TW200848683A - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
TW200848683A
TW200848683A TW097108155A TW97108155A TW200848683A TW 200848683 A TW200848683 A TW 200848683A TW 097108155 A TW097108155 A TW 097108155A TW 97108155 A TW97108155 A TW 97108155A TW 200848683 A TW200848683 A TW 200848683A
Authority
TW
Taiwan
Prior art keywords
heat transfer
condensate
groove
transfer device
steam
Prior art date
Application number
TW097108155A
Other languages
Chinese (zh)
Inventor
Steven H-K Lee
Original Assignee
Convergence Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Convergence Technologies Ltd filed Critical Convergence Technologies Ltd
Publication of TW200848683A publication Critical patent/TW200848683A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A vapor-augmented heat spreader device includes a lower sheet in communication with an upper sheet. The lower sheet includes condensate grooves formed into the upper surface and the upper sheet includes a series of vapor grooves formed therein. The dimensions of the condensate grooves differ from the dimensions of the vapor grooves. For example, the condensate grooves may have dimensions smaller than those of the vapor grooves. The lower sheet may further include a multi-wick structure in communication with the condensate grooves. The lower sheet may be coupled to the upper sheet utilizing one or more of a crest joint or an edge joint.

Description

200848683 九、發明說明: 【發明所屬之技術領域j200848683 IX. Description of invention: [Technical field to which the invention belongs

本發明係關A 蒸汽溝槽以增μ、:Γθ種冷卻裝置,_是-種包人八 主鈿你田你认丄“、w飞夏的散熱器,其申由兮匕令凝液和 毛細侧倾料喊職啦生的==料所產生的 【先前技術】 當電子元件和設備増加操作速度且縮小 的熱變成一個電子設備和系統改善性能的主产τ,產生 形成電子元件的半導體尺寸不斷地縮小,二礙。不管 加性能。當半導體尺寸縮小,結果熱通量(每單=要求增 傳遞q)増加。熱通量增加所造成將產品冷卻 ^的^ 僅是全部熱的增加,因為熱通量的増加造成 過僅 1, 不同長度尺寸會過熱’因此可能導致電子故障。5呀間和 ^器,此外’蒸汽室被用來增加散 2法有—點用’但問題仍然存 ‘用、^= 作為熱的傳導,結果,它需要足 热限長的熱傳導現象。因此,—個較厚的散= 5部的短暫的過熱現象。蒸汽室改善的效果 盍,但是當暮、卞玄社人命工’、、、超過金屬 疋田^又至、,、口 D屯子且受到高溫回流步驟(例如,以 200848683 身 > 蒸汽室蓋子的形式操作的蒸汽室)所產生的高蒸汽壓時,無 法維持在尺寸公差。此外,蒸汽芯的選擇是有問題的-適當 的怒的選擇須要能夠保持冷凝液的流速和保持足夠的毛細 壓力以克服重力的影響,當蒸汽室的厚度減少以取代金屬 蓋的功能時,此變成另一個問題。因此,有必要提供一個 散熱裝置可以克服蒸汽室和金屬蓋的這些問題。 【發明内容】 { 本發明是關於一種增加蒸汽量的散熱器,包含蒸汽與 冷凝液通道選擇性地在一對流體傳遞元件中形成,使該裝 置在平面的散熱能力能夠選擇性地增加。每一組通道是有 間隔的以形成頂點,安裝以提供足夠地接合點面積以使得 通過平面的熱流阻右最小化,如同確保一個適當地壓力等 級。在本發明的一個實施例中,該散熱裝置包含一個較低 的面板和一個較高的面板。每一個面板通常是平面的,包 含一個上表面和一個下表面。該較低的面板有冷凝液通道 在其上表面形成,當該較高的面板有蒸汽通道在其下表面 I 形成時(即通道通常在對面的内表面形成)。形成於該較高 與較低面板中的通道是有距離的間隔,如此產生複數個頂 點。以這樣的結構,當該較高面板的下表面與該較低面板 的上表面產生機械性地接觸時,該頂點的功能如同柱子, 支撐該薄板對抗保持在此裝置中的高壓力。隨意地,該頂 點可選擇性地接合(例如藉由焊接)以形成頂點接合點。在 操作牛,該裝置可被排空和充滿一個可蒸發的液體,然後 將内部密封以形成一個導熱管環境。 200848683 該冷凝液通道的尺寸與形狀可不同於該蒸汽通道的 尺寸與形狀,如此使得該冷凝液通道可產生比該蒸汽通道 較高的毛細作用力。例如,該冷凝液通道可具備比該蒸汽 通道較小的尺寸(例如,該冷凝液通可比該蒸汽通道具備較 尖的角)。該較低的面板,此外,可包含一個多芯結構,在 此毛細作用力隨著一個可蒸發區距離的減少而增加。該多 芯結構也可定義一個增加沸騰的多芯結構,以促進蒸發並 使沸騰過熱現象最小化。 【實施方式】 第一圖係根據本發明實施例之一種增加蒸汽量的散 熱器之3D視圖。增加蒸汽量的散熱器100可包含一個第 一(較高的)流體傳遞元件或薄板或面板110,一個第二(較 低的)流體傳遞元件或薄板或面板120,和一個非必要的填 充管130配置於兩薄板之間,每一個薄板110、120 —般可 為平面,包含一個上表面和一下表面。具體地如第二A圖 所示,此較高的薄板110包含一個外表面200A和一個内表 面205A ;相同地,此較低的薄板120也包含一個外表面 200B和一個内表面205B (此面對著該第一薄板的内表面)。 回到第一圖,在助焊劑或熱界面物質的存在下,為了 使空氣適當地流出,該較高的薄板110可更包含一個或多 個空氣溝槽。例如,該較高的薄板110的該外表面200A可 包含一個空氣溝槽140A在其中;相同地,該較低的薄板 120的該外表面200B可包含一個空氣溝槽140B在其中。 200848683 該些空氣溝槽140A、140B可經由壓印、選擇性的蝕刻、 材料移除、切割、削去、沖模、劃線或其他習知技藝所知 的步驟來形成。该些薄板110、丨2〇的厚度可包括約12微 米到2公分,但不限制在此範圍。該填充管13(),其為此 散熱為1 〇〇的内部腔體流體交流的管道,可以連接到一個 真空唧筒和/或液體供應器。操作時,在裝置中的氣體排空 之後和/或該裝置填滿了可蒸發的液體之後,該管13〇是密 封的。 『第二A圖與第二B圖說明了第一圖中該裝置沿著a 剖面線的剖面視圖,顯示根據本發明實施例之一種增加蒸 汽量的散熱器100之内部結構。如所示,該較高的薄板110 包含一個或多個蒸汽通道或溝槽210A、210B、210C,在 其内表面205A中$成(即此表面面對著該下薄板丨2〇的内 表面205B)。該些蒸汽溝槽210A-210C的尺寸和/或形狀可 以是任何適合的樣式,可達其描述的目的即可。該蒸汽溝 槽210A-210C被安裝以准許冷凝液和蒸汽通過一旦該冷凝 液(即可蒸發的液體)蒸發。該些蒸汽溝槽210A-210C的形 ( 狀可以包括圓形210A、矩形210B、多邊形21 〇C,但不限 制於此。此外該矩形210B和該多邊形2i〇c蒸汽溝槽,可 有圓形的角220(其可以在溝槽形成的步驟產生)。該些蒸 汽溝槽21OA-210C可經由壓印、選擇性的蝕刻、材料移 切割、削去、沖模、劃線或習知技藝所知的類似方法來形 成。 夕 更好地,全部的蒸汽溝槽結構使用溝槽形狀(例如圓形 和多邊形)的組合來形成。該些蒸汽溝槽21〇A_21〇c可^ 200848683 距離的間隔’如此以致於頂點225沿著該較高的薄板n〇 的内表面205A選擇性的放置’以下會更詳細的描述。此 溝槽結構,此外,可以由表面上先以決定的圖案來形成, 包括格子圖案和/或葉脈圖案(第六圖),但非限制於此。 該較低的薄板120包含一個或多個冷凝液通道或溝槽 230A、230B、230C、230D、230E(也稱為可蒸發的液體溝 槽)在其内表面205B中形成(即此表面面對著該上薄板 110的内表面205A)。該冷凝液溝槽230A-230E是芯結構, 以運輸可蒸發的液體’例如接近該較低薄板的蒸發區。該 些冷凝液溝槽230A-230E可經由壓印、選擇性的蚀刻、材 料移除、切割、削去、沖模、劃線或習知技藝所知的類似 製程來形成。該些冷凝液溝槽230A_230E的形狀包括三角 形230A、矩形230B和圓形230C,但不限制於此,此形狀 不但可由使用如削去的技術形成的溝槽230D(像弦月的形 狀),而且也可劃線形成230E(例如有一般平垣的平行邊和 一般V狀的底部)。 I 該些冷凝液溝槽230A-230E中具有三角形230A和矩 形230B可以進一步有圓形的角220(其可以在溝槽 230A-230E形成的步驟產生)。更好地,全部的冷凝液溝槽 結構使用溝槽形狀(例如圓形和多邊形)的組合來形成。該 些冷凝液溝槽230A-230E可有距離的間隔,如此以致於頂 點235沿著該較低的薄板120的内表面205B形成。該些冷 凝液溝槽230A-230E,·此外,可以由表面上先以決定的圖 案來形成,包括格子圖案和/或葉脈圖案(第五圖)。 200848683 為了有效進行毛細作用,該冷凝液溝槽結構可進一步 定義一個多芯結構一具有毛細作用能力的一個結構隨著蒸 發區(即最接近熱源的區域)距離的減少而增加。二選一或 除此之外’該冷凝液溝槽結構可進一步包含沸騰強化的多 芯結構240’以提升蒸發效率和使沸騰過熱現象最小化。 舉例來說’全部的冷凝液溝槽結構可藉由選擇性的結合提 局沸騰、多芯結構來形成,如同冷凝液溝槽23〇A-230E具 有不同的形狀。附加多芯結構的資料(有或沒有沸騰強化) 揭露於美國專利號11/272,145(美國公開號2006-0060330) ( 和美國專利號11/164,429(美國公開號2006-0196640),這 些内容在此全部結合做為參考。 為了保持適當的毛細作用狀態,該些蒸汽溝槽 210A-210C保持開放且大部份可蒸發液體留在冷凝液溝槽 230A-230E中,該些冷凝液溝槽應該具有能夠增加毛細作 用力超過該些蒸汽溝槽的特性。換言之,由每一個蒸汽溝 槽210A-210C所產生的毛細作用力可能小於由每一個冷凝 液溝槽230A-230E所產生的毛細作力。這可藉由提供冷凝 ( 液溝槽230A_230E的尺寸(大小和/或幾何形狀)不同於蒸 汽溝槽210A-210C的尺寸(大小和/或幾何形狀)。經由特 殊的例子,該些冷凝液溝槽230A-230E(1)可比蒸汽溝槽 210A-210C具有較小的尺寸’和/或(2)可比蒸汽溝槽 210A-210C具有較尖角的一個幾何/形狀。 該較高的薄板110可藉由以下製程結合較低的薄板 120,如超音波接合、熱音波接合、鎢惰性氣體(tig)銲接、 電漿焊接、雷射焊接、焊錫、硬銲或其他習知技藝所知的 200848683 方法來形成。例如,該些頂點225、235,其選擇性地在該 較南薄板110的内表面205A與較低薄板120的内表面205B 之間,義接觸面積,可選擇性地焊接以形成頂點接合點 250。e亥些頂點接合點250在此室中有效地形成一系列的柱 提供力量給該增加蒸汽量的散熱器1〇(),且使此裝置 月=夠抵抗在回流過程(例如約攝氏2〇〇度的環境所產生的 壓力)必須支撐該散熱裝置1〇〇的高蒸汽壓。如第二A圖所 示,頂點接合點250可形成,無論該些頂點225、235位在 這由機械互相接觸的兩薄板11〇、12〇中的任何位置。這結 ί構不同於平常的蒸汽室,在於其内部有固體插入,目前只 有-,結合界面(雖然每一個薄板為了提升結合的目的可 包含複數平板和/或塗層物質)的頂點接合點25〇。以焊接 所形,頂賴合點25G的接觸輯的數量是沒有特別限制 的。最好的’至少是該平面薄板面積的10%應該被利用來 25G以提供該散錄置1GG足夠的機械強 度來抵擋此衣置在操作期間所產生的力量。 除此之外,該增加蒸汽量的散熱器100可以包括一個 1 封Γ60沿著該散熱裝置100的接缝配置(即此 而鼙板110 的邊緣互相接觸)。該邊緣接頭260將此 兩溥板110、120密封為一私,太狀里 密的流體密封。 (在衣置100之内維持一個緊 可以例,該增加蒸气量的散熱器_ - 或面板m和較低的薄板或面m; 期順著—邊連接的結構。如同上述所 11 200848683 邊緣接頭260可被用將該裝置100剩下的一邊密封在一 起0 在形成該散熱裝置100時,該邊緣接頭260和頂點接 合點250可能使用相同的步驟一起形成或使用不同的步驟 分開形成。例如,該邊緣接頭260和頂點接合點250可能 使用熱音波接合同時形成。操作中,該較高的薄板n〇和 較低的薄板120可結合在一起,該管13〇差入,接著如上 所述的(例如邊緣接頭260)密封。然後該散熱裝置1〇〇可 , 被排空並裝滿可蒸發之液體(藉由該管130)。一旦裝滿, $亥管130可被密封以保持該裝置1 〇〇的内部狀態。第四圖 闡明第一圖中此增加蒸汽量的散熱器沿著B-B剖面線的剖 面視圖。如所示,在該填充管130所在的區域連接著該較 南的薄板110和轉低的薄板120,管邊緣接頭400可進一 步被利用來形成一個緊密的液體密封墊。 第五圖闡明第一圖中孤立的較低薄板120之平面視 圖’顯示該較低的薄板120(即第五圖闡明第一圖裝置的上 v 視圖,為了清楚將較高的薄板110移開)之内部表面205B 和根據本發明實施例的一個冷凝液溝槽結構。該冷凝液溝 槽結構可以利用一個或多個先以決定的溝槽圖案來形成, 在說明的實施例中,該冷凝液溝槽結構包含以下圖案的組 合’如一個格子圖案500、一個葉脈圖案510和/或多芯結 構圖案520(如上述)。除此之外,該冷凝液溝槽結可包括 提高沸騰的多芯結構520在此蒸發區内。.如上所解釋,該 頂點的機械接觸點225、235可被利用產生頂點接合點 250,藉由選擇性地將需要的頂點結合在一起。 12 200848683 第六圖闡明第一圖中孤立的較高薄板U〇之平 第六圖闡明第一圖和/或第三圖裝置的底部視圖' 2工二疋2較低的薄板120移開)顯示本發明實施 古在该較高的薄板110之内表面205A的蒸汽 ’ =凝液㈣結構,該蒸汽_結構可明用— 預先決定的溝槽圖案來形成,包含,如—個格子圖宰次 一個葉脈圖案⑽,但不限制在此I比較第 冷凝 r ::賴槽結構的溝槽寬度(外觀比例)是較大且; 所使面配物冷魏溝朴蒸汽溝槽 回流溫度的===支撐在f接 熱器100,該溝槽結構對以下幾#二用散 ;=:^(由此減少蒸汽二 強度。那就是’不像其他的蒸汽室在兩薄板之 i-個内部的體積(即-個開放的空間) 量的散熱器100的内部的體積σ t 、θ ϋ条/t ⑽中的溝槽結構所㈣ϊ110、 這些溝槽結構的空間分佈,可。的某+脈)°猎由改變 積一和因此所產生的力—以平 2〜瘵汽壓作用的表面 板n〇和較低薄板12。之間所形;的 度。在這種方式之下,每—個、、.她&貝.,,,占接口點250的強 影響它的流動品質(例如毛細竹籌田^;结構的深度和幾何形狀 、、、田作用力)。這種能力與内部 13 200848683 板的接合無關,其由溝槽結構的稀疏來決定。如同上述, 最好至少有10%的内部薄板表面積應該功能性的結合=一 起(例如經由頂點接合點250)以提供所需要的強度。因此, 該上面的溝槽結構能夠選擇性地增加此裝置在平面上的、、j 度散熱能力,當提供足夠的接合點則可保證穿過面板熱= 的阻力可最小化,也同樣地保證適當的壓力等級。”'、机 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離發明所揭示之^ 神下所完成之等效改變或修飾,均應包含在下述之申於^ 利範圍内。例如,該散熱裝置100(蒸汽室)可具有任二 形狀或任何適合的尺寸。藉由特定的例子,該裝置1〇〇可 以包括一對矩形的平板使其在互相接觸的狀態。再者,該 裝置100可具有一般像箱子形狀有一個上壁、一個底壁^ 兩個邊壁。如上所註記,該底壁(或底平面)可包括一個蒗 發區定義在其中。 該較高的薄板110和較低的薄板120可以由以下物質 ί所形成,但不限制於此,金屬、金屬化合物、聚合物(有或 沒有金屬内層其可藉由電鍍、沉積或技藝所知的任何其他 方法),和它們的組合。該較高的薄板110和較低的薄板 120可以是該裝置100分開的元件的形式,或可具有一個 單一的結構,其中這些薄板是一個較大薄板的部份,在結 合時會摺疊以去除一個邊緣接頭的需求。 該些在薄板110、120上的蒸汽溝槽21〇八_21〇(::和冷凝 液溝槽230Α_230Ε可以是像格子圖案的形式或是像〆片禁 200848683 子上的葉脈不規則的圖案。該結構的形狀可為圓形(像半圓 或是半橢圓)、矩形、多邊形、三角形或是它們的組合。提 供該冷凝液溝槽具有較高的毛細作用力的方法可藉=尺寸 的不同或形狀的不同,或兩者。舉例,該冷凝液和兮蒸、气 溝槽可具有相同的尺寸,但有不同的幾何圖案(形 此即彼,該冷凝液和該蒸汽溝槽可具有相同的幾何圖案, 但有不同的尺寸。例如,一個較小的矩形溝槽會產生二個 較高的表面張力相較於較大的矩形溝槽,再者,眾所鬥知 的外觀比例不同的矩形溝槽會產生不同的表面張力γ此 外,可增加針腳栅格結構以作為一個增加沸騰功能的多炉 結構。-個薄板110、120的表面(即該溝槽結構“以 ^-種溝槽圖案的形式或可包含這些圖案(如在圖 弟六圖所闡明)的組合。 ’、 的或管130可由此兩薄板110、120 #分開部份 =出來形成,二選-,該管13〇可以是屬於該裝置刚 3體官以與標準的真空哪筒界面保持—致。該固體管130 2由焊接、焊錫或任何此技藝所知的類似方法。該可基 是水、酒精、氨、有機液體或任何此技^ 有杯Γΐΐΐ槽14GA、14GB可具有任何適合的形狀或具 ^任何適合的尺寸以符合其描述的目的。此外,此溝 才印的數量並無限制—為了允許空氣在 田毒 夕卜ίίΐ! 該线溝槽可在較低的薄板12〇的 盖上和/或較高的薄板110的外表面上形 成该空氣溝槽賭、剛可經由壓印、選擇性的 15 200848683 材料移除、切割、削去、沖模、劃線,或習知技藝所知的 類似方法來形成。 因此,可預期的是凡其它未脫離發明所揭示之精神下 所完成之等效改變或修飾,均應包含在下述之申請專利範 圍内。例如,可以了解的項目像是 “左”、“右”、“頂”、“底”、“前”、“後”、 “邊”、“高”、“長度”、“寬度”、“較高的”、 “較低的”、“内部的”、“外部的” “内部”、“外部” / 和類似這些在此會被使用的,純粹描述參考點且非限制本 % 發明於任何特別的方向或結構。 【圖式簡單說明】 I ; : 第一圖係根據本發明實施例之一種增加蒸汽量的散熱器之 3D視圖; 第二A圖為第一圖中此增加蒸汽量的散熱器沿著A-A剖面 線的爆炸視圖; 第二B圖為第一圖中此增加蒸汽量的散熱器沿著A-A剖面 線的剖面視圖,顯示一個包含邊緣接頭連接的實施 例; 第三圖為第一圖中此增加蒸汽量的散熱器沿著A-A剖面線 的剖面視圖,顯示一個包含摺疊接頭連接的實施例; 第四圖為第一圖中此增加蒸汽量的散熱器沿著B-B剖面線 的剖面視圖,更進一步顯示環繞填充管的接頭; 第五圖闡明第一圖中下薄板之内部表面之平面視圖,顯示 16 200848683 根據本發明貪施例的較低的薄板的一個溝槽結構; 第六圖闡明第一圖中上薄板之内部表面之平面視圖,顯示 根據本發明實施例的較高的薄板的一個溝槽結構。 在此揭露中,從頭到尾參考數字被用來識別元件。The invention relates to a steam groove to increase μ,: Γ θ kind of cooling device, _ is - kind of occupant eight main 钿 田 你 丄 丄 丄 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 [Previous technology] When the electronic components and equipment increase the operating speed and the reduced heat becomes the main production τ of an electronic device and system to improve the performance, the semiconductor forming the electronic component is generated. The size is constantly shrinking, and the second factor is not affected. When the semiconductor size is reduced, the heat flux (per single = required to increase the transmission q) increases. The increase in heat flux causes the product to cool ^ ^ only the total heat increase Because the heat flux is increased by only 1, the length of the different lengths will overheat 'may cause electronic failure. 5 呀 and ^, in addition, 'the steam room is used to increase the scattered 2 method - point to use' but the problem remains The use of ', ^ = as heat conduction, as a result, it requires the heat conduction phenomenon of the foot heat limit. Therefore, a thicker dispersion = 5 short-term overheating phenomenon. The effect of steam chamber improvement is 盍, but when 暮, 卞玄社人命工', The dimensional tolerances cannot be maintained when the high vapor pressure generated by the metal 疋田^又到,,,口口 D, and subjected to the high temperature reflow step (for example, a steam chamber operated in the form of a 200848683 body> steam chamber cover). The choice of steam core is problematic - the choice of proper anger needs to be able to maintain the flow rate of the condensate and maintain sufficient capillary pressure to overcome the effects of gravity. When the thickness of the steam chamber is reduced to replace the function of the metal cover, this becomes Another problem. Therefore, it is necessary to provide a heat sink to overcome these problems of the steam chamber and the metal cover. SUMMARY OF THE INVENTION [The present invention relates to a radiator for increasing the amount of steam, including steam and condensate passages selectively Formed in a pair of fluid transfer elements to selectively increase the heat dissipation capability of the device in a plane. Each set of channels is spaced to form a vertex that is mounted to provide sufficient joint area to allow heat flow through the plane to resist right Minimized as if a proper pressure level is ensured. In one embodiment of the invention, the dispersion The thermal device comprises a lower panel and a higher panel. Each panel is generally planar and includes an upper surface and a lower surface. The lower panel has a condensate passage formed on the upper surface thereof. The high panel has a vapor channel formed when its lower surface I is formed (i.e., the channel is typically formed on the opposite inner surface). The channels formed in the upper and lower panels are spaced apart such that a plurality of vertices are generated. Such a structure, when the lower surface of the upper panel is in mechanical contact with the upper surface of the lower panel, the apex functions as a post that supports the sheet against high pressures maintained in the device. Optionally, The apex can be selectively joined (e.g., by welding) to form a vertex joint. In operation of the cow, the apparatus can be evacuated and filled with an evaporable liquid and then sealed internally to form a heat pipe environment. 200848683 The condensate passage can be sized and shaped differently than the size and shape of the steam passage such that the condensate passage produces a higher capillary force than the steam passage. For example, the condensate passage can be of a smaller size than the steam passage (e.g., the condensate passage can have a sharper angle than the steam passage). The lower panel, in addition, may comprise a multi-core structure where the capillary force increases as the distance of an evaporable zone decreases. The multi-core structure also defines a multi-core structure that increases boiling to promote evaporation and minimize boiling overheating. [Embodiment] The first figure is a 3D view of a heat radiator for increasing the amount of steam according to an embodiment of the present invention. The heat sink 100 that increases the amount of steam may comprise a first (higher) fluid transfer element or sheet or panel 110, a second (lower) fluid transfer element or sheet or panel 120, and a non-essential fill tube. 130 is disposed between two sheets, each of which may be planar, including an upper surface and a lower surface. Specifically, as shown in FIG. 2A, the upper sheet 110 includes an outer surface 200A and an inner surface 205A; similarly, the lower sheet 120 also includes an outer surface 200B and an inner surface 205B (this side) Opposite the inner surface of the first sheet). Returning to the first figure, in the presence of a flux or thermal interface material, the higher sheet 110 may further comprise one or more air channels for proper air flow out. For example, the outer surface 200A of the taller sheet 110 can include an air channel 140A therein; similarly, the outer surface 200B of the lower sheet 120 can include an air channel 140B therein. 200848683 The air channels 140A, 140B can be formed via embossing, selective etching, material removal, cutting, chipping, die, scribing, or other steps known in the art. The thickness of the sheets 110, 丨2〇 may include about 12 micrometers to 2 centimeters, but is not limited thereto. The fill tube 13(), which is a 1 〇〇 internal cavity fluid exchange conduit for this purpose, can be connected to a vacuum cartridge and/or liquid supply. In operation, the tube 13 is sealed after the gas in the device is vented and/or after the device is filled with vaporizable liquid. The second and second panels illustrate a cross-sectional view of the device along the a-line in the first figure, showing the internal structure of the heat sink 100 for increasing the amount of steam according to an embodiment of the present invention. As shown, the higher sheet 110 includes one or more vapor passages or grooves 210A, 210B, 210C in the inner surface 205A thereof (ie, the surface faces the inner surface of the lower sheet 丨2〇) 205B). The size and/or shape of the vapor channels 210A-210C can be any suitable pattern for the purposes described. The steam channels 210A-210C are mounted to permit condensate and steam to pass through once the condensate (i.e., the vaporized liquid) evaporates. The shape of the steam grooves 210A-210C may include a circle 210A, a rectangle 210B, and a polygon 21 〇C, but is not limited thereto. Further, the rectangle 210B and the polygon 2i〇c steam groove may have a circular shape. An angle 220 (which may be produced in the step of groove formation). The vapor channels 21OA-210C may be known by imprinting, selective etching, material cutting, chipping, die, scribing or conventional techniques. A similar method is used to form. Even better, all of the vapor trench structures are formed using a combination of trench shapes (eg, circles and polygons). The vapor trenches 21A_21〇c can be separated by the distance of 200848683' This is so that the apex 225 is selectively placed along the inner surface 205A of the higher sheet n', as will be described in more detail below. This trench structure, in addition, may be formed by a predetermined pattern on the surface, including a grid pattern and/or a vein pattern (sixth diagram), but is not limited thereto. The lower sheet 120 comprises one or more condensate channels or channels 230A, 230B, 230C, 230D, 230E (also known as Evaporated liquid groove) in its Formed in surface 205B (i.e., the surface faces inner surface 205A of the upper sheet 110). The condensate channels 230A-230E are core structures for transporting vaporizable liquid 'e.g., near the evaporation zone of the lower sheet. The condensate channels 230A-230E may be formed by embossing, selective etching, material removal, cutting, chipping, die, scribing, or the like known in the art. The shape of the 230A_230E includes a triangle 230A, a rectangle 230B, and a circle 230C, but is not limited thereto, and the shape may be formed not only by the groove 230D (such as the shape of the chord) formed by a technique such as cutting, but also by a scribe line 230E. (For example, there are generally parallel parallel sides and a generally V-shaped bottom.) I. The condensate grooves 230A-230E have a triangle 230A and a rectangle 230B which may further have a circular corner 220 (which may be in the groove 230A-230E) The step of forming is produced.) Preferably, all of the condensate channel structure is formed using a combination of trench shapes (eg, circular and polygonal). The condensate channels 230A-230E may be spaced apart such that Top 235 is formed along the inner surface 205B of the lower sheet 120. The condensate grooves 230A-230E, in addition, may be formed by a predetermined pattern on the surface, including a lattice pattern and/or a vein pattern (first Figure 5, 200848683 In order to effectively perform capillary action, the condensate channel structure can further define a multi-core structure - a structure with capillary action capacity increases with decreasing distance of the evaporation zone (ie, the region closest to the heat source). Alternatively or additionally, the condensate trench structure may further comprise a boiling strengthened multi-core structure 240' to enhance evaporation efficiency and minimize boiling overheating. For example, the entire condensate channel structure can be formed by a selective combination of a boiling, multi-core structure, as the condensate channels 23A-230E have different shapes. Additional multi-core structure data (with or without boiling enhancement) is disclosed in U.S. Patent No. 11/272,145 (U.S. Publication No. 2006-0060330) ( and U.S. Patent No. 11/164,429 (U.S. Publication No. 2006-0196640). All of the combinations are incorporated herein by reference. To maintain proper capillary action, the vapor channels 210A-210C remain open and most of the vaporizable liquid remains in the condensate channels 230A-230E, which condensate channels There should be a characteristic that increases the capillary force beyond the vapor channels. In other words, the capillary force generated by each of the steam channels 210A-210C may be less than the capillary produced by each of the condensate channels 230A-230E. This can be achieved by providing condensation (the size (size and/or geometry) of the liquid channels 230A-230E differs from the size (size and/or geometry) of the steam channels 210A-210C. By way of special example, the condensation The liquid channels 230A-230E(1) may have a smaller dimension ' and/or (2) a geometry/shape that may have a sharper angle than the steam channels 210A-210C. The higher sheet 110 can The following process is combined with a lower sheet 120, such as ultrasonic bonding, thermal sonic bonding, tungsten inert gas (tig) welding, plasma welding, laser welding, soldering, brazing, or other known methods of 200848683. Forming, for example, the apexes 225, 235 selectively between the inner surface 205A of the souther sheet 110 and the inner surface 205B of the lower sheet 120, the sense contact area, selectively weldable to form a vertex joint Point 250. Some of the apex joints 250 in the chamber effectively form a series of columns to provide power to the increased amount of heat sink 1(), and this device is monthly enough to resist the reflow process (eg, about The pressure generated by the environment of 2 degrees Celsius must support the high vapor pressure of the heat sink 1 。. As shown in Figure 2A, the apex joint 250 can be formed, regardless of the apex 225, 235 position Any position in the two thin plates 11〇, 12〇 that are in contact with each other by mechanical. This structure is different from the ordinary steam chamber, in that there is solid insertion inside, and only the -, the bonding interface (although each thin plate is used for lifting bonding) The purpose may include a plurality of slab joints 25 〇 of the slabs and/or the coating material. The number of contact sets of the top lands 25G is not particularly limited in terms of welding. The best 'at least the flat sheet area 10% should be utilized to 25G to provide sufficient mechanical strength of the scatter to resist the force generated by the garment during operation. In addition, the increased amount of heat sink 100 can include a 1 seal. The crucible 60 is disposed along the seam of the heat sink 100 (i.e., the edges of the jaws 110 are in contact with each other). The edge joint 260 seals the two jaws 110, 120 into a private, too dense fluid seal. (Maintaining a tight one within the garment 100, the radiator with increased vapor amount _ or the panel m and the lower sheet or face m; the structure that is connected along the edge. As in the above 11200848683 edge joint 260 can be used to seal the remaining side of the device 100 together. 0 When forming the heat sink 100, the edge joint 260 and the apex joint 250 can be formed together using the same steps or separately using different steps. For example, The edge joint 260 and the apex joint 250 may be formed simultaneously using thermal sonic bonding. In operation, the higher sheet n 〇 and the lower sheet 120 may be joined together, the tube 13 〇 being inferior, then as described above (e.g., edge joint 260) is sealed. The heat sink 1 can then be evacuated and filled with vaporizable liquid (by the tube 130). Once filled, the tube 130 can be sealed to hold the device. 1 The internal state of the crucible. The fourth figure illustrates a cross-sectional view of the radiator with the increased amount of steam in the first figure along the BB section line. As shown, the southerly sheet is joined in the region where the filling tube 130 is located. 110 and The lowered sheet 120, the tube edge joint 400 can be further utilized to form a tight liquid seal. The fifth figure illustrates a plan view of the isolated lower sheet 120 in the first view 'showing the lower sheet 120 (ie, The fifth figure illustrates the upper v-view of the first figure device, the inner surface 205B of which the higher sheet 110 is removed for clarity, and a condensate channel structure in accordance with an embodiment of the present invention. The condensate channel structure can be utilized One or more are formed first in a determined groove pattern. In the illustrated embodiment, the condensate channel structure comprises a combination of the following patterns, such as a lattice pattern 500, a vein pattern 510, and/or a multi-core structure pattern. 520 (as described above). In addition, the condensate channel junction can include a raised core multi-core structure 520 within the evaporation zone. As explained above, the apex mechanical contact points 225, 235 can be utilized Vertex joint 250, by selectively combining the required vertices. 12 200848683 Figure 6 illustrates the sixth figure of the isolated higher sheet U 〇 in the first figure illustrating the first and/or third The bottom view of the apparatus '2 疋 2 较低 2 lower sheet 120 is removed) shows the steam '= condensate (4) structure of the inner surface 205A of the higher sheet 110 of the present invention, which can be clearly used – a predetermined groove pattern is formed, including, for example, a lattice pattern to kill a vein pattern (10), but is not limited to the comparison of the groove width (appearance ratio) of the first condensation condensed r:: groove structure is larger And; the surface matching cold Weigou Pu steam groove reflow temperature === supported in the f heat exchanger 100, the groove structure for the following #二用散; =: ^ (thereby reducing the steam two strength That is, unlike other steam chambers in the inner volume of the two thin plates (ie, an open space), the volume inside the heat sink 100, σ t , θ ϋ bar / t (10) Structure (4) ϊ 110, the spatial distribution of these trench structures, can be. A certain + pulse) ° hunting by the change of the product and the resulting force - the surface of the plate 2 ~ 瘵 steam pressure n 〇 and lower sheet 12 . Between the degrees; In this way, each one, and her & Bay,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Force). This capability is independent of the bonding of the internal 13 200848683 board, which is determined by the sparseness of the trench structure. As noted above, it is preferred that at least 10% of the internal sheet surface area should be functionally combined (e.g., via apex joint 250) to provide the desired strength. Therefore, the upper groove structure can selectively increase the heat dissipation capability of the device on the plane, and when sufficient joints are provided, the resistance through the panel heat can be minimized, and the same is ensured. Appropriate pressure rating. The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the invention as defined by the invention; It should be included in the following claims. For example, the heat sink 100 (steam chamber) may have any two shapes or any suitable size. By way of a specific example, the device 1 may include a pair of rectangles. The slabs are in a state of being in contact with each other. Further, the apparatus 100 may have an upper wall, a bottom wall, and two side walls, generally in the shape of a box. As noted above, the bottom wall (or bottom plane) may include a The burst zone 110 is defined therein. The higher sheet 110 and the lower sheet 120 may be formed of, but not limited to, a metal, a metal compound, a polymer (with or without a metal inner layer thereof) Electroplating, deposition, or any other method known in the art, and combinations thereof. The higher sheet 110 and lower sheet 120 may be in the form of separate components of the device 100, or may have a single Structure wherein the sheets are part of a larger sheet that folds when joined to remove the need for an edge joint. The steam grooves 21 on the sheets 110, 120 are _21 〇 (:: and condensed) The liquid groove 230Α_230Ε may be in the form of a lattice pattern or an irregular pattern of the veins on the slabs of 200848683. The shape of the structure may be a circle (like a semicircle or a semi-ellipse), a rectangle, a polygon, a triangle or It is a combination of them. The method of providing the condensate groove with higher capillary force can be different in size or shape, or both. For example, the condensate and the steaming and gas grooves can have the same Dimensions, but with different geometric patterns (in this case, the condensate and the vapor groove can have the same geometric pattern but different sizes. For example, a smaller rectangular groove will produce two The high surface tension is compared to the larger rectangular groove. Furthermore, the rectangular grooves with different appearance ratios will have different surface tensions. In addition, the pin grid structure can be increased as a multi-furnace structure that increases the boiling function. The surface of the thin plates 110, 120 (ie, the groove structure "in the form of a groove pattern or may include these patterns (as illustrated in Figure 6) ', or the tube 130 can be formed by the two thin plates 110, 120 # separating part =, the second selection - the tube 13 〇 can belong to the device just 3 body to maintain the standard vacuum interface The solid tube 130 2 is formed by soldering, soldering, or any similar method known in the art. The base is water, alcohol, ammonia, organic liquid or any of the techniques. The cups 14GA, 14GB can have any suitable shape. Or have any suitable size to meet the purpose of its description. In addition, there is no limit to the number of grooves that can be printed - in order to allow air in the field of poisoning! The line groove can be covered in the lower sheet 12 The air channel gambling is formed on the outer surface of the upper and/or upper sheet 110, just by embossing, selective 15 200848683 material removal, cutting, cutting, dicing, scribing, or conventional techniques. A similar method is known to form. Therefore, it is contemplated that other equivalent changes or modifications may be made without departing from the spirit of the invention. For example, items that can be understood are like "left", "right", "top", "bottom", "front", "back", "edge", "high", "length", "width", "more" "High", "lower", "internal", "external", "internal", "external" / and the like, which are used herein, are purely described as reference points and are not limited to this invention. Direction or structure. BRIEF DESCRIPTION OF THE DRAWINGS: The first figure is a 3D view of a heat sink for increasing the amount of steam according to an embodiment of the present invention; the second figure is a heat sink of the increased amount of steam along the AA section in the first figure. Explosion view of the line; Figure 2B is a cross-sectional view of the heat sink with the increased amount of steam along the AA section line in the first figure, showing an embodiment including an edge joint connection; the third figure is the increase in the first figure. A cross-sectional view of the heat sink of the steam amount along the AA section line shows an embodiment including a folded joint connection; the fourth figure is a cross-sectional view of the heat sink with the increased amount of steam along the BB section line in the first figure, further A joint showing the inner circumference of the lower sheet is shown; the fifth diagram illustrates a plan view of the inner surface of the lower sheet in the first figure, showing a groove structure of the lower sheet of the method according to the present invention; A plan view of the inner surface of the upper sheet in the drawing shows a trench structure of a taller sheet in accordance with an embodiment of the present invention. In this disclosure, reference numerals are used from beginning to end to identify components.

【主要元件符號說明】 100 增加蒸汽量的散熱器 110 較高的(第一)薄板 120 較低的(第二)薄板 130 填充管 140A 〜140B 空氣溝槽 200A 〜200B 外表面 205A 〜205B 内表面 210A〜210C 蒸汽溝槽 220 圓形的角 225 、 235 頂點 230A 〜230E 冷凝液溝槽 240 、 520 多芯結構 250 頂點接合點 260 、 400 邊緣接頭 300 摺疊-接頭 500 、 600 格子圖案 510 、 610 茱脈圖案 A-A 〜 剖面線 17[Main component symbol description] 100 Heat sink 110 with increased steam amount Higher (first) thin plate 120 Lower (second) thin plate 130 Filled tubes 140A to 140B Air grooves 200A to 200B External surface 205A to 205B Inner surface 210A~210C steam groove 220 rounded angle 225, 235 apex 230A ~ 230E condensate groove 240, 520 multi-core structure 250 apex joint 260, 400 edge joint 300 fold-joint 500, 600 grid pattern 510, 610 茱Pulse pattern AA ~ section line 17

Claims (1)

200848683 十、申請專利範圍: 1· 一種熱傳遞裝置,包含·· 一第一流體傳遞元件包含: 一第一表面和一第二表面,且 以允畔汽溝槽形成於該第-元件的該第二表面 第發的㈣所產生的蒸汽通過。 弟一机體傳遞元件與第一流 二流體傳遞元件包含: 瓶得邈兀仵遷接δ亥弟 r 一第二表面和一第四表面,及 面,Λ中Λ冷I凝液^裝用 體三表 ㈣二毛_力高 2.如申請專利範圍第!項之熱傳 該蒸汽溝槽的尺寸不同於W 中該至少一個 寸。 丁+⑺輕少―個冷凝液溝槽的尺 1... 3·如申請專利範圍第2項之熱傳遞裝置 冷凝液溝槽的尺寸小於該至少一個蒸汽溝槽工寸1 4·如申請專利範圍第2項之熱傳遞裝置,其 冷凝液溝槽的幾何/形狀不同於該至少」^ = 何/形狀。 個条Α溝槽幾 5·如申請專利範圍第4項之熱傳遞裝置,其中: 18 200848683 該至少一個冷凝液溝槽I 角,·及 /、有—幾何包含一個尖 b至/個洛汽溝槽具有一圓形。 u:利範圍…之熱傳 ^冓槽具有具有—圓形且該 ς中至少-個条 多邊形。 们冷/旋液溝槽具有一 如申明f利㈣第1項之熱傳遞裝置,其中· 二流體傳遞元件定義-個蒸發’區;· μ弟一流體傳遞元件更包含一姓 作用能力隨著該蒸發區距離的減少而夕增:構有一毛細 如申明專利範圍第7項之熱傳遞裝置,其中: ,,二流體傳遞元件包含一個蒸發區,及 蒸發i亥多芯結構是一個增加滞騰的多芯結構形成於該 9·如申請專利範圍第1項之熱傳遞裝置,其中: 該至少一個冷凝液溝槽具有從包含一個圓 個多邊形的群組所選出的一個形狀;及^ 個瘵八溝槽具有從包含一個圓形和一個 夕邊形的群組所選出的一個形狀。 10·如申請專利範圍第·1項之熱傳遞裝置更包含一個空氣 溝槽在該第一流體傳遞元件的該第一表面或該二流 體傳遞元件的該第四表面至少形成一個。 19 200848683 11 ·如申晴專利範圍第1項之熱傳遞裝置,其中: 該至少一個蒸汽溝槽包含複數個分開的溝样 如此以定義該些溝槽之間複數個頂點;及 9 9问 該至少一個冷凝液溝槽包含複數個分開的 隔如此以定義該些溝槽之間複數個頂點;且 /曰間 其中該第一流體傳遞元件的該些頂點和該、 體傳遞元件的該些頂點選擇性的連結以形成^點 f 12·如申請專利範圍第i項之熱傳遞裝置更包含— 的接合點將該第一流體傳遞元件與該第二流;^緣 件結合如此產生緊密地流體密封。 遞疋 13·如申請專利範圍第丨項之熱傳遞裝置,其中·· 該所有的蒸汽溝槽結構圖案可由包含一個格 案、一個葉脈圖案和它們的組合的群組中選出;^ 該所有的冷凝液溝槽結構圖案可由包含一個 14· =申請專利範圍第i項之熱傳遞裝置更包含 I的液體填裝於該傳遞裝置之中。 口读 15·如申請專利範圍第1項之熱傳遞裝置,其中: ,第二流體傳遞元件定義一個蒸發區;及 。亥冷减液溝槽安裝以運輸該液體到該蒸發區。 200848683 16· —種熱傳遞裝置,包含·· 一第一流體傳遞元件包含: 一第一表面和一第二表面, j數個冷凝液溝槽形成於該第一元 面,其中該些冷凝液溝槽是分開 弟一表 之間的,積所定義的複數個頂點;且V4些溝槽 弟一流體傳遞元件包含· 第二表面和一第四表面,及 ,數,汽溝槽形成於該第二元件的 、中該些蒸汽溝槽是分開的以形 ::表 間的面積所定義的複數個頂點;成错由該些溝槽之 其中該第一流體傳遞元件甲一個 擇性的接觸該第二流體傳遞元件 點以形成—個或更多的接觸區。 ^更夕的該頂 17. 如申明專利&amp;圍第16項之熱傳遞 冷凝:夜溝槽中的每-個所產生的毛細作用力中個 數個条汽溝槽中的每一個所產生的毛細作用力回。;複 18. 如申請專鄉圍第16項之熱傳遞 該蒸汽溝槽的尺寸不同於該複數個冷凝液溝=硬尺數^固 19. 如申請專利範圍第18項之熱傳遞裝置, 該冷凝液溝槽的尺寸小於該複數個蒸汽溝槽亥複數個 2〇.如申請專利範圍帛ls項之熱傳遞震置, 缸 冷凝液溝槽具有-個形料同於複數個蒸;=^^固 21 200848683 21.如申請專利範圍第16項之熱傳遞裝置,其中該二&amp; 體傳遞元件更包含一個多芯結構和該冷凝液^溝^/二 流,該多芯結構形成於該第二流體傳遞元件的== ;- ^ —衣 22·如申請專利範圍第21項之熱傳遞裝置,其中·· 該第一流體傳遞元件包含一個蒸發區,及 ^ f/㈣構是—個增加沸騰的多芯結構配置遍及 磙療發區。 3·如申请專利範圍第16項之熱傳遞裝置,其中·· 個夕^些洛汽溝槽的每―個具有從包含—個圓形和-们夕邊形的群組所,出的一個形狀;及 =冷凝液溝槽“每一個具 —個多邊形的群組所選出的—個形狀。個囫开乂和 24.如申,專利範圍第16項之熱傳遞裝置,其中: 荦、^斤^&quot;的黑'汽溝槽結構圖案可由包含一個格子0 ;,葉脈圖案和它們的組合的群組中選出,·;子圖 圖案、的冷’旋液溝槽結構圖案可由包含一個格子 的群組中選^脈圖案、—個多芯結構圖案和它們的組合 溝第16項之熱傳遞裝置更包含-個空氣 體傳遞二二,傳本遞元件的該第-表面或該第二流 件的该弟四表面至少形成一個。 22 200848683 26. 如申請專利範圍第16項之熱傳遞裝置更包含一個邊緣 的接合點將該第一流體傳遞元件與該第二流體傳遞元 件結合如此產生緊密地流體密封。 27. 如申請專利範圍第16項之熱傳遞裝置更包含一種可蒸 發的液體填裝於該傳遞裝置之中。 28. 如申請專利範圍第16項之熱傳遞裝置,其中: 該第二流體傳遞元件定義一個蒸發區;及 該冷凝液溝槽安裝以運輸該液體到該蒸發區。 29. 如申請專利範圍第16項之熱傳遞裝置,其中形成該接 觸區中至少約10%的面積功能性的連結在一起以形成 頂點接合點。 30. 如申請專利範圍第16項之熱傳遞裝置,其中: 該複數個冷凝液溝槽包含具有包括尖角形狀的冷 凝液溝槽;及 複數個該蒸汽溝槽包含具有一個圓形的溝槽。 31. —種在保持蒸汽散熱能力時壓力最小化的蒸汽室裝置 之形成方法,該方法包含: (a)提供一第一流體傳遞元件包含一個第一表面和 一個第二表面; 23 200848683 (b)形成至少一個蒸汽通道在該第一元件的第二表 面,其中該蒸汽通道允許冷凝液和由可蒸發液體所產生 的蒸汽通過; 提供一第二流體傳遞元件與該第一流體傳遞元 件交流,該第二流體傳遞元件包含一個第三表面和一個 第四表面;及 (d)形成至少一個冷凝液通道在該第二元件的第三 表面,該冷凝液通道可以用來運輸該可蒸發液體。 其中該至少一個冷凝液通道的毛細 該至少一個蒸汽通道的毛細作用力。 卞用刀门於 32·如申請專利範圍第31項之方法更包含·· 及 (e) 密封該熱傳遞裝置以形成緊密的液體密封 (f) 以該可_發的液體充滿該熱傳遞裝置。 :形成蒸汽室裝置的方法,該方法包含·· 33.- 個一.第一流體傳遞元件包含一個第一表面和一 (b)形成複數個冷凝液溝槽於該第一元件的該 液溝槽是分開的以形成藉由該些溝 曰曰的面和所定義的複數個頂點; (C)提供-第二流體傳遞元含 和—個第四表面; 乐一表面 夺而,ί)形成複數個蒸汽溝槽於該第二元件的該第: ^門心中㈣条汽溝槽是分開的以形成藉由該此溝挿 之間的面積所定義的複_難;及 -溝槽 24 200848683 (e) 該第一流體傳遞元件中一個或更多的該頂點 選擇性的接觸該第二流體傳遞元件中一個或更多的該 頂點以形成一個或更多的接觸區在該蒸汽室中。 34.如申請專利範圍第33項之方法更包含: (f) 將此接觸區焊接在一起以形成一個頂點接合 Eh 〇 ( \ 25200848683 X. Patent application scope: 1. A heat transfer device comprising: a first fluid transfer element comprising: a first surface and a second surface, wherein the first vapor channel is formed on the first element The steam generated by the fourth (fourth) of the second surface passes. The first body transfer element and the first flow two-fluid transfer element comprise: a bottle 邈兀仵 接 δ 亥 r 一 a second surface and a fourth surface, and a surface, a Λ Λ I I I 凝 凝Three tables (four) two hair _ high high 2. If the scope of patent application! Item heat transfer The size of the steam groove is different from the at least one inch of W. D + (7) lighter - a condensate groove of the rule 1 ... 3 · The heat transfer device condensate groove size according to the scope of claim 2 is smaller than the at least one steam groove inch 1 4 In the heat transfer device of the second aspect of the patent, the geometry/shape of the condensate groove is different from the at least "^". A plurality of heat transfer devices, such as the heat transfer device of claim 4, wherein: 18 200848683 the at least one condensate groove I angle, · and /, has - geometry includes a tip b to / a Luo steam The groove has a circular shape. u: The range of heat transfer... The groove has a circle of at least - and a polygon of at least one of the bars. The cold/swirl groove has a heat transfer device as claimed in item (4), wherein the two fluid transfer elements define an evaporation portion; the μ-a fluid transfer element further contains a surname The distance between the evaporation zone is increased and increased: a heat transfer device having a capillary, such as claim 7 of the patent scope, wherein: , the two fluid transfer element comprises an evaporation zone, and the evaporation of the i-core structure is an increase in stagnation The multi-core structure is formed in the heat transfer device of claim 1, wherein: the at least one condensate groove has a shape selected from a group including a circular polygon; and The eight grooves have a shape selected from a group including a circle and an empire shape. 10. The heat transfer device of claim 1 further comprising an air channel formed at least on the first surface of the first fluid transfer element or the fourth surface of the two fluid transfer element. The heat transfer device of claim 1, wherein: the at least one steam groove comprises a plurality of separate grooves to define a plurality of vertices between the grooves; and 9 9 At least one condensate groove includes a plurality of separate vents to define a plurality of vertices between the grooves; and//the vertices of the first fluid transfer element and the vertices of the body transfer element Selectively joining to form a point f 12 · The heat transfer device of the item i of claim 1 further includes a joint that combines the first fluid transfer element with the second flow; the edge member thus produces a tight fluid seal .疋13. The heat transfer device of claim </RTI> wherein: wherein all of the steam trench structure patterns are selected from the group consisting of a pattern, a vein pattern, and combinations thereof; The condensate channel structure pattern may be filled in the transfer device by a liquid comprising a heat transfer device further comprising I. Oral reading 15. The heat transfer device of claim 1, wherein: the second fluid transfer element defines an evaporation zone; A cold liquid reduction trench is installed to transport the liquid to the evaporation zone. 200848683 16 - A heat transfer device comprising: a first fluid transfer element comprising: a first surface and a second surface, wherein a plurality of condensate grooves are formed in the first element face, wherein the condensate The groove is separated by a plurality of vertices defined by the table, and the V4 groove-fluid-transporting element includes a second surface and a fourth surface, and a number, a vapor groove is formed in the The vapor channels of the second component are separated by a shape: a plurality of vertices defined by the area between the surfaces; the fault is caused by an optional contact of the first fluid transfer elements of the trenches The second fluid transfer element is spotted to form one or more contact zones. ^ The top of the eve 17. The heat transfer condensation of the patent &amp; section 16: each of the plurality of steam grooves generated by each of the capillary forces in the night groove Capillary force back. If the heat transfer of the 16th item of the application for the township is different, the size of the steam groove is different from the number of the condensate grooves = the number of hard feet. 19. The heat transfer device of claim 18, The size of the condensate groove is smaller than the plurality of steam grooves. The heat transfer of the cylinder condensate groove has the same shape as the plurality of steams; The heat transfer device of claim 16, wherein the two-body transfer element further comprises a multi-core structure and the condensate/secondary flow, the multi-core structure being formed on the first The heat transfer device of the second fluid transfer element is the heat transfer device of claim 21, wherein the first fluid transfer element comprises an evaporation zone, and the ^f/(four) structure is an increase The boiling multi-core structure is placed throughout the healing area. 3. The heat transfer device of claim 16, wherein each of the plurality of steam grooves has one from a group containing a circle and a ridge. Shape; and = condensate groove "each shape with a selected group of polygons." 囫 乂 and 24. For example, the heat transfer device of the patent scope, where: 荦, ^ The black 'steam groove structure pattern of the jin ^&quot; may be selected from the group consisting of a lattice 0;, a vein pattern and a combination thereof; the sub-pattern pattern, the cold 'swirl groove structure pattern may include a lattice The heat transfer device of the group 16 of the selected pulse pattern, the multi-core structure pattern and the combination groove thereof further comprises an air body transfer 22, the first surface of the transfer component or the second The heat transfer device of claim 16 further includes an edge joint that combines the first fluid transfer element with the second fluid transfer element to produce a tight Ground fluid seal. The heat transfer device of claim 16 further comprising an evaporable liquid filled in the transfer device. 28. The heat transfer device of claim 16, wherein: the second fluid transfer element defines an evaporation And the condensate channel is installed to transport the liquid to the evaporation zone. 29. The heat transfer device of claim 16, wherein at least about 10% of the area forming the contact zone is functionally linked together The heat transfer device of claim 16, wherein: the plurality of condensate grooves comprise a condensate groove having a sharp-angled shape; and the plurality of steam grooves comprise a circular groove 31. A method of forming a vapor chamber device that minimizes pressure while maintaining steam heat dissipation, the method comprising: (a) providing a first fluid transfer element comprising a first surface and a first Two surfaces; 23 200848683 (b) forming at least one steam passage on the second surface of the first element, wherein the steam passage allows condensate and is vaporizable The vapor generated by the body passes; providing a second fluid transfer element to communicate with the first fluid transfer element, the second fluid transfer element comprising a third surface and a fourth surface; and (d) forming at least one condensate passage The condensate passage may be used to transport the evaporable liquid on the third surface of the second member, wherein the capillary force of the at least one condensate passage capillary the at least one steam passage. The method of claim 31 further comprises ... and (e) sealing the heat transfer device to form a tight liquid seal (f) to fill the heat transfer device with the liquid. A method of forming a vapor chamber device, the method comprising: a first fluid transfer element comprising a first surface and a (b) forming a plurality of condensate channels in the liquid channel of the first component The grooves are separated to form a plurality of vertices defined by the faces of the gullies; (C) providing - the second fluid transfer element and the fourth surface; the surface of the music surface is formed by ί) a plurality of steam trenches in the first: ^ gate of the second component (four) of the vapor trenches are separated to form a complex _ difficult defined by the area between the trenches; and - trenches 24 200848683 (e) one or more of the apex of the first fluid transfer element selectively contacts the apex of one or more of the second fluid transfer elements to form one or more contact zones in the vapor chamber. 34. The method of claim 33 further comprises: (f) welding the contact areas together to form a vertex joint Eh 〇 ( \ 25
TW097108155A 2007-03-08 2008-03-07 Heat transfer device TW200848683A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89380107P 2007-03-08 2007-03-08

Publications (1)

Publication Number Publication Date
TW200848683A true TW200848683A (en) 2008-12-16

Family

ID=39494288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097108155A TW200848683A (en) 2007-03-08 2008-03-07 Heat transfer device

Country Status (3)

Country Link
US (1) US20080216994A1 (en)
TW (1) TW200848683A (en)
WO (1) WO2008109804A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466423A (en) * 2010-11-19 2012-05-23 比亚迪股份有限公司 Heat conducting plate and method for preparing same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130206369A1 (en) * 2012-02-13 2013-08-15 Wei-I Lin Heat dissipating device
US20160131437A1 (en) * 2014-11-12 2016-05-12 Asia Vital Components Co., Ltd. Thin heat pipe structure
US20160209122A1 (en) * 2015-01-20 2016-07-21 Chaun-Choung Technology Corp. Slim-type vapor chamber and capillary structure thereof
US10175005B2 (en) * 2015-03-30 2019-01-08 Infinera Corporation Low-cost nano-heat pipe
CN105403084A (en) * 2015-11-26 2016-03-16 北京卫星制造厂 Large-area and high-thermal-conductivity light and thin microgroove flat heat tube
JP7167416B2 (en) * 2017-02-09 2022-11-09 大日本印刷株式会社 Vapor chamber, metal sheet for vapor chamber and method for manufacturing vapor chamber
WO2018155641A1 (en) 2017-02-24 2018-08-30 大日本印刷株式会社 Vapor chamber, electronic device, metal sheet for vapor chamber, and method for producing vapor chamber
JP7123527B2 (en) * 2017-04-11 2022-08-23 大日本印刷株式会社 Metal sheets for vapor chambers and vapor chambers
TWI791630B (en) * 2017-09-28 2023-02-11 日商大日本印刷股份有限公司 steam chamber
JP6696631B2 (en) * 2017-09-29 2020-05-20 株式会社村田製作所 Vapor chamber
JP7148889B2 (en) * 2017-10-06 2022-10-06 大日本印刷株式会社 metal sheets for vapor chambers, electronics and vapor chambers
WO2019088301A1 (en) * 2017-11-06 2019-05-09 大日本印刷株式会社 Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber
JP7200607B2 (en) * 2018-01-24 2023-01-10 大日本印刷株式会社 Vapor chambers, electronics, and sheets for vapor chambers
JP6806285B2 (en) * 2018-05-30 2021-01-06 大日本印刷株式会社 Vapor chamber and electronic equipment
CN112105219B (en) * 2019-06-18 2023-06-09 讯凯国际股份有限公司 Temperature equalizing plate and manufacturing method thereof
JP2022084057A (en) * 2020-11-26 2022-06-07 古河電気工業株式会社 Vapor chamber and method of manufacturing vapor chamber
CN116981901A (en) * 2021-03-03 2023-10-31 华为技术有限公司 Flat foldable heat pipe
CN115954760B (en) * 2023-01-31 2023-12-12 度亘核芯光电技术(苏州)有限公司 Heat sink structure, preparation method and welding method
CN116511752B (en) * 2023-01-31 2024-02-06 度亘核芯光电技术(苏州)有限公司 Copper surface structure, preparation method and welding method thereof

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3587725A (en) * 1968-10-16 1971-06-28 Hughes Aircraft Co Heat pipe having a substantially unidirectional thermal path
US3613778A (en) * 1969-03-03 1971-10-19 Northrop Corp Flat plate heat pipe with structural wicks
US3598180A (en) * 1970-07-06 1971-08-10 Robert David Moore Jr Heat transfer surface structure
US3803688A (en) * 1971-07-13 1974-04-16 Electronic Communications Method of making a heat pipe
US3754594A (en) * 1972-01-24 1973-08-28 Sanders Associates Inc Unilateral heat transfer apparatus
CS159563B1 (en) * 1972-12-28 1975-01-31
US3892273A (en) * 1973-07-09 1975-07-01 Perkin Elmer Corp Heat pipe lobar wicking arrangement
US4021816A (en) * 1973-10-18 1977-05-03 E-Systems, Inc. Heat transfer device
US4125387A (en) * 1974-09-19 1978-11-14 Ppg Industries, Inc. Heat pipes for fin coolers
US4009417A (en) * 1975-01-27 1977-02-22 General Electric Company Electrical apparatus with heat pipe cooling
GB1484831A (en) * 1975-03-17 1977-09-08 Hughes Aircraft Co Heat pipe thermal mounting plate for cooling circuit card-mounted electronic components
US4046190A (en) * 1975-05-22 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flat-plate heat pipe
US4170262A (en) * 1975-05-27 1979-10-09 Trw Inc. Graded pore size heat pipe wick
US4145708A (en) * 1977-06-13 1979-03-20 General Electric Company Power module with isolated substrates cooled by integral heat-energy-removal means
US4279294A (en) * 1978-12-22 1981-07-21 United Technologies Corporation Heat pipe bag system
US4322737A (en) * 1979-11-20 1982-03-30 Intel Corporation Integrated circuit micropackaging
US4351388A (en) * 1980-06-13 1982-09-28 Mcdonnell Douglas Corporation Inverted meniscus heat pipe
US4489777A (en) * 1982-01-21 1984-12-25 Del Bagno Anthony C Heat pipe having multiple integral wick structures
US4523636A (en) * 1982-09-20 1985-06-18 Stirling Thermal Motors, Inc. Heat pipe
US4616699A (en) * 1984-01-05 1986-10-14 Mcdonnell Douglas Corporation Wick-fin heat pipe
US4833567A (en) * 1986-05-30 1989-05-23 Digital Equipment Corporation Integral heat pipe module
JPS6383587A (en) * 1986-09-29 1988-04-14 Toshiba Corp Flat board type heat pipe
US4785875A (en) * 1987-11-12 1988-11-22 Stirling Thermal Motors, Inc. Heat pipe working liquid distribution system
US4944344A (en) * 1988-10-31 1990-07-31 Sundstrand Corporation Hermetically sealed modular electronic cold plate utilizing reflux cooling
US5198889A (en) * 1990-06-30 1993-03-30 Kabushiki Kaisha Toshiba Cooling apparatus
US5076352A (en) * 1991-02-08 1991-12-31 Thermacore, Inc. High permeability heat pipe wick structure
US5386143A (en) * 1991-10-25 1995-01-31 Digital Equipment Corporation High performance substrate, electronic package and integrated circuit cooling process
US5253702A (en) * 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate
US5216580A (en) * 1992-01-14 1993-06-01 Sun Microsystems, Inc. Optimized integral heat pipe and electronic circuit module arrangement
US5629840A (en) * 1992-05-15 1997-05-13 Digital Equipment Corporation High powered die with bus bars
JPH0731027B2 (en) * 1992-09-17 1995-04-10 伊藤 さとみ Heat pipes and radiators
US5309986A (en) * 1992-11-30 1994-05-10 Satomi Itoh Heat pipe
US5427174A (en) * 1993-04-30 1995-06-27 Heat Transfer Devices, Inc. Method and apparatus for a self contained heat exchanger
US5704416A (en) * 1993-09-10 1998-01-06 Aavid Laboratories, Inc. Two phase component cooler
US5458189A (en) * 1993-09-10 1995-10-17 Aavid Laboratories Two-phase component cooler
US5780928A (en) * 1994-03-07 1998-07-14 Lsi Logic Corporation Electronic system having fluid-filled and gas-filled thermal cooling of its semiconductor devices
US5529115A (en) * 1994-07-14 1996-06-25 At&T Global Information Solutions Company Integrated circuit cooling device having internal cooling conduit
US6208513B1 (en) * 1995-01-17 2001-03-27 Compaq Computer Corporation Independently mounted cooling fins for a low-stress semiconductor package
JPH08264694A (en) * 1995-03-20 1996-10-11 Calsonic Corp Cooling device for electronic parts
JP3216770B2 (en) * 1995-03-20 2001-10-09 カルソニックカンセイ株式会社 Cooling device for electronic components
TW307837B (en) * 1995-05-30 1997-06-11 Fujikura Kk
JPH098190A (en) * 1995-06-22 1997-01-10 Calsonic Corp Cooling device for electronic component
US5587880A (en) * 1995-06-28 1996-12-24 Aavid Laboratories, Inc. Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation
JP3164518B2 (en) * 1995-12-21 2001-05-08 古河電気工業株式会社 Flat heat pipe
US5769154A (en) * 1996-01-29 1998-06-23 Sandia Corporation Heat pipe with embedded wick structure
US6056044A (en) * 1996-01-29 2000-05-02 Sandia Corporation Heat pipe with improved wick structures
US5642776A (en) * 1996-02-27 1997-07-01 Thermacore, Inc. Electrically insulated envelope heat pipe
JPH10154781A (en) * 1996-07-19 1998-06-09 Denso Corp Boiling and cooling device
US6167948B1 (en) * 1996-11-18 2001-01-02 Novel Concepts, Inc. Thin, planar heat spreader
CA2250415C (en) * 1997-01-29 2004-03-09 Rudolf Henne Heat exchanger tube, and method for the production of same
US6082443A (en) * 1997-02-13 2000-07-04 The Furukawa Electric Co., Ltd. Cooling device with heat pipe
US5880524A (en) * 1997-05-05 1999-03-09 Intel Corporation Heat pipe lid for electronic packages
US6424528B1 (en) * 1997-06-20 2002-07-23 Sun Microsystems, Inc. Heatsink with embedded heat pipe for thermal management of CPU
EP0889524A3 (en) * 1997-06-30 1999-03-03 Sun Microsystems, Inc. Scalable and modular heat sink-heat pipe cooling system
US6062302A (en) * 1997-09-30 2000-05-16 Lucent Technologies Inc. Composite heat sink
JPH11121667A (en) * 1997-10-20 1999-04-30 Fujitsu Ltd Heat pipe type cooling device
TW378267B (en) * 1997-12-25 2000-01-01 Furukawa Electric Co Ltd Heat sink
DE19980801T1 (en) * 1998-04-13 2000-05-31 Furukawa Electric Co Ltd Plate-shaped heat sink pipe and cooling device using the same
US6163073A (en) * 1998-04-17 2000-12-19 International Business Machines Corporation Integrated heatsink and heatpipe
US6227287B1 (en) * 1998-05-25 2001-05-08 Denso Corporation Cooling apparatus by boiling and cooling refrigerant
JP2000124374A (en) * 1998-10-21 2000-04-28 Furukawa Electric Co Ltd:The Plate type heat pipe and cooling structure using the same
US6121680A (en) * 1999-02-16 2000-09-19 Intel Corporation Mesh structure to avoid thermal grease pump-out in integrated circuit heat sink attachments
US6085831A (en) * 1999-03-03 2000-07-11 International Business Machines Corporation Direct chip-cooling through liquid vaporization heat exchange
US6293332B2 (en) * 1999-03-31 2001-09-25 Jia Hao Li Structure of a super-thin heat plate
US6189601B1 (en) * 1999-05-05 2001-02-20 Intel Corporation Heat sink with a heat pipe for spreading of heat
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
US6302192B1 (en) * 1999-05-12 2001-10-16 Thermal Corp. Integrated circuit heat pipe heat spreader with through mounting holes
US6490160B2 (en) * 1999-07-15 2002-12-03 Incep Technologies, Inc. Vapor chamber with integrated pin array
US6244331B1 (en) * 1999-10-22 2001-06-12 Intel Corporation Heatsink with integrated blower for improved heat transfer
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
US6317322B1 (en) * 2000-08-15 2001-11-13 The Furukawa Electric Co., Ltd. Plate type heat pipe and a cooling system using same
JP4423792B2 (en) * 2000-09-14 2010-03-03 株式会社デンソー Boiling cooler
US6474074B2 (en) * 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US20020144804A1 (en) * 2001-01-19 2002-10-10 Yue Liang Thermal transfer device and working fluid therefor including a kinetic ice inhibitor
US6418019B1 (en) * 2001-03-19 2002-07-09 Harris Corporation Electronic module including a cooling substrate with fluid dissociation electrodes and related methods
CN1126169C (en) * 2001-03-26 2003-10-29 张吉美 High-efficacy cooler
US20020195231A1 (en) * 2001-04-09 2002-12-26 Siu Wing Ming Laminated heat transfer device and method of producing thereof
CA2446728C (en) * 2001-04-30 2007-12-18 Thermo Composite, Llc Thermal management material, devices and methods therefor
KR100429840B1 (en) * 2001-07-19 2004-05-04 삼성전자주식회사 Micro-cooling device
US6533029B1 (en) * 2001-09-04 2003-03-18 Thermal Corp. Non-inverted meniscus loop heat pipe/capillary pumped loop evaporator
US7080680B2 (en) * 2001-09-05 2006-07-25 Showa Denko K.K. Heat sink, control device having the heat sink and machine tool provided with the device
US20030075306A1 (en) * 2001-10-19 2003-04-24 Jon Zuo Thermal control layer in miniature LHP/CPL wicks
US6609561B2 (en) * 2001-12-21 2003-08-26 Intel Corporation Tunnel-phase change heat exchanger
US6477045B1 (en) * 2001-12-28 2002-11-05 Tien-Lai Wang Heat dissipater for a central processing unit
US6679318B2 (en) * 2002-01-19 2004-01-20 Allan P Bakke Light weight rigid flat heat pipe utilizing copper foil container laminated to heat treated aluminum plates for structural stability
US20030136550A1 (en) * 2002-01-24 2003-07-24 Global Win Technology Heat sink adapted for dissipating heat from a semiconductor device
US6460612B1 (en) * 2002-02-12 2002-10-08 Motorola, Inc. Heat transfer device with a self adjusting wick and method of manufacturing same
US6827134B1 (en) * 2002-04-30 2004-12-07 Sandia Corporation Parallel-plate heat pipe apparatus having a shaped wick structure
US20040011509A1 (en) * 2002-05-15 2004-01-22 Wing Ming Siu Vapor augmented heatsink with multi-wick structure
US6880626B2 (en) * 2002-08-28 2005-04-19 Thermal Corp. Vapor chamber with sintered grooved wick
TW540989U (en) * 2002-10-04 2003-07-01 Via Tech Inc Thin planar heat distributor
JP2004190976A (en) * 2002-12-12 2004-07-08 Sony Corp Heat transport device and electronic device
US6863118B1 (en) * 2004-02-12 2005-03-08 Hon Hai Precision Ind. Co., Ltd. Micro grooved heat pipe
US7234513B2 (en) * 2004-02-24 2007-06-26 National Tsing Hua University Microchannel flat-plate heat pipe with parallel grooves for recycling coolant
US7002247B2 (en) * 2004-06-18 2006-02-21 International Business Machines Corporation Thermal interposer for thermal management of semiconductor devices
US20060196640A1 (en) * 2004-12-01 2006-09-07 Convergence Technologies Limited Vapor chamber with boiling-enhanced multi-wick structure
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
TWI273210B (en) * 2004-12-30 2007-02-11 Delta Electronics Inc Heat-dissipation device and fabricating method thereof
DE102005013457B4 (en) * 2005-03-21 2014-02-27 Curamik Electronics Gmbh Electronic device, for example computer with a cooling system
US20070227703A1 (en) * 2006-03-31 2007-10-04 Bhatti Mohinder S Evaporatively cooled thermosiphon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466423A (en) * 2010-11-19 2012-05-23 比亚迪股份有限公司 Heat conducting plate and method for preparing same

Also Published As

Publication number Publication date
US20080216994A1 (en) 2008-09-11
WO2008109804A1 (en) 2008-09-12

Similar Documents

Publication Publication Date Title
TW200848683A (en) Heat transfer device
CN107532860A (en) High-performance two-phase cooling device
TWI803460B (en) Converging split-flow microchannel evaporator and method of evaporatively cooling surface
JP2007519877A (en) Plate heat transfer device and manufacturing method thereof
CN101193531B (en) Heat radiator
JP6799503B2 (en) Heat pipe and its manufacturing method
US20130133871A1 (en) Multiple Thermal Circuit Heat Spreader
KR20100057038A (en) Phase change type heat spreader, channel structure, electronic apparatus and method for manufacturing phase change type heat spreader
TWM416320U (en) Cooling device and electronic apparatus
TW200809158A (en) A method of manufacturing a heat transfer device
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
CN104661494B (en) Cooling element
JPS61234059A (en) Vapor cooling device for semiconductor element
JP7472947B2 (en) Vapor chambers, electronic devices and metal sheets for vapor chambers
TWI701992B (en) Temperature-uniformizing board
TW531632B (en) Laminated heat transfer device and method of producing thereof
JP2019100582A (en) Heat pipe and manufacturing method thereof
JP6856827B1 (en) Wick sheet for vapor chamber, vapor chamber and electronics
JP2021067370A (en) Loop type heat pipe and method of manufacturing the same
TWI726765B (en) Vapor chamber
TWI288814B (en) Process of a heat pipe by aspirating and filling with a suction disk
TW202202799A (en) Heat exchanger fin and manufacturing method of the same
CN112747615A (en) Loop heat pipe and manufacturing method thereof
TW202118986A (en) Pulsating heat pipe
WO2021070544A1 (en) Vapor chamber wick sheet, vapor chamber, and electronic equipment