TW200840025A - NAND type non-volatile memory and fabricating method thereof - Google Patents

NAND type non-volatile memory and fabricating method thereof Download PDF

Info

Publication number
TW200840025A
TW200840025A TW96110480A TW96110480A TW200840025A TW 200840025 A TW200840025 A TW 200840025A TW 96110480 A TW96110480 A TW 96110480A TW 96110480 A TW96110480 A TW 96110480A TW 200840025 A TW200840025 A TW 200840025A
Authority
TW
Taiwan
Prior art keywords
gate
layer
line
conductor layer
substrate
Prior art date
Application number
TW96110480A
Other languages
Chinese (zh)
Inventor
Houng-Chi Wei
Saysamone Pittikoun
Original Assignee
Powerchip Semiconductor Corp
Renesas Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Semiconductor Corp, Renesas Tech Corp filed Critical Powerchip Semiconductor Corp
Priority to TW96110480A priority Critical patent/TW200840025A/en
Publication of TW200840025A publication Critical patent/TW200840025A/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

A fabricating method of NAND type non-volatile memory is provided. First, a substrate having a first area and a second area is provided. The first area and the second area are arranged in parallel in the first direction. A dielectric layer, a first conductive layer and an inter-gate dielectric layer are formed on the substrate. Two openings extended in a second direction are formed in the inter-gate dielectric layer. The second direction is perpendicular to the first direction. The two openings only formed on the first area. A second conductive layer is formed on the substrate to fill in the two openings. The second conductive layer, the inter-gate dielectric layer, the first conductive layer and the dielectric layer are patterned to formed a plurality of stacked gate structures and two select gate structures having the openings therein. The stacked gate structures and the two select gate structures extend in the second direction and across the first area and the second area.

Description

200840025 pi.ap/6^ 22641twf.doc/e 九、發明說明: 【發明所屬之技術領域】 本發明疋有關於一種半導體記憶元件(Semiconductor memory device),且特別是有關於一種反及閘型非揮發性 記憶體(NAND type non-volatile memory)及其製造方法。 【先前技術】 非揮發性記憶體元件由於具有可多次資料之存入、讀 取、抹除等動作,且存入之資料在斷電後也不會消失之優 點,因此已成為個人電腦和電子設備所廣泛採用的一種記 憶體元件。 典型的非揮發性冗憶體元件,一般是被設計成具有堆 疊式閘極(Stacked-Gate)結構,其中包括以摻雜多晶石夕 (Doped polysilicon)製作的浮置閘極(F1〇ating Gate)與控制 閘極(Control Gate)。浮置閘極位於控制閘極和基底之間, 且處於浮置狀態,沒有和任何電路相連接,而控制閘極則 與字元線(Word Line)相接,此外還包括穿隧氧化層 (Tunneling Oxide)和閘間介電層(Inter-Gate Didectric Layer) 分別位於基底和浮置閘極之間以及浮置閘極和控制閘極之 間。 另一方面,目前業界較常使用的非揮發性記憶體陣列 包括反或閘(NOR)型陣列結構與反及閘(NAND)型陣列結 構。由於反及閘(NAND)型陣列的非揮發性記憶體結構是 使各記憶胞串接在一起,其積集度與面積利用率較反或閘 (NOR)型陣列的非揮發性記憶體佳,已經廣泛地應用在多 200840025 pi.ap/6^ 22641twf.doc/e 種電子產品中。 圖1A所繪示為習知的反及閘型非揮發性記憶體的結 構上視圖。圖1Β為繪示圖1Α中沿Α-Α,線之結構剖面圖。 圖1C為繪示圖1Α中沿Β-Β’線之結構剖面圖。 請參照圖1Α至圖1C,在基底1〇〇中設置元件隔離結 構102以定義出主動區104。在基底1〇〇上設置有多條位 元線BL(Bit Line)、多條字元線WL(Word Line)、選擇閘極 線SG(Select Gate Line)。每一位元線BL與字元線WL之 父點對應一個記憶胞行(Memory Row)。字元線WL跨過主 動區104的部分係作為一個記憶胞M。記憶胞M由穿隧介 電層106、浮置閘極1〇8、閘間介電層ho、控制閘極112 所構成。送擇閘極線SG跨過主動區1〇4的部分係作為一 個選擇單元T。選擇單元T由介電層114、導體層116、閘 間介電層110、導體層120所構成。其中,記憶胞“與選 擇單元T通常是在相同的製程中作出來的。因此,在反及 閘型非揮發性記憶體的製程中,在閘間介電層ιι〇形成 後,要移除掉預定形成選擇閘極線SG之區域上部分閘間 介電層11G,以使選擇單元τ的導體層116與導體層12〇 電性連接。 在習知的反及閘型非揮發性記憶體的製造方法中,如 ,1Α所示’在形成閘間介電層11〇後,移除區域124的 閘間介電層m。由於整條選擇閘極線犯上關間介電層 1〇都被移除了,因倾續形成的着·線延伸插塞 (細⑽Gate Line Pick_up Plug)直接跨在主祕1〇2上方 6 200840025 puap/〇H 22641twf.doc/e (選擇閘極線延伸插塞與主動區102之間只隔著介電層 114),如此將會造成記憶體元件的可靠度變差。於是,為 了避免選擇閘極線延伸插塞直接跨在主動區1〇2上方,而 需要在記憶胞陣列區MA(Memory Array Area)周邊設置一 個面積較大的元件隔離結構102作為虛擬區域DA(Dummy Area),然後將選擇閘極線延伸插塞122設置在此虛擬區域 DA中(如圖1C所示)。然而,此虛擬區域DA所佔的面積 很大(通常是13條位元線的面積),造成記憶體元件尺寸變 大,而無法提升記憶體元件集積度。 【發明内容】 本發明提供一種反及閘型非揮發性記憶體及其製造方 法,不需要設置用於選擇閘極線延伸插塞的大的元件隔離 區,而可以節省記憶體面積,並提高元件集積度。 本發明提供一種反及閘型非揮發性記憶體及其製造方 法,可以解決因選擇閘極線延伸插塞與其下方的主動區直 接連接所造成的記憶體元件可靠度變差的問題。 本發明提供一種反及閘型非揮發性記憶體及其製造方 法,此種製造方法簡單,不需要增加額外的製程,而可以 節省製造成本。 本發明提出一種反及閘型非揮發性記憶體,包括多個 u己胞陣列’各記憶胞陣列包括多個元件隔離結構、多條 位元線與乡條虛触元線、純字元線、二轉閘極線、 多個汲極區、多個源極區、源極線與多個選擇閘極線延伸 插塞。多個元件隔離結構平行設置於基底中,以定義出主 200840025 yi.ay / 〇-+ 22641 twf.doc/e200840025 pi.ap/6^ 22641twf.doc/e IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor memory device, and in particular to an anti-gate type NAND type non-volatile memory and its manufacturing method. [Prior Art] Since non-volatile memory components have the advantages of multiple data storage, reading, erasing, etc., and the stored data does not disappear after power-off, it has become a personal computer and A memory component widely used in electronic devices. Typical non-volatile memory components are typically designed to have a stacked-gate structure including floating gates doped with doped polysilicon (F1〇ating) Gate) and control gate (Control Gate). The floating gate is located between the control gate and the substrate, and is in a floating state, not connected to any circuit, and the control gate is connected to the word line (Word Line), and further includes a tunneling oxide layer ( Tunneling Oxide and Inter-Gate Didectric Layer are located between the substrate and the floating gate and between the floating gate and the control gate. On the other hand, the non-volatile memory arrays currently used in the industry include an inverted OR gate (NOR) type array structure and a NAND type array structure. Since the non-volatile memory structure of the NAND type array is such that the memory cells are connected in series, the degree of integration and area utilization is better than that of the non-volatile memory of the gate (NOR) type array. It has been widely used in many 200840025 pi.ap/6^ 22641twf.doc/e electronic products. Fig. 1A is a top view showing the structure of a conventional anti-gate type non-volatile memory. 1 is a cross-sectional view showing the structure of the line along the Α-Α in FIG. 1C is a cross-sectional view showing the structure of the line Β-Β' in FIG. Referring to Figures 1A through 1C, an element isolation structure 102 is provided in the substrate 1 to define the active region 104. A plurality of bit lines BL (Bit Line), a plurality of word lines WL (Word Line), and a selection gate line SG (Select Gate Line) are provided on the substrate 1A. Each of the bit lines BL corresponds to a memory row of the parent point of the word line WL. The portion of the word line WL that crosses the active area 104 serves as a memory cell M. The memory cell M is composed of a tunneling dielectric layer 106, a floating gate 1〇8, a gate dielectric layer ho, and a control gate 112. The portion of the delivery gate line SG across the active region 1〇4 serves as a selection unit T. The selection unit T is composed of a dielectric layer 114, a conductor layer 116, an inter-gate dielectric layer 110, and a conductor layer 120. Among them, the memory cell "and the selection unit T are usually made in the same process. Therefore, in the process of the gate type non-volatile memory, after the gate dielectric layer is formed, it is removed. The portion of the inter-gate dielectric layer 11G on the region where the gate line SG is selected is formed to electrically connect the conductor layer 116 of the selection unit τ to the conductor layer 12. In the conventional anti-gate type non-volatile memory In the manufacturing method, for example, after the formation of the inter-gate dielectric layer 11 ,, the inter-gate dielectric layer m of the region 124 is removed. Since the entire gate line is selected, the dielectric layer is turned off. Was removed, due to the pouring of the line extension plug (fine (10) Gate Line Pick_up Plug) directly across the main secret 1〇2 6 200840025 puap / 〇 H 22641twf.doc / e (selection of the gate line extension The dielectric layer 114 is only separated between the plug and the active region 102. This will cause the reliability of the memory device to deteriorate. Therefore, in order to avoid the selection of the gate line extension plug directly across the active region 1〇2, It is necessary to set a large area element around the memory array area MA (Memory Array Area). The isolation structure 102 functions as a dummy area DA (Dummy Area), and then the selection gate line extension plug 122 is disposed in the virtual area DA (as shown in FIG. 1C). However, the area occupied by the virtual area DA is large ( Generally, the area of the 13 bit lines is increased, and the size of the memory element is increased, and the memory element accumulation degree cannot be improved. SUMMARY OF THE INVENTION The present invention provides an anti-gate type non-volatile memory and a method of fabricating the same. There is no need to provide a large component isolation region for selecting a gate line extension plug, which can save memory area and increase component accumulation. The present invention provides a reverse gate type non-volatile memory and a method of fabricating the same. The problem that the reliability of the memory component is deteriorated due to the direct connection between the gate extension plug and the active region below the gate line can be solved. The invention provides a reverse gate type non-volatile memory and a manufacturing method thereof. The manufacturing method is simple, and no additional process is required, and the manufacturing cost can be saved. The invention provides an anti-gate type non-volatile memory, including a plurality of u cells. Column 'each memory cell array includes a plurality of component isolation structures, a plurality of bit lines and a township virtual touch element line, a pure word line, a two-turn gate line, a plurality of drain regions, a plurality of source regions, and a source The pole line and the plurality of selection gate lines extend the plug. The plurality of element isolation structures are arranged in parallel in the base to define the main 200840025 yi.ay / 〇-+ 22641 twf.doc/e

動區。這些元件隔離結構往第一方向延伸。多條位元線與 多條虛擬位元線平行設置於基底上,並往第一方向延伸, 其中每隔N條位元線設置Μ條虛擬位元線,N、M為正整 數,且N條位元線構成位元線區,M條虛擬位元線構成虛 擬位元線區。多條字元線平行設置於基底上,並往第二= 向延伸,第二方向與第一方向交錯,其中每一位元線與字 兀線之交點對應一個記憶胞行。二選擇閘極線設置於字元 線=兩側,每一位元線與二選擇閘極線之交點對應一個選 擇單元。各一選擇閘極線包括第一導體層、介電層、第二 導體層,閘間介電層。第—導體歧置於基底上:介電^ 設置於第-導體層與基底之間。第二導體層設置於第一導 體層上。閘間介電層設置於第二導體層與第一導體層之 間,在閘間介電層中設置有開口,使第二導體層與第一導 ?層!性連接,其中開口只位於位元線區中。多個汲極區 刀別6又置於,己憶胞行之第一側的基底中。各汲極區分別電 性連接各位元線。多個源極區分別設置於記憶胞行之第二 侧^基底巾。源極線歸於記憶胞行之第二_基底上, 在方向延伸並電性連接源極區。多個選擇閘極線延伸 ^ n連接二選擇閘極線。這些選擇閘極線延伸插 基只没置於虛擬位元線區中。 在明之—實施例巾,上述之選擇閘極線延伸插塞 設置於虛擬位元線區巾的主動區上。 、在本發明之一實施例中,上述記憶胞陣列在第一方向 上成鏡像配置’相鄰兩記憶胞陣列共用汲極區或源極區。 8 200840025 pi.ap/ό^ 2264 〗twf.doc/e 在本發明之一實施例中,反及閘型非揮發性記憶體更 包括多個選擇閘極線延伸插塞,設置於共用沒極區的相鄰 二選擇閘極線上,且位於虛擬位元線區中。上述之選擇閑 極線延伸插塞設置於相同的虛擬位元線的相對應位置上。 ‘ 在本發明之一實施例中,反及閘型非揮發性記憶體更 ' 包括多個選擇閘極線延伸插塞,設置於共用源極區的相鄰 二選擇閘極線上,且位於虛擬位元線區中。上述之選擇閘 極線延伸插塞設置於不同的虛擬位元線的相對應位置上。 在本發明之一實施例中,上述之介電層之材質包括氧 化石夕。 在本發明之一實施例中,上述之閘間介電層之材質包 括氧化矽/氮化矽/氧化矽。 、 本發明之非揮發性記憶體,由於在閘間介電層中設置 有開口 ’此開口只位於位元線區中,而未形成於虛擬位元 線區中’因此可以直接將選擇閘極線延伸插塞設置於虛擬 位元線區中。本發明不需要設置用於選擇閘極線延伸插塞 ' 的大的元件隔離區,因此可以節省記憶體面積,提高元件 集積度。 • ❿且,本發明可輯时區延伸插塞形成的區域作為 、虛擬位元線區,因此不需要形成選擇閘極線延伸插塞專用 的虛擬位元線區’而可以節省記憶體面積,提高元件集積 此外,選擇閘極線延伸插塞的正下方仍設置有閑間介 電層,因此可以解決因選擇閘極線延伸插塞與其下方的主 9 200840025 puap/o^ 22641twf.doc/e 動區直接連接所造成的記憶體元件可靠度變差的問題。 本發明提出’種反及閘型非揮發性記憶體的製造方 法,包括下列步驟。首先,提供基底,此基底可區分為第 一區與第二區。第一區與第二區在第一方向上平行排列。 於基底中形成多個元件隔離結構以定義出主動區,這些元 件隔離結構在第〆方向上平行排列。於基底上依序形成介 1層、第一導體層、閘間介電層與一第二導體層。圖案化 Γ 第二導體層與閘間介電層,以於閘間介電層中形成至少:二 f :。此—開口在第二方向延伸,且只形成在第-區上, 方向交錯。於基底上形成第三導體層,此 弟體層填滿二開口。圖案化 閘間介電層H守輯弟—¥體層、 έ士槿is丨 ;丨^•層,以形成多個堆疊閘極 結構在第二方向延伸,且極Ϊ構與二選擇間極 別位於二選擇閘極結;二區。二開口分 與多個沒極的基底中形成多個源極區 開第:,電層中形成至少二 :後’以圖案化光阻層為罩幕圖案化光阻 介電層。 圖案化弟一導體層與閘間 在本發明之-實施例中,於第二導體層上形成圖案化 10 200840025Moving area. These component isolation structures extend in a first direction. The plurality of bit lines are disposed on the substrate in parallel with the plurality of dummy bit lines, and extend in the first direction, wherein the virtual bit lines are arranged every N bit lines, N and M are positive integers, and N The strip bit lines constitute a bit line area, and the M virtual bit lines constitute a virtual bit line area. A plurality of word lines are arranged in parallel on the substrate and extend to the second = direction, and the second direction is interleaved with the first direction, wherein the intersection of each of the bit lines and the word line corresponds to a memory cell line. The second selection gate line is set on the word line=two sides, and the intersection of each bit line and the two selection gate lines corresponds to one selection unit. Each of the selection gate lines includes a first conductor layer, a dielectric layer, a second conductor layer, and a gate dielectric layer. The first conductor is placed on the substrate: a dielectric ^ is disposed between the first conductor layer and the substrate. The second conductor layer is disposed on the first conductor layer. The inter-gate dielectric layer is disposed between the second conductor layer and the first conductor layer, and an opening is provided in the inter-gate dielectric layer to make the second conductor layer and the first conductive layer! Sexual connection, where the opening is only in the bit line area. A plurality of bungee regions are placed in the base of the first side of the cell line. Each bungee zone is electrically connected to each of the bit lines. A plurality of source regions are respectively disposed on the second side of the memory cell row. The source line is attributed to the second substrate of the memory cell, extending in the direction and electrically connected to the source region. Multiple select gate lines extend ^ n to connect two select gate lines. These select gate extensions are only placed in the virtual bit line area. In the embodiment, the selected gate line extension plug is disposed on the active area of the virtual bit line zone. In one embodiment of the invention, the memory cell array is mirrored in a first direction. The adjacent two memory cell arrays share a drain region or a source region. 8 200840025 pi.ap/ό^ 2264 twf.doc/e In one embodiment of the present invention, the anti-gate type non-volatile memory further includes a plurality of selective gate line extension plugs, which are disposed in the common immersion The adjacent two of the regions are selected on the gate line and are located in the virtual bit line region. The above selected idle line extension plugs are disposed at corresponding positions of the same virtual bit line. In one embodiment of the present invention, the anti-gate non-volatile memory further includes a plurality of select gate extension plugs disposed on adjacent two select gate lines of the common source region and located in the virtual In the bit line area. The above selected gate line extension plugs are disposed at corresponding positions of different virtual bit lines. In an embodiment of the invention, the material of the dielectric layer comprises oxide oxide. In an embodiment of the invention, the material of the inter-gate dielectric layer comprises hafnium oxide/tantalum nitride/yttria. In the non-volatile memory of the present invention, since the opening is provided in the dielectric layer of the gate, the opening is only located in the bit line region, and is not formed in the dummy bit line region, so that the gate can be directly selected. The line extension plug is disposed in the virtual bit line area. The present invention does not require the provision of a large element isolation region for selecting the gate line extension plugs, thereby saving memory area and increasing component integration. Moreover, the present invention can be used as a virtual bit line area for the area formed by the time zone extension plug, so that it is not necessary to form a dummy bit line area for selecting a gate line extension plug, and the memory area can be saved. In addition, the component dielectric is further provided, and the idle dielectric layer is still disposed directly below the gate extension plug. Therefore, it is possible to solve the problem of selecting the gate extension plug and the main sub 9 200840025 puap/o^ 22641twf.doc/e The problem of poor reliability of memory components caused by direct connection of zones. The present invention proposes a method of manufacturing a reverse-type non-volatile memory, comprising the following steps. First, a substrate is provided which can be distinguished into a first zone and a second zone. The first zone and the second zone are arranged in parallel in the first direction. A plurality of element isolation structures are formed in the substrate to define active regions which are arranged in parallel in the second direction. A dielectric layer, a first conductor layer, an inter-gate dielectric layer and a second conductor layer are sequentially formed on the substrate. Patterning Γ the second conductor layer and the inter-gate dielectric layer to form at least: two f: in the inter-gate dielectric layer. This—the opening extends in the second direction and is formed only on the first region, the directions being staggered. A third conductor layer is formed on the substrate, and the body layer fills the two openings. The patterned gate dielectric layer H Guardian brother - ¥ body layer, gentleman 槿 is丨; 丨 ^ layer, to form a plurality of stacked gate structures extending in the second direction, and between the pole structure and the second selection Located in the second selection gate junction; two districts. A plurality of source regions are formed in the two opening portions and the plurality of immersed substrates: at least two are formed in the electric layer: the rear photoresist layer is patterned by using the patterned photoresist layer as a mask. Patterning a conductor layer and a gate in the embodiment of the invention, forming a pattern on the second conductor layer 10 200840025

Pi.ap/^ 22641tw£doc/e 光阻層之步驟後,更包括進行光阻熱回流製程,以縮小圖 案化光阻層的開口尺寸。 制、A在本發明之—實施例巾’反及關轉發性記憶體的 ^方去更包括於基底上形成多條位元線與多條虛擬位元 、、、,位凡線與虛擬位元線在第一方向上平行排列,並 第—區中’且分別電性連接各祕區,虛擬3 線位於第二區中。 制、發明之—實施例中,反及閘型非揮發性記憶體的 上述之選擇閘極線延伸插塞 上述之介電層之材質包括氧 上述之閘間介電層之材質包 括於基底上形成源極線,此源極線在第二方 问延伸,且電性連接源極區。 在本發明之一實施例中 也成於第二區中的主動區上 在本發明之一實施例中 化發。 在本發明之一實施例中 括氧化矽/氮化矽/氧化矽。 在間反及閘型非揮發性記憶體之製造方法中, 為二1笔層中形成開口的步驟中,採用圖案化罩㈣ 刻條::導閑間介電層時,藉由調“ 八+牛先私除。卩分導體層,使得導體層中且 二电層的開口,然後再以導體層為 ; 層嫩電層中形成寬度較 而且’在本發明的反及閘型非_ 去中’在閘間介電層中形成開口的步驟中 200840025 22641twf.doc/e 圖案化光阻層進行光阻熱回流製程以使圖案化光阻 口變小。然後以圖案化光阻層作為罩幕,移除部分‘體: 與閘間介電層而形成寬度較小的開口。 曰After the step of the Pi.ap/^ 22641 tw/doc layer, the photoresist layer further includes a photoresist thermal reflow process to reduce the opening size of the patterned photoresist layer. In the embodiment of the present invention, the method of "reversing" the forwarding memory is further included on the substrate to form a plurality of bit lines and a plurality of dummy bits, and, bit lines and dummy bits. The meta wires are arranged in parallel in the first direction, and are in the first region and are electrically connected to the secret regions, and the virtual 3 wires are located in the second region. In the embodiment, the selected gate line extension plug of the gate type non-volatile memory is made of the material of the dielectric layer, and the material of the inter-gate dielectric layer is included on the substrate. A source line is formed. The source line extends in a second direction and is electrically connected to the source region. In an embodiment of the invention, it is also formed on the active area in the second zone in an embodiment of the invention. In one embodiment of the invention, yttria/tantalum nitride/yttria is included. In the method of manufacturing the gate-type non-volatile memory, in the step of forming an opening in the two-layer layer, a patterned mask (four) is used: when the dielectric layer is guided, by adjusting "eight + Niu first privately. Separate the conductor layer so that the opening of the conductor layer and the two electrical layers, and then the conductor layer; the thickness of the layer of the tender layer is formed and 'in the anti-gate type of the invention is not _ In the step of forming an opening in the dielectric layer of the gate, 200840025 22641twf.doc/e, the patterned photoresist layer is subjected to a photoresist thermal reflow process to make the patterned photoresist stop small. Then the patterned photoresist layer is used as a mask. Curtain, remove part of the 'body: and the dielectric layer with the gate to form a smaller opening. 曰

在本發明的反及閘型非揮發性記憶體之製造方法中, 由於在間間介電層中形成開口,此開口只位於位元線區 中,而未形成於虛擬位元線區中,因此可以直接將選 極線延伸插塞形成於虛齡元線區巾。本發料需要 用於選擇閘極線延伸插塞的大的元件隱區,因此可 省記憶體面積,提高元件集積度。 P 而且,本發明可以採用井區延伸插塞形成的區域作為 虛擬位元線區,因此不需要形成選擇閘極線延伸插塞專用 的虛擬位70線區,而可以節省記憶體面積,提高元件集積 此外,選擇閘極線延伸插塞的正下方仍形成有閑間介 電層’ S此可崎決因選擇問極線延伸插塞與其下方的主 動區直接連接所造成的記憶體元件可#度變差的問題。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖2A為繪不本發明之較佳實施例的反及閘型非揮發 性€憶體之上視圖。圖2β為繪示圖2A中沿A_A,線之結 構剖面圖。圖2C為繪不圖2A中沿B-B,線之結構剖面圖。 圖2D為繪示圖2A中沿C-C,線之結構剖面圖。 请麥照圖2A至圖2D,本發明之反及閘型非揮發性記 200840025 FuaF/〇*T 22641twf.doc/e 憶體例如是由多個記憶胞陣列MAR所構成。 各記憶胞陣列MAR例如是設置於基底200上。基底 200例如疋石夕基底。在基底200中例如設置元件隔離結構 202以定義出主動區2〇4。元件隔離結構202例如是淺溝渠 隔離結構或場氧化層。元件隔離結構2〇2在X方向上平行 排列,並往X方向延伸。 各記憶胞陣列MAR包括多條位元線BL1〜BLn與多 條虛擬位元線DBL1〜DBL8、多條字元線WL1〜WLx、二 選擇閘極線SGS、SGD、多個汲極區D、多個源極區s以 及源極線SL。 多條位元線BL1〜BLn與多條虛擬位元線DBL1〜 〇6!^8(〇1111111^6忮〇1^)例如平行設置於基底200上,並往 X方向延伸。每隔N條位元線BL1〜BLn設置Μ條虛擬 位元線DBL1〜DBL8 ’ Ν、Μ為正整數。在本實施例中, 虛擬位元線DBL1〜DBL8的數目是以8條(Μ=8)為例做說 明,當然虛擬位元線DBL1〜DBL8的數目也可以小於8 條或大於8條。位元線BL1〜BLn的數目則可以為1〇〇〇 條(N= 1000),當然位元線BL1〜BLn的數目也可以小於 1000條或大於1000條。N條位元線BL1〜BLn構成位元 線區BA,8條虛擬位元線DBL1〜DBL8構成虛擬位元線 區 DBA 〇 多條字元線WL1〜WLx例如平行設置於基底200上, 並往Y方向延伸。X方向與X方向交錯。每一位元線BL1 〜BLn與所有字元線WL1〜WLx之交點對應記憶胞行 13 200840025 ρι.αρ / 〇·^ 22641 twf.doc/e MR。所有字元線WL1〜WLx跨在主動區2〇2上方的部分 作為一個記憶胞Μ。在位元線BL1〜BLn下方設置有由這 些記憶胞Μ構成的記憶胞行MR。 如圖2B所示,各記憶胞Μ由基底200起依序為介電 層206、浮置閘極208、閘間介電層21〇、控制閘極212、 換雜區214。 控制閘極212例如是設置於基底200上。控制閘極212In the method for fabricating the anti-gate type non-volatile memory of the present invention, since the opening is formed in the inter-dielectric layer, the opening is only located in the bit line region, and is not formed in the dummy bit line region. Therefore, the pole line extension plug can be directly formed on the dummy age line area towel. The present invention requires a large component hidden region for selecting a gate line extension plug, thereby saving memory area and increasing component accumulation. Moreover, the present invention can use the area formed by the well extension plug as the virtual bit line area, so there is no need to form a virtual bit 70 line area dedicated to selecting the gate line extension plug, thereby saving memory area and improving components. In addition, the memory layer can be formed directly under the gate extension plug. The problem of deterioration. The above described features and advantages of the present invention will become more apparent from the following description. [Embodiment] Fig. 2A is a top view showing a non-volatile non-volatile memory of a preferred embodiment of the present invention. Fig. 2 is a cross-sectional view showing the structure taken along line A_A in Fig. 2A. 2C is a cross-sectional view showing the structure taken along line B-B of FIG. 2A. 2D is a cross-sectional view showing the structure taken along line C-C of FIG. 2A. 2A to 2D, the anti-gate type non-volatile record of the present invention 200840025 FuaF/〇*T 22641twf.doc/e The memory is composed of, for example, a plurality of memory cell arrays MAR. Each of the memory cell arrays MAR is provided, for example, on the substrate 200. The substrate 200 is, for example, a sapphire substrate. An element isolation structure 202 is provided, for example, in the substrate 200 to define an active region 2〇4. The element isolation structure 202 is, for example, a shallow trench isolation structure or a field oxide layer. The element isolation structures 2〇2 are arranged in parallel in the X direction and extend in the X direction. Each memory cell array MAR includes a plurality of bit lines BL1 BLBLn and a plurality of dummy bit lines DBL1 DBDBL8, a plurality of word lines WL1 WLWLx, two select gate lines SGS, SGD, and a plurality of drain regions D, A plurality of source regions s and source lines SL. The plurality of bit lines BL1 to BLn and the plurality of dummy bit lines DBL1 to 〇6!^8 (〇1111111^6忮〇1^) are disposed, for example, in parallel on the substrate 200 and extend in the X direction. The virtual dummy bit lines DBL1 to DBL8' Ν and Μ are set to positive integers every N bit lines BL1 to BLn. In the present embodiment, the number of virtual bit lines DBL1 to DBL8 is exemplified by eight (Μ=8). Of course, the number of virtual bit lines DBL1 to DBL8 may be less than eight or more than eight. The number of bit lines BL1 BLBLn may be 1 ( (N = 1000), and of course, the number of bit lines BL1 BLBLn may be less than 1000 or more than 1000. The N bit lines BL1 to BLn constitute the bit line area BA, and the eight dummy bit lines DBL1 to DBL8 constitute the virtual bit line area DBA. The plurality of word lines WL1 to WLx are, for example, arranged in parallel on the substrate 200, and Extending in the Y direction. The X direction is interlaced with the X direction. The intersection of each of the bit lines BL1 to BLn and all the word lines WL1 to WLx corresponds to the memory cell line. 200840025 ρι.αρ / 〇·^ 22641 twf.doc/e MR. All of the word lines WL1 WLWLx span the portion above the active area 2〇2 as a memory cell. Below the bit lines BL1 to BLn, a memory cell line MR composed of these memory cells is provided. As shown in FIG. 2B, each of the memory cells is sequentially formed by the substrate 200 as a dielectric layer 206, a floating gate 208, an inter-gate dielectric layer 21, a control gate 212, and a replacement region 214. The control gate 212 is provided, for example, on the substrate 200. Control gate 212

的材質例如是摻雜多晶矽、金屬或金屬矽化物等導體材 料。而且’控制閘極212可以是由兩層或兩層以上的導體 材料所構成。在本實施例中,控制閘極212例如是由兩層 摻雜多晶矽所構成。 曰 浮置閘極208例如是設置於控制閘極212與基底2〇〇 =間,浮置閘極208的材質包括導體材料(如摻雜多晶矽 等)。 介電層208例如是設置於基底2〇〇與浮置閘極2〇8之 間,其材質例如是氧化矽。閘間介電層21〇例如是設置於 ,制閘極212與浮置閘極2〇8之間。閘間介電層21〇例如 =底氧化層210a、氮化層210b、頂氧化層21〇c構成。卷 =閘間^電層2丨0的材f也可以是氧切、.氮化梦、氮^ 石夕或複合介電材料如氧化石夕/氮化石夕等。 摻雜區214例如設置於記憶胞M _的基底2〇〇中。 曰由摻雜區214而使這些記憶胞乂串聯連接在一起。 =個祕區D例如分別設置於各記憶胞行之—側 細中,這些汲極區D例如分別藉由插塞226而電 14 200840025 pi.a-p/o^t 22641twf.doc/e 性連接位元線BL1〜BLn。多個源極區8例如分別設置於 各記憶胞行MR之另一側的基底2〇〇中。 汉 、 源極線SL例如設置於記憶胞行MR之源極區s側的 基底200上,在Y方向上延伸並電性連接源極區$。 二選擇閘極線SGD、SGS例如分別設置於字元線wu 〜WLx之兩側。而且,選擇閘極線SGD設置於汲 D與各記憶胞行MR之間,選擇閘極線SGS設置於各源極 區S與各記憶胞行MR之間。每一位元線BL1〜B]J與二 選擇閘極線SGD、SGS之交點分別對應一個選擇單元 STD、STS。二選擇閘極線SGD、SGS跨在主動區202上 方的部分作為一個選擇單元STD、STS。 如圖2B所示,二選擇閘極線std、STS由基底200 起依序為介電層216、導體層218、閘間介電層220、導體 層 222。 導體層218例如設置於基底2〇〇上。導體層218的材 質例如是摻雜多晶矽。導體層218與記憶胞Μ的浮置閘極 208可以是在同一道製程中製作出來的,因此導體層218 的材質與浮置閘極208的材質相同。當然,導體層218與 記憶胞Μ的浮置閘極208的材質也可以不相同。 介電層216例如設置於導體層218與基底200之間。 介電層216的材質例如是氧化矽。介電層216與記憶胞μ 的介電層206可以是在同一道製程中製作出來的,因此介 電層216與介電層206的材質與厚度可以相同。當然,介 電層216與介電層206的材質或厚度也可以不相同。 15 200840025 pi.ap/o^ 22641twf.doc/e 導體層222例如設置於導體層218上。導體層222與 記憶胞Μ的控制閘極212可以是在同一道製程中製作出來 的,因此導體層222的材質與控制閘極212的材質相同, 可以由兩層或兩層以上的導體材料所構成。當然,導體層 222與記憶胞IV[的控制閘極212的材質也可以不相同。在 本只施例中’ ‘體層222例如是由兩層摻雜多晶石夕所構成。 閘間介電層220例如設置於導體層222與導體層218 之間。閘間介電層220中設置有開口 224,使導體層222 與導體層218電性連接。如圖2Α所示,開口 224只位於 位元線區ΒΑ中。亦即,在虛擬位元線區Ββα中,閘間介 電層220中並未設置有開口 224(如圖2C、圖2D所示)。 而且,如圖2B所示,在導體層222中,下層的導體層中 也具有開口,上層的導體層穿過下層的導體層中的開口與 閘間介電層220中的開口 224,而與導體層218電性連接。 如圖2A、圖2C、圖2D所示,本發明之反及閘型非 揮發性記憶體更包括多個選擇閘極線延伸插塞228a、 228b、230a,分別電性連接二選擇閘極線SGD、SGS。選 擇閘極線延伸插塞228a、228b、230a只設置於虛擬位元線 區DBA中。而且,選擇閘極線延伸插塞228a、228b、23〇a 例如設置於主動區204上。 如圖2A所示,記憶胞陣列MAR例如在X方向上成 鏡像配置,相鄰兩個記憶胞陣列MAR共用汲極區D或源 極區S。舉例來說,記憶胞陣列MAR在選擇閘極線SGD 側與相鄰的記憶胞陣列MAR共用汲極區D ;記憶胞陣列 16 200840025 puap/〇-+ 22641twf.doc/e MAR在選擇閘極線SGS側與相鄰的記憶胞陣列MAR共 用源極區S(及源極線)。 nThe material is, for example, a conductive material such as doped polysilicon, metal or metal telluride. Further, the control gate 212 may be composed of two or more layers of conductor material. In the present embodiment, the control gate 212 is composed of, for example, two layers of doped polysilicon.浮 The floating gate 208 is disposed, for example, between the control gate 212 and the substrate 2〇〇, and the material of the floating gate 208 includes a conductor material (such as doped polysilicon or the like). The dielectric layer 208 is disposed, for example, between the substrate 2 and the floating gate 2A, and is made of, for example, tantalum oxide. The inter-gate dielectric layer 21 is disposed, for example, between the gate 212 and the floating gate 2〇8. The inter-gate dielectric layer 21 is composed of, for example, a bottom oxide layer 210a, a nitride layer 210b, and a top oxide layer 21〇c. The material f of the coil = gate ^ electrical layer 2 丨 0 may also be oxygen cut, nitriding dream, nitrogen ^ stone eve or composite dielectric material such as oxidized stone eve / nitrite eve. The doped region 214 is disposed, for example, in the substrate 2 of the memory cell M_. These memory cells are connected in series by doping regions 214. = a secret zone D, for example, respectively disposed in the side of each memory cell, and these drain regions D are electrically connected, for example, by plugs 226. 200840025 pi.ap/o^t 22641twf.doc/e connection Yuan lines BL1 to BLn. The plurality of source regions 8 are respectively disposed, for example, in the substrate 2'' on the other side of each of the memory cell rows MR. For example, the source line SL is disposed on the substrate 200 on the source region s side of the memory cell row MR, and extends in the Y direction and is electrically connected to the source region $. The two selection gate lines SGD and SGS are respectively disposed on both sides of the word lines wu to WLx, for example. Further, the selection gate line SGD is disposed between 汲 D and each of the memory cell rows MR, and the selection gate line SGS is disposed between each of the source regions S and each of the memory cell rows MR. The intersection of each of the bit lines BL1 to B]J and the two selected gate lines SGD and SGS corresponds to one selection unit STD and STS, respectively. The second selection gate line SGD, SGS crosses the active area 202 as a selection unit STD, STS. As shown in FIG. 2B, the second selection gate lines std and STS are sequentially formed by the substrate 200 as a dielectric layer 216, a conductor layer 218, an inter-gate dielectric layer 220, and a conductor layer 222. The conductor layer 218 is provided, for example, on the substrate 2A. The material of the conductor layer 218 is, for example, doped polysilicon. The conductive layer 218 and the floating gate 208 of the memory cell can be fabricated in the same process. Therefore, the material of the conductor layer 218 is the same as that of the floating gate 208. Of course, the material of the conductive layer 218 and the floating gate 208 of the memory cell may also be different. The dielectric layer 216 is disposed, for example, between the conductor layer 218 and the substrate 200. The material of the dielectric layer 216 is, for example, ruthenium oxide. The dielectric layer 216 and the dielectric layer 206 of the memory cell μ can be fabricated in the same process, so that the dielectric layer 216 and the dielectric layer 206 can be made of the same material and thickness. Of course, the material or thickness of the dielectric layer 216 and the dielectric layer 206 may also be different. 15 200840025 pi.ap/o^ 22641twf.doc/e The conductor layer 222 is disposed, for example, on the conductor layer 218. The conductor layer 222 and the control gate 212 of the memory cell can be fabricated in the same process. Therefore, the material of the conductor layer 222 is the same as that of the control gate 212, and can be composed of two or more layers of conductor materials. Composition. Of course, the material of the control layer 212 of the conductor layer 222 and the memory cell IV may also be different. In the present embodiment, the ' body layer 222 is composed, for example, of two layers of doped polycrystalline stone. The inter-gate dielectric layer 220 is disposed, for example, between the conductor layer 222 and the conductor layer 218. An opening 224 is disposed in the inter-gate dielectric layer 220 to electrically connect the conductor layer 222 to the conductor layer 218. As shown in FIG. 2A, the opening 224 is only located in the bit line region. That is, in the dummy bit line region Ββα, the opening 224 is not provided in the inter-gate dielectric layer 220 (as shown in Figs. 2C and 2D). Moreover, as shown in FIG. 2B, in the conductor layer 222, the lower layer of the conductor layer also has an opening, and the upper layer of the conductor layer passes through the opening in the lower layer of the conductor layer and the opening 224 in the inter-gate dielectric layer 220, and The conductor layer 218 is electrically connected. As shown in FIG. 2A, FIG. 2C and FIG. 2D, the anti-gate type non-volatile memory of the present invention further includes a plurality of selective gate line extension plugs 228a, 228b, and 230a, which are electrically connected to the two selection gate lines. SGD, SGS. The selected gate line extension plugs 228a, 228b, 230a are disposed only in the dummy bit line area DBA. Moreover, the gate line extension plugs 228a, 228b, 23A are selected, for example, on the active area 204. As shown in Fig. 2A, the memory cell array MAR is mirrored, for example, in the X direction, and the adjacent two memory cell arrays MAR share the drain region D or the source region S. For example, the memory cell array MAR shares the drain region D with the adjacent memory cell array MAR on the selection gate line SGD side; the memory cell array 16 200840025 puap/〇-+ 22641twf.doc/e MAR is in the selection gate line The SGS side shares the source region S (and the source line) with the adjacent memory cell array MAR. n

選擇閘極線延伸插塞228a、228b例如設置於共用;;及極 區D的相鄰選擇閘極線SGD上,且位於虛擬位元線區DBA 中。選擇閘極線延伸插塞228a、228b例如設置於相同的虛 擬位元線DBL1〜DBL8的相對應位置上。舉例來說,選擇 閘極線延伸插塞228a、228b都設置於虛擬位元線DBL4〜 DBL5 上。 選擇閘極線延伸插塞230a、230b例如設置於共用源極 區S的相鄰選擇閘極線SGS上,且位於虛擬位元線區DBA 中。選擇閘極線延伸插塞230a、230b例如設置於不同的虛 擬位元線DBL1〜DBL8的相對應位置上,以避免選擇閘極 線延伸插塞230a、230b彼此相互干擾。舉例來說,選擇閘 極線延伸插塞230a設置於虛擬位元線DBL2〜DBL3的相 對應位置上;選擇閘極線延伸插塞230b設置於虛擬位元線 DBL6〜DBL6的相對應位置上。 在本發明之非揮發性記憶體中,由於在閘間介電層 220中設置有開口 224,此開口 224只位於位元線區BA 中,而未形成於虛擬位元線區DBA中,因此可以直接將 選擇閘極線延伸插塞228a、228b、230a、230b設置於虛擬 位元線區DBA中。本發明不需要設置用於選擇閘極線延 伸插塞的大的元件隔離區,因此可以節省記憶體面積,提 高元件集積度。 而且,本發明可以採用井區延伸插塞形成的區域作為 17 200840025 ρι.αρ / 〇*+ 2264 ltwf.doc/e 虛擬位元線區DBA,因此不需要形成選擇閘極線延伸插塞 228a、228b、230a、230b專用的虛擬位元線區DBA,而可 以節省記憶體面積,提高元件集積度。 此外,選擇閘極線延伸插塞的正下方仍設置有閘間介 • 電層220,因此可以解決因選擇閘極線延伸插塞與其下方 • 的主動區直接連接所造成的記憶體元件可靠度變差的問 題。 上述說明本發明之反及閘型非揮發性記憶體,接著說 明本發明之反及閘型非揮發性記憶體的製造方法。圖3A 至圖3E為繪示本發明之較佳實施例的反及閘型非揮發性 記憶體之製造流程剖面圖。圖4A至圖4F為繪示本發明之 較佳實施例的反及閘型非揮發性記憶體之製造流程剖面 圖。圖4G為示本發明之較佳實施例的反及閘型非揮發 性g己憶體之結構剖面圖。其中,圖3A至圖3E為圖2A中 沿A-A’線之製造流程剖面圖。圖4A至圖4F為圖2A中沿 線之製造流程剖面圖。圖4G為圖2A中沿C-C,線之 (’ 結構剖面圖。 請參照圖3A及圖4A,首先提供基底300,基底300 . 例如是矽基底。此基底300例如可區分為位元線區302(對 • 應圖2A的位元線區BA)與虛擬位元線區304(對應圖2B的 虛擬位元線區DBA)。位元線區302與虛擬位元線區304 在圖2A所示X方向上平行排列。然後,於基底300中形 成多個元件隔離結構,以於相鄰之元件隔離結構之間定義 出主動區。元件隔離結構例如是淺溝渠隔離結構或是場氧 18 200840025 ρ^αρ/ο^ 22641twf.doc/e 化層。淺溝雜離結構或是魏化層之形成方法可採用任 何習知的方法。元件隔離結構在圖Μ所示的又方 行排列。 十 接著,於基底300上形成一層介電層306。介電層3〇6 如是氧化矽。而且介電層3。6的形成方“如是 f; 之^整個基底上形成—層導體層308,導體層308 例如ί換雜多晶石夕,此導體層3〇8之形成方法例如 :子拮化t乳相沈積法形成一層未摻雜多晶矽層後,進行 用化鬼3驟以形成之;或者採贼場植人《的方式利 而Γ之。然後,圖案化此導體層3〇8 到製圖案化後之導體層微影姓 照圖3B及圖4B,於基底上形成問 310,此閘間介電層310之材質 包層 石夕。此閘間介電$ 31(^m 織切/氧化 成-層底氧化==方=是^熱氧化法形 ΤιΓ ΓΓ 化,;氧:氮::或 化罩幕Ϊ Sit基ί』:導體? 3U與-層圖案 導體層312之形成方“如是,雜多晶石夕,此 層未穆雜多曰石二,1 化學氣相沈積法形成一 以夕一料,進聽子植 19 200840025The gate line extension plugs 228a, 228b are disposed, for example, on a common;; and adjacent select gate lines SGD of the pole region D, and are located in the dummy bit line region DBA. The gate line extension plugs 228a, 228b are, for example, disposed at corresponding positions of the same virtual bit lines DBL1 to DBL8. For example, the gate line extension plugs 228a, 228b are selected to be disposed on the dummy bit lines DBL4 to DBL5. The gate line extension plugs 230a, 230b are disposed, for example, on the adjacent selection gate line SGS of the common source region S, and are located in the dummy bit line region DBA. The selection gate line extension plugs 230a, 230b are disposed, for example, at corresponding positions of the different virtual bit lines DBL1 to DBL8 to prevent the selected gate line extension plugs 230a, 230b from interfering with each other. For example, the selection gate line extension plugs 230a are disposed at corresponding positions of the dummy bit lines DBL2 to DBL3; and the selection gate line extension plugs 230b are disposed at corresponding positions of the dummy bit lines DBL6 to DBL6. In the non-volatile memory of the present invention, since the opening 224 is provided in the inter-gate dielectric layer 220, the opening 224 is only located in the bit line area BA, and is not formed in the dummy bit line area DBA. The selection gate line extension plugs 228a, 228b, 230a, 230b can be directly disposed in the dummy bit line area DBA. The present invention does not require the provision of a large element isolation region for selecting a gate line extension plug, thereby saving memory area and increasing component accumulation. Moreover, the present invention can use the area formed by the well extension plug as the 17200840025 ρι.αρ / 〇*+ 2264 ltwf.doc/e virtual bit line area DBA, so there is no need to form the selective gate line extension plug 228a, The virtual bit line area DBA dedicated to 228b, 230a, and 230b can save memory area and increase component accumulation. In addition, the gate dielectric layer 220 is still disposed directly below the gate extension plug, so that the memory component reliability caused by the direct connection of the gate extension plug and the active region below the gate can be solved. The problem of deterioration. The above description of the anti-gate type non-volatile memory of the present invention, followed by the method of manufacturing the anti-gate type non-volatile memory of the present invention. 3A to 3E are cross-sectional views showing the manufacturing process of the anti-gate type non-volatile memory according to the preferred embodiment of the present invention. 4A through 4F are cross-sectional views showing the manufacturing process of the anti-gate type non-volatile memory of the preferred embodiment of the present invention. Fig. 4G is a cross-sectional view showing the structure of the anti-gate type non-volatile g-resonance of the preferred embodiment of the present invention. 3A to 3E are cross-sectional views showing the manufacturing flow along the line A-A' in Fig. 2A. 4A to 4F are cross-sectional views showing the manufacturing process along the line of Fig. 2A. 4G is a cross-sectional view taken along line CC of FIG. 2A ('. FIG. 3A and FIG. 4A, first providing a substrate 300, a substrate 300. For example, a germanium substrate. This substrate 300 can be distinguished, for example, as a bit line region 302. (pair • bit line area BA of Figure 2A) and virtual bit line area 304 (corresponding to virtual bit line area DBA of Figure 2B). Bit line area 302 and virtual bit line area 304 are shown in Figure 2A. A plurality of element isolation structures are formed in the substrate 300 to define an active region between adjacent element isolation structures. The element isolation structure is, for example, a shallow trench isolation structure or field oxygen 18 200840025 ρ ^αρ/ο^ 22641twf.doc/e layer. The shallow groove heterostructure or the formation method of the Weihua layer can be any conventional method. The element isolation structure is arranged in the square line shown in the figure. A dielectric layer 306 is formed on the substrate 300. The dielectric layer 3〇6 is yttrium oxide, and the formation layer of the dielectric layer 3.6 is formed as a layer of conductor layer 308 on the entire substrate. 308 For example, ί is replaced with polycrystalline spine, and the formation method of the conductor layer 3〇8 is, for example, sub-stallization After forming a layer of undoped polycrystalline yttrium by the emulsion phase deposition method, it is formed by using the squid 3; or the method of cultivating the thief field. Then, the conductor layer 3图案8 is patterned. The patterned conductor layer lithography is shown in FIG. 3B and FIG. 4B, and the pattern 310 is formed on the substrate, and the material of the gate dielectric layer 310 is covered with a stone. The gate dielectric is $31 (^m woven cut/ Oxidation-layer bottom oxidation == square = yes ^ thermal oxidation method Τ Γ Γ ,,; oxygen: nitrogen:: or mask Ϊ Sit ί 』: conductor? 3U and - layer pattern conductor layer 312 forming side" If it is, the heteropolycrystalline stone eve, this layer is not a lot of meteorites, 1 chemical vapor deposition method to form a eve of a material, into the child planting 19 200840025

Ptap/δΗ i2641twf.doc/e n 採用臨場植人純的方式化學氣相沈積法而形成之。 圖案?罩幕層州具有開口 S1 “此開口 m所在的位置 為後續形成選擇閘極結構的區域。開口 316在圖2A所示 的γ方向延伸,且只形成在位元線區302中,而並未形成 於虛擬位元線區304中。圖案化罩幕層314的材質例如是 光阻材料,其形成方法例如是先於基底上形成一層光阻層 後,對該紐層進行曝光、顯影而形成之。接著,移除^ 分導體層312以暴露出閘間介電層31〇。移除部分導體声 312後,再以導體層312為罩幕移除部分閘間介電層3/, 以於閘間介電層310中形成開口 318。開口 318在圖从所 向延伸’且只形成在位元線區3〇2中,而並未形 31(uT方、ΓΓί11 3(Η中。移除導體層312及閘間介電層 ^法已括乾式钱刻法’例如是反應性離子侧法。 :=3C及圖4C ’移除圖案化罩幕層314。移除 i声3m目314之方法例如是先以氧電漿灰化圖案化罩 後曰;再進行濕式清洗製程。移除圖案化罩幕層314 、J如疋^乡雜夕晶秒。導靜爲 相沈積法形成-層未:雜多晶 320、312與導S體層3 。在虛^位元線區则中導健層 間則隔著閘間介電層31 〇。 20 200840025 pi.ap/^ 22641twf.doc/e 請參照圖3D及圖4D,圖案化導體層32〇、導體層 312、閘間介電層310、導體層308、介電層3〇6,以來成 多個堆疊閘極結構322與多個選擇閘極結構324。最閘 極結構322由導體層320a、導體層312a、閘間介電層31〇、 • 導體層308a、介電層3〇6a所構成。導體層32〇a與"導體層 • 作為記憶胞的控制閘極。導體層308a作為^情胞二 浮置閘極。介電層306a作為記憶胞的穿隧介電層。閘 (極結構324由導體層320b、導體層312b、閘間介電層31〇、 導體層308b、介電層306b所構成。導體層32%、曰導體層 3^2b、導體層308b—起作為選擇閘極。介電層3〇沾作^ 選擇閘極介電層。多個堆疊閘極結構322與多個選擇閑極 結構324在圖2A所示的γ方向延伸,且跨過位元線區3〇2 與,擬位元線區304。開口 318位於選擇閘極結構324内。 堆疊閘極結構322位於二個選擇閘極結構324之間。 之後,於堆疊閘極結構322與選擇閘極結構324兩侧 〔 的基底中形成摻雜區326a、源極區326b與汲極區326c。 摻雜區326a例如形成於堆疊閘極結構322彼此之間及堆疊 • 間極結構322與選擇閘極結構324之間。源極區32邰與汲 極區326C利分別形成於選擇閘極結構324外側的基底300 • 中。 一 ^接著,於基底3〇〇上形成層間絕緣層328。層間絕緣 層328的材質例如是氧化矽、磷矽玻璃、硼磷矽玻璃或其 他適合之介電材料,其形成方法例如是化學氣相沈積法。 然後’於層間絕緣層328中形成電性連接源極區326b的源 21 200840025 puap/〇H 22641twf.doc/e 極線330。源極線330在圖2A所示的γ方向延伸。 於層間絕緣層328中形成源極線33〇的步驟如下。首 先移除部分層間絕緣層328以形成暴露源極區遍的溝 渠。接著’於基底300上形成一層填滿溝渠之導體材料層。 之後,化學频研磨法_綱法移料分導體材料 層,直到暴露出層間絕緣層328。其中溝渠的形成方法例 如疋微影姓刻技術。 請參照圖3E及圖4E,於基底300上形成另一層層間 絕緣層332。層間絕緣層332的材質例如是氧化石夕、石舞石夕 玻璃、硼磷矽玻璃或其他適合之介電材料,其形成方法例 如是化學氣相沈積法。然後,於位元線區3〇2的層間絕緣 層332中形成为別笔性連接〉及極區326c的多個插塞334。 於層間絕緣層332中形成插塞334的步驟如下。首先 移除部分層間絕緣層332、層間絕緣層328以形成分別暴 露汲極區326c的多個開口。接著,於基底3〇〇上形成一層 填滿開口之導體材料層。之後,利用化學機械研磨法或回 钱刻法移除部分導體材料層,直到暴露出層間絕緣層 332。其中開口的形成方法例如是微影蝕刻技術。 之後,於基底300上形成多條位元線336a與多條虛擬 位元線336b。多條位元線336a形成於位元線區3〇2中, 且藉由插塞334而電性連接汲極區326c。多條虛擬位元線 336b形成於虛擬位元線區304。多條位元線336a與多條虛 擬位元線336b的形成方法例如是於基底300上形成一層導 體材料層後,進行微影蝕刻製程而形成之。多條位元線 22 200840025 ρι.αρ / 22641twf.doc/e 336a與多條虛擬位元線336b例如是位於主動區上方,且 在圖2A所示的X方向上平行排列。 接著,請參照圖4F及圖4G,以說明選擇閘極線延伸 插塞338a、338b的形成製程。由於選擇閘極線延伸插塞 338a、338b是形成於虛擬位元線區304中,因此在下述說 明中,只針對虛擬位元線區304作說明。圖4F及圖4G都 是接續於圖4E,只是圖4F為圖2A中沿B-B,線之剖面圖。 圖4G為圖2A中沿C-C’線之剖面圖。 如圖4F及圖4G所示,移除部分虛擬位元線336b、層 間絕緣層332、層間絕緣層328以形成分別暴露選擇閘極 結構324的多個開口。然後,於開口中形成與選擇閘極結 構324電性連接的選擇閉極線延伸插塞338&、幻肋。選擇 閘極線延伸插塞孤、3通例如是位於不同的虛擬位元線 3遍的相對應位置上,且可形成在主動區上。後續完成非 揮發性記賴之製程為習知技術者關知,在此科贅述。 在本發明的反及_鱗紐記㈣之製造方法中, 層310中形成開口 318的步驟中,採用圖案化 士罩幕’在移除部分導體層312與閑間= 層310日守,稭由調整钱 . 兒 使得導體層312中且除部分導體層312, 再以導體層祀為罩間介電層31G的開口,然後 以# η π入+a馮罩幕私除部分閘間介電層310。因此可 以在閘間介電層31〇 口此了 說,使用站雷射作為汽旦成^度較小的開口318。舉例來 的圖案化光阻層無法程的曝光光源,所製作出來 形成100奈米以下的線寬,無法 23 200840025 puap/o^ z!2641twf.doc/e 直接利^案化光阻層製作出寬度小於1〇〇奈米的開口 318。但疋藉由採用上述方法,可以使閘間介電層中的 開口 318的寬度約為7〇奈米左右。 在本發明的反及閘型非揮發性記憶體之製造方法中, • 由於在閘間介電層310中形成開口 318,此開口 318只位 • 於位元線區3〇2中,而未形成於虛擬位元線區304中,因 此可以直接將選擇閘極線延伸插塞338a、338b形成於虛擬 Γ 位^線區304中。本發明不需要形成用於選擇閘極線延伸 插基的大的元件隔離區,因此可以節省記憶體面積,提高 元件集積度。 而且,本發明可以採用井區延伸插塞形成的區域作為 虛擬位元線區304,因此不需要形成選擇閘極線延伸插塞 338a、338b專用的虛擬位元線區304,而可以節省記憶體 面積’提南元件集積度。 此外,選擇閘極線延伸插塞的正下方仍形成有閘間介 電層310,因此可以解決因選擇閘極線延伸插塞與其下方 G 的主動區直接連接所造成的記憶體元件可靠度變差的問 題。 • 圖5A至圖5D為緣示本I明之另一較佳實施例的反及 • 閘型非揮發性記憶體之製造流程剖面圖。圖5A至圖5D為 圖2A中沿A-A’線之製造流程剖面圖。圖5A至圖5D中', 構件與圖4A至圖4E相同者,給予相同的標號,並省略其 詳細說明。 請參照圖5A,其是接縯於圖4A。於基底300上形成 24 200840025 pu.ap/o^ 22641twf.doc/e 一層介電層306與一層導體層3〇8後,於美 氣化石夕/氧切。此閘間介電層31〇之 ^^ 熱氧化法形成-層底氧切層跡接著,再 相尤積法形成-層氮化石夕層现,其後再於氮化石夕層: 上,頂乳化矽層31〇c。當然,閘間介電層31〇之; 可以是氧切、氧切/氮切或其他的介電材料。、 然後’於基底300上形成一層導體層312與— 化光阻層340。圖案化光阻層謂具有開口 3仏。二:口、 342a所在的位置為後續形成選擇閘極結構的區域。^口 342a在圖2A所示的γ方向延伸’且只形成在位元線區搬 ,而亚未形成於虛擬位元線區3〇4巾。圖案化光阻層攝 的形成方法例如是先於基底上形成—層光阻層後,對曰該光 阻層進行曝光、顯影而形成之。然後,對圖案化光阻層°谓 進行光阻熱回流製程而形成圖案化光阻層34〇a。圖幸曰化光 阻層340a具有開口 342b。其中,開口 342b的寬度汜小 =開口 342a的寬度cU。亦即,光阻熱回流製程可以縮小 圖案化光阻層的開口尺寸。接著,圖案化光阻層34加 $,移除部分導體層312與閘間介電層31G,以於問間介 電層310中形成開口 344。開口 344在圖2A所示的丫方 向延伸,且只形成在位元線區302中,而並 位元線區删中。雜導體層312及閘間介電層 去包括乾式韻刻法,例如是反應性離子钱刻法。 請參照圖5B,移除圖案化光阻層34〇a。移除圖案化 25Ptap/δΗ i2641twf.doc/e n is formed by chemical vapor deposition on the spot. The pattern? mask state has an opening S1. "This opening m is located at a region where the gate structure is subsequently formed. The opening 316 extends in the gamma direction shown in FIG. 2A and is formed only in the bit line region 302, and It is not formed in the dummy bit line region 304. The material of the patterned mask layer 314 is, for example, a photoresist material, which is formed by, for example, forming a photoresist layer on the substrate and then exposing and developing the layer. Then, the conductor layer 312 is removed to expose the inter-gate dielectric layer 31. After the partial conductor sound 312 is removed, a portion of the inter-gate dielectric layer 3/ is removed by using the conductor layer 312 as a mask. An opening 318 is formed in the inter-gate dielectric layer 310. The opening 318 extends from the direction of the figure and is formed only in the bit line region 3〇2, but does not form 31 (uT square, ΓΓί11 3 The removal of the conductor layer 312 and the inter-gate dielectric layer method includes a dry ion engraving method, for example, a reactive ion side method. := 3C and FIG. 4C 'Removal of the patterned mask layer 314. Remove the i-acoustic 3 m The method of item 314 is, for example, first patterning the hood with oxygen plasma ashing; then performing a wet cleaning process. Removing the patterned mask Layer 314, J, such as 疋^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The inter-gate dielectric layer 31 〇 20 200840025 pi.ap/^ 22641twf.doc/e Referring to FIG. 3D and FIG. 4D, the patterned conductor layer 32, the conductor layer 312, the inter-gate dielectric layer 310, and the conductor layer 308 are patterned. The dielectric layer 3〇6 has been formed into a plurality of stacked gate structures 322 and a plurality of selected gate structures 324. The most gate structures 322 are composed of a conductor layer 320a, a conductor layer 312a, a gate dielectric layer 31, and a conductor. The layer 308a and the dielectric layer 3〇6a are formed. The conductor layer 32〇a and the “conductor layer” serve as the control gate of the memory cell. The conductor layer 308a serves as the second floating gate of the cell. The dielectric layer 306a serves as the memory. The tunnel has a dielectric layer. The gate structure 324 is composed of a conductor layer 320b, a conductor layer 312b, an inter-gate dielectric layer 31, a conductor layer 308b, and a dielectric layer 306b. The conductor layer 32% and the germanium conductor layer 3 ^2b, the conductor layer 308b serves as a selection gate. The dielectric layer 3 〇 is selected as a gate dielectric layer. The plurality of stacked gate structures 322 and the plurality of selected idler structures 324 are in FIG. The gamma direction shown by A extends across the bit line region 3〇2 and the quasi-bit line region 304. The opening 318 is located within the select gate structure 324. The stacked gate structure 322 is located at two select gate structures 324. Thereafter, a doped region 326a, a source region 326b and a drain region 326c are formed in the substrate on both sides of the stacked gate structure 322 and the selective gate structure 324. The doped region 326a is formed, for example, on the stacked gate structure. 322 is between each other and between the stacking/interpole structure 322 and the selection gate structure 324. The source region 32A and the drain region 326C are respectively formed in the substrate 300• outside the selection gate structure 324. Then, an interlayer insulating layer 328 is formed on the substrate 3A. The material of the interlayer insulating layer 328 is, for example, ruthenium oxide, phosphorous iridium glass, borophosphon glass or other suitable dielectric material, and the formation method thereof is, for example, chemical vapor deposition. A source 21 200840025 puap / 〇 H 22641 twf. doc / e pole line 330 electrically connected to the source region 326b is then formed in the interlayer insulating layer 328. The source line 330 extends in the γ direction shown in FIG. 2A. The step of forming the source line 33A in the interlayer insulating layer 328 is as follows. A portion of the interlayer insulating layer 328 is first removed to form a trench that exposes the source regions. A layer of conductor material filling the trench is then formed on the substrate 300. Thereafter, the chemical frequency grinding method is used to transfer the conductor material layer until the interlayer insulating layer 328 is exposed. Among them, the method of forming the ditch is, for example, a technique of engraving. Referring to FIG. 3E and FIG. 4E, another interlayer insulating layer 332 is formed on the substrate 300. The material of the interlayer insulating layer 332 is, for example, oxidized stone, stone dance glass, borophosphon glass or other suitable dielectric material, and its formation method is, for example, chemical vapor deposition. Then, a plurality of plugs 334 which are connected to the other portions and the polar regions 326c are formed in the interlayer insulating layer 332 of the bit line region 3〇2. The step of forming the plug 334 in the interlayer insulating layer 332 is as follows. A portion of the interlayer insulating layer 332 and the interlayer insulating layer 328 are first removed to form a plurality of openings exposing the drain regions 326c, respectively. Next, a layer of conductor material filled with openings is formed on the substrate 3A. Thereafter, a portion of the conductor material layer is removed by chemical mechanical polishing or money recovery until the interlayer insulating layer 332 is exposed. The method of forming the opening is, for example, a lithography technique. Thereafter, a plurality of bit lines 336a and a plurality of dummy bit lines 336b are formed on the substrate 300. A plurality of bit lines 336a are formed in the bit line region 3〇2, and are electrically connected to the drain region 326c by the plug 334. A plurality of dummy bit lines 336b are formed in the dummy bit line area 304. The method of forming the plurality of bit lines 336a and the plurality of dummy bit lines 336b is formed, for example, by forming a layer of a conductor material on the substrate 300 and performing a photolithography process. The plurality of bit lines 22 200840025 ρι.αρ / 22641twf.doc/e 336a and the plurality of dummy bit lines 336b are, for example, located above the active area and are arranged in parallel in the X direction shown in FIG. 2A. Next, referring to Fig. 4F and Fig. 4G, a forming process for selecting the gate line extension plugs 338a, 338b will be described. Since the gate line extension plugs 338a, 338b are formed in the dummy bit line area 304, only the dummy bit line area 304 will be described in the following description. 4F and 4G are continued from Fig. 4E, except that Fig. 4F is a cross-sectional view taken along line B-B of Fig. 2A. Figure 4G is a cross-sectional view taken along line C-C' of Figure 2A. As shown in FIGS. 4F and 4G, a portion of the dummy bit line 336b, the interlayer insulating layer 332, and the interlayer insulating layer 328 are removed to form a plurality of openings that respectively expose the selected gate structure 324. Then, a selective closed-pole extension plug 338&, a rib is electrically connected to the selection gate structure 324 in the opening. The gate line extension plug is selected, and the 3 channel is, for example, located at a corresponding position of three different virtual bit lines, and can be formed on the active area. Subsequent completion of the non-volatile record process is known to those skilled in the art and is described in this section. In the manufacturing method of the reverse and the symmetry (4) of the present invention, in the step of forming the opening 318 in the layer 310, the patterning mask is used to remove the portion of the conductor layer 312 and the idle layer 310. By adjusting the money, the conductor layer 312 is divided into a part of the conductor layer 312, and then the conductor layer is used as the opening of the inter-cover dielectric layer 31G, and then the part of the inter-gate dielectric is privately separated by #ηππ++. Layer 310. Therefore, it is possible to use the station laser as the opening 318 having a small degree of vaporization in the dielectric layer 31 of the gate. For example, the patterned photoresist layer can not be used to expose the light source, and the line width of 100 nm or less can be formed, and it is impossible to produce a photoresist layer directly from 200840025 puap/o^ z!2641twf.doc/e An opening 318 having a width of less than 1 nanometer. However, by using the above method, the width of the opening 318 in the dielectric layer of the gate can be about 7 nanometers. In the method of fabricating the anti-gate type non-volatile memory of the present invention, • since the opening 318 is formed in the inter-gate dielectric layer 310, the opening 318 is only in the bit line region 3〇2, but not The dummy bit line region 304 is formed, so that the selected gate line extension plugs 338a, 338b can be formed directly in the dummy bit line region 304. The present invention does not require the formation of a large element isolation region for selecting a gate line extension interposer, thereby saving memory area and increasing component accumulation. Moreover, the present invention can use the area formed by the well extension plug as the dummy bit line area 304, so that it is not necessary to form the virtual bit line area 304 dedicated to the selected gate line extension plugs 338a, 338b, thereby saving memory. Area 'Tinan component accumulation. In addition, the gate dielectric layer 310 is formed directly under the gate extension plug, so that the reliability of the memory component caused by the direct connection between the gate extension plug and the active region below the G can be solved. Poor question. Figure 5A to Figure 5D are cross-sectional views showing the manufacturing process of the opposite-gate non-volatile memory of another preferred embodiment of the present invention. 5A to 5D are cross-sectional views showing the manufacturing flow along the line A-A' in Fig. 2A. 5A to 5D, the same components as those in Figs. 4A to 4E are given the same reference numerals, and detailed description thereof will be omitted. Please refer to FIG. 5A, which is shown in FIG. 4A. Formed on the substrate 300 24 200840025 pu.ap / o ^ 22641twf.doc / e a layer of dielectric layer 306 and a layer of conductor layer 3 〇 8 , after the United States gas fossil eve / oxygen cut. The dielectric layer of the gate is formed by a thermal oxidation method to form a layer of oxygen-cut layer traces, followed by a phase-forming method to form a layer of nitride layer, followed by a layer of nitride layer: top, top Emulsified enamel layer 31〇c. Of course, the inter-gate dielectric layer 31 may be oxygen cut, oxygen cut/a nitrogen cut or other dielectric material. Then, a conductive layer 312 and a photoresist layer 340 are formed on the substrate 300. The patterned photoresist layer has an opening 3仏. Second: the location where the port and 342a are located is the area where the gate structure is subsequently formed. The port 342a extends in the γ direction shown in Fig. 2A and is formed only in the bit line region, and the sub is not formed in the virtual bit line region 3〇4. The method of forming the patterned photoresist layer is formed, for example, by forming a photoresist layer on a substrate and then exposing and developing the photoresist layer. Then, the patterned photoresist layer is subjected to a photoresist thermal reflow process to form a patterned photoresist layer 34A. The patterned photoresist layer 340a has an opening 342b. Here, the width of the opening 342b is small = the width cU of the opening 342a. That is, the photoresist thermal reflow process can reduce the opening size of the patterned photoresist layer. Next, the patterned photoresist layer 34 is increased by $, and a portion of the conductor layer 312 and the inter-gate dielectric layer 31G are removed to form an opening 344 in the inter-intermediate dielectric layer 310. The opening 344 extends in the meandering direction shown in Fig. 2A and is formed only in the bit line region 302, and the bit line region is deleted. The hetero conductor layer 312 and the inter-gate dielectric layer include a dry rhyme method, such as a reactive ion engraving method. Referring to FIG. 5B, the patterned photoresist layer 34A is removed. Remove patterning 25

200840025 pt.ap/d^ 22641twf.doc/e 3: VS進之-方法例如是先以氧電漿灰化圖案化光阻層 仃濕式清洗製程。移除圖案化光阻層340a 後,於基底300上形成 曰 中導髀爲t i 層^體層3 〇。在位兀線區302 、咬j !由開口 344而與導體層308接觸。 月:…、圖5C,圖案化導體層32〇、導體層阳、閘間 31G、導體層、介電層遍,以形成多個堆疊間 Γ構322與多個選擇閘極結構324。堆疊閘極結構322 由導體層320a、導體層312a、閘間介電層31〇、導體層 3〇如、介電層306a所構成。選擇閘極結構324由導體層 320b $體層312b、閘間介電層31〇、導體層308b、介電 層306b所構成。開口 344位於選擇閘極結構324内。堆疊 閘極結構322位於二個選擇閘極結構324之間。 接著’於堆疊閘極結構322與選擇閘極結構324兩侧 的基底中形成摻雜區326a、源極區326b與汲極區326c。 然後’於基底300上形成層間絕緣層328,並於層間絕緣 層328中形成電性連接源極區326b的源極線33〇。 請參照圖5D,於基底300上形成另一層層間絕緣層 332。然後,於位元線區3〇2的層間絕緣層332中形成分別 電性連接汲極區326c的多個插塞334。之後,於基底300 上形成多條位元線336a與多條虛擬位元線336b。多條位 元線336a形成於位元線區302中,且藉由插塞334而電性 連接汲極區326c。多條虛擬位元線336b形成於虛擬位元 線區304。後續完成非揮發性記憶體之製程為習知技術者 所周知,在此不再贅述。 26200840025 pt.ap/d^ 22641twf.doc/e 3: The VS-to-method is, for example, a patterned wet photoresist layer with oxygen plasma ashing. After the patterned photoresist layer 340a is removed, a germanium is formed on the substrate 300 as a t i layer 3. The in-situ line region 302 and the bite j are in contact with the conductor layer 308 by the opening 344. Month: ..., Fig. 5C, the patterned conductor layer 32, the conductor layer anode, the gate 31G, the conductor layer, and the dielectric layer are formed to form a plurality of stack structures 322 and a plurality of select gate structures 324. The stacked gate structure 322 is composed of a conductor layer 320a, a conductor layer 312a, an inter-gate dielectric layer 31, a conductor layer 3, and a dielectric layer 306a. The gate structure 324 is selected from the conductor layer 320b, the body layer 312b, the inter-gate dielectric layer 31, the conductor layer 308b, and the dielectric layer 306b. Opening 344 is located within select gate structure 324. The stacked gate structure 322 is located between the two select gate structures 324. A doped region 326a, a source region 326b, and a drain region 326c are then formed in the substrate on both sides of the stacked gate structure 322 and the select gate structure 324. An interlayer insulating layer 328 is then formed on the substrate 300, and a source line 33A electrically connected to the source region 326b is formed in the interlayer insulating layer 328. Referring to FIG. 5D, another interlayer insulating layer 332 is formed on the substrate 300. Then, a plurality of plugs 334 electrically connected to the drain regions 326c, respectively, are formed in the interlayer insulating layer 332 of the bit line region 3〇2. Thereafter, a plurality of bit lines 336a and a plurality of dummy bit lines 336b are formed on the substrate 300. A plurality of bit lines 336a are formed in the bit line region 302, and are electrically connected to the drain region 326c by the plug 334. A plurality of dummy bit lines 336b are formed in the dummy bit line area 304. The subsequent process of completing the non-volatile memory is well known to those skilled in the art and will not be described here. 26

200840025 jpL.ap / 糾 22641twf.doc/e 在本發明的反及閘型非揮發性記憶體之製 在閘間介電層训中形成開σ 344的步驟中,、對圖案朵 2二Ϊ行光阻熱回流製程以使圖案化光阻層340的開 夂小 &gt;成圖案化光阻層340a。然後以圖案化光 ,罩幕’移除部分導體層312與閑間介電層31〇 開口 344。舉例來說,使用Μ雷射作為微影 衣知的曝光光源,所製作出來的圖案化光 成⑽奈米以下的線寬,無法直接利用圖案化細 出見度小於100奈米的開σ 344。但是藉由採用上述方 t可以使關介電層31〇中的開口 344的寬度約為7〇 不水左右。而且此種方法較為簡單,而可以減少元件製造 成本。 、 綜上所述,本發明之非揮發性記憶體,由於在閘間介 電層中設置有開口,此開口只位於位猶區中,而未形成 ^虛擬位元線區巾,因此可以直接將選擇離線延伸插塞 设置於虛擬位元線區巾。本發明不需要設置用於選擇間極 線延伸插塞的大的元件隔離區,因此可以節省記憶體面 積’提高元件集積度。 而且,本發明可以採用井區延伸插塞形成的區域作為 虛擬位元線區,因此不需要形成選擇閘極線延伸插塞專用 的虛擬位兀線區,而可以節省記憶體面積,提高元件集積 度。 … 此外,選擇閘極線延伸插塞的正下方仍設置有閘間介 電層,因此可以解決因選擇閘極線延伸插塞與其下方的主 27 22641twf.d〇c/e 200840025 動區直接連接所造成的記憶體元件可靠度變差的問題。 在本發明的反及閘型非揮發性記憶體之製造方法中, 在閘間介電層中形成開口的步驟中,採用圖案化罩幕層作 ίίΐ ’在移除部分導體層與閘間介電層時,藉由調i餘 Π ^除心‘體層,使件導體層巾具有暴露閉間 屯層的開口,然後再以導體層為罩幕移除部分閘間 層。因此可以在關介電層中形成寬度較小的開口。% 而且,在本發明的反及閘型非揮發性記憶體之事造 ^閘間介電層中形成開口的步驟中,也可以直接對 圖=化先阻層進行光阻熱回流製程以使圖案化光阻層 ^小Lx®案化絲層作為罩幕,齡部分導體居 ”閘間介電層而形成寬度較小的開口。 9 在本發明的反及閘型非揮發性記憶體之製造方法中 =於在^介電層中形成開σ,此開口只位於位元線區 2而未職於虛餘猶區巾,因此可以直接將選擇間 用==成於虛擬位元線區中。本發明不需要形成 用於廷擇閘極線延伸插塞的大的元件隔離區,因此可 省兄憶體面積,提高元件集積度。 产播Γ且^發明可以採用井區延伸插塞形成的區域作為 線區,因此不需要形成選擇閘極線延伸插塞專用 度 70線區,而可以節省記憶體面積,提高元件集積 带声此夕Π卜選擇閑極線延伸插塞的正下方仍形成有閘間介 电層,因此可以解決因選擇閘極線延伸插塞與其下方的主 28 200840025 yi.ay / 〇*+ 22641tWf.d〇C/e 動區直接軸所造賴域體 限定=發rr實施例揭露二 脫離本發明之==領:中具有通常知識者,在不 因此本發明之保背胃可作些权更動與潤飾, 為準。 呆濩粑圍§視後附之申請專利範圍所界定者 【圖式簡單說明】200840025 jpL.ap / 纠 22641twf.doc/e In the step of forming the σ 344 in the dielectric layer training of the gate between the anti-gate type non-volatile memory of the present invention, The photoresist thermal reflow process is such that the opening of the patterned photoresist layer 340 is small &gt; patterned into a photoresist layer 340a. The portion of the conductor layer 312 and the free dielectric layer 31 开口 opening 344 are then removed by patterning the light. For example, using a krypton laser as an exposure light source known as a micro-shadow, the patterned light produced is a line width of (10) nanometer or less, and cannot directly utilize an open σ 344 with a patterning fineness of less than 100 nm. . However, by using the above-mentioned square t, the width of the opening 344 in the dielectric layer 31 can be made approximately 7 〇 not water. Moreover, this method is relatively simple and can reduce component manufacturing costs. In summary, the non-volatile memory of the present invention has an opening in the dielectric layer of the gate, and the opening is only located in the positional area, and the virtual bit line area is not formed, so The offline extension plug is selected to be set to the virtual bit line zone towel. The present invention does not require the provision of a large element isolation region for selecting the interpole extension plug, so that the memory area can be saved&apos; to increase the component accumulation. Moreover, the present invention can use the area formed by the well extension plug as the virtual bit line area, so that it is not necessary to form a virtual bit line area dedicated to selecting the gate line extension plug, thereby saving memory area and improving component accumulation. degree. ... In addition, the gate dielectric layer is still provided directly below the gate extension plug, so that the gate extension plug can be directly connected to the main 27 22641twf.d〇c/e 200840025 moving area below it. The resulting reliability of the memory component is degraded. In the method of manufacturing the anti-gate type non-volatile memory of the present invention, in the step of forming an opening in the dielectric layer between the gates, a patterned mask layer is used as the layer </ br> In the electric layer, the conductor layer towel has an opening exposing the closed layer of the crucible by adjusting the core layer, and then removing a part of the inter-gate layer by using the conductor layer as a mask. It is thus possible to form openings having a smaller width in the dielectric layer. %, in the step of forming an opening in the dielectric layer of the gate-type non-volatile memory of the present invention, it is also possible to directly perform a photoresist thermal reflow process on the patterned first resist layer. The patterned photoresist layer is used as a mask for the small Lx® film layer, and the conductor of the age portion is formed as a dielectric layer of the gate to form a small opening. 9 In the anti-gate type non-volatile memory of the present invention In the manufacturing method, the opening σ is formed in the dielectric layer, and the opening is only located in the bit line area 2 and is not in the dummy area, so that the selection can be directly used in the virtual bit line area. The invention does not need to form a large component isolation region for the gate selection gate extension plug, so that the body area can be saved and the component accumulation degree can be improved. The production zone can be used to extend the plug. The formed area is used as the line area, so there is no need to form a 70-line area for selecting the gate line extension plug special degree, and the memory area can be saved, and the component accumulation band sound can be improved, and the idle line extension plug is directly selected. The gate dielectric layer is still formed, so the gate can be solved The pole extension plug and the main 28 below it are 200840025 yi.ay / 〇*+ 22641tWf.d〇C/e The direct axis of the moving zone is defined by the domain of the radiant domain = the rr embodiment is disclosed. Those who have the usual knowledge, in the absence of the invention, may make some changes and refinements. The stagnation of 濩粑 视 视 视 后 后 后 后 后 后 后 后 后 后 后 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【

圖1A所緣示為習知的反及閘型非揮發性記憶體的結 構上視圖。 圖m為繪示圖1A中沿A-A,線之結構剖面圖。 圖1C為繪示圖1A中沿B-B,線之結構剖面圖。Fig. 1A is a top view showing the structure of a conventional anti-gate type non-volatile memory. Figure m is a cross-sectional view showing the structure taken along line A-A in Figure 1A. 1C is a cross-sectional view showing the structure taken along line B-B of FIG. 1A.

圖2A為繪不本發明之較佳實施例的反及閘型非揮發 性記憶體之上視圖。 X 圖2B為繪示圖2A中沿A-A,線之結構剖面圖。 圖2C為繪示圖2A中沿B-B,線之結構剖面圖。 圖2D為繪示圖2A中沿c_c,線之結構剖面圖。 圖3A至圖3E為繪示本發明之較佳實施例的反及閘型 非揮發性記憶體之製造流程剖面圖。 圖4A至圖4F為繪示本發明之較佳實施例的反及閘型 非揮發性記憶體之製造流程剖面圖。 圖4G為繪示本發明之較佳實施例的反及閘型非揮發 性記憶體之結構剖面圖。 圖5A至圖5D為繪示本發明之另一較佳實施例的反及 閘型非揮發性記憶體之製造流程剖面圖。 29 200840025 pt.ap / ο-τ 2264 ltwf.doc/e 【主要元件符號說明】 100、200、300 :基底 102、202 :元件隔離結構 104、204 :主動區 106 :穿隧介電層 108、208 :浮置閘極 110、210、220、310 :閘間介電層 112、212 :控制閘極 114、206、216、306 :介電層 116、120、218、222、308、308、308a、308b、312、 312a、312b、320、320a、320b :導體層 122、228a、228b、230a、230b、338a、338b :選擇閘 極線延伸插塞 124 :區域 214、326a :摻雜區 210a、310a ··底氧化層 210b、310b :氮化層 210c、310c :頂氧化層 226、334 :插塞 224、316、318、342a、342b、344 :開口 302、BA :位元線區 304、DBA :虛擬位元線區 336a、BL、BL1 〜BLn :位元線 336b、DBL1〜DBL8 :虛擬位元線 30 22641twf.doc/e 200840025 326c、D :没極區 326b、S :源極區 330、SL :源極線 314 :圖案化罩幕層 322 :堆疊閘極結構 324 :選擇閘極結構 328、334 :層間絕緣層 340、340a :圖案化光阻層 dl、d2 :寬度 DA :虛擬區域 Μ :記憶胞 ΜΑ :記憶胞陣列區 MAR ··記憶胞陣列 MR :記憶胞行 SG、SGS、SGD :選擇閘極線 T:選擇單元 WL、WL1〜WLx ··字元線 31Figure 2A is a top plan view of a non-volatile non-volatile memory in accordance with a preferred embodiment of the present invention. X Figure 2B is a cross-sectional view showing the structure taken along line A-A of Figure 2A. 2C is a cross-sectional view showing the structure taken along line B-B of FIG. 2A. 2D is a cross-sectional view showing the structure of the line along c_c in FIG. 2A. 3A to 3E are cross-sectional views showing a manufacturing process of an anti-gate type non-volatile memory according to a preferred embodiment of the present invention. 4A through 4F are cross-sectional views showing the manufacturing process of the anti-gate type non-volatile memory of the preferred embodiment of the present invention. Fig. 4G is a cross-sectional view showing the structure of an anti-gate type non-volatile memory according to a preferred embodiment of the present invention. 5A to 5D are cross-sectional views showing a manufacturing process of an anti-gate type non-volatile memory according to another preferred embodiment of the present invention. 29 200840025 pt.ap / ο-τ 2264 ltwf.doc/e [Description of main component symbols] 100, 200, 300: substrate 102, 202: element isolation structure 104, 204: active region 106: tunneling dielectric layer 108, 208: floating gates 110, 210, 220, 310: inter-gate dielectric layers 112, 212: control gates 114, 206, 216, 306: dielectric layers 116, 120, 218, 222, 308, 308, 308a , 308b, 312, 312a, 312b, 320, 320a, 320b: conductor layers 122, 228a, 228b, 230a, 230b, 338a, 338b: select gate line extension plugs 124: regions 214, 326a: doped regions 210a, 310a · bottom oxide layer 210b, 310b: nitride layer 210c, 310c: top oxide layer 226, 334: plug 224, 316, 318, 342a, 342b, 344: opening 302, BA: bit line region 304, DBA Virtual bit line areas 336a, BL, BL1 to BLn: bit line 336b, DBL1 to DBL8: virtual bit line 30 22641twf.doc/e 200840025 326c, D: no-pole area 326b, S: source area 330, SL: source line 314: patterned mask layer 322: stacked gate structure 324: selective gate structure 328, 334: interlayer insulating layer 340, 340a: patterned photoresist layer dl, d2: width DA :Virtual area Μ : Memory cell ΜΑ : Memory cell array area MAR · · Memory cell array MR : Memory cell line SG, SGS, SGD : Select gate line T: Select unit WL, WL1 WLWLx · Character line 31

Claims (1)

200840025 十、申請專利範圍: 1·一種反及閘型非揮發性記憶體,包括多個記憶胞陣 列,各該些記憶胞陣列包括: 夕個元件隔離結構,平行設置於一基底中,以定義出 - 一主動區,該些元件隔離結構往一第一方向延伸; • 多條位元線與多條虛擬位元線,平行設置於該基底 上,並往該第一方向延伸,其中每隔1^條該些位元線設置 Γ: M條該些虛擬位元線,N、Μ為正整數,且N條該些位元200840025 X. Patent application scope: 1. A reverse-type non-volatile memory, comprising a plurality of memory cell arrays, each of the memory cell arrays comprising: an element isolation structure, arranged in parallel in a substrate to define Out - an active area, the element isolation structures extend in a first direction; • a plurality of bit lines and a plurality of dummy bit lines are disposed in parallel on the substrate and extend in the first direction, wherein each 1^The bit lines are set to Γ: M of the virtual bit lines, N, Μ are positive integers, and N of these bits f擇線’設置於該些字元線之兩側,每一該些 一記憶胞行; 線構成一位元線區,M條該些虛擬位元線構成一虑擬位元 、s^與紅選擇閘極線之交關應—選擇單元,各該二 、释閘極線包括: 導體層’設置於該基底上; 一閘間介電層,設置f select line 'set on both sides of the word line, each of the memory lines; the line constitutes a bit line area, and M of the virtual bit lines constitute a think bit, s^ and The red selection gate line should be selected - the selection unit, each of the two, the release gate line includes: a conductor layer 'on the substrate; a gate dielectric layer, set 夕個及極區,分別設置 電層’設置於該第-導體層無基底之間; —第二導體層’設置於該第-導體層上;以及 設置於該第二導體層與該第一導 層中設置有一開口,使該第二導 連接,其中該開口只位於該位元 於該記憶胞行之一第一側的該 32 200840025 22641twf.doc/e 基底中,該些汲極區分別電性連接該些位元線; 多個源極區,分別設置於該記憶胞行之一第二側的該 基底中; 一源,線,設置於該記憶胞行之該第二側的該基底 。 上,往該第二方向延伸並電性連接該些源極區;以及 • 夕個远擇閘極線延伸插塞,分別電性連接該二選擇閘 極線,該些選擇閘極線延伸插塞只設置於該虛擬位元線區 中。 2.如申請專利範圍第1項所述之反及閘型非揮發性記 憶體,其中該些選擇閘極線延伸插塞言史置於該虛擬位元線 區中的該主動區上。 3·如申請專利範圍第丨項所述之反及閘型非揮發性記 憶體,其中該些記憶胞陣列在該第一方向上成鏡像配置, 相鄰兩該些記憶胞陣列共用該些汲極區或該些源極區。 4·如申請專利範圍第3項所述之反及閘型非揮發性記 饫體,更包括多個選擇閘極線延伸插塞,設置於共用該些 ( /及極區的相鄰該二選擇閘極線上,且位於該虛擬位元線區 中。 ' 么5·如申請專利範圍第4項所述之反及閘型非揮發性記 、 铖體,其中該些選擇閘極線延伸插塞設置於相同的該些虛 擬位元線的相對應位置上。 九6·如申請專利範圍第3項所述之反及閘型非揮發性記 L體更包括多個選擇閘極線延伸插塞,設置於共用該也 原極區的相卻5亥—選擇蘭極線上,且位於該虛擬位元線區 33 -2641twf.d〇c/e 200840025 中〇 7·如申請專利範圍第6項所述之反及閘型非择發 憶體,其中該些選擇閘極線延伸插塞設置於不同的該己 擬位元線的相對應位置上。 μ二虛 8·如申請專利範圍第丨項所述之反及閘型非揮 十思體,其中該介電層之材質包括氧化石夕。 9·如申請專利範圍第!項所述之反及閘型非揮發 =體’其中該閘間介電層之材質包括氧切/氮切/氧化 體的製造方法,包括: = 該基底可區分為—第-區與—第二區, 该弟-區與該第二區在—第—方向上平行排列; 於該基底切❹個元件隔離結構蚊義出一 區,該些兀件隔離結構在該第〜 於該基底上依序形成一介略。:行排列, 間介電層與-第二導體層;t 第—導體層、一間 圖案化該第二導體層與該 電層中形成至少二開π,1電層,以於該閘間介 伸,且只形成在該第-區上、,兮二厂開口在一第二方向延 錯; 呤弟二方向與該第一方向交 並且該第三導體層會 於該基底上形成一第三導赞屛 填滿該閘間介電層中的該二開口 · 該第-導體層與該介電^,導體層、該閘間介電層、 θ ^成多個堆疊閘極結構與至 圖案化该弟三導體層、該第 34 22641twf.doc/e 200840025 x x 構St : 閘極結構與該二選擇問極結 構在該弟—方向延伸,且跨棘第—區無第二區,节二 開口分雜於該二選制極結軸,該構 於該二選湖極結狀@ ; 才、、、口構位 擇閘極結構外侧的錄底巾形成多個源極區 與多個汲極區;以及In the evening and the pole regions, respectively, an electric layer is disposed between the first conductor layer and the substrate; a second conductor layer is disposed on the first conductor layer; and the second conductor layer is disposed on the first conductor layer An opening is disposed in the guiding layer to connect the second guiding portion, wherein the opening is located only in the 32 200840025 22641 twf.doc/e substrate of the first side of the memory cell row, and the bucking regions respectively Electrically connecting the bit lines; a plurality of source regions respectively disposed in the substrate on a second side of the memory cell row; a source, a line, and the second side disposed on the second side of the memory cell row Substrate. And extending to the second direction and electrically connecting the source regions; and • a remote gate line extending plug electrically connected to the two selected gate lines, and the selected gate lines are extended The plug is only placed in the virtual bit line area. 2. The anti-gate type non-volatile memory according to claim 1, wherein the selected gate line extension plugs are placed on the active area in the virtual bit line area. 3. The anti-gate type non-volatile memory according to the invention of claim 2, wherein the memory cell arrays are mirrored in the first direction, and the adjacent two memory cell arrays share the 汲Polar regions or the source regions. 4. The anti-gate type non-volatile recording body described in claim 3 of the patent application, further comprising a plurality of selective gate line extension plugs, which are disposed in the common (/and the adjacent areas of the polar regions) Selecting the gate line and located in the virtual bit line area. '5. 5, as described in claim 4, the anti-valve type non-volatile memory, the body, wherein the selection gate line extension The plug is disposed at the corresponding position of the same virtual bit line. The anti-gate type non-volatile L-body described in item 3 of the patent application scope further includes a plurality of selective gate line extension plugs. The plug is disposed on the phase 5 —-selected blue line sharing the original polar region, and is located in the virtual bit line region 33 -2641twf.d〇c/e 200840025 〇7· as claimed in the sixth item And the gate-type non-selective memory, wherein the selected gate line extension plugs are disposed at different corresponding positions of the imaginary bit line. μ 二虚8· The anti-gate type described in the item is non-floating, wherein the material of the dielectric layer includes oxidized stone eve. Please refer to the scope of the patent item: the non-volatile type of the gate type, wherein the material of the inter-gate dielectric layer includes a method of manufacturing an oxygen cut/nitrogen cut/oxidant, including: = the substrate can be distinguished as - - a zone and a second zone, wherein the brother-zone and the second zone are arranged in parallel in the - direction - the substrate is cut into a component isolation structure, and the element isolation structure is in the Forming a matrix on the substrate: a row arrangement, an intermediate dielectric layer and a second conductor layer; t a first conductor layer, a patterned second conductor layer and at least two openings in the electrical layer π, 1 electric layer, for the interface between the gate, and only formed on the first region, the opening of the second plant opening in a second direction; the second direction of the younger brother intersects the first direction and the first The three-conductor layer forms a third guide on the substrate to fill the two openings in the inter-gate dielectric layer. The first-conductor layer and the dielectric layer, the conductor layer, the inter-gate dielectric layer, θ ^ into a plurality of stacked gate structures and to pattern the third conductor layer, the 34th 22641 twf.doc/e 200840025 xx Structure St: the gate structure and the second selection pole structure extend in the direction of the brother-in-law, and there is no second region across the spine-first region, and the opening of the second section is mixed with the axis of the two-selection pole, which is in the second selection The lake has a knot shape @; 才,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 於該二選擇·結構上分卿成多個卿閘極線延伸 插基,該些選擇閘極線延伸插塞只設置於該第二區中。 圍第1G項所述之反及閘型非揮發性 ^思體的攸方法,其巾於圖案化該第二導體層與該 介電層之方法包括: 於該第二導體層上形成一圖案化光阻層;以及 X0木化光阻層為罩幕,圖案化該第二導體層與該閘 間介電層。 ^ I2.如申請專利範圍第η項所述之反及閘型非揮發性 記憶體的製造方法,其中於該第二導體層上形成該圖^化 光阻層之步驟後,更包括進行一光阻熱回流製程,以縮小 圖案化光阻層的開口尺寸。 13·如申請專利範圍第1〇項所述之反及閘型非揮發性 記憶體的製造方法,更包括: 於该基底上形成多條位元線與多條虛擬位元線,該些 位兀線與該些虛擬位元線在該第一方向上平行排列,其中 肩些位元線位於該第一區中,且分別電性連接各該些没極 區,該些虛擬位元線位於該第二區中。 35 200840025 22641twf.doc/e 14·如申請專利範圍第項所述之反及閘型非揮發性 記憶體的製造方法,更包括·· 於該基底上形成—源極線,該源極線在該第二方向延 伸,且電性連接該些源極區。 二I5·如申請專利範圍第14項所述之反及閘型非揮發性 讀、體的製造方法,其巾該些選擇閘極線延伸插塞於 該第二區中的該主動區上。 、The two selections and structures are divided into a plurality of gate lines extending into the base, and the selected gate line extension plugs are disposed only in the second area. The method for patterning the second conductor layer and the dielectric layer according to the method of claim 1G, wherein: forming a pattern on the second conductor layer And the X0 wood photoresist layer is a mask, and the second conductor layer and the inter-gate dielectric layer are patterned. ^ I2. The method for manufacturing a reverse-type non-volatile memory according to claim n, wherein the step of forming the photoresist layer on the second conductor layer further comprises performing a step The photoresist is thermally reflowed to reduce the opening size of the patterned photoresist layer. The method for manufacturing the anti-gate type non-volatile memory according to the first aspect of the patent application, further comprising: forming a plurality of bit lines and a plurality of dummy bit lines on the substrate, the bits The 兀 line and the imaginary bit lines are arranged in parallel in the first direction, wherein the bit lines are located in the first area, and are respectively electrically connected to the non-polar regions, wherein the virtual bit lines are located In the second zone. 35 200840025 22641twf.doc/e 14. The method for manufacturing a reverse-type non-volatile memory according to the above-mentioned patent application, further comprising: forming a source line on the substrate, the source line being The second direction extends and electrically connects the source regions. The method of manufacturing a reverse-type non-volatile read and body according to claim 14 of the invention, wherein the selected gate line extends into the active region in the second region. , 記憶^項所述之反及_揮發性 17.如ϋϋ 電層之㈣包括氧化石夕。 記憶體的l Μ销叙狀軸_性 氮化石地^該閘㈣電狀材質包括氧化石夕/ 36The opposite of the memory and the _ volatility 17. For example, the electric layer (4) includes the oxidized stone eve. Memory of the memory of the memory _ nature of the nitride stone ^ the gate (four) electrical material including the oxidized stone eve / 36
TW96110480A 2007-03-27 2007-03-27 NAND type non-volatile memory and fabricating method thereof TW200840025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96110480A TW200840025A (en) 2007-03-27 2007-03-27 NAND type non-volatile memory and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96110480A TW200840025A (en) 2007-03-27 2007-03-27 NAND type non-volatile memory and fabricating method thereof

Publications (1)

Publication Number Publication Date
TW200840025A true TW200840025A (en) 2008-10-01

Family

ID=44821037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96110480A TW200840025A (en) 2007-03-27 2007-03-27 NAND type non-volatile memory and fabricating method thereof

Country Status (1)

Country Link
TW (1) TW200840025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651835B (en) * 2017-03-31 2019-02-21 力晶科技股份有限公司 Non-volatile memory structure and methods for preventing stylized interference
TWI792874B (en) * 2022-01-20 2023-02-11 力晶積成電子製造股份有限公司 Transistor structure and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI651835B (en) * 2017-03-31 2019-02-21 力晶科技股份有限公司 Non-volatile memory structure and methods for preventing stylized interference
TWI792874B (en) * 2022-01-20 2023-02-11 力晶積成電子製造股份有限公司 Transistor structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US11937437B2 (en) Semiconductor memory and method of manufacturing the same
US7884415B2 (en) Semiconductor memory device having multiple air gaps in interelectrode insulating film
KR101091454B1 (en) Semiconductor memory device and method for manufacturing same
CN110506334A (en) Three-dimensional storage part with deep isolation structure
TWI284978B (en) Array of nonvolatile memory cells wherein each cell has two conductive floating gates
JP2001203286A (en) Nand type flash memory device and producing method therefor
TW200937573A (en) Methods for isolating portions of a loop of pitch-multiplied material and related structures
US7723775B2 (en) NAND flash memory device having a contact for controlling a well potential
KR20160077330A (en) Method of manufacturing magnetic memory device
JP2003224213A (en) Nonvolatile semiconductor memory
TW200941713A (en) Flash memory having insulating liners between source/drain lines and channels
KR100742284B1 (en) Nonvolatile memory device and method of forming the same
US20120238099A1 (en) Method of manufacturing electronic part
TW200816493A (en) Integrated circuit memory system employing silicon rich layers
JP4424886B2 (en) Semiconductor memory device and manufacturing method thereof
TW200840025A (en) NAND type non-volatile memory and fabricating method thereof
JP3762584B2 (en) Semiconductor integrated circuit device
JP2005183763A (en) Method of manufacturing semiconductor device including non-volatile memory
JP2004235399A (en) Nonvolatile semiconductor memory device
TWI246748B (en) Non-volatile memory and fabricating method and operating method thereof
JP4459955B2 (en) Bit line structure and manufacturing method thereof
US20100072534A1 (en) Nonvolatile semiconductor memory device and method of fabricating the same
TW200921904A (en) Non-volatile memory and the manufacturing method thereof
TW200536062A (en) Nand type flash memory device, and method for manufacturing the same
TW525298B (en) Manufacturing method of stacked-gate flash memory array