42, a first half mirror 43, and a first light source are provided. Two half mirrors 44 are provided.

第2ハーフミラー44は、イメージローテータ15と収束レンズ16の間の光路上に配されている。
また、第1ハーフミラー43と直交する方向には、集束レンズ45及びCCDカメラ46が配されている。
The second half mirror 44 is disposed on the optical path between the image rotator 15 and the converging lens 16.
A converging lens 45 and a CCD camera 46 are arranged in a direction orthogonal to the first half mirror 43.

これにより、ランプ41からの光は、集光レンズ42で平行光とされ第1ハーフミラー43を透過した光が第2ハーフミラー44で反射して測定対象物Wに照射される。   As a result, the light from the lamp 41 is converted into parallel light by the condenser lens 42, and the light transmitted through the first half mirror 43 is reflected by the second half mirror 44 and irradiated onto the measurement object W.

そして、測定対象物Wで反射した観測用光源からの光及びLDアレイ11からの光は、収束レンズ16で平行光とされて、第2ハーフミラー44で透過する光と反射する光とに分割される。   Then, the light from the observation light source reflected by the measurement object W and the light from the LD array 11 are converted into parallel light by the converging lens 16 and divided into light that is transmitted by the second half mirror 44 and light that is reflected. Is done.

このうち、第2ハーフミラー44で反射した光は、第1ハーフミラー43で分割され、第1ハーフミラー43で反射した光が、集束レンズ45で集束されてCCDカメラ46(撮像手段)に入射する。   Of these, the light reflected by the second half mirror 44 is divided by the first half mirror 43, and the light reflected by the first half mirror 43 is focused by the focusing lens 45 and enters the CCD camera 46 (imaging means). To do.

CCDカメラ46で撮像された画像は、撮像位置に応じた撮像信号してディスプレイ47(表示手段)に出力される。   An image picked up by the CCD camera 46 is output to a display 47 (display means) as an image pickup signal corresponding to the image pickup position.

ディスプレイ47は、撮像信号に基づき測定した測定対象物Wの深度の情報を画面上に表示する。
実施形態2のように、観測用光源からの光を測定対象物Wに照射することで、CCDカメラ46に撮像される測定対象物Wの位置や測定対象物W上における光の照射位置等を把握しやすくなる。
The display 47 displays information on the depth of the measurement object W measured based on the imaging signal on the screen.
As in the second embodiment, by irradiating the measurement object W with light from the observation light source, the position of the measurement object W captured by the CCD camera 46, the irradiation position of the light on the measurement object W, and the like are determined. It becomes easy to grasp.

<実施形態3>
実施形態3では、レーザ光源からライン状に投光される光の略中間部分の投光状態を略中間部分以外の投光状態とは異ならせることで、測定対象物Wに照射される光の像の中心位置を把握しやすくするものである。
<Embodiment 3>
In Embodiment 3, the projection state of the substantially intermediate portion of the light projected from the laser light source in a line shape is different from the projection state other than the substantially intermediate portion, so that the light irradiated on the measurement target W is changed. This makes it easy to grasp the center position of the image.

具体的には、多数の一列状に配されるLDアレイ11のうち、中心付近の投光素子の光量を異ならせる(例えば、中心付近の投光素子の光量のみを上げたり、中心付近の投光素子を消灯するなど)ことや、LDアレイ11以外のレーザ光源であっても、光量の調節により中心付近の光量を異ならせればよい。   Specifically, among the many LD arrays 11 arranged in a line, the light amount of the light projecting element near the center is changed (for example, only the light amount of the light projecting element near the center is increased, or the light projecting element near the center is increased. Even if it is a laser light source other than the LD array 11, the amount of light in the vicinity of the center may be varied by adjusting the amount of light.

これにより測定対象物Wに照射される光の像の中心位置を把握しやすいから、照射位置の位置あわせが容易になる。
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
As a result, it is easy to grasp the center position of the image of the light irradiated onto the measurement object W, and thus the alignment of the irradiation position is facilitated.
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)LDアレイ11の投光順序は所定の順序で1つずつ投光させるようにしてもよいが、複数の投光素子を同時に投光させる動作を所定の順序で行うようにしてもよい。特に、隣り合わない複数の投光素子を同時に発光させる動作を順次行うようにすることで高速な測定ができ、隣り合う投光素子を同時に発光させるよりもノイズもなく正確に測定ができる。さらに、1つの投光素子を用いてライン状に投光させるようにしてもよい。   (1) The light emitting sequence of the LD array 11 may be projected one by one in a predetermined order, but the operation of simultaneously projecting a plurality of light projecting elements may be performed in a predetermined order. . In particular, by sequentially performing the operation of simultaneously emitting light from a plurality of light projecting elements that are not adjacent to each other, it is possible to perform high-speed measurement, and it is possible to perform measurement more accurately without noise than when light is emitted from adjacent light projecting elements simultaneously. Furthermore, the light may be projected in a line using one light projecting element.

(2)上記実施形態では、ステージを上下させることで測定対象物Wに対するZ軸方向の焦点位置を変化させる構成としたがこれに限られない。例えば、収束レンズ16を上下(Z軸方向)に振動させて、測定対象物Wに対するZ軸方向の焦点位置を変化させる構成としてもよい。   (2) In the above embodiment, the focal position in the Z-axis direction with respect to the measurement target W is changed by moving the stage up and down, but the present invention is not limited to this. For example, it is good also as a structure which vibrates the converging lens 16 up and down (Z-axis direction), and changes the focus position of the Z-axis direction with respect to the measuring object W.

(3)上記実施形態では、測定対象物Wの真上からレーザ光Lを投光する構成としたが、ななめ方向から所定の角度で測定対象物Wの表面にレーザ光Lを照射する構成としてもよい。
この場合には、図示はしないが、上記実施形態の結像レンズ14、イメージローテータ15及び収束レンズ16とは別体の結像レンズ、イメージローテータ、対物レンズを、例えば受光側に設け、斜め方向から投光したレーザ光Lを受光できるようにすればよい。このとき、受光側のイメージローテータの回転角度を投光側のイメージローテータの回転角度に応じて回転させる必要があるが、ビームスプリッタ12は不要になる。
ただし、上記実施形態によれば、測定対象物Wへの照射時と、測定対象物Wからの反射時とでイメージローテータ15(及びレンズ)を共通化することができるから、本構成と比較して部品点数を削減することができる。
(3) In the above embodiment, the laser light L is projected from directly above the measurement object W. However, the laser light L is irradiated on the surface of the measurement object W at a predetermined angle from the lick direction. Also good.
In this case, although not shown, an imaging lens, an image rotator, and an objective lens that are separate from the imaging lens 14, the image rotator 15, and the converging lens 16 of the above embodiment are provided on the light receiving side, for example, in an oblique direction. The laser beam L emitted from the light source can be received. At this time, it is necessary to rotate the rotation angle of the image rotator on the light receiving side according to the rotation angle of the image rotator on the light projecting side, but the beam splitter 12 is not necessary.
However, according to the above embodiment, the image rotator 15 (and the lens) can be used in common when irradiating the measurement object W and when reflecting from the measurement object W. The number of parts can be reduced.

(4)上記実施形態では、像回転手段はイメージローテータ15からなることとしたが、これに限られない。例えば、3枚の反射板で反射させることにより、イメージローテータと同様に像を回転させる構成としてもよい。   (4) In the above-described embodiment, the image rotation means is composed of the image rotator 15, but is not limited thereto. For example, a configuration may be adopted in which the image is rotated in the same manner as the image rotator by reflecting with three reflecting plates.

(5)イメージローテータ15の回転角度は45度としたが、これ以外の角度でもよい。   (5) Although the rotation angle of the image rotator 15 is 45 degrees, other rotation angles may be used.

実施形態1の光学測定装置の概略的構成を示す図The figure which shows schematic structure of the optical measuring device of Embodiment 1. イメージローテータ内の光路を示す図Diagram showing the optical path in the image rotator 測定対象物による反射の前後における光の像の向きを示す図The figure which shows the direction of the image of the light before and after reflection by the measurement object (a)θ=0度のときの異なる位置での光の像の向きを示す図 (b)θ=45度のときの異なる位置での光の像の向きを示す図異なる角度における(A) Diagram showing direction of light image at different positions when θ = 0 degree (b) Diagram showing direction of light image at different positions when θ = 45 degrees 実施形態2の光学測定装置の概略的構成を示す図The figure which shows schematic structure of the optical measuring device of Embodiment 2.

符号の説明Explanation of symbols

10…光学測定装置
11…LDアレイ(投光手段)
12…ビームスプリッタ(分岐手段)
14…結像レンズ
15…イメージローテータ(像回転手段)
16…収束レンズ
17…一次元イメージセンサ(受光手段)
22…回転制御回路
23…回転駆動部
24…ステージ制御回路(ステージ制御手段)
25…ステージ
46…CCDカメラ(撮像手段)
47…ディスプレイ(表示手段)
W…測定対象物
DESCRIPTION OF SYMBOLS 10 ... Optical measuring device 11 ... LD array (light projection means)
12 ... Beam splitter (branching means)
14 ... imaging lens 15 ... image rotator (image rotation means)
16 ... Converging lens 17 ... One-dimensional image sensor (light receiving means)
DESCRIPTION OF SYMBOLS 22 ... Rotation control circuit 23 ... Rotation drive part 24 ... Stage control circuit (stage control means)
25 ... Stage 46 ... CCD camera (imaging means)
47. Display (display means)
W ... Measurement object

Claims (9)

投光素子が配されてなる投光手段からライン状の平行に投光した光を収束レンズにより収束させて測定対象物に照射し、前記測定対象物で反射した光が対物レンズを通って平行光となり、この平行光が収束されて光の像に対応して複数の受光素子が一列状に配されてなる受光手段に受光され、前記受光手段における受光量に基づいて前記測定対象物表面の深度を測定する光学測定装置であって、
前記投光手段と前記収束レンズとの間の光路上及び前記対物レンズと前記受光手段との間の光路上には、回転角度に応じて透過した光の像を回転させる像回転手段が光軸を中心として回転可能に備えられていることを特徴とする光学測定装置。
The light projected in parallel in a line shape from the light projecting means provided with the light projecting element is converged by the converging lens to irradiate the measurement target, and the light reflected by the measurement target is parallel through the objective lens. This parallel light is converged and received by a light receiving means in which a plurality of light receiving elements are arranged in a line corresponding to the image of the light, and the surface of the measurement object is measured based on the amount of light received by the light receiving means. An optical measuring device for measuring depth,
On the optical path between the light projecting unit and the converging lens and on the optical path between the objective lens and the light receiving unit, an image rotating unit that rotates an image of light transmitted according to a rotation angle is an optical axis. An optical measuring device is provided so as to be rotatable around the center.
前記収束レンズは、前記対物レンズを兼ねる構成とされるとともに、前記投光手段と前記収束レンズとの間の光路上には前記測定対象物側に向かう光と前記測定対象物からの反射光との双方を透過させる1個の前記像回転手段が前記収束レンズと同軸上に配されており、
前記測定対象物からの反射光は前記像回転手段を透過して分岐手段により分岐され、当該分岐された光が前記受光手段に受光されることを特徴とする請求項1記載の光学測定装置。
The converging lens is configured to also serve as the objective lens, and on the optical path between the light projecting unit and the converging lens, light toward the measurement object side and reflected light from the measurement object The one image rotating means that transmits both of them is arranged coaxially with the converging lens,
2. The optical measurement apparatus according to claim 1, wherein the reflected light from the measurement object is transmitted through the image rotating means and branched by a branching means, and the branched light is received by the light receiving means.
前記投光手段と前記像回転手段との間の光路上には、投光された光を平行光にするとともに、前記測定対象物からの反射光を収束させる結像レンズが設けられていることを特徴とする請求項2記載の光学測定装置。 An imaging lens is provided on the optical path between the light projecting means and the image rotating means to make the projected light parallel light and converge reflected light from the measurement object. The optical measuring device according to claim 2. 前記投光素子は、可視光領域の波長帯の光を出射することを特徴とする請求項1ないし請求項3のいずれかに記載の光学測定装置。 The optical measuring device according to any one of claims 1 to 3, wherein the light projecting element emits light in a wavelength band of a visible light region. 前記投光手段は、ライン状に投光される光のうち略中間部分の光の投光状態が略中間部分以外の光の投光状態とは異なることを特徴とする請求項1ないし請求項4のいずれかに記載の光学測定装置。 2. The light projecting unit according to claim 1, wherein a light projection state of a substantially intermediate portion of the light projected in a line shape is different from a light projection state of a light other than the substantially intermediate portion. 5. The optical measuring device according to any one of 4 above. 前記像回転手段は、イメージローテータからなることを特徴とする請求項1ないし請求項5のいずれかに記載の光学測定装置。 The optical measurement apparatus according to claim 1, wherein the image rotation unit includes an image rotator. 投光手段から投光される波長帯の光を撮像可能であって、前記測定対象物からの反射光を撮像し、この撮像位置に応じた撮像信号を出力する撮像手段と、
前記撮像手段からの撮像信号を受けて、前記撮像位置に応じた情報を表示する表示手段と、を更に備えることを特徴とする請求項1ないし請求項6のいずれかに記載の光学測定装置。
Imaging means capable of imaging light in the wavelength band projected from the light projecting means, imaging reflected light from the measurement object, and outputting an imaging signal corresponding to the imaging position;
The optical measurement apparatus according to claim 1, further comprising a display unit that receives an imaging signal from the imaging unit and displays information corresponding to the imaging position.
前記測定対象物は、ステージ上に配されており、
請求項1ないし請求項7のいずれかに記載の光学測定装置は、前記ステージの高さ又は前記収束レンズの軸方向の位置を変えることにより前記収束レンズと前記測定対象物との相対的な位置を変化させる駆動手段を備えた光学顕微鏡であって、
前記駆動手段を駆動させることにより、前記複数の受光素子のうちの所定の受光素子の受光量が最大となる位置に前記ステージ又は前記収束レンズを移動させるステージ制御手段を備えることを特徴とする光学顕微鏡。
The measurement object is arranged on a stage,
The optical measurement apparatus according to claim 1, wherein the relative position between the convergent lens and the measurement object is changed by changing a height of the stage or an axial position of the convergent lens. An optical microscope equipped with a driving means for changing
An optical system comprising: stage control means for moving the stage or the converging lens to a position where a light receiving amount of a predetermined light receiving element among the plurality of light receiving elements is maximized by driving the driving means. microscope.
投光手段からライン状の平行に投光した光を像回転手段により回転させて測定対象物に照射し、前記測定対象物にて反射した光を像回転手段により回転させて受光手段の一列状の受光素子に受光させ、前記受光手段における受光量に基づいて前記測定対象物表面の深度を測定することを特徴とする光学測定方法。 The light projected in parallel from the light projecting means is rotated by the image rotating means to irradiate the measurement object, and the light reflected by the measurement object is rotated by the image rotating means to form a line of light receiving means. An optical measurement method comprising: measuring the depth of the measurement object surface based on the amount of light received by the light receiving means.
JP2005041795A 2005-02-18 2005-02-18 Optical measurement apparatus, optical microscope, and optical measurement method Pending JP2006226869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041795A JP2006226869A (en) 2005-02-18 2005-02-18 Optical measurement apparatus, optical microscope, and optical measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041795A JP2006226869A (en) 2005-02-18 2005-02-18 Optical measurement apparatus, optical microscope, and optical measurement method

Publications (1)

Publication Number Publication Date
JP2006226869A true JP2006226869A (en) 2006-08-31

Family

ID=36988372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041795A Pending JP2006226869A (en) 2005-02-18 2005-02-18 Optical measurement apparatus, optical microscope, and optical measurement method

Country Status (1)

Country Link
JP (1) JP2006226869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709584A (en) * 2018-01-23 2018-10-26 四川大学 It is a kind of to measure thickness of liquid film and the device and method of hydrodynamics behavior in falling liquid film microchannel using stereomicroscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309809A (en) * 1987-06-11 1988-12-16 Rikagaku Kenkyusho Constitution of noncontact type optical distance detection probe
JPH01502849A (en) * 1987-03-24 1989-09-28 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション distance measuring device
JPH09197279A (en) * 1996-01-12 1997-07-31 Olympus Optical Co Ltd Laser scanning type microscope
JP3544019B2 (en) * 1994-12-02 2004-07-21 株式会社キーエンス Optical microscope and method for measuring depth of optical microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502849A (en) * 1987-03-24 1989-09-28 コモンウェルス・サイエンティフィック・アンド・インダストリアル・リサーチ・オーガニゼイション distance measuring device
JPS63309809A (en) * 1987-06-11 1988-12-16 Rikagaku Kenkyusho Constitution of noncontact type optical distance detection probe
JP3544019B2 (en) * 1994-12-02 2004-07-21 株式会社キーエンス Optical microscope and method for measuring depth of optical microscope
JPH09197279A (en) * 1996-01-12 1997-07-31 Olympus Optical Co Ltd Laser scanning type microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709584A (en) * 2018-01-23 2018-10-26 四川大学 It is a kind of to measure thickness of liquid film and the device and method of hydrodynamics behavior in falling liquid film microchannel using stereomicroscope
CN108709584B (en) * 2018-01-23 2021-04-02 四川大学 Method for measuring liquid phase film forming thickness and hydromechanics behavior in falling film microchannel

Similar Documents

Publication Publication Date Title
JP3107034U (en) Method and apparatus for reducing speckle
CN101354481B (en) Laser irradiation apparatus and laser processing system using the same
CN101019058A (en) Observation apparatus with focal position control mechanism
TW201250199A (en) Apparatus and method for inspecting and an object with increased depth of field
US20100125170A1 (en) Scanning endoscope, scanning endoscope processor, and scanning endoscope apparatus
KR100501075B1 (en) Optical microscope
JP4526988B2 (en) Minute height measuring method, minute height measuring apparatus and displacement unit used therefor
JP2009282112A (en) Confocal microscope
JP5658917B2 (en) Imaging device
JP2008051576A (en) Shape-measuring apparatus and shape-measuring method
JP2006308336A (en) Imaging system
JP6134249B2 (en) Image acquisition device and image acquisition method of image acquisition device
JP4593141B2 (en) Optical scanning observation device
JP2006226869A (en) Optical measurement apparatus, optical microscope, and optical measurement method
JP4787012B2 (en) Cross-sectional shape measuring apparatus and cross-sectional shape measuring method
JPH1068901A (en) Two-dimensional scanner device
JP4963567B2 (en) Minute height measuring device
JP5131552B2 (en) Microscope equipment
JP4884764B2 (en) Laser microscope
TWI470299B (en) Method and apparatus for auto-focusing
JPH03172815A (en) Cofocus scanning type microscope
JP4850523B2 (en) Confocal microscope
JP2008032995A (en) Confocal microscope
JP5867855B2 (en) Tomographic image measuring device
KR20240030514A (en) Intraoral dental scanner using remote focus control and confocal and scanning method by the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20080108

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005