TW200847706A - MIMO transmission with explicit and implicit cyclic delays - Google Patents

MIMO transmission with explicit and implicit cyclic delays Download PDF

Info

Publication number
TW200847706A
TW200847706A TW097104866A TW97104866A TW200847706A TW 200847706 A TW200847706 A TW 200847706A TW 097104866 A TW097104866 A TW 097104866A TW 97104866 A TW97104866 A TW 97104866A TW 200847706 A TW200847706 A TW 200847706A
Authority
TW
Taiwan
Prior art keywords
cyclic delay
delay
processing
processor
cyclic
Prior art date
Application number
TW097104866A
Other languages
Chinese (zh)
Inventor
Byoung-Hoon Kim
Durga Prasad Malladi
xiao-xia Zhang
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200847706A publication Critical patent/TW200847706A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/0647Variable feedback rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0673Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Abstract

Techniques for transmitting data using a combination of explicit cyclic delay and implicit cyclic delay are described. A transmitter may perform first processing for cyclic delay diversity (or explicit cyclic delay processing) based on a first set of cyclic delay values known to a receiver. The transmitter may perform precoding based on a precoding matrix either before or after the explicit cyclic delay processing. The transmitter may perform second processing for cyclic delay diversity (or implicit cyclic delay processing) based on a second set of cyclic delay values unknown to the receiver. The transmitter may perform both explicit and implicit cyclic delay processing for data and may perform only implicit cyclic delay processing for pilot. One entity may select the first set of cyclic delay values and inform the other entity. The transmitter may autonomously select the second set of cyclic delay values without informing the receiver.

Description

200847706 九、發明說明: 【發明所屬之技術領域】 本揭示案大體而言係關於通信,且更特定言之係關於用 於在無線通信系統中傳輸資料之技術。 本申請案主張2007年2月6曰申請之美國臨時專利申請案 第 60/888,494 號標題為”EFFICIENT CYCLIC DELAY DIVERSITY BASED PRECODING,,之優先權,該案已讓與 給其受讓人,且在此以引用之方式併入本文中。 【先前技術】 無線通信系統經廣泛部署以提供各種通信内容,諸如, 語音、視訊、封包資料、訊息傳遞、廣播等。此等無線系 統可為能夠藉由共用可用系統資源而支援多個使用者的多 重存取系統。此等多重存取系統之實例包括分碼多重存取 (CDMA)系統、分時多重存取(TDMA)系統、分頻多重存取 (FDMA)系統、正交FDMA(〇FMDA)系統及單載波 FDMA(SC-FDMA)系統。 無線通佗系統可支援多重輸入多重輸出(MIM〇)傳輸。 對於ΜΙΜΟ而言,傳輸器可使用多個(丁個)傳輸天線以將資 料傳輸至裝備有多個(反個)接收天線之接收器。該多個傳 輸以及接收天線形成可用於增加輸送量及/或改良可靠性 之ΜΙΜΟ頻道。舉例而言,傳輸器可自丁個傳輸天線同時 傳輸高達Τ個資料流以改良輸送量。或者,傳輸器可自所 有Τ個傳輸天線傳輸單個資料流以改良可靠性。在任一狀 兄下ό *要以達成良好效能之方式來發送μιμ〇傳輸。 129018.doc 200847706 【發明内容】 本文中描述使用明確循環延遲與隱式循環延遲之組人a 傳輸資料的技術。可藉由在頻域中在副載波應用 =藉由在日《巾循環移位樣本來達成彳盾環㈣。對於明 確循%延遲而言,可在每—天線之副載波間應用不同相位 斜波,且接收器已知所有天線之相位斜波。接收器可執广 互補處理以考量明確循環延遲。對於隱式循環延遲而古仃 可在每一天線之副載波間應用不同相位斜波,且接收哭未 知該等天線之相位斜波。傳輸器可以相同隱式循環延遲來 傳輸導頻。接收器可基於自該導頻導出之頻道估計來考量 该隱式循環延遲。 在一設計中,傳輸器可基於接收器已知之第—組循環延 遲值來執行循環延遲分集之第一處理(或明確循環延遲處 理)。傳輸器可在該明確循環延遲處理之前或之後基於預 編碼矩陣來執行預編碼。傳輸器可基於接收器未知之第二 組循環延遲值來執行循環延遲分集之第二處理(或隱式循 環延遲處理)。傳輸器可對資料執行明確及隱式循環延遲 處理且可對導頻僅執行隱式循環延遲處理。一實體㈠列 如,傳輸器或接收器)可自複數個延遲(其可包括零延遲、1 小延遲及大延遲)中選擇一延遲且可將選定之延遲發送至 另一實體(例如,接收器或傳輸器)。可基於選定之延遲來 判定該第一組循環延遲值。傳輸器可在未通知接收器之情 況下自主地(例如,偽隨機地)選擇該第二組循環延遲值。 在下文中進一步詳細地描述本揭示案之各種態樣及特 129018.doc 200847706 徵。 【實施方式】 本文中所描述之技術可用於各種無線通信系統,諸如, CDMA、TDMA、FDMA、OFDMA、SC-FDMA及其他系 統。通常可互換使用術語11系統”與”網路”。CDMA系統可 實施諸如通用陸上無線電存取技術(UTRA)、cdma2000等 。 之無線電技術。UTRA包括寬頻CDMA(W-CDMA)及其他 CDMA 變體。cdma2000 涵蓋 S-2000、IS-95 及 IS-856標準。 TDMA系統可實施諸如全球行動通信系統(GSM)之無線電 技術。OFDMA系統可實施諸如演進UTRA(E-UTRA)、超行 動寬頻(UMB) 、 IEEE 802.1 l(Wi-Fi) 、 IEEE 802.16(WiMAX) > IEEE 802.20 > Flash-OFDM 等之無線 電技術。UTRA及E-UTRA為通用行動電信系統(UMTS)之 部分。3GPP長期演進(LTE)為使用E-UTRA之UMTS即將發 布的版本。UTRA、E-UTRA、UMTS、LTE及GSM描述於 £ 來自名為’’第三代合作夥伴計劃,,(3GPP)之組織的文獻中。 cdma2000及UMB描述於來自名為”第三代合作夥伴計劃2” (3GPP2)之組織的文獻中。此等各種無線電技術及標準在 此項技術中為已知的。 - 圊1展示具有多個節點B 110及多個使用者設備(UE)之無 線多重存取通信系統100。節點B可為與UE通信之固定台 且亦可被稱作演進節點B(eNB)、基地台、存取點等。每一 節點B 110對特定地理區域提供通信覆蓋。UE 120可散布 於整個系統内,且每一 UE可為固定或行動的。UE亦可被 129018.doc 200847706 稱作行動台、終端、存取終端、用戶單元、台等。UE可 為蜂巢式電話、個人數位助理(PDA)、無線數據機、無線 Up衣置、掌上型裝置、膝上型電腦、無線電話等。UE 可經由下行鏈路及上行鏈路上之傳輸而與節點B通信。下 行鍵路(或前向鏈路)指代自節點B至U]E之通信鏈路,且上 行鏈路(或反向鏈路)指代自UE至節點B之通信鏈路。 囷2展示節點b 110及UE 12〇之設計的方塊圖,節點b 110及UE 120為圖1中之節點B中之一者及UE*之一者。節 "、’占B 11〇裝備有多個(τ個)天線23仏至234t。裝備有 夕個(R個)天線252a至252r。天線234及252中之每一者可被 視為實體天線。 在即點B 11〇處,τχ資料處理器22〇可自資料源212接收 貧料、基於一或多個調變及編碼機制來處理(例如,編碼 及符號映射)該資料並提供資料符號。如本文中所使用, 貝料付旒為用於資料之符號,導頻符號為用於導頻之符 號,且苻諕可為實值或複值。資料符號及導頻符號可為來 自凋k機制(諸如,PSK或QAM)之調變符號。導頻為由節 點B及UE事先已知之資料。τχ MIM〇處理器23〇可如下所 述地處理貝料符號及導頻符號且將τ個輸出符號流提供至丁 個調變器(乂00)23以至232t。每一調變器232可處理其輸出 符號流(例如,針對0FDM)以獲得輸出樣本流。每一調變 器232可進一步調節(例如,轉換至類比、濾波、放大及增 頻轉換)其輸出樣本流並產生下行鏈路信號。可分別經由 天線234&至23射來傳輸來自調變器232&至2321之丁個下行鏈 129018.doc -10- 200847706 路信號。 在UE 120處,R個天線252a至252r可自節點B 110接收T 個下行鏈路信號,且每一天線252可將接收到之信號提供 至相關聯之解調變器(DEMOD)254。每一解調變器254可調 節(例如,濾波、放大、降頻轉換及數位化)其接收到之信 號以獲得樣本,且可進一步處理該等樣本(例如,針對 OFDM)以獲得接收到之符號。每一解調變器254可將接收 到之資料符號提供至RX ΜΙΜΟ處理器260且將接收到之導 頻符號提供至頻道處理器294。頻道處理器294可基於接收 到之導頻符號來估計自節點Β 110至UE 120之ΜΙΜΟ頻道的 回應且將ΜΙΜΟ頻道估計提供至RX ΜΙΜΟ處理器260。RX ΜΙΜΟ處理器260可基於ΜΙΜΟ頻道估計而對接收到之資料 符號執行ΜΙΜΟ偵測且提供偵測到之符號,其為所傳輸之 資料符號之估計。RX資料處理器270可處理(例如,符號解 映射及解碼)偵測到之符號且將經解碼之資料提供至資料 儲集器272。 UE 120可評估頻道條件且產生反饋資訊,其可包含如下 所述之各種類型之資訊。來自資料源278之反饋資訊及資 料可由ΤΧ資料處理器280處理(例如,編碼及符號映射)、 由ΤΧ ΜΙΜΟ處理器282空間處理並由調變器254a至254r進 一步處理以產生R個上行鏈路信號,可經由天線252a至 252r來傳輸該R個上行鏈路信號。在節點B 11〇處,來自UE 120之R個上行鏈路信號可由天線234a至234t接收、由解調 變器232a至232t處理、由RX ΜΙΜΟ處理器236空間處理並 129018.doc 11 200847706 由RX資料處理器238進一步處理(例如,符號解映射及解 碼)以恢復由UE 120發送之反饋資訊及資料。控制器/處理 器240可基於反饋資訊來控制對UE 120之資料傳輸。 控制器/處理器240及29〇可分別指導在節點b u〇&UE 120處之操作。記憶體242及292可分別儲存用於節點B ιι〇 及UE 120之資料及程式碼。排程器244可基於自所有1;£接 收到之反饋資訊而針對下行鏈路及/或上行鏈路上之資料 傳輸來排程UE 120及/或其他UE。200847706 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present disclosure relates generally to communications, and more particularly to techniques for transmitting data in a wireless communication system. U.S. Provisional Patent Application Serial No. 60/888,494, filed on Feb. 6, 2007, entitled " EFFICIENT CYCLIC DELAY DIVERSITY BASED PRECODING,, the priority of which has been given to its assignee, and This is incorporated herein by reference. [Prior Art] Wireless communication systems are widely deployed to provide various communication content, such as voice, video, packet data, messaging, broadcast, etc. These wireless systems can be Multiple access systems that support multiple users by sharing available system resources. Examples of such multiple access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, and frequency division multiple access. (FDMA) system, quadrature FDMA (〇FMDA) system and single carrier FDMA (SC-FDMA) system. Wireless communication system can support multiple input multiple output (MIM〇) transmission. For ΜΙΜΟ, the transmitter can be used more Transmission antennas for transmitting data to receivers equipped with multiple (reverse) receiving antennas. The multiple transmission and receiving antenna formations can be used to increase throughput and / Or improve the reliability of the channel. For example, the transmitter can transmit up to one data stream from a single transmission antenna to improve the throughput. Or, the transmitter can transmit a single data stream from all the transmission antennas to improve reliability. Sex. In any way, you should send the μιμ〇 transmission in a way that achieves good performance. 129018.doc 200847706 [Summary] This paper describes the technique of transmitting data using a group of people with explicit cyclic delay and implicit cyclic delay. It can be applied in the sub-carrier in the frequency domain = by shifting the sample in the day to achieve the 彳 环 ring (4). For the explicit 延迟 delay, different phases can be applied between the sub-carriers of each antenna. The ramp wave, and the receiver knows the phase ramp of all antennas. The receiver can perform a wide complement process to consider the explicit cyclic delay. For implicit cyclic delay, the old phase can apply different phase ramps between the subcarriers of each antenna. And receiving the phase ramp of the antennas that are crying unknown. The transmitter can transmit the pilots with the same implicit cyclic delay. The receiver can be based on the frequency derived from the pilots. Estimating to consider the implicit cyclic delay. In one design, the transmitter may perform a first process of cyclic delay diversity (or explicit cyclic delay processing) based on a first set of cyclic delay values known to the receiver. The precoding is performed based on the precoding matrix before or after the explicit cyclic delay processing. The transmitter may perform the second processing (or implicit cyclic delay processing) of the cyclic delay diversity based on the second set of cyclic delay values unknown to the receiver. Clear and implicit cyclic delay processing can be performed on the data and only implicit cyclic delay processing can be performed on the pilot. An entity (a) column, such as a transmitter or receiver, can be self-complexing delays (which can include zero delay, 1 small) A delay is selected among the delays and large delays and the selected delay can be sent to another entity (eg, a receiver or transmitter). The first set of cyclic delay values can be determined based on the selected delay. The transmitter can autonomously (e.g., pseudo-randomly) select the second set of cyclic delay values without notifying the receiver. Various aspects of the present disclosure and the features of the 129018.doc 200847706 are described in further detail below. [Embodiment] The techniques described herein may be used in various wireless communication systems, such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The term 11 system "and" network is often used interchangeably. A CDMA system may implement a radio technology such as Universal Terrestrial Radio Access Technology (UTRA), cdma2000, etc. UTRA includes Wideband CDMA (W-CDMA) and other CDMA variants. Cdma2000 covers the S-2000, IS-95 and IS-856 standards. TDMA systems can implement radio technologies such as the Global System for Mobile Communications (GSM). OFDMA systems can be implemented such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB) , IEEE 802.1 l (Wi-Fi), IEEE 802.16 (WiMAX) > IEEE 802.20 > Flash-OFDM, etc. UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution ( LTE) is an upcoming release of UMTS using E-UTRA. UTRA, E-UTRA, UMTS, LTE and GSM are described in the literature from an organization named ''Third Generation Partnership Project,' (3GPP). Cdma2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). These various radio technologies and standards are known in the art. Node B 110 and a plurality of Wireless multiple access communication system 100 of a device (UE). A Node B may be a fixed station that communicates with a UE and may also be referred to as an evolved Node B (eNB), a base station, an access point, etc. Each Node B 110 Communication coverage is provided for a particular geographic area. The UEs 120 may be dispersed throughout the system, and each UE may be fixed or mobile. The UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, by 129018.doc 200847706, The UE can be a cellular phone, a personal digital assistant (PDA), a wireless data modem, a wireless Up device, a palm-sized device, a laptop computer, a wireless phone, etc. The UE can be connected via the downlink and the uplink. Transmit and communicate with Node B. Downlink (or forward link) refers to the communication link from Node B to U]E, and uplink (or reverse link) refers to from UE to Node B Communication link 囷2 shows a block diagram of the design of node b 110 and UE 12〇, node b 110 and UE 120 are one of node B and one of UE* in Fig. 1. section ", 'occupied B 11〇 is equipped with multiple (τ) antennas 23仏 to 234t. It is equipped with a night (R) antenna 252a 252r. Each of the antennas 234 and 252 can be considered a physical antenna. At point B 11〇, the τχ data processor 22 can receive poor material from the data source 212, based on one or more modulation and coding mechanisms. To process (eg, encode and symbol map) the material and provide data symbols. As used herein, a feed is a symbol for a data, a pilot symbol is a symbol for a pilot, and 苻諕 can be a real value or a complex value. The data symbols and pilot symbols can be modulation symbols from a de-k mechanism such as PSK or QAM. The pilot is known in advance from Node B and UE. The τ χ MIM 〇 processor 23 处理 processes the batten symbols and pilot symbols as described below and provides τ output symbol streams to the modulators (乂00) 23 to 232t. Each modulator 232 can process its output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modulator 232 can further condition (e.g., convert to analog, filter, amplify, and upconvert) its output sample stream and generate a downlink signal. The downlink signals 129018.doc -10- 200847706 from the modulators 232 & to 2321 can be transmitted via the antennas 234 & 23 to respectively. At UE 120, R antennas 252a through 252r may receive T downlink signals from Node B 110, and each antenna 252 may provide the received signals to an associated demodulation transformer (DEMOD) 254. Each demodulation transformer 254 can condition (eg, filter, amplify, downconvert, and digitize) the received signal to obtain samples, and can further process the samples (eg, for OFDM) to obtain the received samples. symbol. Each demodulation transformer 254 can provide the received data symbols to the RX processor 260 and provide the received pilot symbols to the channel processor 294. The channel processor 294 can estimate the response from the node Β 110 to the UE 120 channel based on the received pilot symbols and provide the ΜΙΜΟ channel estimate to the RX ΜΙΜΟ processor 260. The RX processor 260 can perform frame detection on the received data symbols based on the channel estimate and provide detected symbols, which are estimates of the transmitted data symbols. The RX data processor 270 can process (e.g., symbol demap and decode) the detected symbols and provide the decoded data to the data store 272. UE 120 may evaluate channel conditions and generate feedback information, which may include various types of information as described below. Feedback information and data from data source 278 may be processed (e.g., encoded and symbol mapped) by data processor 280, spatially processed by processor 282, and further processed by modulators 254a through 254r to generate R uplinks. The signals may be transmitted via antennas 252a through 252r for the R uplink signals. At Node B 11〇, R uplink signals from UE 120 may be received by antennas 234a through 234t, processed by demodulation transformers 232a through 232t, spatially processed by RX(R) processor 236, and 129018.doc 11 200847706 by RX Data processor 238 further processes (e.g., symbol demaps and decodes) to recover feedback information and data transmitted by UE 120. The controller/processor 240 can control the transmission of data to the UE 120 based on the feedback information. Controllers/processors 240 and 29A can direct operation at node b u 〇 & UE 120, respectively. The memories 242 and 292 can store data and code for the node B ιι〇 and the UE 120, respectively. Scheduler 244 can schedule UE 120 and/or other UEs for data transmission on the downlink and/or uplink based on feedback received from all of them.

本文中所描述之技術可用於在下行鏈路以及上行鏈路上 之ΜΙΜΟ傳輸。為清楚起見,在下文中針對在lte中之下 行鏈路上之ΜΙΜΟ傳輸來描述該等技術之特定態樣。lte 在下行鏈路上使用正交分頻多工(0FDM)且在上行鏈路上 使用單載波分頻多工(SC_FDM)。0FDM及sc_fdm將系統 頻寬分割成多個(K個)正交副載波,其亦通常被稱作載頻 凋(tone)、頻率組(bin)等。每一副載波可以資料來調變。 大體上,在頻域中以〇FDM來發送調變符號且在時域中以 SC-FDM來發送調變符號。 節點B 110可經由每一符號週期中之每-副載波上之L個 層同時傳輸L個資料符號,其中大體上u卜—層可對應於 用於傳輸之每一副載波之n維度。節點B m可使用 各種傳輸機制來傳輸資料符號。 在-態樣中,可以明確循環延遲與隱式循環延遲之一組 來毛h ΜΙΜΟ傳輸。可使用預編碼來進—步發送該 ΜΙΜΟ傳輸。可以各種方式執行明確循環延遲、隱式循環 129018.doc 200847706 延遲及預編碼。 在一設計中,節點B 110可針對每一副載波灸如下處理資 料符號: ' yM) = c⑻WD⑷Ud(A〇, 方程式(1) 其中:da)為含有待經由一符號週期中之副載波灸上之[個 層而發送之L個資料符號的Lxl向量, ϋ為LxL層至虛擬天線映射矩陣, 1>(免)為副載波々之lxl明確循環延遲矩陣, W為TxL預編碼矩陣, C(灸)為曰ij載波々之τχ τ隱式循環延遲矩陣,且 h⑷為含有在一符號週期中之副載波免上的用於τ 個傳輸天線的資料之τ個輸出符號的Τχΐ向量。The techniques described herein can be used for transmissions on the downlink as well as on the uplink. For the sake of clarity, certain aspects of the techniques are described below for the transmission on the downlink in LTE. Lte uses orthogonal frequency division multiplexing (OFDM) on the downlink and single carrier frequency division multiplexing (SC_FDM) on the uplink. The 0FDM and sc_fdm divide the system bandwidth into a plurality of (K) orthogonal subcarriers, which are also commonly referred to as carrier frequencies, bins, and the like. Each subcarrier can be modulated by data. In general, the modulation symbols are transmitted in 频FDM in the frequency domain and the modulation symbols are transmitted in SC-FDM in the time domain. Node B 110 may simultaneously transmit L data symbols via L layers on each-subcarrier in each symbol period, where substantially the n-layer may correspond to the n-dimension of each sub-carrier used for transmission. The Node Bm can use various transport mechanisms to transmit data symbols. In the -state, one of the cyclic delay and the implicit cyclic delay can be clarified to transmit the gross ΜΙΜΟ transmission. Precoding can be used to further transmit the transmission. Clear loop delays, implicit loops can be performed in various ways. 129018.doc 200847706 Delay and precoding. In one design, Node B 110 may process the data symbols for each subcarrier as follows: ' yM) = c(8) WD(4) Ud(A〇, Equation (1) where: da) is moxibustion containing subcarriers to be passed through a symbol period [Lxl vector of L data symbols transmitted by each layer, L LxL layer to virtual antenna mapping matrix, 1 > (free) is sub-carrier 々 lxl explicit cyclic delay matrix, W is TxL precoding matrix, C ( Moxibustion is a τ χ implicit cyclic delay matrix of 曰 ij carrier ,, and h(4) is a Τχΐ vector of τ output symbols of data for τ transmission antennas containing subcarriers exempted in one symbol period.

節點B 1 1 〇可針對每一副載波A如下處理導頻符號: yP(k) = c(k)P(k) JU ’ 方程式(2) 其中· Ρβ)為含有待在一符號週期中之副載波灸上發送之丁 個導頻符號的Txl向量,且 、㈨為含有在一符號週期中之副載波灸上的用於丁個 傳輸天線的導頻之T個輸出符號的Txl向量。 方程式(1)及(2)係針對一副載波&。可對用於傳輸之每一 副載波執行相同處理。在本文中之描述中,矩陣可具有一 行或多行。 預編碼矩陣砰可用於以τ個實體天線23物至23射形成高 達Τ個虛擬力線。可以w之一行來形成每一虛擬天線。$ 料符號可由W之-行來多工且可接著在—虛擬天線及所二 129018.doc -13- 200847706 τ個實體天線上發送。w可基於傅立葉矩陣或某一其他矩 陣。W可選自一組預編碼矩陣。 層至虛擬天線映射矩陣u可用於將用於L個層之資料符 號映射至選自τ個可用虛擬天線之L個虛擬天線。可基於經 . 選擇以供使用之層至虛擬天線映射來定義U。ϋ亦可為沿 著對角線具有一且在別處具有零的單位矩陣1。相同或不 ‘ 同映射矩陣可用於Κ個副載波。 f'. 明確循環延遲矩陣D(幻可用於達成循環延遲分集,其可 提供波束成形增益、頻率選擇性排程增益及/或分集增 JHL D(A)亦可用於達成層排列(layer permUtati〇n),其可具 有特定優點。可基於選自一組延遲之一延遲來產生D(灸), 該、、且延遲可包括一大於一循環首碼prefix)長度之大 延遲。 隱式循環延遲矩陣C(k)亦可用於達成循環延遲分集。可 以各種方式來產生c (k)且可將其約束成小於該循環首碼長 在方程式(1)中所示之設計中,在以D(幻進行明確循環延 遲處理之後,以w執行預編碼。因此將明確循環延遲應用 於由預編碼矩陣W形成之虛擬天線(而非實體天線)。此設 • 计可用於大延遲。 囷3A展示ΤΧ ΜΙΜΟ處理器230a之方塊圖,其實施方程 式(1)及(2)且為圖2中節點B 110處之ΤΧ ΜΙΜΟ處理器230之 一設計。在ΤΧ資料處理器220内,S個流處理器320a至320s 可自資料源212接收S個資料流,其中大體上1。每_流 129018.doc •14- 200847706 處理器320可編碼、交錯、擾碼並符號映射其資料流以獲 得資料符H f料流可在每—傳輸時間間隔仰)中 載運-傳达區塊或封包。每—流處理器32〇可處理其傳送 區塊以獲得碼字且;| 7# 接者了將该碼子映射至調變符號之區 塊。可互換使用術語,,資料流”、"傳送區塊"、"封包"及"碼 字”。流處理H32Ga至32Gs可提供8個資料符號流。 jTX MIM〇處理器230a内,層映射器332可將用於該s 個資料流之資料符號映射至經選擇以供使用之⑽虛擬天 線。在一 s又计中,映射器332可將用於該§個資料流之資料 符號映射至L個層且接著可將用於該[個層之資料符號映射 至用於傳輸之副載波及虛擬天線。明確循環延遲處理器 334可將每—副载波之所映射之符號與明確循環延遲矩陣 DW相乘。預編碼器336可將每一副載波之來自處理器别 的符號與預編碼㈣W相乘並提供此㈣波之預編碼之符 號。隱式循環延遲處理器338可接收來自預編碼器336之預 編碼之符號及導頻符號且可將每一副載波之符號與隱式循 環延遲矩陣⑽相乘以獲得輸出符號。處理器338可將τ個 輸出符號流提供至丁個調變器23 2&至2321。 每一調變器232可對各別輸出符號流執行〇fdm調變。在 每一調變器232内,可以κ點反離散傅立葉變換(idft)來對 待在-OFDM符號週期中之總共〖個副載波上發送的κ個輸 出符號進行變換以獲得含有κ個時域樣本之有用部分。每 一時域樣本為待在一樣本週期中傳輸之複值。可複製該有 用部分的最末C個樣本且將其附加至該有用部分之前部以 129018.doc -15· 200847706 形成含有Κ+C個樣本之OFDM符號。所複製之部分被稱作 循環首碼且用於對抗由頻率選擇性衰落引起的符號間干擾 (ISI)。每一調變器232可進一步處理其樣本流以產生下行 鏈路信號。 控制/處理器240可自UE 120接收反饋資訊且產生對流 處理器320及層映射器332之控制。控制器/處理器24〇亦可 將明確循環延遲矩陣D(^提供至處理器334、將預編碼矩 陣Wk供至預編碼器33 6並將隱式循環延遲矩陣c(a)提供 至處理器338。 在另一設計中,節點B 110可針對每一副載波灸如下處理 資料符號: y^(^) = C(A:)D(A:)WUd(A:) 5 方程式(3) 其中0(介)為副載波介之ΤχΤ明確循環延遲矩陣。節點B j 1〇 可如方程式(2)中所示針對每一副載波a處理導頻符號。 在方程式(3)中所示之設計中,在以w進行預編碼之後, 執行以D(幻進行之明確循環延遲處理。因此將明確循環延 遲應用於實體天線而非虛擬天線。此設計可用於零延遲及 小延遲。 圓3B展示ΤΧ ΜΙΜΟ處理器230b之方塊圖,其實施方程 式(2)及(3)且為圖2中之節點B丨1〇處之τχ MIM〇處理器23〇 之另一設計。在ΤΧ ΜΙΜΟ處理器230b内,層映射器342可 將用於該S個資料流之資料符號映射至經選擇以供使用之乙 個虛擬天線。預編碼器344可將每一副載波之所映射之符 號與預編碼矩陣W相乘且提供此副載波之預編碼之符號。 129018.doc -16- 200847706 明確循環延遲處理器346可將每-副載波之預編碼之符號 與明確循環延遲矩陣_相乘。隱式循環延遲處理哭348 可接收來自處理器346之符號及導頻符號且可將每一副載 波之符號與隱式循環延遲矩陣c⑷相乘以獲得輸出符號。 處理器348可將T個輸出符號流提供至丁個調變器23以至 232t。 在又-設計中,節點B 110可針對每一副载波❿下處理 導頻符號:Node B 1 1 导 can process pilot symbols for each subcarrier A as follows: yP(k) = c(k)P(k) JU ' Equation (2) where Ρβ) is contained in a symbol period The Txl vector of the pilot symbols transmitted on the subcarrier moxibustion, and (9) is the Txl vector of the T output symbols for the pilots of the plurality of transmission antennas on the subcarrier moxibustion in a symbol period. Equations (1) and (2) are for a subcarrier & The same processing can be performed for each subcarrier used for transmission. In the description herein, a matrix may have one or more rows. The precoding matrix 砰 can be used to form up to 虚拟 virtual force lines with τ solid antennas 23 to 23 shots. Each virtual antenna can be formed by one line. The $ symbol can be multiplexed by W-line and can then be sent on the virtual antenna and the two 129018.doc -13- 200847706 τ physical antennas. w can be based on a Fourier matrix or some other matrix. W can be selected from a set of precoding matrices. The layer-to-virtual antenna mapping matrix u can be used to map data symbols for L layers to L virtual antennas selected from τ available virtual antennas. U can be defined based on the layer-to-virtual antenna mapping selected for use. ϋ may also be an identity matrix 1 having one along the diagonal and zero at another. The same or not ‘the same mapping matrix can be used for one subcarrier. f'. Defining the cyclic delay matrix D (phantom can be used to achieve cyclic delay diversity, which can provide beamforming gain, frequency selective scheduling gain, and/or diversity increase JHL D(A) can also be used to achieve layer permutation (layer permUtati〇 n), which may have particular advantages. D (moxibustion) may be generated based on a delay selected from one of a set of delays, and the delay may include a large delay greater than a length of the first prefix. The implicit cyclic delay matrix C(k) can also be used to achieve cyclic delay diversity. c (k) can be generated in various ways and can be constrained to be smaller than the first code length of the loop in the design shown in equation (1), after performing the precoding with w after D (the explicit cyclic delay processing is performed magically) Therefore, it is clear that the cyclic delay is applied to the virtual antenna formed by the precoding matrix W (instead of the solid antenna). This design can be used for large delays. 囷3A shows the block diagram of the processor 230a, which implements the equation (1) And (2) and designed for one of the processors 230 at the Node B 110 of Figure 2. Within the data processor 220, the S stream processors 320a through 320s can receive S data streams from the data source 212. , which is substantially 1. Each stream 129018.doc • 14- 200847706 The processor 320 can encode, interleave, scramble and symbol map its data stream to obtain the data stream H f stream can be in each transmission time interval Carrying - conveying blocks or packets. Each stream processor 32 can process its transport block to obtain a codeword and; |## will map the code to the block of the modulation symbol. The terms ", data stream", "transport block", "packet " and "code word" are used interchangeably. Stream processing H32Ga to 32Gs provides 8 data symbol streams. Within the jTX MIM(R) processor 230a, the layer mapper 332 can map the data symbols for the s data streams to the (10) virtual antennas selected for use. In a s-counter, the mapper 332 can map the data symbols for the § data streams to the L layers and then map the data symbols for the [layers to the subcarriers for transmission and the virtual antenna. The explicit cyclic delay processor 334 can multiply the mapped symbols of each subcarrier by the explicit cyclic delay matrix DW. Precoder 336 may multiply the symbols from the processor of each subcarrier with the precoding (four)W and provide the precoded symbols for the (four) waves. Implicit cyclic delay processor 338 can receive the precoded symbols and pilot symbols from precoder 336 and can multiply the symbols of each subcarrier by an implicit cyclic delay matrix (10) to obtain an output symbol. Processor 338 can provide τ output symbol streams to a plurality of modulators 23 2 & to 2321. Each modulator 232 can perform 〇fdm modulation on the respective output symbol streams. Within each modulator 232, a κ-point inverse discrete Fourier transform (idft) can be used to transform the κ output symbols transmitted over a total of [subcarriers in the -OFDM symbol period to obtain κ time domain samples. Useful part. Each time domain sample is a complex value to be transmitted in a sample period. The last C samples of the useful portion can be copied and appended to the front of the useful portion to form an OFDM symbol containing Κ + C samples at 129018.doc -15· 200847706. The copied portion is called the cyclic first code and is used to combat inter-symbol interference (ISI) caused by frequency selective fading. Each modulator 232 can further process its sample stream to produce a downlink signal. Control/processor 240 can receive feedback information from UE 120 and generate control of stream processor 320 and layer mapper 332. The controller/processor 24A may also provide an explicit cyclic delay matrix D (provided to the processor 334, the precoding matrix Wk to the precoder 336 and the implicit cyclic delay matrix c(a) to the processor 338. In another design, Node B 110 may process the data symbols for each subcarrier as follows: y^(^) = C(A:)D(A:)Wud(A:) 5 Equation (3) 0 (media) is a subcarrier-mediated explicit cyclic delay matrix. Node B j 1〇 can process pilot symbols for each subcarrier a as shown in equation (2). The design shown in equation (3) In the case of precoding with w, the explicit cyclic delay processing is performed with D (the magic is performed. Therefore, the explicit cyclic delay is applied to the physical antenna instead of the virtual antenna. This design can be used for zero delay and small delay. Circle 3B shows ΤΧ A block diagram of processor 230b, which implements equations (2) and (3) and is another design of τ χ MIM 〇 processor 23 节点 at node B 丨 1 图 in Figure 2. Within ΤΧ processor 230b , layer mapper 342 can map the data symbols for the S data streams to selected for making The second virtual antenna. The precoder 344 can multiply the mapped symbols of each subcarrier by the precoding matrix W and provide the precoding symbol of the subcarrier. 129018.doc -16- 200847706 Clear Cyclic Delay Processing The 346 may multiply the precoded symbols of each subcarrier by an explicit cyclic delay matrix _. The implicit cyclic delay process 348 may receive symbols and pilot symbols from the processor 346 and may assign symbols for each subcarrier. The implicit cyclic delay matrix c(4) is multiplied to obtain an output symbol. The processor 348 can provide T output symbol streams to the tuned modulator 23 up to 232t. In a re-design, the Node B 110 can be for each subcarrier. Subsequent processing of pilot symbols:

y^W = c(A:) νρ(Λ:) » 方程式(4) 其中V為ΤχΤ單式矩陣。單式矩陣¥之特徵在於屬性w】 及W小此意謂V之行彼此正交,ν之列亦彼此正交,且 每一行及每一列具有單位冪(unit power)。V可基於一傅立 葉矩陣或某-其他類型之矩陣。方程式⑷巾之設計可允許 、-呈由所有Τ個貝體天線來傳輸導頻。此設計可用於導頻頻 道(CPICH)、同步頻道(SCH)及/或其他頻道。y^W = c(A:) νρ(Λ:) » Equation (4) where V is a unitary matrix. The single matrix matrix is characterized by the attributes w] and W. This means that the rows of V are orthogonal to each other, the columns of ν are also orthogonal to each other, and each row and each column has a unit power. V can be based on a Fourier matrix or a matrix of some other type. The equation (4) is designed to allow, - to transmit, pilots from all of the shell antennas. This design can be used for pilot channel (CPICH), synchronous channel (SCH), and/or other channels.

各種類型之預編碼矩陣可用於方程式〇)及(3)中所示之 °又°十在°又片中,一組Q個預編碼矩陣可被如下定義: W'=A'F,對於叫…,^1 , 方程式(5) 其中·· F為傅立葉矩陣, Λ/為第ζ·個相移矩陣,且 Wz·為第ζ·個預編碼矩陣。 ΤχΤ傅立葉矩陣f之元素可被表示為: ^ -]2π~ , τ,對於 w = 〇,,τ —= ,τ —1,方程式⑷ 其中Λ,ν為該傅立葉矩陣的第“列與第ν行中之元素。 129018.doc 200847706 在- •設計中 eA,0 0 Λ/ = 0 0 0 相移矩陣Λ,可被表示為 • ο Ί • 〇 方程式(7) 中之第V個天線之相位。可以不同 或多個基本矩陣來定義Q個不同 ί^.Τ-ι 其中1,ν為第/個相移矩陣 相位Α/,ν及/或藉由旋轉一 相移矩陣。 對於方私式(5)中所示之設計而言,可基於傅立葉矩陣F 及⑽不同相移矩陣Λ,來定義Q個不同TxT預編碼矩陣w(.。 亦:以非傅立葉矩陣或除該傅立葉矩陣外之其他單式來定 義預編碼矩I該組預編碼矩陣亦可包括單位矩陣 八°用於在Λ體天線上傳輸每一層。對於選擇性虛 擬天線傳輸而言’可評估該Q個預編碼矩陣之行(或子矩 陣)之不同組合,且預編碼矩陣w;之提供最佳效能的L個行 可作為預編碼矩陣w而提供,其中大體上BL^T。 在一設計巾’可針對-組延敎義__組明確循環延遲矩 陣。可使每一延遲與¥個天線之V個相位斜波相關聯,其 :天線〇可具有零相位斜波。若如圖从中所示在預編碼: 前執行明確循環延遲處自,則V=L,且該V個天線對應於L 個選定之虛擬天線。若如圖3B中所示在預編碼之後執行明 確循環延遲處理,則V=T,且該v個天線對應於丁個實體天 線。明確循環延遲矩陣D(幻之維度因此可取決於是在預編 碼之前還是之後執行明確循環延遲處理。為清楚起見,、以 下描述中之大部分假定如圖3A中所示在預編碼之前執行明 129018.d〇( -18- 200847706 確循環延遲處理,且〇0)具有維度LxL。 在一設計中, 0 該組明確循環延遲矩陣可被定義為 ··· 0 0 方程式(8) 其中為第m個延遲,其為連續天線之間的延遲間隔,且 Dm(幻為第所個延遲之明確循環延遲矩陣。Various types of precoding matrices can be used for the equations 〇) and (3) shown in (3) ° ° ° ° ° in the film, a set of Q precoding matrices can be defined as follows: W ' = A 'F, for the call ..., ^1 , Equation (5) where ··· is a Fourier matrix, Λ/ is a ζ··································· The elements of the ΤχΤFourier matrix f can be expressed as: ^ -]2π~ , τ, for w = 〇, τ —= , τ — 1, Equation (4) where Λ, ν is the “column and ν of the Fourier matrix” Element in the line. 129018.doc 200847706 In - • design eA, 0 0 Λ / = 0 0 0 phase shift matrix Λ, can be expressed as • ο Ί • 第 the phase of the Vth antenna in equation (7) Q different ί^.Τ-ι may be defined by different or more basic matrices, where ν is the phase/phase shift matrix phase Α/, ν and/or by rotating a phase shift matrix. In the design shown in (5), Q different TxT precoding matrices w can be defined based on the Fourier matrix F and (10) different phase shifting matrices (. Also: in addition to or in addition to the non-Fourier matrix Other single equations define the precoding matrices. The set of precoding matrices may also include an identity matrix of eight for transmitting each layer on the body antenna. For selective virtual antenna transmissions, the Q precoding matrices may be evaluated. Different combinations of rows (or sub-matrices), and precoding matrix w; L providing the best performance The row can be provided as a precoding matrix w, which is substantially BL^T. In a design towel, the cyclic delay matrix can be specified for the group-delay __ group. Each delay can be made with V phases of the ¥ antenna. The ramp wave is associated with: the antenna 〇 can have a zero-phase ramp wave. If the pre-coding is performed as shown in the figure: before the explicit cyclic delay is performed, then V=L, and the V antennas correspond to L selected ones. Virtual antenna. If explicit cyclic delay processing is performed after precoding as shown in Figure 3B, then V = T, and the v antennas correspond to a few physical antennas. The cyclic delay matrix D is defined (the magical dimension can therefore depend on The explicit cyclic delay processing is performed before or after precoding. For the sake of clarity, most of the following description assumes that 129018.d〇 ( -18- 200847706 φ cyclic delay processing is performed before precoding as shown in FIG. 3A. And 〇0) has the dimension LxL. In a design, 0 the set of explicit cyclic delay matrices can be defined as ... 0 0 Equation (8) where is the mth delay, which is the delay interval between consecutive antennas And Dm (the magic is the first delay Indeed cyclic delay matrix.

在方程式(8)中所示之設計中,每一天線v之循環延遲值 kv及相位斜波(9wv可被表示為: ’對於v = 0, ·,L-丨,及 方程式(9) 心’v-γνν,對於 v = 〇,,。 方程式(1〇) 方程式(8)中之設計針對不同天線之循環延遲值使用均 一間隔、。均一延遲間隔可減少信令附加項,因為可基於 單個^值來定義所有L個天線之循環延遲值。In the design shown in equation (8), the cyclic delay value kv and the phase ramp of each antenna v (9wv can be expressed as: 'for v = 0, ·, L-丨, and equation (9) 'v-γνν, for v = 〇,,. Equation (1〇) The design in equation (8) uses a uniform interval for the cyclic delay values of the different antennas. The uniform delay interval reduces the signaling additions because it can be based on a single The ^ value defines the cyclic delay value of all L antennas.

在一設計中,可定義一組M=3延遲以包括以下各者·· 〜=〇,對於零延遲, 方程式(11) L = 2,對於小延遲,及 ,對於大延遲。 方程式(12) 方程式(13) 小延遲可用於改良波束成形及頻率選擇性排程增益且可 尤其有益於低行動性頻道、低幾何條件頻道、低秩(rank) 頻道等。大延遲可用於改良傳輸分集增益且可適於高行動 性頻道(例如,以30 km/hr之速度或更快移動之行動UE)、 高幾何條件頻道、較高秩頻道、時間或頻率之較粗略之反 129018.doc -19- 200847706 f等。大延遲可在低行動性頻道中提供與零延遲類似的效 能,其可在反饋資訊有雜訊時增強系統之穩健性。幾何條 件與信號雜訊干擾比(s腿)有關。低幾何條件可對應於低 SINR ’且高幾何條件可對應於高swr。秩指代經選擇以 仏使用之虛擬天線之數目且亦被稱作空間多工階。在一設 計中,零延遲或小延遲可用於秩q傳輸,且大延遲可用於 秩-2或更高之傳輸。以大延遲進行之循環延遲分集處理可 等化用於資料傳輸之L個層的SINR。 大體上,可針對任一數目之延遲及任一特定延遲定義明 確循環延遲矩陣。舉例而言,可針對^=1或某一其他值之 小延遲、針對小於K/L或大於K/L之大延遲等定義明確循環 延遲矩陣。如方程式(8)及(9)中所示,不同天線之循環延 遲值可具有均一間隔。不同天線之循環延遲值亦可具有非 均一間隔。大體上,小延遲可為小於循環首碼長度之任一 值,且大延遲可為大於循環首碼長度之任一值。 在一,計中,隱式循環延遲矩陣C0)可被定義為: 1 0 ο Ί 〇 e κ … π CW= !:·..: 方程式(14) _ .2££r-ljfc 0 0 ^ κ 其中G為實體天線ί之隱式循環延遲值。 每一實體天線ί之相位斜波β可被表示為: 2ττ 對於卜0,·",Τ-1, 方程式(15) 其中 Θ。= = 0。 129018.doc -20- 200847706 大體上,任一組隱式循環延遲值可用於該τ個實體天 線。該等隱式循環延遲值可為偽隨機值或可為經選擇:達 成良好效此之值。隱式循環延遲值應短於循環首碼長度 c,如下: 又 -C<G <c,對於卜〇,,T —i 方程式(16) 方程式(16)中之約束可確保基於以隱式循環延遲傳輸之 導頻之頻道估計不歸因於混淆效應而過度降級。 f-設計中’可由整數個樣本給出每一 Π延—,在此設計中,可藉由在: 環延遲。在另……广有“刀來達成隱式循 ^ , 由非整數個樣本"每-實辦 天線之fe式循環延遲值^。 、豆 在叹汁中,可定義一組基本的丁個 值。舉例而言,其太_ L式循裱延遲 值〇、卜2 T1 I仏式錢延遲值可包括循環延遲 2…T-1。接者可以偽隨機方式自該纟且 壤延遲值針對實體天線〇至 、τ 土本式循 循環延遲值。此料可確㈣Τ\Γ υ選取隱式 循環延遲值庫用 ' 同之經偽隨機選擇之 、崦值應用於丁個實體天線。 亦可以其他方式針對該丁個 環延遲值。隱式德〜心"天線疋義並選擇隱式循 ^ 式盾衣延遲值可為不隨時Η拎辯. ^時間緩慢改變 ' 父之靜態值、 期、I右η +靜心值或可頻繁(例如,每一符节Ή 具有多個符號週期之每—時 #付號週 子訊框等)改變之動態值。 胃/、夕個時槽之每一 對於方程式⑴中所示 + 1290l8.doc 5,方程式⑴)中所示的 -21 - 200847706 以大延遲對資料符號進行之處理可被表示為:r v,众、ί 1 〇 ] Π 0 …〇 Ί 'yd,〇W _ 一 1 0 ,· · Q - 0 e K q 1 ·: '· : W Ί 〇 0 Jink 0 e J h 0 u • dQ(ky di(k) _々τ-丨 Π Π .ln(L-\)k y/(*) U U · *. β κ C(k) 0 〇 ... e y L 對導頻符號進行之處理可被表示為 r ,Π 〇 ··· η 1 方程式(17) ' yPAk)" yP,'W 一 丄 υ ... 〇 , κ .·· : : .· 0 0 "P〇(k) P'(k) yPj-^k) j _〇 ο ... 2;^τ_|々 V yP\k) P J K ---- β ^ P⑷ C㈨ 方程式(18) 可如方程式(1)中所示在頻域中應用隱式循環延遲矩陣 c(幻且該矩陣可為副載波介之函數。c(幻在每一實體天線上 在該K個副載波間提供相位斜波(意即,線性相移)。該相 位斜波之斜度對於不同天線而言可不同,且天線〇可具有 零相位斜波。在頻域中應用相位斜波等效於在時域中執行 OFDM符號之有用部分的循環移位。 丁 圊4展示在日守域中應用隱式循環延遲之實例。在此實例 中,T=4且由整數個樣本給出每一實體天線之&。天線〇之 OFDM符號之有用部分可被循環移位零個樣本,天線ί之 OFDM符號之有用部分可被循環移位;】個樣本,天線 OFDM符號之有用部分可被循環移位&個樣本,且天線 OFDM符號之有用部分可被循環移位一樣本。…2及 可為偽隨機值或可以某—方式而相M。 2 ς' 循環延遲矩陣_及CW可用於支援各種延遲,包括零 129018.doc -22- 200847706 延遲、小延遲、大延遲及不同天線之循環延遲值間的均— = '均-間隔。此等矩陣亦可減少評估複雜性(用於在所 可能延遲中選擇-延遲)及信令附加項(用於對選定之延 遲進行通知)。可以各種方式選擇該延遲。In one design, a set of M=3 delays can be defined to include the following: ~=〇, for zero delay, equation (11) L = 2, for small delays, and , for large delays. Equation (12) Equation (13) Small delays can be used to improve beamforming and frequency selective scheduling gains and can be particularly beneficial for low mobility channels, low geometry channels, low rank channels, and the like. Large delays can be used to improve transmit diversity gain and can be adapted for high mobility channels (eg, mobile UEs moving at 30 km/hr or faster), high geometry channels, higher rank channels, time or frequency Roughly opposite 129018.doc -19- 200847706 f and so on. Large delays provide similar performance to zero latency in low mobility channels, which enhances system robustness when feedback information is noisy. The geometric condition is related to the signal noise interference ratio (s leg). Low geometry conditions may correspond to low SINR' and high geometry conditions may correspond to high swr. Rank refers to the number of virtual antennas selected for use in 仏 and is also referred to as spatial multi-step. In one design, zero delay or small delay can be used for rank q transmission, and large delay can be used for rank-2 or higher transmission. The cyclic delay diversity processing with large delay can equalize the SINR of the L layers used for data transmission. In general, a clear cyclic delay matrix can be defined for any number of delays and any particular delay. For example, an explicit cyclic delay matrix can be defined for small delays of ^=1 or some other value, for large delays less than K/L or greater than K/L, and the like. As shown in equations (8) and (9), the cyclic delay values of the different antennas may have a uniform spacing. The cyclic delay values of different antennas may also have non-uniform spacing. In general, the small delay can be any value less than the length of the loop first code, and the large delay can be any value greater than the length of the loop first code. In one case, the implicit cyclic delay matrix C0) can be defined as: 1 0 ο Ί 〇e κ ... π CW= !:·..: Equation (14) _ .2 ££r-ljfc 0 0 ^ κ where G is the implicit cyclic delay value of the physical antenna ί. The phase ramp β of each physical antenna ί can be expressed as: 2ττ for Bu 0,·",Τ-1, Equation (15) where Θ. = = 0. 129018.doc -20- 200847706 In general, any set of implicit cyclic delay values can be used for the τ physical antennas. The implicit cyclic delay values may be pseudo-random values or may be selected to achieve a value that is good. The implicit cyclic delay value should be shorter than the loop first code length c, as follows: -C<G <c, for divination, T -i Equation (16) The constraint in equation (16) ensures that it is based on implicit The channel estimate of the pilot of the cyclic delay transmission is not excessively degraded due to the aliasing effect. In the f-design, 'each delay can be given by an integer number of samples—in this design, by: delay in the ring. In the other ... widely known as "knife to achieve implicit loop ^, by a non-integer sample" "per-real antenna antenna fe-type cyclic delay value ^., beans in the sigh juice, you can define a basic set of Ding For example, its too _ L-type 裱 delay value 〇, 卜 2 T1 I 仏 money delay value may include a cyclic delay of 2...T-1. The receiver may pseudo-randomly from the 纟 and the soil delay value is for the entity The antenna is 〇 to τ, and the cyclic cycle delay value is used. This material can be confirmed as (4) Τ Γ Γ υ 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐 隐The method is for the delay value of the ring. The implicit dew ~ heart " antenna derogatory and choose the implicit loop shield delay value can be no longer at all. ^ Time slowly changes 'parent's static value, period, I right η + meditation value may be frequent (for example, each symbol Ή has a plurality of symbol periods - when the #付号周 subframe, etc.) change the dynamic value. The equation shown in equation (1) + 1290l8.doc 5, the equation shown in equation (1)) - 200847706 with large delay The processing of symbols can be expressed as: rv, public, ί 1 〇] Π 0 ... 〇Ί 'yd, 〇W _ 1 1 0 , · · Q - 0 e K q 1 ·: '· : W Ί 〇0 Jink 0 e J h 0 u • dQ(ky di(k) _々τ-丨Π Π .ln(L-\)ky/(*) UU · *. β κ C(k) 0 〇... ey L The processing of the pilot symbols can be expressed as r, Π 〇··· η 1 Equation (17) ' yPAk)" yP, 'W 丄υ ... 〇, κ .·· : : . 0 0 "P〇(k) P'(k) yPj-^k) j _〇ο ... 2;^τ_|々V yP\k) PJK ---- β ^ P(4) C(9) Equation (18) The implicit cyclic delay matrix c can be applied in the frequency domain as shown in equation (1) (the magic and the matrix can be a subcarrier based function. c (the magic is provided between the K subcarriers on each physical antenna) Phase ramp (ie, linear phase shift). The slope of the phase ramp can be different for different antennas, and the antenna 〇 can have a zero phase ramp. Applying the phase ramp in the frequency domain is equivalent to the time The cyclic shift of the useful portion of the OFDM symbol is performed in the domain. Ding Wei 4 shows an example of applying implicit cyclic delay in the daily defensive domain. In this example, T = 4 and each integer antenna is given by an integer number of samples. The useful portion of the OFDM symbol of the antenna 可 can be cyclically shifted by zero samples, and the useful portion of the OFDM symbol of the antenna ί can be Cyclic shift; a sample, the useful portion of the antenna OFDM symbol can be cyclically shifted & samples, and the useful portion of the antenna OFDM symbol can be cyclically shifted. ...2 and may be pseudo-random values or may be M in a certain way. 2 ς 'Cycle delay matrix _ and CW can be used to support various delays, including zero 129018.doc -22- 200847706 Delay, small delay, large delay and the cyclic delay value of different antennas - = 'average-interval. These matrices also reduce evaluation complexity (for selection-delay in possible delays) and signaling additions (for notification of selected delays). This delay can be chosen in a variety of ways.

在-設計中,節點B可針對每一 UE選擇—明確延遲且可 將選定之延遲發送至該仙。在另一設計中,節點B可針對 由即點B伺服之所有UE選擇—明確延遲且可將敎之延遲 廣播或發送至此等UE。在又一設計中,節點b可針對每一 秩不同地限制該組延遲以便減少UE計算複雜性以及反饋 附加項。舉例而t ’可4堇允許零延遲用於秩^,可允許零 延遲及大延遲用於秩2,等等。 在一設計中,UE可基於一效能度量來評估不同之可能 =編碼矩陣及不同之可能延遲,且可選擇具有最佳效能度 里,預編碼矩陣及延遲。對於預編碼矩陣%與延遲^之每 一可能組合而言,UE可基於ΜΙΜΟ頻道估計η(幻、預編碼 矩陣w,及明確料延遲冰來計算有效μιμ〇頻道估 计㈨。UE可評估不同假設,每一假設對應於用於可用 於資料傳輸之虛擬天線之不同組合(意即,之不同行 子木)的不同預編碼子矩陣。UE可基幻、ue所使 用之ΜΙΜΟ偵測技術及可用傳輸功率在每一假設之所有虛 擬天線間的均一分布來針對該假設估計一組sinr。卩]£接 著可基於容量函數將每一 SINR映射至容量且可累積每一假 設之所有虛擬天線的所有κ個副載波之容量以獲得此假設 之總谷ϊ。在評估預編碼矩陣與明確循環延遲值之所有可 129018.doc -23- 200847706 能組合之所有假設後,UE可選擇具有最大總容量的預編 碼矩陣與延遲之最佳組合的最佳假設。UE可將該最佳假 設之預編碼子矩陣及延遲作為待用於資料傳輸之預編 碼矩陣W及延遲來發送。預編碼矩陣W可含有用於L個選 定之虛擬天線的W,之L個最佳行。 UE亦可判定待在該L個選定之虛擬天線上發送之S個資 料流的S個SINR。可基於用於每一資料流之副載波及虛擬 天線的SINR來判定此資料流之SINR。UE亦可基於該S個 資料流之SINR來判定S個頻道品質指示符(CQI)值。CQI值 可包含平均SINR、調變及編碼機制(MCS)、封包格式、傳 送格式等。UE可發送該S個資料流之S個CQI值或可發送一 基本CQI值及一差異CQI值。該基本CQI值可表示首先解碼 之資料流的SINR,且該差異CQI值可表示兩個資料流之 SINR之間的差異。 在一設計中,節點B可任意地選擇每一實體天線之隱式 循環延遲值。節點B可以相同隱式循環延遲處理來發送導 頻符號及資料符號,且UE可基於此等導頻符號來估計 ΜΙΜΟ頻道回應。在此狀況下,ΜΙΜΟ頻道估計將包括實 際ΜΙΜΟ頻道回應及由節點Β應用之隱式循環延遲矩陣。 由隱式循環延遲矩陣引起之相移可被UE感知為ΜΙΜΟ頻道 波動之部分,且UE不需要獲知每一天線之隱式循環延遲 值。藉由以隱式循環延遲矩陣傳輸導頻,節點Β可任意地 選擇並改變隱式循環延遲值,且該改變對於UE而言將為 明顯的。 129018.doc -24- 200847706 藉由在該L個虛擬天線間具有均一延遲間隔之情況下使 用少數明確延遲(例如,零延遲、小延遲及大延遲),可減 少節點B與UE之間的信令附加項及/或UE處之選擇複雜 性。節點B可在不必通知UE之情況下選擇並應用各種隱式 循環延遲值。In a design, Node B may select for each UE - a clear delay and may send the selected delay to the fairy. In another design, Node B may select for all UEs that are served by Point B, which are explicitly delayed and may broadcast or transmit delays to such UEs. In yet another design, node b may limit the set of delays differently for each rank in order to reduce UE computational complexity and feedback additions. For example, t ' can allow zero delay for rank ^, allow zero delay and large delay for rank 2, and so on. In one design, the UE may evaluate different possible = coding matrices and different possible delays based on a performance metric, and may choose to have the best performance, precoding matrix and delay. For each possible combination of precoding matrix % and delay ^, the UE can calculate the effective μιμ channel estimate based on the ΜΙΜΟ channel estimate η (the magic, the precoding matrix w, and the explicit delay ice). The UE can evaluate different hypotheses. Each hypothesis corresponds to a different precoding sub-matrix for different combinations of virtual antennas that can be used for data transmission (ie, different sub-trees). The UE can use the detection technology and the available technology. A uniform distribution of transmission power between all hypothetical virtual antennas is used to estimate a set of sinrs for this hypothesis. Then each SINR can be mapped to capacity based on the capacity function and all virtual antennas for each hypothesis can be accumulated The capacity of the κ subcarriers to obtain the total valley of this hypothesis. After evaluating all the assumptions that the precoding matrix and the explicit cyclic delay value can be combined with 129018.doc -23- 200847706, the UE can select the maximum total capacity. The best assumption of the optimal combination of precoding matrix and delay. The UE can use the precoding submatrix and delay of the best hypothesis as the precoding moment to be used for data transmission. W and delay to transmit. The precoding matrix W may contain L optimal lines for L selected virtual antennas. The UE may also determine S data streams to be transmitted on the L selected virtual antennas. S SINRs may be determined based on SINRs for subcarriers and virtual antennas of each data stream. The UE may also determine S channel quality indicators (CQIs) based on SINRs of the S data streams. The CQI value may include an average SINR, a modulation and coding mechanism (MCS), a packet format, a transmission format, etc. The UE may send S CQI values of the S data streams or may send a basic CQI value and a difference CQI. The basic CQI value may represent the SINR of the first decoded data stream, and the difference CQI value may represent the difference between the SINRs of the two data streams. In one design, the Node B may arbitrarily select each physical antenna. Implicit cyclic delay value. Node B can transmit pilot symbols and data symbols by the same implicit cyclic delay processing, and the UE can estimate the channel response based on the pilot symbols. In this case, the channel estimation will include the actual ΜΙΜΟChannel response The implicit cyclic delay matrix applied by the node 。. The phase shift caused by the implicit cyclic delay matrix can be perceived by the UE as part of the ΜΙΜΟ channel fluctuation, and the UE does not need to know the implicit cyclic delay value of each antenna. The implicit cyclic delay matrix transmits the pilot, and the node 任意 can arbitrarily select and change the implicit cyclic delay value, and the change will be obvious for the UE. 129018.doc -24- 200847706 by the L virtual antennas Using a small number of explicit delays (e.g., zero delay, small delay, and large delay) with a uniform delay interval, the signaling add-on between the Node B and the UE and/or the selection complexity at the UE can be reduced. Node B can select and apply various implicit cyclic delay values without having to notify the UE.

囷5展示圖2中之UE 120處之RX ΜΙΜΟ處理器260及RX資 料處理器270之設計的方塊圖。自解調變器25乜至25竹接 收之導頻符號可被表示為: 方程式(20) rp(^) = H(^)C(A:)Vp(^) » 〜,二… 其中:Η⑷為副載波灸之RxT MIM〇頻道矩陣,且 %⑷為含有在一符號週期中之副載波灸上的用於R個接 收天線的R個接收到之導頻符號的Rx丨向量。 *汝方知式(2)中所示傳輸導頻符號,則方程式(a)可為 適用的。若如方程式(4)中所示傳輸導頻符號,則方程式 (2〇)可為適用的。 '頻道估計器294可基於接收到之導頻符號來導出⑽廳頻 道估什。ΜΙΜΟ頻道估計可被表示為: Η^) = Η卿),或 方程式(21) H邮⑷=H⑷ C〇t)V, ^ 且 方程式(22) -以)為副载^之RxT估計之MIM0頻道矩陣 方程式叫及⑼假定無頻道估計誤差。蘭〇頻道 、曾拓可包㈣於傳輸之所有副載波的—組估計之Μ細頻 、陣。如方程式(21)及(22)令所示,ΜΙΜ〇頻道估計 129018.doc -25- 200847706 包括實際ΜΙΜΟ頻道H(A〇以及隱式循環延遲矩陣 及用於導頻之單式矩陣v(若存在)。 在RX ΜΙΜΟ處理器260内,計算單元5 1 〇可自頻道估計 器294接收ΜΙΜΟ頻道估計HJ幻以及經選擇以供使用之預 編碼矩陣W及明確循環延遲矩陣d(a:)。若如方程式(4)中所 示傳輸導頻,則處理器260可如下移除用於導頻之單式矩 陣 V,: = ㈨ V"。 單元510可如下計算有效ΜΙΜΟ頻道估計:5 shows a block diagram of the design of the RX® processor 260 and the RX data processor 270 at the UE 120 in FIG. The pilot symbols from the demodulation transformer 25乜 to 25 bamboo can be expressed as: Equation (20) rp(^) = H(^)C(A:)Vp(^) » 〜, two... Where: Η(4) It is the RxT MIM channel matrix of subcarrier moxibustion, and %(4) is the Rx丨 vector of R received pilot symbols for R receiving antennas on the subcarrier moxibustion in one symbol period. Equation (a) may be applicable if the pilot symbols are transmitted as shown in equation (2). Equation (2〇) may be applicable if the pilot symbols are transmitted as shown in equation (4). The channel estimator 294 can derive (10) the hall channel estimate based on the received pilot symbols. The ΜΙΜΟ channel estimate can be expressed as: Η^) = Η卿), or Equation (21) H 邮(4)=H(4) C〇t)V, ^ and Equation (22) - is the sub-carrier RxT estimated MIM0 The channel matrix equation is called (9) assuming no channel estimation error. Lancome Channel and Zengtuo Packet (4) are the fine-frequency arrays of the group estimates of all subcarriers transmitted. As shown in equations (21) and (22), the ΜΙΜ〇 channel estimate 129018.doc -25- 200847706 includes the actual ΜΙΜΟ channel H (A 〇 and the implicit cyclic delay matrix and the simple matrix v for the pilot (if Within the RX ΜΙΜΟ processor 260, the computing unit 5 1 ΜΙΜΟ can receive the ΜΙΜΟ channel estimate HJ illusion from the channel estimator 294 and the precoding matrix W and the explicit cyclic delay matrix d(a:) selected for use. If the pilot is transmitted as shown in equation (4), processor 260 may remove the simple matrix V for the pilot as follows: = (9) V" Unit 510 may calculate the effective channel estimate as follows:

He#⑻=Η如⑷D⑷WU,或 方程式(23) H,W = HeirWWDWU - 方程式(24) 其中H吸⑷為副載波灸之RxL有效ΜΙΜΟ頻道矩陣。H⑻為 由資料符號觀測到之有效MIM0頻道且關於用於資料傳輸 之L個虛擬天線。 若節點B如方程式⑴中所示執行預編碼及明確循環延遲 處理,則可使用方程式(23)。若節點“方程式(3)中所示 執行預編碼及明確循環延遲處自,則可使用方程式(Μ)。 單元5H)接著可基於心⑻且根據最小均方差(mmse)、線性 mmsE(LMMSE)、迫零(ZF ; zer〇 f〇rcing)或某一並他 MI則貞測技術來針對每一副载波晴算空間渡波器矩陣 Μ⑷。 干 W1自R個解調變器 lvi 1 ivi w 叫一一…工么後传K個 接收到之資料符號流。MI⑽貞測器512可以每— 之空間濾波器矩陣M(幻對哕R/f 载波免 ()對孩R個接收到之資料符 ΜΙΜΘ偵測且提供u固選 机執仃 k疋之虛挺天線之L個偵 129018.doc • 26 - 200847706 流。層解映射器514可以與由圖3A中之層映射器332或圖 3B中之層映射器342執行之映射互補的方式解映射該^個靖 測到之符號流且可提供S個資料流之s個解映射之符號流。 Μ資料處理器270包括用於該S個資料流之s個流處理器 520a至520s。每一流處理器52〇可符號解映射、解擾碼、 解交錯並解碼其解映射之符號流且提供經解碼之資料流。 上囷6展示用於在無線通信系統中傳輸資料之過程的設 計。可由傳輸器(諸如,節點B、UE#)來執行過程_。對 !過程600而言’傳輸器可基於資料傳輸之接收器已知的 弟-組循環延遲值(例如,^至^)來執行循環延遲分 集之第-處理(或明確循環延遲處理)(區塊612)。傳輸哭可 2循環延遲分集之第—處理之前或之後基於預編碼矩陣W 執仃預編碼(區塊614)。傳輸器可基於該接收器未知的第 —組循環延遲值(例如,來執行循環延遲分集之第 二處理(或隱式循環延遲處理)(區塊616)。 卞 _傳輸器可對資料執行循環延遲分集之該第-處理及該第 ⑽例如’如方程式⑴或(3)中所示 理導頻所ι料μ以未制於㈣之來處 理—頻。傳輸器可(例如)藉 - 延遲矩陣刚而在頻域中執行計载波灸應用明確循環 專=:)藉由如圖4中所示循環移位有用部 在知域中執行循環延遲分集之第二處理。 在—設計中,傳輸器可接收指示複數個延遲令之一者的 129018.doc -27- 200847706 反饋資訊,該複數個延遲可包括如方程式⑴)至⑽中所 示之零延遲、小延遲及大延遲。傳輸器可基於該反饋資訊 所指示之延遲來判定該第一組循環延遲值。在另一設計 傳輸器可自該複數個延遲中選擇一延遲且可將選定之 延遲發送至接收器。傳輸器接著可基於選定之延遲來判定 X第”且循環延遲值。傳輸态可在不必通知接收器之情況 下自主地(例如,偽隨機地)選擇該第二組中之循環延遲值 且可約束此等循環延遲值使其短於循環首碼長度。 圓7展7F用於在無線通信系統中傳輸資料之設備7⑻的設 計。設備700包括用於基於資料傳輸之接收器已知的第一 組循環延遲值來執行循環延遲分集之第一處理的構件(模 組712)、用於在循環延遲分集之該第一處理之前或之後基 :預、’扁馬矩陣來執行預編碼的構件(模組714)及基於該接收 器未知的第二組循環延遲值來執行循環延遲分集之第二處 理的構件(模組716)。 囷8展示用於在無線通信系統中接收資料之過程的設 計。可由接收器(諸如,UE、節點B等)來執行過程8〇〇。對 於過程800而言,接收器可接收基於接收器已知的第一組 循%延遲值(例如,、〇至^ H)及接收器未知的第二組循 %延遲值(例如,至?τι)以循環延遲分集發送之資料傳輸 (區塊812)。接收器可接收僅基於該第二組循環延遲值以循 %延遲分集發送之導頻傳輸(區塊814)。接收器可基於所接 收之導頻傳輸來導出ΜΙΜΟ頻道估計(區塊816)。可以未用 於貧料傳輸之單式矩陣ν來發送導頻傳輸。在此狀況下, 1290l8.doc -28- 200847706 可進一步基於單式矩陣V來導出ΜΙΜΟ頻道估計。ΜΙΜΟ頻 道估計可包含多個副載波之多個ΜΙΜΟ頻道矩陣。 接收器可基於該ΜΙΜΟ頻道估計及該第一組循環延遲值 來對接收到之資料傳輸執行ΜΙΜΟ偵測(區塊818)。在區塊 8 1 8之一設計中’接收器可基於該第一組循環延遲值來判 疋《亥夕個田彳載波之多個循環延遲矩陣D (灸)。接收器可基於 該多個循環延遲矩陣、該多個ΜΙΜ〇頻道矩陣t㈨及He#(8)=Η如(4)D(4)WU, or Equation (23) H,W = HeirWWDWU - Equation (24) where H (4) is the RxL effective ΜΙΜΟ channel matrix of the subcarrier moxibustion. H(8) is the valid MIM0 channel observed by the data symbol and about the L virtual antennas used for data transmission. Equation B (23) can be used if Node B performs precoding and explicit cyclic delay processing as shown in Equation (1). If the node performs the precoding as shown in equation (3) and the explicit cyclic delay is self, then the equation (Μ) can be used. Unit 5H) can then be based on the heart (8) and according to the minimum mean square error (mmse), linear mmsE (LMMSE) Forcing zero (ZF; zer〇f〇rcing) or some and his MI is a technique to calculate the space of the ferrometer matrix for each subcarrier (4). Dry W1 from R demodulation transformers lvi 1 ivi w After a job, the K received data symbol streams are transmitted. The MI(10) detector 512 can be used for each spatial filter matrix M (phantom pair R/f carrier free () to the child R received data symbolsΜΙΜΘ Detecting and providing L Detector 018018.doc • 26 - 200847706 stream of the virtual antenna of the 固 固 。 。 。 层 层 。 。 。 。 。 。 。 。 。 。 。 。 。 。 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层 层The layer mapper 342 performs mapping in a complementary manner to demap the detected symbol streams and provides s demapping symbol streams of the S data streams. The data processor 270 includes the S data streams. s stream processors 520a through 520s. Each stream processor 52 〇 symbol demap, descramble, deinterlace The demapped symbol stream is decoded and the decoded data stream is provided. Cap 6 shows the design of the process for transmitting data in a wireless communication system. Process _ can be performed by a transmitter such as Node B, UE#. For the process 600, the transmitter can perform the first processing (or explicit cyclic delay processing) of the cyclic delay diversity based on the known set-cycle delay values (eg, ^ to ^) of the receiver of the data transmission. Block 612). Transmission of the crying 2 cycle delay diversity - processing pre-coding based on the precoding matrix W before or after processing (block 614). The transmitter may be based on a first set of cyclic delay values unknown to the receiver (eg a second processing (or implicit cyclic delay processing) for performing cyclic delay diversity (block 616). The 卞_transmitter may perform the first processing of the cyclic delay diversity on the data and the (10) eg, as in equation (1) or The pilots shown in (3) are processed in the same frequency as (4). The transmitter can, for example, borrow the delay matrix and perform the carrier moxibustion application in the frequency domain. ) by cyclic shift as shown in Figure 4. The bit useful portion performs a second process of cyclic delay diversity in the knowledge domain. In the design, the transmitter may receive 129018.doc -27-200847706 feedback information indicating one of the plurality of delay commands, the plurality of delays may include Zero delay, small delay, and large delay as shown in equations (1) through (10). The transmitter may determine the first set of cyclic delay values based on the delay indicated by the feedback information. The other design transmitter may be from the complex number A delay is selected among the delays and the selected delay can be sent to the receiver. The transmitter can then determine the Xth and cyclic delay values based on the selected delay. The transmission state may autonomously (e.g., pseudo-randomly) select the cyclic delay values in the second group without having to notify the receiver and may constrain the cyclic delay values to be shorter than the cycle first code length. Round 7 shows the design of the device 7 (8) for transmitting data in a wireless communication system. Apparatus 700 includes means (module 712) for performing a first process of cyclic delay diversity based on a first set of cyclic delay values known to a receiver of data transmission, for use prior to the first processing of cyclic delay diversity or Subsequent base: Pre- ' flat-matrix matrix to perform pre-coded components (module 714) and components (module 716) that perform a second process of cyclic delay diversity based on a second set of cyclic delay values unknown to the receiver.囷8 shows the design of the process for receiving data in a wireless communication system. The process 8 can be performed by a receiver such as a UE, a Node B, or the like. For process 800, the receiver can receive a first set of %-delay values (eg, 〇 to ^ H) known to the receiver and a second set of %-delay values unknown to the receiver (eg, to ?τι The data transmission transmitted in cyclic delay diversity (block 812). The receiver can receive a pilot transmission (block 814) that is transmitted based on the second set of cyclic delay values only by the % delay diversity. The receiver may derive a frame estimate based on the received pilot transmission (block 816). The pilot transmission can be transmitted without a single matrix ν for poor material transmission. In this case, 1290l8.doc -28-200847706 can further derive the ΜΙΜΟ channel estimate based on the unitary matrix V. The ΜΙΜΟ channel estimate may comprise a plurality of ΜΙΜΟ channel matrices of a plurality of subcarriers. The receiver may perform a chirp detection on the received data transmission based on the chirp channel estimate and the first set of cyclic delay values (block 818). In one of the blocks 8 1 8 design, the receiver can determine a plurality of cyclic delay matrices D (moxibustion) of the ridges of the ridges based on the first set of cyclic delay values. The receiver may be based on the plurality of cyclic delay matrices, the plurality of ΜΙΜ〇 channel matrices t (9), and

用於資料傳輸之預編碼矩陣w來導出該多個副載波之多個 間濾波器矩陣M0)。接收器接著可基於該多個空間濾波 為矩陣來對接收到之資料傳輸執行MIM〇偵測。 接收裔可評估複數個預編碼矩陣之效能(例如,總容量) 且可毛送私示遥疋之預編碼矩陣之反饋資訊。可基於選定 之預編碼矩陣以預編碼來發送資料傳輸。接收器可進一步 基於選定之預編碼料來對接收到之㈣傳輸執行m_ 偵测。接收器亦可評估複數個延遲(例如,零延遲、小延 遲^大延遲)且可發送指示選定之延遲之反饋資訊。可基 於選定之延遲來判定該第—組循環延遲值。接收器亦可聯 合地評估該複數個預編碼矩陣及該複數個延遲。 圓展不用於在無線通信系統中接收資料之設備9⑻的設 计°又備900包括用於接收基於接收器已知之第一組循環 L遲值及β接收$未知之第二組循環延遲值以循環延遲分 ㈣送之"傳輸的構件(模組912)、用於接收僅基於該第 二組循%延遲值以彳㈣延遲分集發送之導頻傳輸的構件 '、、且914)、用於基於接收到之導頻傳輸來導出ΜΙΜΟ頻道 129018.doc -29- 200847706 估計的構件(模組916)及用於基於該mim〇頻道估計及該第 、、且循%延遲值來對接收到之資料傳輸執行MIM〇偵測的 構件(模組91 8)。 圖7及圖9中之模組可包含處理器、電子裝置、硬體裝 置、電子組件、邏輯電路、記憶體等、或其任一組合。 在以上描述之大部分中,以c(幻進行之循環延遲分集處 理為隱式的,且C(幻對於UE而言係未知的。在另一設計 中,以c(〇進行之循環延遲分集處理為明確的,且c(a)對 於UE而a係已知的(例如,信令給UE)。可以相同方式以 C(幻來處理資料符號,而不管以幻是隱式還是明確的。當 C(A〇為式時可以其來處理導頻符號(如上所述),且當 C(幻為明確時可能或可能不以其來處理導頻符號。 热習此項技術者應理解,可使用各種不同技藝及技術中 之任一者來表示資訊及信號。舉例而言,可遍及上文之描 述而參考的資料、指♦、命令、資訊、信號、位元、符號 及碼片可由電壓、電流、電磁波、磁場或磁粒子、光場或 光粒子、或其任一組合表示。 熟習此項技術者應進一步瞭解,結合本文中之揭示内容 而描述的各種說明性邏輯區塊、模組、電路及演算法步驟 可被實施為電子硬體、電腦軟體或兩者之組合。為清楚地 說明硬體與軟體之此可互換性,在上文中大體在功能性方 面描述各種說明性組件、區塊、模組、電路及步驟。此功 能性是實施為硬體還是實施為軟體取決於特定應用及施加 於整個系統上之設計約束。熟習此項技術者可針對每一特 129018.doc -30- 200847706 定應以不同方式實施所描述之功能性,但 應被解釋成引起脫離本揭示案之範,。 、〜决朿不 結合本文中之揭示内容而描述的各種說明性邏 模組及電路可用以下各者來實施或執行:經設計以^太 文中所描述之功能的通用處理器、數: (啊、特殊應用積體電路(ASIC)、場可 = 或其他可程式化邏輯裝置、離散閘或電=列 離散硬體組件或其任-組合。通用處理器可為微處理器, 但2代地,該處理器可為任一習知處理器、控制器、微控 制裔或狀態機。處理器亦可被實施為計算裝置之組合,例 如,DSP與微處理器之組合、複數個微處理器、與瞻核 心結合的-或多個微處理器、或任_其他此種組態。/ 結合本文中之揭示内容而描述的方法或演算法之步驟可 直接實施於硬體中、由處理器執行之軟體模組中或兩者之 組合中。軟體模組可常駐於RAM記憶體、快閃記憶體、 ROM記憶體、EPROM記憶體、EEpR〇M記憶體、暫存器、 更碟抽取式碟片、CD-ROM或此項技術中已知的任一其 他形式之儲存媒體中。一例示性儲存媒體耦接至處理器, 使得該處理器可自該儲存媒體讀取資訊及將資訊寫入至該 儲存媒體。替代地,該儲存媒體可為該處理器之整體部 分。該處理器及該儲存媒體可常駐於一 ASIC中。該ASIC 可$駐於一使用者終端中。替代地,該處理器及該儲存媒 體可作為離散組件而常駐於一使用者終端中。 在一或多個例示性設計中,所描述之功能可以硬體、軟 129018.doc -31 200847706 體、韌體、或其任一組合來每 等功能可作為一或多個指令::式:以軟體來實施,則該 體上或作為一或多個指令或程式:而:儲存於電腦可讀媒 輸。電腦可讀媒體包括電二:纟電腦可讀媒體上傳 促進將電腦^ 媒體及通信媒體,其包括 從進將式自一位置轉移至 存媒體可為可由通用戋專 的任一媒體。儲 〜田通用次專用電腦存取的 實例說明且未限制,卜笙+ J用媒體。以 此4電腦可讀媒體可包含RAM、 ROM、EEPR⑽、CD_R〇M或其他光碟 :其他磁性儲存裝置或可用於載運或_ = =的所要程式碼構件及可由通用或專用電腦或通 二=器存取的任一其他媒體。又,將任何連接適 虽地%作電腦可讀媒體。舉例而言,若使 纖纜線、雙絞線、數位用戶線 ° “,,見、光 或诸如紅外、盔 ::波的無線技術而自網站、飼服器或其他遠端源:傳輸 軟體’則同軸電纜、光纖I線、雙絞線、DSL或諸如紅 外、無線電及微波的無線技術包括於媒體之定義令。如本 文中所使S,磁碟及碟片包括緊密碟片(CD)、雷射碟片、 光碟、數位通用碟片(DVD)、軟碟及藍光碟片,其中磁碟 通常以磁性方式再生資料’而光碟以雷射以光學方式再生 貝料。上述諸物之組合亦應包括於電腦可讀媒體之範脅 内0 β 提供本揭示案之先前描述以使熟習此項技術者能夠製造 或使用本揭示案。熟習此項技術者將容易顯而易見對本揭 不案之各種修改,且在未脫離本揭示案之精神或範疇之情 129018.doc •32- 200847706 況下可將本文中所界定之一般原理應用於其他變體。因 此,本揭示案不欲限於本文中所描述之實例及設計而是與 本文中所揭示之原理及新穎特徵之範疇最廣泛地一致。 【圖式簡單說明】 圖1展示無線多重存取通信系統。 圖2展示節點B及UE之方塊圖。 圖3 A及圖3B展示傳輸(TX)MIMO處理器之兩個設計。 圖4展示時域中之循環延遲。 圖5展示接收(RX)MIMO處理器之設計。 圖6展示用於傳輸資料之過程。 圖7展示用於傳輸資料之設備。 圖8展示用於接收資料之過程。 圖9展示用於接收資料之設備。 【主要元件符號說明】 100 無線多重存取通信系統 110 節點B 120 使用者設備 212 資料源 220 TX資料處理器 230 ΤΧ ΜΙΜΟ處理器 230a ΤΧ ΜΙΜΟ處理器 230b ΤΧ ΜΙΜΟ處理器 232a-232t 調變器/解調變器 234a-234t 天線 129018.doc -33- 200847706 236 RX ΜΙΜΟ處理器 238 RX資料處理器 240 控制器/處理器 242 記憶體 244 排程器 252a-252r 天線 254a-254r 調變器/解調變器 260 RX ΜΙΜΟ處理器 270 RX資料處理器 272 資料儲集器 278 資料源 280 ΤΧ資料處理器 282 ΤΧ ΜΙΜΟ處理器 290 控制器/處理器 292 記憶體 294 頻道估計器/頻道處理器 320a-320s 流處理器 332 層映射器 334 明確循環延遲處理器 336 預編碼器 338 隱式循環延遲處理器 342 映射器 344 預編碼器 346 明確循環延遲處理器 129018.doc -34- 200847706 348 隱式循環延遲處理器 510 計算單元 512 ΜΙΜΟ偵測器 514 層解映射器 520a-520s 流處理器 700 在無線通信系統中傳輸資料之設備 712 模組 714 模組 716 模組 900 用於在無線通信系統中接收資料之設備 912 模組 914 模組 916 模組 918 模組 129018.doc -35-A precoding matrix w for data transmission derives a plurality of inter-filter matrices M0) of the plurality of subcarriers. The receiver can then perform MIM detection on the received data transmission based on the plurality of spatial filters as a matrix. The recipient can evaluate the performance of the plurality of precoding matrices (eg, total capacity) and can send feedback information about the precoding matrix of the telepresence. The data transmission can be transmitted in precoding based on the selected precoding matrix. The receiver can further perform m_detection on the received (four) transmission based on the selected precoding material. The receiver can also evaluate a plurality of delays (e.g., zero delay, small delay, large delay) and can send feedback information indicating the selected delay. The first set of cyclic delay values can be determined based on the selected delay. The receiver may also jointly evaluate the plurality of precoding matrices and the plurality of delays. The design of the device 9 (8) that is not used to receive data in a wireless communication system includes 900 for receiving a second set of cyclic delay values based on a first set of cyclic L delays known by the receiver and beta receiving $ unknowns. The cyclic delay is divided into four (s) sent components (module 912), means for receiving pilot transmissions based only on the second set of % delay values, and (four) delay diversity transmissions, and 914) Estimating the component (module 916) based on the received pilot transmission to derive the channel 129018.doc -29-200847706 and for receiving the based on the mim〇 channel estimate and the first and subsequent % delay values The data is transmitted to execute the MIM detection component (module 91 8). The modules of Figures 7 and 9 may comprise a processor, an electronic device, a hardware device, an electronic component, a logic circuit, a memory, etc., or any combination thereof. In most of the above descriptions, c (the cyclic delay diversity processing of the magic is implicit, and C (the magic is unknown to the UE. In another design, the cyclic delay diversity is performed by c (〇) The processing is unambiguous, and c(a) is known to the UE for a (eg, signaling to the UE). The data symbols can be handled in the same way in C, regardless of whether the illusion is implicit or explicit. When C(A〇 is the expression, it can be used to process the pilot symbols (as described above), and when C (the illusion is clear, the pilot symbols may or may not be processed by it. The person skilled in the art should understand that Information and signals may be represented using any of a variety of different techniques and techniques. For example, data, pointers, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be Voltage, current, electromagnetic wave, magnetic field or magnetic particle, light field or light particle, or any combination thereof. Those skilled in the art will further appreciate the various illustrative logic blocks, modes described in connection with the disclosure herein. Group, circuit, and algorithm steps can be implemented For electronic hardware, computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps are generally described above in terms of functionality. Whether this functionality is implemented as hardware or as software depends on the specific application and design constraints imposed on the overall system. Those skilled in the art can implement this in different ways for each special 129018.doc -30- 200847706 The described functionality is to be construed as a departure from the scope of the disclosure, and various illustrative logic modules and circuits not described in connection with the disclosure herein may be implemented or executed by the following. : General purpose processor, number designed to function as described in the text: (ah, special application integrated circuit (ASIC), field = or other programmable logic device, discrete gate or electric = column discrete hardware A component or any combination thereof. A general purpose processor may be a microprocessor, but in the second generation, the processor may be any conventional processor, controller, micromanager or state machine. The processor may also be implemented A combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, a combination of a core or a plurality of microprocessors, or any other such configuration. The described method or algorithm steps can be directly implemented in a hardware, a software module executed by a processor, or a combination of the two. The software module can be resident in RAM memory, flash memory, ROM memory. Body, EPROM memory, EEpR 〇M memory, scratchpad, disc-removable disc, CD-ROM or any other form of storage medium known in the art. An exemplary storage medium is coupled To the processor, the processor can read information from and write information to the storage medium. Alternatively, the storage medium can be an integral part of the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. Alternatively, the processor and the storage medium can reside in a user terminal as discrete components. In one or more exemplary designs, the functions described may be hardware, soft 129018.doc -31 200847706 body, firmware, or any combination thereof, each function may be one or more instructions:: Implemented in software, the body or as one or more instructions or programs: and stored in a computer readable medium. The computer readable medium includes a second computer: a computer readable medium uploading facilitating the transfer of the computer to the media and communication media, including the transfer from the remote location to the storage medium, which may be any medium that can be used by the general purpose. Storage ~ Tian general secondary computer access example description and not limited, Bu Yi + J media. The 4 computer readable medium can include RAM, ROM, EEPR (10), CD_R 〇 M or other optical discs: other magnetic storage devices or components of the desired code that can be used to carry or _ = = and can be used by a general purpose or special purpose computer or Any other media accessed. Also, any connection is properly made as a computer readable medium. For example, if you make a cable, a twisted pair, or a digital subscriber line, you can see, light, or wireless technology such as infrared, helmet, or wave from a website, a feeder, or other remote source: transmission software. 'The coaxial cable, fiber optic I-line, twisted-pair cable, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the media. As used herein, the disk and the disc include compact discs (CD). , laser discs, optical discs, digital versatile discs (DVD), floppy discs and Blu-ray discs, in which the discs are usually magnetically regenerated, and the discs are optically regenerated with a laser. The combination of the above It is also intended to be included within the scope of the computer-readable medium. The prior description of the present disclosure is provided to enable those skilled in the art to make or use the present disclosure. Those skilled in the art will readily appreciate the various aspects of the disclosure. Modifications, and the general principles defined herein may be applied to other variants without departing from the spirit or scope of the disclosure. 129018.doc • 32-200847706. Therefore, the present disclosure is not intended to be limited to Drawing The examples and designs are most broadly consistent with the scope of the principles and novel features disclosed herein. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a wireless multiple access communication system. Figure 2 shows a block diagram of Node B and UE. Figures 3A and 3B show two designs of a transmit (TX) MIMO processor. Figure 4 shows the cyclic delay in the time domain. Figure 5 shows the design of a receive (RX) MIMO processor. Figure 6 shows the data used to transmit data. Figure 7. shows a device for transmitting data. Figure 8 shows a process for receiving data. Figure 9 shows a device for receiving data. [Main Symbol Description] 100 Wireless Multiple Access Communication System 110 Node B 120 Use Device 212 Data Source 220 TX Data Processor 230 ΤΧ ΜΙΜΟ Processor 230a ΜΙΜΟ ΜΙΜΟ Processor 230b ΤΧ ΜΙΜΟ Processor 232a-232t Modulator/Demodulation Transducer 234a-234t Antenna 129018.doc -33- 200847706 236 RX ΜΙΜΟ Processor 238 RX Data Processor 240 Controller/Processor 242 Memory 244 Scheduler 252a-252r Antenna 254a-254r Modulator/Demodulation Transducer 260 RX 270 RX data processor 272 data collector 278 data source 280 data processor 282 ΜΙΜΟ processor 290 controller / processor 292 memory 294 channel estimator / channel processor 320a-320s stream processor 332 layer mapping 334 explicit cyclic delay processor 336 precoder 338 implicit cyclic delay processor 342 mapper 344 precoder 346 explicit cyclic delay processor 129018.doc -34- 200847706 348 implicit cyclic delay processor 510 computing unit 512 Detector 514 layer demapper 520a-520s stream processor 700 device 712 for transmitting data in a wireless communication system module 714 module 716 module 900 device 912 for receiving data in a wireless communication system module 914 Group 916 Module 918 Module 129018.doc -35-

Claims (1)

200847706 十、申請專利範圍: 1. 一種用於無線通信之設備,其包含: 至少一處理器,其經組態以:基於一資料傳輸之一接 收裔已知的一第一組循環延遲值來執行循環延遲分集之 第一處理;及基於該接收器未知的一第二組循環延遲值 來執行循環延遲分集之第二處理;及 一記憶體,其耦接至該至少一處理器。 2·如請求項1之設備,其中該至少一處理器經組態以:對 貝料執行循環延遲分集之該第一處理及該第二處理;並 且對導頻僅執行循環延遲分集之該第二處理。 3·如%求項1之設備,其中該至少一處理器經組態以:在 頻域中執行循環延遲分集之該第一處理;並在頻域或時 域中執行循環延遲分集之該第二處理。 4. 如請求们之設備’其中該第一組循環延遲值對應於長 於一循環首碼長度之循環延遲,且其中該第二組循環延、 遲值對應於短於該循環首碼長度之循環延遲。 5. 如請求们之設備’其中該至少一處理器經組態以:自 ^亥接㈣接收指*複數個延遲中之-者的反饋資訊;並 =或反饋資訊所指示之該延遲來判定該第—組循環延 6. 如:未項5之設備’其中該反饋資訊指示無延 ^ 盾環首碼長度之小延遲或大於該循環首碼長度之大延 東員1之°又備,其中該至少-處理器經組態以自複 129018.doc 200847706 數個延遲中選擇一延遲 _ A 、將該選定之延遲發送至該接收 〇 , ^ 5 1 % # 匈定該第一組循環延遲值。 8 ·如明求項1之设備,其中 、s σ k, 、 k至少一處理器經組態以在未 通知该接收器之情況下白 ρ ο π A 主地選擇該第二組中之該等循 壤延遲值。 9·如請求項1之設備 來自該接收器之反 延遲值。 /、 该至少一處理器經組態以基於 饋資汛來判定該第二組中之該等循環200847706 X. Patent Application Range: 1. A device for wireless communication, comprising: at least one processor configured to: receive a first set of cyclic delay values known to a person based on a data transmission Performing a first process of cyclic delay diversity; and performing a second process of cyclic delay diversity based on a second set of cyclic delay values unknown to the receiver; and a memory coupled to the at least one processor. 2. The device of claim 1, wherein the at least one processor is configured to: perform the first processing and the second processing of cyclic delay diversity on the batten; and perform only the cyclic delay diversity on the pilot Second processing. 3. The device of claim 1, wherein the at least one processor is configured to: perform the first processing of cyclic delay diversity in a frequency domain; and perform the cyclic delay diversity in a frequency domain or a time domain Second processing. 4. The device of the requester, wherein the first set of cyclic delay values corresponds to a cyclic delay longer than the length of the first code of the cycle, and wherein the second set of cyclic delays and late values correspond to a cycle shorter than the first code length of the cycle delay. 5. The device of the requester, wherein the at least one processor is configured to: receive feedback information from the plurality of delays from the connection (4); and = or determine the delay indicated by the feedback information The first-group loop is extended by 6. For example, the device of item 5 is in which the feedback information indicates that there is no delay or a small delay of the length of the first code of the shield ring or a length greater than the length of the first code of the cycle. The at least-processor is configured to select a delay _ A from the plurality of delays of 129018.doc 200847706, send the selected delay to the receiving 〇, ^ 5 1 % # 匈定 the first set of cyclic delay values . 8. The device of claim 1, wherein at least one processor of s σ k, k is configured to select the second group of white ρ π π A without notifying the receiver These are the delay values. 9. The device of claim 1 has an inverse delay value from the receiver. /, the at least one processor is configured to determine the cycles in the second group based on the feeds 10· 11. 如請求項1之設備 環延遲分集之該第 一處理之前基於一 如請求項1之設備 環延遲分集之該第 預編碼。 其中該至少一處理器經組態以在循 —處理之後且在循環延遲分集之該第 預編碼矩陣來執行預編碼。 ’其中該至少一處理器經組態以在循 —處理之前基於一預編碼矩陣來執行10. 11. The first pre-coding of the device ring delay diversity as in claim 1 prior to the first processing of the device ring delay diversity of claim 1. The at least one processor is configured to perform precoding after the processing and after the first precoding matrix of the cyclic delay diversity. Where the at least one processor is configured to perform based on a precoding matrix prior to processing U項2之δ又備,其中該至少一處理器經組態以便以 一未應用於該資料之單式矩陣來處理該導頻。 13· -種用於無線通信之方法,其包含: 基於一貧料傳輪之一接收器已知的一第一組循環延遲 值來執行循環延遲分集之第一處理;及 基於δ亥接收器未知的一第二組循環延遲值來執行循環 延遲分集之第二處理。 14·如請求項13之方法,其進一步包含: 對貝料執行循環延遲分集之該第一處理及該第二處 理;及 129018.doc 200847706 對導頻僅執行循環延遲分集之該第二處理。 15.:=:13之方法,其中該執行循環延遲分集之該第-=含在頻域中執行循環延遲分集之該第―處 其中该執行循環延遲分集之該第二處理包 域中執行循環延遲分集之該第二處理。 ”卞 16.如請求項13之方法,其進一步包含: 自該接收器接收指示複數個延 訊,·及 ”之者的反饋資 Ο 基於该反冑貧訊所指#之該延 延遲值。 弟一組循環 17·如請求項13之方法,其進一步包含: 在未通知該接收哭之軎、、w ώ工, 月况下自主地選擇該第二組中之 «亥荨循環延遲值。 18.如請求項13之方法,其進一步包含: 在循環延遲分集之該第一處 、戸八在… # 或之後且在循環延 遲刀集之泫第二處理之前基於一 碼。 預、、扁馬矩陣來執行預編 19· 一種用於無線通信之設備,其包含·· 用於基於一資料傳輸之一接收器已知的—第一 延遲值來執行循環延遲分集之第-處理的構件;及、 用於基於該接收器未知的一第- ’ M 弟一組循每延遲值來執行 盾辰I遲为集之第二處理的構件。 2〇·如請求項19之設備,其進一步包含: 用於對資料執行循環延遲分 木弟—處理及該第二 129018.doc 200847706 處理的構件;及 件用於對導頻僅執行循環延遲分集之該第二處理的構 項19之設備’其中該用於執行循環延遲分集之該 …广理的構件包含用於在頻域中執行循環延遲分 理的構件,且其中該用於執行循環延遲分二 =處:的構件包含用於在時域中執行循環延遲分集 t该弟二處理的構件。 22·如請求項19之設備,其進一步包含·· 一用於自該接收n接《线數㈣遲中之—者的 資訊的構件;及 用於基於該反饋資訊所指示之該延遲來判定該第一組 循環延遲值的構件。 、 23.如請求項19之設備,其進一步包含: ;在未通知w亥接收裔之情況下自主地選擇該二 中之該等循環延遲值的構件。 一 24·如請求項19之設備,其進一步包含: /於在循環延遲分集之該第一處理之前或之後且在循 %延遲分集之該第二處理之前基於—預編碼矩陣來執行 預編碼的構件。 種機扣可。貝媒體’其包含在由一機器執行時使該機器 執行包括以下操作之操作的指令: 基於-貧料傳輸之一接收器已知的一第一組循環延遲 值來執行循環延遲分集之第一處理;及 129018.doc 200847706 基於該接收器未知的一第二組循環延遲值來執行循環 延遲分集之第二處理。 26·如請求項25之機器可讀媒體,其在由該機器執行時使該 機器執行進一步包括以下操作之操作·· 對資料執行循環延遲分集之該第一處理及該第二處 理;及 對導頻僅執行循環延遲分集之該第二處理。 27.如請求項25之機器可讀媒體,其在由該機器執行時使該 機器執行進一步包括以下操作之操作·· 在頻域中執行循環延遲分集之該第一處理,及 在日守域中執行循環延遲分集之該第二處理。 28· —種用於無線通信之設備,其包含: 至少一處理器,其經組態以基於一資料傳輸之一接收 器已知的一第一組循環延遲值來執行循環延遲分集之第 一處理並基於該接收器已知的一第二組循環延遲值來執 行循環延遲分集之第二處理;及 一記憶體,其搞接至該至少一處理器。 29.如請求項28之設備,其中該至少一處理器經組態以對資 料執行循環延遲分集之該第一處理及該第二處理,且對 導頻省略循環延遲分集之該第一處理及該第二處理。 3〇· —種用於無線通信之設備,其包含: 至少一處理器,其經組態以:接收基於一接收器已知 之苐一組循環延遲值及該接收器未知之一第二組循環 延遲值以循環延遲分集發送之一資料傳輸;接收僅基於 129018.doc 200847706 該第二組循環延遲值以循環延遲分集發送之一導頻傳 輸;基於該接收到之導頻傳輸來導出一多重輸入多重輸 出(ΜΙΜΟ)頻道估計;並基於該MIM〇頻道估計及該第一 組循環延遲值來對該接收到之資料傳輸執行MIM〇偵 測;及 一 d憶體’其麵接至該至少一處理器。 31·如請求項30之設備,其中該至少一處理器經組態以:評 估複數個預編碼矩陣之效能;發送指示一選自該複數個 預編碼矩陣中之預編碼矩陣的反饋資訊;並進一步基於 該選定之預編碼矩陣來對該接收到之資料傳輸執行 ΜΙΜΟ偵測,且其中該資料傳輸係基於該選定之預編碼 矩陣以預編碼而發送。 32·如睛求項3〇之設備,其中該至少一處理器經組態以:基 於該接收到之導頻傳輸來獲得該ΜΙΜ〇頻道估計之多個 副载波之多個ΜΙΜΟ頻道矩陣;基於該第一組循環延遲 值來判定該多個副載波之多個循環延遲矩陣;基於該多 個循環延遲矩陣及該多個Μιμ〇頻道矩陣來導出該多個 釗載波之多個空間濾波器矩陣;並基於該多個空間濾波 為矩陣來對該接收到之資料傳輸執行MlM〇偵測。 33·如巧求項32之設備,其中該至少一處理器經組態以進一 步基於一用於該資料傳輸之預編碼矩陣來導出該多個空 間濾波器矩陣。 34·如%求項3〇之設備,其中該至少一處理器經組態以評估 複數個延遲之效此並發送指示一選自該複數個延遲中之 129018.doc 200847706 延遲的反饋資訊, 選定之延遲而判定 且其中該第一組循環延遲值係基於該 35 如請求項30之設備,其中 4苐一組循環延遲值對應於 36. 於-循環首碼長度之循環延遲,且其中該第二組循環 遲值對應於短於該循環首碼長度之循環延遲。 長 延 如請求項30之設備,其中該至少 步基於一用於該導頻傳輸但未用 陣來導出該ΜΙΜΟ頻道估計。 一處理器經組態以進一 於該資料傳輸之單式矩 37. 38. 一種用於無線通信之方法,其包含: 接收基於一接收器已知一 Λ M S 抑 心弟一組循裱延遲值及該接 收為未知之—第二組循環延遲值以循環延遲分集發送 一資料傳輸; 接收僅基於遠第二組循環延遲值以循環延遲分集發送 之一導頻傳輸; 土於&quot;亥接收到之導頻傳輸來導出一多重輸入多重輸出 (ΜΙΜΟ)頻道估計;及 基於遠ΜΙΜΟ頻道估計及該第一組循環延遲值來對該 接收到之貧料傳輸執行ΜΙΜΟ偵測。 如明求項37之方法,其中該執行ΜΙΜΟ偵測包含: 基於該第一組循環延遲值來判定多個副載波之多個揭 環延遲矩陣, 基於該多個循環延遲矩陣及該ΜΙΜΟ頻道估計之多個 ΜΙΜΟ頻逼矩陣來導出該多個副載波之多個空間濾波器 矩陣,及 °° 129018.doc 200847706 基_多μ „波該陣來對該接 執行ΜΙΜΟ偵測。 义貝枓傳輪 39·如明求項38之方法,其中該導 包含谁一本甘〜 夕1U工間遽波器矩陣 乂土 ; 一用於該資料傳輸之預編碼矩陣來 該多個空間濾波器矩陣。 早耒導出 40·如請求項37之方法,其進一步包含: 評估複數個預編碼矩陣之效能;及 發迗指示一選自該複數個預編碼矩陣中之預 :反饋資訊,其中該資料傳輸係基於該選定之預、: 陣以預編碼而發送,且其中該接收到之資 ΜΙΜΟ偵測係進一步基 ’輪的该 ^丞於3¾疋之預編碼矩陣而執行。 41·如請求項37之方法,其進一步包含: 評估複數個延遲之效能;及 發送指示-選自該複數個延遲中之延遲的反饋資訊, 且其中該第-組循環延遲值係基於該選定之延遲而判 定。 42· —種用於無線通信之設備,其包含: 用於接收基於一接收器已知之一第一組循環延遲值及 該接收未知之-第二組循環延遲值以循環延遲分集發 送之一資料傳輸的構件; 用於接收僅基於该第i組循環延遲值以循環延遲分集 發送之一導頻傳輸的構件; 用於基於該接收到之導頻傳輸來導出一多重輸入多重 輸出(ΜΙΜΟ)頻道估計的構件;及 129018.doc -8 - 200847706 用於基於該ΜΙΜΟ頻道估計及該第一組循環延遲值來 對該接收到之資料傳輸執行ΜΙΜΟ偵測的構件。 43·如請求項42之設備,其中該用於執行ΜΙΜ〇偵測之構件 包含: 用於基於該第一組循環延遲值來判定多個副載波之多 個循環延遲矩陣的構件, 用於基於該多個循環延遲矩陣及該ΜΙΜ0頻道估計之The delta of U term 2 is further prepared, wherein the at least one processor is configured to process the pilot with a unitary matrix not applied to the data. 13. A method for wireless communication, comprising: performing a first process of cyclic delay diversity based on a first set of cyclic delay values known to a receiver of a lean carrier; and based on a delta receiver A second set of cyclic delay values is unknown to perform a second process of cyclic delay diversity. 14. The method of claim 13, further comprising: performing the first processing and the second processing of cyclic delay diversity on the batten; and 129018.doc 200847706 performing only the second processing of the cyclic delay diversity on the pilot. 15. The method of: =: 13, wherein the first -= performing the cyclic delay diversity, the first execution of the cyclic delay diversity in the frequency domain, wherein the execution of the cyclic delay diversity is performed in the second processing packet domain This second processing of delay diversity. </ RTI> 16. The method of claim 13, further comprising: receiving, from the receiver, a plurality of delays indicating that the plurality of delays, and the feedback is based on the delayed delay value of the sneak peek #. The method of claim 13, wherein the method of claim 13 further comprises: autonomously selecting the «Hui cycle delay value in the second group without delaying the receipt of the crying, the completion of the w. 18. The method of claim 13, further comprising: based on a code at the first of the cyclic delay diversity, after eight or after the second processing of the cyclic delay knife set. Pre-, flat-horse matrix to perform pre-programming 19. A device for wireless communication, comprising: - for performing cycle-delay diversity based on a first delay value known by one of a data transmission receiver - The processed component; and a component for performing a second processing of the set of delays based on each delay value based on a number of the first unknowns of the receiver. 2. The device of claim 19, further comprising: means for performing a cyclic delay on the data, and processing the second 129018.doc 200847706; and means for performing only cyclic delay diversity on the pilot The apparatus of the second processing component 19 wherein the means for performing cyclic delay diversity includes means for performing cyclic delay division in the frequency domain, and wherein the means for performing cyclic delay The component of the second=where: contains components for performing cyclic delay diversity in the time domain. 22. The device of claim 19, further comprising: a means for receiving information from the "number of lines (4) late); and for determining the delay based on the feedback information The first set of components of the cyclic delay value. 23. The device of claim 19, further comprising: ; a component that autonomously selects the cyclic delay values of the two if the recipient is not notified. The apparatus of claim 19, further comprising: / performing precoding based on the precoding matrix before or after the first processing of the cyclic delay diversity and prior to the second processing of the % delay diversity member. Kind of machine can be buckled. "Bei media" includes instructions that, when executed by a machine, cause the machine to perform operations including: performing a first set of cyclic delay values based on a first set of cyclic delay values known to one of the poor delivery transmissions Processing; and 129018.doc 200847706 Performing a second process of cyclic delay diversity based on a second set of cyclic delay values unknown to the receiver. 26. The machine readable medium of claim 25, which, when executed by the machine, causes the machine to perform operations further comprising: performing the first process and the second process of cyclic delay diversity on the data; The pilot only performs this second processing of cyclic delay diversity. 27. The machine readable medium of claim 25, which, when executed by the machine, causes the machine to perform operations further comprising: • performing the first processing of cyclic delay diversity in the frequency domain, and This second processing of cyclic delay diversity is performed. 28. An apparatus for wireless communication, comprising: at least one processor configured to perform a first of cyclic delay diversity based on a first set of cyclic delay values known to one of a data transmission receiver Processing and performing a second process of cyclic delay diversity based on a second set of cyclic delay values known to the receiver; and a memory coupled to the at least one processor. 29. The device of claim 28, wherein the at least one processor is configured to perform the first processing and the second processing of cyclic delay diversity on the data, and omitting the first processing of the cyclic delay diversity for the pilot and This second process. 3. A device for wireless communication, comprising: at least one processor configured to: receive a set of cyclic delay values based on a receiver known and a second set of cycles unknown to the receiver The delay value transmits one of the data transmissions in cyclic delay diversity; the reception transmits only one pilot transmission in cyclic delay diversity based on the second set of cyclic delay values based on 129018.doc 200847706; derives a multiple based on the received pilot transmission Inputting a multiple output (ΜΙΜΟ) channel estimate; and performing MIM detection on the received data transmission based on the MIM〇 channel estimate and the first set of cyclic delay values; and a D memory layer that is connected to the at least A processor. 31. The device of claim 30, wherein the at least one processor is configured to: evaluate a performance of the plurality of precoding matrices; and transmit feedback information indicative of a precoding matrix selected from the plurality of precoding matrices; The detection of the received data transmission is further performed based on the selected precoding matrix, and wherein the data transmission is transmitted by precoding based on the selected precoding matrix. 32. The apparatus of claim 3, wherein the at least one processor is configured to: obtain a plurality of ΜΙΜΟ channel matrices of the plurality of subcarriers of the ΜΙΜ〇 channel estimate based on the received pilot transmission; Determining, by the first set of cyclic delay values, a plurality of cyclic delay matrices of the plurality of subcarriers; and deriving a plurality of spatial filter matrices of the plurality of chirp carriers based on the plurality of cyclic delay matrices and the plurality of Μιμ〇 channel matrices And performing M1M detection on the received data transmission based on the plurality of spatial filtering as a matrix. 33. The apparatus of claim 32, wherein the at least one processor is configured to further derive the plurality of spatial filter matrices based on a precoding matrix for the data transmission. 34. The device of claim 3, wherein the at least one processor is configured to evaluate a plurality of delays and send a feedback indicating a delay selected from the plurality of delays 129018.doc 200847706, selected Determining a delay and wherein the first set of cyclic delay values are based on the device of claim 35, wherein the set of cyclic delay values corresponds to a loop delay of the first code length of the loop, and wherein the first The two sets of cyclic delay values correspond to a cyclic delay that is shorter than the length of the first code of the cycle. The device of claim 30, wherein the at least one step is based on a pilot transmission but not used to derive the channel estimate. A processor configured to advance a single moment of the data transmission 37. 38. A method for wireless communication, comprising: receiving a set of cyclic delay values based on a receiver known to be a set of MS And the reception is unknown - the second set of cyclic delay values transmits a data transmission in cyclic delay diversity; the reception transmits only one pilot transmission based on the far second set of cyclic delay values in cyclic delay diversity; The pilot transmission derives a multiple input multiple output (ΜΙΜΟ) channel estimate; and performs detection of the received poor transmission based on the far channel estimate and the first set of cyclic delay values. The method of claim 37, wherein the performing ΜΙΜΟ detection comprises: determining a plurality of uncovering delay matrices of the plurality of subcarriers based on the first set of cyclic delay values, based on the plurality of cyclic delay matrices and the ΜΙΜΟ channel estimation A plurality of ΜΙΜΟ frequency-forcing matrices are used to derive a plurality of spatial filter matrices of the plurality of subcarriers, and ° 129 018 018 47 47 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 129 The method of claim 39, wherein the derivative comprises a gannon- eve 1U inter-chopper chopper matrix bauxite; a precoding matrix for the data transmission to the plurality of spatial filter matrices. The method of claim 37, further comprising: evaluating the performance of the plurality of precoding matrices; and issuing a pre-received information selected from the plurality of precoding matrices, wherein the data transmission system Based on the selected pre-array: the array is transmitted by precoding, and wherein the received resource detection system is further performed based on the pre-coding matrix of the rounds. 41. The method of 37, further comprising: evaluating a performance of the plurality of delays; and transmitting an indication - feedback information selected from the delays in the plurality of delays, and wherein the first set of cyclic delay values are determined based on the selected delay. 42. An apparatus for wireless communication, comprising: receiving one of a first set of cyclic delay values known based on a receiver and the received unknown second set of cyclic delay values to transmit one of cyclic delay diversity a means for transmitting, for receiving a pilot transmission transmitted by cyclic delay diversity based only on the ith set of cyclic delay values; for deriving a multiple input multiple output based on the received pilot transmission (ΜΙΜΟ) a component of channel estimation; and 129018.doc -8 - 200847706 means for performing ΜΙΜΟ detection on the received data transmission based on the ΜΙΜΟ channel estimate and the first set of cyclic delay values. 43. The device, wherein the means for performing ΜΙΜ〇 detection comprises: determining, by the first set of cyclic delay values, a plurality of subcarriers Delay means matrix for estimating, based on the plurality of cyclic delay matrices and the channel ΜΙΜ0 多個ΜΙΜ〇頻道矩陣來導出該多個副载波之多個空間濾 波器矩陣的構件,及 〜 用於基於該多個空間濾波器矩陣來對該接收到之資制 傳輸執行ΜΙΜΟ偵測的構件。 、 认如請求項43之設備,其中該用於導出該多個空間遽波哭 矩陣的構件包含用於進一步基於一用於該資料傳輸之預 編碼矩陣來導出該多個空間滤波器矩陣的構件。 45·如請求項42之設備,其進一步包含: 用於評估複數個預編碼矩陣之效能的構件,·及 用於發送指示-選自該複數個預編碼矩陣中之預編碼 矩陣的反饋資訊的構件,其中該資料傳輸係基於該選定 預編碼而發送,且其中該接收到之資料 專:的該Μ細偵測係進—步基於該選定之預編 而執行。 46·如請求項42之設備 用於評估複數個 用於發送指示一 ,其進一步包含: L遲之效能的構件;及 選自該複數個延遲中之延遲的反饋資 129018.doc 200847706 訊的構件,且其中該第一組循環延遲值係基於該選定之 延遲而判定。a plurality of frame channels to derive components of the plurality of spatial filter matrices of the plurality of subcarriers, and - means for performing flaw detection on the received resource transmission based on the plurality of spatial filter matrices . The device of claim 43, wherein the means for deriving the plurality of spatial chopping matrix comprises means for further deriving the plurality of spatial filter matrices based on a precoding matrix for the data transmission . 45. The apparatus of claim 42, further comprising: means for evaluating the performance of the plurality of precoding matrices, and for transmitting feedback indicative of a precoding matrix selected from the plurality of precoding matrices And a component, wherein the data transmission is transmitted based on the selected precoding, and wherein the fine detection of the received data is performed based on the selected pre-program. 46. The apparatus of claim 42 for evaluating a plurality of instructions for transmitting, further comprising: a component of L-latency; and a component selected from the delay of the plurality of delays 129018.doc 200847706 And wherein the first set of cyclic delay values is determined based on the selected delay. 129018.doc -10-129018.doc -10-
TW097104866A 2007-02-06 2008-02-12 MIMO transmission with explicit and implicit cyclic delays TW200847706A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US88849407P 2007-02-06 2007-02-06
US2637008A 2008-02-05 2008-02-05

Publications (1)

Publication Number Publication Date
TW200847706A true TW200847706A (en) 2008-12-01

Family

ID=39682403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097104866A TW200847706A (en) 2007-02-06 2008-02-12 MIMO transmission with explicit and implicit cyclic delays

Country Status (13)

Country Link
EP (1) EP2111696A2 (en)
JP (1) JP2010518757A (en)
KR (1) KR101084413B1 (en)
CN (1) CN101606330A (en)
AU (1) AU2008213683B2 (en)
BR (1) BRPI0807079A2 (en)
CA (1) CA2675575C (en)
IL (1) IL199826A0 (en)
MX (1) MX2009007986A (en)
MY (1) MY149697A (en)
RU (1) RU2433539C2 (en)
TW (1) TW200847706A (en)
WO (1) WO2008098093A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320915B1 (en) * 2007-05-10 2013-10-29 알까뗄 루슨트 Method and apparatus for pre-processing data to be transmitted in multiple-input communication system
CN101374033B (en) * 2007-08-23 2013-03-27 株式会社Ntt都科摩 Method and apparatus for processing data of multi-input multi-output system
KR101268687B1 (en) * 2008-08-18 2013-05-29 한국전자통신연구원 Communication system including basestations and terminal for multi-cell cooperative communication
US20100067512A1 (en) * 2008-09-17 2010-03-18 Samsung Electronics Co., Ltd. Uplink transmit diversity schemes with 4 antenna ports
WO2010032997A2 (en) * 2008-09-21 2010-03-25 Lg Electronics Inc. Stbc based transmission method considering number of symbols in slot
KR101758268B1 (en) 2009-01-04 2017-07-14 엘지전자 주식회사 A wireless comunication method between user euipment and base station in wireless comminication system supprortin a first user using a single frequency band and a second user using multi frequency band
US8687731B2 (en) * 2009-02-02 2014-04-01 Qualcomm Incorporated Uplink open-loop spatial multiplexing in wireless communications
RU2484583C2 (en) * 2010-05-25 2013-06-10 Федеральное государственное образовательное учреждение высшего профессионального образования Российский государственный университет имени Иммануила Канта Radio station
CN105162501B (en) 2010-06-17 2018-04-27 太阳专利托管公司 Signal creating method, signal generating apparatus, signal processing method and signal processing apparatus
EP2445131B1 (en) 2010-06-17 2016-02-10 Panasonic Intellectual Property Corporation of America Pre-coding method and transmitter
CN101854712A (en) * 2010-06-18 2010-10-06 华为技术有限公司 Method, device and base station for balancing powers betweenantennas
US8934560B2 (en) 2010-10-07 2015-01-13 Qualcomm Incorporated Method and apparatus of using CDD like schemes with UE-RS based open loop beamforming
ES2662771T3 (en) 2011-02-21 2018-04-09 Sun Patent Trust Precoding procedure, precoding device
EP2701327A4 (en) 2011-04-19 2015-03-11 Panasonic Ip Corp America Pre-coding method and pre-coding device
US8971432B2 (en) 2011-04-19 2015-03-03 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
EP3035575B1 (en) 2011-04-19 2017-07-26 Sun Patent Trust Communication method and device
US9294165B2 (en) 2011-04-19 2016-03-22 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
JP6447911B2 (en) 2012-05-22 2019-01-09 サン パテント トラスト Transmission method, reception method, transmission device, and reception device
US9300373B2 (en) * 2012-06-19 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Selection of precoding vectors in lean-carrier systems
RU2510914C1 (en) * 2012-11-26 2014-04-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) Radiotelephone station capable of transmitting data
US9787376B2 (en) * 2014-01-06 2017-10-10 Intel IP Corporation Systems, methods, and devices for hybrid full-dimensional multiple-input multiple-output
WO2015118582A1 (en) * 2014-02-05 2015-08-13 三菱電機株式会社 Base station, communication system, and communication method
US9543662B2 (en) * 2014-03-06 2017-01-10 Raytheon Company Electronic Rotman lens
JP6628124B2 (en) * 2014-05-30 2020-01-08 パナソニックIpマネジメント株式会社 Transmitting device, receiving device, transmitting method and receiving method
JP6344660B2 (en) * 2016-06-29 2018-06-20 サン パテント トラスト Precoding method and transmitter
WO2019056292A1 (en) * 2017-09-22 2019-03-28 Qualcomm Incorporated Signaling design for non-pmi based csi feedback
EP3474459A1 (en) * 2017-10-18 2019-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Receiver, transmitter, system and method employing space-delay precoding
WO2020204523A1 (en) * 2019-04-05 2020-10-08 엘지전자 주식회사 Method for transmitting and receiving signal in wireless communication system, and apparatus therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842487B1 (en) * 2000-09-22 2005-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Cyclic delay diversity for mitigating intersymbol interference in OFDM systems
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
WO2006121381A1 (en) * 2005-05-06 2006-11-16 Ericsson Ab Method and arrangement in wireless communication networks using relaying
EP1919115A3 (en) * 2006-10-31 2014-01-29 NTT DoCoMo, Inc. Method, system, base station and user equipment for determining delay value of cyclic delay diversity

Also Published As

Publication number Publication date
JP2010518757A (en) 2010-05-27
WO2008098093A3 (en) 2008-11-20
CA2675575C (en) 2013-07-30
BRPI0807079A2 (en) 2014-04-08
IL199826A0 (en) 2010-04-15
WO2008098093A2 (en) 2008-08-14
CN101606330A (en) 2009-12-16
KR101084413B1 (en) 2011-11-21
RU2433539C2 (en) 2011-11-10
AU2008213683B2 (en) 2011-02-17
MX2009007986A (en) 2009-08-07
RU2009133352A (en) 2011-04-10
KR20090107087A (en) 2009-10-12
EP2111696A2 (en) 2009-10-28
AU2008213683A1 (en) 2008-08-14
CA2675575A1 (en) 2008-08-14
MY149697A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
TW200847706A (en) MIMO transmission with explicit and implicit cyclic delays
TWI410067B (en) Cyclic delay diversity and precoding for wireless communication
RU2435322C2 (en) Mimo transfer with precoding depending on rank
US8509710B2 (en) MIMO transmission with explicit and implicit cyclic delays
ES2864581T3 (en) Open Circuit Channel Reports in a Wireless Communication System
CA2667161C (en) Mimo transmission with layer permutation in a wireless communication system
JP6067465B2 (en) Method and apparatus for computing and reporting channel quality indication (CQI)
TW200924451A (en) Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US10715225B2 (en) Reporting of radio channel quality
CN110999109B (en) Channel state information related feedback reporting and channel state information acquisition