WO2009098860A1 - Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device - Google Patents

Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device Download PDF

Info

Publication number
WO2009098860A1
WO2009098860A1 PCT/JP2009/000400 JP2009000400W WO2009098860A1 WO 2009098860 A1 WO2009098860 A1 WO 2009098860A1 JP 2009000400 W JP2009000400 W JP 2009000400W WO 2009098860 A1 WO2009098860 A1 WO 2009098860A1
Authority
WO
WIPO (PCT)
Prior art keywords
mercury
emitter
mercury emitter
glass tube
pressure discharge
Prior art date
Application number
PCT/JP2009/000400
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Kibe
Keiko Kurata
Kazuyuki Okano
Hikoji Okuyama
Yasufumi Funato
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2009552403A priority Critical patent/JPWO2009098860A1/en
Priority to CN2009801014437A priority patent/CN101903973A/en
Publication of WO2009098860A1 publication Critical patent/WO2009098860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • H01J9/395Filling vessels

Definitions

  • the present invention relates to a mercury emitter, a method for producing a low-pressure discharge lamp using the same, a low-pressure discharge lamp, an illumination device, and a liquid crystal display device.
  • a mercury emitter containing mercury is used. That is, after this mercury emitter is placed in a glass tube that serves as an arc tube, it is heated from the outside so that mercury is released by the heat.
  • the temperature of the mercury emitter may be about 400 [° C.].
  • a mercury emitter that is stable up to this temperature for example, titanium (Ti ) Sintered body and mercury (Hg) are used to form Ti 3 Hg (see, for example, Patent Document 1).
  • the heating temperature is preferably set to 400 [° C.] to 800 [° C.]. This is because when mercury is released at a temperature lower than 400 [° C.], the working environment is deteriorated due to mercury being released by heating during exhaust of the low-pressure discharge lamp, while higher than 800 [° C.]. This is because, when released at a temperature, the portion of the glass tube in contact with the mercury emitter is melted by the heat of the mercury emitter itself and may be damaged.
  • the mercury emitter when a mercury emitter having a low mercury emission efficiency is used as described above, the mercury emitter needs to contain more mercury than is necessary for lighting the low-pressure discharge lamp. However, since mercury is a harmful substance, it is not environmentally preferable to use excessive mercury.
  • TiHg TiHg
  • Ti x Hg as described in page 1352 of Binary Alloy Phase Diagram (First Printing, October 1986) issued by AMERICA SOCIETY FOR METALS as well as Ti 3 Hg. (X is 1.73 at room temperature).
  • TiHg has excellent mercury release efficiency at temperatures higher than 400 [° C.], it has the property that Ti and Hg decompose at room temperature, so it releases mercury before the mercury release process. It was found that it is not suitable for manufacturing lamps.
  • the mercury emitter according to the present invention aims to improve mercury emission efficiency and prevent breakage of the glass tube when used in the manufacture of a low-pressure discharge lamp.
  • the low-pressure discharge lamp manufacturing method according to the present invention aims to prevent breakage of the glass tube and reduce the amount of mercury used.
  • the low-pressure discharge lamp, the illumination device, and the liquid crystal display device according to the present invention aim to reduce the amount of mercury used.
  • a mercury emitter has a mercury emitting portion containing an intermetallic compound of titanium (Ti) and mercury (Hg), and the intermetallic compound is Ti 1.73 Hg. It is characterized by including.
  • the intermetallic compound has the amount of mercury in the range of 40 wt% to 100 wt% with respect to the total mercury amount of the mercury emitting portion. It preferably contains 1.73 Hg.
  • the balance of the intermetallic compound except Ti 1.73 Hg is Ti 3 Hg.
  • the mercury emitting part is stored in a container having an opening part at least in part.
  • the container is preferably formed of at least one of iron and nickel.
  • the mercury emitter according to the present invention preferably includes a sintered body portion composed of the mercury releasing material and a metal sintered body covering the mercury releasing material.
  • the sintered body portion is preferably formed in a porous shape.
  • the sintered body portion preferably has a porosity of 5% or more.
  • the method for manufacturing a low-pressure discharge lamp according to the present invention includes a step of inserting the mercury emitter into a glass tube and a step of heating the mercury emitter.
  • a low-pressure discharge lamp includes a glass tube, a lead wire sealed at at least one end portion of the glass tube, and an electrode attached to an end portion of the lead wire located inside the glass tube.
  • the mercury emitter according to claim 1 is fixed to a portion of the lead wire located in the glass tube or the electrode.
  • An illumination device includes the low-pressure discharge lamp.
  • a liquid crystal display device includes the illumination device.
  • the mercury emitter according to the present invention can improve mercury emission efficiency and prevent breakage of the glass tube when used in the manufacture of a low-pressure discharge lamp.
  • the low-pressure discharge lamp manufacturing method according to the present invention can prevent breakage of the glass tube and reduce the amount of mercury used.
  • the low-pressure discharge lamp, the lighting device, and the liquid crystal display device according to the present invention can reduce the amount of mercury used.
  • the perspective view of the mercury discharge body which concerns on the 1st Embodiment of this invention
  • A Front view showing the particle structure of the mercury emitter
  • Photo A conceptual diagram of mercury emission from the same mercury emitter Graph showing measurement results by X-ray analysis of mercury emission part of mercury emitter (A) Front view showing the particle structure of the mercury emitter when the particle shape of the metal not forming an alloy with mercury is spherical, (b) Plan view showing the particle structure of the mercury emitter Diagram showing the relationship between reaction time and intermetallic compound formation rate Diagram showing change in mercury release rate with heating temperature Manufacturing process diagram of mercury emitter according to the first embodiment of the present invention The perspective view of the mercury discharge body which concerns on the 2nd Embodiment of this invention Similarly perspective view of Modification 1 of the mercury emitter The perspective view of the mercury emitter which concerns on the 3rd Embodiment of this invention Conceptual diagram of steps A to G of the method for manufacturing a low-pressure discharge lamp according to the fourth embodiment of the present invention.
  • FIG. 18 (a) Front view of lighting apparatus according to ninth embodiment of the present invention, (b) Cross-sectional view taken along line AA 'in FIG. 18 (a) The perspective view of the liquid crystal display device which concerns on the 10th Embodiment of this invention.
  • the perspective view of the modification 1 of the mercury discharge body which concerns on the 1st Embodiment of this invention (A) Front view of modified example 1 of the mercury emitter, and (b) Plan view of modified example 1 of the mercury emitter.
  • the perspective view of the modification 2 of the mercury emitter which concerns on the 1st Embodiment of this invention (A) Front view of modified example 2 of the mercury emitter, and (b) Plan view of modified example 2 of the mercury emitter.
  • FIG. 1 is a perspective view of the mercury emitter according to the first embodiment of the present invention
  • FIG. 2A is a front view showing its particle structure
  • FIG. 2B is a plan view thereof
  • FIG. Cross-sectional photographs including the central axis are shown in FIG.
  • the mercury emitter 100 includes an intermetallic compound Ti 1.73 Hg of titanium (Ti) and mercury (Hg).
  • the mercury emitter 100 includes a mercury emitter 101 and a sintered body portion 102 made of a metal sintered body covering the mercury emitter 101.
  • the mercury emitting portion 101 is heated during heating (particularly during high frequency heating) as shown in FIG.
  • Mercury can be released not only from both exposed end faces but also from almost the entire surface through a porous sintered body 102 described later (see arrow 103).
  • the surface of the mercury emitting portion is made of a metal plate or the like. It is possible to improve the mercury emission efficiency as compared with the case where it is covered, and even when heated at a stroke, it is possible to prevent the mercury emission part 101 from suddenly expanding and bursting due to vaporized mercury. it can.
  • the mercury emitting portion 101 and the sintered body portion 102 react at the interface, the adhesion strength between the mercury emitting portion 101 and the sintered body portion 102 is high, and the mercury emitting portion 101 spills from the mercury emitting body 100. Can be prevented.
  • Mercury emitting part 101 is formed of an alloy of titanium and mercury, contains an intermetallic compound of titanium and mercury, and contains Ti 1.73 Hg as an intermetallic compound.
  • alloy as used herein includes at least “intermetallic compounds” and also includes “mixtures”, “solid solutions”, and the like.
  • the composition ratio of titanium and mercury in the intermetallic compound Ti 1.73 Hg is about 1.73 at room temperature, but it is 1.09 or more depending on various conditions such as temperature. It can take a value within the range of 1.73 or less.
  • FIG. 4 shows a graph showing measurement results by X-ray analysis of the mercury emission part of the mercury emitter 100. It can be seen that the mercury emitter 100 contains Ti 1.73 Hg and Ti 3 Hg as intermetallic compounds.
  • the mercury emitting portion 101 has a cylindrical shape with a length L of 3 [mm] and an outer diameter Di of 1 [mm], and the mercury content is about 6 [mg].
  • the mercury emitting portion 101 includes ceramics that is a sintered body of one or more metal oxides of titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ). It may be.
  • the size of the mercury discharge portion 101 remains constant, and when it is desired to reduce the mercury content, the density of the reduced mercury content is replenished, Compared with the case where the mercury content is simply reduced, the thermal conductivity of the mercury emitting portion 101 can be increased, and the heating efficiency of the mercury emitting portion 101 can be increased.
  • the ceramic is contained within a range of 5 wt% to 30 wt% of the mercury emission part.
  • the density of the reduced mercury content is appropriately supplemented, and the thermal conductivity of the mercury emitting portion 101 is made to be higher than when the mercury content is simply reduced.
  • the heating efficiency of the mercury discharge part 101 can be increased.
  • the sintered body portion 102 is made of a metal sintered body that does not form an alloy with mercury, and has a porous shape.
  • Metal that does not form an alloy with mercury means, for example, an alloy that hardly reacts with mercury, such as at least one of iron (Fe), nickel (Ni), cobalt (Co), and manganese (Mn). It is a metal that is difficult to do. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
  • the metal which comprises the sintered compact part 102 is not restricted to only one kind of metal only of iron or nickel,
  • a metal obtained by applying nickel plating to iron can have an effect of preventing oxidation (corrosion prevention) of iron.
  • the fluidity of the blended powder of iron powder and nickel powder can be improved, and the productivity at the time of molding can be improved.
  • nickel has a lower specific heat than iron and a higher thermal conductivity, it is possible to improve the heating efficiency of the sintered body 102.
  • the sintered body 102 has, for example, a length L of 3 [mm] and an outer diameter Do of 1.4 [mm].
  • the porosity of the sintered body portion 102 having a porous shape is preferably 5% or more. In this case, mercury can easily pass through the sintered body portion 102, and the mercury emission efficiency can be increased.
  • the porosity of the sintered body portion 102 is more preferably 25 [%] or more.
  • the mercury emitted from the mercury emitting portion 101 can easily pass through the sintered body portion 102, and the mercury releasing efficiency can be further increased.
  • the porosity of the sintered compact part 102 is 60 [%] or less. If the ratio is larger than 60%, the sintered body portion 102 becomes full of pores. For example, when the mercury emitter 100 is heated at a high frequency, the heating efficiency of the mercury emitter 101 is lowered and uneven heating occurs. This is because the amount of mercury released tends to vary.
  • the porosity of the sintered body portion 102 is calculated by the following mathematical formula.
  • the density of the sintered body 102 is determined by dissolving the mercury emitter 100 in a mixed solution of hydrofluoric acid and nitric acid, and then quantitatively analyzing it with an ICP emission analyzer (ICPS-8000) manufactured by Shimadzu Corporation. It can be obtained by obtaining the weight of the bonded part 102 and dividing by the volume of the sintered part 102.
  • the volume of the sintered body portion 102 is the volume when there is no void in the sintered body portion 102. Will be used.
  • the theoretical density of the sintered body portion 102 is an imaginary density obtained on the assumption that the sintered body portion 102 has no voids.
  • the metal which comprises the sintered compact part 102 is a magnetic body.
  • the metal which comprises the sintered compact part 102 is a magnetic body.
  • iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected as the metal that is a magnetic substance.
  • a getter material may be mixed in the sintered body portion 102.
  • an impurity gas such as hydrogen (H 2 ) or oxygen (O 2 ) can be adsorbed, thereby improving the purity of the sealed gas in the glass tube.
  • the getter material for example, tantalum (Ta), niobium (Nb), zirconium (Zr), chromium (Cr), hafnium (Hf), aluminum (Al), or an alloy thereof can be applied.
  • the ratio of the surface area of the portion in contact with the sintered body portion 102 out of the total surface area of the mercury emitting portion 101 is preferably 30% or more. In this case, it is possible to obtain a very high mercury emission efficiency by increasing the heating efficiency by increasing the thermal conductivity with respect to the mercury emission part 101.
  • the ratio of the surface area of the portion in contact with the sintered body portion 102 of the total surface area of the mercury discharge portion 101 is 50% or more.
  • the “surface area of the portion in contact with the sintered body portion 102” is calculated from the contour of the outermost surface, not including the surface area of the porous internal voids, because the sintered body portion 102 is porous. Surface area.
  • the particle size of the metal that does not form an alloy with mercury in the sintered body portion 102 is preferably in the range of 5 [ ⁇ m] to 40 [ ⁇ m]. In this case, it is easy to permeate mercury emitted from the mercury emitting portion 101, and the mercury emission efficiency can be improved.
  • the particle shape of the sintered body portion 102 shown in FIGS. 2A to 2C is a scaly shape, but it is not necessarily a scaly shape and may be a polygonal shape or the like. However, in the case of a scale shape, the porosity of the sintered body portion 102 can be increased, and the mercury release efficiency can be further improved.
  • the particle shape of the metal that does not form an alloy with mercury in the sintered body portion 102 may be a spherical shape.
  • FIG. 5A is a front view showing the particle structure of the mercury emitter 100 when the particle shape of the metal that does not form an alloy with mercury in the sintered body portion 102 is spherical, and FIG. ) Respectively.
  • the fluidity is improved, and in the extrusion process for forming the mercury emitter 100 as described later, it can be extruded from the molding machine with a high yield, and the productivity can be improved.
  • the shape of the sintered body portion 102 is preferably a cylindrical shape that covers the outer peripheral surface excluding the end face of the mercury emitting portion 101, as shown in FIGS. 5 (a) and 5 (b).
  • the eddy current generated by the high frequency heating flows to the inner surface closed in a cylindrical shape, and the heating efficiency of the mercury discharge part 101 can be increased.
  • Ti 1.73 Hg has an intermediate composition between Ti 3 Hg and TiHg because it has an intermediate composition between Ti 3 Hg and TiHg.
  • the phase diagram of titanium and mercury described on page 1352 of Binary Alloy Phase Diagram (First Printing, October 1986) issued by AMERICA SOCIETY FOR METALS the conditions for stable formation of Ti 1.73 Hg can be determined. There wasn't.
  • the inventors changed the number of sintered bodies to be added to the heating container and the amount of mercury to react, thereby causing a reaction time at a constant temperature shown in FIG. 6 (time for titanium and mercury to react), We succeeded in clarifying the relationship between the mercury content of each intermetallic compound and the total mercury content in the mercury emission part.
  • the solid line represents Ti 1.73 Hg
  • the broken line represents TiHg
  • the alternate long and short dash line represents Ti 3 Hg.
  • the composition ratio was calculated
  • the reaction between titanium and mercury in the sintered body changes depending on the reaction temperature, the amount of titanium put into the heating container (surface area of titanium), the amount of mercury put into the heating container, and delays the progress of the reaction. 1.73 Hg production can be confirmed. For example, when the reaction temperature is lowered, the progress of the reaction is slow (that is, the graph of FIG.
  • the inventors found from the results of Experiment 1 that the mercury emitter 100 was produced by controlling the progress of the reaction between titanium and mercury.
  • Example 2 Next, the inventors conducted an experiment to measure the mercury emission amount in order to confirm that the mercury emission body 100 has improved mercury emission efficiency over the conventional mercury emission body.
  • the mercury discharge part has a diameter of 1 [mm]
  • the sintered body part has an outer diameter of 1.4 [mm]
  • a length of 3 [mm] and 6 [mg] of mercury.
  • the contained mercury emitter 100 was used.
  • the example in which the intermetallic compound contains Ti 1.73 Hg having a mercury amount of 20 [wt%] with respect to the mercury amount in the mercury emitting portion is set as Example 1, and the mercury amount in the mercury emitting portion is also the same.
  • Te 40 and example 2 shall include Ti 1.73 Hg with a mercury content of [wt%], also contains Ti 1.73 Hg with a mercury content of 60 [wt%] with respect to the mercury content of mercury-emitting portion Example 3 was used, and Example 4 was also used in which Ti 1.73 Hg having a mercury amount of 90 wt% with respect to the mercury amount in the mercury emission part was included.
  • Example 1 to 4 the same size as in Examples 1 to 4 containing the same amount of mercury, an intermetallic compound formed of Ti 3 Hg, and no Ti 1.73 Hg was used.
  • the Example and the comparative example were produced by changing the temperature while the reaction time of mercury was constant.
  • the ratio of Ti 1.73 Hg in the intermetallic compound contained in the mercury emission part was specified by the following method. (1) Immerse the mercury emitter in aqua regia. Thereby, Ti 1.73 Hg and Ti 3 Hg, which are intermetallic compounds, of the mercury emitters dissolve into the aqua regia. At this time, if single titanium (Ti) remains in the mercury emitter, it remains as a residue. (2) determine the ratio of titanium and mercury in the intermetallic compound by quantifying by Shimadzu Corporation in an ICP emission spectrometer the amount of melted titanium and mercury aqua regia (ICPS-8000), Ti 1.73 From the ratio calculation of Hg and Ti 3 Hg, the ratio of Ti 1.73 Hg in the metal compound was specified.
  • the mercury emitting body contains simple substance Hg and TiHg
  • the substance is soaked in nitric acid before being immersed in aqua regia, and the simple substance Hg and TiHg are dissolved for quantification.
  • Ti 1.73 Hg and Ti 3 Hg do not dissolve in nitric acid.
  • the heating temperature exceeds 400 [° C.] and mercury starts to be released around 500 [° C.], but the mercury emission rate at the heating temperature of 800 [° C.] is large. The result was different.
  • the intermetallic compound contains Ti 1.73 Hg (Examples 1 to 4 in the figure), mercury emission formed with conventional Ti 3 Hg at a heating temperature of 800 ° C. It can be confirmed that the mercury emission efficiency is improved as compared with the body (comparative example in the figure). It can also be confirmed that the mercury emission efficiency of the mercury emitter improves as the proportion of Ti 1.73 Hg in the intermetallic compound increases. That is, when Ti 1.73 Hg is contained in the intermetallic compound present in the mercury emitting part, the mercury releasing efficiency can be improved as compared with the conventional mercury emitting body.
  • the intermetallic compound contains Ti 1.73 Hg having a mercury amount in the range of 40 wt% to 100 wt% with respect to the mercury amount in the mercury emitting portion (Examples 2 to 4 in the figure). 4).
  • a heating temperature of 800 [° C.] about 6 [times] of mercury can be released compared to a conventional mercury emitter.
  • Ti 1.73 Hg having a mercury amount in the range of 60 [wt%] or more and 100 [wt%] or less with respect to the mercury amount in the mercury emitting portion is included (Examples 3 and 4 in the figure). Is more preferable. In this case, mercury of 50% or more of the mercury content can be released at 800 [° C.].
  • the intermetallic compound contains Ti 1.73 Hg having a mercury amount in the range of 90 [wt%] or less with respect to the mercury amount in the mercury emitting part, but all of the intermetallic compound is Ti 1.73 Hg. Needless to say, it is preferable to include Ti 1.73 Hg having a mercury amount in the range of 100 wt% or less with respect to the mercury amount in the mercury emitting portion.
  • the remainder of the intermetallic compound except Ti 1.73 Hg is Ti 3 Hg.
  • the intermetallic compound contains Ti 3 Hg, and generation of TiHg that decomposes at room temperature can be substantially suppressed (to the extent that it cannot be measured), and mercury can be produced at a low temperature such as 100 ° C. It can be prevented from being released (this can also be inferred from the fact that the intermetallic compound of the comparative example of FIG. 7 is made of Ti 3 Hg).
  • FIG. 1 A process diagram of the manufacturing process is shown in FIG. 1
  • raw material powder is prepared. Specifically, for example, titanium powder, which is a material of the mercury emitting portion 101, or iron powder, which is a material of the sintered body portion 102, is used.
  • titanium powder and iron powder are separately mixed with a binder, various additives, and water, and sufficiently kneaded.
  • the binder is, for example, methyl cellulose.
  • the titanium clay and the iron clay are put into first and second extrusion molding machines (not shown), respectively.
  • This second extrusion molding machine is provided with a coaxial two-layer extrusion die.
  • a rod-shaped titanium molded body is derived from the first extrusion molding machine, the titanium molded body is introduced into the die portion of the second extrusion molding machine, and a cylindrical body having a coaxial structure in which iron clay is laminated on the outside.
  • a shaped molded body is continuously formed.
  • this molded object is dried until it becomes predetermined
  • the molding method is not limited to extrusion molding, and press molding, a method of forming a titanium clay into a rod shape, and then dipping it into slurryed iron can be used.
  • the molded body is cut to a predetermined length.
  • the mercury content in the mercury emitter 100 can be adjusted to a desired amount by the length to be cut.
  • the mercury content of the mercury emitter 100 can be adjusted by changing the binder amount of the titanium clay, the outer diameter of the mercury emitting portion 101, the firing temperature in the firing step, and the like.
  • the compact is heated in an argon atmosphere at, for example, 500 [° C.] to remove the binder in the compact. And it sinters, for example at 900 [degreeC] in a vacuum atmosphere, and a sintered compact is produced.
  • the sintered body and mercury are put into a heating container, and the heating container is evacuated using a vacuum pump, and at a temperature of about 500 [° C.] to 600 [° C.], for example, 4 [h] to 16 [ h]
  • a degree of heating titanium constituting the sintered body and mercury in the heating container are alloyed to form the mercury discharge portion 101. At this time, Ti 1.73 Hg is generated in the mercury emitting portion 101.
  • the glass tube can be prevented from being damaged when used in the manufacture of a low-pressure discharge lamp.
  • FIG. 9 shows a perspective view of a mercury emitter according to the second embodiment of the present invention.
  • the mercury emitter 101 is covered with the sintered metal portion 102 of the metal, but the mercury emitter 200 according to the second embodiment of the present invention (hereinafter referred to as the following).
  • the “mercury emitter 200” is substantially the same as the first embodiment of the present invention except that the mercury emitting part is housed inside a container 202 having an opening 201 at least partially. It has a configuration.
  • the container 202 has a cylindrical shape made of, for example, iron and has an outer diameter of 1.4 [mm], an inner diameter of 1 [mm], and a height of 3 [mm]. Since the container 202 is cylindrical, it has the opening part 201 in the both ends. When the mercury emitter 200 is heated, mercury can be emitted from the mercury emitter 101 through the opening 201.
  • the material of the container 202 is not limited to iron but is preferably a magnetic material.
  • the arrangement position of the mercury emitter 200 can be adjusted by a magnetic force.
  • the metal that is a magnetic substance for example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
  • the metal which comprises the container 202 is not restricted to one kind of metal only of iron or nickel,
  • the metal which comprises the container 202 is not restricted to one kind of metal only of iron or nickel,
  • a metal obtained by applying nickel plating to iron can have an effect of preventing oxidation (corrosion prevention) of iron.
  • the shape of the container 202 is not limited to a cylindrical shape, and may be a polyhedral shape such as a trapezoidal cylinder as shown in FIG.
  • the contact area with the glass tube can be reduced when the mercury emitter 203 is inserted into the glass tube. Can be prevented from being damaged.
  • a slit 205 may be provided on the side surface of the container 204.
  • mercury can be discharged from the mercury discharge portion 101 inside the container via the slit 205, so that the mercury discharge efficiency can be improved.
  • the opening of the container in this case includes not only the opening 206 at both ends of the container but also the slit 205.
  • raw material powder is prepared.
  • a mercury alloy powder for example, an alloy powder of titanium and mercury that serves as a material for the mercury emitting portion 101 is prepared.
  • the mercury discharge part 101 is shape
  • the mercury discharge part 101 is disposed in the containers 202 and 204.
  • the containers 202 and 204 are formed by winding a plate material made of iron (Fe) or nickel (Ni) around the cylindrical mercury discharge portion 101, and at the same time, the mercury discharge portion 101 is arranged in the container. As a result, the mercury emitters 200 and 203 can be produced.
  • the mercury emitter 200 by inserting the mercury discharge part 101 into the container 202 formed into a cylindrical shape (for example, a cylindrical shape).
  • the mercury emitters 200 and 203 according to the second embodiment of the present invention by changing the amalgam component, the mercury emission efficiency is improved over the conventional one, and the mercury is sufficient. Therefore, it is not necessary to continue heating at a high temperature for a long time, so that the glass tube can be prevented from being damaged when used in the manufacture of a low-pressure discharge lamp.
  • FIG. 11 shows a perspective view of a mercury emitter according to the third embodiment of the present invention.
  • a mercury emitter 300 (hereinafter referred to as “mercury emitter 300”) according to the third embodiment of the present invention is configured by only the mercury emitter 101 without the sintered body 102 and the containers 202 and 204. Except for the point, it has substantially the same configuration as the mercury emitter according to the first and second embodiments of the present invention.
  • Mercury emitter 300 is composed of a cylindrical mercury emitter.
  • the mercury emitter 300 has a diameter of 1.4 [mm] and a length of 3 [mm].
  • the shape of the mercury emitter 300 is not limited to a cylindrical shape.
  • a spherical shape, a polyhedron shape, or the like may be used.
  • the mercury emitting part 101 may contain a magnetic material.
  • a magnetic force For example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected as the metal that is a magnetic substance. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
  • raw material powder is prepared. Specifically, it is, for example, titanium powder that is used as a material for the mercury emitting portion 101.
  • a binder for example, methyl cellulose.
  • a titanium clay is produced.
  • the molding process Next, the titanium clay is put into an extrusion molding machine (not shown). And a rod-shaped titanium molded object is derived
  • the molding method is not limited to extrusion molding, and a method such as press molding can be used.
  • the molded body is cut to a predetermined length.
  • the mercury content in the mercury emitter 300 can be adjusted to a desired amount by the cut length.
  • the mercury content of the mercury emitter 300 can be adjusted by changing the binder amount of the titanium clay, the outer diameter of the mercury emitting portion 101, the firing temperature in the firing step, and the like.
  • the cut process may be omitted when the finished product is molded to the size of one finished product by press molding or the like.
  • the compact is heated in an argon atmosphere at, for example, 500 [° C.] to remove the binder in the compact. And it sinters, for example at 900 [degreeC] in a vacuum atmosphere, and a sintered compact is produced.
  • the sintered body and mercury are put into a heating container, and the heating container is evacuated using a vacuum pump, and at a temperature of about 500 [° C.] to 600 [° C.], for example, 4 [h] to 16 [ h] Heat about to alloy titanium and mercury.
  • the mercury emitter 300 since the mercury emitter 300 contains Ti 1.73 Hg, the mercury emission efficiency is improved and the mercury is sufficiently released. However, since it is not necessary to continue heating for a long time and at a high temperature, the glass tube can be prevented from being damaged when used for manufacturing a low-pressure discharge lamp.
  • the method for manufacturing a low-pressure discharge lamp according to the fourth embodiment of the present invention is a method for manufacturing a low-pressure discharge lamp in which the mercury emitter is taken out during the manufacturing process and the finished lamp has no mercury emitter.
  • a method for manufacturing a low-pressure discharge lamp according to a fourth embodiment of the present invention includes a step of inserting a mercury emitter according to the first embodiment of the present invention into a glass tube, and a step of heating the mercury emitter. Is included.
  • FIG. 12 shows a schematic diagram of steps A to G of the manufacturing process
  • FIG. 13 shows a schematic diagram of steps H to J, respectively.
  • the prepared straight tubular glass tube 400 is suspended and its lower end is immersed in the phosphor suspension 402 in the tank 401.
  • the phosphor suspension 402 contains, for example, blue, red, and green phosphor particles.
  • This siphoning is set so that the liquid level becomes a predetermined height of the glass tube 400 by detecting the liquid level with the optical sensor 403.
  • the liquid level error at this time is relatively large because of the influence of the viscosity of the phosphor suspension 402, the surface tension of the liquid level, and the like, and an error of about ⁇ 0.5 [mm] occurs.
  • a brush or the like 404 is inserted into the inner surface of the glass tube 400 to remove unnecessary phosphor portions at the end of the glass tube 400.
  • the glass tube 400 is transferred into a heating furnace (not shown), and the phosphor particles adhering to the inner surface of the glass tube 400 are baked to obtain the phosphor layer 405.
  • the electrode unit 409 including the electrode 406, the bead glass 407, and the lead wire 408 is inserted into one end of the glass tube 400 on which the phosphor layer 405 is formed, and then temporarily fixed.
  • Temporary fixing means that the outer peripheral portion of the glass tube 400 where the bead glass 407 is positioned is heated by the burner 410 and a part of the outer periphery of the bead glass 407 is fixed to the inner peripheral surface of the glass tube 400. Since only a part of the outer periphery of the bead glass 407 is fixed, the air permeability of the glass tube 400 in the tube axis direction is maintained.
  • the electrode 40 is a so-called cold cathode type.
  • the glass tube 400 is turned upside down, the electrode 411 having substantially the same configuration as the electrode unit 409, the bead glass 412 and the lead wire are placed on the glass tube 400 from the side opposite to the side where the electrode unit 409 is inserted.
  • the outer peripheral part of the glass tube 400 in which the bead glass 412 is located is heated with the burner 415, and the glass tube 400 is sealed and airtightly sealed (first sealing). Further, the error from the set value of the sealing position in the first sealing is about 0.5 [mm].
  • the insertion position of the electrode unit 409 in the process C and the insertion of the electrode unit 414 in the process D are the lengths of the non-existing regions of the phosphor layer 405 respectively extending from both ends of the glass tube after sealing both ends of the glass tube. It is preferable that the insertion amount is adjusted so that the positions are different.
  • the electrode unit 414 on the other end side is inserted from the position overlapping the phosphor layer 405 to the back as compared with the electrode unit 409 on the one end side.
  • the reason why such a configuration is suitable is as follows.
  • Luminance unevenness occurs as a whole device.
  • the senor is surely used.
  • the longitudinal direction can be identified.
  • the sensor can be used more reliably in the longitudinal direction. Orientation can be identified.
  • the image sensor may have a measurement accuracy in units of 0.5 [mm].
  • the upper limit of the difference in length is, for example, about 8 [mm]. This is because if it exceeds 8 [mm], the non-existing region of the phosphor layer 405 that does not contribute to light emission becomes long, and it becomes difficult to ensure an effective light emission length.
  • the exhaust in the glass tube 400 and the filling of the sealed gas into the glass tube 400 are sequentially performed.
  • the head of the air supply / exhaust device (not shown) is attached to the end of the glass tube 400 on the mercury emitter 100 side, and first, the inside of the glass tube 400 is evacuated to a vacuum and the heating device (FIG.
  • the entire glass tube 400 is heated from the outer periphery by not shown).
  • the temperature of the glass tube becomes about 400 [° C.], and the impure gas in the glass tube 400 including the impure gas entering the phosphor film 405 is discharged.
  • a predetermined amount of sealed gas for example, a mixed rare gas such as a mixed gas having a partial pressure ratio of argon: 95 [%], neon: 5 [%], etc.
  • step H shown in FIG. 13 the mercury emitter 100 is induction-heated by a high-frequency oscillation coil (not shown) disposed around the glass tube 400 to release mercury from the mercury emitter 100 (mercury emitter).
  • Step of heating 100 As a method for heating the mercury emitter 100, various known methods such as heating with a gas burner or light heating can be used. Thereafter, the glass tube 400 is heated in the heating furnace 418, and the released mercury is moved toward the electrode 411 of the electrode unit 414.
  • the mercury emitter 100 described in the first embodiment is used, so that mercury is sufficiently released.
  • the amount of mercury contained in the mercury emitter 100 can be reduced, in other words, the amount of mercury used for the lamp can be reduced, and the environment can be reduced. The load on can be reduced.
  • the case where the mercury emitter 100 according to the first embodiment of the present invention is used has been described.
  • the mercury emitters 200 and 203 according to the second embodiment of the present invention are also described.
  • the mercury emitter 300 according to the third embodiment of the present invention and other mercury emitters according to modifications described later can also be used.
  • FIG. 14A is a cross-sectional view including a tube axis of a low-pressure discharge lamp 500 (hereinafter simply referred to as “lamp 500”) according to the fifth embodiment of the present invention, and FIG. ) Respectively.
  • the lamp 500 is a cold cathode fluorescent lamp, and unlike the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the fourth embodiment of the present invention, the lamp 500 is.
  • the mercury emitter 501 remains inside.
  • the lamp 500 includes a glass tube 502, an electrode 503, and a lead wire 504.
  • the glass tube 502 is a straight tube, and a cross section cut perpendicularly to the tube axis has a substantially circular shape.
  • the glass tube 502 has, for example, an outer diameter of 3.0 [mm], an inner diameter of 2.0 [mm], and a total length of 750 [mm], and the material thereof is borosilicate glass.
  • the dimensions of the lamp 500 shown below are values corresponding to the dimensions of the glass tube 502 having an outer diameter of 3.0 [mm] and an inner diameter of 2.0 [mm].
  • the inner diameter is in the range of 1.4 [mm] to 7.0 [mm]
  • the thickness is in the range of 0.2 [mm] to 0.6 [mm]. It is preferable that the total length is 1500 [mm] or less. These values are examples and are not limited to these.
  • mercury is sealed at a predetermined ratio, for example, 0.6 [mg / cc] with respect to the volume of the glass tube 502 (the volume in a state where the end portion is sealed),
  • a rare gas such as argon or neon is sealed at a predetermined sealing pressure, for example, 60 [Torr].
  • a phosphor layer 505 is formed on the inner surface of the glass tube 502.
  • the phosphor particles used for the phosphor layer 505 are, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ) and blue phosphor particles ( BaMg 2 Al 16 O 27 : Eu 2+ ).
  • a protective film (not shown) of a metal oxide such as yttrium oxide (Y 2 O 3 ) may be provided between the inner surface of the glass tube 502 and the phosphor layer 505.
  • lead wires 504 are led out from both ends of the glass tube 502 to the outside.
  • the lead wire 504 is sealed at both ends of the glass tube 502 through the bead glass 506.
  • the lead wire 504 is, for example, a joint consisting of an internal lead wire 504a made of tungsten and an external lead wire 504b made of nickel.
  • the inner lead wire 504a has a wire diameter of 1 [mm] and a total length of 3 [mm]
  • the outer lead wire 504b has a wire diameter of 0.8 [mm] and a total length of 5 [mm].
  • a hollow type, for example, a bottomed cylindrical electrode 503 is fixed to the tip of the internal lead wire 504a. This fixing is performed using, for example, laser welding.
  • each part of the electrode 503 are, for example, an electrode length of 5 [mm], an outer diameter of 1.70 [mm], an inner diameter of 1.50 [mm], and a wall thickness of 0.10 [mm].
  • a mercury emitter 501 is fixed between the electrode 503 and the bead glass 506 of at least one of the internal lead wires 504a.
  • the mercury emitter 501 is formed by forming a through hole 501a for passing an internal lead wire through the mercury emitter 100 according to the first embodiment of the present invention. Note that the mercury emitter 501 may be fixed to the electrode 503 instead of the lead wire 504.
  • the mercury emitter 501 having good mercury emission efficiency is used, so the amount of mercury contained in the mercury emitter 501 is reduced. In other words, the amount of mercury used for one lamp can be reduced, and the burden on the environment can be reduced.
  • FIG. 15A is a cross-sectional view including a tube axis of a low-pressure discharge lamp (hereinafter simply referred to as “lamp 600”) according to a sixth embodiment of the present invention, and FIG. Respectively.
  • the lamp 600 is a hot cathode fluorescent lamp, and unlike the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the fourth embodiment of the present invention, the lamp 600 is.
  • the mercury emitter 501 remains inside.
  • the lamp 600 is a hot cathode fluorescent lamp, and includes a glass tube 601 and an electrode mount 602.
  • the glass tube 601 has, for example, a total length of 1010 [mm], an outer diameter of 18 [mm], and a wall thickness of 0.8 [mm], and electrode mounts 602 are sealed at both ends thereof.
  • a phosphor layer 505 is formed on the inner surface of the glass tube 601, and mercury (eg, 4 [mg] to 10 [mg]) is sealed inside the glass tube 601 and argon ( A mixed gas of Ar) and krypton (Kr) (for example, a mixed gas having a partial pressure ratio of Ar of 50 [%] and Kr of 50 [%]) is sealed at a sealed gas pressure of 600 [Pa], for example.
  • mercury eg, 4 [mg] to 10 [mg]
  • argon A mixed gas of Ar
  • Kr krypton
  • the electrode mount 602 is a so-called bead glass mount, a tungsten filament electrode 603, a pair of lead wires 604 that support the filament electrode 603, and the pair of lead wires 604. And a bead glass 605 for fixing and supporting.
  • the filament electrode 603 is of a so-called hot cathode type.
  • a mercury emitter 501 is fixed to the lead wire 604 of at least one of the electrode mounts 602.
  • the through hole 501 a of the mercury emitter 501 used here is adapted to the wire diameter of the lead wire 604.
  • a part of the lead wire 604 is sealed to the end of the glass tube 601 in the electrode mount 602, specifically, a part extending from the bead glass 605 to the side opposite to the filament electrode 603. is there.
  • the electrode mount 602 is sealed to the glass tube 601 by, for example, a pinch seal method.
  • an exhaust pipe remaining portion 606 is attached together with the electrode mount 602 to at least one end of the glass tube 601.
  • the exhaust pipe remaining portion 606 is used when exhausting the inside of the glass tube 601 after sealing the electrode mount 602 or enclosing the above-mentioned sealed gas or the like.
  • chip-off sealing is performed at a portion located outside the glass tube 601 in the exhaust pipe remaining portion 606.
  • the mercury emitter 501 having high mercury emission efficiency is used.
  • the amount of mercury used for one lamp can be reduced, and the load on the environment can be reduced.
  • FIG. 16 shows an exploded perspective view of a lighting device 700 according to the seventh embodiment of the present invention.
  • An illuminating device 700 according to a seventh embodiment of the present invention is a direct-type backlight unit, and has a rectangular parallelepiped casing 701 having one open surface and a plurality of lamps housed in the casing 701. 500, a pair of sockets 702 for electrically connecting the lamp 500 to a lighting circuit (not shown), and an optical sheet 703 covering the opening of the housing 701.
  • the lamp 500 is a low-pressure discharge lamp 500 according to the fifth embodiment of the present invention.
  • the housing 701 is made of, for example, polyethylene terephthalate (PET) resin, and a reflective surface 704 is formed by depositing a metal such as silver on the inner surface thereof.
  • PET polyethylene terephthalate
  • the material of the housing 701 may be made of a material other than resin, for example, a metal material such as aluminum or a cold rolled material (for example, SPCC).
  • a reflection sheet whose reflectance is increased by adding calcium carbonate, titanium dioxide, or the like to a polyethylene terephthalate (PET) resin other than a metal vapor deposition film may be attached to the housing 701. .
  • PET polyethylene terephthalate
  • an insulator 705 and a cover 706 are disposed inside the housing 701.
  • the sockets 702 are provided at predetermined intervals in the lateral direction (vertical direction) of the housing 701 corresponding to the arrangement of the lamps 500.
  • the socket 702 is obtained by processing a plate made of stainless steel or phosphor bronze, for example, and has a fitting portion 702a into which the external lead wire 504b is fitted. Then, the external lead wire 504b is fitted by being elastically deformed so as to expand the fitting portion 702a. As a result, the external lead wire 504b fitted into the fitting portion 702a is pressed by the restoring force of the fitting portion 702a and is difficult to come off. Thereby, the external lead wire 504b can be easily fitted into the fitting portion 702a, but can be made difficult to come off.
  • the socket 702 is covered with an insulator 705 so that the sockets 702 adjacent to each other are not short-circuited.
  • the insulator 705 is made of, for example, polyethylene terephthalate (PET) resin. Note that the insulator 705 is not limited to the above structure. Since the socket 702 is in the vicinity of the internal electrode 503 that becomes relatively hot during operation of the lamp 500, the insulator 705 is preferably made of a heat resistant material. As a material for the heat-resistant insulator 705, for example, polycarbonate (PC) resin, silicon rubber, or the like can be used.
  • PC polycarbonate
  • a lamp holder 707 may be provided inside the housing 701 inside the housing 701.
  • the lamp holder 707 that fixes the position of the lamp 500 inside the housing 701 is, for example, polycarbonate (PC) resin, and has a shape that follows the outer shape of the lamp 500.
  • the “place as needed” means that the lamp 500 is bent when the lamp 500 has a long length exceeding, for example, 600 [mm], as in the vicinity of the central portion of the lamp 500 in the longitudinal direction. It is a place necessary to eliminate.
  • the cover 706 separates the socket 702 from the space inside the housing 701.
  • the cover 706 is made of, for example, polycarbonate (PC) resin, keeps the periphery of the socket 702 warm, and highly reflects at least the surface on the housing 701 side. Therefore, the luminance reduction at the end of the lamp 500 can be reduced.
  • PC polycarbonate
  • the opening of the housing 701 is covered with a light-transmitting optical sheet 703 and is sealed so that foreign matters such as dust and dust do not enter inside.
  • the optical sheet 703 is formed by laminating a diffusion plate 708, a diffusion sheet 709, and a lens sheet 710.
  • the diffusion plate 708 is a plate-like body made of, for example, polymethyl methacrylate (PMMA) resin, and is disposed so as to close the opening of the housing 701.
  • the diffusion sheet 709 is made of, for example, a polyester resin.
  • the lens sheet 710 is, for example, a laminate of an acrylic resin and a polyester resin.
  • the lamp with a small amount of mercury used is used, a lighting device with a small environmental load can be realized.
  • FIG. 17 shows a partially cutaway perspective view of a lighting apparatus according to the eighth embodiment of the present invention.
  • An illuminating device 800 according to an eighth embodiment of the present invention (hereinafter referred to as “illuminating device 800”) is an edge light type backlight unit, and includes a reflector 801, a lamp 500, a socket (not shown), and a light guide plate. 802, a diffusion sheet 803, and a prism sheet 804.
  • the reflection plate 801 is disposed so as to surround the surface around the light guide plate 802 except for the liquid crystal panel side (arrow Q), and the bottom surface portion 801b covering the bottom surface of the light guide plate 802 and the side where the lamp 500 is disposed. And a curved lamp side surface portion 801c covering the periphery of the lamp 500, and the light emitted from the lamp is guided from the light guide plate 802 to the liquid crystal panel (not shown) side ( Reflected in the arrow Q).
  • the reflecting plate 801 is made of, for example, a film-like PET deposited with silver or a laminated metal foil such as aluminum.
  • the socket has substantially the same configuration as the socket 702 used in the lighting device 700 according to the seventh embodiment of the present invention.
  • the end of the lamp 500 is omitted for convenience of illustration.
  • the light guide plate 802 is for guiding the light reflected by the reflection plate 801 to the liquid crystal panel side.
  • the light guide plate 802 is made of, for example, translucent plastic and has a bottom surface portion 801b of the reflection plate 801 provided on the bottom surface of the lighting device 800. Are stacked on top of each other.
  • PC polycarbonate
  • COP cycloolefin-based resin
  • the diffusion sheet 803 is for expanding the visual field and is made of, for example, a film having a diffusion transmission function made of polyethylene terephthalate resin or polyester resin, and is laminated on the light guide plate 802.
  • the prism sheet 804 is for improving luminance, and is made of, for example, a sheet obtained by bonding an acrylic resin and a polyester resin, and is laminated on the diffusion sheet 803. Note that a diffusion plate may be further stacked on the prism sheet 804.
  • a reflective sheet (not shown) is provided on the outer surface of the glass tube 502 except for a part in the circumferential direction of the lamp 500 (the light guide plate 802 side when inserted into the lighting device 800).
  • An aperture-type lamp may be used.
  • the lamp with a small amount of mercury used is used, it is possible to realize a lighting device with a small environmental load.
  • FIG. 18A shows a front view of a lighting apparatus according to the ninth embodiment of the present invention
  • FIG. 18B shows a cross-sectional view taken along the line AA ′ of FIG. 18A.
  • An illuminating device 900 (hereinafter referred to as “illuminating device 900”) according to a ninth embodiment of the present invention is a luminaire using an annular fluorescent lamp for general illumination.
  • the lighting device 900 includes a main body portion 901, a plate-like portion 902, a lamp holder 903, a socket 904, and a lamp 905.
  • the main body 901 accommodates a lighting circuit (not shown) and the like inside, for example, and an electrical connection part (not shown) is led out from the upper part, for example, the base 906 of the lamp 905 and the electric part from the side part.
  • a socket 904 for connection is provided.
  • the disc-shaped portion 902 is a member that supports the main body portion 901 and the lamp holder 903, and has, for example, a disc-like shape.
  • the lamp holder 903 is attached to the lower surface of the plate-like portion 902, and the lamp 905 can be held by, for example, a C-shaped sandwiching piece provided at the lower end thereof to prevent the lamp 905 from dropping.
  • the lamp 905 is an annular hot-cathode fluorescent lamp
  • the low-pressure discharge lamp 600 according to the sixth embodiment is the same as the low-pressure discharge lamp 600 according to the sixth embodiment except that the shape is annular and the base 906 is located in the middle of the lamp 905. It has substantially the same configuration.
  • the lighting device 900 As described above, according to the configuration of the lighting device 900 according to the ninth embodiment of the present invention, since the lamp with a small amount of mercury used is used, a lighting device with a small environmental load can be realized.
  • FIG. 19 shows an outline of a liquid crystal display device according to the tenth embodiment of the present invention.
  • the liquid crystal display device 1000 is, for example, a 32 [inch] television, and includes a liquid crystal screen unit 1001 including a liquid crystal panel and the like, an illumination device 700 according to the seventh embodiment of the present invention, and a lighting circuit 1002. Prepare.
  • the liquid crystal screen unit 1001 is a known one and includes a liquid crystal panel (color filter substrate, liquid crystal, TFT substrate, etc.) (not shown), a drive module, etc. (not shown), and is based on an image signal from the outside. To form a color image.
  • a liquid crystal panel color filter substrate, liquid crystal, TFT substrate, etc.
  • a drive module etc.
  • the lighting circuit 1002 turns on the lamp 500 in the lighting device 700.
  • the lamp 500 is operated at a lighting frequency of 40 [kHz] to 100 [kHz] and a lamp current of 3.0 [mA] to 25 [mA].
  • FIG. 19 illustrates the case where the low-pressure discharge lamp 500 according to the fifth embodiment is inserted into the illumination device 700 according to the seventh embodiment of the present invention as the light source device of the liquid crystal display device 1000.
  • the low-pressure discharge lamp 600 according to the sixth embodiment of the present invention can also be applied.
  • the illuminating device 800 which concerns on the 8th Embodiment of this invention can also be used.
  • the liquid crystal display device As described above, according to the configuration of the liquid crystal display device according to the tenth embodiment of the present invention, since a lamp with a small amount of mercury used is used, a liquid crystal display device with a small environmental load can be realized.
  • Modification of mercury emitter (1) Modification 1 A perspective view of Modification 1 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. 20, a front view thereof is shown in FIG. 21 (a), and a plan view thereof is shown in FIG. 21 (b).
  • the first modification of the mercury emitter according to the first embodiment of the present invention (hereinafter simply referred to as “mercury emitter 104”) is the outer shape of the mercury emitter 100 according to the first embodiment of the present invention. The shape is different. Therefore, the shape will be described in detail, and the other points will be omitted.
  • Mercury emitter 104 has a tapered end. Specifically, the end of the sintered body portion 105 of the mercury emitter 104 has a tapered shape 105a.
  • the mercury emitter 104 Since the end of the mercury emitter 104 has a tapered shape, it can be prevented from colliding with other mercury emitters and being damaged when transported. Further, since the end portion of the mercury emitter 104 is tapered, the mercury emitter 104 can be easily put into the glass tube when a low-pressure discharge lamp having a thin tube is manufactured. Note that only one end of the mercury emitter 104 may have a tapered shape.
  • Modification 2 A perspective view of a modified example 2 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. 22, a front view thereof is shown in FIG. 23 (a), and a plan view thereof is shown in FIG. 23 (b).
  • Modification 2 (hereinafter simply referred to as “mercury emitter 106”) of the mercury emitter according to the first embodiment of the present invention is the same as the mercury emitter 100 according to the first embodiment of the present invention.
  • the shape of the discharge part 107 is different. Therefore, the shape will be described in detail, and the other points will be omitted.
  • the mercury emitter 106 has a cylindrical shape in which a through-hole 107a is formed in the axial direction including the central axis of the mercury emitter 107, for example.
  • the mercury emitter 106 Since the mercury emitter 106 has a cylindrical shape, mercury is released from both the inner surface and both sides of the sintered body portion 102 side, and the mercury release efficiency can be further improved. Further, a sintered body portion may be further formed on the inner surface of the mercury emitter 106. In this case, when high-frequency heating is performed, the high-frequency heating eddy current reaches the inner surface of the mercury emitter 106, and the heating efficiency of the mercury discharge portion 107 can be increased to further improve the mercury emission efficiency.
  • the mercury emitter shown in FIGS. 22 and 23 has a cylindrical shape, but is not limited thereto, and may be a polygonal cylindrical shape or the like.
  • the ratio of the diameter Dh of the through hole 107a to the outer diameter Di of the mercury emitting portion 107 is preferably in the range of 5% to 60%. In this case, if Dh is too small, the release efficiency does not increase so much, and if it is too large, a predetermined mercury content cannot be obtained, and the heating efficiency also decreases.
  • FIG. 24 shows a perspective view of Modification 3 of the mercury emitter according to the first embodiment of the present invention.
  • Modification 3 (hereinafter referred to as “mercury emitter 110”) of the mercury emitter according to the first embodiment of the present invention is different in shape from the mercury emitter 100 according to the first embodiment of the present invention. Different. Therefore, the shape will be described in detail, and the other points will be omitted.
  • the mercury emitter 110 has a flat plate shape. Specifically, in the mercury emitter 110, a flat mercury discharge portion 111 is sandwiched between flat plate-like sintered bodies 112. In this case, since the mercury emitting part 111 is sandwiched between the two sintered body parts 112, the heating efficiency of the mercury emitting part 111 is increased, and the mercury releasing efficiency can be further improved. Moreover, since it can produce by press molding by a sheet construction method, a manufacturing process can be simplified more. However, a configuration other than the configuration shown in FIG. 24 (a plate-shaped configuration) may be employed. For example, a mercury emitter 113 shown in FIG. 25 is formed by bending the plate-like structure shown in FIG. 24 into a substantially cylindrical shape.
  • the end surface of the mercury emitter 111 may be covered with the sintered body 112.
  • the end surface of the mercury emitting portion 111 is covered with the sintered body portion 112, and the front surface and the back surface are continuous, so that the efficiency of eddy current can be improved. Can be played.
  • the mercury discharge part 111 is covered with the sintered compact part 112, it is also possible to provide a slit in a part of mercury discharge part (part of the said sintered compact part).
  • a slit in a part of mercury discharge part part of the said sintered compact part.
  • the configuration shown in FIGS. 25 and 26, but said that form slits in a part of the mercury releasing material is formed, for example, with respect to the longitudinal direction of the central axis X 100 of the mercury releasing member 100 shown in FIG. 1 It is also possible to provide slits in parallel, vertically, or diagonally.
  • the mercury emitter may facilitate the release of mercury from the slit, which may improve the mercury emission efficiency. Since the problem of a decrease in current efficiency also occurs, consideration must be given to the design when forming the slit.
  • Modification 4 A perspective view of Modification 4 of the mercury emitter according to the first embodiment of the present invention is shown in FIG.
  • Modification 4 (hereinafter referred to as “mercury emitter 115”) of the mercury emitter according to the first embodiment of the present invention is a flat plate of Modification 3 of the mercury emitter according to the first embodiment of the present invention.
  • a sintered product portion 112 is laminated on a single-sided surface of a mercury discharge portion 111 in a spiral shape.
  • a laminate of the sintered body portion 112 and the mercury discharge portion 111 is wound in a spiral shape so that the sintered body portion 112 finally becomes the outside.
  • one surface of the mercury emitting portion 111 may be covered with the sintered body portion 112, or both surfaces of the mercury emitting portion 111 may be covered with the sintered body portion 112.
  • FIG. 28 shows a perspective view of Modification 5 of the mercury emitter according to the first embodiment of the present invention.
  • Modification 5 (hereinafter simply referred to as “mercury emitter 116”) of the mercury emitter according to the first embodiment of the present invention is different from the mercury emitter 100 according to the first embodiment of the present invention in its shape. Is different. Therefore, the shape will be described in detail, and the other points will be omitted.
  • a band-like sintered body portion 117 is wound around a rod-like mercury emitting portion 101.
  • the mercury emitting body 116 becomes the sintered body portion 117 after molding the rod-shaped body of the mercury emitting portion 101 without extruding the mercury emitting portion 101 and the sintered body portion 117 at the same time. It can be formed by winding clay.
  • Modification 6 A partially cutaway perspective view of Modification 6 of the mercury emitter according to the first embodiment of the present invention is shown in FIG.
  • Modification 6 of the mercury emitter according to the first embodiment of the present invention (hereinafter simply referred to as “mercury emitter 118”) is the shape of the mercury emitter 100 according to the first embodiment of the present invention. Is different. Therefore, the shape will be described in detail, and the other points will be omitted.
  • the mercury emitter 118 is spherical, and the sintered body 120 is laminated on the entire outside of the spherical mercury emitter 119.
  • the mercury emitter 118 Since all the outer sides of the mercury emitter 118 are covered with the sintered body portion 120, when the mercury emitter 118 is transferred, the mercury emitter 118 can be operated without directly touching the mercury emitter 119 containing mercury. , Work safety can be improved. In addition, as long as the mercury discharge
  • the present invention can be widely applied to mercury emitters, low-pressure discharge lamp manufacturing methods using the same, low-pressure discharge lamps, illumination devices, and liquid crystal display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamp (AREA)

Abstract

Disclosed is a mercury emitter that can enhance a mercury emission efficiency and can prevent the breakage of a glass tube when the mercury emitter is used in the manufacture of a low-pressure discharge lamp. Also disclosed is a method for manufacturing a low-pressure discharge lamp which can prevent the breakage of a glass tube and can reduce the necessary amount of mercury used. Further disclosed are a low-pressure discharge lamp, which can reduce the necessary amount of mercury used, a lighting system, and a liquid crystal display device. A mercury emitter (100) comprises a mercury emitting part (101) containing an intermetallic compound between titanium (Ti) and mercury (Hg). The intermetallic compound contains Ti1.73Hg.

Description

水銀放出体、それを用いた低圧放電ランプの製造方法、低圧放電ランプ、照明装置および液晶表示装置Mercury emitter, low-pressure discharge lamp manufacturing method using the same, low-pressure discharge lamp, illumination device, and liquid crystal display device
 本発明は、水銀放出体、それを用いた低圧放電ランプの製造方法、低圧放電ランプ、照明装置および液晶表示装置に関する。 The present invention relates to a mercury emitter, a method for producing a low-pressure discharge lamp using the same, a low-pressure discharge lamp, an illumination device, and a liquid crystal display device.
 バックライト用の冷陰極蛍光ランプ等のような低圧放電ランプ用ガラス管(以下、単に、「ガラス管」ともいう。)に水銀を封入するために、水銀が含有された水銀放出体が用いられている。すなわち、この水銀放出体を、発光管となるガラス管内に配置した後、それを外部から加熱することにより、その熱によって水銀を放出させるというものである。 In order to enclose mercury in a glass tube for a low-pressure discharge lamp such as a cold cathode fluorescent lamp for backlight (hereinafter also simply referred to as “glass tube”), a mercury emitter containing mercury is used. ing. That is, after this mercury emitter is placed in a glass tube that serves as an arc tube, it is heated from the outside so that mercury is released by the heat.
 水銀放出前の工程で水銀放出体の温度は400[℃]程度になることがあり、この温度まで安定な水銀放出体(この温度まで水銀をほとんど放出しない水銀放出体)として、例えばチタン(Ti)の焼結体と水銀(Hg)とを反応させて形成したTi3Hgからなるものがある(例えば特許文献1等参照)。
特許第2965824号公報
In the process before mercury emission, the temperature of the mercury emitter may be about 400 [° C.]. As a mercury emitter that is stable up to this temperature (a mercury emitter that hardly releases mercury up to this temperature), for example, titanium (Ti ) Sintered body and mercury (Hg) are used to form Ti 3 Hg (see, for example, Patent Document 1).
Japanese Patent No. 2965824
 しかしながら、従来の水銀放出体の場合、実用的観点からは水銀放出効率という点で、まだまだ不十分であった。 However, in the case of conventional mercury emitters, the mercury emission efficiency is still insufficient from a practical viewpoint.
 また、低圧放電ランプの製造工程において、水銀放出体から水銀を放出させる場合に、加熱温度を400[℃]~800[℃]にすることが好ましい。これは、400[℃]より低い温度で水銀を放出させると、低圧放電ランプの排気時の加熱によって水銀が放出されてしまうことで作業環境を悪化させてしまい、一方、800[℃]より高い温度で放出させると、水銀放出体自身の熱により、ガラス管の水銀放出体に接する部分が溶融し、破損するおそれがあるからである。 Also, in the manufacturing process of the low-pressure discharge lamp, when mercury is released from the mercury emitter, the heating temperature is preferably set to 400 [° C.] to 800 [° C.]. This is because when mercury is released at a temperature lower than 400 [° C.], the working environment is deteriorated due to mercury being released by heating during exhaust of the low-pressure discharge lamp, while higher than 800 [° C.]. This is because, when released at a temperature, the portion of the glass tube in contact with the mercury emitter is melted by the heat of the mercury emitter itself and may be damaged.
 Ti3Hgからなる水銀放出体の場合、400[℃]を越えた辺りから徐々に水銀が放出されるが、800[℃]付近では、水銀放出体内にまだ多量の水銀が残存している状態となる。この場合、水銀放出体内に残存している水銀を放出させるためには、さらに長時間でかつ高温(800[℃]程度)で加熱を続ける必要があり、その熱によって、ガラス管に負荷がかかり破損するおそれがある。 In the case of a mercury emitter made of Ti 3 Hg, mercury is gradually released from around 400 [° C.], but a large amount of mercury still remains in the mercury emitter around 800 [° C.]. It becomes. In this case, in order to release the mercury remaining in the mercury-emitting body, it is necessary to continue heating for a longer time and at a high temperature (about 800 [° C.]), and the heat causes a load on the glass tube. There is a risk of damage.
 また、このように水銀放出効率の悪い水銀放出体を用いている場合、水銀放出体には低圧放電ランプが点灯に必要とする以上の水銀を含有させておく必要がある。しかし、水銀が有害物質であることから、必要以上の水銀を使用することは環境上好ましくない。 In addition, when a mercury emitter having a low mercury emission efficiency is used as described above, the mercury emitter needs to contain more mercury than is necessary for lighting the low-pressure discharge lamp. However, since mercury is a harmful substance, it is not environmentally preferable to use excessive mercury.
 チタンと水銀との金属間化合物として、Ti3Hgの他にもAMERICAN SOCIETY FOR METALS発行のBinary Alloy Phase Diagram(First Printing, October 1986)第1352頁に記載されているように、TiHg、TixHg(xは常温において1.73)が存在している。 In addition to Ti 3 Hg, TiHg, Ti x Hg as described in page 1352 of Binary Alloy Phase Diagram (First Printing, October 1986) issued by AMERICA SOCIETY FOR METALS as well as Ti 3 Hg. (X is 1.73 at room temperature).
 しかしながら、TiHgは400[℃]より高い温度での水銀放出効率は優れているものの、室温でTiとHgとが分解するという性質を持つため、水銀放出工程の前に水銀を放出することになり、ランプの製造には適していないことが分かった。 However, although TiHg has excellent mercury release efficiency at temperatures higher than 400 [° C.], it has the property that Ti and Hg decompose at room temperature, so it releases mercury before the mercury release process. It was found that it is not suitable for manufacturing lamps.
 また、TixHgは水銀の放出特性が明らかにされておらず、その生成条件すら不明であった。 In addition, the release characteristics of mercury have not been clarified for Ti x Hg, and even the production conditions thereof have been unknown.
 そこで、本発明に係る水銀放出体は、水銀放出効率を向上させ、かつ低圧放電ランプの製造に用いた際、ガラス管の破損を防止することを目的とする。 Therefore, the mercury emitter according to the present invention aims to improve mercury emission efficiency and prevent breakage of the glass tube when used in the manufacture of a low-pressure discharge lamp.
 また、本発明に係る低圧放電ランプの製造方法は、ガラス管の破損を防止し、水銀の使用量を低減することを目的とする。 Also, the low-pressure discharge lamp manufacturing method according to the present invention aims to prevent breakage of the glass tube and reduce the amount of mercury used.
 また、本発明に係る低圧放電ランプ、照明装置および液晶表示装置は、水銀の使用量を低減することを目的とする。 Further, the low-pressure discharge lamp, the illumination device, and the liquid crystal display device according to the present invention aim to reduce the amount of mercury used.
 上記の課題を解決するために、本発明に係る水銀放出体は、チタン(Ti)と水銀(Hg)との金属間化合物を含む水銀放出部を有し、前記金属間化合物は、Ti1.73Hgを含むことを特徴とする。 In order to solve the above-described problems, a mercury emitter according to the present invention has a mercury emitting portion containing an intermetallic compound of titanium (Ti) and mercury (Hg), and the intermetallic compound is Ti 1.73 Hg. It is characterized by including.
 また、本発明に係る水銀放出体は、前記金属間化合物は、前記水銀放出部の全水銀量に対して40[wt%]以上100[wt%]以下の範囲内の水銀量を有する前記Ti1.73Hgを含むことが好ましい。 Further, in the mercury emitter according to the present invention, the intermetallic compound has the amount of mercury in the range of 40 wt% to 100 wt% with respect to the total mercury amount of the mercury emitting portion. It preferably contains 1.73 Hg.
 また、本発明に係る水銀放出体は、前記金属間化合物は、前記Ti1.73Hgを除く残部がTi3Hgであることが好ましい。 In the mercury emitter according to the present invention, it is preferable that the balance of the intermetallic compound except Ti 1.73 Hg is Ti 3 Hg.
 また、本発明に係る水銀放出体は、前記水銀放出部は、少なくとも一部に開口部を有する容器の内部に格納されていることが好ましい。 Further, in the mercury emitter according to the present invention, it is preferable that the mercury emitting part is stored in a container having an opening part at least in part.
 また、本発明に係る水銀放出体は、前記容器は、鉄およびニッケルのうち少なくとも1種以上で形成されていることが好ましい。 In the mercury emitter according to the present invention, the container is preferably formed of at least one of iron and nickel.
 また、本発明に係る水銀放出体は、前記水銀放出材と、前記水銀放出材を覆う金属の焼結体から構成される焼結体部を備えることが好ましい。 Further, the mercury emitter according to the present invention preferably includes a sintered body portion composed of the mercury releasing material and a metal sintered body covering the mercury releasing material.
 また、本発明に係る水銀放出体は、前記焼結体部は、ポーラス状に形成されていることが好ましい。 Further, in the mercury emitter according to the present invention, the sintered body portion is preferably formed in a porous shape.
 さらに、本発明に係る水銀放出体は、前記焼結体部の気孔率が5[%]以上であることが好ましい。 Furthermore, in the mercury emitter according to the present invention, the sintered body portion preferably has a porosity of 5% or more.
 本発明に係る低圧放電ランプの製造方法は、前記水銀放出体をガラス管の内部に挿入する工程と、前記水銀放出体を加熱する工程とを含むことを特徴とする。 The method for manufacturing a low-pressure discharge lamp according to the present invention includes a step of inserting the mercury emitter into a glass tube and a step of heating the mercury emitter.
 本発明に係る低圧放電ランプは、ガラス管と、前記ガラス管の少なくとも一方の端部に封着されたリード線と、前記リード線におけるガラス管の内部に位置する端部に取着された電極とを備え、前記リード線の前記ガラス管内に位置する部分または前記電極に請求項1に記載の水銀放出体が固定されていることを特徴とする。 A low-pressure discharge lamp according to the present invention includes a glass tube, a lead wire sealed at at least one end portion of the glass tube, and an electrode attached to an end portion of the lead wire located inside the glass tube. The mercury emitter according to claim 1 is fixed to a portion of the lead wire located in the glass tube or the electrode.
 本発明に係る照明装置は、前記低圧放電ランプを備えることを特徴とする。 An illumination device according to the present invention includes the low-pressure discharge lamp.
 本発明に係る液晶表示装置は、前記照明装置を備えることを特徴とする。 A liquid crystal display device according to the present invention includes the illumination device.
 本発明に係る水銀放出体は、水銀放出効率を向上させ、かつ低圧放電ランプの製造に用いた際、ガラス管の破損を防止することができる。また、本発明に係る低圧放電ランプの製造方法は、ガラス管の破損を防止し、水銀の使用量を低減することができる。さらに、本発明に係る低圧放電ランプ、照明装置および液晶表示装置は、水銀の使用量を低減することができる。 The mercury emitter according to the present invention can improve mercury emission efficiency and prevent breakage of the glass tube when used in the manufacture of a low-pressure discharge lamp. In addition, the low-pressure discharge lamp manufacturing method according to the present invention can prevent breakage of the glass tube and reduce the amount of mercury used. Furthermore, the low-pressure discharge lamp, the lighting device, and the liquid crystal display device according to the present invention can reduce the amount of mercury used.
本発明の第1の実施形態に係る水銀放出体の斜視図The perspective view of the mercury discharge body which concerns on the 1st Embodiment of this invention (a)同じく水銀放出体の粒子構造を示す正面写真、(b)同じく水銀放出体の粒子構造を示す平面写真、(c)同じく水銀放出体の粒子構造を示す長手方向の中心軸を含む断面写真(A) Front view showing the particle structure of the mercury emitter, (b) Plan view showing the particle structure of the mercury emitter, and (c) Cross section including the central axis in the longitudinal direction showing the particle structure of the mercury emitter. Photo 同じく水銀放出体の水銀放出の概念図A conceptual diagram of mercury emission from the same mercury emitter 同じく水銀放出体の水銀放出部のX線解析による測定結果を示すグラフGraph showing measurement results by X-ray analysis of mercury emission part of mercury emitter (a)水銀と合金を形成しない金属の粒子形状が球形状である場合の水銀放出体の粒子構造を示す正面写真、(b)同じく水銀放出体の粒子構造を示す平面写真(A) Front view showing the particle structure of the mercury emitter when the particle shape of the metal not forming an alloy with mercury is spherical, (b) Plan view showing the particle structure of the mercury emitter 反応時間と金属間化合物生成率の関係を示す図Diagram showing the relationship between reaction time and intermetallic compound formation rate 加熱温度による水銀放出率の変化を示す図Diagram showing change in mercury release rate with heating temperature 本発明の第1の実施形態に係る水銀放出体の製造工程図Manufacturing process diagram of mercury emitter according to the first embodiment of the present invention 本発明の第2の実施形態に係る水銀放出体の斜視図The perspective view of the mercury discharge body which concerns on the 2nd Embodiment of this invention 同じく水銀放出体の変形例1の斜視図Similarly perspective view of Modification 1 of the mercury emitter 本発明の第3の実施形態に係る水銀放出体の斜視図The perspective view of the mercury emitter which concerns on the 3rd Embodiment of this invention 本発明の第4の実施形態に係る低圧放電ランプの製造方法の工程A~Gまでの概念図Conceptual diagram of steps A to G of the method for manufacturing a low-pressure discharge lamp according to the fourth embodiment of the present invention. 本発明の第4の実施形態に係る低圧放電ランプの製造方法の工程H~Jまでの概念図Conceptual diagram of steps H to J of the method for manufacturing a low-pressure discharge lamp according to the fourth embodiment of the present invention. (a)本発明の第5の実施形態に係る低圧放電ランプの管軸を含む断面図、(b)A部の拡大断面図(A) Sectional drawing including the tube axis of the low-pressure discharge lamp concerning the 5th Embodiment of this invention, (b) The expanded sectional view of A part (a)本発明の第6の実施形態に係る低圧放電ランプの管軸を含む断面図、(b)B部の拡大断面図(A) Sectional drawing including the tube axis of the low-pressure discharge lamp concerning the 6th Embodiment of this invention, (b) The expanded sectional view of the B section 本発明の第7の実施形態に係る照明装置の斜視図The perspective view of the illuminating device which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係る照明装置の斜視図The perspective view of the illuminating device which concerns on the 8th Embodiment of this invention. (a)本発明の第9の実施形態に係る照明装置の正面図、(b)図18(a)のA-A´線で切った断面図(A) Front view of lighting apparatus according to ninth embodiment of the present invention, (b) Cross-sectional view taken along line AA 'in FIG. 18 (a) 本発明の第10の実施形態に係る液晶表示装置の斜視図The perspective view of the liquid crystal display device which concerns on the 10th Embodiment of this invention. 本発明の第1の実施形態に係る水銀放出体の変形例1の斜視図The perspective view of the modification 1 of the mercury discharge body which concerns on the 1st Embodiment of this invention (a)同じく水銀放出体の変形例1の正面図、(b)同じく水銀放出体の変形例1の平面図(A) Front view of modified example 1 of the mercury emitter, and (b) Plan view of modified example 1 of the mercury emitter. 本発明の第1の実施形態に係る水銀放出体の変形例2の斜視図The perspective view of the modification 2 of the mercury emitter which concerns on the 1st Embodiment of this invention (a)同じく水銀放出体の変形例2の正面図、(b)同じく水銀放出体の変形例2の平面図(A) Front view of modified example 2 of the mercury emitter, and (b) Plan view of modified example 2 of the mercury emitter. 本発明の第1の実施形態に係る水銀放出体の変形例3の斜視図The perspective view of the modification 3 of the mercury emitter which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る水銀放出体の変形例3の斜視図The perspective view of the modification 3 of the mercury emitter which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る水銀放出体の変形例3の斜視図The perspective view of the modification 3 of the mercury emitter which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る水銀放出体の変形例4の斜視図The perspective view of the modification 4 of the mercury emitter which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る水銀放出体の変形例5の斜視図The perspective view of the modification 5 of the mercury emitter which concerns on the 1st Embodiment of this invention 本発明の第1の実施形態に係る水銀放出体の変形例6の一部切欠き斜視図The partially cutaway perspective view of Modification 6 of the mercury emitter according to the first embodiment of the present invention
符号の説明Explanation of symbols
 100、104、106、110、113、114、115、116、118、200、203、300、501 水銀放出体
 101、107、111、119 水銀放出部
 102、105、112、117、120 焼結体部
 201、206 開口部
 202、204 容器
 205 スリット
 400 ガラス管
 500、600 低圧放電ランプ
 502、601 発光管
 503、603 電極
 504、604 リード線
 700、800、900 照明装置
 1000 液晶表示装置
100, 104, 106, 110, 113, 114, 115, 116, 118, 200, 203, 300, 501 Mercury emitter 101, 107, 111, 119 Mercury emitter 102, 105, 112, 117, 120 Sintered body Part 201, 206 Opening part 202, 204 Container 205 Slit 400 Glass tube 500, 600 Low pressure discharge lamp 502, 601 Light emitting tube 503, 603 Electrode 504, 604 Lead wire 700, 800, 900 Illuminating device 1000 Liquid crystal display device
 (第1の実施形態)
 本発明の第1の実施形態に係る水銀放出体について、以下に説明する。
(First embodiment)
The mercury emitter according to the first embodiment of the present invention will be described below.
 本発明の第1の実施形態に係る水銀放出体の斜視図を図1に、その粒子構造を示す正面写真を図2(a)に、同じく平面写真を図2(b)に、長手方向の中心軸を含む断面写真を図2(c)にそれぞれ示す。 FIG. 1 is a perspective view of the mercury emitter according to the first embodiment of the present invention, FIG. 2A is a front view showing its particle structure, FIG. 2B is a plan view thereof, and FIG. Cross-sectional photographs including the central axis are shown in FIG.
 本発明の第1の実施形態に係る水銀放出体100(以下、「水銀放出体100」という)は、チタン(Ti)と水銀(Hg)との金属間化合物Ti1.73Hgを含む。 The mercury emitter 100 according to the first embodiment of the present invention (hereinafter referred to as “mercury emitter 100”) includes an intermetallic compound Ti 1.73 Hg of titanium (Ti) and mercury (Hg).
 具体的には、水銀放出体100は、水銀放出部101と、水銀放出部101を覆う金属の焼結体から構成される焼結体部102とを備える。 Specifically, the mercury emitter 100 includes a mercury emitter 101 and a sintered body portion 102 made of a metal sintered body covering the mercury emitter 101.
 この水銀放出体100では、水銀放出部101を焼結体部102が覆う構造を有しているので、図3に示すように、加熱時(特に、高周波加熱時)に、水銀放出部101が露呈している両端面からだけでなく、後述のポーラスの焼結体部102を通してほぼ全面から水銀を放出することができ(矢印103参照)、その結果、水銀放出部の表面が金属板等により覆われている場合に比べて水銀の放出効率を向上させることができ、一気に加熱された場合においても、蒸気化した水銀によって急激に水銀放出部101が膨張して破裂するのを防止することができる。また、水銀放出部101と焼結体部102とが界面で反応しているため、水銀放出部101と焼結体部102との密着強度が高く、水銀放出部101が水銀放出体100からこぼれ落ちるのを防止することができる。 In this mercury emitting body 100, since the sintered body portion 102 covers the mercury emitting portion 101, the mercury emitting portion 101 is heated during heating (particularly during high frequency heating) as shown in FIG. Mercury can be released not only from both exposed end faces but also from almost the entire surface through a porous sintered body 102 described later (see arrow 103). As a result, the surface of the mercury emitting portion is made of a metal plate or the like. It is possible to improve the mercury emission efficiency as compared with the case where it is covered, and even when heated at a stroke, it is possible to prevent the mercury emission part 101 from suddenly expanding and bursting due to vaporized mercury. it can. Further, since the mercury emitting portion 101 and the sintered body portion 102 react at the interface, the adhesion strength between the mercury emitting portion 101 and the sintered body portion 102 is high, and the mercury emitting portion 101 spills from the mercury emitting body 100. Can be prevented.
 水銀放出部101は、チタンと水銀との合金で形成され、チタンと水銀との金属間化合物を含み、かつ金属間化合物としてTi1.73Hgを含んでいる。ここで言う「合金」とは、「金属間化合物」を少なくとも含み、「混合物」、「固溶体」等が含まれたものも包含するものである。 Mercury emitting part 101 is formed of an alloy of titanium and mercury, contains an intermetallic compound of titanium and mercury, and contains Ti 1.73 Hg as an intermetallic compound. The term “alloy” as used herein includes at least “intermetallic compounds” and also includes “mixtures”, “solid solutions”, and the like.
 金属間化合物Ti1.73Hgのチタンと水銀の組成比は、Binary Alloy Phase Diagram(First Printing, October 1986)によると、室温では1.73程度であるが、温度等の諸条件により、1.09以上1.73以下の範囲内の値をとり得るものである。 According to Binary Alloy Phase Diagram (First Printing, October 1986), the composition ratio of titanium and mercury in the intermetallic compound Ti 1.73 Hg is about 1.73 at room temperature, but it is 1.09 or more depending on various conditions such as temperature. It can take a value within the range of 1.73 or less.
 水銀放出体100の水銀放出部のX線解析による測定結果を示すグラフを図4に示す。水銀放出体100には、金属間化合物として、Ti1.73HgやTi3Hgが含まれていることがわかる。 FIG. 4 shows a graph showing measurement results by X-ray analysis of the mercury emission part of the mercury emitter 100. It can be seen that the mercury emitter 100 contains Ti 1.73 Hg and Ti 3 Hg as intermetallic compounds.
 なお、水銀放出体から本発明における金属間化合物の特定方法については、後述する。水銀放出部101は例えば、長さLが3[mm]、外径Diが1[mm]の円柱体の形状を有し、水銀の含有量は約6[mg]である。 In addition, the specific method of the intermetallic compound in this invention from a mercury emitter is mentioned later. For example, the mercury emitting portion 101 has a cylindrical shape with a length L of 3 [mm] and an outer diameter Di of 1 [mm], and the mercury content is about 6 [mg].
 また、水銀放出部101に、酸化チタン(TiO2)、酸化アルミニウム(Al23)および酸化珪素(SiO2)のうちいずれか1種以上の金属酸化物の焼結体であるセラミックスが含まれていてもよい。 Further, the mercury emitting portion 101 includes ceramics that is a sintered body of one or more metal oxides of titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and silicon oxide (SiO 2 ). It may be.
 これらの金属酸化物は、水銀と反応しないため、水銀放出部101の大きさは一定のままで、水銀の含有量を少なくしたい場合に、水銀の含有量が減少した分の密度を補充し、単に水銀の含有量を減らした場合に比べて水銀放出部101の熱伝導性を高めて、水銀放出部101の加熱効率を高めることができる。 Since these metal oxides do not react with mercury, the size of the mercury discharge portion 101 remains constant, and when it is desired to reduce the mercury content, the density of the reduced mercury content is replenished, Compared with the case where the mercury content is simply reduced, the thermal conductivity of the mercury emitting portion 101 can be increased, and the heating efficiency of the mercury emitting portion 101 can be increased.
 なお、セラミックスは、水銀放出部の5[wt%]以上30[wt%]以下の範囲内で含まれていることがより好ましい。この場合、水銀の含有量を少なくしたい場合に、水銀の含有量が減少した分の密度を適度に補充し、単に水銀の含有量を減らした場合に比べて水銀放出部101の熱伝導性を高めて、水銀放出部101の加熱効率を高めることができる。 In addition, it is more preferable that the ceramic is contained within a range of 5 wt% to 30 wt% of the mercury emission part. In this case, when it is desired to reduce the mercury content, the density of the reduced mercury content is appropriately supplemented, and the thermal conductivity of the mercury emitting portion 101 is made to be higher than when the mercury content is simply reduced. The heating efficiency of the mercury discharge part 101 can be increased.
 焼結体部102は、水銀と合金を形成しない金属の焼結体からなり、ポーラス状になっている。「水銀と合金を形成しない金属」とは、例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)のうちの少なくとも1種以上のように水銀と反応しにくく合金を形成しにくい金属のことをいう。それらの中でも、化学的性質や工業的な生産性(コスト等)を考慮すると、鉄(Fe)およびニッケル(Ni)うち少なくとも1種以上であることが好ましい。 The sintered body portion 102 is made of a metal sintered body that does not form an alloy with mercury, and has a porous shape. “Metal that does not form an alloy with mercury” means, for example, an alloy that hardly reacts with mercury, such as at least one of iron (Fe), nickel (Ni), cobalt (Co), and manganese (Mn). It is a metal that is difficult to do. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
 なお、焼結体部102を構成する金属は、鉄のみまたはニッケルのみの一種類の金属に限らず、例えば、鉄とニッケルの混合物を用いることも可能であるし、あるいは、ニッケルメッキされた鉄を用いることもできる。鉄にニッケルメッキを施した金属は、鉄の酸化防止(腐食防止)の効果を奏し得る。 In addition, the metal which comprises the sintered compact part 102 is not restricted to only one kind of metal only of iron or nickel, For example, it is also possible to use the mixture of iron and nickel, or the iron plated with nickel Can also be used. A metal obtained by applying nickel plating to iron can have an effect of preventing oxidation (corrosion prevention) of iron.
 また、焼結体部102を成形する際において鉄粉にニッケル粉を混合したものを使用すると、鉄粉だけの場合よりも耐食性を向上させることができるとともに、鉄粉とニッケル粉とのブレンドによって粒径のバリエーションを広げることができる。粒径のバリエーションを広げることができると、焼結体部102の気孔率(ひいては、熱伝導率)をコントロールすることが容易となる(気孔率の詳細については後述する)。 Moreover, when using what mixed nickel powder with iron powder in shaping | molding the sintered compact part 102, while being able to improve corrosion resistance rather than the case of only iron powder, by blending of iron powder and nickel powder, Variations in particle size can be expanded. If the variation of the particle diameter can be widened, it becomes easy to control the porosity (and consequently the thermal conductivity) of the sintered body portion 102 (details of the porosity will be described later).
 また、鉄粉とニッケル粉とのブレンド粉においてその流動性を改善することもでき、成形時の生産性を向上させることも可能となる。加えて、ニッケルは、鉄よりも比熱が小さく、しかも熱伝導率が大きいので、焼結体部102の加熱効率を向上させることもできる。焼結体部102は、例えば、長さLが3[mm]、外径Doが1.4[mm]である。 Also, the fluidity of the blended powder of iron powder and nickel powder can be improved, and the productivity at the time of molding can be improved. In addition, since nickel has a lower specific heat than iron and a higher thermal conductivity, it is possible to improve the heating efficiency of the sintered body 102. The sintered body 102 has, for example, a length L of 3 [mm] and an outer diameter Do of 1.4 [mm].
 ポーラス状である焼結体部102の気孔率は、5[%]以上であることが好ましい。この場合、水銀が焼結体部102を通り抜けやすく、水銀の放出効率を高めることができる。 The porosity of the sintered body portion 102 having a porous shape is preferably 5% or more. In this case, mercury can easily pass through the sintered body portion 102, and the mercury emission efficiency can be increased.
 特に焼結体部102の気孔率は、25[%]以上であることがより好ましい。この場合、水銀放出部101から放出される水銀が焼結体部102をさらに通り抜けやすく、水銀放出効率をさらに高めることができる。 In particular, the porosity of the sintered body portion 102 is more preferably 25 [%] or more. In this case, the mercury emitted from the mercury emitting portion 101 can easily pass through the sintered body portion 102, and the mercury releasing efficiency can be further increased.
 なお、焼結体部102の気孔率は、60[%]以下であることが好ましい。60[%]よりも大きいと焼結体部102が空孔だらけになってしまうため、例えば水銀放出体100を高周波加熱する際、水銀放出部101の加熱効率が低下する上に加熱むらが生じやすく、水銀放出量にばらつきが生じてしまうからである。 In addition, it is preferable that the porosity of the sintered compact part 102 is 60 [%] or less. If the ratio is larger than 60%, the sintered body portion 102 becomes full of pores. For example, when the mercury emitter 100 is heated at a high frequency, the heating efficiency of the mercury emitter 101 is lowered and uneven heating occurs. This is because the amount of mercury released tends to vary.
 焼結体部102の気孔率は、以下の数式により算出される。 The porosity of the sintered body portion 102 is calculated by the following mathematical formula.
Figure JPOXMLDOC01-appb-M000001
 焼結体部102の密度は、水銀放出体100をフッ化水素酸と硝酸の混合溶液に溶かした後、株式会社島津製作所製のICP発光分析装置(ICPS-8000)により定量分析することで焼結体部102の重量を求め、焼結体部102の体積で割ることにより求めることができる。ここで、焼結体部102はポーラス状であり、その正確な体積を求めることは困難であるため、焼結体部102の体積は焼結体部102に空隙が全くないとした場合の体積を用いることとする。また、焼結体部102の理論密度とは、焼結体部102に空隙が全くないとして求めた架空の密度である。
Figure JPOXMLDOC01-appb-M000001
The density of the sintered body 102 is determined by dissolving the mercury emitter 100 in a mixed solution of hydrofluoric acid and nitric acid, and then quantitatively analyzing it with an ICP emission analyzer (ICPS-8000) manufactured by Shimadzu Corporation. It can be obtained by obtaining the weight of the bonded part 102 and dividing by the volume of the sintered part 102. Here, since the sintered body portion 102 is porous and it is difficult to determine the exact volume thereof, the volume of the sintered body portion 102 is the volume when there is no void in the sintered body portion 102. Will be used. Further, the theoretical density of the sintered body portion 102 is an imaginary density obtained on the assumption that the sintered body portion 102 has no voids.
 なお、焼結体部102を構成する金属は、磁性体であることが好ましい。例えば、低圧放電ランプの製造時に密閉されたガラス管内に配置された水銀放出体100の位置決めを、磁石を用いて正確に、かつ容易に行うことができるからである。磁性体である金属としては、例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co)等を選択することができる。 In addition, it is preferable that the metal which comprises the sintered compact part 102 is a magnetic body. For example, it is possible to accurately and easily position the mercury emitter 100 disposed in a glass tube sealed at the time of manufacturing a low-pressure discharge lamp using a magnet. For example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected as the metal that is a magnetic substance.
 また、焼結体部102には、ゲッター材が混合されていてもよい。ゲッター材が混合されていることにより、水素(H2)や酸素(O2)等の不純ガスを吸着させることができ、これによりガラス管内の封入ガスの純度等を向上させることできる。ゲッター材には、例えばタンタル(Ta)、ニオビウム(Nb)、ジルコニウム(Zr)、クロム(Cr)、ハフニウム(Hf)、アルミニウム(Al)など、あるいは、それらの合金等を適用することができる。 Further, a getter material may be mixed in the sintered body portion 102. By mixing the getter material, an impurity gas such as hydrogen (H 2 ) or oxygen (O 2 ) can be adsorbed, thereby improving the purity of the sealed gas in the glass tube. As the getter material, for example, tantalum (Ta), niobium (Nb), zirconium (Zr), chromium (Cr), hafnium (Hf), aluminum (Al), or an alloy thereof can be applied.
 また、水銀放出部101の全表面積のうち焼結体部102に接触している部分の表面積の比率は30[%]以上であることが好ましい。この場合、水銀放出部101に対する熱伝導性を高めることによって加熱効率をより高めて非常に高い水銀放出効率を得ることができる。 Also, the ratio of the surface area of the portion in contact with the sintered body portion 102 out of the total surface area of the mercury emitting portion 101 is preferably 30% or more. In this case, it is possible to obtain a very high mercury emission efficiency by increasing the heating efficiency by increasing the thermal conductivity with respect to the mercury emission part 101.
 特に、その加熱効率を一層高めるために、水銀放出部101の全表面積のうち焼結体部102に接触している部分の表面積の比率は50[%]以上であることがより好ましい。なお、「焼結体部102に接触している部分の表面積」とは、焼結体部102がポーラスであるため、そのポーラスな内部の空隙の表面積は含めず、最外表面の輪郭より算出した表面積である。 In particular, in order to further increase the heating efficiency, it is more preferable that the ratio of the surface area of the portion in contact with the sintered body portion 102 of the total surface area of the mercury discharge portion 101 is 50% or more. The “surface area of the portion in contact with the sintered body portion 102” is calculated from the contour of the outermost surface, not including the surface area of the porous internal voids, because the sintered body portion 102 is porous. Surface area.
 また、焼結体部102の水銀と合金を形成しない金属の粒径は、5[μm]以上40[μm]以下の範囲内であることが好ましい。この場合、水銀放出部101から放出される水銀を透過しやすく、水銀放出効率を向上させることができる。 Further, the particle size of the metal that does not form an alloy with mercury in the sintered body portion 102 is preferably in the range of 5 [μm] to 40 [μm]. In this case, it is easy to permeate mercury emitted from the mercury emitting portion 101, and the mercury emission efficiency can be improved.
 なお、図2(a)~(c)に示す焼結体部102の粒子形状は鱗片形状であるが、必ずしも鱗片形状である必要はなく多角形状等であってもよい。ただし、鱗片形状の場合は、焼結体部102の気孔率を大きくすることができ、水銀放出効率をより向上させることができる。 Note that the particle shape of the sintered body portion 102 shown in FIGS. 2A to 2C is a scaly shape, but it is not necessarily a scaly shape and may be a polygonal shape or the like. However, in the case of a scale shape, the porosity of the sintered body portion 102 can be increased, and the mercury release efficiency can be further improved.
 また、焼結体部102の水銀と合金を形成しない金属の粒子形状は、球形状であってもよい。焼結体部102の水銀と合金を形成しない金属の粒子形状が球形状である場合の水銀放出体100の粒子構造を示す正面写真を図5(a)に、同じく平面写真を図5(b)にそれぞれ示す。この場合、流動性が向上し、後述するように水銀放出体100の成形を行う押出し工程において、成形機から歩留まりよく押し出すことができ、生産性を向上させることができる。 Further, the particle shape of the metal that does not form an alloy with mercury in the sintered body portion 102 may be a spherical shape. FIG. 5A is a front view showing the particle structure of the mercury emitter 100 when the particle shape of the metal that does not form an alloy with mercury in the sintered body portion 102 is spherical, and FIG. ) Respectively. In this case, the fluidity is improved, and in the extrusion process for forming the mercury emitter 100 as described later, it can be extruded from the molding machine with a high yield, and the productivity can be improved.
 また、焼結体部102の形状は、図5(a)および(b)に示すように、水銀放出部101の端面を除いた外周面を覆うような筒形状であることが好ましい。この場合、高周波加熱により生じる渦電流が筒状に閉じた内面に流れ、水銀放出部101の加熱効率を高めることができる。 Further, the shape of the sintered body portion 102 is preferably a cylindrical shape that covers the outer peripheral surface excluding the end face of the mercury emitting portion 101, as shown in FIGS. 5 (a) and 5 (b). In this case, the eddy current generated by the high frequency heating flows to the inner surface closed in a cylindrical shape, and the heating efficiency of the mercury discharge part 101 can be increased.
 (実験1)
 発明者らは、Ti1.73HgはTi3HgとTiHgとの中間的組成であることから、Ti3HgとTiHgとの中間的性質を持つ可能性があると考えた。しかしながら、AMERICAN SOCIETY FOR METALS発行のBinary Alloy Phase Diagram(First Printing, October 1986)第1352頁に記載のチタンと水銀との相図からは、Ti1.73Hgの安定的な生成条件を伺い知ることはできなかった。
(Experiment 1)
The inventors considered that Ti 1.73 Hg has an intermediate composition between Ti 3 Hg and TiHg because it has an intermediate composition between Ti 3 Hg and TiHg. However, from the phase diagram of titanium and mercury described on page 1352 of Binary Alloy Phase Diagram (First Printing, October 1986) issued by AMERICA SOCIETY FOR METALS, the conditions for stable formation of Ti 1.73 Hg can be determined. There wasn't.
 そこで、発明者らは、加熱容器に投入する焼結体数と水銀量を変えて反応させることで、図6に示す一定温度における反応時間(チタンと水銀とが反応している時間)と、水銀放出部の全水銀量に対する各金属間化合物の水銀量との関係を明らかにすることに成功した。 Therefore, the inventors changed the number of sintered bodies to be added to the heating container and the amount of mercury to react, thereby causing a reaction time at a constant temperature shown in FIG. 6 (time for titanium and mercury to react), We succeeded in clarifying the relationship between the mercury content of each intermetallic compound and the total mercury content in the mercury emission part.
 図6上、実線はTi1.73Hgを、破線はTiHgを、一点鎖線はTi3Hgをそれぞれ示す。なお、組成比率は後述する手法にて求めた。なお、実験では、Ti1.73Hg、TiHgおよびTi3Hgの生成(反応)開始時及び生成(反応)終了時を特定することはできなかったが、Ti1.73Hg、TiHgおよびTi3Hgの3者が生成はされる傾向は図6のようになる。 In FIG. 6, the solid line represents Ti 1.73 Hg, the broken line represents TiHg, and the alternate long and short dash line represents Ti 3 Hg. In addition, the composition ratio was calculated | required by the method mentioned later. In the experiment, Ti 1.73 Hg, generation of TiHg and Ti 3 Hg (reaction) at the start and generation (reaction) but could not be identified at the end, Ti 1.73 Hg, 3's TiHg and Ti 3 Hg The tendency that is generated is as shown in FIG.
 図6に示すように、反応時間が所定の時間に達するまで、反応時間が長くなるに従って、Ti1.73Hgの生成が増加する一方で、TiHgの生成が減少する。そして、反応時間が所定の時間を越えると、反応時間が長くなるに従って、Ti1.73Hgの生成が減少し、Ti3Hgの生成が増加する。 As shown in FIG. 6, as the reaction time increases until the reaction time reaches a predetermined time, the production of Ti 1.73 Hg increases while the production of TiHg decreases. When the reaction time exceeds a predetermined time, the production of Ti 1.73 Hg decreases and the production of Ti 3 Hg increases as the reaction time increases.
 この傾向は、反応の進行を早めても、遅らせても、同様に見られる。つまり、反応開始時間から、例えば、Ti1.73Hgの生成を示す線分と、Ti3Hgの生成を示す線分とが交差する反応時間までの時間が、長くなったり、短くなったりするだけで、Ti1.73Hgの生成を示す線分は山形状となる。 焼結体内のチタンと水銀との反応は、反応温度、加熱容器に投入するチタンの量(チタンの表面積)、加熱容器に投入する水銀量により変化し、その反応の進行を遅らせることで、Ti1.73Hgの生成が確認できるようになる。例えば、反応温度を低くすると反応の進行は遅くなり(すなわち図6のグラフは横軸方向に拡張され)、Ti1.73Hgの生成が確認しやすくなる。また、これとは反対に、反応温度を高くすると、Ti3Hgの生成が加速されることからTi1.73Hgの生成を確認することが難しくなる。 This tendency can be seen whether the reaction progresses earlier or later. In other words, for example, the time from the reaction start time to the reaction time at which the line segment indicating the generation of Ti 1.73 Hg and the line segment indicating the generation of Ti 3 Hg intersect becomes longer or shorter. The line segment indicating the generation of Ti 1.73 Hg has a mountain shape. The reaction between titanium and mercury in the sintered body changes depending on the reaction temperature, the amount of titanium put into the heating container (surface area of titanium), the amount of mercury put into the heating container, and delays the progress of the reaction. 1.73 Hg production can be confirmed. For example, when the reaction temperature is lowered, the progress of the reaction is slow (that is, the graph of FIG. 6 is expanded in the horizontal axis direction), and the production of Ti 1.73 Hg is easily confirmed. On the other hand, if the reaction temperature is increased, the production of Ti 3 Hg is accelerated, so that it is difficult to confirm the production of Ti 1.73 Hg.
 すなわち、発明者らは、実験1の結果から、チタンと水銀との反応の進行を制御することにより水銀放出体100を作製することを見出した。 That is, the inventors found from the results of Experiment 1 that the mercury emitter 100 was produced by controlling the progress of the reaction between titanium and mercury.
 (実験2)
 次に発明者らは、水銀放出体100が従来の水銀放出体よりも水銀放出効率が向上していることを確認するために、水銀放出量を測定する実験を行った。
(Experiment 2)
Next, the inventors conducted an experiment to measure the mercury emission amount in order to confirm that the mercury emission body 100 has improved mercury emission efficiency over the conventional mercury emission body.
 実験には、実施例として、水銀放出部の径が1[mm]、焼結体部の外径が1.4[mm]、長さが3[mm]で、6[mg]の水銀を含んだ水銀放出体100を用いた。具体的には、金属間化合物が、水銀放出部の水銀量に対して20[wt%]の水銀量を有するTi1.73Hgを含むものを実施例1とし、同じく水銀放出部の水銀量に対して40[wt%]の水銀量を有するTi1.73Hgが含まれるものを実施例2とし、同じく水銀放出部の水銀量に対して60[wt%]の水銀量を有するTi1.73Hgが含まれるものを実施例3とし、同じく水銀放出部の水銀量に対して90[wt%]の水銀量を有するTi1.73Hgが含まれるものを実施例4とした。 In the experiment, as an example, the mercury discharge part has a diameter of 1 [mm], the sintered body part has an outer diameter of 1.4 [mm], a length of 3 [mm], and 6 [mg] of mercury. The contained mercury emitter 100 was used. Specifically, the example in which the intermetallic compound contains Ti 1.73 Hg having a mercury amount of 20 [wt%] with respect to the mercury amount in the mercury emitting portion is set as Example 1, and the mercury amount in the mercury emitting portion is also the same. Te 40 and example 2 shall include Ti 1.73 Hg with a mercury content of [wt%], also contains Ti 1.73 Hg with a mercury content of 60 [wt%] with respect to the mercury content of mercury-emitting portion Example 3 was used, and Example 4 was also used in which Ti 1.73 Hg having a mercury amount of 90 wt% with respect to the mercury amount in the mercury emission part was included.
 また、比較例として、上記実施例1~4と同じサイズで同量の水銀を含み、金属間化合物がTi3Hgで形成され、Ti1.73Hgが含まれていないものを用いた。なお、実施例および比較例は、水銀の反応時間が一定の状態で、温度を変化させることにより作製した。 Further, as a comparative example, the same size as in Examples 1 to 4 containing the same amount of mercury, an intermetallic compound formed of Ti 3 Hg, and no Ti 1.73 Hg was used. In addition, the Example and the comparative example were produced by changing the temperature while the reaction time of mercury was constant.
 水銀放出部に含まれる金属間化合物中のTi1.73Hgの割合は、以下の方法により特定した。
(1)水銀放出体を王水に浸漬させる。これにより、水銀放出体のうち金属間化合物であるTi1.73HgおよびTi3Hgが王水に溶け出す。この際、水銀放出体に単体のチタン(Ti)が残存した場合は残渣として残る。
(2)王水に溶け出したチタンおよび水銀の量を株式会社島津製作所製のICP発光分析装置(ICPS-8000)により定量することで金属間化合物中のチタンと水銀の比率を求め、Ti1.73HgおよびTi3Hgの比率計算から金属化合物中のTi1.73Hgの割合を特定した。
The ratio of Ti 1.73 Hg in the intermetallic compound contained in the mercury emission part was specified by the following method.
(1) Immerse the mercury emitter in aqua regia. Thereby, Ti 1.73 Hg and Ti 3 Hg, which are intermetallic compounds, of the mercury emitters dissolve into the aqua regia. At this time, if single titanium (Ti) remains in the mercury emitter, it remains as a residue.
(2) determine the ratio of titanium and mercury in the intermetallic compound by quantifying by Shimadzu Corporation in an ICP emission spectrometer the amount of melted titanium and mercury aqua regia (ICPS-8000), Ti 1.73 From the ratio calculation of Hg and Ti 3 Hg, the ratio of Ti 1.73 Hg in the metal compound was specified.
 なお、水銀放出体に単体Hg、TiHgが含まれる可能性がある場合には、王水に浸漬させる前に硝酸に浸漬し、単体Hg、TiHgを溶解し定量を行う。このとき、Ti1.73HgおよびTi3Hgは硝酸には溶解しない。 In addition, when there is a possibility that the mercury emitting body contains simple substance Hg and TiHg, the substance is soaked in nitric acid before being immersed in aqua regia, and the simple substance Hg and TiHg are dissolved for quantification. At this time, Ti 1.73 Hg and Ti 3 Hg do not dissolve in nitric acid.
 実験では、それぞれ試料を10[個]ずつ作製した。実験は、各試料を一つずつ同じ加熱速度で加熱し、その水銀放出量(水銀放出体の重量の減少量)をリガク株式会社製の熱天秤分析装置(TG8101D)により無酸素雰囲気で測定し、水銀含有量(6[mg])に対する水銀放出効率を算出し、各試料において10[個]の平均値を求めた。各試料の加熱温度による水銀放出率の変化を図7にそれぞれ示す。 In the experiment, 10 samples were prepared for each. In the experiment, each sample was heated one by one at the same heating rate, and the mercury release amount (reduction in the weight of the mercury emitter) was measured in an oxygen-free atmosphere with a thermobalance analyzer (TG8101D) manufactured by Rigaku Corporation. The mercury release efficiency with respect to the mercury content (6 [mg]) was calculated, and an average value of 10 [pieces] was obtained for each sample. FIG. 7 shows changes in the mercury release rate depending on the heating temperature of each sample.
 図7に示すように、いずれの水銀放出体も加熱温度が400[℃]を越え500[℃]付近で水銀が放出され始めているが、加熱温度が800[℃]における水銀放出率については大きく異なる結果となった。 As shown in FIG. 7, in all mercury emitters, the heating temperature exceeds 400 [° C.] and mercury starts to be released around 500 [° C.], but the mercury emission rate at the heating temperature of 800 [° C.] is large. The result was different.
 すなわち、金属間化合物にTi1.73Hgが含まれている(図中の実施例1~4である。)ことによって、加熱温度が800[℃]において、従来のTi3Hgで形成された水銀放出体(図中の比較例である。)よりも水銀放出効率が向上することが確認できる。また、金属間化合物におけるTi1.73Hgの割合が増加するに従い、水銀放出体の水銀放出効率が向上することが確認できる。つまり、水銀放出部に存在する金属間化合物にTi1.73Hgを含む場合、従来の水銀放出体よりも水銀放出効率を向上させることができる。 That is, when the intermetallic compound contains Ti 1.73 Hg (Examples 1 to 4 in the figure), mercury emission formed with conventional Ti 3 Hg at a heating temperature of 800 ° C. It can be confirmed that the mercury emission efficiency is improved as compared with the body (comparative example in the figure). It can also be confirmed that the mercury emission efficiency of the mercury emitter improves as the proportion of Ti 1.73 Hg in the intermetallic compound increases. That is, when Ti 1.73 Hg is contained in the intermetallic compound present in the mercury emitting part, the mercury releasing efficiency can be improved as compared with the conventional mercury emitting body.
 さらに、金属間化合物は、水銀放出部の水銀量に対して40[wt%]以上100[wt%]以下の範囲内の水銀量を有するTi1.73Hgを含むこと(図中の実施例2~4である。)が好ましい。この場合、加熱温度800[℃]において、従来の水銀放出体に比べて約6[倍]の量の水銀を放出させることができる。 Further, the intermetallic compound contains Ti 1.73 Hg having a mercury amount in the range of 40 wt% to 100 wt% with respect to the mercury amount in the mercury emitting portion (Examples 2 to 4 in the figure). 4). In this case, at a heating temperature of 800 [° C.], about 6 [times] of mercury can be released compared to a conventional mercury emitter.
 さらに、水銀放出部の水銀量に対して60[wt%]以上100[wt%]以下の範囲内の水銀量を有するTi1.73Hgを含むこと(図中の実施例3,4である。)がより好ましい。この場合、800[℃]で含有水銀量の50%以上の水銀を放出することができる。 Furthermore, Ti 1.73 Hg having a mercury amount in the range of 60 [wt%] or more and 100 [wt%] or less with respect to the mercury amount in the mercury emitting portion is included (Examples 3 and 4 in the figure). Is more preferable. In this case, mercury of 50% or more of the mercury content can be released at 800 [° C.].
 なお、金属間化合物の全てをTi1.73Hgとするのは、製造上難しい。これは、図6に示すとおり、金属間化合物の製造過程で時間とともに減少するTiHgと増加するTi3Hgとの関係で、これらTiHg、Ti3Hgの生成を0[%]にすることは困難であるためである。よって、金属間化合物は、水銀放出部の水銀量に対して90[wt%]以下の範囲の水銀量を有するTi1.73Hgを含むことがより好ましいが、金属間化合物の全てをTi1.73Hgとすることができれば、水銀放出部の水銀量に対して100[wt%]以下の範囲の水銀量を有するTi1.73Hgを含むことが好ましいのは言うまでもない。 Note that it is difficult to manufacture all the intermetallic compounds with Ti 1.73 Hg. As shown in FIG. 6, this is the relationship between TiHg decreasing with time and increasing Ti 3 Hg in the production process of the intermetallic compound, and it is difficult to reduce the production of these TiHg and Ti 3 Hg to 0%. This is because. Therefore, it is more preferable that the intermetallic compound contains Ti 1.73 Hg having a mercury amount in the range of 90 [wt%] or less with respect to the mercury amount in the mercury emitting part, but all of the intermetallic compound is Ti 1.73 Hg. Needless to say, it is preferable to include Ti 1.73 Hg having a mercury amount in the range of 100 wt% or less with respect to the mercury amount in the mercury emitting portion.
 また、金属間化合物は、Ti1.73Hgを除く残部がTi3Hgであることが好ましい。 Moreover, it is preferable that the remainder of the intermetallic compound except Ti 1.73 Hg is Ti 3 Hg.
 この場合、金属間化合物はTi3Hgを含むこととなり、室温で分解するTiHgが生成するのを実質的(実測できない程度)に抑制することができ、100[℃]等の低い温度で水銀が放出されるのを防止することができる(これは、図7の比較例の金属間化合物がTi3Hgでできていることからも推測できる。)。 In this case, the intermetallic compound contains Ti 3 Hg, and generation of TiHg that decomposes at room temperature can be substantially suppressed (to the extent that it cannot be measured), and mercury can be produced at a low temperature such as 100 ° C. It can be prevented from being released (this can also be inferred from the fact that the intermetallic compound of the comparative example of FIG. 7 is made of Ti 3 Hg).
 次に、本発明の第1の実施形態に係る水銀放出体の製造方法について説明する。その製造工程の工程図を図8に示す。 Next, a method for manufacturing a mercury emitter according to the first embodiment of the present invention will be described. A process diagram of the manufacturing process is shown in FIG.
 図8に示すように、まず、原料粉末を準備する。具体的には、水銀放出部101の材料となる例えばチタンの粉や焼結体部102の材料となる例えば鉄の粉である。 As shown in FIG. 8, first, raw material powder is prepared. Specifically, for example, titanium powder, which is a material of the mercury emitting portion 101, or iron powder, which is a material of the sintered body portion 102, is used.
 (混合・混練工程)
 次に、チタン粉および鉄粉をそれぞれ別々にバインダや種々の添加剤、水を加えて混合し、十分に混練する。バインダは、例えばメチルセルロースである。これにより、チタン坏土および鉄坏土を作製する。
(Mixing / kneading process)
Next, titanium powder and iron powder are separately mixed with a binder, various additives, and water, and sufficiently kneaded. The binder is, for example, methyl cellulose. Thereby, titanium clay and iron clay are produced.
 (押出し成形工程)
 次に、チタン坏土と鉄坏土とをそれぞれ第1、第2の押出し成形機(図示せず)に投入する。この第2の押出し成形機には同軸2層押出し用のダイスが設置されている。そして、第1の押出し成形機から棒状のチタン成形体を導出し、そのチタン成形体を第2の押出し成形機のダイス部分に導入して外側に鉄坏土が積層された同軸構造の円柱体状の成形体を連続的に形成する。その後、この成形体を所定の硬さになるまで乾燥させる。なお、成形方法は、押出し成形に限らず、プレス成形や、チタン坏土を棒状に成形した後にスラリー化した鉄中にディップさせる等の方法を用いることができる。
(Extrusion process)
Next, the titanium clay and the iron clay are put into first and second extrusion molding machines (not shown), respectively. This second extrusion molding machine is provided with a coaxial two-layer extrusion die. Then, a rod-shaped titanium molded body is derived from the first extrusion molding machine, the titanium molded body is introduced into the die portion of the second extrusion molding machine, and a cylindrical body having a coaxial structure in which iron clay is laminated on the outside. A shaped molded body is continuously formed. Then, this molded object is dried until it becomes predetermined | prescribed hardness. The molding method is not limited to extrusion molding, and press molding, a method of forming a titanium clay into a rod shape, and then dipping it into slurryed iron can be used.
 (カット工程)
 次に、成形体を所定の長さでカットする。このカットする長さによって、水銀放出体100中の水銀含有量を所望の量に調節することができる。なお、水銀放出体100の水銀含有量は、これ以外にもチタン坏土のバインダ量、水銀放出部101の外径、焼成工程における焼成温度等を変化させることで調節することができる。
(Cut process)
Next, the molded body is cut to a predetermined length. The mercury content in the mercury emitter 100 can be adjusted to a desired amount by the length to be cut. In addition to this, the mercury content of the mercury emitter 100 can be adjusted by changing the binder amount of the titanium clay, the outer diameter of the mercury emitting portion 101, the firing temperature in the firing step, and the like.
 (焼結工程)
 次に、成形体をアルゴン雰囲気中で、例えば500[℃]で加熱し、成形体内のバインダを取り除く。そして、真空雰囲気中で、例えば900[℃]で焼結し、焼結体を作製する。
(Sintering process)
Next, the compact is heated in an argon atmosphere at, for example, 500 [° C.] to remove the binder in the compact. And it sinters, for example at 900 [degreeC] in a vacuum atmosphere, and a sintered compact is produced.
 (水銀反応工程)
 その後、焼結体と水銀を加熱容器に投入し、加熱容器を真空ポンプを用いて真空状態として、500[℃]~600[℃]程度の温度で長時間、例えば4[h]~16[h]程度加熱して、焼結体を構成しているチタンと加熱容器内の水銀とを合金化させて水銀放出部101を形成する。この際、水銀放出部101には、Ti1.73Hgが生成される。
(Mercury reaction process)
Thereafter, the sintered body and mercury are put into a heating container, and the heating container is evacuated using a vacuum pump, and at a temperature of about 500 [° C.] to 600 [° C.], for example, 4 [h] to 16 [ h] About a degree of heating, titanium constituting the sintered body and mercury in the heating container are alloyed to form the mercury discharge portion 101. At this time, Ti 1.73 Hg is generated in the mercury emitting portion 101.
 そして、鉄は水銀と合金を形成しないため、鉄の焼結体内には水銀は残らず、チタンの焼結体内でチタンと水銀との合金(本発明の「金属間化合物」である)が形成され、水銀放出体100が完成される。 And since iron does not form an alloy with mercury, no mercury remains in the sintered iron, and an alloy of titanium and mercury (the “intermetallic compound” of the present invention) is formed in the sintered titanium. As a result, the mercury emitter 100 is completed.
 上記のとおり、本発明の第1の実施形態に係る水銀放出体100の構成によれば、水銀放出効率を向上させ、かつ水銀を十分に放出させるのに長時間でかつ高温で加熱し続ける必要がないので低圧放電ランプの製造に用いた際、ガラス管の破損を防止することができる。 As described above, according to the configuration of the mercury emitter 100 according to the first embodiment of the present invention, it is necessary to continue heating at a high temperature for a long time in order to improve mercury emission efficiency and sufficiently release mercury. Therefore, the glass tube can be prevented from being damaged when used in the manufacture of a low-pressure discharge lamp.
 (第2の実施形態)
 本発明の第2の実施形態に係る水銀放出体について、以下に説明する。本発明の第2の実施形態に係る水銀放出体の斜視図を図9に示す。
(Second Embodiment)
A mercury emitter according to the second embodiment of the present invention will be described below. FIG. 9 shows a perspective view of a mercury emitter according to the second embodiment of the present invention.
 第1の実施形態に係る水銀放出体100では、その水銀放出部101が金属の焼結体部102により覆われていたが、本発明の第2の実施形態に係る水銀放出体200(以下、「水銀放出体200」という)は、水銀放出部が、少なくとも一部に開口部201を有する容器202の内部に格納されている点を除いて本発明の第1の実施形態と実質的に同じ構成を有する。 In the mercury emitter 100 according to the first embodiment, the mercury emitter 101 is covered with the sintered metal portion 102 of the metal, but the mercury emitter 200 according to the second embodiment of the present invention (hereinafter referred to as the following). The “mercury emitter 200” is substantially the same as the first embodiment of the present invention except that the mercury emitting part is housed inside a container 202 having an opening 201 at least partially. It has a configuration.
 容器202は、例えば鉄製の円筒形状で、外径が1.4[mm]、内径が1[mm]、高さが3[mm]である。容器202は、円筒形状であるため、その両端部に開口部201を有する。水銀放出体200は、加熱されることにより、水銀放出部101から開口部201を介して水銀を放出することができる。 The container 202 has a cylindrical shape made of, for example, iron and has an outer diameter of 1.4 [mm], an inner diameter of 1 [mm], and a height of 3 [mm]. Since the container 202 is cylindrical, it has the opening part 201 in the both ends. When the mercury emitter 200 is heated, mercury can be emitted from the mercury emitter 101 through the opening 201.
 容器202の材料は、鉄に限らず、磁性体であることが好ましい。この場合、水銀放出体200を放電ランプの製造に使用する際、ガラス管内に水銀放出体を挿入した後に、水銀放出体200の配置位置を磁力により調節することができるという効果がある。 The material of the container 202 is not limited to iron but is preferably a magnetic material. In this case, when the mercury emitter 200 is used for manufacturing a discharge lamp, after the mercury emitter is inserted into the glass tube, the arrangement position of the mercury emitter 200 can be adjusted by a magnetic force.
 磁性体である金属としては、例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co)等を選択することができる。それらの中でも、化学的性質や工業的な生産性(コスト等)を考慮すると、鉄(Fe)およびニッケル(Ni)のうち少なくとも1種以上であることが好ましい。 As the metal that is a magnetic substance, for example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
 なお、容器202を構成する金属は、鉄のみまたはニッケルのみの一種類の金属に限らず、例えば、鉄とニッケルの混合物を用いることも可能であるし、あるいは、ニッケルメッキされた鉄を用いることもできる。鉄にニッケルメッキを施した金属は、鉄の酸化防止(腐食防止)の効果を奏し得る。 In addition, the metal which comprises the container 202 is not restricted to one kind of metal only of iron or nickel, For example, it is also possible to use the mixture of iron and nickel, or to use nickel-plated iron. You can also. A metal obtained by applying nickel plating to iron can have an effect of preventing oxidation (corrosion prevention) of iron.
 容器202の形状は、円筒形状に限らず、例えば図10に示すような台形筒状のように多面体形状であってもよい。この場合、水銀放出体203を低圧放電ランプの製造に使用する場合、ガラス管に挿入された際、ガラス管との接触面積を小さくすることができるため、水銀放出体203の熱によって、ガラス管が破損することを防止することができる。 The shape of the container 202 is not limited to a cylindrical shape, and may be a polyhedral shape such as a trapezoidal cylinder as shown in FIG. In this case, when the mercury emitter 203 is used for manufacturing a low-pressure discharge lamp, the contact area with the glass tube can be reduced when the mercury emitter 203 is inserted into the glass tube. Can be prevented from being damaged.
 また、図10に示すように、容器204の側面にスリット205が設けられていてもよい。この場合、スリット205を介して容器内部の水銀放出部101から水銀を放出することができるため、水銀の放出効率を向上させることができる。この場合の容器の開口部とは、容器の両端部の開口部206だけでなくスリット205も含むものである。 Further, as shown in FIG. 10, a slit 205 may be provided on the side surface of the container 204. In this case, mercury can be discharged from the mercury discharge portion 101 inside the container via the slit 205, so that the mercury discharge efficiency can be improved. The opening of the container in this case includes not only the opening 206 at both ends of the container but also the slit 205.
 次に、本発明の第2の実施形態に係る水銀放出体200の製造方法について説明する。 Next, a method for manufacturing the mercury emitter 200 according to the second embodiment of the present invention will be described.
 (水銀合金粉作製工程)
 まず、原料粉末を準備する。具体的には、水銀放出部101の材料となる水銀合金粉(例えば、チタンと水銀との合金粉)を用意する。
(Mercury alloy powder production process)
First, raw material powder is prepared. Specifically, a mercury alloy powder (for example, an alloy powder of titanium and mercury) that serves as a material for the mercury emitting portion 101 is prepared.
 (成形工程)
 次に、その合金粉から水銀放出部101を圧縮成型などによって成形し、本実施形態では円柱形状の水銀放出部101を作製する。
(Molding process)
Next, the mercury discharge part 101 is shape | molded by compression molding etc. from the alloy powder, and the cylindrical mercury discharge part 101 is produced in this embodiment.
 (容器挿入工程)
 その後、その水銀放出部101を容器202,204に配する。具体的には、鉄(Fe)またはニッケル(Ni)からなる板材を、円柱形状の水銀放出部101に巻き付けることによって容器202,204を形成すると共に、同時に水銀放出部101が容器内に配されたこととなり、水銀放出体200,203を作製することができる。
(Container insertion process)
Thereafter, the mercury discharge part 101 is disposed in the containers 202 and 204. Specifically, the containers 202 and 204 are formed by winding a plate material made of iron (Fe) or nickel (Ni) around the cylindrical mercury discharge portion 101, and at the same time, the mercury discharge portion 101 is arranged in the container. As a result, the mercury emitters 200 and 203 can be produced.
 また、筒形状(例えば、円筒形状)に成形された容器202に、水銀放出部101を挿入して、水銀放出体200を作製することも可能である。 It is also possible to produce the mercury emitter 200 by inserting the mercury discharge part 101 into the container 202 formed into a cylindrical shape (for example, a cylindrical shape).
 上記のとおり、本発明の第2の実施形態に係る水銀放出体200、203の構成によれば、アマルガム成分を変えることで,従来のものに対して水銀放出効率を向上させ、かつ水銀を十分に放出させるのに長時間でかつ高温で加熱し続ける必要がないので低圧放電ランプの製造に用いた際、ガラス管の破損を防止することができる。 As described above, according to the configuration of the mercury emitters 200 and 203 according to the second embodiment of the present invention, by changing the amalgam component, the mercury emission efficiency is improved over the conventional one, and the mercury is sufficient. Therefore, it is not necessary to continue heating at a high temperature for a long time, so that the glass tube can be prevented from being damaged when used in the manufacture of a low-pressure discharge lamp.
 (第3の実施形態)
 本発明の第3の実施形態に係る水銀放出体について、以下に説明する。本発明の第3の実施形態に係る水銀放出体の斜視図を図11に示す。
(Third embodiment)
A mercury emitter according to the third embodiment of the present invention will be described below. FIG. 11 shows a perspective view of a mercury emitter according to the third embodiment of the present invention.
 本発明の第3の実施形態に係る水銀放出体300(以下、「水銀放出体300」という)は、焼結体部102や容器202,204がなく、水銀放出部101のみから構成されている点を除いて、本発明の第1および第2の実施形態に係る水銀放出体と実質的に同じ構成を有する。 A mercury emitter 300 (hereinafter referred to as “mercury emitter 300”) according to the third embodiment of the present invention is configured by only the mercury emitter 101 without the sintered body 102 and the containers 202 and 204. Except for the point, it has substantially the same configuration as the mercury emitter according to the first and second embodiments of the present invention.
 水銀放出体300は、円柱形状の水銀放出部で構成されている。水銀放出体300の大きさは、例えば径が1.4[mm]で、長さが3[mm]である。 Mercury emitter 300 is composed of a cylindrical mercury emitter. For example, the mercury emitter 300 has a diameter of 1.4 [mm] and a length of 3 [mm].
 なお、水銀放出体300の形状は、円柱形状に限られない。例えば、球形状、多面体形状等であってもよい。 Note that the shape of the mercury emitter 300 is not limited to a cylindrical shape. For example, a spherical shape, a polyhedron shape, or the like may be used.
 また、水銀放出部101は、磁性体を含んでいてもよい。この場合、水銀放出体300を低圧放電ランプの製造に使用する際、ガラス管内に水銀放出体300を挿入した後に、水銀放出体300の配置位置を磁力により調節することができるという効果がある。磁性体である金属としては、例えば鉄(Fe)、ニッケル(Ni)、コバルト(Co)等を選択することができる。それらの中でも、化学的性質や工業的な生産性(コスト等)を考慮すると、鉄(Fe)およびニッケル(Ni)のうち少なくとも1種以上であることが好ましい。 Further, the mercury emitting part 101 may contain a magnetic material. In this case, when the mercury emitter 300 is used for manufacturing a low-pressure discharge lamp, after the mercury emitter 300 is inserted into the glass tube, the arrangement position of the mercury emitter 300 can be adjusted by a magnetic force. For example, iron (Fe), nickel (Ni), cobalt (Co), or the like can be selected as the metal that is a magnetic substance. Among these, considering chemical properties and industrial productivity (cost and the like), at least one of iron (Fe) and nickel (Ni) is preferable.
 次に、本発明の第3の実施形態に係る水銀放出体300の製造方法について説明する。まず、原料粉末を準備する。具体的には、水銀放出部101の材料となる例えばチタンの粉である。 Next, a method for manufacturing the mercury emitter 300 according to the third embodiment of the present invention will be described. First, raw material powder is prepared. Specifically, it is, for example, titanium powder that is used as a material for the mercury emitting portion 101.
 (混合・混練工程)
 次に、チタン粉にバインダや種々の添加剤、水を加えて混合し、十分に混練する。バインダは、例えばメチルセルロースである。これにより、チタン坏土を作製する。
(Mixing / kneading process)
Next, a binder, various additives, and water are added to the titanium powder, mixed, and sufficiently kneaded. The binder is, for example, methyl cellulose. Thereby, a titanium clay is produced.
 (成形工程)
 次に、チタン坏土を押出し成形機(図示せず)に投入する。そして、押出し成形機から棒状のチタン成形体を導出し、その後、この成形体を所定の硬さになるまで乾燥させる。なお、成形方法は、押出し成形に限らず、プレス成形等の方法を用いることができる。
(Molding process)
Next, the titanium clay is put into an extrusion molding machine (not shown). And a rod-shaped titanium molded object is derived | led-out from an extrusion molding machine, and this molded object is dried until it becomes predetermined | prescribed hardness after that. The molding method is not limited to extrusion molding, and a method such as press molding can be used.
 (カット工程)
 次に、成形体を所定の長さでカットする。このカットする長さによって、水銀放出体300中の水銀含有量を所望の量に調節することができる。なお、水銀放出体300の水銀含有量は、これ以外にもチタン坏土のバインダ量、水銀放出部101の外径、焼成工程における焼成温度等を変化させることで調節することができる。
(Cut process)
Next, the molded body is cut to a predetermined length. The mercury content in the mercury emitter 300 can be adjusted to a desired amount by the cut length. In addition, the mercury content of the mercury emitter 300 can be adjusted by changing the binder amount of the titanium clay, the outer diameter of the mercury emitting portion 101, the firing temperature in the firing step, and the like.
 また、成形工程において、プレス成形等により、完成品1個分の大きさに成形されている場合は、カット工程を省略してもよい。 In the molding process, the cut process may be omitted when the finished product is molded to the size of one finished product by press molding or the like.
 (焼結工程)
 次に、成形体をアルゴン雰囲気中で、例えば500[℃]で加熱し、成形体内のバインダを取り除く。そして、真空雰囲気中で、例えば900[℃]で焼結し、焼結体を作製する。
(Sintering process)
Next, the compact is heated in an argon atmosphere at, for example, 500 [° C.] to remove the binder in the compact. And it sinters, for example at 900 [degreeC] in a vacuum atmosphere, and a sintered compact is produced.
 (水銀反応工程)
 その後、焼結体と水銀を加熱容器に投入し、加熱容器を真空ポンプを用いて真空状態として、500[℃]~600[℃]程度の温度で長時間、例えば4[h]~16[h]程度加熱して、チタンと水銀とを合金化させる。
(Mercury reaction process)
Thereafter, the sintered body and mercury are put into a heating container, and the heating container is evacuated using a vacuum pump, and at a temperature of about 500 [° C.] to 600 [° C.], for example, 4 [h] to 16 [ h] Heat about to alloy titanium and mercury.
 この際、チタンの焼結体内でチタンと水銀との合金が形成され、水銀放出体300が完成される。 At this time, an alloy of titanium and mercury is formed in the sintered body of titanium, and the mercury emitter 300 is completed.
 上記のとおり、本発明の第3の実施形態に係る水銀放出体300によれば、当該水銀放出体300にTi1.73Hgが含まれるので、水銀放出効率を向上させ、かつ水銀を十分に放出させるのに長時間でかつ高温で加熱し続ける必要がないので低圧放電ランプの製造に用いた際、ガラス管の破損を防止することができる。 As described above, according to the mercury emitter 300 according to the third embodiment of the present invention, since the mercury emitter 300 contains Ti 1.73 Hg, the mercury emission efficiency is improved and the mercury is sufficiently released. However, since it is not necessary to continue heating for a long time and at a high temperature, the glass tube can be prevented from being damaged when used for manufacturing a low-pressure discharge lamp.
 (第4の実施形態)
 本発明の第4の実施形態に係る低圧放電ランプの製造方法は、製造工程の途中で水銀放出体が取り出され、完成ランプには水銀放出体が無い低圧放電ランプについての製造方法である。
(Fourth embodiment)
The method for manufacturing a low-pressure discharge lamp according to the fourth embodiment of the present invention is a method for manufacturing a low-pressure discharge lamp in which the mercury emitter is taken out during the manufacturing process and the finished lamp has no mercury emitter.
 本発明の第4の実施形態に係る低圧放電ランプの製造方法は、本発明の第1の実施形態に係る水銀放出体をガラス管の内部に挿入する工程と、前記水銀放出体を加熱する工程とを含むものである。 A method for manufacturing a low-pressure discharge lamp according to a fourth embodiment of the present invention includes a step of inserting a mercury emitter according to the first embodiment of the present invention into a glass tube, and a step of heating the mercury emitter. Is included.
 以下、その製造工程の工程A~工程Gまでの概略図を図12に、工程H~工程Jまでの概略図を図13にそれぞれ示す。 FIG. 12 shows a schematic diagram of steps A to G of the manufacturing process, and FIG. 13 shows a schematic diagram of steps H to J, respectively.
 (工程A)
 まず、準備した直管状のガラス管400を垂下させてその下端部をタンク401内の蛍光体懸濁液402に浸す。この蛍光体懸濁液402には、例えば青色、赤色、緑色の蛍光体粒子が含まれている。ガラス管400内を負圧にすることで、タンク401内の蛍光体懸濁液402を吸い上げ、ガラス管400内面に蛍光体懸濁液を塗布する。
(Process A)
First, the prepared straight tubular glass tube 400 is suspended and its lower end is immersed in the phosphor suspension 402 in the tank 401. The phosphor suspension 402 contains, for example, blue, red, and green phosphor particles. By making the pressure inside the glass tube 400 negative, the phosphor suspension 402 in the tank 401 is sucked up and applied to the inner surface of the glass tube 400.
 この吸い上げは光学的センサ403により液面を検出することで、液面がガラス管400の所定高さになるように設定される。このときの液面高さの誤差は、蛍光体懸濁液402の粘度や液面の表面張力等の影響を受けるため比較的大きく、±0.5[mm]程度の誤差が生じる。 This siphoning is set so that the liquid level becomes a predetermined height of the glass tube 400 by detecting the liquid level with the optical sensor 403. The liquid level error at this time is relatively large because of the influence of the viscosity of the phosphor suspension 402, the surface tension of the liquid level, and the like, and an error of about ± 0.5 [mm] occurs.
 (工程B)
 次に、負圧状態から大気圧状態に開放し、その後ガラス管400の下端部を蛍光体懸濁液402から引き上げ、ガラス管400内部の余分な蛍光体懸濁液402を外部に排出する。これにより、ガラス管400の内周の所定領域に蛍光体懸濁液が膜状に塗布される。
(Process B)
Next, the negative pressure state is released to the atmospheric pressure state, and then the lower end portion of the glass tube 400 is pulled up from the phosphor suspension 402, and the excess phosphor suspension 402 inside the glass tube 400 is discharged to the outside. As a result, the phosphor suspension is applied in a film form to a predetermined region on the inner periphery of the glass tube 400.
 続いて、ガラス管400内に塗布された蛍光体懸濁液402を乾燥させた後に、ガラス管400内面にブラシ等404を挿入して、ガラス管400端部の不要な蛍光体部分を除去する。 Subsequently, after drying the phosphor suspension 402 applied in the glass tube 400, a brush or the like 404 is inserted into the inner surface of the glass tube 400 to remove unnecessary phosphor portions at the end of the glass tube 400. .
 続いて、ガラス管400を不図示の加熱炉内に移送し、ガラス管400内面に付着する蛍光体粒子の焼成を行い、蛍光体層405を得る。 Subsequently, the glass tube 400 is transferred into a heating furnace (not shown), and the phosphor particles adhering to the inner surface of the glass tube 400 are baked to obtain the phosphor layer 405.
 (工程C)
 その後、蛍光体層405が形成されたガラス管400の一端部に、電極406、ビードガラス407およびリード線408を含む電極ユニット409を挿入した後、仮止めを行う。仮止めとは、ビードガラス407が位置するガラス管400の外周部分をバーナー410で加熱して、ビードガラス407の外周の一部をガラス管400内周面に固着することをいう。ビードガラス407の外周の一部しか固着しないので、ガラス管400の管軸方向の通気性は維持される。なお、電極40は所謂冷陰極型のものである。
(Process C)
Thereafter, the electrode unit 409 including the electrode 406, the bead glass 407, and the lead wire 408 is inserted into one end of the glass tube 400 on which the phosphor layer 405 is formed, and then temporarily fixed. Temporary fixing means that the outer peripheral portion of the glass tube 400 where the bead glass 407 is positioned is heated by the burner 410 and a part of the outer periphery of the bead glass 407 is fixed to the inner peripheral surface of the glass tube 400. Since only a part of the outer periphery of the bead glass 407 is fixed, the air permeability of the glass tube 400 in the tube axis direction is maintained. The electrode 40 is a so-called cold cathode type.
 (工程D)
 次に、ガラス管400の上下を逆さにして先ほどの電極ユニット409を挿入した側とは反対側からガラス管400に、電極ユニット409と実質的に同じ構成の電極411、ビードガラス412およびリード線413を含む電極ユニット414を挿入した後、ビードガラス412が位置するガラス管400の外周部分をバーナー415で加熱し、ガラス管400を封着して気密封止(第1封止)する。また、第1封止における封止位置の設定値から誤差は約0.5[mm]程度である。
(Process D)
Next, the glass tube 400 is turned upside down, the electrode 411 having substantially the same configuration as the electrode unit 409, the bead glass 412 and the lead wire are placed on the glass tube 400 from the side opposite to the side where the electrode unit 409 is inserted. After inserting the electrode unit 414 containing 413, the outer peripheral part of the glass tube 400 in which the bead glass 412 is located is heated with the burner 415, and the glass tube 400 is sealed and airtightly sealed (first sealing). Further, the error from the set value of the sealing position in the first sealing is about 0.5 [mm].
 なお、工程Cにおける電極ユニット409の挿入位置および工程Dにおける電極ユニット414の挿入は、ガラス管の両端部封止後のガラス管の両端部からそれぞれ延びる蛍光体層405の不存在領域の長さが異なるような位置になるようにその挿入量を調整されることが好ましい。 In addition, the insertion position of the electrode unit 409 in the process C and the insertion of the electrode unit 414 in the process D are the lengths of the non-existing regions of the phosphor layer 405 respectively extending from both ends of the glass tube after sealing both ends of the glass tube. It is preferable that the insertion amount is adjusted so that the positions are different.
 この場合、他端部側の電極ユニット414は、一端部側の電極ユニット409と比べて、蛍光体層405に重なる位置より奥にまで挿入されることとなる。このような構成を好適とする理由は次のとおりである。 In this case, the electrode unit 414 on the other end side is inserted from the position overlapping the phosphor layer 405 to the back as compared with the electrode unit 409 on the one end side. The reason why such a configuration is suitable is as follows.
 すなわち、ランプの一端部と他端部とでは、蛍光体層405の厚みに差異が生じていることが多く、複数本のランプを同じ方向にしてバックライトユニット等の照明装置に組み込むと、照明装置全体として輝度むらが生じることとなる。これを防止するために、例えばランプの一端部と他端部とを交互になるように照明装置に組み込むことが考えられる。その際、ランプの一端部と他端部とをセンサ等を用いて自動的に容易に識別することができるからである。センサとして200万[画素]の画像センサを用いれば、1[画素]を0.1[mm]に設定することが可能であるため、0.1[mm]単位での測定精度を実現できる。 That is, there is often a difference in the thickness of the phosphor layer 405 between one end and the other end of the lamp, and when a plurality of lamps are installed in an illumination device such as a backlight unit in the same direction, illumination is performed. Luminance unevenness occurs as a whole device. In order to prevent this, for example, it can be considered that one end and the other end of the lamp are alternately incorporated in the lighting device. This is because one end and the other end of the lamp can be automatically and easily identified using a sensor or the like. If an image sensor of 2 million [pixels] is used as the sensor, 1 [pixel] can be set to 0.1 [mm], so that measurement accuracy in units of 0.1 [mm] can be realized.
 これらの事情を考慮すれば、ガラス管の一端部側と他端部側とで、蛍光体層405の不存在領域の長さの差が少なくとも2[mm]以上あれば、確実にセンサを用いて長手方向の向きを識別することができる。 Considering these circumstances, if the difference in length of the non-existing region of the phosphor layer 405 is at least 2 [mm] between the one end side and the other end side of the glass tube, the sensor is surely used. Thus, the longitudinal direction can be identified.
 なお、ガラス管の一端部側と他端部側とで、蛍光体層405の不存在領域の長さの差が少なくとも3[mm]以上であれば、より確実にセンサを用いて長手方向の向きを識別することができる。この場合、画像センサは、0.5[mm]単位での測定精度のもので構わない。また、長さの差の上限値は例えば8[mm]程度である。8[mm]より大きくすると、発光に寄与しない蛍光体層405の不存在領域が長くなり、有効発光長が確保しにくくなるからである。 In addition, if the difference in the length of the non-existence region of the phosphor layer 405 is at least 3 [mm] between the one end side and the other end side of the glass tube, the sensor can be used more reliably in the longitudinal direction. Orientation can be identified. In this case, the image sensor may have a measurement accuracy in units of 0.5 [mm]. Moreover, the upper limit of the difference in length is, for example, about 8 [mm]. This is because if it exceeds 8 [mm], the non-existing region of the phosphor layer 405 that does not contribute to light emission becomes long, and it becomes difficult to ensure an effective light emission length.
 (工程E)
 続いて、ガラス管400のうち、電極ユニット409とこの電極ユニット409に近い方のガラス管400の端部との間の一部をバーナー416で加熱して縮径させ、くびれ部分400aを形成する。その後、本発明の第1の実施形態に係る水銀放出体100をガラス管400内に当該端部から投入し、くびれ部分400aに引っかけておく(水銀放出体100をガラス管400の内部に挿入する工程)。
(Process E)
Subsequently, a part of the glass tube 400 between the electrode unit 409 and the end of the glass tube 400 closer to the electrode unit 409 is heated by the burner 416 to reduce the diameter, thereby forming a constricted portion 400a. . Thereafter, the mercury emitter 100 according to the first embodiment of the present invention is put into the glass tube 400 from the end portion and hooked on the constricted portion 400a (the mercury emitter 100 is inserted into the glass tube 400). Process).
 (工程F)
 続いて、ガラス管400内の排気とガラス管400内への封入ガスの充填を順次行う。具体的には、給排気装置(図示せず)のヘッドをガラス管400の水銀放出体100側端部に装着し、先ず、ガラス管400内を排気して真空にすると共に、加熱装置(図示せず)によってガラス管400全体を外周から加熱する。これによって、ガラス管の温度が400[℃]程度となり、蛍光体膜405に潜入している不純ガスを含めガラス管400内の不純ガスが排出される。加熱を止めた後、所定量の封入ガス(例えばアルゴン:95[%]、ネオン:5[%]の分圧比の混合ガスのような混合希ガス等)が充填される。
(Process F)
Subsequently, the exhaust in the glass tube 400 and the filling of the sealed gas into the glass tube 400 are sequentially performed. Specifically, the head of the air supply / exhaust device (not shown) is attached to the end of the glass tube 400 on the mercury emitter 100 side, and first, the inside of the glass tube 400 is evacuated to a vacuum and the heating device (FIG. The entire glass tube 400 is heated from the outer periphery by not shown). As a result, the temperature of the glass tube becomes about 400 [° C.], and the impure gas in the glass tube 400 including the impure gas entering the phosphor film 405 is discharged. After the heating is stopped, a predetermined amount of sealed gas (for example, a mixed rare gas such as a mixed gas having a partial pressure ratio of argon: 95 [%], neon: 5 [%], etc.) is filled.
 (工程G)
 封入ガスが充填されると、ガラス管400の水銀放出体100側端部をバーナー417で加熱して封止する。
(Process G)
When the filling gas is filled, the end of the glass tube 400 on the mercury emitter 100 side is heated by the burner 417 and sealed.
 (工程H)
 続いて、図13に示す工程Hでは、水銀放出体100をガラス管400周囲に配された高周波発振コイル(図示せず)によって誘導加熱して水銀放出体100から水銀を放出させる(水銀放出体100を加熱する工程)。なお、水銀放出体100の加熱方法は、例えばガスバーナーでの加熱や光加熱のような種々の公知の方法を用いることができる。その後、ガラス管400を加熱炉418内で加熱して、放出させた水銀を電極ユニット414の電極411の方へ移動させる。
(Process H)
Subsequently, in step H shown in FIG. 13, the mercury emitter 100 is induction-heated by a high-frequency oscillation coil (not shown) disposed around the glass tube 400 to release mercury from the mercury emitter 100 (mercury emitter). Step of heating 100). As a method for heating the mercury emitter 100, various known methods such as heating with a gas burner or light heating can be used. Thereafter, the glass tube 400 is heated in the heating furnace 418, and the released mercury is moved toward the electrode 411 of the electrode unit 414.
 (工程I)
 次に、ビードガラス407が位置するガラス管400外周部分をバーナー419で加熱して、ガラス管400を封着して気密封止する。この一端部の封止位置の設定値からの誤差は、他端部と同様に±0.5[mm]程度である。
(Process I)
Next, the outer peripheral part of the glass tube 400 where the bead glass 407 is located is heated by a burner 419, and the glass tube 400 is sealed and hermetically sealed. The error from the set value of the sealing position of the one end is about ± 0.5 [mm] as in the other end.
 (工程J)
 続いて、ガラス管400のうち、前記一端部の封止部分よりも水銀放出体100側の端部部分を切り離す。
(Process J)
Subsequently, in the glass tube 400, the end portion on the mercury emitter 100 side is cut off from the sealed portion at the one end.
 これで低圧放電ランプが完成する。 This completes the low-pressure discharge lamp.
 上記のとおり、本発明の第4の実施形態に係る低圧放電ランプの製造方法の構成によれば、第1の実施形態で説明した水銀放出体100を用いているため、水銀を十分に放出させるのに長時間でかつ高温で加熱し続ける必要がなく、低圧放電ランプの製造に用いた際、ガラス管の破損を防止することができる。 As described above, according to the configuration of the low-pressure discharge lamp manufacturing method according to the fourth embodiment of the present invention, the mercury emitter 100 described in the first embodiment is used, so that mercury is sufficiently released. However, it is not necessary to continue heating at a high temperature for a long time, and the glass tube can be prevented from being damaged when used for manufacturing a low-pressure discharge lamp.
 また、水銀の放出効率のよい水銀放出体100を用いているので、水銀放出体100に含有させる水銀量を削減することができ、言い換えればランプに対する水銀の使用量を削減することができ、環境への負荷を低減することができる。 Further, since the mercury emitter 100 having high mercury emission efficiency is used, the amount of mercury contained in the mercury emitter 100 can be reduced, in other words, the amount of mercury used for the lamp can be reduced, and the environment can be reduced. The load on can be reduced.
 なお、本実施形態においては、本発明の第1の実施形態に係る水銀放出体100を用いる場合について説明したが、この他にも本発明の第2の実施形態に係る水銀放出体200、203、本発明の第3の実施形態に係る水銀放出体300および後述する変形例に係る他の水銀放出体も用いることができる。 In the present embodiment, the case where the mercury emitter 100 according to the first embodiment of the present invention is used has been described. In addition, the mercury emitters 200 and 203 according to the second embodiment of the present invention are also described. The mercury emitter 300 according to the third embodiment of the present invention and other mercury emitters according to modifications described later can also be used.
 (第5の実施形態)
 本発明の第5の実施形態に係る低圧放電ランプ500(以下、単に「ランプ500」という)の管軸を含む断面図を図14(a)に、A部の拡大断面図を図14(b)にそれぞれ示す。図14(a)に示すように、ランプ500は、冷陰極蛍光ランプであり、本発明の第4の実施形態に係る低圧放電ランプの製造方法により製造される低圧放電ランプとは異なり、ランプ500内部に水銀放出体501が残っているものである。
(Fifth embodiment)
FIG. 14A is a cross-sectional view including a tube axis of a low-pressure discharge lamp 500 (hereinafter simply referred to as “lamp 500”) according to the fifth embodiment of the present invention, and FIG. ) Respectively. As shown in FIG. 14A, the lamp 500 is a cold cathode fluorescent lamp, and unlike the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the fourth embodiment of the present invention, the lamp 500 is. The mercury emitter 501 remains inside.
 ランプ500は、ガラス管502、電極503およびリード線504で構成されている。ガラス管502は、直管状であり、その管軸に対して垂直に切った断面が略円形状である。このガラス管502は、例えば外径が3.0[mm]、内径が2.0[mm]、全長が750[mm]であって、その材料はホウ珪酸ガラスである。以下に示すランプ500の寸法は、外径が3.0[mm]、内径が2.0[mm]のガラス管502の寸法に対応する値である。 The lamp 500 includes a glass tube 502, an electrode 503, and a lead wire 504. The glass tube 502 is a straight tube, and a cross section cut perpendicularly to the tube axis has a substantially circular shape. The glass tube 502 has, for example, an outer diameter of 3.0 [mm], an inner diameter of 2.0 [mm], and a total length of 750 [mm], and the material thereof is borosilicate glass. The dimensions of the lamp 500 shown below are values corresponding to the dimensions of the glass tube 502 having an outer diameter of 3.0 [mm] and an inner diameter of 2.0 [mm].
 なお、冷陰極蛍光ランプである場合には、内径が1.4[mm]~7.0[mm]、肉厚が0.2[mm]~0.6[mm]の範囲であって、全長が1500[mm]以下であることが好ましい。これらの値は一例でありこれらに限定されるものではない。 In the case of a cold cathode fluorescent lamp, the inner diameter is in the range of 1.4 [mm] to 7.0 [mm], and the thickness is in the range of 0.2 [mm] to 0.6 [mm]. It is preferable that the total length is 1500 [mm] or less. These values are examples and are not limited to these.
 ガラス管502の内部には、水銀がガラス管502の容積(端部を密閉した状態での容積である。)に対して所定の比率、例えば、0.6[mg/cc]で封入され、またアルゴンやネオン等の希ガスが所定の封入圧、例えば60[Torr]で封入されている。 Inside the glass tube 502, mercury is sealed at a predetermined ratio, for example, 0.6 [mg / cc] with respect to the volume of the glass tube 502 (the volume in a state where the end portion is sealed), A rare gas such as argon or neon is sealed at a predetermined sealing pressure, for example, 60 [Torr].
 なお、上記希ガスとしては、アルゴンとネオン(Ar=5[%]、Ne=95[%])の分圧比の混合ガスが用いられているが、本発明は、これらの混合ガスの種類および分圧比に限定されない。 Note that, as the rare gas, a mixed gas having a partial pressure ratio of argon and neon (Ar = 5 [%], Ne = 95 [%]) is used. It is not limited to the partial pressure ratio.
 また、ガラス管502の内面には蛍光体層505が形成されている。蛍光体層505に用いる蛍光体粒子は、例えば、赤色蛍光体粒子(Y23:Eu3+)、緑色蛍光体粒子(LaPO4:Ce3+,Tb3+)および青色蛍光体粒子(BaMg2Al1627:Eu2+)からなる蛍光体で形成されている。 A phosphor layer 505 is formed on the inner surface of the glass tube 502. The phosphor particles used for the phosphor layer 505 are, for example, red phosphor particles (Y 2 O 3 : Eu 3+ ), green phosphor particles (LaPO 4 : Ce 3+ , Tb 3+ ) and blue phosphor particles ( BaMg 2 Al 16 O 27 : Eu 2+ ).
 また、ガラス管502の内面と蛍光体層505との間には例えば酸化イットリウム(Y23)等の金属酸化物の保護膜(図示せず)を設けてもよい。 Further, a protective film (not shown) of a metal oxide such as yttrium oxide (Y 2 O 3 ) may be provided between the inner surface of the glass tube 502 and the phosphor layer 505.
 さらに、ガラス管502の両端部からはリード線504が外部へ向けて導出されている。リード線504は、ビードガラス506を介してガラス管502の両端部に封着されたものである。 Furthermore, lead wires 504 are led out from both ends of the glass tube 502 to the outside. The lead wire 504 is sealed at both ends of the glass tube 502 through the bead glass 506.
 このリード線504は、例えば、タングステンからなる内部リード線504aと、ニッケルからなる外部リード線504bとからなる継線である。内部リード線504aの線径は1[mm]、全長は3[mm]で、外部リード線504bの線径は0.8[mm]、全長は5[mm]である。 The lead wire 504 is, for example, a joint consisting of an internal lead wire 504a made of tungsten and an external lead wire 504b made of nickel. The inner lead wire 504a has a wire diameter of 1 [mm] and a total length of 3 [mm], and the outer lead wire 504b has a wire diameter of 0.8 [mm] and a total length of 5 [mm].
 内部リード線504aの先端部にはホロー型、例えば有底筒状の電極503が固着されている。この固着は、例えばレーザ溶接を利用して行う。 A hollow type, for example, a bottomed cylindrical electrode 503 is fixed to the tip of the internal lead wire 504a. This fixing is performed using, for example, laser welding.
 電極503の各部の寸法は、例えば電極長が5[mm]、外径が1.70[mm]、内径が1.50[mm]、肉厚が0.10[mm]である。 The dimensions of each part of the electrode 503 are, for example, an electrode length of 5 [mm], an outer diameter of 1.70 [mm], an inner diameter of 1.50 [mm], and a wall thickness of 0.10 [mm].
 図14(b)に示すように、少なくとも一方の内部リード線504aの電極503とビードガラス506との間には、水銀放出体501が固定されている。水銀放出体501は、本発明の第1の実施形態に係る水銀放出体100に内部リード線を通すための貫通孔501aが形成されたものである。なお、水銀放出体501は、リード線504ではなく、電極503に固定されていてもよい。 As shown in FIG. 14B, a mercury emitter 501 is fixed between the electrode 503 and the bead glass 506 of at least one of the internal lead wires 504a. The mercury emitter 501 is formed by forming a through hole 501a for passing an internal lead wire through the mercury emitter 100 according to the first embodiment of the present invention. Note that the mercury emitter 501 may be fixed to the electrode 503 instead of the lead wire 504.
 上記のとおり、本発明の第5の実施形態に係る低圧放電ランプの構成によれば、水銀の放出効率がよい水銀放出体501を用いているので、水銀放出体501に含有させる水銀量を削減することができ、言い換えればランプ1本に対する水銀の使用量を削減することができ、環境への負荷を低減することができる。 As described above, according to the configuration of the low-pressure discharge lamp according to the fifth embodiment of the present invention, the mercury emitter 501 having good mercury emission efficiency is used, so the amount of mercury contained in the mercury emitter 501 is reduced. In other words, the amount of mercury used for one lamp can be reduced, and the burden on the environment can be reduced.
 (第6の実施形態)
 本発明の第6の実施形態に係る低圧放電ランプ(以下、単に「ランプ600」という)の管軸を含む断面図を図15(a)に、B部の拡大断面図を図15(b)にそれぞれ示す。図14(a)に示すように、ランプ600は、熱陰極蛍光ランプであり、本発明の第4の実施形態に係る低圧放電ランプの製造方法により製造される低圧放電ランプとは異なり、ランプ600内部に水銀放出体501が残っているものである。
(Sixth embodiment)
FIG. 15A is a cross-sectional view including a tube axis of a low-pressure discharge lamp (hereinafter simply referred to as “lamp 600”) according to a sixth embodiment of the present invention, and FIG. Respectively. As shown in FIG. 14A, the lamp 600 is a hot cathode fluorescent lamp, and unlike the low-pressure discharge lamp manufactured by the low-pressure discharge lamp manufacturing method according to the fourth embodiment of the present invention, the lamp 600 is. The mercury emitter 501 remains inside.
 ランプ600は、熱陰極蛍光ランプであり、ガラス管601と電極マウント602とで構成されている。 The lamp 600 is a hot cathode fluorescent lamp, and includes a glass tube 601 and an electrode mount 602.
 ガラス管601は、例えば全長は1010[mm]、外径が18[mm]、肉厚が0.8[mm]であり、その両端には電極マウント602が封着されている。 The glass tube 601 has, for example, a total length of 1010 [mm], an outer diameter of 18 [mm], and a wall thickness of 0.8 [mm], and electrode mounts 602 are sealed at both ends thereof.
 ガラス管601の内面には、蛍光体層505が形成されおり、ガラス管601の内部には、水銀(例えば4[mg]~10[mg])が封入されている他、緩衝ガスとしてアルゴン(Ar)およびクリプトン(Kr)の混合ガス(例えば、Arが50[%]、Krが50[%]の分圧比の混合ガス)が例えば600[Pa]の封入ガス圧で封入されている。 A phosphor layer 505 is formed on the inner surface of the glass tube 601, and mercury (eg, 4 [mg] to 10 [mg]) is sealed inside the glass tube 601 and argon ( A mixed gas of Ar) and krypton (Kr) (for example, a mixed gas having a partial pressure ratio of Ar of 50 [%] and Kr of 50 [%]) is sealed at a sealed gas pressure of 600 [Pa], for example.
 図15(a)に示すように、電極マウント602は所謂ビーズガラスマウントであり、タングステン製のフィラメント電極603と、このフィラメント電極603を架持する一対のリード線604と、この一対のリード線604を固定支持するビードガラス605とからなる。なお、フィラメント電極603は、所謂熱陰極型のものである。 As shown in FIG. 15A, the electrode mount 602 is a so-called bead glass mount, a tungsten filament electrode 603, a pair of lead wires 604 that support the filament electrode 603, and the pair of lead wires 604. And a bead glass 605 for fixing and supporting. The filament electrode 603 is of a so-called hot cathode type.
 図15(b)に示すように、少なくとも一方の電極マウント602のリード線604には、水銀放出体501が固定されている。ただし、ここで用いる水銀放出体501の貫通孔501aは、リード線604の線径に合わせたものである。 As shown in FIG. 15B, a mercury emitter 501 is fixed to the lead wire 604 of at least one of the electrode mounts 602. However, the through hole 501 a of the mercury emitter 501 used here is adapted to the wire diameter of the lead wire 604.
 電極マウント602のうちのガラス管601の端部に封着されるのは、リード線604の一部分であり、具体的には、ビードガラス605からフィラメント電極603と反対側に延出している部分である。なお、電極マウント602のガラス管601への封着は、例えばピンチシール法により行われている。 A part of the lead wire 604 is sealed to the end of the glass tube 601 in the electrode mount 602, specifically, a part extending from the bead glass 605 to the side opposite to the filament electrode 603. is there. The electrode mount 602 is sealed to the glass tube 601 by, for example, a pinch seal method.
 なお、ガラス管601の少なくとも一方の端部には、排気管残部606が電極マウント602と共に取着されている。この排気管残部606は、電極マウント602を封着した後に、ガラス管601内を排気したり、上記封入ガス等を封入したりするときに使用され、ガラス管601の内部への封入ガス等の封入が完了すると、排気管残部606のうちガラス管601の外部に位置する部分で、例えばチップオフ封止される。 Note that an exhaust pipe remaining portion 606 is attached together with the electrode mount 602 to at least one end of the glass tube 601. The exhaust pipe remaining portion 606 is used when exhausting the inside of the glass tube 601 after sealing the electrode mount 602 or enclosing the above-mentioned sealed gas or the like. When the sealing is completed, for example, chip-off sealing is performed at a portion located outside the glass tube 601 in the exhaust pipe remaining portion 606.
 上記のとおり、本発明の第6の実施形態に係る低圧放電ランプ600の構成によれば、水銀の放出効率がよい水銀放出体501を用いているので、水銀放出体501に含有させる水銀量を削減することができ、言い換えればランプ1本に対する水銀の使用量を削減することができ、環境への負荷を低減することができる。 As described above, according to the configuration of the low-pressure discharge lamp 600 according to the sixth embodiment of the present invention, the mercury emitter 501 having high mercury emission efficiency is used. In other words, the amount of mercury used for one lamp can be reduced, and the load on the environment can be reduced.
 (第7の実施形態)
 本発明の第7の実施形態に係る照明装置700の分解斜視図を図16に示す。本発明の第7の実施形態に係る照明装置700は直下方式のバックライトユニットであり、一つの面が開口した直方体状の筐体701と、この筐体701の内部に収納された複数のランプ500と、ランプ500を点灯回路(図示せず)に電気的に接続するための一対のソケット702と、筐体701の開口部を覆う光学シート類703とを備えている。なお、ランプ500は、本発明の第5の実施形態に係る低圧放電ランプ500である。
(Seventh embodiment)
FIG. 16 shows an exploded perspective view of a lighting device 700 according to the seventh embodiment of the present invention. An illuminating device 700 according to a seventh embodiment of the present invention is a direct-type backlight unit, and has a rectangular parallelepiped casing 701 having one open surface and a plurality of lamps housed in the casing 701. 500, a pair of sockets 702 for electrically connecting the lamp 500 to a lighting circuit (not shown), and an optical sheet 703 covering the opening of the housing 701. The lamp 500 is a low-pressure discharge lamp 500 according to the fifth embodiment of the present invention.
 筐体701は、例えばポリエチレンテレフタレート(PET)樹脂製であって、その内面に銀などの金属が蒸着されて反射面704が形成されている。なお、筐体701の材料としては、樹脂以外の材料、例えば、アルミニウムや冷間圧延材(例えばSPCC)等の金属材料により構成してもよい。 The housing 701 is made of, for example, polyethylene terephthalate (PET) resin, and a reflective surface 704 is formed by depositing a metal such as silver on the inner surface thereof. Note that the material of the housing 701 may be made of a material other than resin, for example, a metal material such as aluminum or a cold rolled material (for example, SPCC).
 また、内面の反射面704として、金属蒸着膜以外、例えば、ポリエチレンテレフタレート(PET)樹脂に炭酸カルシウム、二酸化チタン等を添加することにより反射率を高めた反射シートを筐体701に貼付けてもよい。 Further, as the reflection surface 704 on the inner surface, a reflection sheet whose reflectance is increased by adding calcium carbonate, titanium dioxide, or the like to a polyethylene terephthalate (PET) resin other than a metal vapor deposition film may be attached to the housing 701. .
 筐体701の内部には、ソケット702以外に、例えば、絶縁体705およびカバー706が配置されている。具体的に、ソケット702は、ランプ500の配置に対応して筐体701の短手方向(縦方向)に各々所定間隔を空けて設けられている。ソケット702は、例えばステンレスやりん青銅からなる板材を加工したものであって、外部リード線504bが嵌め込まれる嵌込部702aを有している。そして、外部リード線504bを嵌込部702aを押し拡げるように弾性変形させて嵌め込む。その結果、嵌込部702aに嵌め込まれた外部リード線504bは、嵌込部702aの復元力によって押圧され、外れにくくなる。これにより、外部リード線504bを嵌込部702aへ容易に嵌め込むことができつつ、外れにくくすることができる。 In addition to the socket 702, for example, an insulator 705 and a cover 706 are disposed inside the housing 701. Specifically, the sockets 702 are provided at predetermined intervals in the lateral direction (vertical direction) of the housing 701 corresponding to the arrangement of the lamps 500. The socket 702 is obtained by processing a plate made of stainless steel or phosphor bronze, for example, and has a fitting portion 702a into which the external lead wire 504b is fitted. Then, the external lead wire 504b is fitted by being elastically deformed so as to expand the fitting portion 702a. As a result, the external lead wire 504b fitted into the fitting portion 702a is pressed by the restoring force of the fitting portion 702a and is difficult to come off. Thereby, the external lead wire 504b can be easily fitted into the fitting portion 702a, but can be made difficult to come off.
 ソケット702は、互いに隣り合うソケット702同士で短絡しないように絶縁体705で覆われている。絶縁体705は、例えば、ポリエチレンテレフタレート(PET)樹脂で構成されている。なお、絶縁体705は、上記の構成に限定されない。ソケット702はランプ500の動作中に比較的高温となる内部の電極503の近傍にあることから絶縁体705は耐熱性のある材料で構成することが好ましい。耐熱性のある絶縁体705の材料としては、例えば、ポリカーボネート(PC)樹脂やシリコンゴム等を適用することができる。 The socket 702 is covered with an insulator 705 so that the sockets 702 adjacent to each other are not short-circuited. The insulator 705 is made of, for example, polyethylene terephthalate (PET) resin. Note that the insulator 705 is not limited to the above structure. Since the socket 702 is in the vicinity of the internal electrode 503 that becomes relatively hot during operation of the lamp 500, the insulator 705 is preferably made of a heat resistant material. As a material for the heat-resistant insulator 705, for example, polycarbonate (PC) resin, silicon rubber, or the like can be used.
 筐体701の内部には、必要に応じた場所にランプホルダ707を設けてもよい。筐体701内側でのランプ500の位置を固定するランプホルダ707は、例えば、ポリカーボネート(PC)樹脂であり、ランプ500の外面形状に沿うような形状を有している。「必要に応じた場所」とは、ランプ500の長手方向の中央部付近のように、ランプ500が例えば全長600[mm]を越えるような長尺のものである場合に、ランプ500のたわみを解消するために必要な場所である。 Inside the housing 701, a lamp holder 707 may be provided at a required place. The lamp holder 707 that fixes the position of the lamp 500 inside the housing 701 is, for example, polycarbonate (PC) resin, and has a shape that follows the outer shape of the lamp 500. The “place as needed” means that the lamp 500 is bent when the lamp 500 has a long length exceeding, for example, 600 [mm], as in the vicinity of the central portion of the lamp 500 in the longitudinal direction. It is a place necessary to eliminate.
 カバー706は、ソケット702と筐体701の内側の空間とを仕切るものであり、例えばポリカーボネート(PC)樹脂で構成し、ソケット702の周辺を保温するとともに、少なくとも筐体701側の表面を高反射性とすることにより、ランプ500の端部の輝度低下を軽減することができる。 The cover 706 separates the socket 702 from the space inside the housing 701. The cover 706 is made of, for example, polycarbonate (PC) resin, keeps the periphery of the socket 702 warm, and highly reflects at least the surface on the housing 701 side. Therefore, the luminance reduction at the end of the lamp 500 can be reduced.
 筐体701の開口部は、透光性の光学シート類703で覆われており、内部にちりや埃などの異物が入り込まないように密閉されている。光学シート類703は、拡散板708、拡散シート709およびレンズシート710を積層してなる。 The opening of the housing 701 is covered with a light-transmitting optical sheet 703 and is sealed so that foreign matters such as dust and dust do not enter inside. The optical sheet 703 is formed by laminating a diffusion plate 708, a diffusion sheet 709, and a lens sheet 710.
 拡散板708は、例えばポリメタクリル酸メチル(PMMA)樹脂製の板状体であって、筐体701の開口部を塞ぐように配置されている。拡散シート709は、例えばポリエステル樹脂製である。レンズシート710は、例えばアクリル系樹脂とポリエステル樹脂の貼り合せである。これらの光学シート類703は、それぞれ拡散板708に順次重ね合わせるようにして配置されている。 The diffusion plate 708 is a plate-like body made of, for example, polymethyl methacrylate (PMMA) resin, and is disposed so as to close the opening of the housing 701. The diffusion sheet 709 is made of, for example, a polyester resin. The lens sheet 710 is, for example, a laminate of an acrylic resin and a polyester resin. These optical sheets 703 are arranged so as to be sequentially superimposed on the diffusion plate 708.
 上記のとおり、本発明の第7の実施形態に係る照明装置700の構成によれば、水銀使用量の少ないランプを用いているので、環境負荷の小さい照明装置を実現することができる。 As described above, according to the configuration of the lighting device 700 according to the seventh embodiment of the present invention, since the lamp with a small amount of mercury used is used, a lighting device with a small environmental load can be realized.
 (第8の実施形態)
 本発明の第8の実施形態に係る照明装置の一部切欠斜視図を図17に示す。本発明の第8の実施形態に係る照明装置800(以下、「照明装置800」という)は、エッジライト方式のバックライトユニットで、反射板801、ランプ500、ソケット(図示せず)、導光板802、拡散シート803およびプリズムシート804から構成されている。
(Eighth embodiment)
FIG. 17 shows a partially cutaway perspective view of a lighting apparatus according to the eighth embodiment of the present invention. An illuminating device 800 according to an eighth embodiment of the present invention (hereinafter referred to as “illuminating device 800”) is an edge light type backlight unit, and includes a reflector 801, a lamp 500, a socket (not shown), and a light guide plate. 802, a diffusion sheet 803, and a prism sheet 804.
 反射板801は、液晶パネル側(矢印Q)を除く導光板802の周囲の面を囲むように配置されており、導光板802の底面を覆う底面部801bと、ランプ500の配置されている側を除く側面を覆う側面部801aと、ランプ500の周囲を覆う曲面状のランプ側面部801cとで構成されており、ランプから照射される光を導光板802から液晶パネル(図示せず)側(矢印Q)に反射させる。また、反射板801は、例えばフィルム状のPETに銀を蒸着したものやアルミ等の金属箔を積層したもの等からなる。 The reflection plate 801 is disposed so as to surround the surface around the light guide plate 802 except for the liquid crystal panel side (arrow Q), and the bottom surface portion 801b covering the bottom surface of the light guide plate 802 and the side where the lamp 500 is disposed. And a curved lamp side surface portion 801c covering the periphery of the lamp 500, and the light emitted from the lamp is guided from the light guide plate 802 to the liquid crystal panel (not shown) side ( Reflected in the arrow Q). Moreover, the reflecting plate 801 is made of, for example, a film-like PET deposited with silver or a laminated metal foil such as aluminum.
 ソケットは、本発明の第7の実施形態に係る照明装置700に用いられるソケット702と実質的に同じ構成を有している。なお、図17において、図示の便宜上により、ランプ500の端部については省略している。 The socket has substantially the same configuration as the socket 702 used in the lighting device 700 according to the seventh embodiment of the present invention. In FIG. 17, the end of the lamp 500 is omitted for convenience of illustration.
 導光板802は、反射板801により反射された光を液晶パネル側に導くためのものであって、例えば透光性プラスチックからなり、照明装置800の底面に設けられた反射板801の底面部801bの上に積層されている。なお、材料としては、ポリカーボネート(PC)樹脂やシクロオレフィン系樹脂(COP)を適用することができる。 The light guide plate 802 is for guiding the light reflected by the reflection plate 801 to the liquid crystal panel side. The light guide plate 802 is made of, for example, translucent plastic and has a bottom surface portion 801b of the reflection plate 801 provided on the bottom surface of the lighting device 800. Are stacked on top of each other. As a material, polycarbonate (PC) resin or cycloolefin-based resin (COP) can be applied.
 拡散シート803は、視野拡大のためのものであって、例えばポリエチレンテレフタレート樹脂やポリエステル樹脂製の拡散透過機能を有するフィルムからなり、導光板802の上に積層されている。 The diffusion sheet 803 is for expanding the visual field and is made of, for example, a film having a diffusion transmission function made of polyethylene terephthalate resin or polyester resin, and is laminated on the light guide plate 802.
 プリズムシート804は、輝度を向上させるためのものであって、例えばアクリル系樹脂とポリエステル樹脂とを貼り合せたシートからなり、拡散シート803の上に積層されている。なお、プリズムシート804の上にさらに拡散板が積層されていてもよい。 The prism sheet 804 is for improving luminance, and is made of, for example, a sheet obtained by bonding an acrylic resin and a polyester resin, and is laminated on the diffusion sheet 803. Note that a diffusion plate may be further stacked on the prism sheet 804.
 なお、本実施形態の場合には、ランプ500の周方向における一部分(照明装置800に挿入した場合における導光板802側)を除き、ガラス管502の外面に反射シート(図示せず)を設けたアパーチャ型のランプであってもよい。 In the case of this embodiment, a reflective sheet (not shown) is provided on the outer surface of the glass tube 502 except for a part in the circumferential direction of the lamp 500 (the light guide plate 802 side when inserted into the lighting device 800). An aperture-type lamp may be used.
 上記のとおり、本発明の第8の実施形態に係る照明装置800の構成によれば、水銀使用量の少ないランプを用いているので、環境負荷の小さい照明装置を実現することができる。 As described above, according to the configuration of the lighting device 800 according to the eighth embodiment of the present invention, since the lamp with a small amount of mercury used is used, it is possible to realize a lighting device with a small environmental load.
 (第9の実施形態)
 本発明の第9の実施形態に係る照明装置の正面図を図18(a)に、図18(a)のA-A´線で切った断面図を図18(b)にそれぞれ示す。本発明の第9の実施形態に係る照明装置900(以下、「照明装置900」という)は、一般照明用の環状蛍光ランプを使用した照明器具である。
(Ninth embodiment)
FIG. 18A shows a front view of a lighting apparatus according to the ninth embodiment of the present invention, and FIG. 18B shows a cross-sectional view taken along the line AA ′ of FIG. 18A. An illuminating device 900 (hereinafter referred to as “illuminating device 900”) according to a ninth embodiment of the present invention is a luminaire using an annular fluorescent lamp for general illumination.
 照明装置900は、本体部901、盤状部902、ランプホルダ903、ソケット904、ランプ905で構成されている。 The lighting device 900 includes a main body portion 901, a plate-like portion 902, a lamp holder 903, a socket 904, and a lamp 905.
 本体部901は、その内部に点灯回路(図示せず)等を収納し、例えばその上部から電気接続部(図示せず)が導出しており、例えばその側面部からランプ905の口金906と電気的に接続するためのソケット904が導出している。 The main body 901 accommodates a lighting circuit (not shown) and the like inside, for example, and an electrical connection part (not shown) is led out from the upper part, for example, the base 906 of the lamp 905 and the electric part from the side part. A socket 904 for connection is provided.
 盤状部902は、本体部901、ランプホルダ903を支持する部材であり、例えば円盤状の形状を有している。 The disc-shaped portion 902 is a member that supports the main body portion 901 and the lamp holder 903, and has, for example, a disc-like shape.
 ランプホルダ903は、盤状部902の下面に取付けられており、その下端に設けられた例えばC字状の挟持片によりランプ905を保持し、ランプ905の落下を防止することができる。 The lamp holder 903 is attached to the lower surface of the plate-like portion 902, and the lamp 905 can be held by, for example, a C-shaped sandwiching piece provided at the lower end thereof to prevent the lamp 905 from dropping.
 ランプ905は、環状の熱陰極蛍光ランプであり、形状が環状であることと口金906がランプ905の中間部に位置していることを除いては第6の実施形態に係る低圧放電ランプ600と実質的に同じ構成を有している。 The lamp 905 is an annular hot-cathode fluorescent lamp, and the low-pressure discharge lamp 600 according to the sixth embodiment is the same as the low-pressure discharge lamp 600 according to the sixth embodiment except that the shape is annular and the base 906 is located in the middle of the lamp 905. It has substantially the same configuration.
 上記のとおり、本発明の第9の実施形態に係る照明装置900の構成によれば、水銀使用量の少ないランプを用いているので、環境負荷の小さい照明装置を実現することができる。 As described above, according to the configuration of the lighting device 900 according to the ninth embodiment of the present invention, since the lamp with a small amount of mercury used is used, a lighting device with a small environmental load can be realized.
 (第10の実施形態)
 本発明の第10の実施形態に係る液晶表示装置の概要を図19に示す。図19に示すように液晶表示装置1000は、例えば32[inch]テレビであり、液晶パネル等を含む液晶画面ユニット1001と本発明の第7の実施形態に係る照明装置700と点灯回路1002とを備える。
(Tenth embodiment)
FIG. 19 shows an outline of a liquid crystal display device according to the tenth embodiment of the present invention. As shown in FIG. 19, the liquid crystal display device 1000 is, for example, a 32 [inch] television, and includes a liquid crystal screen unit 1001 including a liquid crystal panel and the like, an illumination device 700 according to the seventh embodiment of the present invention, and a lighting circuit 1002. Prepare.
 液晶画面ユニット1001は、公知のものであって、液晶パネル(カラーフィルター基板、液晶、TFT基板等)(図示せず)、駆動モジュール等(図示せず)を備え、外部からの画像信号に基づいてカラー画像を形成する。 The liquid crystal screen unit 1001 is a known one and includes a liquid crystal panel (color filter substrate, liquid crystal, TFT substrate, etc.) (not shown), a drive module, etc. (not shown), and is based on an image signal from the outside. To form a color image.
 点灯回路1002は、照明装置700内部のランプ500を点灯させる。そして、ランプ500は、点灯周波数40[kHz]~100[kHz]、ランプ電流3.0[mA]~25[mA]で動作される。 The lighting circuit 1002 turns on the lamp 500 in the lighting device 700. The lamp 500 is operated at a lighting frequency of 40 [kHz] to 100 [kHz] and a lamp current of 3.0 [mA] to 25 [mA].
 なお、図19では、液晶表示装置1000の光源装置として本発明の第7の実施形態に係る照明装置700に第5の実施形態に係る低圧放電ランプ500を挿入した場合について説明したが、これに限らず、本発明の第6の実施形態に係る低圧放電ランプ600を適用することもできる。また、照明装置についても、本発明の第8の実施形態に係る照明装置800も用いることができる。 FIG. 19 illustrates the case where the low-pressure discharge lamp 500 according to the fifth embodiment is inserted into the illumination device 700 according to the seventh embodiment of the present invention as the light source device of the liquid crystal display device 1000. Not limited to this, the low-pressure discharge lamp 600 according to the sixth embodiment of the present invention can also be applied. Moreover, also about the illuminating device, the illuminating device 800 which concerns on the 8th Embodiment of this invention can also be used.
 上記のとおり、本発明の第10の実施形態に係る液晶表示装置の構成によれば、水銀使用量の少ないランプを用いているので、環境負荷の小さい液晶表示装置を実現することができる。 As described above, according to the configuration of the liquid crystal display device according to the tenth embodiment of the present invention, since a lamp with a small amount of mercury used is used, a liquid crystal display device with a small environmental load can be realized.
 (変形例)
 以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
1.水銀放出体の変形例
 (1)変形例1
 本発明の第1の実施形態に係る水銀放出体の変形例1の斜視図を図20、その正面図を図21(a)に、その平面図を図21(b)にそれぞれ示す。本発明の第1の実施形態に係る水銀放出体の変形例1(以下、単に「水銀放出体104」という)は、本発明の第1の実施形態に係る水銀放出体100とは、その外形形状が異なる。よって、その形状について詳細に説明し、その他の点については省略する。
(Modification)
As described above, the present invention has been described based on the specific examples shown in the above embodiments. However, the content of the present invention is not limited to the specific examples shown in the respective embodiments. Variations can be used.
1. Modification of mercury emitter (1) Modification 1
A perspective view of Modification 1 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. 20, a front view thereof is shown in FIG. 21 (a), and a plan view thereof is shown in FIG. 21 (b). The first modification of the mercury emitter according to the first embodiment of the present invention (hereinafter simply referred to as “mercury emitter 104”) is the outer shape of the mercury emitter 100 according to the first embodiment of the present invention. The shape is different. Therefore, the shape will be described in detail, and the other points will be omitted.
 水銀放出体104は、端部がテーパー形状となっている。具体的には、水銀放出体104の焼結体部105の端部がテーパー形状105aとなっている。 Mercury emitter 104 has a tapered end. Specifically, the end of the sintered body portion 105 of the mercury emitter 104 has a tapered shape 105a.
 水銀放出体104は、その端部がテーパー形状となっていることで、移送する際、他の水銀放出体と衝突して毀損するのを防止することができる。また、水銀放出体104の端部がテーパー形状となっていることで、細管の低圧放電ランプを作製する際、ガラス管への水銀放出体104の投入を容易に行うことができる。なお、水銀放出体104の一端部のみがテーパー形状となっていてもよい。 Since the end of the mercury emitter 104 has a tapered shape, it can be prevented from colliding with other mercury emitters and being damaged when transported. Further, since the end portion of the mercury emitter 104 is tapered, the mercury emitter 104 can be easily put into the glass tube when a low-pressure discharge lamp having a thin tube is manufactured. Note that only one end of the mercury emitter 104 may have a tapered shape.
 (2)変形例2
 本発明の第1の実施形態に係る水銀放出体の変形例2の斜視図を図22に、その正面図を図23(a)に、その平面図を図23(b)にそれぞれ示す。本発明の第1の実施形態に係る水銀放出体の変形例2(以下、単に「水銀放出体106」という)は、本発明の第1の実施形態に係る水銀放出体100とは、その水銀放出部107の形状が異なる。よって、その形状について詳細に説明し、その他の点については省略する。
(2) Modification 2
A perspective view of a modified example 2 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. 22, a front view thereof is shown in FIG. 23 (a), and a plan view thereof is shown in FIG. 23 (b). Modification 2 (hereinafter simply referred to as “mercury emitter 106”) of the mercury emitter according to the first embodiment of the present invention is the same as the mercury emitter 100 according to the first embodiment of the present invention. The shape of the discharge part 107 is different. Therefore, the shape will be described in detail, and the other points will be omitted.
 水銀放出体106は、水銀放出部107の例えば中心軸を含むその軸方向に貫通孔107aが形成された筒状となっている。 The mercury emitter 106 has a cylindrical shape in which a through-hole 107a is formed in the axial direction including the central axis of the mercury emitter 107, for example.
 水銀放出体106は、筒状となっていることで、水銀がその内面と焼結体部102側の両側から放出され、水銀の放出効率をより向上させることができる。なお、水銀放出体106の内面にさらに焼結体部が形成されていてもよい。この場合、高周波加熱する際、高周波加熱の渦電流が水銀放出体106の内面にも達し、水銀放出部107の加熱効率を高めて水銀の放出効率をより向上させることができる。 Since the mercury emitter 106 has a cylindrical shape, mercury is released from both the inner surface and both sides of the sintered body portion 102 side, and the mercury release efficiency can be further improved. Further, a sintered body portion may be further formed on the inner surface of the mercury emitter 106. In this case, when high-frequency heating is performed, the high-frequency heating eddy current reaches the inner surface of the mercury emitter 106, and the heating efficiency of the mercury discharge portion 107 can be increased to further improve the mercury emission efficiency.
 また、図22および図23に示す、水銀放出体は、円筒形状となっているが、これに限らず、多角形の筒形状等であってもよい。 Further, the mercury emitter shown in FIGS. 22 and 23 has a cylindrical shape, but is not limited thereto, and may be a polygonal cylindrical shape or the like.
 ところで、貫通孔107aの直径Dhの、水銀放出部107の外径Diに対する比率は、5[%]以上60[%]以下の範囲内であることが好ましい。この場合、Dhが小さすぎると放出効率がさほど上がらず、また大きすぎると所定の水銀含有量が得られず、かつ加熱効率も低下するためである。 Incidentally, the ratio of the diameter Dh of the through hole 107a to the outer diameter Di of the mercury emitting portion 107 is preferably in the range of 5% to 60%. In this case, if Dh is too small, the release efficiency does not increase so much, and if it is too large, a predetermined mercury content cannot be obtained, and the heating efficiency also decreases.
 (3)変形例3
 本発明の第1の実施形態に係る水銀放出体の変形例3の斜視図を図24に示す。本発明の第1の実施形態に係る水銀放出体の変形例3(以下、「水銀放出体110」という)は、本発明の第1の実施形態に係る水銀放出体100とは、その形状が異なる。よって、その形状について詳細に説明し、その他の点については省略する。
(3) Modification 3
FIG. 24 shows a perspective view of Modification 3 of the mercury emitter according to the first embodiment of the present invention. Modification 3 (hereinafter referred to as “mercury emitter 110”) of the mercury emitter according to the first embodiment of the present invention is different in shape from the mercury emitter 100 according to the first embodiment of the present invention. Different. Therefore, the shape will be described in detail, and the other points will be omitted.
 水銀放出体110は、平板状である。具体的には、水銀放出体110は、平板状の水銀放出部111が平板状の焼結体部112に挟み込まれている。この場合、水銀放出部111が二つの焼結体部112で両挟みされたものであるため、水銀放出部111の加熱効率が高まり、水銀放出効率をより向上させることができる。また、シート工法により、プレス成形加工で作製することができるため、製造工程をより簡易化することができる。ただし、図24に示した構成(平板状の構成)以外の他の構成を採用することも可能である。例えば、図25に示す水銀放出体113は、図24に示した平板状の構成を屈曲させて略円筒形状にしたものである。あるいは、図26に示した水銀放出体114のように、水銀放出部111の端面が焼結体部112で覆われた構成にすることも可能である。図26に示した構成の場合、水銀放出部111の端面が焼結体部112で覆われており、表面と裏面が連続していることから、渦電流の効率を向上させることができるという効果を奏し得る。 The mercury emitter 110 has a flat plate shape. Specifically, in the mercury emitter 110, a flat mercury discharge portion 111 is sandwiched between flat plate-like sintered bodies 112. In this case, since the mercury emitting part 111 is sandwiched between the two sintered body parts 112, the heating efficiency of the mercury emitting part 111 is increased, and the mercury releasing efficiency can be further improved. Moreover, since it can produce by press molding by a sheet construction method, a manufacturing process can be simplified more. However, a configuration other than the configuration shown in FIG. 24 (a plate-shaped configuration) may be employed. For example, a mercury emitter 113 shown in FIG. 25 is formed by bending the plate-like structure shown in FIG. 24 into a substantially cylindrical shape. Alternatively, as in the mercury emitter 114 shown in FIG. 26, the end surface of the mercury emitter 111 may be covered with the sintered body 112. In the case of the configuration shown in FIG. 26, the end surface of the mercury emitting portion 111 is covered with the sintered body portion 112, and the front surface and the back surface are continuous, so that the efficiency of eddy current can be improved. Can be played.
 なお、水銀放出部111が焼結体部112によって覆われているのであれば、水銀放出体の一部(上記焼結体部の一部)にスリットを設けることも可能である。図25および図26に示した構成も、水銀放出体の一部にスリットが形成されている形態といえるが、例えば、図1に示した水銀放出体100の長手方向の中心軸X100に対してスリットを平行に設けたり、垂直に設けたり、斜めに設けたりすることも可能である。 In addition, if the mercury discharge part 111 is covered with the sintered compact part 112, it is also possible to provide a slit in a part of mercury discharge part (part of the said sintered compact part). The configuration shown in FIGS. 25 and 26, but said that form slits in a part of the mercury releasing material is formed, for example, with respect to the longitudinal direction of the central axis X 100 of the mercury releasing member 100 shown in FIG. 1 It is also possible to provide slits in parallel, vertically, or diagonally.
 水銀放出体は、焼結体部の一部にスリットを設けると、スリットの部分から水銀を放出させやすくして、水銀の放出効率をより高められる可能性がある一方で、スリットの存在による渦電流の効率の低下の問題も生じるので、スリットを形成する場合の設計には配慮が必要である。 When a slit is provided in a part of the sintered body, the mercury emitter may facilitate the release of mercury from the slit, which may improve the mercury emission efficiency. Since the problem of a decrease in current efficiency also occurs, consideration must be given to the design when forming the slit.
 (4)変形例4
 本発明の第1の実施形態に係る水銀放出体の変形例4の斜視図を図27に示す。本発明の第1の実施形態に係る水銀放出体の変形例4(以下、「水銀放出体115」という)は、本発明の第1の実施形態に係る水銀放出体の変形例3の平板板状の水銀放出部111に片面のみ焼結体部112が積層されたものをスパイラル状に巻きつけたものである。具体的には、最終的に焼結体部112が外側となるように、焼結体部112と水銀放出部111が積層されたものをスパイラル状に巻きつけたものである。この場合、水銀放出部111の片面を焼結体部112で覆ったものでも、水銀放出部111の両面を焼結体部112で覆ったものであってもよい。
(4) Modification 4
A perspective view of Modification 4 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. Modification 4 (hereinafter referred to as “mercury emitter 115”) of the mercury emitter according to the first embodiment of the present invention is a flat plate of Modification 3 of the mercury emitter according to the first embodiment of the present invention. In this example, a sintered product portion 112 is laminated on a single-sided surface of a mercury discharge portion 111 in a spiral shape. Specifically, a laminate of the sintered body portion 112 and the mercury discharge portion 111 is wound in a spiral shape so that the sintered body portion 112 finally becomes the outside. In this case, one surface of the mercury emitting portion 111 may be covered with the sintered body portion 112, or both surfaces of the mercury emitting portion 111 may be covered with the sintered body portion 112.
 このような水銀放出体115は、その内部を含めて全体的に高周波加熱により加熱されるので、水銀の放出効率を一層向上させることができる。 Since such a mercury emitter 115 is entirely heated by high frequency heating including the inside thereof, the mercury emission efficiency can be further improved.
 (5)変形例5
 本発明の第1の実施形態に係る水銀放出体の変形例5の斜視図を図28に示す。本発明の第1の実施形態に係る水銀放出体の変形例5(以下、単に「水銀放出体116」という)は、本発明の第1の実施形態に係る水銀放出体100とは、その形状が異なる。よって、その形状について詳細に説明し、その他の点については省略する。
(5) Modification 5
FIG. 28 shows a perspective view of Modification 5 of the mercury emitter according to the first embodiment of the present invention. Modification 5 (hereinafter simply referred to as “mercury emitter 116”) of the mercury emitter according to the first embodiment of the present invention is different from the mercury emitter 100 according to the first embodiment of the present invention in its shape. Is different. Therefore, the shape will be described in detail, and the other points will be omitted.
 水銀放出体116は、棒状の水銀放出部101に帯状の焼結体部117が巻き付けられている。この構成により、水銀放出体116は、水銀放出部101と焼結体部117を同時に押出ししなくても、水銀放出部101となる棒状体の坏土を成形した後に焼結体部117となる坏土を巻き付けることで成形することができる。 In the mercury emitter 116, a band-like sintered body portion 117 is wound around a rod-like mercury emitting portion 101. With this configuration, the mercury emitting body 116 becomes the sintered body portion 117 after molding the rod-shaped body of the mercury emitting portion 101 without extruding the mercury emitting portion 101 and the sintered body portion 117 at the same time. It can be formed by winding clay.
 (6)変形例6
 本発明の第1の実施形態に係る水銀放出体の変形例6の一部切欠き斜視図を図29に示す。本発明の第1の実施形態に係る水銀放出体の変形例6(以下、単に「水銀放出体118」という)は、本発明の第1の実施形態に係る水銀放出体100とは、その形状が異なる。よって、その形状について詳細に説明し、その他の点については省略する。
(6) Modification 6
A partially cutaway perspective view of Modification 6 of the mercury emitter according to the first embodiment of the present invention is shown in FIG. Modification 6 of the mercury emitter according to the first embodiment of the present invention (hereinafter simply referred to as “mercury emitter 118”) is the shape of the mercury emitter 100 according to the first embodiment of the present invention. Is different. Therefore, the shape will be described in detail, and the other points will be omitted.
 水銀放出体118は球状で、球形状の水銀放出部119の外側全体に焼結体部120が積層されている。 The mercury emitter 118 is spherical, and the sintered body 120 is laminated on the entire outside of the spherical mercury emitter 119.
 水銀放出体118は、その外側が全て焼結体部120で覆われていることで、水銀放出体118を移送する際、水銀が含有されている水銀放出部119に直接触れることなく作業できるため、作業の安全性を向上させることができる。なお、水銀放出部119が全て焼結体部120に覆われていれば、球形状に限らず、多面体形状等(例えば、断面矩形、断面六角形など)でもよい。球形状の場合、角がないため、移送の際に水銀放出体118同士が衝突することによって損傷するのを防止することができる。また、球形状の場合、輸送の際、他の形状よりも輸送容器に密に詰め込むことができるため、輸送の効率を高めることができる。 Since all the outer sides of the mercury emitter 118 are covered with the sintered body portion 120, when the mercury emitter 118 is transferred, the mercury emitter 118 can be operated without directly touching the mercury emitter 119 containing mercury. , Work safety can be improved. In addition, as long as the mercury discharge | release part 119 is covered by the sintered compact part 120, not only spherical shape but polyhedron shape etc. (for example, cross-sectional rectangle, cross-sectional hexagon etc.) may be sufficient. In the case of a spherical shape, since there are no corners, it is possible to prevent the mercury emitters 118 from being damaged by colliding with each other during transfer. Moreover, in the case of a spherical shape, the transportation efficiency can be increased because the transportation container can be packed more densely than other shapes during transportation.
 本発明は、水銀放出体、それを用いた低圧放電ランプの製造方法、低圧放電ランプ、照明装置および液晶表示装置に広く適用することができる。 The present invention can be widely applied to mercury emitters, low-pressure discharge lamp manufacturing methods using the same, low-pressure discharge lamps, illumination devices, and liquid crystal display devices.

Claims (14)

  1. チタン(Ti)と水銀(Hg)との金属間化合物を含む水銀放出部を有し、
    前記金属間化合物は、Ti1.73Hgを含むことを特徴とする水銀放出体。
    Having a mercury emission part containing an intermetallic compound of titanium (Ti) and mercury (Hg);
    The mercury emitter, wherein the intermetallic compound contains Ti 1.73 Hg.
  2. 前記金属間化合物は、前記水銀放出部の全水銀量に対して40[wt%]以上100[wt%]以下の範囲内の水銀量を有する前記Ti1.73Hgを含むことを特徴とする請求項1に記載の水銀放出体。 The intermetallic compound includes the Ti 1.73 Hg having a mercury amount in a range of 40 wt% to 100 wt% with respect to a total mercury amount of the mercury emitting portion. The mercury emitter according to 1.
  3. 前記金属間化合物は、前記Ti1.73Hgを除く残部がTi3Hgであることを特徴とする請求項1に記載の水銀放出体。 2. The mercury emitter according to claim 1, wherein the intermetallic compound is Ti 3 Hg with the remainder excluding the Ti 1.73 Hg.
  4. 前記金属間化合物は、前記Ti1.73Hgを除く残部がTi3Hgであることを特徴とする請求項2に記載の水銀放出体。 3. The mercury emitter according to claim 2, wherein the intermetallic compound has a balance of Ti 3 Hg excluding the Ti 1.73 Hg. 4.
  5. 前記水銀放出部は、少なくとも一部に開口部を有する容器の内部に格納されていることを特徴とする請求項1に記載の水銀放出体。 The mercury emitter according to claim 1, wherein the mercury emitter is stored in a container having an opening at least in part.
  6. 前記容器は、鉄およびニッケルのうち少なくとも1種以上で形成されていることを特徴とする請求項5に記載の水銀放出体。 6. The mercury emitter according to claim 5, wherein the container is made of at least one of iron and nickel.
  7. 前記水銀放出部と、前記水銀放出部を覆う金属の焼結体から構成される焼結体部とを備えることを特徴とする請求項1に記載の水銀放出体。 2. The mercury emitter according to claim 1, comprising the mercury emitter and a sintered body portion made of a metal sintered body covering the mercury emitter.
  8. 前記焼結体部は、ポーラス状に形成されていることを特徴とする請求項7に記載の水銀放出体。 The mercury emitting body according to claim 7, wherein the sintered body portion is formed in a porous shape.
  9. 前記焼結体部の気孔率が5[%]以上であることを特徴とする請求項6に記載の水銀放出体。 The mercury emitter according to claim 6, wherein the sintered body has a porosity of 5% or more.
  10. 前記焼結体部の気孔率が5[%]以上であることを特徴とする請求項7に記載の水銀放出体。 The mercury emitter according to claim 7, wherein the sintered body has a porosity of 5% or more.
  11. 請求項1に記載の水銀放出体をガラス管の内部に挿入する工程と、前記水銀放出体を加熱する工程とを含むことを特徴とする低圧放電ランプの製造方法。 A method of manufacturing a low-pressure discharge lamp, comprising: inserting the mercury emitter according to claim 1 into a glass tube; and heating the mercury emitter.
  12. ガラス管と、前記ガラス管の少なくとも一方の端部に封着されたリード線と、前記リード線におけるガラス管の内部に位置する端部に取着された電極とを備え、前記リード線の前記ガラス管内に位置する部分または前記電極に請求項1に記載の水銀放出体が固定されていることを特徴とする低圧放電ランプ。 A glass tube; a lead wire sealed to at least one end portion of the glass tube; and an electrode attached to an end portion of the lead wire located inside the glass tube; 2. A low-pressure discharge lamp, wherein the mercury emitter according to claim 1 is fixed to a portion located in a glass tube or the electrode.
  13. 請求項12に記載の低圧放電ランプを備えることを特徴とする照明装置。 An illumination apparatus comprising the low-pressure discharge lamp according to claim 12.
  14. 請求項13に記載の照明装置を備えることを特徴とする液晶表示装置。 A liquid crystal display device comprising the illumination device according to claim 13.
PCT/JP2009/000400 2008-02-06 2009-02-03 Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device WO2009098860A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009552403A JPWO2009098860A1 (en) 2008-02-06 2009-02-03 Mercury emitter, low-pressure discharge lamp manufacturing method using the same, low-pressure discharge lamp, illumination device, and liquid crystal display device
CN2009801014437A CN101903973A (en) 2008-02-06 2009-02-03 Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008026195 2008-02-06
JP2008-026195 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009098860A1 true WO2009098860A1 (en) 2009-08-13

Family

ID=40951941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000400 WO2009098860A1 (en) 2008-02-06 2009-02-03 Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device

Country Status (5)

Country Link
JP (1) JPWO2009098860A1 (en)
KR (1) KR20100117014A (en)
CN (1) CN101903973A (en)
TW (1) TW200943380A (en)
WO (1) WO2009098860A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495659B1 (en) * 1969-10-20 1974-02-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495659B1 (en) * 1969-10-20 1974-02-08

Also Published As

Publication number Publication date
TW200943380A (en) 2009-10-16
JPWO2009098860A1 (en) 2011-05-26
KR20100117014A (en) 2010-11-02
CN101903973A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
EP1746632B1 (en) Cold-cathode tube-use sintered electrode, cold-cathode tube provided with this cold-cathode tube-use sintered electrode and liquid crystal display unit
CN1089541C (en) Low-voltage mercury vapour discharge lamp, illuminating apparatus and display device
US7538495B2 (en) Fluorescent lamp, backlight apparatus, and manufacturing method of fluorescent lamp
WO1999054906A1 (en) High-pressure electrical discharge lamp and lighting device
JPWO2008129700A1 (en) Mercury emitter, low-pressure discharge lamp manufacturing method and low-pressure discharge lamp using the same, backlight unit, and liquid crystal display device
WO2009098860A1 (en) Mercury emitter, method for manufacturing low-pressure discharge lamp using the mercury emitter, low-pressure discharge lamp, lighting system, and liquid crystal display device
CN1209906A (en) Oxygen dispenser for high-pressure discharge lamp
JP2010232169A (en) Mercury emitter, and method for manufacturing low-pressure discharge lamp using it
JP3169463U (en) Hot cathode fluorescent lamp including a device for mercury emission and a getter
JP4347353B2 (en) Cold cathode fluorescent lamp and manufacturing method thereof
JP4735673B2 (en) Mercury emitter and method of manufacturing discharge lamp
JP2009211866A (en) Mercury emitter
JP2003187750A (en) Fluorescent lamp and illuminator
JP2009163973A (en) Metal halide lamp, and lighting apparatus using the same
CN2819465Y (en) External electrode fluorescent light coated by transmissive film on inner wall
JP4982494B2 (en) Cold cathode tube electrode, cold cathode tube and liquid crystal display device using the same
KR20110031424A (en) Fluorescent lamp electrode, method for producing same, and a fluorescent lamp
JP2002231190A (en) Ceramic discharge lamp
JP2003187739A (en) Cold-cathode discharge tube
JP2005285441A (en) Fluorescent lamp and backlight unit
JP2006147289A (en) Cold cathode fluorescent lamp and backlight device
JP2001035441A (en) Compact self-ballasted fluorescent lamp
JP2005285668A (en) Fluorescent lamp, phosphor membrane forming method for fluorescent lamp, and back light device
CN1627471A (en) Helical type cold cathode fluorescence lamp
JP2006202514A (en) Flat cold-cathode fluorescent lamp

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101443.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20097024064

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009552403

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708895

Country of ref document: EP

Kind code of ref document: A1