TW200840014A - Electrostatic discharge protection device and fabrication method thereof - Google Patents
Electrostatic discharge protection device and fabrication method thereof Download PDFInfo
- Publication number
- TW200840014A TW200840014A TW96109058A TW96109058A TW200840014A TW 200840014 A TW200840014 A TW 200840014A TW 96109058 A TW96109058 A TW 96109058A TW 96109058 A TW96109058 A TW 96109058A TW 200840014 A TW200840014 A TW 200840014A
- Authority
- TW
- Taiwan
- Prior art keywords
- type
- region
- doped region
- electrostatic discharge
- disposed
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
200840014 UMCD-2006-0358 22213twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種靜電放電保護裝置,且特別是有 關於一種靜電放電保護裝置及其製造方法。 【先前技術】 ☆ +電子兀件(例如積體電路)於實際環境中往往會遭受 靜電放電(electrostatic discharge,ESD)的衝擊。最當异的BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an electrostatic discharge protection device, and more particularly to an electrostatic discharge protection device and a method of fabricating the same. [Prior Art] ☆ + Electronic components (such as integrated circuits) are often subjected to electrostatic discharge (ESD) in actual environments. Most different
,是她⑽α咖输焊墊(PA= 包放電防護裝置,以保護其内部電路。 依靜電放電產生的電壓程度㈣,靜電放電大致上可 ^為人,放電模式(Human_B〇dy M〇dd,hbm)、機械放電 =式(Machme Model,MM)以及充電元件模 ==M〇del ’ CDM)等。靜電放電之電壓比正 供的线電壓大出甚多。當靜電放電發生時, ㈣纽可能會將電子元件燒毁。目此必須針對 =凡件*排若干靜電放電防施· 種槿+八2,^件知1又。者電放電防護裝置之測試有幾 種极式,分別為PD、PS、ND W戍 於焊墊輸人正脈衝,祕έ Μ r M式。PD模式為 式為於悝執A ί 統電壓軌線VDD接地。nd模 PS模式為於焊墊輪而^糸統電齡線VDD接地。 地。NS模式為於焊塾^衝,而使接地電堡軌線VSS接Is her (10) alpha coffee transfer pad (PA = packet discharge protection device to protect its internal circuit. According to the degree of voltage generated by electrostatic discharge (four), electrostatic discharge can be roughly human, discharge mode (Human_B〇dy M〇dd, Hbm), mechanical discharge = Machme Model (MM) and charging element module == M〇del ' CDM). The voltage of the electrostatic discharge is much larger than the line voltage being supplied. When an electrostatic discharge occurs, (4) New Zealand may burn electronic components. This must be directed to = some pieces * a number of electrostatic discharge prevention and control · species 八 + eight 2, ^ know know 1 again. There are several pole types for the test of electric discharge protection devices, namely PD, PS, ND W 输 input positive pulse on the pad, secret έ r M type. The PD mode is such that the voltage rail VDD is grounded. The nd mode PS mode is grounded on the pad wheel and the aging age line VDD. Ground. The NS mode is for soldering, and the grounding electric trajectory VSS is connected.
接地。 ^貞崎,使接地電壓執線VSS 5Ground. ^贞崎, make the ground voltage line VSS 5
200840014 UMCD-2006-0358 22213twf.doc/n 圖1繪示美國專利公告第6,459,127號專利案之靜電 放電防濩裝置之佈局剖面圖。請參照圖〗,高壓製程之N 型金氧半(n_channei metai_oxide-semic〇nduct〇r,NM〇s)電 晶體丁1與T2藉由其寄生矽控整流器(siHc〇仏c〇ntr〇〗ied Γ er’ SCR)來防護靜電放電。此NMOS電晶體τι與 其寄生成完全_的配置方式,以使 ϋΐί Γί之電流能夠達到完全均勻。雖齡bf知技術 ㈣以及恥模此習知技術無法防 是弁i模式以及ND模式之靜電放電,此習知枯卞 =靜電放電電流/電壓從焊墊n -此二知技: 電路❻接於系==線:’然後再經由積髓 _另一個靜電放電防罐接地電壓軌線VSS之 電壓從接地電壓軌線vsn置(未:不)將靜電放電電流/ 後,此靜電放電奸 ¥引至錢電壓軌線VDD。最 =從焊Mo導弓I至李由4^=接將靜電放電電流/ Ϊ電電流/轉之钟路彳VDD,私前述靜電 【發明内容】 兒 200840014 UMCD-2006-0358 22213twfdoc/n 本餐明提供一種靜备200840014 UMCD-2006-0358 22213 twf.doc/n Figure 1 is a cross-sectional view showing the layout of an electrostatic discharge tampering device of U.S. Patent No. 6,459,127. Please refer to the figure, the high-pressure process of N-type gold oxide half (n_channei metai_oxide-semic〇nduct〇r, NM〇s) transistor D1 and T2 by its parasitic voltage controlled rectifier (siHc〇仏c〇ntr〇〗 ied Γ er' SCR) to protect against electrostatic discharge. This NMOS transistor τι is parasitic to its full configuration so that the current of ϋΐί Γί can be completely uniform. Although the age of bf knows the technology (four) and the shame model, this conventional technology can't prevent the electrostatic discharge of the 弁i mode and the ND mode. This is known as the dry discharge = electrostatic discharge current / voltage from the pad n - this two know: circuit connection In the system == line: 'and then through the myocardium _ another electrostatic discharge anti-can ground voltage rail VSS voltage from the ground voltage rail vsn set (not: no) will electrostatic discharge current / after this electrostatic discharge Lead to the money voltage rail VDD. Most = from the welding Mo guide bow I to Li by 4 ^ = connected to the electrostatic discharge current / Ϊ electric current / turn the clock 彳 VDD, privately the above static [invention] child 200840014 UMCD-2006-0358 22213twfdoc / n this meal Ming provides a kind of quiet
以及ND模式之靜電玫=欠電保護裝置,以防護PD模式 考务日月I 造高壓靜電放^保飞玫龟保5蒦裝置之製造方法,以製 為解決上述問題二1 置’其包括基底、心北本發明提出一種靜電放電保護裝 摻雜區、第—與第_ 、p型摻雜區、第一與第二型 N型井配置於美底中p+型杈雜區、閘極、第一與第二電極。 讲型摻雜區Γ第!_ p°P畴雜區配置於N型井中。第-第二N+型摻雜 +型摻雜區均配置於p型掺雜區中。 及p型摻雜區外f Ίp+型摻雜區均配置於n型井中以 N型井上以及於和_/、型摻雜區不相接觸。閘極配置於 電極電性祕^—P+雜舰與p型摻腿之間。第-電極電性連接第雜區與第—p+型摻雜區。第二 本笋明另蔣山 摻雜區、第二P+型摻雜區與閘極。 底、p i摻雜區電保護裝置j包括N型基 p+型摻雜區、閘極、f_=型摻雜、第―與第二 N型基底中。笛 /、弟一龟極。P型掺雜區配置於 於p型摻雜區中T:+型::區與第-P+型摻雜區均配置 相接觸1中以及P型摻雜區外,且與P型摻雜區不 與p型摻型基底上以及於第二p+型摻雜區 讲型摻雜區盘第1。弟1極經由第一電性導體連接第一 導#凌#二二、一p+型摻雜區。第二電極經由第二電性 、-弟—N+型摻雜區、第二p+型摻雜區與閘極。 7 200840014 UMCD-2006-0358 22213twf.doc/n 本發明提di -種靜電放電鱗裝置之制 提供一基底;於基底中形成N型於方去,包括 型摻雜區;於P型摻雜區中形成#二;I型井中形成p P+型摻雜區;於N型井中以及口弟aN+型摻雜區與第一 型摻雜區與第二P+型摻雜p品,夂雜區外形成第二N+ 土^雜&,而與p型摻 於N型井上以及於第二P+型摻雜區鱼接觸; 成-閘極;形成第一電極與第二電極:並中‘:巧之間形 由第-電性導體連接第—N+型擦雜區盘第_==經 區’而弟二電極經由第二電性導體 ,雜 第二P+型摻雜區與閘極。 雜區、 本發明提供具有内嵌高壓p型SCR high‘tage p-type SCR,EHVPS_ 裝置’因此可以直接將靜電放電電流/電壓 1至= 統電壓執線VDD。 丨至糸 為讓本發明之上述特徵和優點能更明顯易懂妒 舉較佳實施例,並配合所附圖式,作詳細說明 寸 【實施方式】 圖2是依照本發明實施例說明一種靜電放電保護 之佈局剖面圖。圖3是依照本發明說明圖2靜電放電 裝置200之應用範例。請同時參照圖2與圖3,靜^放^ 保護裝置200包含高廢p型金氧半(ρ^_1 metal-cmde-semiconductor,PMOS)電晶體 2〇1。此高壓 PMOS電晶體201配置在N型井(例如高壓N型井 中’而高壓N型井220則形成於P型基底21〇内。在高壓 8 200840014 UMCD-2006-0358 22213twf.doc/n N型井220中形成p型摻雜區做為高壓電晶體撕 之没極。前述P型摻雜區譬如以p型漸進區(p_Grade)23〇 實施之。第- N+型摻雜區231與第一 p+型摻雜區说配 置在P型漸進區23G。於本實施射,第_ p+型摻雜區况 與第一 N+型接雜區231二者可以相鄰接。And the ND mode of the electrostatic rose = under-current protection device to protect the PD mode test day and month I made high-voltage electrostatic discharge ^ Baofei Mei turtle protection 5 蒦 device manufacturing method, in order to solve the above problem 2 1 'include The substrate and the heart of the present invention propose an electrostatic discharge protection doped region, a first and a _th, a p-type doped region, a first and a second type N-type well disposed in the p+ type doping region, a gate, First and second electrodes. The doping type doping region _ p ° P domain mismatch region is arranged in the N-type well. The first-second N+ type doped + type doped regions are all disposed in the p-type doped region. And the f Ίp+ type doped regions outside the p-type doped region are disposed in the n-type well and are not in contact with the _/, doped region. The gate is arranged between the electrode electrical secret ^-P + miscellaneous ship and the p-type leg. The first electrode is electrically connected to the first impurity region and the first p-type doped region. The second bamboo shoots have another Jiangshan doped region, a second P+ doped region and a gate. The bottom, p i doped region electrical protection device j includes an N-type p + -type doped region, a gate, an f_= doping, and a first and second N-type substrate. Flute /, brother a turtle. The P-type doped region is disposed in the p-type doped region, and the T:+ type:: region and the first-P+-type doped region are disposed in the contact 1 and outside the P-type doped region, and the P-type doped region It is not the same as the p-type doped substrate and the second p+ doped region. The first pole of the brother is connected to the first lead #二二, a p+ type doped region via the first electrical conductor. The second electrode is via a second electrical, -di-N+ doped region, a second p+ doped region, and a gate. 7 200840014 UMCD-2006-0358 22213twf.doc/n The present invention provides a substrate for providing an electrostatic discharge scale device; forming an N-type in the substrate, including a doped region; and a P-doped region. Forming #二 in the middle; forming a p P+ doped region in the I type well; forming a p P+ doped region in the N type well and the aN+ doped region and the first type doped region and the second P+ doped p product in the N type well, forming outside the doped region The second N+ soil is mixed with the p-type doped on the N-type well and in the second P+-type doped region; the gate-gate is formed; the first electrode and the second electrode are formed: The intermediate shape is connected to the first-electrode conductor by the first-N+-type impurity-distribution region, and the second electrode is via the second electrical conductor, and the second P+-type doped region and the gate. The miscellaneous region, the present invention provides an embedded high voltage p-type SCR high 'tage p-type SCR, EHVPS_ device' so that the ESD current/voltage 1 to the voltage can be directly applied to VDD. The above-described features and advantages of the present invention will become more apparent from the detailed description of the preferred embodiments. A layout view of the discharge protection. Figure 3 is a diagram showing an application example of the electrostatic discharge device 200 of Figure 2 in accordance with the present invention. Referring to FIG. 2 and FIG. 3 at the same time, the static protection device 200 comprises a high-depletion p-type metal-oxide-semiconductor (PMOS) transistor 2〇1. The high voltage PMOS transistor 201 is disposed in an N-type well (for example, a high-pressure N-type well) and the high-pressure N-type well 220 is formed in a P-type substrate 21A. In the high voltage 8 200840014 UMCD-2006-0358 22213twf.doc/n N type A p-type doped region is formed in the well 220 as a high voltage transistor torn pole. The P-type doped region is implemented as a p-type progressive region (p_Grade) 23 。. The -N+-type doped region 231 and the first A p+ doped region is said to be disposed in the P-type progressive region 23G. In the present embodiment, both the p-th + doped region and the first N+ doped region 231 may be adjacent.
第-電極271經由第—電性導體(例如金屬導體)連 接至第- N+型摻雜區231與第一 p+型推雜區拉。於本 實施例中,此第一電極271電性連接至焊墊(pad) 27〇。 於積體電路中’核心電路310可以經由電阻33〇與焊墊27〇 對外部輸入/輸出資料。 第二N+型摻雜區221配置於高壓N型井22〇中以及p 型漸進區230夕卜,而第二p+型摻雜區奶配置於高壓n 型井220中以及第三N+型摻雜區221與p型漸進區挪 之間。其中’摻雜區22卜222與P型漸進區23〇不相接 觸。其中’第二P+型掺雜區222與第二讲型換雜區221 -者可以相鄰接。第二P+型摻雜區222做為高壓 電晶體201之源極。第二電極272經由第二電性導體 如金屬導體)連接第二N+型摻雜區221與第二p ^ 區222。於本實施例中,此第二電極272電性 I: 電壓軌線VDD。 牧王乐、-死 南壓PMOS電晶體201之閘極24〇配置於高壓n 220上方。在此以閘氧化層隔離閘極24〇與高壓n型 220。閘極240配置於第二P+型摻雜區222與p型漸進區 230之間。於本實施例中,第二電極272經由電性導體連 9 200840014 UMCD-2006-0358 22213twf.doc/n 接閘極240。於積體電路中,核心電路31〇可以經 :線VDD與接地電壓軌線vss獲得外部所;供:操 於本實施例中,更於高壓N型井220中形成N (N-Field) 250。第三N+型摻雜區251配置於n型^ 250中。此第三N+型摻雜區251與N型場區25〇做為= PMOS電晶體201之基體(bulk)電極。高壓pM〇s、g 體201之基體電極亦經由電性導體連接至系統電壓= VDD。場氧化層262配置於高壓N型井22〇中,以及配詈 於第二N+型摻雜區221與第三N+型摻雜區2S1之間。 。由第二ρ+型摻雜區222、高壓Ν型井220與ρ型漸 區230構成一個内嵌電晶體gpnp,而高壓Ν型井2如、 ,漸進區230與第一 N+型摻雜區231則構成另一個内爭 電晶體Qnpn。此内嵌電晶體Qpnp與Qnpn組成一個 結構,亦即第二P+型摻雜區222、高壓N型井22〇、p 漸進區230與第一 N+型摻雜區231形成一個SCR路徑。 此SCR結構之陽極閘極透過第二N+型摻雜區221與高汽 N型井220之内電阻RN wen連接至系統電壓軌線$ SCR結構之陰極閘極則透過p型漸進區23〇與第—, 摻雜區232之内電阻RGmde連接至焊墊27〇。 里 若系統電壓軌線VDD接地且焊墊270發生靜電放泰 之正脈衝,此靜電放電電流將會經過第一 p+型摻雜= 2。32、P型漸進區230、高壓n型井220、第二N+型摻^ 區221而到達系統電壓軌線VDD。因此,使得靜電敌 200840014 UMCD-2006-0358 22213twf.doc/n 流k焊墊270經過此靜電放電保護裝 與系統電壓軌線VDI3而被導引至^ 之可生二極體 電放電保護裝置20〇可以防止PD 以靜 壓毁損核心電路310。 、 靜包放電電流/電 若系統電壓轨線VDD接妯曰 之負脈衝,此靜電放電電壓將奋輕;27山0發生靜電放電 極閑極。藉由内電阻、麟===⑽構之陽 電壓遠小於内喪SCR結構之陽‘=:=極閘極 VDD電壓)。因此,内嵌 ,、(即系統%壓軌線 放電電流從系統電壓執線VDD 發,使得靜電 挪而被導引至積體電路外部。所;路=與焊墊 3:防…式之靜電放電二== _線;sU間焊墊270與接地電 衣置貝她砰電放電保護裝 4 + n 地且焊墊27〇發生靜 /。右-电壓軌線VSS接 會觸發靜電放電保谁穿置^正脈衝,此靜電放電電壓將 270經過靜電放 1_^壯置罢320 ’使得靜電放電電流從焊墊 至積體兩It 置320與電魏線VSS而被導引 電放電:衝 裝置320,使+ # + +电电壓將會觸發靜電放電保護 電保_^=^=魏線敗經過靜電放 70而破導引至積體電路外部。 200840014 UMCD-2006-0358 22213twf.doc/n 在正《操作狀悲’為了避免誤觸發靜電放雷谁 ,因此需要適當地調高靜電放電保繼二觸又= 位。本實施例中更於高壓N型井220中以及閘極240與第 一 P+型摻雜區232之間配置場氧化層261。藉由決定場氧 化層261之覓度與深度,而對應地調整靜電放電保護裝置 200之觸發準位。 上述靜電放電保護裝置200可以參照下述製造方法實 施之。首先提供一基底210,此基底21〇例如是p型摻雜 之基底。然後在基底210中形成高壓n型井220。接下來 在高壓N型井220中形成P型摻雜區(本實施例中為p型 漸進區230),以及形成N型場區250。 於咼壓N型井220上側形成N+型摻雜區221、231以 及251,然後於高壓N型井22〇上侧另形成p+型摻雜區 222以及232。其中,N+型摻雜區221與P+型摻雜區222 是配置於p型漸進區230與N型場區25〇 雜區231與P+型摻雜區232是配置於p型漸進區23〇 ^ 内,而N+型摻雜區251則是配置於N型場區25〇之内。 於本貝轭例中,N+型摻雜區221與p+型摻雜區222二者 相鄰接,但二者與P型漸進區23〇/ N型場區25〇不相接 觸。另外,N+型摻雜區231與p+型摻雜區232二者相鄰 接。 曰於高壓N型井220中形成場氧化層261以及262,其 中場氧化層261是配置在閘極240與p+型摻雜區232之 間而場氧化層262是配置在N+型摻雜區221與N+型掺 12 200840014 UMCD-2006-0358 22213twf.doc/n 雜區251之間。然後於高壓N型井220上方以及於p+型 摻雜區222與P型漸進區230之間形成閘極240,其中閘 極240與高壓N型井220之間以閘氧化層相隔離。 接下來於基底210上方形成電極271以及272。電極 271經由電性導體連接n+型摻雜區231與p+型摻雜區 232龟極272經由電性導體連接型摻雜區221、p+型 摻雜區222、閘極240以及N+型摻雜區25卜於本實施例The first electrode 271 is connected to the first -n + type doping region 231 and the first p + -type dummy region via a first electrical conductor (e.g., a metal conductor). In this embodiment, the first electrode 271 is electrically connected to a pad 27〇. In the integrated circuit, the core circuit 310 can externally input/output data via the resistor 33 and the pad 27. The second N+ doping region 221 is disposed in the high voltage N-well 22 以及 and the p-type progressive region 230, and the second p+ doped region milk is disposed in the high voltage n-well 220 and the third N+ doping The area 221 is between the p-type progressive zone. Wherein the doped region 22b 222 is not in contact with the P-type progressive region 23〇. Wherein the second P+ doping region 222 and the second interrogation region 221 may be adjacent. The second P+ doping region 222 serves as the source of the high voltage transistor 201. The second electrode 272 connects the second N+ type doping region 221 and the second p^ region 222 via a second electrical conductor such as a metal conductor. In this embodiment, the second electrode 272 is electrically I: the voltage rail VDD. Muwang Le,-dead The gate of the PMOS transistor 201 is placed above the high voltage n 220. Here, the gate electrode 24 is separated from the high voltage n-type 220 by a gate oxide layer. The gate 240 is disposed between the second P+ doped region 222 and the p-type progressive region 230. In this embodiment, the second electrode 272 is connected to the gate 240 via an electrical conductor 9 200840014 UMCD-2006-0358 22213twf.doc/n. In the integrated circuit, the core circuit 31A can obtain an external portion via the line VDD and the ground voltage rail vss; for: in the present embodiment, the N (N-Field) 250 is formed in the high-pressure N-well 220. . The third N+ type doping region 251 is disposed in the n-type 250. The third N+ doping region 251 and the N-type field region 25 are used as the bulk electrode of the PMOS transistor 201. The base electrode of the high voltage pM〇s, g body 201 is also connected to the system voltage = VDD via an electrical conductor. Field oxide layer 262 is disposed in high voltage N-type well 22A and is disposed between second N+ doped region 221 and third N+ doped region 2S1. . The second ρ+ type doping region 222, the high voltage Ν-type well 220 and the p-type gradation region 230 constitute an in-line transistor gpnp, and the high-voltage Ν-type well 2, the progressive region 230 and the first N+-type doping region 231 constitutes another internal contiguous transistor Qnpn. The embedded transistors Qpnp and Qnpn form a structure, that is, the second P+ doping region 222, the high voltage N-well 22 〇, the p-progress region 230 and the first N+ doping region 231 form an SCR path. The anode gate of the SCR structure is connected to the system voltage rail through the second N+ type doping region 221 and the internal resistance RN of the high vapor N-type well 220. The cathode gate of the SCR structure is transmitted through the p-type progressive region 23〇 First, the internal resistance RGmde of the doped region 232 is connected to the pad 27A. If the system voltage rail VDD is grounded and the pad 270 is positively pulsed by the static discharge, the electrostatic discharge current will pass through the first p+ type doping = 2.32, the P type progressive zone 230, the high pressure n-well 220, the first The two N+ type doping region 221 reaches the system voltage rail VDD. Therefore, the electrostatic enemy 200840014 UMCD-2006-0358 22213twf.doc/n flow k-pad 270 is guided to the viable diode discharge device 20 through the electrostatic discharge protection device and the system voltage rail VDI3. The 〇 can prevent the PD from damaging the core circuit 310 by static pressure. Static packet discharge current / electricity If the system voltage rail VDD is connected to the negative pulse, the electrostatic discharge voltage will be light; 27 mountain 0 electrostatic discharge is extremely idle. The internal voltage of the internal resistance, Lin ===(10) is much smaller than the positive voltage of the internal SCR structure ‘=:=polar gate VDD voltage. Therefore, it is embedded, (ie, the system % rail line discharge current is emitted from the system voltage line VDD, so that the static electricity is led to the outside of the integrated circuit.); road = and pad 3: anti-static Discharge two == _ line; sU between the pad 270 and the grounding electric clothing to place her electric discharge protection 4 + n ground and the pad 27 〇 static /. Right - voltage rail VSS will trigger the electrostatic discharge After the positive pulse is applied, the electrostatic discharge voltage is 270, and the electrostatic discharge current is discharged from the pad to the integrated body. 320, so that + # + + electric voltage will trigger the electrostatic discharge protection electric protection _^ = ^ = Wei line defeat through the electrostatic discharge 70 and break the guide to the outside of the integrated circuit. 200840014 UMCD-2006-0358 22213twf.doc/n In the case of "Operational Sorrow", in order to avoid accidentally triggering electrostatic discharge, it is necessary to appropriately increase the electrostatic discharge to ensure the second touch and the position. In this embodiment, the high voltage N-type well 220 and the gate 240 and the first A field oxide layer 261 is disposed between a P+ doped region 232. By determining the thickness and depth of the field oxide layer 261, The trigger level of the electrostatic discharge protection device 200 is adjusted. The above electrostatic discharge protection device 200 can be implemented by referring to the following manufacturing method. First, a substrate 210 is provided, which is, for example, a p-type doped substrate. A high pressure n-type well 220 is formed in the middle. Next, a P-type doped region (p-type progressive region 230 in this embodiment) is formed in the high-pressure N-type well 220, and an N-type field region 250 is formed. The N+ doping regions 221, 231, and 251 are formed on the upper side of the 220, and the p+ doping regions 222 and 232 are further formed on the upper side of the high voltage N-well 22, wherein the N+ doping region 221 and the P+ doping region 222 are formed. It is disposed in the p-type progressive region 230 and the N-type field region 25, the doping region 231 and the P+-type doping region 232 are disposed in the p-type progressive region 23〇, and the N+-type doping region 251 is disposed in the N-type. The field region is within 25 。. In the example of the yoke, the N+ doping region 221 and the p+ doping region 222 are adjacent to each other, but the P-type progressive region 23 〇 / N-type field region 25 〇 In addition, the N+ doping region 231 and the p+ doping region 232 are adjacent to each other. The field oxide layers 261 and 262 are formed in the high voltage N-well 220, The field oxide layer 261 is disposed between the gate 240 and the p+ doping region 232 and the field oxide layer 262 is disposed in the N+ doping region 221 and the N+ doping 12 200840014 UMCD-2006-0358 22213twf.doc/n Between the hybrid regions 251. A gate 240 is then formed over the high voltage N-well 220 and between the p+ doped region 222 and the P-type progressive region 230, wherein the gate 240 is oxidized by the gate between the high voltage N-well 220 The layers are isolated. Next, electrodes 271 and 272 are formed over the substrate 210. The electrode 271 is connected to the n + -type doping region 231 and the p + -type doping region 232 via the electrical conductor via the electrical conductor connection type doping region 221 , the p + -type doping region 222 , the gate electrode 240 , and the N + -type doping region. 25 in this embodiment
中,i極271電性連接至焊墊270 ,而電極272電性連接 至系統電壓軌線VDD。 上述貫施例是以圖3說明靜電放電保護裝置2〇〇之其 中-個實關。所屬技術領域具有通f知識者#可依盆需 未,而將圖2之靜電放電保護裝置應㈣其他電路中。 置細轉於電難線· 壯、VSS之間。圖4即為録本發戰日相2靜電放 裝置200之另一種應用範例。 ’、°又 請麥照® 4,為求圖式_,在 示靜電放電紐裝置·之喊s Λ万塊PSCR表 以多個靜電放電賴裝置· _^構。於本實施例中 之間,設計者可以依據需求執線VDD與 勘之串接個數。因此,當靜電放放電保護裝置 VDD(或是電壓軌線vss),靜電♦叙生在電壓軌線 後SCR結構便會被觸發而即時保護裝置200之内 壓執線VSS(或是電壓軌線VDD)。电放電電流導引至電 13 200840014 UMCD-2006-0358 22213twfdoc/n 值得注意的是,本實 圖2之靜電放電峨;:二 於本實施_靜電 2獨’其不同之處在 毅電檢測電路,而不。;^之至靜 =以電阻iw與電容Cesd相串構接。在此 路420。所屬技術領域1有通^=成靜電放電檢測電 以其他手段實現靜電放電當::,求,而 路伽串接於電魏線VDd :❹放電檢測電 執線V'與vss有無發生靜電以便檢測電壓 在正常操作下,由於電容 置2。。之_保 r: d之㈣立)。因此,各== _ =1=?。#靜電放铸件發生“ ί 給各靜電ί=irw_娜與vss電鲜位之間) 保護裝置2〇〇 ; ^衣Μ0之閑極240 °因此’靜電放電 時將靜電放電=丨便會被開啟(一)而即 VDD)。 L、 包竪執線VSS (或是電壓執線 之又1種』為,本發明說明圖2靜電放電保護裝置200 表示靜^ ^例。為求賦_ ’在此僅以方塊PSCR 相似,:讀護裝置2〇0之内嵌SCR結構。圖5與圖3 之靜電玫述其相同部分。值得注意的是,本實施例 屯’、屢裝置200與圖2之靜電放電保護裝置2〇〇 14 200840014 UMCD-2006-0358 22213twf. doc/π 有些許不同,其不同之處在於本實施例 置·之間極爐至靜電放電檢測電路s2〇 == VDD相連接。所屬技術領域具有通常知識者當 了依,、而求,而以任何手段實現靜電放電檢测 請麥照圖5,靜電放電檢測電路 ' 。The i-pole 271 is electrically connected to the pad 270, and the electrode 272 is electrically connected to the system voltage rail VDD. The above embodiment is described with reference to Fig. 3 to illustrate one of the electrostatic discharge protection devices. The technical field of the art has a knowledge of the person who can rely on the pot, and the electrostatic discharge protection device of Fig. 2 should be in (4) other circuits. Set fine to the electric hard line · between strong and VSS. Fig. 4 is another application example of the recording phase 2 electrostatic discharge device 200. ', ° Please also Mai Zhao® 4, for the pattern _, in the electrostatic discharge device, shouting s Λ 块 块 块 PS PS 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以In the present embodiment, the designer can perform the number of connections between VDD and the survey according to the requirements. Therefore, when the electrostatic discharge protection device VDD (or the voltage rail vss), the electrostatic resonance is triggered after the voltage rail, the SCR structure is triggered and the internal protection device 200 is pressed with the VSS (or the voltage rail). VDD). Electric discharge current is directed to electricity 13 200840014 UMCD-2006-0358 22213twfdoc/n It is worth noting that the electrostatic discharge 峨 of the actual figure 2:: two in this implementation _ static 2 independent 'the difference is in the power detection circuit Without. ^^至至静 = The resistor iw is connected to the capacitor Cesd. At this road 420. The technical field 1 has a pass ^= into electrostatic discharge detection electricity to achieve electrostatic discharge by other means when::, and the road gamma is connected in series to the electric wire VDd: ❹ discharge detection electric line V' and vss have static electricity so that The detection voltage is under normal operation, since the capacitor is set to 2. . _ Bao r: d (four) stand). Therefore, each == _ =1=?. #静电放铸件" " ί Give each electrostatic ί=irw_na and vss electric fresh position between the protection device 2〇〇; ^ Clothespin 0 of the idle pole 240 ° therefore 'electrostatic discharge will be electrostatic discharge = squat will be Turning on (1) and VDD) L, the packet vertical line VSS (or one of the voltage lines) is as shown in the present invention. The electrostatic discharge protection device 200 of Fig. 2 represents a static example. Here, only the block PSCR is similar, and the SCR structure is embedded in the reading device 2〇0. The static electricity of Figure 5 is the same as that of Figure 3. It is worth noting that the present embodiment 、', the repeating device 200 and the figure 2 Electrostatic discharge protection device 2〇〇14 200840014 UMCD-2006-0358 22213twf. doc/π is somewhat different, the difference is that the present embodiment sets the furnace to the electrostatic discharge detection circuit s2〇== VDD phase Connection. It is known in the art that the person skilled in the art has relied on, and sought, and realized electrostatic discharge detection by any means. FIG. 5, electrostatic discharge detection circuit '.
盥煜執97Π令叫 2υ串接於電壓執線VDD 墊270之間,以便檢測電壓執線伽 細生靜電放電事件。靜電放電檢測電路別 = 270與電壓勒绩νςς: + ρ日 甲接於知塾 ㈣有無===件錢檢測焊物與電壓執線 準位執電檢測電路520會輸出高電壓 護裳置之而^電壓準位)給靜電放電保 低電鲜位(近似於‘3=電,電路530會輪出 電保護裝置32G之閘極^ 之電壓準位)給靜電放 32〇保持截止狀態。日此’靜電放電保護裝置200與 當發生靜電放電事件時 且焊墊270發生靜電放 ^“[軌線奶〇接地 輪出低電壓準# %脈衝,评電放電檢測電路520會 位之心與電壓執線稱電壓; 電放電保護裝置2〇(/、D又衣置200之閘極240。因此,靜 〇η),而即時地將, :M〇S電晶體便會被開啟(turn 線V〇D,或是將靜^玫=電流從焊塾27〇導引至電壓軌 墊270。 兔兒電流從電壓轨線VDD導引至焊 15The 盥煜 Π 97 Π 叫 υ υ υ υ υ υ υ υ 。 。 。 。 。 。 。 。 。 。 。 。 电压 电压 电压 电压 电压 电压 电压 电压 电压Electrostatic discharge detection circuit = 270 and voltage performance νςς: + ρ 日甲接知知(4)With or without === Piece of money to detect solder and voltage line level power detection circuit 520 will output high voltage protection And ^ voltage level) to the electrostatic discharge to keep the electric fresh position (approximate to '3 = electricity, circuit 530 will turn on the voltage level of the gate of the power protection device 32G ^) to the electrostatic discharge 32 〇 to maintain the off state. On the day of the 'electrostatic discharge protection device 200 and when an electrostatic discharge event occurs and the pad 270 is electrostatically discharged, "[the line of milk line grounding wheel out of the low voltage level #% pulse, the evaluation of the electric discharge detection circuit 520 and The voltage is called the voltage; the electric discharge protection device 2〇 (/, D and the device is set to 200 the gate 240. Therefore, static η), and immediately, the :M〇S transistor will be turned on (turn line V〇D, or direct the static current from the soldering wire 27〇 to the voltage rail pad 270. The rabbit current is guided from the voltage rail VDD to the soldering 15
200840014 UMCD-2006-0358 22213twf.doc/n 若糸統電壓執線vss接地且焊墊27〇 衝’靜币電放電檢測電路530會輪出高電壓準位= 270與包塵軌線VSS電壓準位之間)給靜電放 置 之閘極。因此,靜電放電保護裝置320之_^2 體便會被開啟(tumGn),而即時地將靜電放電電流從二 墊270導引至電壓軌線vss,或是將靜電放 】 執線VSS導引至焊墊270。 …爪攸兒壓 以下將依照本發明另舉一實施例。圖6是依照本發明 說日卜種靜電放電保護裝置之另—實施範例之佈局剖面 圖。請茶照圖6,靜電放電保護裝置_包含高壓p_s 電晶體601。此高壓PM0S電晶體6〇1配置在N型基底6⑺ 中。在N型基底610中形成p型摻雜區做為高壓pM〇s 電晶體6 01之汲極。前述P型摻雜區譬如以p型漸進區6 3 〇 實施之。第一 N+型摻雜區631與第一 P+型摻雜區632配 置在P型漸進區630。於本實施例中,第一 p+型摻雜區632 與第一 N+型摻雜區631二者可以相鄰接。第一電極671 經由電性導體(例如金屬導體)連接至第一 N+型摻雜區 631與弟一 ρ+型接雜區幻2。此第一電極671可以電性連 接至焊墊270。 第二N+型摻雜區621配置於N型基底610中以及P 型漸進區630外,而第二p+型摻雜區622配置於N型基 底610中以及第二型摻雜區621與P型漸進區630之 間。其中,摻雜區621、622與P型漸進區630不相接觸, 而型摻雜區622與621二者可以相鄰接。第二P+型摻雜區 16 200840014 UMCD-2006-0358 22213twf.doc/n 622做為高壓PM0S電晶體6〇1之源極。第二電極奶婉 =性導體(例如金屬導體)連接第二N+型捧雜區i /、弟一 P+型摻雜區622。於本實施例中,此第 電性連接至系統電壓執線VDD。 高壓PMOS電晶體6G1之閘極_配置於n型基底 610上方。在此以閘氧化層隔離閘極64〇與n型基底 閘極640配置於第二P+型摻雜區奶與p型漸進區_200840014 UMCD-2006-0358 22213twf.doc/n If the voltage line vss is grounded and the pad 27 is flushed, the static electricity discharge detection circuit 530 will rotate the high voltage level = 270 and the dust line VSS voltage Between the bits) the gate for electrostatic placement. Therefore, the body of the ESD protection device 320 is turned on (tumGn), and the ESD current is immediately guided from the two pads 270 to the voltage rail vss, or the electrostatic discharge is guided to the VSS. To the pad 270. ...claw pressure The following will be further exemplified in accordance with the present invention. Fig. 6 is a cross-sectional view showing the layout of another embodiment of the electrostatic discharge protection device according to the present invention. Please refer to Figure 6, the ESD protection device _ contains the high voltage p_s transistor 601. This high voltage PMOS transistor 6〇1 is disposed in the N-type substrate 6(7). A p-type doped region is formed in the N-type substrate 610 as a drain of the high voltage pM〇s transistor 601. The aforementioned P-type doped region is, for example, implemented in a p-type progressive region 6 3 〇. The first N+ doping region 631 and the first P+ doping region 632 are disposed in the P-type progressive region 630. In this embodiment, the first p+ doping region 632 and the first N+ doping region 631 may be adjacent to each other. The first electrode 671 is connected to the first N+ type doping region 631 and the second π+ type impurity region 2 via an electrical conductor (e.g., a metal conductor). The first electrode 671 can be electrically connected to the pad 270. The second N+ type doping region 621 is disposed in the N-type substrate 610 and outside the P-type progressive region 630, and the second p+-type doping region 622 is disposed in the N-type substrate 610 and the second-type doping region 621 and the P-type Between progressive zones 630. The doped regions 621, 622 are not in contact with the P-type progressive region 630, and the doped regions 622 and 621 can be adjacent to each other. The second P+ doped region 16 200840014 UMCD-2006-0358 22213twf.doc/n 622 serves as the source of the high voltage PMOS transistor 6〇1. The second electrode milk pan = a sex conductor (e.g., a metal conductor) is connected to the second N+ type doping region i /, di-P + -type doping region 622. In this embodiment, the first electrical connection is to the system voltage line VDD. The gate of the high voltage PMOS transistor 6G1 is disposed above the n-type substrate 610. Here, the gate oxide isolation gate 64〇 and the n-type substrate gate 640 are disposed in the second P+ type doped region milk and the p-type progressive region _
之間。於本實施例中’第二電極672經由電性導體連接閑 極 640。 於本實施例中’更於Μ基底⑽中形成N型場區 (N-Fidd) 650。第三N+型摻雜區⑹配置於Ν型場區 650中。此第三Ν+型摻雜區651料型場區65〇做為高壓 PMOS電晶體601之基體電極。高壓pM〇s電晶體6〇1之 基體電極亦經由電性導體連接至系統電壓轨線vdi>mn 型基底610中,以及於第二n+型摻雜區621與第三n+型 摻雜區651之間配置場氧化層662。 由第二P+型摻雜區622、N型基底61〇與P型漸進區 630構成一個内嵌電晶體Qpnp,而N型基底61〇、p型漸 進區630與第一 N+型摻雜區631則構成另一個内嵌電晶 體Qnpn。此内散電晶體Qpnp與Qnpn組成一個内嵌SCr 結構,亦即第二P+型摻雜區622、N型基底610、P型漸 進區630與第一 N+型摻雜區631形成一個SCR路徑。此 内嵌SCR結構之陽極閘極透過第二N+型掺雜區621與n 型基底610之内電阻RN連接至系統電壓軌線VDD,而内 17 200840014 UMCD-2006-0358 22213twf.doc/n 嵌SCR結構之陰極閘極則透過p 型摻雜區紐之内電阻RGrade連接至科27〇匕弟 若系統電壓執線VDD接地且焊塾2?〇發 之正脈衝,此靜電放電電流將會經過第— =放電 紐、P型漸進區63。、N型基底61。、第二區 621而到達系統電壓軌線VDD。因此,使 :才、區 從焊墊270經過此靜電放電保護裝置6⑽之寄 系統電壓執線VDD而被導引至積體電路外部。 ==壓=,7°發生靜電放電之負脈衝: ^放,电屋將會轉合至内嵌SCR結構之陽極問極。 二阻RN使,内嵌SCR結構之陽極閘極電壓遠小於^嵌 R結構之陽極電壓(即系統電驗線VDD電壓 ‘ 結細細發,使得靜電放電電流從系統電 此SCR轉鱗墊27G喊導引至積體 在正常操作狀態,為了避免誤觸發靜電 _,因此S錢當_高靜餘電倾裝置_^= ^本實施例中更於N型基底61〇中以及間極64〇料一 :雜! 632,間配置場氧化層661。藉由決定場氧化 二之見度與冰度,而對應地調整靜電放電保護裝置_ 之觸發準位。 綜上所述,上述諸實施例提供具有内嵌高壓p型聊 (embedded high-voltage P-type SCR,EHvpscR)結構之靜 18 200840014 UMCD-2006-0358 22213twf.doc/n 電放電保縣置’ gj此可以直接將靜電放 墊導引至系統電壓軌線VDD。 电机電壓從蟬 雖然本發明已以較佳實施例揭露如上, 限f本發明,任何所屬技術領域中具有通‘‘非^ 月之精神和範圍内’當可作些許之更動與潤飾, =本發明之賴範圍當視後社申料·圍所界定者 為準。between. In the present embodiment, the second electrode 672 is connected to the idler 640 via an electrical conductor. In the present embodiment, an N-type field region (N-Fidd) 650 is formed in the germanium substrate (10). The third N+ type doped region (6) is disposed in the meander field region 650. The third germanium + doped region 651 material field region 65 is used as the base electrode of the high voltage PMOS transistor 601. The base electrode of the high voltage pM〇s transistor 6〇1 is also connected to the system voltage rail vdi>mn type substrate 610 via an electrical conductor, and to the second n+ type doping region 621 and the third n+ type doping region 651. A field oxide layer 662 is disposed between. The second P+ doping region 622, the N-type substrate 61A and the P-type progressive region 630 constitute an in-line transistor Qpnp, and the N-type substrate 61〇, the p-type progressive region 630 and the first N+-type doping region 631 Then constitute another embedded transistor Qnpn. The internal dispersion transistors Qpnp and Qnpn form an embedded SCr structure, that is, the second P+ type doping region 622, the N type substrate 610, the P type progressive region 630 and the first N+ type doping region 631 form an SCR path. The anode gate of the embedded SCR structure is connected to the system voltage rail VDD through the second N+ doping region 621 and the internal resistor RN of the n-type substrate 610, and the inner 17 200840014 UMCD-2006-0358 22213twf.doc/n embedded The cathode gate of the SCR structure is connected to the internal resistor RGrade of the p-type doped region. If the voltage of the system is VDD grounded and the positive pulse of the solder bump 2 is generated, the electrostatic discharge current will pass. The first - = discharge button, P-type progressive zone 63. , N-type substrate 61. The second zone 621 reaches the system voltage rail VDD. Therefore, the region is guided from the pad 270 to the outside of the integrated circuit via the system voltage line VDD of the electrostatic discharge protection device 6 (10). ==pressure=, 7° negative pulse of electrostatic discharge: ^, the electric house will be transferred to the anode of the embedded SCR structure. The two-resistance RN makes the anode gate voltage of the embedded SCR structure much smaller than the anode voltage of the embedded R structure (that is, the system test line VDD voltage' has fine hair, so that the electrostatic discharge current is discharged from the system to the SCR scale pad 27G. Shouting to the integrated body in the normal operating state, in order to avoid false triggering of static electricity, so the money is _ high static electric tilting device _ ^ = ^ in this embodiment is more in the N-type substrate 61 以及 and the interpole 64 一○, 632, between the field oxide layer 661. By determining the visibility of the field oxidation and the ice, the trigger level of the electrostatic discharge protection device _ is adjusted accordingly. In summary, the above embodiments provide Embedded high-voltage p-type SCR (EHvpscR) structure of static 18 200840014 UMCD-2006-0358 22213twf.doc/n Electric discharge Baoxian set 'gj this can directly direct the electrostatic pad to System voltage rail VDD. Motor voltage from 蝉 Although the present invention has been disclosed in the preferred embodiments as above, the present invention is not limited to the spirit and scope of any of the technical fields in the art. Change and refinement, = the scope of the invention The applicant's application and the definition of the enclosure shall prevail.
【圖式簡單說明】 圖1繪示美國專利公告第6,459, 放電防護裝置之佈局剖面圖。 圖2是依照本發明實施例說明_ 之佈局剖面圖。 127號專利案之靜電 種靜電放電保護裝置 ^圖3是依照本發明說明圖2靜電放電保護裝置之應用 範例。 圖4為依據本發明說明圖2 種應用範例。 靜電放電保護裝置之另一BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the layout of a discharge protection device of U.S. Patent No. 6,459. 2 is a cross-sectional view showing the layout of _ according to an embodiment of the present invention. Electrostatic Discharge Protection Device of Patent No. 127 FIG. 3 is an application example of the ESD protection device of FIG. 2 according to the present invention. 4 is a diagram showing an application example of FIG. 2 in accordance with the present invention. Another electrostatic discharge protection device
圖5為依據本發明說明圖2靜電 種應用乾例。 放電保護裝置之又一 圖6是依照本發明說明靜電放 範例之佈局剖面圖。 電保護裝置之另一實施 【主要元件符號說明】 110、270 :焊墊 200、 320、600 :靜電放電保護裝置 201、 601 ·南壓PMOS電晶體 19 200840014 UMCD-2006-0358 22213twf.doc/n 210 : P型基底 220 : N型井 22卜 231、251、621、631、651 : N+型摻雜區 222、232、622、632 : P+型摻雜區 230、630 : P型漸進區 240、640 ··閘極 250、650 : N型場區 261、262、661、662 :場氧化層 271、272、671、672 :電極 310 :核心電路 330、Resd ·電阻 420、520、530 ··靜電放電檢測電路 610 : N型基底 Cesd :電容Figure 5 is a diagram showing an example of application of the electrostatic species of Figure 2 in accordance with the present invention. Still Another FIG. 6 is a cross-sectional view showing a layout of an electrostatic discharge example in accordance with the present invention. Another implementation of the electric protection device [Main component symbol description] 110, 270: pads 200, 320, 600: electrostatic discharge protection device 201, 601 · south voltage PMOS transistor 19 200840014 UMCD-2006-0358 22213twf.doc/n 210: P-type substrate 220: N-type well 22 231, 251, 621, 631, 651: N+-type doped regions 222, 232, 622, 632: P+-type doped regions 230, 630: P-type progressive region 240, 640 · Gates 250, 650: N-type field regions 261, 262, 661, 662: field oxide layers 271, 272, 671, 672: electrode 310: core circuit 330, Resd · resistors 420, 520, 530 · · static Discharge detection circuit 610: N-type substrate Cesd: capacitor
Qnpn、Qpnp :内後電晶體 K-N-well Λ I^Grade Rn :内電阻 ΤΙ、T2 : NMOS 電晶體 VDD、VSS :電壓執線 20Qnpn, Qpnp: inner and rear transistors K-N-well Λ I^Grade Rn: internal resistance ΤΙ, T2: NMOS transistor VDD, VSS: voltage line 20
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96109058A TWI336127B (en) | 2007-03-16 | 2007-03-16 | Electrostatic discharge protection device and fabrication method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW96109058A TWI336127B (en) | 2007-03-16 | 2007-03-16 | Electrostatic discharge protection device and fabrication method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200840014A true TW200840014A (en) | 2008-10-01 |
TWI336127B TWI336127B (en) | 2011-01-11 |
Family
ID=44821033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96109058A TWI336127B (en) | 2007-03-16 | 2007-03-16 | Electrostatic discharge protection device and fabrication method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI336127B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI506784B (en) * | 2012-02-09 | 2015-11-01 | United Microelectronics Corp | Semiconductor device |
-
2007
- 2007-03-16 TW TW96109058A patent/TWI336127B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI506784B (en) * | 2012-02-09 | 2015-11-01 | United Microelectronics Corp | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
TWI336127B (en) | 2011-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW533591B (en) | Low-substrate noise ESD protection circuits by using bi-directional polysilicon diodes | |
TW575989B (en) | NPN Darlington ESD protection circuit | |
JPH10504424A (en) | Electrostatic discharge protection circuit | |
TW200816474A (en) | Symmetric blocking transient voltage suppressor (TVS) using bipolar transistor base snatch | |
JP3573674B2 (en) | I / O protection device for semiconductor integrated circuit and its protection method | |
TWI231035B (en) | High voltage ESD protection device having gap structure | |
CN101414630A (en) | Transverse diffusion metallic oxide transistor | |
TW200826291A (en) | ESD protection circuit | |
US20110133247A1 (en) | Zener-Triggered SCR-Based Electrostatic Discharge Protection Devices For CDM And HBM Stress Conditions | |
US6787856B2 (en) | Low triggering N MOS transistor for electrostatic discharge protection device | |
TWI273693B (en) | Electrostatic discharge protection device | |
TWI449150B (en) | Esd protection device structure | |
TWI324383B (en) | Electrostatic discharge protection device and layout thereof | |
TW200929522A (en) | Semiconductor device | |
US6949806B2 (en) | Electrostatic discharge protection structure for deep sub-micron gate oxide | |
TW587345B (en) | Method and structure of diode | |
TW200840014A (en) | Electrostatic discharge protection device and fabrication method thereof | |
CN109742070A (en) | A kind of silicon-controlled electrostatic protection device of FDSOI | |
US8941959B2 (en) | ESD protection apparatus | |
CN105405843B (en) | Electrostatic discharge protective circuit | |
TWI271845B (en) | Electrostatic discharge protection device | |
TW202004998A (en) | Layout structure of ESD protection device with high ESD tolerance | |
TWI317551B (en) | Transistor layout for improving esd capability | |
TW503558B (en) | Low-noise silicon controlled rectifier for electrostatic discharge protection | |
TW200403847A (en) | ESD-robust power switch and method of using same |