TW200848773A - Optical film, and polarizer, prism sheet, backlight unit and display device using the optical film, and method of fabricating the same - Google Patents

Optical film, and polarizer, prism sheet, backlight unit and display device using the optical film, and method of fabricating the same Download PDF

Info

Publication number
TW200848773A
TW200848773A TW97116272A TW97116272A TW200848773A TW 200848773 A TW200848773 A TW 200848773A TW 97116272 A TW97116272 A TW 97116272A TW 97116272 A TW97116272 A TW 97116272A TW 200848773 A TW200848773 A TW 200848773A
Authority
TW
Taiwan
Prior art keywords
optical film
display device
coating layer
surface energy
substrate
Prior art date
Application number
TW97116272A
Other languages
Chinese (zh)
Other versions
TWI444649B (en
Inventor
Jin-Ho Kim
Sang-Ho Choi
Jun-Hee Lee
Mik-Yung Park
Su-Jung Park
Original Assignee
Lg Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020070071527A external-priority patent/KR101318441B1/en
Priority claimed from KR1020070141368A external-priority patent/KR20080098466A/en
Application filed by Lg Display Co Ltd filed Critical Lg Display Co Ltd
Publication of TW200848773A publication Critical patent/TW200848773A/en
Application granted granted Critical
Publication of TWI444649B publication Critical patent/TWI444649B/en

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

An optical film for a display device including a substrate and a coating layer in which a first material has a first range of surface energy value and a second material has a second range of surface energy value smaller than the first range of surface energy value such that the first material is mainly distributed on a first side of the coating layer contacting the substrate and the second material is mainly distributed on a second side of the coating layer opposite to the first side.

Description

200848773 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示裝置,尤其係關於一種顯示裝置之光 學膜及其製造方法。雖然本發明實施例適合廣泛範圍的應用,但 是尤其適用於改善抗刮、防污(anti-fouling)以及抗反射特性。 【先前技術】 顯示裝置例如電聚顯示面板(plasma display panel; PDP )、電 場發光顯示器(electroluminescent display ; ELD)以及液晶顯示哭 (liquid crystal display ; LCD)等由於具有響應速度快、功率消耗 低以及色彩再現率高的特點已經受到眾多關注。這種顯示裝置用 於多種家庭應用,包含電視、電腦監視器、筆記型電腦、行動電 活、冰箱之顯示器等。尤其近年來,例如允許透過使用觸控螢幕 而輸入資訊之個人數位助理(personaldigitalassistant ; pDA:)、自 動櫃員機(automated teller machine; ATM)等顯示裝置現在正被 普遍使用。 顯示裝置中,抗眩(anti-glare)膜、偏光器、稜鏡片等光學膜 接合至背光單元或顯示φ板,赠止外部光線的傳輸和反射所帶 來的對比度下降,防止影像反射,並且保護螢幕。尤其地,在窄 示裝置的表面上透過直接地接觸使用者的手或者針筆而輪入資 訊,對於具有此種功能的顯示裝置來說,因為使用者的手或者針 筆的觸壓,光賴需要具有很高的抗指紋或者抗模糊能力,或者 6 200848773 需要具有能夠清除指紋或消除模糊的能力,即具有防污特性。 習知技術中,具有相對高表面能(surface energy)(大約4〇毫 牛頓/米〜50毫牛頓/米)之丙烯酸聚合體(acrylic p〇lymer)材 料置於顯示裝置之螢幕之上。因此,丙烯酸聚合體與污染物強烈 地交互作用(即,強烈地吸引污染物),從而很容易黏著污染物於 螢幕之上。當污染物黏著至螢幕上的丙烯酸聚合體材料時,很難 從螢幕上擦除污染物,並且當嘗試擦拭螢幕時,螢幕可能被污染 物刮划。此外,因為背光單元巾使用的稜鏡片具有尖端部和底部 之形狀,所以尖端部容易被外力損壞或磨損。 【發明内容】 因此,本發明實施例之目的在於提供一種顯示裝置之光學膜 及其製造方法,實質上避免習知技術之限制和缺闕造成的一或 多個問題。 本發明貫_之目的在於提供—麵示裝置之光學膜,可簡 單地被製造並且具有防污特性。 。。本發明實關之目的在於提供—觀稀置之絲膜,可簡 單地被製造並且具有抗刮和防污特性。 。。本發明實關之目的在於提供—讎示裝置之光學膜,可簡 單地被製造並且具有防污和抗反射特性。 本發明實施例之目的在於提供—種顯林置之光學膜,可簡 單地被製造並且具有抗刮、防污和抗反射特性。 7 200848773 本發明實施例之目的在於提供_種 單地被製造並且具有防污、抗靜電和抗反射、二 述:===一 的外e/ 仔卩絲轉絲可收本判實施例 貝戈㈣。本發财_之目的和其它優 ::載r亀申請專利範圍中特別指明的結二 伤,侍以貫現和獲得。 為了獲得本發明實關的這些目的和其他特徵,現對本發明 作具體化和迪性的财,—麵科置之絲觀含:基板; 以及塗佈層,其中第_材料具有第—範圍之表面能值,第二材料 具有第二範圍之表面能值,第二範圍之表面能值小於第—範圍之 表面此值’讀第一材料主要分佈於接觸基板之塗佈層之第一側 面上,第二材料主要分佈於與第—側面相對的塗佈層之第二側面 之上。 另一方面,-義示裝置之光軸包含m及塗佈層, 偏紐材料和麵紐制於其愤組合,這樣偏級材料主要 刀佈於接觸基板之塗佈層之第—側面之上,非偏紐材料主要分 佈於與第—側面相對的塗佈層之第二側面之上。 方面種光學膜之製造方法包含:增加一聚合初始劑 ,單體(m〇nomer)或低聚體(〇lig〇mer)其中之一,以形成聚合 树月曰,混合聚合樹脂與包含氟和輕少其—之化合物,以獲得塗 200848773 佈溶液;以及提供塗佈駿至基板之上,這樣聚合旨向基板方 向移動’純含氟和魏少其—之化合物遠離基板,以形成相分 離。 可以理解的是’如上所述的本發明之減說明和隨後所述的 本ix月m蝴均是具有代表性和解釋性的說明,並且是為了 進一步揭示本發明之申請專利範圍。 【實施方式】 本發明實施例係基於識別出光學膜的接觸角和表面能保持足 j光學赌污和抗反射雜。尤其地,因為光學難合於顯示 赏幕的取上部’光學關接合面應該具有絲面能,從而在使用 時不會從顯示螢幕上脫落,而絲膜的暴露面朗該具有低的表 面能’從而防止污祕接合至其表面上。就是說,如果某種材料 絲面能高,射的則丨力增加,從而加強對不同材料的的吸收 特性,如果表面能低,射的吸引力降低,從而減卿不同材料 的吸收巧此,光學膜的暴露面被設定為具有低表面能,而接合 面被設定為具有高表面能。由此目的,f知技術之辟膜包含雙 層結構供使用,其巾具有高表面能哺料接合至—側,具有低表 面能的材料接合至另一側。 ^ 目標材料之 相比之下’本發明貫施例提供—種單層絲膜,可透過、、曰人 兩種材料-次形成,兩種材料各自包含不_表面能體= 接觸角或麵撼絲巾,並对佈產生㈣料於 心 200848773 上、,而無須經歷接合兩種薄膜的額外制程,從而製造制程可被簡 化並且光學膜可具有良好的抗刮、防污和污染物清除特性。即, 依據表面能值之_差別、_狀態中接觸角之間的差別或者組 成光學膜的兩騎料之_偏級差別,本_實補識別出相 分離(細e-separation)效應以及抗刮、防污和污染物清除特性不 同。本發明實施例中有效相分離所使用的因數如下所述。本發明 ^施例之光軸羽皮翻献其料制至顯对置巾的顯耐 ―、抗眩膜、抗反射膜、偏光器或稜鏡片。下面詳細描述本發明 貫施例之光學膜之特徵。 •兩種材料之表面能值之間的差別 如果各自包含不同表面能值的兩種材料被混合,具有較高表 =的材料勒於触學膜的接觸面方向鶴,而具雜低: =材_向於朝接觸空氣的暴露面方向移動。本發明實施例之 '人貝,發現當兩種材料的表面能值之間的差別處於5毫牛頓 =至35毫牛頓/米的細時可得到最高的相分離效果。表格 且=如稀酸材料俾被用作具有相對較高表面能的第一材料並 产^ (flU〇rine-based)材料被用作相對較低表面能的第二材料的 [表格1] 10 200848773 材料 -----^___ 表面能(毫牛頓/米) 含氟聚合體 -cf3 '~—- 14.5 (Fluorine-based -cf2h 26.5 ~' polymer) -CF3and -CF2- 17.0 —' -CF2 22.6 -CH2CF3 22.5 丙烯酸聚合體 丙烯酸乙酯聚合體 40.1 (Acrylic polymer) (Ethyl acrylate polymer) 羰基丙烯酸酯聚合 體(Ketyl acrylate polymer) 37.0 丙烯酸丁醋聚合體 (Butyl acrylate polymer) 33.7 丙烯酸異辛酯聚合 體(Ethyl hexyl acrylate polymer) 30.2 2 ·固體狀態下雨種材料的接觸角值之間的差別 當固體狀態下組成光學膜的兩種材料的接㈣之間差值處於 11 200848773 約 κ)。至,時,可得到最有效的防污和污染物清除特性。卢复 地,當丙烯酸材料的接觸角處於50。至9〇。的範圍並且ζ 的接觸角處於100。至130。的範圍時,可能满ρ曰本. ^ 又件/、有改#的抗刮、 防污和污染物清除特性的光學膜。 3·兩種材料的偏光性之間的差別 當各自包含不同偏光性的兩種材料被混合時,因為它們桃 力學上係為不穩定的,所以兩種材料的介面處出現相分離。杯 明實施例巾’透過混合具有聽紐的第—㈣和具有高非偏^ 的第二材料而形成具有混合層的光學膜,其中 第-材料主要分佈至接觸面’㈣二材料主要分佈至暴露面之上。 本發明實關巾,具有純紐料—材射包含容納氣氧 =(f yl ; ·〇Η)的㈣’具有高麵紐㈣二材料可包含 容納碳氟基(fluorocarbon ; -CF)的材料。 本發明實關上述及其他目的、概、方面和優點將接合附 圖從本發明實_之以下詳細描财體現得更加。本發明之 說明書中,類似標號代表類似元件。 現在將參考附圖描述本發明之實施例。 「/第1圖」所示為本發明實施例之光學膜之剖視圖。請參考 2 1圖」,光學膜150被形成用作混合層,其中第—材料⑽具 有第一範圍的表面能值,篦-从少丨Μ。 ^ r囬祕弟—材枓13〇具有比第一範圍的表面能 值小的第二範圍的表面能值。混合層中,第一材料ιι〇主要被分 200848773 佈至混合層與顯示裝置的螢幕接觸的一側,第二材料13〇主要被 分佈至暴露面的一側之上。 本發明實施例中,第-材料11G和第二材料13G的表面能值 之間的差值的範圍可從約5毫牛頓/米至35毫牛頓/米。尤其 地,第一材料110可包含表面能值處於3〇毫牛頓/米至必毫牛 頓/米範圍的聚合樹脂,第二材料130可包含表面能值處於1〇毫 牛頓/米至25毫牛頓/米範圍的含氟聚合體、含矽聚合體 (silicon-based P〇lymer)以及含氟一矽聚合體(flu〇rine_silic〇n based polymer)。氟矽成分與其他材料混合以增加化合物的硬度並且降低 化合物的表面能。因此,本發明實施例之光學膜可具有改進的抗 刮、防污和抗反射性能,足以容忍外部壓力所產生的刮擦。「第仏 圖」、「第2b圖」、「第2c圖」、「第2d圖」以及「第2e圖」所示 係為本發明實施例之光學膜之製造制程之示意圖。 首先’如「第2a圖」所示,為了製造光學膜15〇,聚合初始 d(B)被日加至單體(mon〇mer)或低聚物(a)以形成 聚合樹脂110。 單體或低聚物(A)可為光聚合(photopolymerizable)的單體 或低聚物或者熱聚合(thermopolymerizable)的單體或低聚物,或者 可為用於形成三醋酸纖維素(tri-acetyl-celluose ; TAC)、聚酯 (Polyester,PE )、聚對苯二曱酸乙二醋(p〇iyethyiene Phthalate,PET )、聚秦二曱酸乙二 |旨(p〇iyethylene napMialate ; 13 200848773 PEN)、排列的聚丙烯(aiigned polypropylene ; PP)、聚碳酸醋 (polycarbonate ; PC )、丙烯酸樹脂(acrylic resin)、胺甲酸乙酯樹 脂(urethane-based resin)、環氧樹脂(epoxy resin)、三聚氰胺樹 脂(melamine resin)或石夕樹脂(silicon resin)的單體或低聚物。 例如,可使用苯乙烯單體(stylene-based monomer )例如苯乙稀 (stylene)或α-甲基苯乙烯(α-methylstylene)、丙烯酸酯單體(aciyiate monomers)以及丙烯酸酯低聚物。尤其地,丙烯酸酯單體可包含 各種類型的(間位)丙烯酸g旨單體((meta) acrylate monomers),例如聚 酯(間位)丙稀酸酯(apolyestere (meta) acrylate)、環氧(間位)丙烯酸酯 (epoxy (meta) acrylate)、胺曱酸乙酯(間位)丙烯酸酯(urethane (meta) acrylate)、聚醚(間位)丙烯酸醋(p〇lyether (meta) acrylate)、聚醇(間 位)丙烯酸酯(polyol (meta) acrylate)以及三聚氫胺(meta)丙烯酸醋 (melamine (meta) acrylate)。丙烯酸酯低聚物可包含聚胺酯丙烯酸 酯低聚物(urethane acrylate oligomers)以及環氧丙烯酸酯低聚物 (epoxy acrylate oligomers)。但是單體和低聚物並非限制於以上所 述。聚合樹脂110可為光硬化樹脂(photocurableresin)或熱固性 樹脂(thermosetting resin ),例如三醋酸纖維素(TAc )、聚酯(PE )、 聚對苯二曱酸乙二酯(PET)、聚萘二曱酸乙二酯(pEN)、排列的 聚丙烯(PP)、聚碳酸酯(PC)、丙烯酸樹脂、胺曱酸乙酯樹脂、 %氧樹脂、二聚氣胺樹脂或碎樹脂,但並非限制於此。 聚合初始劑(B)可包含光基(radical)聚合初始劑,例如苯乙 14 200848773 酮種(aceto phenone species )、二苯基酮種(benzo phenone species )、安息香(benzoin )、苯甲基縮酮(benzyl methyl ketal)、 四曱基二胺基二苯曱酮(Michler’ s ketone )、苯甲酰苯曱酸 (benzoil benzoate)、塞吨酮種(thioxanthone species)或 α-酿氧 酯(α-acyloxymester),或者光陽離子(photocatonic)聚合初始劑, 例如鏽鹽(onium salt)、磺酸脂(sulfonic acid ester)或有機金屬 黏合劑(organic metal adhesive )。但是,聚合初始劑並非限制於此, 還可使用各種其他類型的聚合初始劑。 接下來,聚合樹脂110以及第二材料130被混合以得到塗佈 >谷液。這裡’弟二材料130可包含:含氟化合物、含秒化合物以 及含氟一矽的化合物其中之一。第二材料13〇可包含具有全氟聚 醚基(perfluoro polyether groups )或矽氧烷基(alC0xy Siiane groups ) 的化合物,但是並非限制於此。 雖然圖中未表示,各種用途之塗佈溶液可包含無機微粒,例 如石夕微粒、奈米矽微粒(nano_silica particles )、導體微粒(⑺她恤 particle )或奈米導體微粒(nan〇_c〇nduct〇r par^cies )。 請參考「第2b圖」和「第2c圖」,依照上述方法獲得的塗佈 溶液被塗佈於基板之上。絲,具有較高表面能的聚合樹脂 110向與基板200接觸的接冑面方向移動,而具有較低表面能的第 二材料130向暴露面方向移動,從而產生相分離,其中暴露面不 接觸基板空氣。即,該於表面树,塗佈溶液的 15 200848773 第二材料13〇具有較低的表面能並且變得更加穩定,比單體或低 ^物(A)相對要高。因此’當單體或低聚物⑷被?長合初始劑⑼聚 合時,具有較低表面能的第二材料m主動向上表面層(即,表 面)方向移動,產生相分離。 本發明貫施例中,聚合樹脂11()可具有範圍從3()毫牛頓/米 至45笔牛頓/米的表面能值,第二材料13〇可具有範圍從⑺毫 牛頓/米至25宅牛頓/米的表面能值。較⑽表面層(即,内部 表面或本_(祕1啊))可包含姆少的第二材料13G以及相對 多的聚合樹脂110,較低的表面層可具有大於‘H,的尖筆硬度特 f生2H較佳,從而足以忍受使用者的手或尖筆的觸壓。 此後,請參考「第2d圖」以及「第2e圖」,熱或光被應用至 基板200上塗佈的塗佈溶液以硬化塗佈溶液,從而得到包含塗佈 層150和基板2〇〇的光學膜,如「第2e圖」所示。 雖然圖中未表示,包含凹凸(下陷和突出)表面的本發明實 施例之光學膜之製造制程可額外地被完成。 依照上述之本發明實施例,因為光學膜係透過簡單地混合各 自包δ不同表面能的兩種材料並且硬化它們而製造,無須完成兩 種材料的接合制程,所以此製造制程可被簡化。此外,位於塗佈 層150的暴露面的第二材料130可具有較小的表面能和低折射係 數。因此,本發明實施例之塗佈層15〇可具有改進的抗刮、防污 和抗反射特性,足以忍受外力產生的刮擦。 16 200848773 「第3圖」所示係為本發明第一實施例之光學膜之剖視圖。 請參考「第3圖」’本發明第一實施例之光學膜包含形成於基層3〇〇 之上的塗佈層250。基層300具有較高的透射率,相對低的雙折射 率’並且可由透過表面修正而容易被親水性(hydr〇philized)的材料 製造。例如,基層300可包含三醋酸纖維素(TAC)或聚酯(pE)、 聚對苯二憎乙二_ (PET)、聚萘二甲n (pen)、排列的 聚丙烯(PP)、聚碳酸自旨(PC)等,但並非限制於此。基層· 可具有約30微米至3〇〇微米的厚度以具有足夠的強度。 塗佈層250置於基層300之上。這裡,塗佈層25〇可為抗眩 (Anti-Glare ; AG)膜。塗佈層250可包含聚合樹脂21〇、石夕微粒 220、含氟和/或矽的化合物23〇,並且可包含凹凸(不規則,不 均勻)的表面。此實财,例如奈米賴粒#無機微粒可代替石夕 微粒被使用。接觸基層3GG的塗佈層250的上表面層(即,表面) 之含氟和/或_化合物23〇的密度比塗佈層25〇的下表面層(即 内表面層或本體層(bulklayer))之含氟和八切的化合物23〇的密 度高。因此,本發明第—實施例之光學膜可具有極好的抗刮、防 污和抗反射特性。 「第4圖」所示係為本發明第二實施例之光學膜之剖視圖。 明麥考f 4圖」,本發明第二實施例之光學膜包含形成於基層· 之上的塗佈層350。塗佈層35〇可為抗眩/抗靜電 AG/AS)膜’包含聚合樹脂31〇、石夕微粒 17 200848773 320、導體微粒奶以及含氟和八切的化合物⑽,並且可包含 凹凸表面。此實财,例如奈米頻粒等無機微粒可代替賴粒 被使用,例如奈料體微轉無機微粒可储導體微粒被使用。 接觸基層_的塗佈層350的上表面層中含氟和/或石夕的化合物 33〇的密度比塗佈層挪之下表面層之含氟和/或判化合細 的密度::因此’本發明第二實施例之光學膜可具有極好的抗到、 防污、抗靜電和抗反射特性。 「第5圖」所示係為本發明第三實施例之光學膜之剖視圖。 請蒼考「第5圖」,本發明第三實施例之光學膜包含形成於基層· 之上的塗佈層450。塗佈層45〇可為耐磨/抗靜電 (Hard-Coating/Ami彻ie ; HC/AS)膜,包含聚合樹脂彻、導體 微粒425以及含氟和八切的化合物。接觸基層的塗佈層 的上表面層中含氟和/或石夕的化合物430的密度比塗佈層45曰〇 之:表面層中含氟和/切的化合物的密度高。因此,本發 明弟^貫施例之光學膜可具有極好的抗刮、防污和抗靜電特性。 弟6圖」所示係為本發明第四實施例之絲膜之剖視圖。 請參考6圖」,本發,四實補之辨聽含形成於基層_ 之上的第一塗佈層525和第二塗佈層550。第-塗佈層525可包含 销粒520和聚合樹月旨523,並且可為具有凹凸表面的抗眩膜。第 -塗佈層55〇可為具有高折射率的高反射(ffighRefled取) 18 200848773 第二塗佈層550可包含聚合樹脂51〇以及含氟和/或矽的化 合物530。聚合樹脂510可透過聚合高折射率的單體被形成以具有 高折射率,高折射率單體的例子為双(4_甲基丙烯醯基苯硫基)硫化 物(bis (4_metacryl〇 il thiophenyl) sulfide)、乙烯基萘(vinyi naphthalene)、乙烯基苯基硫化物(vinyl phenyl犯腕e)、及本甲基 丙烯基羥苯基-4’ -曱氧基苯基硫醚 oxyphenyl-4 -methoxy phenyl thioether)。高折射率層可包含無機 微粒,例如二氧化錯(Zr02)或二氧化欽(丁i〇2)。 第-塗佈層55〇包含具有高折射率的聚合樹脂51〇,以及具有 低折射率的含氟和/或_化合⑯53〇。接觸第一塗佈層525的第 -塗佈層550的上表面中層含氟和/或石夕的化合物53〇的密度比 第k佈層55〇的下表面層中含氟和/或石夕的化合物别的密度 高。這裡,高折射率和低折射率係在基層的基礎上被判定。 因此,本發明第四實施例之光學财具有極好的抗刮、抗反射和 防污特性。 「第7圖」所示係為本發明第五實施例之光學膜之剖視圖。 請參考「第7圖」,本發明第五實施例之光學膜包含形成於基層· 之上的第-塗佈層625以及第二塗佈層咖,其中第一塗佈層仍 作為耐磨膜(hardcoating;HC),第二塗佈層⑽作為高反射⑽h reflection ; HR)膜。第-塗佈層625可包含聚合樹脂必,第二 塗佈層6料辦柳得㈣她旨_卩及具有低折射 19 200848773 率的含氟和/或矽的化合物63〇。 接觸第-塗佈層625的第二塗佈層㈣的上表面層中含氣和 /或矽的化合物630的密姐第二塗佈層㈣ 和/或物__ 麵,_样储^ 在基層6GG 礎上被判定。因此,本發明第五實關之光學膜 可具有極好的抗刮、防污和抗反射特性。 「第8圖」所不係為本發明第六實施例之光學膜之剖視圖。 請參考「第8圖」,本發明第六實施例之光學臈包含形成於基層㈣ 之上的塗佈層75G。塗佈層75G可為高反射膜,包含聚合樹脂71〇 以及含氟和/或砍的化合物730,並且包含凹凸表面。接觸基層 800的塗佈層750白勺上表面層中含氟和/或石夕的化合物—的密度 比塗佈層750的下表面層中含氟和/或矽的化合物73〇的密度 高。因此,本發明第六實施例之光學膜可具有極好的抗刮、防污 和抗反射特性。 上述實施例中使用的基層可為擴散板(diffusi〇nsheet)、偏光 器、顯示螢幕以及稜鏡片層其中之一。 除了上述實施例之外,偏光器可包含基膜、偏光膜以及第二 基膜。這裡,弟一基膜可為二醋酸纖維素薄膜,偏光膜可包含聚 乙烯醇(polyvinyl alcohol)。第二基膜可包含三醋酸纖維素薄膜以及 含氟和/或矽的化合物。接觸偏光膜的第二基膜的上表面層中含 氟和/或矽的化合物的密度比第二基膜的下表面層中含氣和/或 20 200848773 矽的化合物的密度高。因此,具有這種配置的偏光器可具有極好 的抗刮、防污和抗反射特性。 本發明實施例之偏光器和光學膜可接合至顯示裝置之面板, 顯示裝置之例子為電漿顯示面板、電場發光顯示器或液晶顯示裝 置。使用這種偏光器和光學膜的顯示裝置具有改進的抗刮、抗靜 電、防污和抗反射特性。 「第9a圖」以及「第%圖」所示係為本發明實施例之稜鏡 片之剖視圖。請參考「第9a圖」,稜鏡片包含基底92〇和形成於 基底920之上的稜鏡部910。基底920包含聚對苯二甲酸乙二酯 (PET) ’但並非限制於此。聚對苯二甲酸乙二酯(pET)屬於塑 性树月曰中隶結貫的薄膜,具有卓越的電特性,並且可用作非常薄 的膜。此外,聚對苯二甲酸乙二酯(PET)非常適合被用作稜鏡片, 因為聚對苯二曱酸乙二酯(PET)具有非常卓越的熱耐性 (heat-resistance)以及透明特性。基底92〇的厚度範圍可從12〇微 米分佈至140微米。基底920可支撐稜鏡部91〇。 稜鏡部910置於基底920之上,透過與「第%圖」、「第沘 圖」、「第2C圖」、「第2d圖」以及「第2e圖」所示之塗佈層15〇 之相同方法被準備。因此,省略其詳細描述以避免重複說明。 「第%圖」所示係為包含置於基底92〇和稜鏡部·之間的 支樓部93〇之稜鏡片之剖視圖。支樓部93〇讀棱鏡部。上述棱 鏡片900可被應用至顯示裝置之背光單元。 21 200848773 「第ίο圖」所示本發明實施例之具有稜鏡片之背光單元之剖 視圖。通常,背光單元依照螢光燈的位置被分離為側光型(edge type)和直射型(directtype)背光單元。雖然「第10圖」所示為 侧光型背光單元,但是本發明實施例可被應用至直射型背光單元。 如「第10圖」所示,側光型背光單元1000包含反射片1010、 光源部、導光板1〇4〇、擴散片1〇2〇、稜鏡片9〇〇以及保護片1〇3〇。 發射光線的光源部包含至少一個螢光燈1〇6〇以及用於接收螢光燈 1060的外罩1〇5〇。光源可包含冷陰極螢光燈(c〇ld cath〇de fluorescent lamp)或代替螢光燈的發光二極體。 外罩1050接收螢光燈1〇6〇,並且反射來自螢光燈1〇6〇的光 線。導光板1040控制來自光源部的光線,均勻地擴散此光線,並 且引導擴散光線至顯示面板。反射片1010反射來自導光板1040 的光線至導光板1040。擴散片1020擴散或者聚合來自導光板1〇4〇 和反射片1010的光線。稜鏡片900聚合擴散片1020所聚合或擴 散的部分光線至保護片1030,並且反射殘留的光線至導光板 !〇40。稜鏡片900形成於基底920或者支撐部930之上,如「第 9a圖」和「第%圖」所示。 保護片1030擴散稜鏡片900所聚合的光線,並且提供此光線 至顯示面板以擴大顯示面板之視角。 直射型背光單元(圖中未表示)與側光型背光單元不同,因 為螢光燈置於擴散片和反射片之間。因此,直射型背光單元無須 22 200848773 包含導光板。 「第11圖」所示係為包含背光單^麵和液晶顯示面板之 液晶顯示裝置1100之剖視圖。請參考「第n圖」,液晶顯示面板 包含下偏光膜1120a、上偏光膜H20b、下玻璃基板ii3〇a、上玻 璃基板1130b、彩色濾光片1190、黑色矩陣118〇、晝素電極115〇、 共同電極1160、液晶層1170以及薄膜電晶體114〇。 彩色濾光片包含紅色漉光片R、綠色濾光片G以及藍色濾光 片B,當光線被應用至其上時,每一彩色濾光片產生對應的顏色。 共同電極1160和晝素電極1150依照應用自外部的電壓排列 液晶分子於液晶層1170中。晝素電極115〇透過薄膜電晶體114〇 被開關。 液晶層1170包含很多液晶分子,液晶分子的軸線透過晝素電 極1150和共同電極H60之間的電壓差沿一個方向排列。因此, 來自背光單元1〇〇〇的光線可能被輸入至與液晶的分子排列對應的 衫色濾光片。背光單元1〇〇〇被置於液晶顯示面板之下,並且提供 光線至液晶顯示面板。 使用本發明實施例光學膜之液晶顯示裝置包含偏光器、稜鏡 偏和背光單元,但是本發明並非限制於液晶顯示裝置。本發明實 如例之範圍覆蓋多種顯示裝置,包含筆記型電腦、行動電話、冰 箱之顯示螢幕、個人數位助理、自動櫃員機等。 「第12圖」所示係為透過分析本發明實施例之光學膜之表面 23 200848773 而得到的結果圖形。特別地,「第12圖」所示係為基於飯刻深度 的碳、氧域含量之_。使料χ射線搶發射χ射線至光學^ 表面之上以完成實驗。表格2所示係為紐發射χ射線至光^膜 :表面之上得_光學麟度之碳、氧和氟含量之_實驗結果。、 [表格2] ° 入射角 碳 氟 氧 23° 42.77 "~ --------- 42.35 ^^--- 14.89 83° 31.54 63.81 4.65 表格2中,相對光學膜之垂直方向依照没角發射讀線而得 到的分析資料表示相對底層(内層)㈤碳、氟和氧的原子百分比, 、乂及相對光學膜之垂直方向依照S3。角發射X射線而得到的分析資 料表示相對的碳、氟和氧的原子百分比。 貝 標記(如「第12圖」所示)表示從光學膜的下表面層(内層、 =層)向上表面層(表面)之氟濃度分佈,注意密度隨著超向光 學膜的表面方向而增加。請參考「第圖」,隨著姓刻時間延長, )#氧(G)的原子百分比逐步地增力〇,而如果鍅刻時間短 則氣(Ε)的原子百分比較高。因此,參考表格2、「第垃圖」和 乐13圖」’可注意到本發明實施例之光學膜的氟含量向光學膜 表面的方向增加。 、 「第14圖」所示係為透過完成光學膜之污染物清除特性而獲 传的結果_,從而光學駐附著的污雜可报容祕被清除。 24 200848773 「第14圖」巾,水平軸表示表面能(毫牛頓/米),垂絲表示 污染物的清除次數。區域A^B表示使用本發明實關之光學膜 之例子,區域C和D表示使用習μ術光學膜之例子。污染物清 除測試透過使用衛生紙而完成。如「第14圖」所示,使用本發明 實施例之光學膜用於測試的情況下(即,區域入和6),當表面能 小於15 ί牛頓/米時,污祕在兩次擦拭㈣清除,#表面能處 於約15毫牛頓/米至28毫牛頓/米的範圍時,污染物透過兩或 二次擦拭被清除。概之下,使用習知光學顧於職的情況下 (即區域C和D) ’當表面能處於29毫牛頓/米i 42毫牛頓 /米的範_’至少四讀拭才能清除污_,#表面能為43毫 牛頓/米或更问^•,至少四次或五次擦拭才能清除污染物。因此, 可意識到與習知技術之光學難比,本發明實施狀光學膜表現 出非常優良的污染物清除特性。 …「第15圖」所示係為有意在光學膜之上附著污染物之後為光 學膜完成防 >可特性測試而得到的結果圖形。「第Μ圖」中,水平 轴表不表面鹿(科頓/米),垂直軸表示光透射率之變化,標記 表物#:畴之後的透射率變化,而標記〇表示污染物被 清除之後的透神·。_ Α㈣表示個本發财施例之光 予膜之例子’區域C和D表示習知技術之光學膜之例子。在防污 4也則射’用祕筆晝細條15公分的線,紐用聚脂纖維布 1拭五认。:^1 ’透過以下數學方程式得卿油性筆晝線後的透 25 200848773 射率變化以及線被擦拭後的透射率變化。 [方程式1] 晝線後的透射率變化=(晝線前的透射率-晝線後的透射 率)/(晝線前的透射率-) [方程式2] 線被消除後的透射率變化=(驗消除前的透射率線被消除 後的透射率)/(線被消除後的透射率) 如第15圖」所不,使用本發明實施例之光學膜用於測試的 情況下(即’區域A和B),當表面能小於15毫牛頓/米時,晝 線後的透射賴化和線被擦拭後的義賴化快速降低。 第16圖」所示為本發明實施例和習知技術光取樣之之光學 膜完成防污測試崎得的峨結果之表格。「第16圖」中,組成 之本發明I施例光學膜之兩種材料之接觸肖之間的差值在固體狀 態為30。並且表面能之間的差值& 16毫牛頓/米的條件下,取樣 一 A用於顧其防污特性。其等級測試結果為如「第π圖」所 丁之好(LV1)。組成之本發明另一實施例光學膜之兩種材料之接 觸角之間的差值在固體狀態為25。並且表面能之間的差值為U毫 ^頓/米的條件下,取樣‘B’肖於測試其防污特性。其等級測試 ^果為如「第16圖」所示之好(LV1)。組成之本發明再_實施例 光▲學膜之兩種材料之接觸角之間的差值在固體狀態為2〇。並且表 面月b之間的i值為8毫牛頓/米的條件下,取樣‘C,驗測試其 26 200848773 防污特性。其等級測試結果為如「第16圖」所示之好(lv2)。取 樣‘D’表示使用習知技術之光學膜在組成光學膜之兩種材料之 接觸角之_差值以及表面能之間值為Q的條件下被測試之 例子取樣D的測试結果表示防污特性較低(lv3),如「第 16圖」所示。 依照本發明實補之配置,具有較高表雌的·主要分佈 在混合層之待接合面’而具有相對低表面能的材料主要分佈在相 對的側面上,並且觸壓操作完成於此侧面之上。因此,與習知技 術比較,完成觸壓的光學膜—側的表面能值可降低,光學 糾_表面驗可雜姆高的值,這樣污錄不料透過接觸 等附著於顯示裝置的表面上,即使污染物附著也可很容易被清 除。因此,光學膜、偏光器、稜鏡片、背光單元以及顯示裝置可 依照簡單的方式被製造,並且具有改進的抗刮、防污以及抗反射 本發明實_之光學膜可直接地接合至待使用之顯示裝置之 螢幕,或者在製造制程期間整體地接合至顯示裳置之螢幕。因此, 本發明實施例之光學膜可用作顯示螢幕之保護膜或者用 板之透明膜等。 雖然本發明以前述之實施例揭露如上,财並_以限定本 =。在不脫離本發明之精神和範圍内,所為之更動與潤飾,均 發明之專娜護觀之内。_本發騎界定之保護範圍請 27 200848773 芩照所附之申請專利範圍。 【圖式簡單說明】 第1圖所示為本發明實施例之絲膜之剖視圖. 之示嶋2e _爾舞败咖之製造制程 第3圖所示為本發明第—實施例之光學膜之剖視圖; =4圖所示為本發明第二實施例之光學膜之剖視圖; 第5圖所示為本發明第三實施例之光學膜之剖視圖; 第6圖所示為本發明第四實施例之光學膜之剖視圖; 第7圖所示為本發明第五實施例之光學膜之剖視圖; 第8圖所示為本發明第六實施例之光學膜之剖視圖; 第9a圖和第%圖所示為本發明實施例之稜鏡片之剖視圖; 第1〇圖所示為包含第9a圖和㈣圖所示之稜鏡片之背光單 元之剖視圖; 第11圖所示為本發明實施例之包含偏光器和稜鏡片之顯示農 置之剖視圖; ^ 第12圖所示為透過分析本發明實施例之光學膜之表面而得到 的結果圖形; 第13圖所示為本發明實施例之根據蝕刻深度之光學膜之碳、 氧和氟之含量圖形; 第14圖所示為本發明實施例之透過為光學膜完成污染物清除 28 200848773 測試而得到的結果圖形; 第15圖所$為有意在光學膜之上附著污染物後為光學膜完成 防污測試而得到的結果圖形;以及 第16圖所示為依照 、本發明實施例和習知技術之光取樣之光學 膜之完成防污職而獲得的測試結果之表格。 【主要元件符號說明】 110 第一材料 130 第二材料 150 光學膜 200 基板 210 聚合樹脂 220 石夕微粒 230 含氟和/或矽的化合物 250 塗佈層 300 基層 310 聚合樹脂 320 矽微粒 325 導體微粒 330 含氟和/或矽的化合物 350 塗佈層 400 基層 29 200848773200848773 IX. Description of the Invention: [Technical Field] The present invention relates to a display device, and more particularly to an optical film of a display device and a method of manufacturing the same. While embodiments of the present invention are suitable for a wide range of applications, they are particularly useful for improving scratch, anti-fouling, and anti-reflective properties. [Prior Art] Display devices such as a plasma display panel (PDP), an electroluminescent display (ELD), and a liquid crystal display (LCD) have high response speed and low power consumption. The high color reproduction rate has received a lot of attention. Such display devices are used in a variety of home applications, including televisions, computer monitors, notebook computers, mobile computers, displays for refrigerators, and the like. In particular, in recent years, display devices such as personal digital assistants (pDA:) and automated teller machines (ATM) that allow information to be input by using a touch screen are now in widespread use. In the display device, an optical film such as an anti-glare film, a polarizer, or a cymbal is bonded to a backlight unit or a φ plate, which suppresses contrast reduction caused by transmission and reflection of external light, and prevents image reflection, and Protect the screen. In particular, the information is wheeled on the surface of the narrow display device by directly contacting the user's hand or the stylus pen. For a display device having such a function, the light is pressed by the user's hand or the stylus pen. Lai needs to have high anti-fingerprint or anti-blur capability, or 6 200848773 needs to have the ability to remove fingerprints or eliminate blur, that is, anti-fouling properties. In the prior art, an acrylic p〇lymer material having a relatively high surface energy (about 4 Torr/m to 50 mA/m) is placed on the screen of the display device. As a result, acrylic polymers interact strongly with contaminants (i.e., strongly attract contaminants), making it easy to adhere contaminants to the screen. When contaminants adhere to the acrylic polymer material on the screen, it is difficult to remove contaminants from the screen, and when attempting to wipe the screen, the screen may be scratched by contaminants. Further, since the cymbal sheet used in the backlight unit has the shape of the tip end portion and the bottom portion, the tip end portion is easily damaged or worn by an external force. SUMMARY OF THE INVENTION Accordingly, it is an object of embodiments of the present invention to provide an optical film of a display device and a method of fabricating the same that substantially obviate one or more of the problems of the limitations and disadvantages of the prior art. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical film of a surface display device which can be easily fabricated and which has antifouling properties. . . It is an object of the present invention to provide a thinned silk film which can be easily fabricated and which has scratch and stain resistance properties. . . It is an object of the present invention to provide an optical film of a display device that can be easily fabricated and which has antifouling and anti-reflective properties. It is an object of embodiments of the present invention to provide an optical film which is readily achievable and which is scratch resistant, stain resistant and anti-reflective. 7 200848773 The purpose of the embodiments of the present invention is to provide an external e/ 卩 转 转 可 实施 实施 实施 实施 单 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Ge (four). The purpose of this fortune _ and other advantages: 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀 亀In order to obtain these and other features of the present invention, the present invention is embodied and diversified, and the surface of the invention comprises: a substrate; and a coating layer, wherein the first material has a first range a surface energy value, the second material has a surface energy value of the second range, and the surface energy value of the second range is smaller than the surface of the first range. The value of the read first material is mainly distributed on the first side of the coating layer contacting the substrate. The second material is mainly distributed over the second side of the coating layer opposite the first side. On the other hand, the optical axis of the device includes m and a coating layer, and the material and the surface of the device are combined with each other, so that the material of the biasing material is mainly disposed on the first side of the coating layer contacting the substrate. The non-biased material is mainly distributed on the second side of the coating layer opposite to the first side. The method for producing an optical film comprises: adding a polymerization initiator, one of a monomer (m〇nomer) or an oligomer (〇lig〇mer) to form a polymer tree, mixing a polymer resin and containing fluorine and The compound is lightly reduced to obtain a coating solution of 200848773; and a coating is provided on the substrate such that the polymerization moves away from the substrate to form a phase separation of the compound of the pure fluorine and Wei Shaoqi. It is to be understood that the description of the invention as described above and the following description of the present invention are both representative and explanatory, and are intended to further disclose the scope of the invention. [Embodiment] Embodiments of the present invention are based on the identification of the contact angle of the optical film and the surface energy to maintain the optical gambling and anti-reflection. In particular, since the optical upper surface of the optically difficult-to-display curtain is to have a silk surface energy, it does not fall off the display screen during use, and the exposed surface of the silk film has a low surface energy. 'Therefore preventing the smudge from joining to its surface. That is to say, if the surface energy of a certain material is high, the force of the shot is increased, thereby enhancing the absorption characteristics of different materials. If the surface energy is low, the attraction of the shot is lowered, thereby reducing the absorption of different materials. The exposed face of the optical film is set to have a low surface energy, and the joint face is set to have a high surface energy. For this purpose, the membrane of the prior art comprises a two-layer structure for use, the towel having a high surface energy feed joint to the side, and the material having a low surface energy bonded to the other side. ^ In contrast to the target material, the present invention provides a single-layer silk film which is permeable to and smeared, and each of which contains a non-surface energy body = contact angle or surface.撼 silk scarf, and the cloth is produced (4) on the heart of 200848773, without the need to undergo an additional process of joining the two films, so that the manufacturing process can be simplified and the optical film can have good scratch resistance, antifouling and pollutant removal properties. . That is, depending on the difference in surface energy value, the difference between the contact angles in the _ state, or the difference between the two riding materials that make up the optical film, the _ real complement recognizes the phase separation (fine e-separation) effect and the resistance. Scratch, antifouling and contaminant removal characteristics are different. The factors used in the effective phase separation in the embodiment of the present invention are as follows. The optical axis feather of the invention is applied to the apparent resistance of the pair of towels, the anti-glare film, the anti-reflection film, the polarizer or the bracts. The features of the optical film of the present embodiment are described in detail below. • The difference between the surface energy values of the two materials. If the two materials each containing different surface energy values are mixed, the material with the higher table = is in the direction of the contact surface of the contact lens, and has a low: = The material _ moves toward the exposed surface of the contact air. The 'human shells' of the present invention found that the highest phase separation effect was obtained when the difference between the surface energy values of the two materials was 5 min. Table and = If the dilute acid material 俾 is used as the first material having a relatively high surface energy and the flU 〇rine-based material is used as the second material of the relatively low surface energy [Table 1] 10 200848773 Material-----^___ Surface energy (millitons/meter) Fluorine-containing polymer-cf3 '~-- 14. 5 (Fluorine-based -cf2h 26. 5 ~' polymer) -CF3and -CF2- 17. 0 —' -CF2 22. 6 -CH2CF3 22. 5 Acrylic Polymers Ethyl Acrylate Polymers 40. 1 (Acrylic polymer) (Ethyl acrylate polymer) ketene acrylate polymer 37. 0 Butyl acrylate polymer 33. 7 Ethyl hexyl acrylate polymer 30. 2 2 · The difference between the contact angle values of the rain material in the solid state. The difference between the two materials (4) constituting the optical film in the solid state is at 11 200848773 about κ). At the time, the most effective antifouling and contaminant removal characteristics are obtained. Lu Fudi, when the contact angle of the acrylic material is at 50. To 9 〇. The range and the contact angle of ζ are at 100. To 130. The range may be full.  ^ An optical film with the characteristics of scratch resistance, antifouling and contaminant removal. 3. Differences in Polarization of Two Materials When two materials each containing different polarizations are mixed, since their peaches are mechanically unstable, phase separation occurs at the interfaces of the two materials. An embodiment of the invention discloses an optical film having a mixed layer by mixing a fourth material having a hearing button and a second material having a high non-bias, wherein the first material is mainly distributed to the contact surface, and the material is mainly distributed to Above the exposed surface. The solid sealing towel of the present invention has a pure new material-material shot containing a gas containing oxygen = (f yl; · 〇Η) (four) 'having a high surface (four) two materials may contain materials containing fluorocarbon (fluorocarbon; -CF) . The above and other objects, aspects, aspects and advantages of the present invention will be apparent from the following detailed description of the invention. In the description of the present invention, like numerals represent like elements. Embodiments of the present invention will now be described with reference to the drawings. Fig. 1 is a cross-sectional view showing an optical film according to an embodiment of the present invention. Referring to Figure 2, the optical film 150 is formed to serve as a mixed layer in which the first material (10) has a first range of surface energy values, 篦-from a few. ^ r Back to the mystery - material 13〇 has a second range of surface energy values that are smaller than the first range of surface energy values. In the mixed layer, the first material ιι is mainly distributed to the side where the mixed layer is in contact with the screen of the display device, and the second material 13 〇 is mainly distributed to one side of the exposed surface. In the embodiment of the present invention, the difference between the surface energy values of the first material 11G and the second material 13G may range from about 5 millinewtons/meter to 35 millinewtons/meter. In particular, the first material 110 may comprise a polymeric resin having a surface energy value in the range of from 3 Torr to about 1 Newton/meter, and the second material 130 may comprise a surface energy value in the range of 1 Torr/M to 25 mA. Fluorine polymer, silicon-based P〇lymer, and flu〇rine_silic〇n based polymer. The fluoroquinone component is mixed with other materials to increase the hardness of the compound and reduce the surface energy of the compound. Therefore, the optical film of the embodiment of the present invention can have improved scratch resistance, antifouling and antireflection properties enough to tolerate scratches caused by external pressure. The "second diagram", "second diagram", "second diagram", "second diagram" and "second diagram" are schematic diagrams showing the manufacturing process of the optical film of the embodiment of the present invention. First, as shown in Fig. 2a, in order to produce the optical film 15, the polymerization initial d(B) is added to the monomer (mon) or the oligomer (a) to form the polymer resin 110. The monomer or oligomer (A) may be a photopolymerizable monomer or oligomer or a thermopolymerizable monomer or oligomer, or may be used to form cellulose triacetate (tri-) Acetyl-celluose; TAC), Polyester (PE), polyethylene terephthalate (PET), polypyridyl acid citrate (P), p〇iyethylene napMialate; 13 200848773 PEN), aligned polypropylene (PP), polycarbonate (PC), acrylic resin, urethane-based resin, epoxy resin, A monomer or oligomer of a melamine resin or a silicon resin. For example, a stylene-based monomer such as stylene or ?-methylstylene, aciyiate monomers, and an acrylate oligomer can be used. In particular, the acrylate monomer may comprise various types of (meta) acrylate monomers, such as apolyestere (meta) acrylate, epoxy. (meta) acrylate, urethane (meta) acrylate, polyether (meta) acrylate (p〇lyether (meta) acrylate) , poly (meta) acrylate and melamine (meta) acrylate. The acrylate oligomer may comprise urethane acrylate oligomers and epoxy acrylate oligomers. However, the monomers and oligomers are not limited to the above. The polymer resin 110 may be a photocurable resin or a thermosetting resin such as cellulose triacetate (TAc), polyester (PE), polyethylene terephthalate (PET), polynaphthalene. Ethylene phthalate (pEN), aligned polypropylene (PP), polycarbonate (PC), acrylic resin, amine phthalate resin, % oxyresin, dimeric urethane resin or slag resin, but not limited herein. The polymerization initiator (B) may comprise a radical polymerization initiator, such as acetophenone 14 200848773 aceto phenone species, benzo phenone species, benzoin, benzyl condensation Benzyl methyl ketal, Michler's ketone, benzoil benzoate, thioxanthone species or α-glycolate Alpha-acyloxymester), or a photocatonic polymerization initiator, such as an onium salt, a sulfonic acid ester, or an organic metal adhesive. However, the polymerization initiator is not limited thereto, and various other types of polymerization initiators can also be used. Next, the polymer resin 110 and the second material 130 are mixed to obtain a coating > valley liquid. Here, the second material 130 may include one of a fluorine-containing compound, a second-containing compound, and a fluorine-containing compound. The second material 13〇 may include a compound having perfluoro polyether groups or alC0xy Siiane groups, but is not limited thereto. Although not shown in the drawings, the coating solution for various uses may contain inorganic particles such as Shixi particles, nano-silica particles, conductor particles ((7) her glasses particles) or nano-conductor particles (nan〇_c〇) Nduct〇r par^cies ). Referring to "2b" and "2c", the coating solution obtained in accordance with the above method is applied onto the substrate. The filament, the polymer resin 110 having a higher surface energy moves toward the interface of the substrate 200, and the second material 130 having a lower surface energy moves toward the exposed surface, thereby causing phase separation in which the exposed surface is not in contact. Substrate air. That is, the surface material, the coating solution 15 200848773, the second material 13 〇 has a lower surface energy and becomes more stable, relatively higher than the monomer or the lower substance (A). Therefore, when the monomer or oligomer (4) is polymerized by the initial initiator (9), the second material m having a lower surface energy moves in the direction of the upper surface layer (i.e., surface) to cause phase separation. In the embodiment of the present invention, the polymeric resin 11() may have a surface energy value ranging from 3 () millinewtons/meter to 45 newtons/meter, and the second material 13 may have a range from (7) millinewtons/meter to 25 The surface energy value of the house Newton/meter. The (10) surface layer (ie, the inner surface or the inner surface) may comprise a second material 13G having a small amount and a relatively large amount of the polymer resin 110, and the lower surface layer may have a tip hardness greater than 'H. The special 2H is preferably sufficient to withstand the pressure of the user's hand or stylus. Thereafter, referring to "Fig. 2d" and "Fig. 2e", heat or light is applied to the coating solution applied on the substrate 200 to harden the coating solution, thereby obtaining a coating layer 150 and a substrate 2; The optical film is shown in "Fig. 2e". Although not shown in the drawings, the manufacturing process of the optical film of the embodiment of the present invention including the uneven (sag and protrude) surface can be additionally performed. According to the above-described embodiment of the present invention, since the optical film is manufactured by simply mixing two materials each having different surface energies of δ and hardening them, it is not necessary to complete the bonding process of the two materials, so the manufacturing process can be simplified. Further, the second material 130 located on the exposed face of the coating layer 150 may have a smaller surface energy and a low refractive index. Therefore, the coating layer 15 of the embodiment of the present invention can have improved scratch resistance, stain resistance and anti-reflection properties enough to withstand the scratch generated by the external force. 16 200848773 "FIG. 3" is a cross-sectional view showing an optical film according to a first embodiment of the present invention. Please refer to "Fig. 3". The optical film of the first embodiment of the present invention comprises a coating layer 250 formed on the base layer 3A. The base layer 300 has a high transmittance, a relatively low birefringence rate and can be easily made of a hydrophilic material by surface modification. For example, the base layer 300 may comprise cellulose triacetate (TAC) or polyester (pE), polyethylene terephthalate (PET), polynaphthene (pen), aligned polypropylene (PP), poly Carbonic acid (PC), etc., but is not limited thereto. The base layer may have a thickness of about 30 micrometers to 3 micrometers to have sufficient strength. A coating layer 250 is placed over the base layer 300. Here, the coating layer 25A may be an anti-glare (Anti-Glare; AG) film. The coating layer 250 may comprise a polymeric resin 21 〇, a lithium granule 220, a fluorine-containing and/or cerium compound 23 〇, and may include a textured (irregular, non-uniform) surface. This kind of real money, such as nano-granules # inorganic particles can be used instead of Shi Xi particles. The upper surface layer (ie, the surface) of the coating layer 250 contacting the base layer 3GG has a fluorine content and/or a lower density of the compound layer 25 than the lower surface layer of the coating layer 25 (ie, the inner surface layer or the bulk layer). The fluorine-containing and octagonal compound 23 has a high density. Therefore, the optical film of the first embodiment of the present invention can have excellent scratch resistance, stain resistance and anti-reflection properties. Fig. 4 is a cross-sectional view showing an optical film according to a second embodiment of the present invention. The optical film of the second embodiment of the present invention comprises a coating layer 350 formed on the base layer. The coating layer 35 may be an anti-glare/anti-static AG/AS) film 'containing a polymer resin 31 〇, a stone particle 17 200848773 320, a conductor particle milk, and a fluorine-containing and octagonal compound (10), and may include a concave-convex surface. Such solid money, for example, inorganic fine particles such as nano-frequency particles can be used instead of the granules, for example, the micro-negative inorganic particles can be used to store the conductor particles. The density of the fluorine-containing and/or the compound of the upper surface layer of the coating layer 350 contacting the base layer is higher than the fluorine-containing and/or densified density of the surface layer of the coating layer:: The optical film of the second embodiment of the present invention can have excellent resistance to, antifouling, antistatic and antireflective properties. Fig. 5 is a cross-sectional view showing an optical film according to a third embodiment of the present invention. Please refer to "Fig. 5", and the optical film of the third embodiment of the present invention comprises a coating layer 450 formed on the base layer. The coating layer 45A may be a wear-resistant/antistatic (Hard-Coating/Amicherie; HC/AS) film comprising a polymeric resin, a conductor particle 425, and a fluorine-containing and octagonal compound. The density of the fluorine-containing and/or the compound 430 in the upper surface layer of the coating layer contacting the base layer is higher than that of the coating layer 45: the density of the fluorine-containing and/or-cut compound in the surface layer is high. Therefore, the optical film of the present invention can have excellent scratch resistance, antifouling and antistatic properties. Figure 6 is a cross-sectional view showing a silk film of a fourth embodiment of the present invention. Please refer to FIG. 6 , the first coating layer 525 and the second coating layer 550 formed on the base layer _. The first coating layer 525 may include pin particles 520 and a polymer tree 523, and may be an anti-glare film having a concave-convex surface. The first coating layer 55 can be a high reflection (ffighRefled) having a high refractive index. 18 200848773 The second coating layer 550 can comprise a polymeric resin 51 〇 and a fluorine-containing and/or cerium-containing compound 530. The polymer resin 510 is formed by polymerizing a high refractive index monomer to have a high refractive index, and an example of a high refractive index monomer is bis (4-methacryl phenylthio) sulfide (bis (4_metacryl〇il thiophenyl) Sulfide, vinyl naphthalene, vinyl phenyl sulfide (vinyl phenyl ruthenium e), and methacryl hydroxyphenyl-4'-nonyloxyphenyl sulfide oxyphenyl-4 - Methoxy phenyl thioether). The high refractive index layer may contain inorganic fine particles such as dioxin (ZrO 2 ) or dioxirane (buti 2). The first coating layer 55 〇 contains a polymer resin 51 具有 having a high refractive index, and a fluorine-containing and/or _1653 具有 having a low refractive index. The density of the fluorine-containing and/or the compound 53〇 in the upper surface of the first coating layer 550 contacting the first coating layer 525 is higher than that in the lower surface layer of the k-th layer 55〇. The other compounds have a high density. Here, the high refractive index and the low refractive index are determined on the basis of the base layer. Therefore, the optical property of the fourth embodiment of the present invention has excellent scratch resistance, antireflection and antifouling properties. Fig. 7 is a cross-sectional view showing an optical film according to a fifth embodiment of the present invention. Referring to FIG. 7, the optical film of the fifth embodiment of the present invention comprises a first coating layer 625 and a second coating layer formed on the base layer, wherein the first coating layer still functions as a wear resistant film. (hardcoating; HC), the second coating layer (10) acts as a highly reflective (10)h reflection; HR) film. The first coating layer 625 may comprise a polymeric resin, and the second coating layer 6 has a fluorine- and/or cerium-containing compound 63 率 having a low refractive index of 19 200848773. Contacting the second coating layer (4) and/or the surface of the compound 630 containing gas and/or ruthenium in the upper surface layer of the second coating layer (4) of the first coating layer 625, The base layer 6GG is determined. Therefore, the optical film of the fifth embodiment of the present invention can have excellent scratch resistance, antifouling and antireflection properties. The "Fig. 8" is not a cross-sectional view of the optical film of the sixth embodiment of the present invention. Referring to Fig. 8, the optical raft of the sixth embodiment of the present invention comprises a coating layer 75G formed on the base layer (4). The coating layer 75G may be a highly reflective film containing a polymer resin 71 〇 and a fluorine-containing and/or chopped compound 730, and contains a concave-convex surface. The density of the fluorine-containing and/or the compound in the upper surface layer of the coating layer 750 contacting the base layer 800 is higher than the density of the fluorine-containing and/or antimony compound 73 in the lower surface layer of the coating layer 750. Therefore, the optical film of the sixth embodiment of the present invention can have excellent scratch resistance, antifouling and antireflection properties. The base layer used in the above embodiment may be one of a diffuser plate, a polarizer, a display screen, and a enamel layer. In addition to the above embodiments, the polarizer may include a base film, a polarizing film, and a second base film. Here, the base film may be a cellulose diacetate film, and the polarizing film may comprise polyvinyl alcohol. The second base film may comprise a cellulose triacetate film and a fluorine-containing and/or rhodium-containing compound. The density of the fluorine-containing and/or antimony-containing compound in the upper surface layer of the second base film contacting the polarizing film is higher than the density of the gas containing the gas and/or 20 200848773 Å in the lower surface layer of the second base film. Therefore, the polarizer having such a configuration can have excellent scratch resistance, stain resistance, and anti-reflection characteristics. The polarizer and the optical film of the embodiment of the present invention can be bonded to a panel of a display device, and an example of the display device is a plasma display panel, an electric field light-emitting display, or a liquid crystal display device. Display devices using such polarizers and optical films have improved scratch, static, stain and anti-reflective properties. The "Fig. 9a" and "%" diagrams are cross-sectional views of the cymbal of the embodiment of the present invention. Referring to "Fig. 9a", the cymbal includes a base 92 and a weir 910 formed on the base 920. Substrate 920 comprises polyethylene terephthalate (PET)' but is not limited thereto. Polyethylene terephthalate (pET) is a film that is entangled in the plastic tree, and has excellent electrical properties and can be used as a very thin film. In addition, polyethylene terephthalate (PET) is very suitable for use as a wafer because polyethylene terephthalate (PET) has excellent heat-resistance and transparency. The thickness of the substrate 92 can range from 12 micrometers to 140 micrometers. The base 920 can support the crotch portion 91〇. The crotch portion 910 is placed on the base 920 and passes through the coating layer 15 shown in "%", "figure", "2C", "2d" and "2e". The same method is prepared. Therefore, detailed descriptions thereof are omitted to avoid repetition of the description. The "figure % map" is a cross-sectional view of a septum including a branch portion 93 placed between the base 92 and the crotch portion. The branch portion 93 reads the prism portion. The prism lens 900 described above can be applied to a backlight unit of a display device. 21 200848773 A "cross-sectional view" of a backlight unit having a cymbal according to an embodiment of the present invention. Generally, the backlight unit is separated into an edge type and a direct type backlight unit in accordance with the position of the fluorescent lamp. Although the "Fig. 10" shows an edge type backlight unit, the embodiment of the present invention can be applied to a direct type backlight unit. As shown in FIG. 10, the edge type backlight unit 1000 includes a reflection sheet 1010, a light source unit, a light guide plate 1〇4〇, a diffusion sheet 1〇2〇, a cymbal sheet 9〇〇, and a protective sheet 1〇3〇. The light source portion that emits light includes at least one fluorescent lamp 1〇6〇 and a cover 1〇5〇 for receiving the fluorescent lamp 1060. The light source may comprise a cold cathode fluorescent lamp (c〇ld cath〇de fluorescent lamp) or a light emitting diode instead of a fluorescent lamp. The cover 1050 receives the fluorescent lamp 1〇6〇 and reflects the light from the fluorescent lamp 1〇6〇. The light guide plate 1040 controls the light from the light source portion, uniformly diffuses the light, and guides the diffused light to the display panel. The reflection sheet 1010 reflects the light from the light guide plate 1040 to the light guide plate 1040. The diffusion sheet 1020 diffuses or polymerizes light from the light guide plate 1〇4〇 and the reflection sheet 1010. The wafer 900 polymerizes a portion of the light that is polymerized or diffused by the diffusion sheet 1020 to the protective sheet 1030, and reflects the residual light to the light guide plate 〇40. The cymbal sheet 900 is formed on the base 920 or the support portion 930 as shown in "Fig. 9a" and "%". The protective sheet 1030 diffuses the light condensed by the cymbal 900 and provides this light to the display panel to expand the viewing angle of the display panel. The direct type backlight unit (not shown) is different from the edge type backlight unit in that a fluorescent lamp is placed between the diffusion sheet and the reflection sheet. Therefore, the direct type backlight unit does not need to have a light guide plate. Fig. 11 is a cross-sectional view showing a liquid crystal display device 1100 including a backlight unit and a liquid crystal display panel. Please refer to "nth figure". The liquid crystal display panel includes a lower polarizing film 1120a, an upper polarizing film H20b, a lower glass substrate ii3〇a, an upper glass substrate 1130b, a color filter 1190, a black matrix 118〇, and a halogen electrode 115. The common electrode 1160, the liquid crystal layer 1170, and the thin film transistor 114A. The color filter includes a red fluorescent sheet R, a green color filter G, and a blue color filter B, and each color filter produces a corresponding color when light is applied thereto. The common electrode 1160 and the halogen electrode 1150 are arranged in the liquid crystal layer 1170 in accordance with a voltage applied from the outside. The halogen electrode 115 is switched through the thin film transistor 114A. The liquid crystal layer 1170 contains a plurality of liquid crystal molecules, and the axis of the liquid crystal molecules is aligned in one direction through the voltage difference between the halogen electrode 1150 and the common electrode H60. Therefore, light from the backlight unit 1〇〇〇 may be input to the shirt color filter corresponding to the molecular arrangement of the liquid crystal. The backlight unit 1 is placed under the liquid crystal display panel and supplies light to the liquid crystal display panel. The liquid crystal display device using the optical film of the embodiment of the invention comprises a polarizer, a polarizing plate and a backlight unit, but the invention is not limited to the liquid crystal display device. The scope of the present invention covers a variety of display devices, including notebook computers, mobile phones, display screens for ice boxes, personal digital assistants, automated teller machines, and the like. Fig. 12 is a graph showing the results obtained by analyzing the surface 23 200848773 of the optical film of the embodiment of the present invention. In particular, the "Fig. 12" shows the content of carbon and oxygen in the depth of the meal. The ray is irradiated to the surface of the optical surface to complete the experiment. Table 2 shows the results of the carbon, oxygen and fluorine content of the optical lining. , [Table 2] ° Angle of incidence Carbon Fluorine Oxygen 23° 42. 77 "~ --------- 42. 35 ^^--- 14. 89 83° 31. 54 63. 81 4. 65 In Table 2, the analytical data obtained from the vertical direction of the optical film in accordance with the hornless emission read line indicates the atomic percentage of carbon, fluorine and oxygen relative to the bottom layer (inner layer), and the vertical direction of the relative optical film according to S3. The analytical data obtained by angular emission of X-rays represents the relative atomic percentages of carbon, fluorine and oxygen. The bead mark (as shown in Fig. 12) indicates the fluorine concentration distribution from the lower surface layer (inner layer, = layer) of the optical film to the upper surface layer (surface), and attention is paid to the density as the super direction of the optical film increases. . Please refer to the "figure". As the surname is extended, the atomic percentage of oxygen (G) is gradually increased, and if the engraving time is short, the atomic percentage of gas (Ε) is higher. Therefore, the fluorine content of the optical film of the embodiment of the present invention can be noted to increase in the direction of the surface of the optical film by referring to Table 2, "Through" and "Le 13". The "Fig. 14" shows the result of the completion of the removal of the contaminant removal characteristics of the optical film, so that the contamination of the optically attached contaminant can be removed. 24 200848773 "Fig. 14" towel, the horizontal axis indicates the surface energy (millinewtons/meter), and the vertical line indicates the number of times the contaminants are removed. The area A^B represents an example of an optical film using the present invention, and the areas C and D represent an example of using an optical film. Contaminant removal testing is done using toilet paper. As shown in "Fig. 14", when the optical film of the embodiment of the present invention is used for the test (i.e., the area is in and 6), when the surface energy is less than 15 ί/m, the smudge is wiped twice (four). When the surface energy is in the range of about 15 millinewtons/meter to 28 millinewtons/meter, the contaminants are removed by two or two wipes. In general, use the conventional optical to take care of the situation (ie, areas C and D) 'When the surface energy is at a range of 29 millinewtons/mi 42 millinewtons/meter _' at least four readings to remove the pollution _, # Surface energy is 43 millinewtons / meter or more ^, at least four or five wipes to remove contaminants. Therefore, it can be appreciated that the optical film of the embodiment of the present invention exhibits very excellent contaminant removal characteristics as compared with the optical technique of the prior art. ... "Fig. 15" is a graph showing the results obtained by performing an anti-gt; characterization test on an optical film after intentionally attaching a contaminant on the optical film. In the "figure map", the horizontal axis indicates no surface deer (Korton/meter), the vertical axis indicates the change in light transmittance, the transmittance after the marker #: domain changes, and the mark 〇 indicates that the pollutant is removed. Translucent. _ Α (4) shows an example of a light film of the present invention example. Areas C and D represent examples of optical films of the prior art. In the anti-fouling 4, you can also shoot a line of 15 cm with a secret pen, and use a polyester fiber cloth to wipe it out. :^1 ' Through the following mathematical equations, the change in the luminosity and the change in the transmittance after the wire is wiped. [Equation 1] Transmittance change after twist line = (transmittance before twist line - transmittance after twist line) / (transmittance before twist line -) [Equation 2] Transmittance change after line is eliminated = (Transmittance after the transmittance line before elimination is eliminated) / (Transmittance after the line is removed) As shown in Fig. 15, the optical film of the embodiment of the present invention is used for the test (ie, ' Regions A and B), when the surface energy is less than 15 millinewtons/meter, the transmission dependence after the twist line and the linear dependence of the line after wiping are rapidly reduced. Fig. 16 is a table showing the results of the antifouling test of the optical film of the optical sampling of the embodiment of the present invention. In Fig. 16, the difference between the contact axes of the two materials of the optical film of the present invention of the present invention is 30 in the solid state. And with a difference between surface energies & 16 millinewtons/meter, a sample is taken for its antifouling properties. The result of the grade test is as good as the "πth map" (LV1). The difference between the contact angles of the two materials of the optical film of another embodiment of the present invention is 25 in the solid state. And the difference between the surface energies is U m ^ / m, and the sample 'B' is tested for its antifouling properties. Its level test ^ is as good as shown in "Figure 16" (LV1). Composition of the Invention Further Example The difference between the contact angles of the two materials of the light film was 2 固体 in the solid state. And the i value between the surface b and the surface b is 8 millinewtons/meter, and the sample 'C is tested to test its 26 200848773 antifouling characteristics. The result of the grade test is as shown in "Figure 16" (lv2). The sampling 'D' indicates that the optical film using the conventional technique is tested under the condition that the difference between the contact angles of the two materials constituting the optical film and the value of the surface energy is Q. The fouling characteristics are low (lv3), as shown in Figure 16. According to the configuration of the present invention, the material having a higher surface is mainly distributed on the surface to be joined of the mixed layer, and the material having a relatively low surface energy is mainly distributed on the opposite side, and the pressing operation is completed on the side. on. Therefore, compared with the prior art, the surface energy value of the optical film on which the touch is completed can be reduced, and the optical correction surface can be high in value, so that the stain can be attached to the surface of the display device through contact or the like. It can be easily removed even if the contaminants are attached. Therefore, the optical film, the polarizer, the ruthenium, the backlight unit, and the display device can be manufactured in a simple manner, and have improved scratch resistance, antifouling, and antireflection. The optical film of the present invention can be directly bonded to be used. The screen of the display device is integrally bonded to the display screen during the manufacturing process. Therefore, the optical film of the embodiment of the present invention can be used as a protective film for displaying a screen or a transparent film for a plate or the like. Although the present invention has been disclosed above in the foregoing embodiments, it is to limit the present. Within the spirit and scope of the present invention, the changes and refinements are all within the scope of the invention. _ The scope of protection defined by this hair ride is 27 200848773 The scope of the patent application attached to the license. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a silk film according to an embodiment of the present invention.  3 is a cross-sectional view of an optical film according to a first embodiment of the present invention; and FIG. 4 is a cross-sectional view showing an optical film according to a second embodiment of the present invention; 5 is a cross-sectional view showing an optical film according to a third embodiment of the present invention; FIG. 6 is a cross-sectional view showing an optical film according to a fourth embodiment of the present invention; and FIG. 7 is a view showing an optical film according to a fifth embodiment of the present invention. Fig. 8 is a cross-sectional view showing an optical film according to a sixth embodiment of the present invention; Fig. 9a and Fig. % are cross-sectional views showing a cymbal according to an embodiment of the present invention; and Fig. 1 is a view showing a ninth Figure 4 is a cross-sectional view of the backlight unit of the cymbal shown in Figure 4; Figure 11 is a cross-sectional view showing the display of the polarizer and the cymbal according to the embodiment of the present invention; ^ Figure 12 is a perspective view of the present invention The resulting pattern of the surface of the optical film of the embodiment; FIG. 13 is a graph showing the contents of carbon, oxygen and fluorine of the optical film according to the etching depth of the embodiment of the present invention; FIG. 14 is a view showing an embodiment of the present invention. Through the removal of pollutants for the optical film 28 200 848773 results obtained by the test; Figure 15 is a result graph obtained by performing an antifouling test for the optical film after attaching contaminants on the optical film; and FIG. 16 is a view according to an embodiment of the present invention. A table of test results obtained by completing the antifouling job of an optical film of a light sample of the prior art. [Main component symbol description] 110 First material 130 Second material 150 Optical film 200 Substrate 210 Polymer resin 220 Stone particles 230 Fluorine and/or bismuth compound 250 Coating layer 300 Base layer 310 Polymer resin 320 矽 Particle 325 Conductor particles 330 Fluorine and/or ruthenium compound 350 Coating layer 400 Base layer 29 200848773

410 聚合樹脂 425 導體微粒 430 含氟和/或石夕的化合物 450 塗佈層 500 基層 510 聚合樹脂 520 矽微粒 523 聚合樹脂 525 第一塗佈層 530 含氧和/或石夕的化合物 550 第二塗佈層 600 基層 610 聚合樹脂 623 聚合樹脂 625 第一塗佈層 630 含氟和/或石夕的化合物 650 第二塗佈層 700 基層 710 聚合樹脂 730 含氟和/或石夕的化合物 750 塗佈層 30 200848773 800 基層 900 稜鏡片 910 棱鏡部 920 基底 930 支撐部 1000 背光單元 1010 反射片 f 1020 擴散片 1030 保護片 1040 導光板 1050 外罩 1060 螢光燈 1100 液晶顯示裝置 1120a 下偏光膜 / 1 1120b 上偏光膜 . 1130a 下玻璃基板 \ 1130b 上玻璃基板 1140 薄膜電晶體 1150 畫素電極 1160 共同電極 1170 液晶層 31 200848773 1180 黑色矩陣 1190 彩色濾光片410 Polymer Resin 425 Conductor Particles 430 Fluorine and/or Rhododendron Compound 450 Coating Layer 500 Base Layer 510 Polymer Resin 520 矽 Particle 523 Polymer Resin 525 First Coating Layer 530 Compound 550 containing oxygen and/or Shi Xi Coating layer 600 Base layer 610 Polymer resin 623 Polymer resin 625 First coating layer 630 Fluorine and/or compound 650 Second coating layer 700 Base layer 710 Polymer resin 730 Fluorine and/or Shi Xi compound 750 Cloth layer 30 200848773 800 Base layer 900 稜鏡 910 Prism part 920 Substrate 930 Support part 1000 Backlight unit 1010 Reflecting sheet f 1020 Diffusion sheet 1030 Protective sheet 1040 Light guide plate 1050 Cover 1060 Fluorescent lamp 1100 Liquid crystal display device 1120a Lower polarizing film / 1 1120b Upper polarizing film. 1130a Lower glass substrate\1130b Upper glass substrate 1140 Thin film transistor 1150 Picture electrode 1160 Common electrode 1170 Liquid crystal layer 31 200848773 1180 Black matrix 1190 Color filter

3232

Claims (1)

200848773 十、申請專利範圍: 1· 一種顯示裝置之光學膜,包含有: 一基板;以及 二塗佈層’其中-第—材料具有—第—範圍之表面能值, 第一材料具有一第二範圍之表面能值,該第二範圍之表面能 值小於該第-細之表面驗,這樣該第—材料主要分佈於接 觸該基板之·佈層之―第—側面上,該第二材料主要分佈於 與該第一側面相對的該塗佈層之一第二侧面之上。 、 如申請專利範圍第丨項所述之顯示裝置之光學膜,其中該第一 粑圍之表面能值和該第二範圍之表面能值之間的—差值係 於5毫牛頓/米至35毫牛頓/米之範圍内。 、 如申請專利範圍第i項所述之顯示裝置之光學膜,其中該第一 材料包含處於30毫牛頓/米至45毫牛頓/米範圍内的一X表面 能值,該第二材料包含處於1〇毫牛頓々至Μ毫牛頓/米範 圍内的一表面能值。 4. ^請專纖圍第丨項所述之顯示裝置之光學膜,其中該基板 係為一擴散片、偏光器、顯示螢幕和—層稜鏡片其中之一。 5. ^請補顧第丨顿述之齡較q倾,其中該第一 第-接觸議定狀態處於約心%。之範圍,該 材枓之-第二接觸角在固定狀鱗㈣卿。至⑽。之範 固0 6. 如申請專利範圍第1項所述之顯示裝 光學膜,其中該第一 33 200848773 材料包含一聚合樹脂,該第二材料包含:含氟聚合體、含矽聚 合體以及含氟一矽聚合體其中之一。 7·如申請專利範圍第1項所述之顯示裝置之光學膜,其中該塗佈 層包含矽微粒、奈米矽微粒、導體微粒以及奈米導體微粒至少 其中之一。 8. 如申請專利範圍第丨項所述之顯示裝置之光學膜,更包含位於 該塗佈層之上的一另一塗佈層,其中該另一塗佈層包含一聚合 樹脂。 9. 如申請專利範圍第8項所述之顯示裝置之光學膜,其中該另一 塗佈層更包含石夕微粒、奈米石夕微粒、導體微粒以及奈米導體微 粒至少其中之一。 10. 如申請專利範圍第〗項所述之顯示健之光學膜, — 材料包含-減(hydroxyi ; _0H),該第二材料包含一氣碳基 (fluorocarbon ; -CF )。 U· —種顯示裝置之光學膜,包含: 一基板;以及 、一-塗佈層’其中-偏光性材料和一非偏光性材料被組合, 這樣該偏級材料主要分佈於接觸該基板之該㈣層之一第 ,面之上’該非偏紐材料主要分佈於與該第—側面相對的 该塗佈層之一第二側面之上。 12.如申請專利範圍第11項所述之顯示裝置之光學膜,其中該基 34 200848773 板係為擴政片、偏光為、顯示螢幕和一層稜鏡片其中之一。 13·如申請專利範圍第11項所述之顯示裝置之光學膜,I中1偏 絲材料包含-錄(hydlOxyl; •㈤,該非偏紐材柯含 一氟後基(fluorocarbon ; -CF )。 如申明專利範圍第11項所述之顯示裝置之光學膜,其中該偏 光性材料之一第一接觸角在固體狀態處於約50。至90。之範 圍,該非偏光性材料之-第二接觸角在固體狀態處於約财 至130◦之範圍。 15.如申請專利範圍第η項所述之顯示裝置之光學膜,其中該塗 佈層包含矽微粒、奈米石夕微粒、導體微粒以及奈米導體微粒至 少其中之一。 16· 一種光學膜之製造方法,包含·· 增加一聚合初始劑至單體或低聚體之一,以形成一聚合樹 脂; 混合該聚合樹脂與含氟和矽至少其一之化合物以形成一 塗佈溶液;以及 提供該塗佈溶液至一基板之上,這樣該聚合樹脂向該基板 方向移動,而該含氟和矽至少其一之化合物遠離該基板,以形 成相分離。 1λ如申請專利範圍第16項所述之光學膜之製造方法,更包含使 用熱和光至少其一之硬化制程。 35 200848773 18·如申请專利範圍第16項所述之光學膜之製造方法,更包含增 加矽微粒、奈米矽微粒、導體微粒以及奈米導體微粒至少其一 至該塗佈溶液。 19·如申請專利範圍第16項所述之光學膜之製造方法,其中該基 板係為一擴散片、偏光器、顯示螢幕和一層稜鏡片其中之一。 20·如申請專利範圍第16項所述之光學膜之製造方法,其中該聚 合樹脂具有比該含氟和石夕至少其一之化合物更高的表面能。 36200848773 X. Patent application scope: 1. An optical film for a display device, comprising: a substrate; and a coating layer of the two coating layers, wherein the first material has a surface energy value of the first range, and the first material has a second material a surface energy value of the range, the surface energy value of the second range is smaller than the surface-thickness of the first-thin, such that the first-material is mainly distributed on the "first" side of the cloth layer contacting the substrate, and the second material is mainly Distributed over a second side of one of the coating layers opposite the first side. The optical film of the display device of claim 2, wherein a difference between a surface energy value of the first circumference and a surface energy value of the second range is between 5 millinewtons/meter to Within 35 millinewtons/meter. The optical film of the display device of claim 4, wherein the first material comprises an X surface energy value in a range of 30 millinewtons/meter to 45 millinewtons/meter, the second material comprising A surface energy value in the range of 1 Torr to Newton/m. 4. Please use the optical film of the display device described in the above item, wherein the substrate is one of a diffusion sheet, a polarizer, a display screen and a layer. 5. ^Please pay attention to the age of the first 较 述 较 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The range of the material - the second contact angle is in the fixed scale (four) Qing. To (10). The display optical film of claim 1, wherein the first 33 200848773 material comprises a polymer resin comprising: a fluorine-containing polymer, a germanium-containing polymer, and the like One of the fluorine-germanium polymers. The optical film of the display device according to claim 1, wherein the coating layer comprises at least one of cerium particles, nano cerium particles, conductor particles, and nano-conductor particles. 8. The optical film of the display device of claim 2, further comprising a further coating layer over the coating layer, wherein the other coating layer comprises a polymeric resin. 9. The optical film of the display device of claim 8, wherein the another coating layer further comprises at least one of a stone particle, a nano-stone particle, a conductor particle, and a nano-conductor particle. 10. The optical film of the display as described in the scope of the patent application, wherein the material comprises - hydroxy ( _0H), the second material comprises a fluorocarbon (-CF). An optical film of a display device, comprising: a substrate; and a coating layer, wherein the polarizing material and a non-polarizing material are combined, such that the material is mainly distributed on the substrate (4) One of the layers, above the surface 'the non-biased material is mainly distributed on the second side of one of the coating layers opposite to the first side. 12. The optical film of the display device of claim 11, wherein the substrate 34 200848773 is one of a stretch film, a polarizing film, a display screen, and a layer of a film. 13. The optical film of the display device according to claim 11, wherein the one of the partial filament materials comprises - (hydlOxyl; (f), and the non-biased neodymium comprises a fluorocarbon (-CF). The optical film of the display device according to claim 11, wherein the first contact angle of one of the polarizing materials is in a range of about 50 to 90 in a solid state, and the second contact angle of the non-polarizing material The optical film of the display device according to claim n, wherein the coating layer comprises ruthenium particles, nano-stone particles, conductor particles, and nanometers. At least one of the conductor particles. 16. A method of producing an optical film, comprising: adding a polymerization initiator to one of a monomer or an oligomer to form a polymer resin; mixing the polymer resin with fluorine and lanthanum at least a compound to form a coating solution; and providing the coating solution onto a substrate such that the polymer resin moves toward the substrate, and at least one of the fluorine-containing and antimony compounds is away from the substrate The sheet is formed to form a phase separation. 1 λ. The method for producing an optical film according to claim 16, further comprising a hardening process using at least one of heat and light. 35 200848773 18 · as described in claim 16 The method for producing an optical film further comprises: adding at least one of the cerium particles, the nano cerium particles, the conductive particles, and the nano sized conductive particles to the coating solution. The method for producing the optical film according to claim 16 of the patent application, Wherein the substrate is a diffusion sheet, a polarizer, a display screen, and a layer of a film. The method for producing an optical film according to claim 16, wherein the polymer resin has a fluorine content and Shi Xi at least one of its compounds has a higher surface energy.
TW97116272A 2007-05-05 2008-05-02 Optical film, and polarizer, prism sheet, backlight unit and display device using the optical film, and method of fabricating the same TWI444649B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20070043826 2007-05-05
KR1020070071527A KR101318441B1 (en) 2007-07-18 2007-07-18 Prism sheet, Backlight unit comprising the prism sheet and Liquid crystal display comprising the same
KR1020070141368A KR20080098466A (en) 2007-05-05 2007-12-31 Optical film, polarizer and display device using optical film, and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW200848773A true TW200848773A (en) 2008-12-16
TWI444649B TWI444649B (en) 2014-07-11

Family

ID=44823958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116272A TWI444649B (en) 2007-05-05 2008-05-02 Optical film, and polarizer, prism sheet, backlight unit and display device using the optical film, and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI444649B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119480A (en) * 2010-09-22 2013-05-22 日东电工株式会社 Method for manufacturing optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445820A (en) * 2014-08-21 2016-03-30 宸鸿科技(厦门)有限公司 Optical film assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103119480A (en) * 2010-09-22 2013-05-22 日东电工株式会社 Method for manufacturing optical film
TWI461726B (en) * 2010-09-22 2014-11-21 Nitto Denko Corp Method for manufacturing optical film

Also Published As

Publication number Publication date
TWI444649B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
US6800378B2 (en) Antireflection films for use with displays
CN101467075B (en) Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
CN102458821B (en) Newton ring-preventing film and touch-screen
CN102576095B (en) Optical film and display panel
CN101874275B (en) Transparent conductive laminate and touch panel
CN102265354B (en) Transparent conductive laminate and transparent touch panel comprising same
JP3802842B2 (en) Upper transparent electrode plate for touch panel and apparatus including the same
TW200846715A (en) Optical sheets
TW201135323A (en) Liquid crystal display device
TW200848772A (en) Light-scattering film, polarizing plate and liquid crystal display device
JP2004214069A (en) Transparent conductive film, transparent conductive laminate, and touch panel
JP2003344608A (en) Antireflection film, optical element and display device
TWI693426B (en) Anti-reflective film, polarizing plate, and display apparatus
JP3354521B2 (en) Upper transparent electrode plate for touch panel and device including the same
WO2007053158A2 (en) Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method
US8431216B2 (en) Optical film for a display device and method of fabricating the same
KR101528920B1 (en) Optical film for a display device and method of fabricating the same
KR100709866B1 (en) Brightness-enhanced optical film of low reflectivity for display and display device using this
TW201937216A (en) Liquid crystal display device, and optical member and optical member set used in said liquid crystal display device
TW200848773A (en) Optical film, and polarizer, prism sheet, backlight unit and display device using the optical film, and method of fabricating the same
JP2013246975A (en) Conductive optical member and electronic device including the same
CN101410735A (en) Elliptical polarizing plate, method for production of the same, and liquid crystal display device
CN118033795B (en) Optical film, polarizing plate, surface plate, image display panel, and image display device using the optical film, method for producing the optical film, and method for selecting the optical film
WO2024177128A1 (en) Antireflective member, polarizing plate, panel, image display device, and antireflective article which use the antireflective member, and method for selecting antireflective member
JP7008127B2 (en) Newton's rings prevention film and its manufacturing method and application

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees