TW200842929A - Mercury emitter, low-pressure discharge lamp and process for manufacturing low-pressure discharge lamp using the same, backlight unit and liquid crystal display - Google Patents

Mercury emitter, low-pressure discharge lamp and process for manufacturing low-pressure discharge lamp using the same, backlight unit and liquid crystal display Download PDF

Info

Publication number
TW200842929A
TW200842929A TW096137638A TW96137638A TW200842929A TW 200842929 A TW200842929 A TW 200842929A TW 096137638 A TW096137638 A TW 096137638A TW 96137638 A TW96137638 A TW 96137638A TW 200842929 A TW200842929 A TW 200842929A
Authority
TW
Taiwan
Prior art keywords
mercury
metal
sintered body
alloy
discharge
Prior art date
Application number
TW096137638A
Other languages
Chinese (zh)
Inventor
Hikoji Okuyama
Yasufumi Funato
Toru Tachibana
Taisuke Shimazu
Kazuyuki Okano
Original Assignee
Matsushita Electric Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd filed Critical Matsushita Electric Ind Co Ltd
Publication of TW200842929A publication Critical patent/TW200842929A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamp (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A mercury emitter realizing an enhancement of mercury emission efficiency. Mercury emitter (100) comprises mercury emission part (10) consisting of a mercury alloy containing mercury (Hg) and at least one first metal selected from the group consisting of titanium (Ti), tin (Sn), zinc (Zn) and magnesium (Mg) and, provided so as to cover the mercury emission part (10), sintered material layer (20) from a material containing at least one second metal selected from the group consisting of iron (Fe) and nickel (Ni).

Description

200842929 九、發明說明: 發明領域 本發明係有關於水銀放出體、使用該水銀放出體之低 5 壓放電燈之製造方法及低壓放電燈、以及背光模組、液晶 顯示裝置。 |[先前技^^3 發明背景 為於背光模組用之冷陰極螢光燈等低壓放電燈之發光 1〇 管中充填水銀,均使用業經水銀浸滲之水銀放出體。將該 水銀放出體配置於用以形成發光管之玻璃管内再由外部進 行高頻加熱使其發熱而放出水銀。此時,藉由外部高頻加 熱產生熱之熱源,係使用與水銀不形成合金之鐵(Fe)。 具體言之,如第33圖所示,習知之水銀放出體1,係將 15 可與水銀形成合金之鈦(Ti)及與水銀不形成合金之鐵混合 燒結,並浸滲水銀而成者(請參照專利文獻1為例)。 又,如第34圖所示,亦有另一種水銀放出體4,係將鈦 與水銀之合金2保持於薄鐵板所形成之容器3内者(請參照 專利文獻2為例)。另外,容器3上設有用以防止破裂之切縫 20 部 3a。 專利文獻1 :日本專利公開公報特開平第5-121044號 專利文獻2 :日本專利公開公報特開第2〇〇6_128142號 C發明内容3 發明之揭示 5 200842929 發明欲解決之課題 然而,省知之水銀放出體1有水銀放出效率差之問題。 此應是習知之水銀放出體1係使用鈦與鐵之燒結體作為用 以浸滲水銀之介貝,位進行高頻加熱使水銀放出時,身為 5熱源之鐵於水銀放出體1内不規則散佈,以致無法全體且平 均地將水銀放出體1加熱之故。 另外’習知之水銀放出體4亦有無法獲得充分之水銀放 出效率之問題。此應是鈦與水銀之合金2係以薄鐵板包覆, 以致進行加熱放出水銀時,合金2中僅只由容器露出之部分 !0 可放出水銀之故。 又,使用上述水銀放出效率差之水銀放出體丨、4製造 低壓放電燈時,須先使水銀放出體i、4浸滲比低壓放電燈 點壳所需要量更多之水銀。由於水銀為有害物質,因此使 用需要量以上之水銀將對環境上有不良影響。 15 本發明即有鑑於此點而產生者,其主要目的在於提供 一種可提升水銀放出效率之水銀放出體。 另,本發明之目的並在於提供可減少水銀使用量之低 壓放電燈之製造方法、低壓放電燈、背光模組及液晶顯示 裝置。 20 解決課題之手段 本發明知水銀放出體係具有水銀放出部與燒結體層, 水銀放出體係由包含選自於由鈦(Ti)、錫(Sn)、辞(Zn)及鎮 陶所組成之群之至少—種第1金4、與水銀(Hg)之水銀合 金構成者,燒結體層係包覆水銀放出部,並由包含選自於 200842929 由鐵(Fe)及鎳(Ni)所組成之群之至少/種第2金屬之材料構 成者。 有一種較佳實施型態,係前述燒結體層形成多孔狀。 有一種較佳實施型態,係構成前述燒結體層之材料之 5 粒子形狀為鱗片狀。 有一種較佳實施型態,係構成前述燒結體層之材料之 粒子形狀為球狀。 有一種較佳實施型態,係前述燒結體層之氣孔率為5[%] 以上。 10 有一種較佳實施型態,係前述水銀放出部為圓柱狀, 前述燒結體層為圓筒狀,且前述圓枉狀之前述水銀放出部 定位於前述燒結體層之圓筒狀中央部。 有一種較佳實施型態,係前述第1金屬為鈦(Ti),前述 第2金屬為鐵(Fe)。 15 有一種較佳實施型態,係前述水銀合金為TiHg。 有一種較佳實施型態,係前述水銀放出部乃經由前述 燒結體層浸滲水銀,使該水銀與前述第1金屬產生反應而形 成。 有一種較佳實施型態,係前述燒結體層乃由前述第2 20 金屬組成之金屬燒結體層,前述金屬燒結體層為磁性體。 本發明之水銀放出體,係由水銀合金部、及與水銀不 形成合金之金屬之燒結體所組成之金屬燒結體部形成層 狀,且前述金屬燒結體部係呈多孔狀。所謂「與水銀不形 成合金之金屬」,係指例如鐵(Fe)、鎳(Ni)、始(Co)、猛(Μη) 200842929 或如其等之合金等難與水銀產生反應且難以形成合金之金 屬。 又,本發明之水銀放出體,其中前述水銀合金部宜由 可與水銀形成合金之金屬之燒結體、和水銀之合金組成。 5此處所謂「可與水銀形成合金之金屬」,係指例如鈦(Ti)、 錫(Sn) '鋁(A1)、鋅(Zn)、鎂(Mg)、銅(Cu)或如其等之合金 等可與水銀產生反應並形成合金之金屬。 又,本發明之水銀放出體,其中前述金屬燒結體部中 與水銀不形成合金之金屬宜為磁性體。 10 又,本發明之水銀放出體,其中前述金屬燒結體部中 與水銀不形成合金之金屬之粒子形狀宜為鱗片狀。 又,本發明之水銀放出體,其中前述金屬燒結體部中 與水銀不形成合金之金屬之粒子形狀宜為球狀。 又,本發明之水銀放出體,其中前述金屬燒結體部之 15 氣孔率宜為5[%]以上。 又,本發明之水銀放出體,其中前述水銀合金部宜為 棒狀,且其周圍宜層積形成前述金屬燒結體部。 又,本發明之水銀放出體,其中前述水銀合金部宜為 圓柱形狀之棒狀’其周圍層積形成前述金屬燒結體部’且 20 前述水銀合金部之外徑宜為前述水銀放出體之外徑之3〇[%] 以上。 又,本發明之水銀放出體,其中前述水銀合金部宜形 成貫通孔而呈筒狀。 又,本發明之水銀放出體,其中前述金屬燒結體部之 200842929 厚度宜為1〇[μηι]以上。 又,本發明之水銀放出體,其中前述水銀合金部之總 表面積中接觸前述金屬燒結體部之部分之表面積比率宜為 30[%]以上。 5 又,本發明之水銀放出體,其中前述金屬燒結體部宜 混合有集氣劑材料。 本發明之低壓放電燈之製造方法,係至少包含一將前 述水銀放出體插入玻璃管内部之程序。 本發明之低壓放電燈,係以玻璃燈泡、配置於前述玻 10 璃燈泡内部之電極、及支持前述電極並密封連接於前述發 光管之至少一端部之導線構成者;前述發光管内部,前述 導線或前述電極固定有前述水銀放出體。 本發明之背光模組,係具有前述低壓放電燈。 本發明之液晶顯示裝置,係具有前述背光模組。 15 發明之效果 本發明之水銀放出體可提升水銀之放出效率。 且,本發明之低壓放電燈之製造方法、低壓放電燈、 背光模組及液晶顯示裝置,可減少水銀之用量。 圖式簡單說明 20 第1圖係本發明之實施型態中水銀放出體之透視圖。 第2圖所示者係本發明之實施型態中水銀放出體外觀 狀態之圖式代用照片。 第3圖係本發明之第1實施型態中水銀放出體之透視 200842929 第4(a)圖係同一水銀放出體之正視圖,第4(b)圖係同一 水銀放出體之平面圖。 第5(a)圖所示者係同一水銀放出體正面之表面狀態之 知片’第5(b)圖所示者係同一水銀放出體平面之表面狀態之 …、片’弟5(c)圖所示者係同一水銀放出體之含長向上之中心 車由在内之截面狀態之照片。 第6(a)圖所示者係與水銀不形成合金之金屬之粒子形 狀為球狀時水銀放出體正面之表面狀態之照片,第6(b)圖所 $者係同一水銀放出體平面之表面狀態之照片。 1〇 ^ ^ 第7圖所示者係水銀放出量因加熱溫度而產生之變化。 第8(a)〜(d)圖係說明就本發明之實施型態中水銀放出 體之集氣劑效果所進行之實驗方法之載面圖。 第9圖所示者係就h2(氫)進行集氣劑效果實驗之結果 圖。 15 々一 第10圖所示者係就c〇2(二氧化碳)進行集氣劑效果實 驗之結果圖。 第11圖所示者係就H.C·(碳化氫)進行集氣劑效果實驗 之結果圖。 20 第12圖所示者係就N2+C〇(氮+—氧化碳)進行集氣劑效 0 果實驗之結果圖。 &gt; 第13圖所示者係本發明之實施型態中水銀放出部經x 射線分析後之测量結果圖。 第14圖所示者係本發明之實施型態中水銀放出部經x 射線分析後之测量結果圖。 200842929 第15圖係本發明第1實施型態之水銀放出體之製造方 法之製造程序之程序圖。 第16圖係本發明第2實施型態之低壓放電燈之製造方 法由程序A至程序G之概念圖。 5 第Π圖係本發明第2實施型態之低壓放電燈之製造方 法由程序Η至程序J之概念圖。 第18(a)圖係本發明第3實施型態之低壓放電燈之含管 軸在内之截面圖,第18(b)圖係Α部之擴大截面圖。 第19(a)圖係本發明第4實施型態之低壓放電燈之含管 10 軸在内之截面圖,第19(b)圖係B部之擴大截面圖。 第20圖係本發明第5實施型態之背光模組之透視圖。 第21圖係本發明第6實施型態之背光模組之透視圖。 第22圖係本發明第7實施型態之液晶顯示裝置之透視 圖。 15 第2 3圖係本發明第1實施型態之水銀放出體之變形例1 之透視圖。 第24(a)圖係同一水銀放出體之變形例1之正視圖’第 24(b)圖係同一水銀放出體之變形例1之平面圖。 第25圖係本發明第1實施型態之水銀放出體之變形例2 20 之透視圖。 第26(a)圖係同一水銀放出體之變形例2之正視圖’第 26(b)圖係同一水銀放出體之變形例2之平面圖。 第27圖係本發明第1實施型態之水銀放出體之變形例3 之透視圖。 11 200842929 第28圖係本發明第1實施型態之水銀放出體之變形例3 之透視圖。 第29圖係本發明第1實施型態之水銀放出體之變形例3 之透視圖。 5 第30圖係本發明第1實施型態之水銀放出體之變形例4 之透視圖。 第31圖係本發明第1實施型態之水銀放出體之變形例5 之透視圖。 第32圖係本發明第1實施型態之水銀放出體之變形例6 10 之透視圖。 第33圖係習知之水銀放出體(習知例1)之透視圖。 第34圖係習知之水銀放出體(習知例2)之透視圖。 【實施方式3 較佳實施例之詳細說明 15 參考圖式說明本發明之實施形態如下。下列圖式中, 為簡化說明,因此將實質上具有同一機能之構成要素以同 一元件符號表示。另,本發明並非以下列實施形態為限。 本實施形態之水銀放出體100係如第1圖所示,由水銀 放出部10、包覆水銀放出部10之燒結體層20構成。 20 水銀放出部,係由包含選自於由鈦(Ti)、锡(gn)、鋅 (Zn)及鎂(Mg)所組成之群之至少一種第丨金屬、與水銀(Hg) 之水銀合金構成者。另,燒結體層20,係由包含選自於由 鐵(Fe)及鎳(Ni)所組成之群之至少一種第2金屬之材料構成 者。此處所稱第1金屬係「可與水銀形成合金之金屬」,而 12 200842929 第2金屬即所謂之「與水銀不形成合金之金屬」。 本實苑形怨之水銀放出體1〇〇,係具有將含有第1金屬 (例ά鈦)與水銀之水銀合金所構成之水銀放出部IQ,以含有 第2孟屬(例如鐵)之材料所構成之燒結體層2〇包覆之構造, 5因此加熱時(特別是高頻加熱時),可透過燒結體層Μ由水銀 放出部職出水銀(參照箭頭3()),從而可提升水銀之放出效 率。 又,構成燒結體層20之第2金屬,不限於鐵(純鐵)或鎳 (純鎳)一種金屬,舉例言之,可使用鐵與鎳之混合物,或者, 10亦可使用業經鑛錄之鐵。鐵上錢錄之第2金屬,可達到防止 鐵氧化之效果。且,燒結體層2〇成形時若使用鐵粉中混合 有鎳粉者,耐蝕性可比單用鐵粉時更佳,並可藉由鐵粉與 鎳粉之摻合物擴大粒徑之差異。若可擴大粒徑之差異,將 使燒結體層20之氣孔率(甚至於導熱率)更易於控制(關於氣 15 孔率則於後續詳述)。此外,鐵粉與鎳粉之摻合粉並可改善 其流動性,及提高成形時之生產力。更且,鎳因比熱小於 鐵,且導熱率比鐵大,亦可提高燒結體層20之加熱效率。 又,以薄鐵板包覆鈦與水銀之合金之構造(參照第34圖) 者,使用時切成適當長度之程序有水銀合金自切斷之端面 2〇 溢出之缺點,且過度加熱時可能產生破裂。 反之,本實施型態之水銀放出體1〇〇,因具有以燒結體 層20包覆水銀放出部1〇之構造,故水銀放出部1〇與燒結體 層20之黏合強度高,並可解決水銀合金溢出之問題。另, 為說明具有以燒結體層20包覆水銀放出部10之構造之本實 13 200842929 施型態之水銀放出體100,故於第2圖呈現圖式代用照片。 第圖中圈起處係1個水銀放出體100,本實師型態之水銀放 出部10係以燒結體層20包覆水銀放出部10,因此可迴避水 銀合金溢出之問題,且如第2圖所示,可聚集收容多數水銀 5 放出體1〇〇,例如可藉此狀態進行輸送。 再者,加熱時,係透過燒結體層20由水銀放出部1〇放 出水銀(參照箭頭30),故可迴避因過度加熱產生破裂之問 題。 (第1實施型態) 10 本發明分別於第3圖顯示第1實施型態之水銀放出體之 透視圖,於第4(a)圖顯示其正視圖,於第4(b)圖顯示其平面 圖,於第5(a)圖顯示其正面照片,於第5(b)圖顯示其平面照 片,於第5(c)圖顯示含其於長向上之中心軸又⑽在内之截面 照片。 15 本發明第1實施型態之水銀放出體100(以下簡稱「水銀 放出體100」),係由水銀合金部1〇1、及與水銀不形成合金 之金屬之燒結體所組成之金屬燒結體部1〇2形成層狀。 水銀合金部101係由例如圓柱狀、可與水銀形成合金之 金屬之燒結體和水銀之合金所組成。所謂「可與水銀形成 0 口 1之金屬」’係指例如鈦(Ti)、錫(Sn)、鋁(A1)、鋅(Zn)、 鎮(Mg)、銅(Cu)或如其等中至少2種之合金等,可與水銀產 生反應並心成合金之金屬。其等之中,若以化學性質或工 業上之生產力(成本等)為考量,則以欽㈤、錫伽)、辞㈣ 及鎭(Mg)為佳’又以鈦㈤、錫(Sn)及鋅(Zn)更佳,典型上 14 200842929 則可使用鈦(Ti)。水銀合金部101舉例言之係長度L為 3[mm],外徑Di為l[mm],水銀浸滲量約5[mg]。 水銀合金部101中可與水銀形成合金之金屬之平均粒 徑,為使水銀更易於浸滲,不論其金屬種類為何,宜規定 5 於5[μιη]以上40[μιη]以下之範圍内。 金屬燒結體部102係由與水銀不形成合金之金屬之燒 結體組成,並形成多孔狀。所謂「與水銀不形成合金之金 屬」,係指例如鐵(Fe)、鎳(Ni)、鈷(Co)、錳(Μη)或如其等 中至少2種之合金等難與水銀產生反應且難以形成合金之 10金屬。其等之中,若以化學性質或工業上之生產力(成本等) 為考量,則以鐵(Fe)及鎳(Ni)為佳。金屬燒結體部1〇2舉例 言之係長度L為3[mm],外徑Do為1.4[mm]。 多孔狀之金屬燒結體部102之氣孔率,宜為5[%]以上。 如此一來,水銀容易穿過金屬燒結體部1〇2,並可提高水銀 15之浸滲效率及放出效率。特別是金屬燒結體部102之氣孔 率,若為25[%]以上更佳。如此,則由水銀合金部1〇1放出 之水銀更容易穿過金屬燒結體部101,且可更提高水銀之放 出效率。又,金屬燒結體部102之氣孔率以6〇[%]以下為宜。 右大於60[%]則金屬燒結體部1 〇2將滿是空孔,因此若對水 20銀放出體100進行高頻加熱,水銀合金部1〇1之加熱效率將 降低且容易造成加熱不均,並使水銀放出量分散。 金屬燒結體部102之氣孔率係以下列公式算出。 15 200842929 [公式1] r 氣孔率[%]= 金屬燒結體部之密度 金屬燒結體部之理論密度BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mercury discharge body, a method of manufacturing a low-pressure discharge lamp using the mercury discharge body, a low-pressure discharge lamp, a backlight module, and a liquid crystal display device. [Previous technique ^^3 Background of the invention For the illumination of a low-pressure discharge lamp such as a cold cathode fluorescent lamp for a backlight module. 1) The tube is filled with mercury, and a mercury-evaporated body which is impregnated with mercury is used. The mercury discharge body is placed in a glass tube for forming an arc tube, and then high-frequency heating is performed from the outside to generate heat to release mercury. At this time, a heat source of heat is generated by external high-frequency heating, and iron (Fe) which does not form an alloy with mercury is used. Specifically, as shown in Fig. 33, the conventional mercury discharge body 1 is obtained by mixing and sintering titanium (Ti) which is alloyed with mercury and iron which does not form an alloy with mercury, and is impregnated with mercury ( Please refer to Patent Document 1 as an example). Further, as shown in Fig. 34, there is another mercury discharge body 4 in which the alloy 2 of titanium and mercury is held in the container 3 formed of a thin iron plate (see Patent Document 2 as an example). Further, the container 3 is provided with a slit 20 portion 3a for preventing cracking. Patent Document 1: Japanese Laid-Open Patent Publication No. Hei No. 5-121044 Patent Document 2: Japanese Patent Laid-Open Publication No. Hei No. Hei No. Hei. No. Hei. The discharge body 1 has a problem that the mercury release efficiency is poor. This should be a conventional mercury release body 1 which uses a sintered body of titanium and iron as a smear for impregnating mercury. When high-frequency heating is performed to release mercury, the iron which is a heat source of 5 is not in the mercury discharge body 1. The rules are so scattered that it is impossible to heat the mercury 1 out of the whole and on average. In addition, the conventional mercury release body 4 has a problem that sufficient mercury release efficiency cannot be obtained. This should be the alloy of titanium and mercury 2, which is covered with a thin iron plate, so that when the mercury is heated and released, only the part of the alloy 2 exposed by the container! 0 can release mercury. Further, when the low-pressure discharge lamp is manufactured by using the above-described mercury discharge body having poor mercury emission efficiency, it is necessary to first infiltrate the mercury discharge bodies i and 4 with more mercury than the low-pressure discharge lamp. Since mercury is a hazardous substance, the use of mercury above the required amount will have an adverse effect on the environment. The present invention has been made in view of the above, and its main object is to provide a mercury discharge body which can improve the efficiency of mercury release. Further, it is an object of the present invention to provide a method for manufacturing a low-pressure discharge lamp which can reduce the amount of mercury used, a low-pressure discharge lamp, a backlight module, and a liquid crystal display device. [Means for Solving the Problem] The mercury release system of the present invention has a mercury discharge portion and a sintered body layer, and the mercury release system comprises a group selected from the group consisting of titanium (Ti), tin (Sn), x (Zn) and Zhentao. At least one of the first gold 4 and the mercury alloy of mercury (Hg), the sintered body layer is coated with a mercury releasing portion, and is composed of a group consisting of iron (Fe) and nickel (Ni) selected from 200842929. At least one of the materials of the second metal is constructed. In a preferred embodiment, the sintered body layer is formed into a porous shape. In a preferred embodiment, the material constituting the sintered body layer has a scaly shape. In a preferred embodiment, the material constituting the sintered body layer has a spherical shape. In a preferred embodiment, the sintered body layer has a porosity of 5 [%] or more. According to a preferred embodiment, the mercury discharge portion has a cylindrical shape, and the sintered body layer has a cylindrical shape, and the rounded mercury discharge portion is positioned at a central portion of the cylindrical shape of the sintered body layer. In a preferred embodiment, the first metal is titanium (Ti) and the second metal is iron (Fe). 15 In a preferred embodiment, the aforementioned mercury alloy is TiHg. In a preferred embodiment, the mercury releasing portion is formed by impregnating mercury through the sintered body layer to cause the mercury to react with the first metal. In a preferred embodiment, the sintered body layer is a metal sintered body layer composed of the second 20 metal, and the metal sintered body layer is a magnetic body. The mercury-releasing body of the present invention is formed into a layered shape of a sintered metal body composed of a mercury alloy portion and a sintered body of a metal which does not form an alloy with mercury, and the metal sintered body portion is porous. The term "metal that does not form an alloy with mercury" means that, for example, iron (Fe), nickel (Ni), initial (Co), sb (2008) or other alloys are difficult to react with mercury and it is difficult to form an alloy. metal. Further, in the mercury discharge body of the present invention, the mercury alloy portion is preferably composed of a sintered body of a metal which can form an alloy with mercury, and an alloy of mercury. 5 "Metal capable of forming an alloy with mercury" means, for example, titanium (Ti), tin (Sn) 'aluminum (A1), zinc (Zn), magnesium (Mg), copper (Cu) or the like. An alloy or the like that reacts with mercury to form an alloy. Further, in the mercury discharge body of the present invention, the metal which does not form an alloy with mercury in the metal sintered body portion is preferably a magnetic body. Further, in the mercury discharge body of the present invention, the shape of the particles of the metal which does not form an alloy with mercury in the sintered metal body portion is preferably scaly. Further, in the mercury discharge body of the present invention, the shape of the particles of the metal which does not form an alloy with mercury in the metal sintered body portion is preferably spherical. Further, in the mercury discharge body of the present invention, the porosity of the metal sintered body portion is preferably 5 [%] or more. Further, in the mercury discharge body of the present invention, the mercury alloy portion is preferably in the form of a rod, and the metal sintered body portion is preferably laminated around the periphery. Further, in the mercury discharge body of the present invention, the mercury alloy portion is preferably in the shape of a rod having a cylindrical shape, wherein the metal sintered body portion is formed by lamination, and the outer diameter of the mercury alloy portion is preferably outside the mercury discharge body. 3〇 [%] or more. Further, in the mercury discharge body of the present invention, the mercury alloy portion preferably has a through hole and is formed in a cylindrical shape. Further, in the mercury discharge body of the present invention, the thickness of the metal sintered body portion of 200842929 is preferably 1 〇 [μηι] or more. Further, in the mercury discharge body of the present invention, the surface area ratio of the portion of the total surface area of the mercury alloy portion contacting the metal sintered body portion is preferably 30 [%] or more. Further, in the mercury discharge body of the present invention, the metal sintered body portion is preferably mixed with a gas collector material. The method for producing a low-pressure discharge lamp of the present invention comprises at least one of the steps of inserting the above-described mercury discharge body into the inside of the glass tube. The low-pressure discharge lamp of the present invention comprises a glass bulb, an electrode disposed inside the glass bulb, and a wire supporting the electrode and sealingly connected to at least one end of the arc tube; the inside of the arc tube Or the aforementioned electrode is fixed with the aforementioned mercury discharge body. The backlight module of the present invention has the aforementioned low-pressure discharge lamp. The liquid crystal display device of the present invention has the backlight module described above. 15 Effect of the Invention The mercury discharge body of the present invention can improve the release efficiency of mercury. Moreover, the method for manufacturing a low-pressure discharge lamp of the present invention, a low-pressure discharge lamp, a backlight module, and a liquid crystal display device can reduce the amount of mercury used. BRIEF DESCRIPTION OF THE DRAWINGS 20 Fig. 1 is a perspective view of a mercury discharge body in an embodiment of the present invention. The figure shown in Fig. 2 is a substitute photograph of the appearance state of the mercury discharge body in the embodiment of the present invention. Fig. 3 is a perspective view of the mercury discharge body in the first embodiment of the present invention. 200842929 Fig. 4(a) is a front view of the same mercury discharge body, and Fig. 4(b) is a plan view of the same mercury discharge body. The figure shown in Fig. 5(a) is the surface state of the front surface of the same mercury discharge body. The figure shown in Fig. 5(b) is the surface state of the same mercury release body plane..., the film '弟5(c) The figure is a photograph of the cross-sectional state of the same mercury-containing body with a long upward center. The figure shown in Fig. 6(a) is a photograph of the surface state of the front side of the mercury discharge body when the particle shape of the metal which does not form an alloy with mercury is spherical, and the figure of Fig. 6(b) is the same as the plane of the mercury release body. Photo of the surface state. 1〇 ^ ^ The figure shown in Fig. 7 shows the change in the amount of mercury released due to the heating temperature. Figs. 8(a) to 8(d) are plan views showing experimental methods for the effect of the gas collector of the mercury discharge body in the embodiment of the present invention. The figure shown in Fig. 9 is a graph showing the results of the gas collector effect test on h2 (hydrogen). 15 々一 Figure 10 shows the results of the gas collector effect test on c〇2 (carbon dioxide). Fig. 11 is a graph showing the results of a gas trap effect test on H.C. (hydrocarbon). 20 Figure 12 shows the results of the experiment of the gas collector effect on N2+C〇 (nitrogen + carbon monoxide). &gt; The figure shown in Fig. 13 is a measurement result of the mercury emission portion after the x-ray analysis in the embodiment of the present invention. Fig. 14 is a graph showing the measurement results of the mercury discharge portion after the x-ray analysis in the embodiment of the present invention. 200842929 Fig. 15 is a flowchart showing a manufacturing procedure of a method for producing a mercury discharge body according to a first embodiment of the present invention. Fig. 16 is a conceptual diagram of the method of manufacturing the low-pressure discharge lamp of the second embodiment of the present invention from the procedure A to the procedure G. 5 is a conceptual diagram of a method of manufacturing a low-pressure discharge lamp according to a second embodiment of the present invention from a program to a procedure J. Fig. 18(a) is a cross-sectional view of the low-pressure discharge lamp of the third embodiment of the present invention, and Fig. 18(b) is an enlarged cross-sectional view of the crotch portion. Fig. 19(a) is a cross-sectional view showing the tube 10 shaft of the low-pressure discharge lamp of the fourth embodiment of the present invention, and Fig. 19(b) is an enlarged cross-sectional view of the portion B. Figure 20 is a perspective view of a backlight module of a fifth embodiment of the present invention. Figure 21 is a perspective view of a backlight module of a sixth embodiment of the present invention. Figure 22 is a perspective view showing a liquid crystal display device of a seventh embodiment of the present invention. 15 Fig. 2 is a perspective view showing a modification 1 of the mercury discharge body of the first embodiment of the present invention. Fig. 24(a) is a front view of a modification 1 of the same mercury discharge body. Fig. 24(b) is a plan view showing a modification 1 of the same mercury discharge body. Fig. 25 is a perspective view showing a modification 2 20 of the mercury discharge body of the first embodiment of the present invention. Fig. 26(a) is a front view of a modification 2 of the same mercury discharge body. Fig. 26(b) is a plan view showing a modification 2 of the same mercury discharge body. Figure 27 is a perspective view showing a modification 3 of the mercury discharge body of the first embodiment of the present invention. 11 200842929 Fig. 28 is a perspective view showing a modification 3 of the mercury discharge body according to the first embodiment of the present invention. Figure 29 is a perspective view showing a modification 3 of the mercury discharge body of the first embodiment of the present invention. Fig. 30 is a perspective view showing a modification 4 of the mercury discharge body according to the first embodiment of the present invention. Fig. 31 is a perspective view showing a modification 5 of the mercury discharge body according to the first embodiment of the present invention. Fig. 32 is a perspective view showing a modification 6 10 of the mercury discharge body according to the first embodiment of the present invention. Figure 33 is a perspective view of a conventional mercury discharge body (Conventional Example 1). Figure 34 is a perspective view of a conventional mercury discharge body (conventional example 2). [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the following figures, in order to simplify the description, constituent elements having substantially the same function are denoted by the same component symbol. Further, the present invention is not limited to the following embodiments. The mercury discharge body 100 of the present embodiment is composed of a mercury discharge portion 10 and a sintered body layer 20 covering the mercury discharge portion 10 as shown in Fig. 1 . 20 Mercury emitting portion is a mercury alloy containing at least one second metal selected from the group consisting of titanium (Ti), tin (gn), zinc (Zn), and magnesium (Mg), and mercury (Hg) Constitute. Further, the sintered body layer 20 is composed of a material containing at least one second metal selected from the group consisting of iron (Fe) and nickel (Ni). Here, the first metal is a "metal that can form an alloy with mercury", and 12 200842929 the second metal is a so-called "metal that does not form an alloy with mercury." The mercury release body of the present invention has a mercury discharge portion IQ composed of a mercury alloy containing a first metal (for example, niobium titanium) and mercury, and contains a material of the second monarch (for example, iron). The structure of the sintered body layer 2 is covered, so that when heated (especially during high-frequency heating), mercury can be emitted from the mercury discharge portion through the sintered body layer (see arrow 3 ()), thereby improving mercury. Release efficiency. Further, the second metal constituting the sintered body layer 20 is not limited to a metal of iron (pure iron) or nickel (pure nickel). For example, a mixture of iron and nickel may be used, or 10 may be used. . The second metal recorded on the iron can achieve the effect of preventing iron oxidation. Further, in the case where the sintered body layer 2 is formed by using iron powder mixed with iron powder, the corrosion resistance can be better than that of the iron powder alone, and the difference in particle diameter can be enlarged by the blend of the iron powder and the nickel powder. If the difference in particle size can be increased, the porosity (or even the thermal conductivity) of the sintered body layer 20 can be more easily controlled (the gas 15 porosity is described later). In addition, the blend of iron powder and nickel powder can improve its fluidity and increase the productivity during forming. Further, since the specific heat of nickel is smaller than iron and the thermal conductivity is larger than that of iron, the heating efficiency of the sintered body layer 20 can be improved. Moreover, the structure in which the alloy of titanium and mercury is coated with a thin iron plate (refer to Fig. 34), the procedure of cutting into an appropriate length during use has the disadvantage that the mercury alloy overflows from the end face 2 of the cut, and may be excessively heated. A crack is produced. On the other hand, in the mercury discharge body 1 of the present embodiment, since the structure of the mercury discharge portion 1 is covered with the sintered body layer 20, the adhesion strength between the mercury discharge portion 1 and the sintered body layer 20 is high, and the mercury alloy can be solved. The problem of overflow. In addition, in order to explain the mercury discharge body 100 of the present embodiment having the structure in which the mercury layer discharge portion 10 is coated with the sintered body layer 20, a substitute photograph of the drawings is presented in Fig. 2 . In the figure, a mercury discharge body 100 is attached to the circle, and the mercury discharge portion 10 of the present type is coated with the sintered body layer 20 to cover the mercury discharge portion 10, so that the problem of overflow of the mercury alloy can be avoided, and as shown in Fig. 2 As shown, a plurality of mercury 5 discharge bodies 1 can be collected and collected, for example, in this state. Further, at the time of heating, mercury is discharged from the mercury discharge portion 1 through the sintered body layer 20 (see arrow 30), so that the problem of cracking due to excessive heating can be avoided. (First Embodiment) The present invention shows a perspective view of the mercury discharge body of the first embodiment in Fig. 3, and a front view thereof is shown in Fig. 4(a), and is shown in Fig. 4(b). The plan view shows a frontal photograph in Fig. 5(a), a flat photograph in Fig. 5(b), and a cross-sectional photograph including the central axis (10) in the long direction in Fig. 5(c). The mercury-releasing body 100 (hereinafter referred to as "mercury-releasing body 100") according to the first embodiment of the present invention is a sintered metal body composed of a sintered body of a mercury alloy portion 1 and a metal which does not form an alloy with mercury. The portion 1〇2 is formed in a layered shape. The mercury alloy portion 101 is composed of, for example, a cylindrical body, a sintered body of a metal which can form an alloy with mercury, and an alloy of mercury. The term "metal which can form a zero with mercury" means, for example, at least titanium (Ti), tin (Sn), aluminum (A1), zinc (Zn), town (Mg), copper (Cu) or the like. Two kinds of alloys, etc., which can react with mercury and form a metal alloy. Among them, if it is based on chemical properties or industrial productivity (cost, etc.), it is better to use Qin (5), Siga), (4) and 鎭 (Mg), and to use titanium (five) and tin (Sn). Zinc (Zn) is preferred, and titanium (Ti) is typically used on 14 200842929. The mercury alloy portion 101 is exemplified by a length L of 3 [mm], an outer diameter Di of 1 [mm], and a mercury impregnation amount of about 5 [mg]. The average particle diameter of the metal which can form an alloy with mercury in the mercury alloy portion 101 is such that the mercury is more easily impregnated, and it is preferably in the range of 5 [μιη] or more and 40 [μιη] or less, regardless of the type of the metal. The metal sintered body portion 102 is composed of a sintered body of a metal which does not form an alloy with mercury, and is formed into a porous shape. The term "metal which does not form an alloy with mercury" means that it is difficult to react with mercury, such as iron (Fe), nickel (Ni), cobalt (Co), manganese (Mn) or an alloy of at least two of them. Forming the alloy 10 metal. Among them, iron (Fe) and nickel (Ni) are preferred in consideration of chemical properties or industrial productivity (cost, etc.). The metal sintered body portion 1 2 is exemplified by a length L of 3 [mm] and an outer diameter Do of 1.4 [mm]. The porosity of the porous metal sintered body portion 102 is preferably 5 [%] or more. As a result, the mercury easily passes through the sintered metal body 1〇2, and the impregnation efficiency and the discharge efficiency of the mercury 15 can be improved. In particular, the porosity of the sintered metal body portion 102 is preferably 25 [%] or more. In this way, the mercury discharged from the mercury alloy portion 1〇1 can more easily pass through the metal sintered body portion 101, and the mercury emission efficiency can be further improved. Further, the porosity of the sintered metal body portion 102 is preferably 6 〇 [%] or less. If the right side is larger than 60 [%], the metal sintered body portion 1 〇 2 will be filled with voids. Therefore, if the water 20 silver discharge body 100 is heated at a high frequency, the heating efficiency of the mercury alloy portion 1 〇 1 is lowered and heating is not likely to occur. Both, and the amount of mercury released is dispersed. The porosity of the metal sintered body portion 102 is calculated by the following formula. 15 200842929 [Formula 1] r Porosity [%] = Density of metal sintered body Theoretical density of metal sintered body

xlOO 金屬燒結體部1 〇 2之密度可藉由I c P發射光譜術測定水 銀放出體100之組成比率,並用水銀放出體之重量乘以構成 5金屬燒結體部102之元素之組成比率,求得金屬燒結體部 102之重量’再除以金屬燒結體部1 〇2之體積後求出。在此, 金屬燒結體部102為多孔狀,欲求得其正嫁體積實屬困難, 故金屬燒結體部102之體積係採金屬燒結體部1 〇2中全無空 隙時之體積。此外,金屬燒結體部1〇2之理論密度,係假設 10 金屬燒結體部102中全無空隙所求得之虛構之密度。 構成金屬燒結體部102之金屬宜為磁性體。舉例言之, 製ie低壓放電燈時,可用磁石正確且輕易地對配置於密閉 玻璃管内之水銀放出體100進行定位。可選用之磁性體之金 屬,舉例言之有鐵(Fe)、鎳(Ni)、鈷(Co)等。 15 又,金屬燒結體部1〇2中亦可混合集氣劑材料。藉由混 合集氣劑材料,可吸附氫(HD或氧(a)等不純氣體。集氣劑 材料可採用如鈕(Ta)、鈮(Nb)、锆(Zr)、鉻(Cr)、鈦(Ti)、铪 (Hf)、鋁(A1)等,或者,其等之合金或金屬間化+ 物。 2〇 x,水銀合金部1〇1之總表面積中接觸金屬燒結體部 102之部分之表面積比率宜為3〇[%]以上。如此_來可再 200842929 提高對水銀合金部101之加熱效率而獲得非常高之水銀放 出效率。特別是,為更提高其加熱效率’水銀合金部1〇1之 總表面積中接觸金屬燒結體部102之部分之表面積比率若 為50[%]以上則更佳。另,所謂「接觸金屬燒結體部ι〇2之 5 部分之表面積」,因金屬燒結體部1〇2呈多孔狀,故其多孔 狀内部之空隙之表面積不包含内,而係由最外表面輪摩算 出之表面積。 此外,金屬燒結體部102之與水銀不形成合金之金屬之 粒徑,宜於5[μηι]以上40[μπι]以下之範圍内。如此即可使由 10 水銀合金部1〇1放出之水銀更容易穿透,並提高水銀之放出 效率。 另,第5圖所示金屬燒結體部102之粒子形狀為鱗片 狀,但未必要鱗片狀,多角狀等亦可。惟,若為鱗片狀, 則可擴大金屬燒結體部102之氣孔率,並可使水銀之放出效 15 率更為提升。 又,金屬燒結體102之與水銀不形成合金之金屬之粒子 形狀亦可為球狀。第6(a)圖及第6(b)圖分別顯示金屬燒結體 102之與水銀不形成合金之金屬之粒子形狀為球狀時水銀 放出體100之正面照片及同一平面照片。此時,流動性提 20 高,並可有效率地進行後述將水銀放出體1〇〇成形之擠製程 序之擠製成形,使生產力提升。 此外,金屬燒結體部102之形狀,宜如第3圖所示,呈 包覆水銀合金部101外周面之筒狀。如此一來,高頻加熱所 產生之渦電流可於閉合成筒狀之内面流動,提高水銀合金 17 200842929 部101之加熱效率。 (比較實驗) 本發明申請者為確定本發明實施型態之水銀放出體之 水銀放出效率,乃與習知之水銀放出體進行比較實驗。 5 實驗所使用之試樣,係使用如第3圖所示第1貫施塑悲 之水銀放出體100,長度[為3^111]、金屬燒結體部外徑Do 為1.4[mm]、内徑Di為l[rnm]者作為實施例。 習知之水銀放出體則使用如第33圖所示於鈦鐵混合粉 末之燒結體浸滲有水銀者,長度…為3!^111]、外徑N為 10 1.5[mm]作為比較例1。 另外,比較例2係使用如第34圖所示以薄鐵板包覆鈦與 水銀之合金、S AES Getters公司製STHGS00、長度P切成 5 [mm]者。 又,實施例、比較例1、比較例2分別於每1[個]試樣浸 15 滲有約4[mg]之水銀。 實驗時,分別各做10[個]試樣。實驗係將各試樣一一加 熱,測其水銀放出量,再求10[個]試樣之平均值。各試樣之 水銀放出量隨加熱溫度所產生之變化分別顯示於第7圖。 另’第7圖中,S度T2係係收納水銀放出體之玻 2〇度開始有軟化變形、或破損之虞時之溫度,表示製程上實 際使用溫度之上限值。 、 如第7圖所示,實施例(第7圖中實線所示者)於加n τ達溫度Tl之前,幾乎無水銀放出,相對於此 達1時水銀放出量急遽增加,達T2時水銀 18 200842929 較例1(第7圖中點畫線所示者)之水銀放出量之15[倍],約達 比較例2(第七圖中雙點晝線所示者)之1.25[倍;]。 反之,比較例1於加熱溫度T達溫度乃之前即開始放出 水銀加熱溫度T達溫度T 2時,水銀放出量雖增加,但可見 5 水銀放出量不如實施例多。 此外,比較例2則與實施例相同,於加熱溫度T達溫度 T!之前幾乎無水銀放出,加熱溫度τ達溫度丁2時,水銀放出 量雖增加,但可見水銀放出量不如實施例多。 水銀放出體之加熱溫度T之實用範圍,係設定於水銀放 10 出量急遽增加之溫度乃至尚未對收納水銀放出體之玻璃管 造成不良影響之溫度T2間之範圍内,又以越接近溫度丁2者 尤為理想。 如上述可知,加熱溫度Τ設定於乃至丁2範圍内時,實施 例之水銀放出量最多,意即水銀之放出效率最佳。 15 且,水銀放出體於加熱溫度Τ達溫度几之前,以無水銀 放出為宜。此係由於難以控制每小時之溫度上升,且個體 間溫度上升會產生不均,以致加熱溫度Τ達溫度乃之前若有 水銀放出則放出至玻璃管内之全部水銀量產生分散。由此 觀點可知,實施例及比較例2較為適用。 2〇 因此可確認實施例可控制水銀放出量之分散,並提升 水銀之放出效率。 針對得出上述結果之理由檢討如後。 首先,探討實施例及比較例2於加熱溫度Τ達溫度丁!之 前,幾乎無水銀放出,而比較例1於加熱溫度Τ達溫度乃之 19 200842929 前即開始放出水銀之理由。 此應係比較例1係於鈦與鐵之混合粉末之燒結體中浸 滲水銀而成之水銀放出體,因此有部分鈦與鐵形成合金, 5亥部分中欽與水銀於穩定狀態下無法形成合金,而於較低 5溫時(溫度於丁丨以下時)仍放出水銀之不穩定狀態下形成合 金之故。相對於此,實施例或比較例2中鈦與鐵未混合,因 此鈦與水銀合金化時,並無上述於不穩定狀態下形成合金 之因素。 其次’探討加熱溫度T達溫度丁2時實施例之水銀放出量 10約為比較例1之水銀放出量之1·5[倍],約為比較例2之 1.25[倍]之理由。 此應係比較例1乃於鈦與鐵之混合粉末之燒結體中浸 滲水銀而成之水銀放出體,因此進行高頻加熱時作為熱源 之鐵不規則散佈以致產生加熱不均,並使加熱效率變差之 15 故。或係水銀放出體之加熱不均,以致僅由水銀放出體中 溫度非常南之局部放出水銀之故。比較例2則無前述加熱不 均之情形,但因鈦與水銀之合金部分以薄鐵板包覆,以致 該部分難以放出水銀。且比較例2於薄鐵板上含有切口,故 渦電流之加熱效率變差。 20 相對於此,實施例非鈦與鐵混合而成者,故無上述加 熱不均之情形,且水銀合金部101外側之金屬燒結體部102 為多孔狀,因此水銀蒸氣容易穿過金屬燒結體部102並可得 比比較例1及比較例2高之水銀放出效率。 故如上所述,藉由本發明第1實施型態之水銀放出體之 20 200842929 構造’可控制水銀放出量之分散,並提升水銀之放出效率。 且’上述水銀合金部101為圓柱狀者,水銀合金部101 之外徑宜為水銀放出體100之外徑之30[%]以上。此時藉由 而頻加熱’用以加熱金屬燒結體部102之熱容易傳至水銀合 5金部101 ’故可有效率地加熱水銀合金部101,並使水銀之 放出效率更加提升。特別是,為更有效率地加熱水銀合金 部101,並使水銀之放出效率更為提升,則水銀合金部1〇1 之外徑相對於水銀放出體1〇〇之外徑之比率若為60[%]以上 尤佳。又,水銀合金部1〇1之外徑相對於水銀放出體1〇〇之 10 外徑之比率宜為95[%]以下。此係由於若大於95[%],則恐 有金屬燒結體部102加熱水銀合金部101時難以確保充足之 熱容量,且水銀合金部101之加熱效率降低之虞。 又,金屬燒結體部102之厚度宜為10[μηι]以上。此係由 於金屬燒結體部102之厚度若10[卜叫薄,有製造上之難度。 15 更甚者,就高頻加熱時水銀合金部1〇1之加熱效率方面而 言,金屬燒結體部102之厚度為Mbm]以上、250[μιη]以下 則更佳。 此外,金屬燒結體部102外表面之表面粗糙度(Ra)宜為 1以上。如此一來,可擴大金屬燒結體部102之外表面積, 2〇 並可提高水銀合金部101之加熱效率以提高水銀之放出效 率。特別是,為更擴大金屬燒結體部1〇2之外表面積,並更 提高水銀合金部101之加熱效率以再提高水銀之放出效 率,則金屬燒結體部102外表面之表面粗糙度(Ra)為2以上 尤佳。又,金屬燒結體部102外表面之表面粗縫度(Ra)宜為 21 200842929 ίο以下。此係由於金屬燒結體部1〇2之外表面若極粗,則製 造燈時’以零件供應機進行搬運等製程上將有困難。 另’金屬燒結體部1〇2之表面粗糙度,係使用株式會社 KEYENCE公司(日文:株式会社丰一工y只社)製雷射顯微 5鏡乂1^8710測量。該測量係就金屬燒結體部102之外周面上 延著長向之中心軸X⑽從一端朝另一端於平行方向上進行 掃描。該測量係於金屬燒結體部1〇2外周面之一端以等間隔 劃分之4[處]為起點分別進行。其後再算出其等之平均值而 求得金屬燒結體部1〇2之表面粗糙度。 10 又,本發明人發現,金屬燒結體部102因形成多孔狀, 故即使不於金屬燒結體部102混合集氣劑材料,本實施型態 之水銀放出體100仍具有集氣劑效果。不使用集氣劑材料仍 可藉由本實施型態之水銀放出體100得到集氣劑效果,在製 造上將帶來極大之技術性意義。 15 關於本實施型態之水銀放出體100之集氣劑效果,參照 第8圖〜第12圖說明如下。此實驗係如第8圖所示進行,第9 圖〜第12圖者係表示其實驗結果之圖表。 首先,如第8(a)圖所示,準備一透明燈管(玻璃管)21〇。 透明燈管210長向上之長度為40cm,透明燈管21〇内之充填 20 氣體成分220為Ne95%+Ar5%。另,透明燈管210之外周可 配置一加熱排氣時使用之加熱器。 此時,在不將水銀放出體(以下稱Hg粒)置入透明燈管 210内之情形下進行排氣與密封,並測量不純氣體成分之分 壓。分壓之測量係以四極質譜儀進行。所測量之不純氣體 22 200842929 為由(氫)、C02(二氧化碳)、H.C.(烴)、N2+CO(氮+—氧化 碳)。此外,該實驗中,除上述比較例1與比較例2外,再加 入比較例3—同進行實驗。比較例3係於Ni製金屬管中壓合 以Ti3Hg為主成分之Hg汞齊之Hg粒。 5 其次,如第8(b)圖所示,將Hg粒200(實施例、比較例1、 比較例2、比較例3)放入透明燈管210内後,將透明燈管210 内排氣並密封並測量不純氣體之分壓。 繼之,如第8(c)圖所示,對配置於透明燈管210内之Hg 粒200(實施例、比較例1、比較例2、比較例3)進行1分鐘高 10 頻加熱,再測量不純氣體成分之分壓。該高頻加熱係利用 高頻加熱器250進行。藉此加熱,使Hg粒200放出水銀240(實 際上為水銀蒸氣)(請餐看箭頭245)。 最後,如第8(d)圖所示,將Hg粒200(實施例、比較例1、 比較例2、比較例3)以400°C加熱5分鐘(退火程序),並測量 15 不純氣體之分壓。該加熱係以電熱爐260進行。另外,加熱 後,將Hg粒200之一部分tip-off(日文:冬〇义才7寸§)。 第9圖至第12圖係分別顯示有關H2(氫)、c〇2(二氧化 碳)、H.C.(烴)、N2+C0(氮+—氧化碳)之各階段(無粒體、排 氣、高頻、退火)之測量結果。 20 由第9圖可知,實施例之Hg粒(水銀放出體1〇〇)具有降 低H2(氫)之分壓之效果,亦即,對於Η:(氫)之集氣劑效果獲 得確認。關於Η?(氫),於排氣階段(第8(b)圖)、高頻階段(第 8(c)圖)、退火階段(第8⑷圖)皆顯示良好之集氣劑效果之特 性。 23 200842929 以背光之用而言,若透明燈管内混入有11“氮),則燈之 特性降低,故大有藉由本實施型態之水銀放出體100可降低 H2(氫)之分壓(濃度)之技術性意義。另,第9圖至第I2圖中 縱軸之分壓係以mbar之單位表示,又,例如L00E-02係表 5 示 l.OOxlCT2 〇 由第10圖至第12圖可知,關於C〇2(二氧化碳)、 H.C.(烴)、N2+CO(氮+—氧化碳)方面,亦可觀測出不純氣 體之分壓降低。 又,第1圖所示本實施型態之水銀放出體1〇〇之水銀放 10出部10係藉由燒結體層20使水銀浸滲,經水銀與第1金屬 (此指鈦)產生反應而形成,此時藉由測定可知,該水銀合金 可為TiHg。X射線分析之測定結果顯示於第13圖。 由第13圖所示之結果看來,大致上僅檢測出TiHg之峰 值(舉例言之,90%以上),Ti3Hg則幾乎無法測出。若水銀 15放出部10大致上僅由TiHg組成,將比Ti3Hg更容易分解,故 可獲得放出特性提升之優點。另外,依據水銀合金之形成 條件’不僅TiHg,亦可生成Ti3Hg。第14圖所示者係呈現TiHg 之峰值與TisHg之峰值之測定結果。 其次’說明本發明第1實施型態之水銀放出體之製造方 20法。其製造程序之程序圖於第15圖表示。 如第15圖所示,首先應準備原料粉末。具體言之,作 為水銀合金部1〇1之材料、例如鈦粉,或做為金屬燒結體部 102之材料、例如鐵粉。 (混合•捏合程序) 24 200842929 繼之,將鈦粉及鐵粉分別加入黏合劑、水混合,並充 分捏合。黏合劑可舉甲基纖維素為例。藉由上述過程製作 鈦坏土及鐵坏土。 (擠製成形程序) 5 繼而,將鈦坏土與鐵坏土分別投入第1、第2擠製成形 機(未圖示)。該第2成形機中設有同軸2層擠製用鑄模。由第 1擠製成形機導出棒狀之鈦成形體’並將該鈦成形體導入第 2擠製成形機之鑄模部分後於外側層積鐵坏土,經由前述程 序連續形成同軸構造之圓柱體狀之成形體。其後,使該成 10形體乾燥至預定之硬度。又,成形方法不限於擠製成形, 加壓成形、或將鈦坏土形成棒狀後浸於漿化之鐵中等方法 均可使用。 (切斷程序) 其次,將成形體以預定長度切斷。依該切斷之♦声了 15將水銀放出體100中之水銀浸滲量調節成所需量。7 t 入,水銀 放出體100之水銀浸滲量,除前述方法外亦可藉由 土之黏a劑量、水銀合金部101之外徑、燒成程序中之 溫度等進行調節。 、成 (燒結程序) 繼之,將成形體於氬環境中,以例如500[°c]進行力 去除成形體内之黏合劑。再於真空環境中,以例如^加熱’ 進行燒結,製作燒結體。 0()[c] (水銀浸渗程序) 利用真空泵使 其後’將燒結體與水銀投入加熱容器 25 200842929 加熱容哭形+ + 、卜成真空狀態,並以500fc]〜600fc]左右之溫度 、一長吩間、例如12[h]〜15[h]左右之加熱,使鈦與水銀合 金化。 5 ^ 鐵尚未與水銀形成合金,故鐵之燒結體内無水 銀~留’而鈦之燒結體内形成鈦與水銀之合金,並完成水 銀放出體1〇〇。 (第2實施型態) 本發明第2實施型態之低壓放電燈製造方法,係有關於 製造程序中取出水銀放出體,且燈完成後呈透明燈管内部 無水銀放出體之狀態之低壓放電燈的製造方法。 本發明第2實施型態之低壓放電燈製造方法之製造程 序,分別將程序A〜程序G之概略圖表示於第16圖,程序Η 〜程序J之概略圖表示於第17圖。 (程序Α) 15 首先,將準備好之直管狀玻璃管300之下端部垂下浸入 各器301内之螢光體懸浮液302中。該螢光體懸浮液3〇2含有 如青色、紅色、綠色之螢光粒子。藉由將玻璃管300内形成 負壓,吸取容器301内之螢光體懸浮液302,使玻璃管300内 面塗佈螢光體懸浮液。前述吸取係利用光學檢測器303檢測 20 液面,並設定使液面位於玻璃管300之預定高度。此時液面 高度之誤差因受螢光體懸浮液302之黏度或液面之表面張 力等影響而較大,約產生±〇.5[mm]之誤差。 (程序B) 其次,開放於大氣中,之後將玻璃管300之下端部自螢 26 200842929 光體懸浮液302中取出,使玻璃管3〇〇内部之螢光體懸浮液 302向外部排出。藉此,使螢光體懸浮液呈膜狀塗佈於玻璃 管300内周之預定領域。 繼續,將塗佈於玻璃管3〇〇内之螢光體懸浮液3〇2乾燥 5後,將刷子等304插入玻璃管300内面,去除玻璃管3〇〇端部 不需要之螢光體部分。 繼之,將玻璃管300移往圖上未標示之加熱爐内進行燒 成’製得螢光體膜305。 (程序C) 1〇 其後,於形成有螢光體膜305之玻璃管300—端部,插 入含有電極306、珠狀玻璃307及導線308之電極單元309 後,加以暫時固定。所謂暫時固定,係以燃燒器31〇對珠狀 玻璃307置位處之玻璃管3〇〇之外周部分加熱,使珠狀玻璃 3〇7之外周一部分固設於玻璃管300内周面。由於僅固設珠 15狀玻璃307之外周面一部分,故可維持玻璃管3〇〇之管軸方 向上之透氣性。 (程序D) 其次,將玻璃管300上下顛倒,並從先前插入電極單元 309側相反之另一側將實質上與電極單元3〇9構造相同、含 20有電極3U、珠狀玻璃312及導線313之電極單元314插入玻 璃管300後,以燃燒器315對珠狀玻璃312置位處之玻璃管 300之外周部分加熱,將玻璃管3〇〇封裝使其密封(第1密 封)。又,第1密封中與密封位置之設定值之誤差約為0.5[mm] 左右。 27 200842929 另,程序C中電極單元309之插入位置及程序D中電極 單元314之插入,宜調整其插入量至從後述密封後之玻璃管 402兩端部分別延伸而出之螢光體層405不存在領域之長度 不同的位置。此時,另一端部側之電極單元314相較於一端 5部侧之電極單元3〇9,插入至比重疊於螢光體膜3〇5之位置 更珠入之處。認為此一構造恰當之理由如下。即,燈之一 端部與另一端部之螢光體層4〇5厚度大多有所差異,若將多 根燈管朝同一方向裝入背光模組等照明裝置中,則照明裝 置全體將產生壳度不均之情形。為防止此一現象,可將燈 10管之一端部與另一端部交錯裝入照明裝置中。此乃由於燈 管之一端部與另一端部可利用感測器等自動且容易辨識之 故。感測器若使用萬[像素]之影像感測器,可將u像素] 設定為〇.1[mm],因此可達到0·1—]單位之量測準確度。 考慮上述情形後,透明燈管4〇1之一端部側盥另一端邙 15側若螢光體層404之不存在領域之長度差為至少 上,可利用感測器準確辨識長向之方向。 \ 叩口 ρ 兴力一又两邵側若螢光 20 405之不存麵域之長度㈣至上,則可利 測器更準確地辨識長向之方向。此時,影像感_ 〇.5[mm]單位之準確度者亦可。又,長度差之上限值為8 左右。此係由於若大於8[mm] ’麟發光無用之勞光辦^ 不存在領域增長,_麵有效發光 之故。 (程序E) 繼之,將破璃管300中, 電極單元3G9與靠近該電極單 28 200842929 元309側之玻璃管300端部間之一部分以燃燒器316加熱使 玻璃管縮徑,形成收縮部分300a。其後,將本發明第1實施 形態之水銀放出體100從該端部投入玻璃管300内,掛於收 縮部分300a。 5 (程序F) 繼而,依序進行玻璃管300内之排氣及將充填氣體填充 於玻璃管300内。具體言之,係將供排氣裝置(圖中未標示) 之集管裝設於玻璃管300之水銀放出體100側端部,首先, 排出玻璃管300内空氣形成真空狀態,並以加熱裝置(圖中 10 未標示)從玻璃管外周將玻璃管300全體加熱。藉此使含有 滲入螢光體膜305之不純氣體之玻璃管300内之不純氣體排 出。停止加熱後,填充預定量之充填氣體(例如分壓比為 氬:95[%]、氖:5[%]之混合氣體之混合稀有氣體等)。 (程序G) 15 填充充填氣體後,即以燃燒器317加熱玻璃管300之近 水銀放出體100側端部’將玻璃管密封。 (程序H) 繼之,第8個圖所示之程序Η係以配置於玻璃管300周圍 之高頻振盪線圈(圖中未標示)對水銀放出體100進行感應加 20 熱使水銀自水銀放出體100放出(水銀放出程序)。另,水銀 放出體1〇〇之加熱方法可使用如光加熱等各種公知之方 法。其後,於加熱爐318内加熱玻璃管300,使放出之水銀 朝電極單元314之電極311之方向移動。 (糕序工) 29 200842929 其次,以燃燒器319對珠狀玻璃307置位處之玻璃管300 外周部分加熱,將玻璃管300封住形成密封狀態。與該一端 4之松、封位置之設定值間之誤差,和另一端部同樣約為 ±〇.5[mm]左右。 5 (程序J) 、知之,將玻璃管300中前述一端部之密封部分朝水銀放 出體100側之端部部分切除。 經由前述程序即完成低壓放電燈。 如上所述,依據本發明第2實施形態之低壓放電燈之製 10造方法之構造,因使用水銀放出效率佳之水銀放出體1〇〇, 故可減少水銀放出體100中所浸滲之水銀量,換言之,可減 少水銀在燈上之使用量,降低對環境之負荷。 (第3實施形態) 關於本發明第3實施形態之低壓放電燈400(以下簡稱 15 「燈4〇0」),以下分別於第18(a)圖顯示含管軸在内之截面 圖’於第18(b)圖顯示八部之擴大截面圖。如第18⑷圖所示, 燈400為冷陰極螢光燈,係異於依據本發明第2實施形態之 低壓放电燈製造方法所製成之低壓放電燈,且燈内部留 有水銀放出體401者。 2〇 燈400係以透明燈管術、電極4〇3及導線404構成。透 明k官402係直官狀,與其管軸相對成垂直切斷之截面為略 圓形。該透明燈管402之外徑為3.〇[mm],内徑為2.0[mm], 全長750[mm],材料為硼矽玻璃。以下所示之燈牝〇之尺寸 數值係對應外經3.〇[mm]、内徑2 〇[mm]之透明燈管4〇2之尺 30 200842929 寸。另,若為冷陰極螢光燈,則以内徑於〜 7.0[mm]、壁厚於0.2[mm]〜〇.6[mm]之範圍内,全長 1500[mm]以下為宜。該等數值僅為一例,並非以此為限。 於透明燈管402内部,水銀係相對透明燈管402容積以 5 預定之比率、例如0.6[mg/cc]填入,氬或氖等稀有氣體係以 預定之充填壓力、例如60[Torr]填入。此外,前述稀有氣體 可使用氬與氖(分壓比為Ar=5[%]、Ne=95[%])之混合氣體。 又,透明燈管402之内面形成有螢光體層405。螢光體 層405所用之螢光體粒子,係以例如紅色螢光體粒子 10 (Y2O3 : Eu3+)、綠色螢光體粒子(LaP〇4 : Ce3+,Tb3+)及青色 螢光體粒子(BaMg2Al16027 : Eu2+)所組成之螢光體形成。 此外,透明燈管402内面與螢光體層405間亦可設置例 如氧化釔(Y203)等金屬氧化物之保護膜(圖中未標示)。 進而,從透明燈管402兩端部朝外部導出導線404。導 I5 線404係精由珠狀玻璃406密封固定於透明燈管402之兩端 部者。 該導線404係由例如鎢做成之内部導線4〇4a、與鎳做成 之外部導線404b構成之焊接線。内部導線4〇4a之線徑為 l[mm],全長為3[mm],外部導線404b之線徑為〇.8[mm], 20 全長為5[mm]。 内部導線404a之前端部固設有空心形、例如有底筒狀 之電極403。該固設係利用如雷射焊接進行。 電極403各部之尺寸,舉例言之,電極長為5[mm],外 徑為 1.70[mm],内徑為 L50[mm],壁厚為〇 1〇[mm]。 31 200842929 如第18(b)圖所示,至少一内部導線404a之電極403與珠 狀玻璃406間固定有水銀放出體401。水銀放出體401係形成 有一用以使内部導線通過本發明第1實施形態之水銀放出 體100之貫通孔401a。另外,水銀放出體401不僅可固定於 5 導線404上,亦可固定於電極403上。 如上所述,依據本發明第3實施形態之低壓放電燈之構 造,因使用水銀放出效率佳之水銀放出體401,故可減少水 銀放出體401中所浸滲之水銀量,換言之,可減少水銀在燈 上之使用量,降低對環境之負荷。 10 (第4實施形態) 關於本發明第4實施形態之低壓放電燈500(以下簡稱 「燈500」),以下分別於第19(a)圖顯示含管軸在内之截圖, 於第19(b)圖顯示B部之擴大截面圖。如第19(a)圖所示,燈 500為熱陰極螢光燈,係異於依據本發明第3實施形態之低 壓放電燈製造方法所製成之低壓放電燈,且燈500内部留有 水銀放出體401者。 燈500係熱陰極螢光燈,由透明燈管501與電極裝置502 構成。 透明燈管501舉例言之係全長1010[mm],外徑 20 18[mm],壁厚〇.8[mm],且燈管兩端密封設有電極裝置502。 透明燈管501之内面形成有螢光體層405,透明燈管501 之内部填充有水銀(舉例言之,填充4[mg]〜10[mg]),除此 之外,以例如600[Pa]之充填氣體壓力,填充氬(Ar)及氪(Kr) 之混合氣體(舉例言之,分壓比為Ar50[%]、Kr50[%]之混合 32 200842929 氣體)作為緩衝氣體。 如第19(a)圖所示,電極裝置502係所謂的珠狀玻璃裝 置’由鎮製之燈絲電極503、用以架持該燈絲電極503之一 對導線504、用以固定支持前述一對導線504之珠狀玻璃505 5 構成。 如第19(b)圖所示,至少於一邊之電極裝置502之導線 504上固定有水銀放出體401。惟,在此所用之水銀放出體 401之貫通孔401a係合於導線504之線徑。 電極裝置502中密封設於透明燈管501端部者,係導線 10 504之一部分,具體言之,即由珠狀玻璃5〇5朝與燈絲電極 503相反侧延伸而出之部分。另,電極裝置5〇2與透明燈管 501之密封固設,舉例言之係以收縮密封法(pinch se叫進 行0 此外,透明燈管501之至少一端部上同時裝設有排氣管 15殘部506與電極裝置5〇2。該排氣管殘部506係於密封固設電 極裝置502後,排出透明燈管501内之空氣,或填充上述充 填氣體等時使用,若對透明燈管501内部之充填氣體等之填 充完畢,則於排氣管殘部506中位於透明燈管5〇1外部之部 分進行Tip off密封。 20 如上所述,依據本發明第4實施形態之低壓放電燈500 之構造,因使用水銀放出效率佳之水銀放出體4(Π,故可減 少水銀放出體楊中所浸渗之水銀量,換言之,可減少水銀 在燈上之使用量,降低對環境之負荷。 (第5實施形態) 33 200842929 本發明第5實施形態之背光模組600之分解透視圖顯示 於第20圖。本發明第5實施形態之背光模組6〇〇係直下型, 具有一面開口並呈直方體狀之殼體6〇1、收納於該殼體 内部並具有多數之燈4〇〇、用以將燈4〇〇與照明電路(圖中未 5標示)電性連接之一對插座602、覆蓋殼體601開口部之光學 片材類603。另,燈4〇〇係本發明第3實施形態之低壓放電燈 400。 设體601舉例言之,係聚對苯二甲酸乙二酯(pET)樹脂 製’其内面經蒸鑛銀等金屬而形成反射面604。又,殼體601 10之材料,亦可以樹脂以外之材料,舉例言之,鋁或冷軋材(例 如SPCC)荨金屬材料構成。此外,内面之反射面604除金屬 蒸鍍膜外,舉例言之,亦可使用於殼體601上貼有在聚對苯 一甲酸乙一醋(PET)樹脂中添加碳酸|弓、二氧化鈦等使反射 率提高之反射片者。 15 殼體601内部配置有插座602、絕緣體605及罩體606。 具體言之,插座602係對應燈400之配置各自距離預定間隔 設置於殼體601之短向(縱向)上。插座602舉例言之係將不錄 鋼或填青銅所組成之板材加工而成者,並具有可供外部導 線404b嵌入之嵌入部6〇2a。令嵌入部602a彈性變形呈擴口 20 狀態後嵌入外部導線404b。結果,嵌入於嵌入部602a中之 外部導線404b受嵌入部602a之復原力壓制而難以脫落。藉 此,可輕易將外部導線4〇4b嵌入嵌入部602a,且難以自嵌 入部脫落。 插座602係以絕緣體605包覆以使相鄰之插座602間不 34 200842929 致短路。絕緣體6 〇 5舉例言之係以聚對苯二甲酸乙二酯(Ρ Ε Τ) 樹脂組成,但並非以上述組成為限。由於插座602位於燈400 之動作中溫度較高之内部電極403附近,因此絕緣體605宜 以具有耐熱性之材料組成。具有耐熱性之絕緣體605材料, 5 舉例言之,可採用聚碳酸酯(PC)樹脂或矽橡膠等。 殼體601内部亦可於必要處設置燈座607。殼體601内側 用以固定燈400之位置之燈座607,舉例言之,係聚碳酸酯 (PC)樹脂製,並具有與燈4〇〇之外面形狀相配合之形狀。所 謂「必要處」,係燈400之長向上中央部附近,例如燈4〇〇為 10全長超過600[mm]之長形者時,即必須防止燈4〇〇產生彎曲 之處。 罩體606係用以分隔插座6〇2與殼體601内側空間者,以 例如聚碳酸酯(PC)構成,可保持插座602周邊之溫度,且至 少使殼體601側之表面為高反射性,可減少燈4〇〇之端部產 15 生亮度降低之情形。 殼體601之開口部係以半透明之光學片材類6〇3覆蓋並 密閉以防止塵埃等跑入内部。光學片材類6〇3係將擴散板 608、擴散片609及稜鏡片61〇層合而成。 擴散板608 ’舉例言之係聚甲基丙烯酸甲酯(pMMA)樹 20脂製之板狀體,配置成閉塞殼體6〇1之開口部之狀態。擴散 片609,舉例言之係聚酉旨樹脂t。稜鏡片610,舉例言之係 丙稀酸系樹脂與聚騎樹脂之黏合層。該等光學片材類603係 分別依序重疊配置於擴散板_上。 如上所述’依據本發明第5實施形態之背光模組刪之 35 200842929 構造,因使用水銀使用量少之燈,故可實現對環境負荷小 之背光模組。 (第6實施型態) 本發明第6實施型態之背光模組之部分切口部透視圖 5係顯示於第21圖。本發明第6實施型態之背光模組700係測 光式,由反射板701、燈4〇〇、插座(圖中未標示)、導光板7〇2、 擴散板70 3及棱鏡膜704構成。 反射板701係配置成圍繞除液晶面板側(箭頭q)以外之 導光板702周圍,由用以覆蓋底面之底面部7〇lb、用以覆蓋 10不包含配置有燈400—側之側面的側面部7〇la、用以覆蓋燈 400周圍並呈曲面狀之燈側面部701c構成,使燈照射之光線 由導光板702朝液晶面板(圖中未標示)側(箭頭q)反射。 又,反射板701舉例言之係於薄膜狀之PET上蒸鍍有銀 者,或與鋁等金屬箔層合而成者。 15 插座具有與本發明第5實施型態之背光模組所用之插 座602實質上相同之構造。此外,第21圖中,為圖式標示方 便,故燈400之端部予以省略。導光板7〇2係用以將反射板 所反射出之光線導向液晶面板側者,舉例言之,由半透明 塑膠組成,並疊於設於背光模組7〇〇底面之反射板7〇la上。 20另,材料可採用聚碳酸酯(PC)樹脂或環烯系樹脂(COP)。 擴政片703係用以擴大視野者’舉例言之,可由聚對苯 一甲酸乙二酯樹脂或聚酯樹脂製之具有漫透射功能之薄膜 構成,並疊於導光板702上。 稜鏡膜704係用以使亮度提高者,舉例言之由丙浠酸系 36 200842929 樹脂與聚酯樹脂黏合而成之片材組成,並層積於擴散片7〇3 上。另,稜鏡膜704上亦可再層積一擴散板。 此外,本實施型態中,亦可為除燈400之周向上一部分 (插入背光模組700時之導光板7〇2侧)外,透明燈管4〇2外面 5 设有反射片(圖中未標不)之孔徑型燈。 如上所述,依據本發明第6實施形態之背光模組7〇〇之 構造,因使用水銀使用量少之燈,故可實現對環境負荷小 之背光模組。 (第7實施型態) 10 本發明第7實施型態之液晶顯示裝置之概要係顯示於 第22圖。如第22圖所示圖例,液晶顯示裝置8〇〇係一32[吋] 電視,具有包含液晶面板等之液晶螢幕單元8(n、本發明第 5實施型態之背光模組600與照明電路8〇2。 液晶螢幕單元801係公知者,具有液晶面板(彩色濾光 15片基板、液晶、TFT基板等)、驅動模組等(圖中未標示), 依據外部傳來之影像信號形成色彩影像。 照明電路802係用以使背光模組6〇〇内部之燈4〇〇點 οι:。且,燈400係以照明頻率4〇[kHz]〜100[kHz]、燈電流 3.0[mA]〜25[mA]動作。 20 另外,第22圖中係針對於本發明第5實施型態之背光模 組600中插入第1實施型態之低壓放電燈4〇〇形成液晶顯示 裝置800之光源裝置進行說明,但並非以此為限,亦可採用 本發明第4實施型態之低壓放電燈5〇〇。又,背光模組亦可 使用本發明第6實施型態之背光模組7〇〇。 37 200842929 如上所述,依據本發明第7實施形態之液晶顯示裝置之 構造,因使用水銀使用量少之燈,故可實現對環境負荷小 ,之背光模組。 〈變形例〉 5 以上係依據上述各實施型態所示之具體例說明本發 明,但本發明之内容自然非以各實施型態所示之具體例為 限,舉例言之’亦可使用下列變形例。 1.水銀放出體之變形例 (1) 變形例1 10 分別以第23圖表示本發明第1實施型態之水銀放出體 之變形例1之透視圖,以第24(a)圖表示其正視圖,以第24(b) 圖表示其平面圖。本發明第1實施型態之水銀放出體之變形 例1(以下僅稱「水銀放出體103」),其外型形狀與本發明第 1實施型態之水銀放出體100有所不同。因此,針對其形狀 15 詳細說明,其他部分則予以省略。 水銀放出體103係端部形成錐形。具體言之,係水銀放 出體103之金屬燒結體部104之端部形成錐形1〇扣。 水銀放出體103藉由將其端部形成錐形,可防止於輸送 曰守與其他水銀放出體產生衝突而毀損。又,因水銀放出體 20 ι〇3之端部形成錐形,故於製作細管之低壓放電燈時,可輕 易將水銀放出體103投入玻璃管中。此外,亦可僅只水銀放 出體103之一端部形成錐形。 (2) 變形例2 另】以第25圖表示本發明第1實施型態之水銀放出體 38 200842929 之變形例2之透視圖,以第26(a)圖表示其正視圖,以第26(b) 圖表示其平面圖。本發明第1實施型態之水銀放出體之變形 例2(以下僅稱「水銀放出體105」),其水銀合金部106之形 狀與本發明第1實施型態之水銀放出體100有所不同。因 5 此,針對其形狀詳細說明,其他部分則予以省略。 水銀放出體105係形成筒狀,水銀可由其内面與金屬燒 結體部102側之兩側放出,並可使水銀之放出效率更加提 升。另,水銀放出體105之内面亦可再形成金屬燒結體部 102。如此一來,進行高頻加熱時,高頻加熱之渦電流亦可 10 達水銀放出體105之内面,提高水銀合金部1〇6之加熱效率 從而使水銀之放出效率更加提升。 又,如第25圖及第26圖所示,水銀放出體係形成圓筒 狀,但並非以此為限,亦可為多角形之筒狀等。 此外,貫通孔106a之外徑Dh相對於水銀合金部106之外 15 徑Di之比率,宜於5[%]以上60[%]以下之範圍内。此係由於 Dh若過小則放出效率不高,若過大則達不到預定之水銀浸 滲量,且加熱效率亦降低。 (3)變形例3 本發明第1實施型態之水銀放出體之變形例3之透視圖 20 係顯示於第27圖。本發明第1實施型態之水銀放出體之變形 例3(以下簡稱「水銀放出體109」),其形狀與本發明第1實 施型態之水銀放出體100有所不同。因此’針對其形狀詳細 說明,其他部分則予以省略。 水銀放出體109係平板狀。具體言之’水銀敌出體109 39 200842929 係於平板狀之水銀合金部110層積有金屬燒結體部1U。 即,若為水銀合金部110以燒結體部U1包覆者,則亦可採 用第27圖所π之構造(109)。水銀放出體1〇9可藉由壓片方 法,以加壓成形加工製作,故可將製造程序更為簡化。 5 另,第27圖所不者係水銀合金部110之與金屬燒結體部 111相反侧之一面亦層積有金屬燒結體部m,即水銀合金 部110由兩個金屬燒結體部ηι於兩面挾持。如此一來水銀 合金部110之加熱效率提高,並可使水銀之放出效率更加提 升。惟’亦可採用第27圖所示之構造(平板狀構造)以外之其 10 他構造。 舉例言之’第28圖所示之水銀放出體1〇9係將第27圖所 不之平板狀構造彎曲形成略圓筒狀者。或,亦可如第29圖 所不之水銀放出體1〇9,做成將水銀合金部110之端面以金 屬燒結體部111包覆之構造。第29圖所示之構造者,水銀合 15金部110之端面以金屬燒結體部111包覆,表面與裏面相 連’因此可達到提升渦電流效率之效果。 另’若為水銀放出部110以燒結體部111包覆者,則亦 可於水銀放出體之一部分(燒結體部之一部分)設置狹縫。 第28圖及第29圖所示之構造,亦可謂之為水銀放出體 20 之一部分形成有狹縫之型態,舉例言之,亦可相對於第3圖 所示之水銀放出體100之長向上中心軸X100平行設置狹缝, 或垂直設置’或斜向設置。 水銀放出體若於金屬燒結體之一部分設置狹縫,則易 於從狹縫部分放出水銀,可能可使水銀之放出效率更加提 200842929 高,但狹縫之存在亦將產生渦電流效率降低之問題,故形 成狹縫時在設計上應多加考慮。 (4)變形例4 本發明帛1實施型態之水銀放出體之變形例4之透視圖 5係顯示於第30圖。本發明第上實施型態之水銀放出體之變形 例4(以下簡稱「水銀放出體112」),係將本發明第i實施型 悲之水銀放出體之變形例3捲成螺旋狀者。具體言之,係將 金屬燒結體部111與水銀合金部11〇之層積物捲成螺旋狀, 隶後使金屬燒結體部1Π位於外側者。如此一來,即使為水 10銀合金部110單面以金屬燒結體部ill覆蓋者,亦可形成使 水銀合金部110兩面以金屬燒結體部1U包覆者。 如此構造之水銀放出體112,可連同其内部在内全 體以而頻加熱進行加熱,故可使水銀之放出效率更加提 升。 15 (5)變形例5 本發明第1實施型態之水銀放出體之變形例5之部分切 口透視圖係顯示於第31圖。本發明第1實施型態之水銀放出 體之變形例5(以下簡稱「水銀放出體113」),其形狀與本發 明第1實施型態之水銀放出體1〇〇有所不同。因此,針對其 20形狀詳細說明,其他部分則予以省略。 水銀放出體113係於棒狀之水銀合金部1〇1捲繞有帶狀 之金屬燒結體部114。藉此構造,水銀放出體113之成形雖 非同時擠製水銀合金部101與金屬燒結體部114,但可於將 用以做為水銀合金部113之棒狀體坏土成形後再捲繞用以 41 200842929 作為金屬燒結體部114之胚土。 (6)變形例6 本發明第1實施型態之水銀放出體之變形例6之部分切 口透視圖係顯示於第32圖。本發明第1實施型態之水銀放出 5 體之變形例6(以下簡稱「水銀放出體115」),其形狀與本發 明第1實施型態之水銀放出體1〇〇有所不同。因此,針對其 形狀詳細說明,其他部分則予以省略。 水銀放出體115係球狀,並於球狀之水銀合金部116之 外側全體層積有金屬燒結體部117。 10 水銀放出體115藉由於其外側全部以金屬燒結體117包 覆’可於輸送水銀放出體115時在不直接觸及浸渗有水銀之 水銀合金部116之情形下進行作業,因此可提升作業之安全 性。此外,水銀合金部116僅需全體覆以金屬燒結體部117 即可,並不限為球狀,亦可為多面體形狀等(例如截面矩 15形、結面六角形等)。若為球狀,由於無角,故可防止於輸 送時水銀放出體115間因碰撞而損傷之情形。又,若為球 狀,則輸送時,可比其他形狀更緊密塞滿於輸送容器中, 因而可提高輸送之效率。 另,日本專利公開公報特開平第4-341748號中揭示有 20 一種本質上與本發明之技術思想不同,於用以放出水銀之 水銀放出體一端部設有用以炼接金屬蓋或金屬棒之薄形構 件之構造。然而,該公報所揭示之構造,與本實施型態之 水銀放出體100可提升水銀放出效率之技術大不相同,係一 種於炼接作業中無水銀氣體產生,且可安全進行溶接作業 42 200842929 之技術。 產業上之可利用性 本發明可廣泛運用於水銀放出體、使用該水銀放出體 之低壓放電燈之製造方法及低壓放電燈。 5 【圖式簡單說明】 第1圖係本發明之實施型態中水銀放出體之透視圖。 第2圖所示者係本發明之實施型態中水銀放出體外觀 狀態之圖式代用照片。 第3圖係本發明之第1實施型態中水銀放出體之透視 10 圖。 第4(a)圖係同一水銀放出體之正視圖,第4(b)圖係同一 水銀放出體之平面圖。 第5(a)圖所示者係同一水銀放出體正面之表面狀態之 照片,第5(b)圖所示者係同一水銀放出體平面之表面狀態之 15 照片,第5(c)圖所示者係同一水銀放出體之含長向上之中心 軸在内之截面狀態之照片。 第6(a)圖所示者係與水銀不形成合金之金屬之粒子形 狀為球狀時水銀放出體正面之表面狀態之照片,第6(b)圖所 示者係同一水銀放出體平面之表面狀態之照片。 20 第7圖所示者係水銀放出量因加熱溫度而產生之變 化。 第8(a)〜(d)圖係說明就本發明之實施型態中水銀放出 體之集氣劑效果所進行之實驗方法之截面圖。 第9圖所示者係就H2(氫)進行集氣劑效果實驗之結果 43 200842929 圖 第10圖所示者係就c〇2(二氧化碳)進行減劑效果實 驗之結果圖。 第11圖所不者係就Hc·(碳化氯)進行冑氣劑效果實驗 5 之結果圖。 第I2圖所示者係就go(氮+—氧化碳)進行集氣劑效 果貫驗之結果圖。 第囷所示者係本發明之實施型態中水銀放出部經χ 射線分析後之測量結果圖。 第I4圖所示者係本發明之實施型態中水銀放出部經X 射線分析後之測量結果圖。 第15圖係本發明第丨實施型態之水銀放出體之製造方 法之製造程序之程序圖。 第16圖係本發明第2實施型態之低壓放電燈之製造方 15法由程序Α至程序G之概念圖。 第17圖係本發明第2實施型態之低壓放電燈之製造方 法由程序Η至程序J之概念圖。 第18(a)圖係本發明第3實施型態之低壓放電燈之含管 軸在内之截面圖,第18(b)圖係Α部之擴大截面圖。 20 第19(a)圖係本發明第4實施型態之低壓放電燈之含管 軸在内之截面圖,第19(b)圖係B部之擴大截面圖。 第20圖係本發明第5實施型態之背光模組之透視圖。 第21圖係本發明第6實施型態之背光模組之透視圖。 第22圖係本發明第7實施型態之液晶顯示裝置之透視 44 200842929 圖。 第23圖係本發明第1實施型態之水銀放出體之變形例1 之透視圖。 第24(a)圖係同一水銀放出體之變形例1之正視圖,第 5 24(b)圖係同一水銀放出體之變形例1之平面圖。 第25圖係本發明第1實施型態之水銀放出體之變形例2 之透視圖。 第26(a)圖係同一水銀放出體之變形例2之正視圖,第 26(b)圖係同一水銀放出體之變形例2之平面圖。 10 第27圖係本發明第1實施型態之水銀放出體之變形例3 之透視圖。 第28圖係本發明第1實施型態之水銀放出體之變形例3 之透視圖。 第29圖係本發明第1實施型態之水銀放出體之變形例3 15 之透視圖。 第30圖係本發明第1實施型態之水銀放出體之變形例4 之透視圖。 第31圖係本發明第1實施型態之水銀放出體之變形例5 之透視圖。 20 第32圖係本發明第1實施型態之水銀放出體之變形例6 之透視圖。 第33圖係習知之水銀放出體(習知例1)之透視圖。 第34圖係習知之水銀放出體(習知例2)之透視圖。 【主要元件符號說明】 45 200842929 10…水銀放出部 306···電極 100、 103、105、109、112、113、307·.·珠狀玻璃 115…水銀放出體 308…導線 101、 106、110、116…水銀合金部309···電極單元 20、102、104、m、114、117··· 310···燃燒器 311.. .電極 312…珠狀玻璃 313…導線 314···電極單元 315、316、317…燃燒器 318…加熱爐 319.. .燃燒器 400…低壓放電燈 401.. 銀^出體 401a··.貫通孔 402.. .透明燈管 403…電極 404…導線 404a···内部導線 404b...外部導線 405…螢光體層 金屬燒結體部 106a.··貫通孔 200.. .Hg 粒 210…透明燈管 220.. .充填氣體成分 240· · · 名艮 245…箭頭 250.. .高頻加熱器 260…電熱爐 300.. .玻璃管 300a…收縮部分 301.. .容器 302.. .螢光體懸浮液 303…光學感測器 304.. .刷子 305…螢光體膜 46 200842929 406…珠狀玻璃 607.··燈座 500...低壓放電燈 608…擴散板 501...透明燈管 609…擴散片 502...電極裝置 610...稜鏡片 ^ 503…燈絲電極 700…背光模組 k 504…導線 701...反射板 , 505…珠狀玻璃 701a...側面部 506...排氣管殘部 701b...底面部 600…背光模組 701c...燈側面部 601…殼體 702…導光板 602.&quot;插座 703…擴散板 602a···後入部 704…稜鏡膜 603…光學片材類 800...液晶顯示裝置 604···反射面 801...液晶螢幕單元 605…絕緣體 606...罩體 802...照明電路 47XlOO The density of the metal sintered body portion 1 〇 2 can be determined by I c P emission spectroscopy, and the composition ratio of the mercury discharge body 100 is multiplied by the weight of the mercury release body to form the composition ratio of the elements constituting the 5 metal sintered body portion 102. The weight of the obtained metal sintered body portion 102 is divided by the volume of the metal sintered body portion 1 〇 2 and determined. Here, the metal sintered body portion 102 is porous, and it is difficult to obtain the positive grafting volume. Therefore, the volume of the metal sintered body portion 102 is the volume when the metal sintered body portion 1 〇 2 has no void at all. Further, the theoretical density of the metal sintered body portion 1〇2 is assumed to be the fictional density obtained by the absence of voids in the metal sintered body portion 102. The metal constituting the metal sintered body portion 102 is preferably a magnetic body. For example, in the case of a low-pressure discharge lamp, the magnet can be positioned correctly and easily by the magnet in the sealed glass tube. The metal of the magnetic body may be selected, for example, iron (Fe), nickel (Ni), cobalt (Co), and the like. Further, a gas collector material may be mixed in the metal sintered body portion 1〇2. By mixing the gas collector material, it can adsorb hydrogen (HD or oxygen (a) and other impure gases. The gas collector materials can be used such as button (Ta), niobium (Nb), zirconium (Zr), chromium (Cr), titanium. (Ti), yttrium (Hf), aluminum (A1), etc., or an alloy thereof or an intermetallic compound. 2〇x, a portion of the total surface area of the mercury alloy portion 1〇1 in contact with the sintered metal portion 102 The surface area ratio is preferably 3 〇 [%] or more. Thus, the heating efficiency of the mercury alloy portion 101 is increased to obtain a very high mercury release efficiency. In particular, in order to further improve the heating efficiency, the mercury alloy portion 1 The surface area ratio of the portion of the total surface area of the crucible contacting the metal sintered body portion 102 is preferably 50 [%] or more. Further, the "surface area of the portion of the contact metal sintered body portion ι 2" is caused by the metal sintering. Since the body portion 1〇2 is porous, the surface area of the void in the porous inner portion does not include the inner surface, but is the surface area calculated from the outermost surface of the wheel. Further, the metal sintered body portion 102 does not form an alloy with mercury. The particle size is preferably in the range of 5 [μηι] or more and 40 [μπι] or less. Mercury discharged from the mercury alloy portion 1〇1 is more easily penetrated, and the release efficiency of mercury is improved. Further, the particle shape of the sintered metal body 102 shown in Fig. 5 is scaly, but it is not necessary to have a scale shape or a polygonal shape. However, in the case of a scaly shape, the porosity of the sintered metal body portion 102 can be enlarged, and the rate of release of mercury can be further improved. Further, the metal sintered body 102 is a metal particle which does not form an alloy with mercury. The shape may be spherical. The sixth (a) and sixth (b) drawings respectively show the front photo and the same of the mercury discharge body 100 when the metal sintered body 102 has a spherical shape of a metal which does not form an alloy with mercury. In this case, the fluidity is increased by 20, and the extrusion process of the extrusion process of forming the mercury discharge body 1 described later can be efficiently performed to increase the productivity. Further, the shape of the metal sintered body portion 102, As shown in Fig. 3, it is preferably a cylindrical shape covering the outer peripheral surface of the mercury alloy portion 101. Thus, the eddy current generated by the high-frequency heating can flow on the inner surface of the closed cylindrical shape, and the mercury alloy 17 is improved. Heating efficiency (Comparative Experiment) The applicant of the present invention compares the mercury release efficiency of the mercury discharge body of the embodiment of the present invention with a conventional mercury release body. 5 The sample used in the experiment is as shown in Fig. 3. The first embodiment of the plastic mercury discharge body 100, the length [3 ^ 111], the metal sintered body outer diameter Do is 1. 4 [mm] and an inner diameter Di of 1 [rnm] are taken as examples. For the conventional mercury release body, the sintered body of the ferrotitanium mixed powder is impregnated with mercury as shown in Fig. 33, the length is 3!^111], and the outer diameter N is 10 1. 5 [mm] was used as Comparative Example 1. Further, in Comparative Example 2, the alloy of titanium and mercury was coated with a thin iron plate as shown in Fig. 34, and STHGS00 manufactured by S AES Getters Co., Ltd., and the length P was cut into 5 [mm]. Further, in the examples, the comparative examples 1, and the comparative example 2, about 4 [mg] of mercury was infiltrated into each of the [samples]. At the time of the experiment, 10 [samples] were each made separately. In the experiment, each sample was heated one by one, and the amount of mercury released was measured, and the average value of 10 samples was obtained. The change in the amount of mercury released from each sample with the heating temperature is shown in Fig. 7, respectively. In the seventh drawing, the S degree T2 system is a temperature at which the glass transition of the mercury discharge body starts to soften or break, and indicates the upper limit of the actual use temperature in the process. As shown in Fig. 7, the embodiment (shown by the solid line in Fig. 7) emits almost no mercury before the temperature of T τ is increased, and the amount of mercury released is increased sharply when it reaches 1 to reach T2. Mercury 18 200842929 Compared with the first example (the one shown in the drawing line in Fig. 7), the amount of mercury released is 15 [times], which is about 1. (compared with the double-pointed line in the seventh figure). 25 [times;]. On the other hand, in Comparative Example 1, when the heating temperature T was reached before the temperature reached the temperature T 2 , the amount of mercury released was increased, but it was found that the amount of mercury released was not as large as in the examples. Further, in Comparative Example 2, as in the example, almost no mercury was released until the heating temperature T reached the temperature T!, and when the heating temperature τ reached the temperature of 2, the amount of mercury released increased, but the amount of mercury released was not as large as in the examples. The practical range of the heating temperature T of the mercury discharge body is set in the range between the temperature at which the mercury discharge 10 is rapidly increased, and the temperature T2 which has not adversely affected the glass tube containing the mercury discharge body, and the closer to the temperature 2 is especially ideal. As can be seen from the above, when the heating temperature Τ is set to be in the range of 2 or less, the amount of mercury released in the embodiment is the largest, which means that the mercury is efficiently discharged. 15 Moreover, the mercury is released from the body before the heating temperature reaches a certain temperature, and it is preferably discharged with anhydrous silver. This is because it is difficult to control the temperature rise per hour, and the temperature rise between the individuals is uneven, so that the heating temperature reaches the temperature, and if mercury is released before, the amount of all the mercury released into the glass tube is dispersed. From this point of view, the examples and the comparative example 2 are suitable. 2〇 Therefore, it was confirmed that the examples can control the dispersion of mercury release amount and improve the release efficiency of mercury. The reasons for the above results are reviewed as follows. First, in the examples and comparative examples 2, almost no mercury was released before the heating temperature reached the temperature, and the reason why the mercury was released before the temperature of the temperature of the comparative example 1 was before 2008200829. In this case, Comparative Example 1 is a mercury-evaporated body obtained by impregnating mercury into a sintered body of a mixed powder of titanium and iron, so that some of the titanium forms an alloy with iron, and in the 5th part, the medium and the mercury cannot form in a stable state. Alloy, and at the lower 5 temperature (when the temperature is below the temperature of Ding), the alloy is still formed under the unstable state of mercury. On the other hand, in the examples or the comparative example 2, titanium and iron were not mixed, and therefore, when titanium was alloyed with mercury, there was no such factor as to form an alloy in an unstable state. Next, the amount of mercury released by the embodiment is about 1.5% of the amount of mercury released in Comparative Example 1, which is about 1. 25 [times] reason. In this case, Comparative Example 1 is a mercury-evaporated body obtained by impregnating a sintered body of a mixed powder of titanium and iron with mercury, so that iron as a heat source is irregularly dispersed during high-frequency heating to cause uneven heating and heating. The efficiency is worse than 15 years. Or the heating of the mercury discharge body is uneven, so that the mercury is released only from the portion of the mercury discharge body which is very south. In Comparative Example 2, there was no such uneven heating, but the alloy portion of titanium and mercury was coated with a thin iron plate, so that it was difficult to release mercury in the portion. Further, in Comparative Example 2, the slit was formed on the thin iron plate, so that the heating efficiency of the eddy current was deteriorated. In contrast, in the embodiment, the titanium and the iron are mixed, so that the heating unevenness does not occur, and the metal sintered body portion 102 outside the mercury alloy portion 101 is porous, so that the mercury vapor easily passes through the metal sintered body. The portion 102 can obtain a higher mercury release efficiency than Comparative Example 1 and Comparative Example 2. Therefore, as described above, the structure of the mercury release body of the first embodiment of the present invention 20 200842929 can control the dispersion of the amount of mercury released and improve the release efficiency of mercury. Further, the mercury alloy portion 101 has a cylindrical shape, and the outer diameter of the mercury alloy portion 101 is preferably 30 [%] or more of the outer diameter of the mercury discharge body 100. At this time, the heat for heating the metal sintered body portion 102 is easily transferred to the mercury-gold alloy portion 101, so that the mercury alloy portion 101 can be efficiently heated, and the mercury emission efficiency can be further improved. In particular, in order to heat the mercury alloy portion 101 more efficiently and to increase the mercury release efficiency, the ratio of the outer diameter of the mercury alloy portion 1〇1 to the outer diameter of the mercury discharge body 1〇〇 is 60. [%] Above is especially good. Further, the ratio of the outer diameter of the mercury alloy portion 1〇1 to the outer diameter of the mercury discharge body 1〇〇 is preferably 95 [%] or less. When the metal sintered body portion 102 heats the mercury alloy portion 101, it is difficult to ensure a sufficient heat capacity, and the heating efficiency of the mercury alloy portion 101 is lowered. Further, the thickness of the metal sintered body portion 102 is preferably 10 [μηι] or more. This is because the thickness of the metal sintered body portion 102 is 10, which is difficult to manufacture. Further, the thickness of the sintered metal body portion 102 is preferably Mbm] or more and 250 [μm] or less in terms of heating efficiency of the mercury alloy portion 1〇1 at the time of high-frequency heating. Further, the surface roughness (Ra) of the outer surface of the sintered metal body portion 102 is preferably 1 or more. As a result, the surface area outside the metal sintered body portion 102 can be enlarged, and the heating efficiency of the mercury alloy portion 101 can be increased to improve the mercury release efficiency. In particular, in order to further enlarge the surface area of the metal sintered body portion 1〇2 and further increase the heating efficiency of the mercury alloy portion 101 to further increase the mercury emission efficiency, the surface roughness (Ra) of the outer surface of the metal sintered body portion 102 is obtained. It is especially good for 2 or more. Further, the surface roughness (Ra) of the outer surface of the metal sintered body portion 102 is preferably 21 200842929 ίο or less. This is because the outer surface of the metal sintered body portion 1 2 is extremely thick, and it is difficult to carry out the process of transporting the lamp by the component supply machine. The surface roughness of the metal sintered body part 1〇2 was measured using a laser microscope 5 乂1^8710 manufactured by KEYENCE Corporation (Japanese: 丰一工 y only company). This measurement is performed in the parallel direction from the one end toward the other end on the outer circumferential surface X (10) of the outer peripheral surface of the metal sintered body portion 102. This measurement is performed at one end of the outer peripheral surface of the metal sintered body portion 1 2 at equal intervals of 4 [where]. Then, the average value of the metal sintered body portion 1〇2 was obtained by calculating the average value thereof. Further, the present inventors have found that the metal sintered body portion 102 is formed into a porous shape. Therefore, the mercury releasing body 100 of the present embodiment has a gas collecting agent effect even if the gas collecting agent material is not mixed with the metal sintered body portion 102. The getter effect can be obtained by the mercury discharge body 100 of the present embodiment without using the gas accumulating material, which is of great technical significance in manufacturing. The gas collecting agent effect of the mercury discharging body 100 of the present embodiment will be described below with reference to Figs. 8 to 12 . This experiment was carried out as shown in Fig. 8, and the figures from Fig. 9 to Fig. 12 are graphs showing the results of the experiment. First, as shown in Fig. 8(a), a transparent tube (glass tube) 21 is prepared. The length of the transparent lamp tube 210 in the long direction is 40 cm, and the filling of the gas tube 210 in the transparent lamp tube 21 is Ne95% + Ar 5%. Further, a heater for heating the exhaust gas may be disposed outside the transparent lamp tube 210. At this time, the mercury discharge body (hereinafter referred to as Hg particles) is placed in the transparent lamp tube 210, and the partial pressure of the impurity gas component is measured. The partial pressure measurement was performed on a quadrupole mass spectrometer. Impure gas measured 22 200842929 For (hydrogen), C02 (carbon dioxide), H. C. (hydrocarbon), N2+CO (nitrogen + - carbon oxide). Further, in this experiment, in addition to the above Comparative Example 1 and Comparative Example 2, Comparative Example 3 was further added to carry out an experiment. In Comparative Example 3, Hg particles of Hg amalgam containing Ti3Hg as a main component were laminated in a metal tube made of Ni. 5 Next, as shown in Fig. 8(b), after the Hg particles 200 (Example, Comparative Example 1, Comparative Example 2, and Comparative Example 3) are placed in the transparent tube 210, the transparent tube 210 is evacuated. And seal and measure the partial pressure of impure gas. Then, as shown in Fig. 8(c), the Hg particles 200 (Example, Comparative Example 1, Comparative Example 2, and Comparative Example 3) disposed in the transparent bulb 210 were heated for 10 minutes at a high frequency for 10 minutes, and then heated. The partial pressure of the impurity gas component is measured. This high frequency heating system is performed by the high frequency heater 250. By this heating, the Hg particles 200 are discharged with mercury 240 (actually mercury vapor) (see the arrow 245 for a meal). Finally, as shown in Fig. 8(d), Hg particles 200 (Example, Comparative Example 1, Comparative Example 2, Comparative Example 3) were heated at 400 ° C for 5 minutes (annealing procedure), and 15 impure gas was measured. Partial pressure. This heating is performed in an electric heating furnace 260. In addition, after heating, one part of the Hg grain 200 is tip-off (Japanese: Dong Yiyi is 7 inch §). Figures 9 to 12 show H2 (hydrogen), c〇2 (carbon dioxide), and H. C. Measurement results of each stage (hydrocarbon), N2+CO (nitrogen + carbon monoxide) (no granules, exhaust gas, high frequency, annealing). 20 It can be seen from Fig. 9 that the Hg particles (mercury releasing body 1) of the examples have an effect of lowering the partial pressure of H2 (hydrogen), that is, the effect of the gas collector for hydrazine: (hydrogen) is confirmed. Regarding hydrazine (hydrogen), the characteristics of a good gas collector effect are exhibited in the exhaust phase (Fig. 8(b)), the high frequency phase (Fig. 8(c)), and the annealing phase (Fig. 8(4)). 23 200842929 In the case of backlighting, if 11 "nitrogen" is mixed in the transparent tube, the characteristics of the lamp are lowered, so that the partial discharge of H2 (hydrogen) can be reduced by the mercury releasing body 100 of the present embodiment ( The technical significance of the concentration. In addition, the partial pressure of the vertical axis in Fig. 9 to Fig. 2 is expressed in units of mbar, and, for example, L00E-02 is shown in Table 5. OOxlCT2 〇 From Figure 10 to Figure 12, we know about C〇2 (carbon dioxide), H. C. In terms of (hydrocarbon) and N2+CO (nitrogen + carbon monoxide), the partial pressure drop of impure gas can also be observed. Further, in the mercury discharge unit 1 of the present embodiment shown in Fig. 1, the mercury discharge 10 outlet portion 10 is impregnated with mercury by the sintered body layer 20, and reacts with the first metal (this titanium) by mercury. Forming, at this time, it can be known from the measurement that the mercury alloy can be TiHg. The measurement results of the X-ray analysis are shown in Fig. 13. From the results shown in Fig. 13, it is apparent that only the peak value of TiHg (for example, 90% or more) is detected, and Ti3Hg is hardly detectable. If the mercury 15 discharge portion 10 is composed mainly of TiHg, it is more easily decomposed than Ti3Hg, so that the advantage of improving the discharge characteristics can be obtained. Further, depending on the formation condition of the mercury alloy, not only TiHg but also Ti3Hg can be produced. The results shown in Fig. 14 show the results of measurement of the peak of TiHg and the peak of TisHg. Next, a method of manufacturing the mercury discharge body according to the first embodiment of the present invention will be described. The program diagram of the manufacturing procedure is shown in Fig. 15. As shown in Figure 15, the raw material powder should be prepared first. Specifically, it is used as a material of the mercury alloy portion 1〇, for example, titanium powder, or as a material of the metal sintered body portion 102, for example, iron powder. (Mixed • Kneading Procedure) 24 200842929 Following this, titanium powder and iron powder are separately added to the binder, mixed with water, and fully kneaded. The binder can be exemplified by methyl cellulose. Titanium bad soil and iron bad soil are produced by the above process. (Extrusion forming procedure) 5 Next, the titanium bad soil and the iron bad soil are respectively introduced into the first and second extrusion molding machines (not shown). In the second molding machine, a coaxial two-layer extrusion mold is provided. The rod-shaped titanium molded body is taken out by the first extrusion molding machine, and the titanium molded body is introduced into the mold portion of the second extrusion molding machine, and the iron skeleton is deposited on the outer side, and the cylindrical body of the coaxial structure is continuously formed through the above procedure. Shaped body. Thereafter, the 10-shaped body is dried to a predetermined hardness. Further, the molding method is not limited to extrusion molding, and may be used by press molding, or by forming titanium rods into a rod shape and then immersing in slurryed iron. (Cutting Procedure) Next, the formed body is cut to a predetermined length. According to the cut, the amount of mercury infiltration in the mercury discharge body 100 is adjusted to a desired amount. 7 t in, the mercury infiltration amount of the mercury discharge body 100 can be adjusted by the viscosity of the earth, the outer diameter of the mercury alloy portion 101, the temperature in the firing process, and the like in addition to the above method. Then, the sintering process is carried out by removing the molded body in an argon atmosphere at, for example, 500 [°c]. Further, in a vacuum atmosphere, sintering is carried out, for example, by heating, to produce a sintered body. 0()[c] (mercury infiltration procedure) Using a vacuum pump to make the sintered body and mercury into the heating vessel 25 200842929 Heating the crying shape + +, the vacuum state, and the temperature of about 500fc] ~ 600fc] Heating between a long horn, for example, about 12 [h] to 15 [h], alloys titanium with mercury. 5 ^ Iron has not yet formed an alloy with mercury, so there is no silver in the sintered body of iron. The alloy of titanium and mercury is formed in the sintered body of titanium, and the mercury discharge body is completed. (Second Embodiment) A method for producing a low-pressure discharge lamp according to a second embodiment of the present invention relates to a low-pressure discharge in a state in which a mercury discharge body is taken out in a manufacturing process and a mercury-free body is discharged inside the transparent lamp tube after completion of the lamp. The method of manufacturing the lamp. In the manufacturing procedure of the method for manufacturing a low-pressure discharge lamp according to the second embodiment of the present invention, a schematic diagram of the program A to the program G is shown in Fig. 16, and a schematic diagram of the program 〜 to the program J is shown in Fig. 17. (Procedure Α) 15 First, the lower end portion of the prepared straight tubular glass tube 300 is suspended and immersed in the phosphor suspension 302 in each of the devices 301. The phosphor suspension 3〇2 contains fluorescent particles such as cyan, red, and green. By forming a negative pressure in the glass tube 300, the phosphor suspension 302 in the container 301 is aspirated, and the inside of the glass tube 300 is coated with a phosphor suspension. The suction system detects the liquid level of 20 by the optical detector 303, and sets the liquid level to a predetermined height of the glass tube 300. At this time, the error of the liquid level height is largely affected by the viscosity of the phosphor suspension 302 or the surface tension of the liquid surface, and about ±〇. 5 [mm] error. (Procedure B) Next, it is opened to the atmosphere, and then the lower end portion of the glass tube 300 is taken out from the phosphor suspension 302 200842929, and the phosphor suspension 302 inside the glass tube 3 is discharged to the outside. Thereby, the phosphor suspension is applied in a film form to a predetermined area on the inner circumference of the glass tube 300. Continuing, after drying the phosphor suspension 3〇2 applied in the glass tube 3〇〇5, a brush or the like 304 is inserted into the inner surface of the glass tube 300, and the unnecessary phosphor portion of the end portion of the glass tube 3 is removed. . Subsequently, the glass tube 300 is moved to a furnace not shown in the figure to be fired to obtain a phosphor film 305. (Program C) 1 Thereafter, the electrode unit 309 including the electrode 306, the bead glass 307, and the wire 308 is inserted into the end portion of the glass tube 300 on which the phosphor film 305 is formed, and then temporarily fixed. In the temporary fixing, the outer peripheral portion of the glass tube 3 of the bead glass 307 is heated by the burner 31, and a part of the outer periphery of the bead glass 3〇7 is fixed to the inner peripheral surface of the glass tube 300. Since only a part of the outer peripheral surface of the beaded glass 307 is fixed, the gas permeability of the glass tube 3 in the direction of the tube axis can be maintained. (Procedure D) Next, the glass tube 300 is turned upside down, and is substantially the same as the electrode unit 3〇9 from the other side opposite to the side previously inserted into the electrode unit 309, and includes 20 electrodes 3U, bead glass 312, and wires After the electrode unit 314 of the 313 is inserted into the glass tube 300, the outer peripheral portion of the glass tube 300 where the bead glass 312 is placed is heated by the burner 315, and the glass tube 3 is sealed and sealed (first seal). Moreover, the error between the first seal and the set value of the sealing position is about 0. 5[mm] or so. 27 200842929 In addition, in the insertion position of the electrode unit 309 in the program C and the insertion of the electrode unit 314 in the program D, it is preferable to adjust the insertion amount to the phosphor layer 405 which is extended from the both end portions of the sealed glass tube 402 which will be described later. There are locations where the length of the field is different. At this time, the electrode unit 314 on the other end side is inserted into the electrode unit 3〇9 on the side of the one end side, and is inserted more than the position overlapping the phosphor film 3〇5. The reason for considering this construction is appropriate is as follows. That is, the thickness of the phosphor layer 4〇5 at one end of the lamp and the other end is often different. If a plurality of lamps are mounted in the same direction in a lighting device such as a backlight module, the entire lighting device will have a shell. Uneven situation. To prevent this, one end of the lamp 10 can be staggered into the illuminating device at the other end. This is because one end and the other end of the lamp can be automatically and easily recognized by a sensor or the like. If the sensor uses a 10,000 [pixel] image sensor, u pixels can be set to 〇. 1[mm], so the measurement accuracy of 0·1—] units can be achieved. Considering the above situation, one end side of the transparent lamp tube 4〇1 and the other end side 15 side may have a length difference of at least the field of the phosphor layer 404. The sensor can accurately recognize the direction of the long direction. \ 叩 ρ 兴 一 一 一 一 一 一 一 一 一 一 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 At this time, the image sense _ 〇. The accuracy of 5 [mm] units is also acceptable. Moreover, the upper limit of the length difference is about 8. This is because if it is greater than 8 [mm] ′ lin luminescence, it is useless, and there is no field growth, and the _ surface is effective. (Procedure E) Next, in the glass tube 300, a portion between the electrode unit 3G9 and the end of the glass tube 300 near the side of the electrode unit 28 200842929 309 is heated by a burner 316 to reduce the diameter of the glass tube to form a contracted portion. 300a. Then, the mercury discharge body 100 according to the first embodiment of the present invention is put into the glass tube 300 from the end portion, and is hung on the constricted portion 300a. 5 (Procedure F) Then, the exhaust gas in the glass tube 300 is sequentially performed and the filling gas is filled in the glass tube 300. Specifically, the header of the air supply and exhaust device (not shown) is installed at the end of the mercury discharge body 100 of the glass tube 300. First, the air in the glass tube 300 is discharged to form a vacuum state, and the heating device is used. (not shown in Fig. 10) The entire glass tube 300 is heated from the outer periphery of the glass tube. Thereby, the impure gas in the glass tube 300 containing the impure gas penetrating into the phosphor film 305 is discharged. After the heating is stopped, a predetermined amount of the filling gas is filled (for example, a mixed rare gas such as a mixed gas of argon: 95 [%], 氖: 5 [%]). (Procedure G) 15 After the filling gas is filled, the glass tube is sealed by heating the glass tube 300 near the side of the mercury discharge body 100 by the burner 317. (Procedure H) Next, the program shown in the eighth figure is inductively added with 20 heat to the mercury discharge body 100 by a high-frequency oscillation coil (not shown) disposed around the glass tube 300 to discharge mercury from the mercury. The body 100 is released (mercury release program). Further, as the heating method of the mercury discharge body, various known methods such as light heating can be used. Thereafter, the glass tube 300 is heated in the heating furnace 318 to move the discharged mercury toward the electrode 311 of the electrode unit 314. (Paste sequencer) 29 200842929 Next, the outer peripheral portion of the glass tube 300 where the bead glass 307 is placed is heated by the burner 319, and the glass tube 300 is sealed to form a sealed state. The error between the set value of the loose end and the sealing position of the one end 4 is approximately ±〇 with the other end. 5[mm] or so. (Procedure J) It is understood that the sealing portion of the one end portion of the glass tube 300 is cut away toward the end portion of the mercury discharge body 100 side. The low pressure discharge lamp is completed via the aforementioned procedure. As described above, according to the structure of the method for producing a low-pressure discharge lamp according to the second embodiment of the present invention, since the mercury discharge body 1 is excellent in mercury release efficiency, the amount of mercury impregnated in the mercury discharge body 100 can be reduced. In other words, it can reduce the amount of mercury used on the lamp and reduce the load on the environment. (Third Embodiment) A low-pressure discharge lamp 400 according to a third embodiment of the present invention (hereinafter referred to as "light 4") will be respectively shown in Fig. 18(a) for a cross-sectional view including a tube axis. Figure 18(b) shows an enlarged cross-sectional view of the eight sections. As shown in Fig. 18(4), the lamp 400 is a cold cathode fluorescent lamp, which is different from the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the second embodiment of the present invention, and the mercury discharge body 401 is left inside the lamp. . 2〇 The lamp 400 is composed of a transparent lamp tube, an electrode 4〇3, and a wire 404. The transparent k-402 has a straight shape, and the cross section perpendicular to the tube axis is slightly rounded. The transparent lamp tube 402 has an outer diameter of 3. 〇[mm], inner diameter is 2. 0 [mm], full length 750 [mm], the material is borosilicate glass. The dimensions of the lamp 以下 shown below correspond to the external economics. 〇[mm], inner diameter 2 〇[mm] transparent tube 4〇2 feet 30 200842929 inch. In addition, if it is a cold cathode fluorescent lamp, the inner diameter is ~ 7. 0[mm], wall thickness is 0. 2[mm]~〇. Within the range of 6 [mm], the total length is 1500 [mm] or less. These values are only an example and are not limited thereto. Inside the transparent tube 402, the volume of the mercury-based transparent tube 402 is at a predetermined ratio of 5, for example, 0. 6 [mg/cc] is filled in, and a rare gas system such as argon or helium is filled in at a predetermined filling pressure, for example, 60 [Torr]. Further, as the rare gas, a mixed gas of argon and helium (the partial pressure ratio is Ar = 5 [%], Ne = 95 [%]) can be used. Further, a phosphor layer 405 is formed on the inner surface of the transparent bulb 402. The phosphor particles used in the phosphor layer 405 are, for example, red phosphor particles 10 (Y2O3: Eu3+), green phosphor particles (LaP〇4: Ce3+, Tb3+), and cyan phosphor particles (BaMg2Al16027: Eu2+). The phosphor consisting of is formed. Further, a protective film (not shown) of a metal oxide such as yttrium oxide (Y203) may be provided between the inner surface of the transparent bulb 402 and the phosphor layer 405. Further, the wires 404 are led out from both end portions of the transparent bulb 402 to the outside. The lead I5 wire 404 is sealed and fixed to the both ends of the transparent lamp tube 402 by the bead glass 406. The wire 404 is a welding wire composed of an inner wire 4?4a made of tungsten and an outer wire 404b made of nickel. The inner wire 4〇4a has a wire diameter of l[mm], a total length of 3 [mm], and the outer wire 404b has a wire diameter of 〇. 8[mm], 20 is 5 [mm] in total length. The front end of the inner lead 404a is fixed with a hollow-shaped, for example, bottomed cylindrical electrode 403. This fixing system is performed using, for example, laser welding. The dimensions of the respective portions of the electrode 403, for example, the electrode length is 5 [mm], and the outer diameter is 1. 70 [mm], inner diameter is L50 [mm], wall thickness is 〇 1 〇 [mm]. 31 200842929 As shown in Fig. 18(b), a mercury discharge body 401 is fixed between the electrode 403 of at least one inner wire 404a and the bead glass 406. The mercury discharge body 401 is formed with a through hole 401a for passing the internal lead wire through the mercury discharge body 100 according to the first embodiment of the present invention. Further, the mercury discharge body 401 may be fixed not only to the five wires 404 but also to the electrodes 403. As described above, according to the structure of the low-pressure discharge lamp according to the third embodiment of the present invention, since the mercury discharge body 401 having excellent mercury discharge efficiency is used, the amount of mercury impregnated in the mercury discharge body 401 can be reduced, in other words, the mercury can be reduced. The amount of light used to reduce the load on the environment. (Fourth Embodiment) A low-pressure discharge lamp 500 (hereinafter referred to as "light 500") according to a fourth embodiment of the present invention is shown in the following section 19(a). b) The figure shows an enlarged cross-sectional view of part B. As shown in Fig. 19(a), the lamp 500 is a hot cathode fluorescent lamp, which is different from the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the third embodiment of the present invention, and mercury is left inside the lamp 500. The body 401 is released. The lamp 500 is a hot cathode fluorescent lamp, and is composed of a transparent lamp tube 501 and an electrode device 502. The transparent lamp tube 501 is, for example, a full length of 1010 [mm], an outer diameter of 20 18 [mm], and a wall thickness. 8 [mm], and electrode devices 502 are sealed at both ends of the tube. A phosphor layer 405 is formed on the inner surface of the transparent bulb 501, and the inside of the transparent bulb 501 is filled with mercury (for example, filled with 4 [mg] to 10 [mg]), and other than, for example, 600 [Pa] The filling gas pressure is filled with a mixed gas of argon (Ar) and krypton (Kr) (for example, a partial pressure ratio of Ar50 [%], Kr50 [%] mixed 32 200842929 gas) as a buffer gas. As shown in Fig. 19(a), the electrode device 502 is a so-called beaded glass device </ RTI> a stroboscopic filament electrode 503 for holding a pair of wires 504 of the filament electrode 503 for fixing the aforementioned pair. The beaded glass 505 5 of the wire 504 is constructed. As shown in Fig. 19(b), the mercury discharge body 401 is fixed to the lead wire 504 of at least one of the electrode devices 502. However, the through hole 401a of the mercury discharge body 401 used here is tied to the wire diameter of the wire 504. The electrode device 502 is sealed at the end of the transparent bulb 501, and is a portion of the wire 10 504, specifically, a portion extending from the bead glass 5〇5 toward the opposite side of the filament electrode 503. In addition, the electrode device 5〇2 and the transparent lamp tube 501 are sealed and fixed, for example, by a shrink sealing method (pinch se is performed for 0. Further, at least one end portion of the transparent lamp tube 501 is simultaneously provided with an exhaust pipe 15 The residual portion 506 and the electrode device 5〇2. The exhaust pipe residual portion 506 is used after the sealed electrode device 502 is sealed, and the air in the transparent lamp tube 501 is discharged or used to fill the filling gas or the like. After the filling of the filling gas or the like is completed, the portion of the exhaust pipe residual portion 506 located outside the transparent bulb 5〇1 is tip-off sealed. 20 As described above, the structure of the low-pressure discharge lamp 500 according to the fourth embodiment of the present invention Because of the use of mercury to release the mercury release body 4 (Π, it can reduce the amount of mercury impregnated in the mercury release body, in other words, reduce the amount of mercury used on the lamp and reduce the load on the environment. (Embodiment) 33 200842929 An exploded perspective view of a backlight module 600 according to a fifth embodiment of the present invention is shown in Fig. 20. The backlight module 6 of the fifth embodiment of the present invention is of a straight type and has a one-sided opening and a rectangular parallelepiped. The housing 6〇1 is housed inside the housing and has a plurality of lamps 4〇〇 for electrically connecting the lamp 4〇〇 to the lighting circuit (not shown in FIG. 5), the socket 602, and the cover shell. The optical sheet 603 of the opening of the body 601. The lamp 4 is a low-pressure discharge lamp 400 according to the third embodiment of the present invention. The body 601 is exemplified by polyethylene terephthalate (pET) resin. The inner surface is made of a metal such as steamed silver to form a reflecting surface 604. Further, the material of the casing 601 10 may be made of a material other than a resin, for example, aluminum or a cold-rolled material (for example, SPCC). In addition, the inner surface of the reflective surface 604 in addition to the metal deposition film, for example, can also be used on the housing 601 is attached to the polyethylene terephthalate (PET) resin added carbonic acid | bow, titanium dioxide, etc. to reflect The reflector 602 is internally provided with a socket 602, an insulator 605, and a cover 606. Specifically, the socket 602 is disposed in a short direction (longitudinal direction) of the housing 601 at a predetermined interval from the arrangement of the lamps 400. On the socket 602, for example, the system will not record steel or fill the bronze The formed sheet is processed and has an embedded portion 6〇2a into which the outer lead 404b can be fitted. The embedded portion 602a is elastically deformed into a flared state 20 and then embedded in the outer lead 404b. As a result, it is embedded in the embedded portion 602a. The outer lead wire 404b is pressed by the restoring force of the fitting portion 602a to be hard to fall off. Thereby, the outer lead wire 4〇4b can be easily fitted into the fitting portion 602a, and it is difficult to fall off from the fitting portion. The socket 602 is covered with the insulator 605 to be adjacent Socket 602 is not 34 200842929 Short circuit. Insulator 6 〇5 is exemplified by polyethylene terephthalate resin, but not limited to the above composition. Since the socket 602 is located near the internal electrode 403 having a relatively high temperature in the operation of the lamp 400, the insulator 605 is preferably made of a material having heat resistance. The insulator 605 material having heat resistance, 5 For example, a polycarbonate (PC) resin or a ruthenium rubber or the like can be used. A lamp holder 607 may also be provided inside the housing 601 as necessary. Inside the housing 601, a socket 607 for fixing the position of the lamp 400, for example, made of polycarbonate (PC) resin, has a shape that matches the shape of the outer surface of the lamp 4 . The term "necessary" is used to prevent the lamp 4 from being bent when the length of the lamp 400 is near the center of the lamp, for example, when the lamp 4 is 10 long and the length is more than 600 [mm]. The cover 606 is configured to separate the socket 6〇2 from the space inside the casing 601, and is made of, for example, polycarbonate (PC), and can maintain the temperature around the socket 602, and at least make the surface of the casing 601 side highly reflective. , can reduce the brightness of the end of the lamp 4 产 15 production. The opening of the casing 601 is covered with a translucent optical sheet 6〇3 and hermetically sealed to prevent dust or the like from entering the inside. The optical sheet type 6〇3 is formed by laminating a diffusion plate 608, a diffusion sheet 609, and a cymbal sheet 61. The diffusion plate 608' is exemplified by a plate-like body made of a polymethyl methacrylate (pMMA) tree 20 grease, and is disposed in a state of closing the opening of the casing 6〇1. The diffusion sheet 609, for example, is a resin t. The ruthenium sheet 610, for example, is an adhesive layer of an acrylic resin and a poly riding resin. These optical sheets 603 are arranged in this order on the diffusion plate_. As described above, the backlight module according to the fifth embodiment of the present invention has the structure of 2008 200829. Since the lamp having a small amount of mercury is used, a backlight module having a small environmental load can be realized. (Sixth embodiment) A perspective view of a portion of the slit portion of the backlight module of the sixth embodiment of the present invention is shown in Fig. 21. The backlight module 700 of the sixth embodiment of the present invention is a photometric type, and is composed of a reflection plate 701, a lamp 4, a socket (not shown), a light guide plate 7〇2, a diffusion plate 703, and a prism film 704. The reflection plate 701 is disposed around the light guide plate 702 except the liquid crystal panel side (arrow q), and is provided with a bottom surface portion 7b1 for covering the bottom surface to cover the side surface 10 which does not include the side on which the lamp 400 is disposed. The portion 7〇1a is formed to cover the lamp side surface portion 701c around the lamp 400, and the light irradiated by the lamp is reflected by the light guide plate 702 toward the liquid crystal panel (not shown) side (arrow q). Further, the reflecting plate 701 is exemplified by a method in which silver is deposited on a film-like PET or laminated with a metal foil such as aluminum. The 15 socket has substantially the same configuration as the socket 602 used in the backlight module of the fifth embodiment of the present invention. Further, in Fig. 21, the drawing is convenient, and the end portion of the lamp 400 is omitted. The light guide plate 7〇2 is used for guiding the light reflected by the reflective plate to the side of the liquid crystal panel. For example, it is composed of a translucent plastic and is stacked on the reflective plate 7〇la disposed on the bottom surface of the backlight module 7〇〇. on. Alternatively, the material may be polycarbonate (PC) resin or cycloolefin resin (COP). The expansion sheet 703 is used to expand the field of view. As an example, a film having a diffuse transmission function made of a polyethylene terephthalate resin or a polyester resin may be laminated on the light guide plate 702. The ruthenium film 704 is used to increase the brightness, for example, a sheet obtained by bonding a resin of a propionic acid system 36 200842929 and a polyester resin, and is laminated on the diffusion sheet 7〇3. Alternatively, a diffusion plate may be laminated on the ruthenium film 704. In addition, in this embodiment, in addition to a part of the circumferential direction of the lamp 400 (the side of the light guide plate 7〇2 when the backlight module 700 is inserted), the outer surface 5 of the transparent lamp tube 4〇2 is provided with a reflection sheet (in the figure). Aperture lamp without marking). As described above, according to the structure of the backlight module 7 of the sixth embodiment of the present invention, since the lamp having a small amount of mercury is used, a backlight module having a small environmental load can be realized. (Seventh embodiment) The outline of the liquid crystal display device of the seventh embodiment of the present invention is shown in Fig. 22. As shown in Fig. 22, the liquid crystal display device 8 is a 32 [吋] television having a liquid crystal panel unit 8 including a liquid crystal panel or the like (n, the backlight module 600 and the illumination circuit of the fifth embodiment of the present invention) 8〇2. The liquid crystal panel unit 801 is known to have a liquid crystal panel (a color filter of 15 substrates, a liquid crystal, a TFT substrate, etc.), a driving module, etc. (not shown), and forms a color based on an externally transmitted image signal. The illumination circuit 802 is used to make the backlight of the backlight module 6 〇〇 〇〇 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 0 [mA] ~ 25 [mA] action. In addition, in the backlight module 600 of the fifth embodiment of the present invention, a light source device in which the liquid crystal display device 800 is formed by inserting the low-pressure discharge lamp 4 of the first embodiment will be described. To this end, the low-pressure discharge lamp 5 of the fourth embodiment of the present invention can also be used. Further, the backlight module can also use the backlight module 7 of the sixth embodiment of the present invention. 37 200842929 As described above, according to the structure of the liquid crystal display device of the seventh embodiment of the present invention, since the lamp having a small amount of mercury is used, the backlight module having a small environmental load can be realized. <Modifications> 5 The present invention will be described based on the specific examples shown in the above embodiments, but the contents of the present invention are not limited to the specific examples shown in the respective embodiments. For example, the following can also be used. Modification. 1. (1) Modification 1 (10) A perspective view of a modification 1 of the mercury discharge body according to the first embodiment of the present invention is shown in Fig. 23, and a front view thereof is shown in Fig. 24(a). The plan view is shown in Figure 24(b). The modification of the mercury discharge body according to the first embodiment of the present invention (hereinafter simply referred to as "mercury release body 103") has a different outer shape than the mercury discharge body 100 of the first embodiment of the present invention. Therefore, for the detailed description of the shape 15, the other parts are omitted. The end of the mercury discharge body 103 is tapered. Specifically, the end portion of the metal sintered body portion 104 of the mercury discharge body 103 is formed into a tapered shape. The mercury discharge body 103 can prevent the conveyance from colliding with other mercury discharge bodies and being damaged by forming the ends thereof into a tapered shape. Further, since the end portion of the mercury discharge body 20 〇 3 is tapered, when the low pressure discharge lamp of the thin tube is produced, the mercury discharge body 103 can be easily put into the glass tube. Further, only one end of the mercury discharge body 103 may be tapered. (2) Modification 2 In addition, a perspective view of a modification 2 of the mercury discharge body 38 of the first embodiment of the present invention is shown in Fig. 25, and a front view thereof is shown in Fig. 26(a), and the b) The figure shows its plan view. In the second modification of the mercury discharge body according to the first embodiment of the present invention (hereinafter simply referred to as "mercury discharge body 105"), the shape of the mercury alloy portion 106 is different from that of the first embodiment of the present invention. . Because of this, the details of the shape are explained, and other parts are omitted. The mercury discharge body 105 is formed into a cylindrical shape, and the mercury can be discharged from both the inner surface and the side of the metal sintered body portion 102, and the mercury discharge efficiency can be further improved. Further, the inner surface of the mercury discharge body 105 may be further formed with a metal sintered body portion 102. In this way, when the high-frequency heating is performed, the eddy current of the high-frequency heating can reach 10 to the inner surface of the mercury discharge body 105, and the heating efficiency of the mercury alloy portion 1〇6 is improved, so that the mercury discharge efficiency is further improved. Further, as shown in Fig. 25 and Fig. 26, the mercury discharge system is formed into a cylindrical shape, but it is not limited thereto, and may be a polygonal tubular shape or the like. Further, the ratio of the outer diameter Dh of the through hole 106a to the outer diameter Di of the mercury alloy portion 106 is preferably in the range of 5 [%] or more and 60 [%] or less. If the Dh is too small, the release efficiency is not high. If it is too large, the predetermined mercury infiltration amount is not obtained, and the heating efficiency is also lowered. (3) Modification 3 A perspective view 20 of a modification 3 of the mercury discharge body according to the first embodiment of the present invention is shown in Fig. 27. The modification of the mercury discharge body according to the first embodiment of the present invention (hereinafter referred to as "mercury release body 109") has a shape different from that of the mercury discharge body 100 of the first embodiment of the present invention. Therefore, the details of the shape are omitted, and other parts are omitted. The mercury discharge body 109 is in the form of a flat plate. Specifically, the 'mercury enemy body 109 39 200842929 is a metal sintered body portion 1U laminated on the flat mercury alloy portion 110. In other words, if the mercury alloy portion 110 is covered with the sintered body portion U1, the structure (109) of Fig. 27 can be used. The mercury discharge body 1〇9 can be produced by press molding by a tableting method, so that the manufacturing process can be simplified. Further, in the second embodiment, the metal sintered body portion m is laminated on one surface of the mercury alloy portion 110 opposite to the metal sintered body portion 111, that is, the mercury alloy portion 110 is composed of two metal sintered body portions ηι on both sides. Hold on. As a result, the heating efficiency of the mercury alloy portion 110 is improved, and the mercury discharge efficiency is further improved. However, it is also possible to use the other structure other than the structure (flat structure) shown in Fig. 27. For example, the mercury discharge body 1〇9 shown in Fig. 28 bends the flat structure of Fig. 27 to form a slightly cylindrical shape. Alternatively, the mercury discharge body 1〇9 as shown in Fig. 29 may be used to form a structure in which the end surface of the mercury alloy portion 110 is covered with the metal sintered body portion 111. In the structure shown in Fig. 29, the end face of the mercury-filled gold portion 110 is covered with the metal sintered body portion 111, and the surface is connected to the inside. Thus, the effect of improving the eddy current efficiency can be achieved. In the case where the mercury discharge portion 110 is covered with the sintered body portion 111, a slit may be provided in one portion of the mercury discharge body (a portion of the sintered body portion). The structure shown in Figs. 28 and 29 can also be referred to as a pattern in which a part of the mercury discharge body 20 is formed with a slit. For example, it can also be compared with the length of the mercury discharge body 100 shown in Fig. 3. Set the slits in parallel with the center axis X100, or set it vertically or diagonally. If the mercury discharge body is provided with a slit in one part of the metal sintered body, it is easy to release mercury from the slit portion, and the mercury release efficiency may be higher than 200842929, but the existence of the slit may also cause a problem that the eddy current efficiency is lowered. Therefore, the design should be considered when forming the slit. (4) Modification 4 A perspective view of a modification 4 of the mercury discharge body of the embodiment of the present invention is shown in Fig. 30. In the modification 4 of the mercury discharge body according to the first embodiment of the present invention (hereinafter referred to as "mercury release body 112"), the modification 3 of the mercury release body of the first embodiment of the present invention is wound into a spiral shape. Specifically, the laminated body of the sintered metal body portion 111 and the mercury alloy portion 11 is spirally wound, and the metal sintered body portion 1 is placed on the outside. In this manner, even if the water 10 silver alloy portion 110 is covered with the metal sintered body portion ill on one side, the both sides of the mercury alloy portion 110 may be formed by coating the metal sintered body portion 1U. The mercury discharge body 112 thus constructed can be heated by heating with the entire interior thereof, so that the mercury discharge efficiency can be further improved. (5) Modification 5 A partial cutaway perspective view of a modification 5 of the mercury discharge body according to the first embodiment of the present invention is shown in Fig. 31. The modified example 5 of the mercury discharge body according to the first embodiment of the present invention (hereinafter referred to as "mercury discharge body 113") has a shape different from that of the first embodiment of the present invention. Therefore, for the detailed description of the 20 shape, the other parts are omitted. The mercury discharge body 113 is wound with a strip-shaped metal sintered body portion 114 in a rod-shaped mercury alloy portion 1〇1. With this configuration, the formation of the mercury discharge body 113 does not simultaneously extrude the mercury alloy portion 101 and the metal sintered body portion 114, but the rod-shaped body used as the mercury alloy portion 113 can be formed and then wound. 41 200842929 is used as the embryo of the metal sintered body portion 114. (6) Modification 6 A partial cutaway perspective view of a modification 6 of the mercury discharge body according to the first embodiment of the present invention is shown in Fig. 32. The modified example 6 (hereinafter referred to as "mercury releasing body 115") of the mercury releasing body of the first embodiment of the present invention has a shape different from that of the mercury discharging body 1 of the first embodiment of the present invention. Therefore, for the detailed description of the shape, the other parts are omitted. The mercury discharge body 115 is spherical, and a metal sintered body portion 117 is laminated on the outer side of the spherical mercury alloy portion 116. 10 The mercury discharge body 115 is covered by the metal sintered body 117, and can be operated while the mercury discharge body 115 is being conveyed without being in direct contact and impregnated with the mercury-containing mercury alloy portion 116. safety. In addition, the mercury alloy portion 116 only needs to be entirely covered with the metal sintered body portion 117, and is not limited to a spherical shape, and may have a polyhedral shape or the like (for example, a cross-sectional moment shape of 15 or a hexagonal surface). In the case of a spherical shape, since there is no horn, it is possible to prevent the mercury discharge body 115 from being damaged by the collision at the time of the conveyance. Further, if it is in the shape of a ball, it can be stuffed more closely into the transport container than other shapes during transport, so that the efficiency of transport can be improved. In addition, it is disclosed in Japanese Patent Laid-Open Publication No. 4-341748 that it is essentially different from the technical idea of the present invention in that one end portion of a mercury discharge body for discharging mercury is provided for refining a metal cover or a metal rod. The construction of a thin member. However, the structure disclosed in this publication differs greatly from the technique in which the mercury discharge body 100 of the present embodiment can improve the mercury release efficiency, and is a type of mercury-free gas generated in the refining operation, and can be safely welded. 42 200842929 Technology. Industrial Applicability The present invention is widely applicable to a mercury discharge body, a method for producing a low-pressure discharge lamp using the mercury discharge body, and a low-pressure discharge lamp. 5 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a mercury discharge body in an embodiment of the present invention. The figure shown in Fig. 2 is a substitute photograph of the appearance state of the mercury discharge body in the embodiment of the present invention. Fig. 3 is a perspective view 10 of the mercury discharge body in the first embodiment of the present invention. Fig. 4(a) is a front view of the same mercury discharge body, and Fig. 4(b) is a plan view of the same mercury discharge body. The picture shown in Fig. 5(a) is a photograph of the surface state of the front side of the same mercury discharge body, and the picture shown in Fig. 5(b) is the 15th photo of the surface state of the same mercury release body plane, and Fig. 5(c) The presenter is a photograph of the cross-sectional state of the same mercury discharge body including the long axis. The figure shown in Fig. 6(a) is a photograph of the surface state of the front side of the mercury discharge body when the particle shape of the metal which does not form an alloy with mercury is spherical, and the figure shown in Fig. 6(b) is the plane of the same mercury release body. Photo of the surface state. 20 Figure 7 shows the change in the amount of mercury released due to the heating temperature. Figs. 8(a) to 8(d) are cross-sectional views showing experimental methods for the effect of the gas collector of the mercury discharge body in the embodiment of the present invention. The results shown in Fig. 9 are the results of the gas collector effect test on H2 (hydrogen). 43 200842929 Fig. Fig. 10 is a graph showing the results of the effect of reducing the effect of c〇2 (carbon dioxide). Figure 11 shows the results of the helium agent effect test 5 on Hc·(carbonized chlorine). The figure shown in Fig. I2 is a graph showing the results of the gas collector effect on go (nitrogen + carbon monoxide). The figure shown in the third section is a measurement result of the mercury emission portion after the ray analysis in the embodiment of the present invention. The figure shown in Fig. I4 is a measurement result of the mercury emitting portion in the embodiment of the present invention after X-ray analysis. Fig. 15 is a flow chart showing the manufacturing procedure of the method for producing the mercury discharge body of the third embodiment of the present invention. Fig. 16 is a conceptual diagram of the method of manufacturing the low-pressure discharge lamp of the second embodiment of the present invention from the program Α to the program G. Fig. 17 is a conceptual diagram of the method of manufacturing the low-pressure discharge lamp of the second embodiment of the present invention from the procedure 程序 to the procedure J. Fig. 18(a) is a cross-sectional view of the low-pressure discharge lamp of the third embodiment of the present invention, and Fig. 18(b) is an enlarged cross-sectional view of the crotch portion. 20(a) is a cross-sectional view including a tube shaft of a low-pressure discharge lamp according to a fourth embodiment of the present invention, and Fig. 19(b) is an enlarged cross-sectional view of a portion B. Figure 20 is a perspective view of a backlight module of a fifth embodiment of the present invention. Figure 21 is a perspective view of a backlight module of a sixth embodiment of the present invention. Figure 22 is a perspective view of a liquid crystal display device of a seventh embodiment of the present invention. Fig. 23 is a perspective view showing a modification 1 of the mercury discharge body according to the first embodiment of the present invention. Fig. 24(a) is a front view of a modification 1 of the same mercury discharge body, and Fig. 24(b) is a plan view of a modification 1 of the same mercury discharge body. Fig. 25 is a perspective view showing a modification 2 of the mercury discharge body according to the first embodiment of the present invention. Fig. 26(a) is a front view showing a modification 2 of the same mercury discharge body, and Fig. 26(b) is a plan view showing a modification 2 of the same mercury discharge body. Fig. 27 is a perspective view showing a modification 3 of the mercury discharge body according to the first embodiment of the present invention. Fig. 28 is a perspective view showing a modification 3 of the mercury discharge body according to the first embodiment of the present invention. Fig. 29 is a perspective view showing a modification 3 15 of the mercury discharge body of the first embodiment of the present invention. Fig. 30 is a perspective view showing a modification 4 of the mercury discharge body according to the first embodiment of the present invention. Fig. 31 is a perspective view showing a modification 5 of the mercury discharge body according to the first embodiment of the present invention. Fig. 32 is a perspective view showing a modification 6 of the mercury discharge body according to the first embodiment of the present invention. Figure 33 is a perspective view of a conventional mercury discharge body (Conventional Example 1). Figure 34 is a perspective view of a conventional mercury discharge body (conventional example 2). [Description of main component symbols] 45 200842929 10... Mercury release section 306···electrodes 100, 103, 105, 109, 112, 113, 307·. - Beaded glass 115... Mercury emitting body 308... Wires 101, 106, 110, 116... Mercury alloy part 309 · · Electrode unit 20, 102, 104, m, 114, 117 ... 310 Burner 311 . .  . Electrode 312... Beaded glass 313... Wire 314···Electrode unit 315, 316, 317... Burner 318... Heating furnace 319. .  . Burner 400... low pressure discharge lamp 401. .  Silver ^ out of the body 401a ··. Through hole 402. .  . Transparent tube 403...electrode 404...wire 404a···internal lead 404b. . . External wire 405... phosphor layer metal sintered body 106a. ··through hole 200. .  . Hg grain 210...transparent tube 220. .  . Filling gas composition 240· · · Name 245... arrow 250. .  . High frequency heater 260... electric furnace 300. .  . Glass tube 300a... contraction portion 301. .  . Container 302. .  . Phosphor suspension 303... optical sensor 304. .  . Brush 305... phosphor film 46 200842929 406... beaded glass 607. ··Light holder 500. . . Low-pressure discharge lamp 608... diffusion plate 501. . . Transparent tube 609... diffuser 502. . . Electrode device 610. . . ^片 ^ 503... Filament electrode 700... Backlight module k 504... Wire 701. . . Reflector, 505... Beaded Glass 701a. . . Side portion 506. . . Exhaust pipe residuals 701b. . . Bottom portion 600...backlight module 701c. . . Lamp side portion 601... housing 702... light guide plate 602. &quot;Socket 703...Diffuser plate 602a···Back-in part 704...稜鏡 film 603... Optical sheet class 800. . . Liquid crystal display device 604···reflecting surface 801. . . LCD screen unit 605... insulator 606. . . Cover 802. . . Lighting circuit 47

Claims (1)

200842929 十、申請專利範圍: 1. 一種水銀放出體,包含有: 水銀放出部,係由包含選自於由鈦(Ti)、錫(Sn)、鋅 (Zn)及鎂(Mg)所組成之群之至少一種第1金屬、與水銀 5 (Hg)之水銀合金構成者;及 燒結體層,係包覆水銀放出部,並由包含選自於由 鐵(Fe)及鎳(Ni)所組成之群之至少一種第2金屬之材料 構成者。 2. 如申請專利範圍第1項之水銀放出體,其中該燒結體層 10 形成多孔狀。 3. 如申請專利範圍第1項之水銀放出體,構成前述燒結體 層之材料之粒子形狀係鱗片狀。 4. 如申請專利範圍第1項之水銀放出體,構成前述燒結體 層之材料之粒子形狀係球狀。 15 5.如申請專利範圍第1至4項中任一項之水銀放出體,其中 該燒結體層之氣孔率係5[%]以上。 6. 如申請專利範圍第1或2項之水銀放出體,其中前述水銀 放出部呈圓柱狀; 前述燒結體層呈圓筒狀; 20 前述圓柱狀之前述水銀放出部係定位於前述燒結 體層之圓筒狀中央部。 7. 如申請專利範圍第1至3項中任一項之水銀放出體,其中 前述第1金屬係鈦(Ti); 前述第2金屬係鐵(Fe)。 48 200842929 8. 如申請專利範圍第1項之水銀放出體,其中前述水銀合 金係TiHg。 9. 如申請專利範圍第1項之水銀放出體,其中前述水銀放 出部係經由前述燒結體層浸滲水銀,使該水銀與前述第 5 1金屬產生反應而形成。 10. 如申請專利範圍第1項之水銀放出體,其中前述燒結體 層係由前述第2金屬組成之金屬燒結體層; 且前述金屬燒結體層係磁性體。 11. 一種水銀放出體,係由水銀合金部、及與水銀不形成合 10 金之金屬之燒結體所組成的金屬燒結體部形成層狀,且 前述金屬燒結體部呈多孔狀者。 12. 如申請專利範圍第11項之水銀放出體,其中前述水銀合 金部係由可與水銀形成合金之金屬之燒結體、及和水銀 之合金組成者。 15 13.如申請專利範圍第11項之水銀放出體,其中前述金屬燒 結體部中與水銀不形成合金之金屬係磁性體。 14.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述金屬燒結體部中與水銀不形成合金之金屬之粒 子形狀係鱗片狀。 20 15.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述金屬燒結體部中與水銀不形成合金之金屬之粒 子形狀係球狀。 16.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述金屬燒結體部之氣孔率係5[%]以上。 49 200842929 17. 如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述水銀合金部呈棒狀,且其周圍層積形成前述金屬 燒結體部。 18. 如申請專利範圍第11至13項中任一項之水銀放出體,其 5 中前述水銀合金部呈圓柱形狀之棒狀,其周圍層積形成 前述金屬燒結體部,且前述水銀合金部之外徑為前述水 銀放出體之外徑之30[%]以上。 19. 如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述水銀合金部形成有貫通孔並呈筒狀。 10 20.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述金屬燒結體部之厚度係1〇[μηι]以上。 21.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述水銀合金部之總表面積中接觸前述金屬燒結體 部之部分之表面積比率係30[%]以上。 15 22.如申請專利範圍第11至13項中任一項之水銀放出體,其 中前述金屬燒結體部混合有集氣劑材料。 23. —種低壓放電燈之製造方法,係包含一將申請專利範圍 第1至22項中任一項之水銀放出體插入玻璃管内部之程 序。 20 24. —種低壓放電燈,係以玻璃燈泡、配置於前述玻璃燈泡 内部之電極、及支持前述電極並密封連接於發光管之至 少一端部之導線構成者, 且在前述發光管内部,前述導線或前述電極上固定 有申請專利範圍第1至22項中任一項之水銀放出體。 50 200842929 25. —種背光模組,具有申請專利範圍第24項之低壓放電 燈。 26. —種液晶顯示裝置,具有申請專利範圍第25項之背光模 51200842929 X. Patent application scope: 1. A mercury release body comprising: a mercury release portion comprising a component selected from the group consisting of titanium (Ti), tin (Sn), zinc (Zn) and magnesium (Mg). a group of at least one first metal and a mercury alloy of mercury 5 (Hg); and a sintered body layer coated with a mercury releasing portion and comprising a material selected from the group consisting of iron (Fe) and nickel (Ni) The composition of at least one of the second metal materials. 2. The mercury discharge body of claim 1, wherein the sintered body layer 10 is porous. 3. In the case of the mercury discharge body of the first aspect of the patent application, the particle shape of the material constituting the sintered body layer is scaly. 4. The particle shape of the material constituting the sintered body layer is spherical in the form of the mercury discharge body of the first aspect of the patent application. The mercury discharge body according to any one of claims 1 to 4, wherein the sintered body layer has a porosity of 5 [%] or more. 6. The mercury discharge body according to claim 1 or 2, wherein the mercury discharge portion has a cylindrical shape; the sintered body layer has a cylindrical shape; 20 the cylindrical mercury discharge portion is positioned at a circle of the sintered body layer The central portion of the cylinder. 7. The mercury release body according to any one of claims 1 to 3, wherein the first metal is titanium (Ti); and the second metal is iron (Fe). 48 200842929 8. The mercury release body according to item 1 of the patent application, wherein the aforementioned mercury alloy is TiHg. 9. The mercury discharge body according to claim 1, wherein the mercury discharge portion is formed by impregnating mercury through the sintered body layer to cause the mercury to react with the fifth metal. 10. The mercury discharge body according to claim 1, wherein the sintered body layer is a metal sintered body layer composed of the second metal; and the metal sintered body layer is a magnetic body. 11. A mercury-releasing body in which a metal sintered body portion composed of a mercury alloy portion and a sintered body of a metal which does not form a gold metal is formed in a layered shape, and the metal sintered body portion is porous. 12. The mercury discharge body according to claim 11, wherein the mercury alloy portion is composed of a sintered body of a metal which can form an alloy with mercury, and an alloy of mercury. 15. The mercury-releasing body according to claim 11, wherein the metal-containing sintered body has a metal-based magnetic body which does not form an alloy with mercury. The mercury-releasing body according to any one of claims 11 to 13, wherein the metal of the metal sintered body portion which is not alloyed with mercury has a scaly shape. The mercury discharge body according to any one of the items 11 to 13, wherein the metal of the metal sintered body portion which does not form an alloy with mercury is spherical. The mercury discharge body according to any one of the items 11 to 13, wherein the porosity of the metal sintered body portion is 5 [%] or more. In the case of the mercury discharge body according to any one of the items 11 to 13, wherein the mercury alloy portion has a rod shape, and the metal sintered body portion is laminated around the layer. 18. The mercury discharge body according to any one of claims 11 to 13, wherein the mercury alloy portion has a cylindrical shape in a rod shape, and the metal sintered body portion is laminated around the mercury alloy portion. The outer diameter is 30 [%] or more of the outer diameter of the mercury discharge body. 19. The mercury discharge body according to any one of claims 11 to 13, wherein the mercury alloy portion is formed with a through hole and has a cylindrical shape. The mercury release body according to any one of the items 11 to 13, wherein the thickness of the sintered metal body portion is 1 〇 [μηι] or more. The mercury discharge body according to any one of the items of the present invention, wherein the surface area ratio of the total surface area of the mercury alloy portion contacting the metal sintered body portion is 30 [%] or more. The mercury discharge body according to any one of claims 11 to 13, wherein the metal sintered body portion is mixed with a gas collector material. A method of producing a low-pressure discharge lamp, comprising the step of inserting a mercury discharge body according to any one of claims 1 to 22 into a glass tube. 20 24. A low-pressure discharge lamp comprising a glass bulb, an electrode disposed inside the glass bulb, and a wire supporting the electrode and sealingly connected to at least one end of the arc tube, and the inside of the arc tube The mercury discharge body of any one of claims 1 to 22 is fixed to the wire or the aforementioned electrode. 50 200842929 25. A backlight module having a low-voltage discharge lamp of claim 24 of the patent application. 26. A liquid crystal display device having a backlight module of claim 25
TW096137638A 2007-04-17 2007-10-05 Mercury emitter, low-pressure discharge lamp and process for manufacturing low-pressure discharge lamp using the same, backlight unit and liquid crystal display TW200842929A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107960 2007-04-17

Publications (1)

Publication Number Publication Date
TW200842929A true TW200842929A (en) 2008-11-01

Family

ID=39875241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096137638A TW200842929A (en) 2007-04-17 2007-10-05 Mercury emitter, low-pressure discharge lamp and process for manufacturing low-pressure discharge lamp using the same, backlight unit and liquid crystal display

Country Status (5)

Country Link
JP (3) JPWO2008129700A1 (en)
KR (1) KR20090082342A (en)
CN (1) CN101517693A (en)
TW (1) TW200842929A (en)
WO (1) WO2008129700A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209655B (en) 2008-11-10 2015-05-06 住友重机械工业株式会社 Hybrid construction machine
KR100969125B1 (en) * 2009-08-10 2010-07-09 사에스 게터스 에스.페.아. Improved mercury filiform dispenser
JP2012009372A (en) * 2010-06-28 2012-01-12 Stanley Electric Co Ltd Ultraviolet discharge lamp and driving method of the same
JP5686557B2 (en) * 2010-09-11 2015-03-18 三菱電機照明株式会社 Fluorescent lamp, fluorescent lamp manufacturing method and lighting device
ITMI20120336A1 (en) * 2012-03-05 2013-09-06 Tecnolux Italia S R L PROCEDURE TO MANUFACTURE COLD LOW PRESSURE FLUORESCENT LAMPS, AND CAPSULE USED IN THIS PROCEDURE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240174A (en) * 1994-02-28 1995-09-12 Toshiba Lighting & Technol Corp Low pressure mercury discharge lamp and lighting system
JPH07240173A (en) * 1994-02-28 1995-09-12 Toshiba Lighting & Technol Corp Discharge lamp and lamp device
JP2919736B2 (en) * 1994-03-25 1999-07-19 ティーディーケイ株式会社 Discharge lamp electrode
JPH09320523A (en) * 1996-05-24 1997-12-12 Matsushita Electron Corp Electrodeless discharge lamp
JP2922485B2 (en) * 1996-12-20 1999-07-26 ウシオ電機株式会社 Low pressure discharge lamp
JPH10340703A (en) * 1997-06-05 1998-12-22 West Electric Co Ltd Mercury discharge structure suitable for use in fluorescent discharge tube and its manufacture, and the fluorescent discharge tube using the mercury discharge structure
JP3906696B2 (en) * 2002-01-28 2007-04-18 松下電工株式会社 Low pressure mercury vapor discharge lamp
JP2003242929A (en) * 2002-02-20 2003-08-29 Matsushita Electric Ind Co Ltd Fluorescent lamp
JP4181385B2 (en) * 2002-11-15 2008-11-12 松下電器産業株式会社 Method for manufacturing mercury-emitting structure

Also Published As

Publication number Publication date
JP2008288199A (en) 2008-11-27
JP2008288194A (en) 2008-11-27
JPWO2008129700A1 (en) 2010-07-22
CN101517693A (en) 2009-08-26
WO2008129700A1 (en) 2008-10-30
KR20090082342A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
KR100281342B1 (en) Composition for activating getter material at low temperature
TW200842929A (en) Mercury emitter, low-pressure discharge lamp and process for manufacturing low-pressure discharge lamp using the same, backlight unit and liquid crystal display
FR2484138A1 (en) COMPOSITION AND DEGASSING STRUCTURE, PARTICULARLY USEFUL AT LOW TEMPERATURE, AND THEIR USE IN THE MANUFACTURE OF VACUUM CONTAINERS OR CONTAINING RARE GASES
JP2007280967A (en) Method of manufacturing fluorescent lamp and fluorescent lamp manufactured by above
TW201007809A (en) Fluorescent lamp
TWI327737B (en) Cold cathode fluorescent tube and method of producing the same
KR100604606B1 (en) A mercury gas discharge device and a fluorescent lamp
JP2001222973A (en) Low pressure mercury-vapor discharge lamp and lighting apparatus using it
WO2009098860A1 (en) Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device
JP2008513934A (en) LCD getter
JPH07142031A (en) Discharge lamp electrode
US6905385B2 (en) Method for introducing mercury into a fluorescent lamp during manufacture and a mercury carrier body facilitating such method
JP2009211866A (en) Mercury emitter
JP2002245966A (en) Electric discharge lamp and its manufacturing method
JP2003187750A (en) Fluorescent lamp and illuminator
JP4735673B2 (en) Mercury emitter and method of manufacturing discharge lamp
JP2003197146A (en) Cold-cathode discharge tube
ITMI962564A1 (en) COMBINATION OF MATERIALS FOR THE LOW TEMPERATURE IGNITION OF THE ACTIVATION OF GETTER MATERIALS AND GETTER DEVICES THAT CONTAIN IT
JPH09283081A (en) Cold cathode low pressure mercury vapor discharge lamp, display device and lighting system
US20050140294A1 (en) Cold cathode fluorescent lamp and method for forming the same
JP2003197099A (en) Method for manufacturing cold cathode
JP2003187739A (en) Cold-cathode discharge tube
JPH0790434A (en) Getter substance and method for cleaning and controlling reducive hydrogen atmosphere, and production of getter substance
JP2001076675A (en) Lamp sealing body made of functionally gradient material, its manufacture and lamp
JPH0475229A (en) Manufacture of discharge lamp