TW200838125A - Amplifying circuit and wireless communication device - Google Patents

Amplifying circuit and wireless communication device Download PDF

Info

Publication number
TW200838125A
TW200838125A TW97101872A TW97101872A TW200838125A TW 200838125 A TW200838125 A TW 200838125A TW 97101872 A TW97101872 A TW 97101872A TW 97101872 A TW97101872 A TW 97101872A TW 200838125 A TW200838125 A TW 200838125A
Authority
TW
Taiwan
Prior art keywords
amplifier
power supply
supply modulation
input signal
modulation voltage
Prior art date
Application number
TW97101872A
Other languages
Chinese (zh)
Inventor
Takashi Fukuoka
Akira Sano
Original Assignee
Sumitomo Electric Industries
Univ Keio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Univ Keio filed Critical Sumitomo Electric Industries
Publication of TW200838125A publication Critical patent/TW200838125A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

This invention demands for a power modulation characteristic with highest efficiency and lowest deviation. This invention is provided with an amplifier 22, a power modulator 31 for determining a power modulation voltage v(n) provided to the amplifier 22 based on a amplifier input signal u(n), a distortion compensator 30 for performing a distortion compensation based on an amplifier module 32a, a controller 32 for controlling the power modulator 31 and the distortion compensator 30. The controller 32 is configured for identifying the amplifier module 32a based on an output signal z(n) and an input signal U(n) of the amplifier 22 and the power modulation voltage v(n) provided to the amplifier 22, and for controlling a parameter for determining the power modulation voltage v(n) based on the amplifier module 32a.

Description

200838125 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種放大電路及無線通信裝置,特別是 關於可補償失真之放大電路等。 【先前技術】 放大器要求高度線形性。例如,放大線形調變信號之 電力放大器,或是用於線形調變信號之接收機的低雜訊放 大器,爲了抑制頻譜特性及因信號失真引起之傳送特性惡 化,而要求高度線形性。 但是,爲了提高放大器之線形性,需要提高其飽和區 域。 亦即,就放大器之輸入輸出電力特性而言,於輸出信 號電壓接近放大器電源電壓之範圍,輸入信號與輸出信號 之關係並非線形,而成爲輸入輸出比爲飽和之非線形區域。 因此’爲了確保線形性,需要對放大器賦予充分大之 電流、電壓(=電力),作爲電源電壓,而使放大器在比電 源電壓低且線形性高之動作區域中動作。 結果,可確保線形性之動作區域變窄,放大器之輸出 電力對使用電力(電源電力)的比(電力效率)變差。 如此,線形性之確保與電力效率之確保存在取捨 (trade-off)的關係。 先前爲了謀求確保線形性,且提高放大器之電力效 率,提出一種用於補償非線形區域中產生之失真的失真補 償方式。 失真補償方式中,有一種對放大器之輸入信號,藉由 200838125 預先使與放大器之失真特性相反的特性附加於放大器輸 入’而在放大器輸出中獲得無失真的期望信號之方式(預 橋正法;Pre-distortion)。 藉由預橋正法進行失真補償之預橋正器(pre-distorter) 之例有:首先將矯正量記憶於LUT (查找表)中,使用放 大器輸出信號與目標輸出信號之差異,而逐次修正其矯正 量之方式(稱爲LUT方式);及藉由多項式近似失真矯正 量’使用放大器輸出信號與輸入信號來計算其多項式之係 ί ' 數値(適應控制)的方式(稱爲多項式近似方式)等。 另外,用於謀求放大器之效率化的方式,有使用放大 器之輸入信號來調變放大器之電源電壓,配合輸入信號之 大小,而使放大器耗電動態性變動的方式(稱爲電源調變 方式或是包絡線追蹤(envelope tracking)方式)。 欲保持放大器之電源電壓一定,需要依照放大器之最 大輸出電壓大小的電源電壓。結果,即使輸出電壓小時, 放大器之耗電仍大,電力效率變差。 C, 相對於此,電源調變方式,因爲配合輸入信號之大小 而使放大器耗電動態性變動,所以輸出電壓小時,可抑制 放大器耗電,而提高電力效率。 此外,非專利文獻1、 2中提出一種進行電源調變, 且藉由預矯正器進行失真補償之方式。 進行電源調變,且藉由預矯正法進行失真補償之方式 的優點是可增大放大器之效率,且減少失真。 第4圖係顯示進行電源調變,且藉由預矯正器進行失 真補償之方式的放大電路之區塊圖。 200838125 第4圖之放大電路具備控制電力放大器(pA; Power Amplifier) 100之電源電壓的電源調變部ι〇1。該電源調變 部101配合賦予放大器丨00之輸入信號包絡線振幅之大 小,使賦予放大器1 〇〇之電壓變化。 此外’前述放大電路具備依據放大器1 〇〇之輸出信號 及輸入信號’認定放大器1 00之反模型的pA反模型認定部 102。預橋正器103依據認定之pa反模型進行放大器1〇〇 之失真補償。 ί [非專利文獻 l]Donald F. Kimball, et. al.,200838125 IX. Description of the Invention: [Technical Field] The present invention relates to an amplifying circuit and a wireless communication device, and more particularly to an amplifying circuit and the like which can compensate for distortion. [Prior Art] The amplifier requires a high degree of linearity. For example, a power amplifier that amplifies a linear modulation signal or a low noise amplifier that is used for a receiver of a linear modulation signal requires high linearity in order to suppress spectral characteristics and deterioration of transmission characteristics due to signal distortion. However, in order to improve the linearity of the amplifier, it is necessary to increase its saturation region. That is, in terms of the input/output power characteristics of the amplifier, the relationship between the input signal and the output signal is not linear in the range in which the output signal voltage is close to the amplifier power supply voltage, but becomes a non-linear region in which the input-output ratio is saturated. Therefore, in order to ensure linearity, it is necessary to apply a sufficiently large current and voltage (= electric power) to the amplifier as the power supply voltage, and the amplifier operates in an operation region having a lower power supply voltage and higher linearity. As a result, it is possible to ensure that the linear action region is narrowed, and the ratio of the output power of the amplifier to the used power (power source) (power efficiency) is deteriorated. Thus, the guarantee of linearity has a trade-off relationship with the securing of power efficiency. In order to seek to ensure linearity and to improve the power efficiency of an amplifier, a distortion compensation method for compensating for distortion generated in a non-linear region has been proposed. In the distortion compensation method, there is an input signal to the amplifier, which is obtained by adding a characteristic opposite to the distortion characteristic of the amplifier to the amplifier input by the 200838125 in advance, and obtaining a distortion-free desired signal in the amplifier output (pre-bridge positive method; Pre -distortion). An example of a pre-distorter for distortion compensation by pre-bridge positive method is: first, the correction amount is memorized in the LUT (look up table), and the difference between the amplifier output signal and the target output signal is used to sequentially correct it. The method of correcting the amount (called LUT mode); and the method of calculating the polynomial by using the amplifier output signal and the input signal by the polynomial approximate distortion correction amount ' 'number 値 (adaptive control) way (called polynomial approximation) Wait. In addition, in order to improve the efficiency of the amplifier, there is a method in which the input voltage of the amplifier is used to modulate the power supply voltage of the amplifier, and the power consumption of the amplifier is varied in accordance with the magnitude of the input signal (referred to as a power supply modulation method or It is the envelope tracking method). To maintain a constant supply voltage to the amplifier, a supply voltage that is sized according to the amplifier's maximum output voltage is required. As a result, even if the output voltage is small, the power consumption of the amplifier is large, and the power efficiency is deteriorated. C. In contrast, the power supply modulation method changes the power consumption of the amplifier in accordance with the size of the input signal. Therefore, when the output voltage is small, the power consumption of the amplifier can be suppressed, and the power efficiency can be improved. Further, Non-Patent Documents 1 and 2 propose a method of performing power supply modulation and performing distortion compensation by a predistorter. The advantage of performing power supply modulation and performing distortion compensation by pre-correction is that the efficiency of the amplifier can be increased and distortion can be reduced. Fig. 4 is a block diagram showing an amplifying circuit in which power supply modulation is performed and distortion compensation is performed by a predistorter. 200838125 The amplification circuit of FIG. 4 includes a power supply modulation unit ι〇1 that controls the power supply voltage of the power amplifier (pA; Power Amplifier) 100. The power supply modulation unit 101 is configured to match the amplitude of the input signal envelope of the amplifier 丨00 to change the voltage applied to the amplifier 〇〇. Further, the amplifying circuit includes a pA inverse model identifying unit 102 that recognizes the inverse model of the amplifier 100 based on the output signal of the amplifier 1 and the input signal '. The pre-bridge positive controller 103 performs distortion compensation of the amplifier 1 依据 according to the determined pa inverse model. ί [Non-Patent Document l] Donald F. Kimball, et. al.,

High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs”, IEEE Transactions on Microwave Theory and Techniques, V o 1. 54, No. 11,High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs", IEEE Transactions on Microwave Theory and Techniques, V o 1. 54, No. 11,

November 2006 .November 2006 .

[非專利文獻 2]Feipeng Wang,et· al·, “Design of Wide-Band Envelope-Tracking Power Amplifiers for OFDM Applications” , IEEE Transactions on Microwave Theory C and Techniques, Vol. 5 3 , No.4, April 2005 . 【發明內容】 (發明所欲解決之問題) 第4圖之放大電路雖可進行電源調變,且藉由預矯正 器1 0 3進行失真補償,但不過是將與預矯正器之輸出信號 (對放大器之輸入信號)成正比之信號賦予電源調變部 101° 因此,電源調變部1 0 1僅依預矯正器之輸出信號的包 絡線振幅,而使放大器10 0之電源電壓變化。 200838125 結果,第4圖之放大電路並不能將放大器之效率予以 最大化,而係在不考慮電源電壓之變化下進行草率的效率 化。 換言之,放大器之效率特性藉由放大器之電源電壓(汲 極電壓)而變化。因此,僅依預矯正器之輸出信號(對放 大器之輸入信號)的包絡線振幅,使放大器1 0 0之電源電 壓變化,即使可達到某種程度之效率化,但是因爲未考慮 電源電壓之變化所造成放大器1 00之特性變化,所以成爲 草率之效率化。 如以上所述,第4圖之放大電路無法調整電源調變部 之電源調變特性,且無法進行放大器效率之最佳化及放大 器效率之自由調整等。 因此,本發明之目的爲提供一種可調整電源調變特性 之放大電路及無線通信裝置。 此外,本發明之其他一個目的,係進行電源調變特性 及失真補償特性兩者的控制。 (解決問題之手段) 從第一觀點觀察之本發明,係一種放大電路,其具備: 放大器;電源調變部,其係依據前述放大器之輸入信號, 決定賦予前述放大器之電源調變電壓;失真補償部,其係 依據顯示前述放大器之特性的放大器模型,進行前述放大 器之失真補償;及控制部,其係控制前述電源調變部及前 述失真補償部;前述控制部以依據前述放大器之輸出信號 及輸入信號,以及賦予前述放大器之前述電源調變電壓, 來認定前述放大器模型之方式構成,且以依據前述放大器 200838125 模型,來控制用於決定前述電源調變電壓之參數的方式構 成。 採用上述本發明時,放大器模型除了依據放大器之輸 入輸出信號之外,亦依據放大器之電源調變電壓來認定, 所以放大器模型可反映電源調變電壓所引起之特性變動。 然後,控制部係依據考慮了電源調變電壓之放大器模 型,而控制用於決定電源調變電壓的參數,所以可進行考 慮了電源調變電壓之高精度的效率化。 (% 控制部宜以使前述放大器之輸入信號與藉由前述放大 器模型而獲得之放大器的估計輸入信號之差異最小化,並 且使放大器電力效率最大化,而求出用於決定前述電源調 變電壓之參數的方式構成。此時,可使放大器輸出之失真 最小化,且效率最大化。 控制部宜藉由梯度法進行前述差異之最小化與前述效 率之最大化。藉由梯度法可輕易地將失真與效率予以最佳 化。 前述控制部宜爲在求出用於決定前述電源調變電壓之 參數時,使用以冪級數表現之前述放大器模型,及以冪級 數表現之電源調變電壓對前述放大器之輸入信號的函數。 藉由以冪級數來表現放大器模型及電源調變電壓對放大器 之輸入信號的函數,使運算變得容易。 從第二觀點觀察之本發明,係一種放大電路,其具備: 放大器;電源調變部,其係依據前述放大器之輸入信號, 決定賦予前述放大器之電源調變電壓;及控制部,其係控 制前述電源調變部用於決定前述電源調變電壓之參數。另 200838125 外,前述控制部宜爲以依據賦予前述放大器之前述 變電壓,控制用於決定前述電源調變電壓之前述參 式構成者。 採用上述本發明時,由於控制部可控制用於決 電源調變電壓之參數,以調整電源調變電壓,因此 放大器效率。 從第三觀點觀察之本發明,係一種放大電路,其 放大器;電源調變部,其係依據前述放大器之輸入 決定賦予前述放大器之電源調變電壓;失真補償部 依據顯示前述放大器之特性的放大器模型,進行前 器之失真補償·,及控制部,其係可一起控制前述放 型之參數、及用於從前述放大器之輸入信號決定賦 放大器之電源調變電壓的參數。 採用上述本發明時,藉由控制部,可一起控制 模型之參數,及用於從前述放大器之輸入信號決定 述放大器之電源調變電壓的參數。因此可調整效率 失真特性。 從第四觀點觀察之本發明,係一種無線通信裝 爲了傳送信號之放大或接收信號之放大,而具備前 電路。 【實施方式】 以下,依據圖式說明本發明之實施形態。 第1圖顯示具有作爲無線通信裝置之無線基地 及作爲相同無線通信裝置之終端裝置1 b、 lc、 1 c 通信系統。 電源調 數的方 定前述 可調整 具備: 信號, >其係 述放大 大器模 予前述 放大器 賦予前 特性與 置,其 述放大 台1 a, 的無線 -10 - 200838125 無線通信裝置1 a、 lb、 1 c、 1 d分別具備:用於接 收無線信號之接收機1 1、用於傳送無線信號之傳送機1 2、 及進行收發信號之處理的處理部1 3。 接收機1 1係接收線形調變信號者,該接收機具有用於 接收線形調變信號予以放大的低雜訊放大電路1 1 a。 此外,傳送機1 2係傳送線形調變信號者,且具有放大 線形調變信號之電力放大電路1 2a。 前述低雜訊放大電路11a及電力放大電路12a之基本構 成均相同,因此,以下以電力放大電路1 2a爲例作說明。 第2圖顯示電力放大電路12a之硬體構成。該電力放 大電路1 2a具備:數位信號處理部(DSP ) 2 1、RF電力放 大器(以下簡稱爲放大器)22及包絡線(envelope)放大器 23 ° 前述放大器22係用於放大線形調變信號者,不過具備 有非線形特性之動作區域,而需要後述之第3圖的失真補 償部30。 I 此外,該放大器22中,電力效率及失真特性會因輸入 信號之變化及放大器特.性之變動而變化。 數位信號處理部2 1可輸出成爲向放大器22輸入之信 號(基帶信號),並且取得放大器22之輸出(基帶信號)。 另外,在從數位信號處理部2 1至放大器22的輸入端 之間設有:DA轉換器(DAC) 24、低通濾波器(LPF) 25、 向上轉換器26、帶通濾波器27及驅動器28。 此外,在從放大器22之輸出端至數位信號處理部2 1 之間設有:向下轉換器29a、低通濾波器29b及AD轉換器 -11- 200838125 (ADC ) 29c。 再者,數位信號處理部2 1對包絡線放大器2 3輸出顯 示賦予放大器2 2之電源電壓的信號(數位信號)。 另外,在從數位信號處理部2 1至包絡線放大器2 3之 輸入端之間設有:DA轉換器(DAC ) 24及低通濾波器29d。 第3圖係顯示數位信號處理部2 1之功能中,關於放大 器2 2之功能的區塊圖。 如該圖所示,數位信號處理部2 1具備:進行賦予放大 f 器22之信號的失真補償之預矯正器(失真補償部)30、決 定賦予放大器22之電源調變電壓(汲極電壓)的電源調變 部3 1、及控制前述失真補償部30與電源調變部3 1之控制 部32。 前述預矯正器3 0係對於信號(失真補償前基帶信號) X(η)實施依放大器22之失真特性的失真補償處理,而獲得 fe號(失真補ί員後基帶fg號)u (η)者。失真補償係藉由預 先使放大器22之失真特性的反特性附加於信號χ(η)而進 行。 ‘藉由將預先實施了失真補償之預矯正器3 0的輸出信號 u(n)賦予放大器22’而從放大器22獲得失真少之輸出ζ(η)。 以下,顯示預矯正器3 0之失真補償特性的冪級數模型 (PSM : Power S eries Model) 〇 預矯正器之失真補償特性的PS Μ u :失真補償後之放大器輸入 U = Z Sj#xj 係數(放大器反特性之參 ' 數) 失真補償前之放大器輸入 12- 200838125 電源調變部3 1依放大器22之輸入信號(預矯正器30 之輸出信號)u (η)的包絡線(e n v e 1 〇 p e)振幅,使賦予放大器 22之電源電壓v(n)變化。亦即,電源調變部3 1於輸入信號 u(n)(之包絡線振幅)小時,電源電壓v(n)亦小,於輸入信 號u(n)(之包絡線振幅)大時,電源電壓v(n)亦大,以決 定隨著輸入信號u(n)之變化的電源調變電壓v(n)。 電源調變部31藉由依輸入信號u(n)決定電源調變電壓 v(n),可提局放大器22之電力效率。 以下,顯示電源調變部31之電源調變特性的冪級數模 型(PSM )。[Non-Patent Document 2] Feipeng Wang, et al., "Design of Wide-Band Envelope-Tracking Power Amplifiers for OFDM Applications", IEEE Transactions on Microwave Theory C and Techniques, Vol. 5 3 , No. 4, April 2005 [Disclosure] The problem of the invention is to solve the problem. The signal proportional to the input signal of the amplifier is supplied to the power supply modulation unit 101. Therefore, the power supply modulation unit 110 changes the power supply voltage of the amplifier 10 based only on the envelope amplitude of the output signal of the predistorter. As a result, the amplifying circuit of Figure 4 does not maximize the efficiency of the amplifier, but rather the efficiency of the slack without considering the change in the supply voltage. In other words, the efficiency characteristic of the amplifier varies by the supply voltage (thin voltage) of the amplifier. Therefore, depending on the envelope amplitude of the output signal of the predistorter (the input signal to the amplifier), the power supply voltage of the amplifier 100 is changed, even if a certain degree of efficiency can be achieved, because the change of the power supply voltage is not considered. Since the characteristics of the amplifier 100 are changed, the efficiency of the slack is improved. As described above, the amplifier circuit of Fig. 4 cannot adjust the power supply modulation characteristics of the power supply modulation section, and it is not possible to optimize the amplifier efficiency and the free adjustment of the amplifier efficiency. Accordingly, it is an object of the present invention to provide an amplifying circuit and a wireless communication device that can adjust power supply modulation characteristics. Further, another object of the present invention is to perform control of both power supply modulation characteristics and distortion compensation characteristics. The present invention is an amplifier circuit comprising: an amplifier; a compensation unit that performs distortion compensation of the amplifier according to an amplifier model that displays characteristics of the amplifier; and a control unit that controls the power supply modulation unit and the distortion compensation unit; and the control unit controls an output signal according to the amplifier And the input signal, and the power supply modulation voltage applied to the amplifier, to determine the configuration of the amplifier model, and to control the parameter for determining the power supply modulation voltage according to the amplifier 200838125 model. In the above invention, the amplifier model is determined by the amplifier's power supply modulation voltage in addition to the amplifier's input and output signals, so the amplifier model can reflect the characteristic variation caused by the power supply modulation voltage. Then, the control unit controls the parameter for determining the power supply modulation voltage based on the amplifier model in consideration of the power supply modulation voltage, so that high-precision efficiency of the power supply modulation voltage can be considered. (% control unit should minimize the difference between the input signal of the aforementioned amplifier and the estimated input signal of the amplifier obtained by the aforementioned amplifier model, and maximize the power efficiency of the amplifier, and determine the power supply modulation voltage for determining the aforementioned power supply. The parameter is constructed in such a way that the distortion of the amplifier output can be minimized and the efficiency is maximized. The control unit should minimize the aforementioned difference and maximize the aforementioned efficiency by the gradient method. The gradient method can be easily used. The distortion and the efficiency are optimized. The control unit preferably uses the amplifier model expressed in power series and the power modulation expressed in power series when determining the parameter for determining the power supply modulation voltage. The function of the voltage on the input signal of the aforementioned amplifier. The operation of the amplifier model and the power supply modulation voltage to the input signal of the amplifier is represented by a power series. The present invention is a second aspect. An amplifier circuit comprising: an amplifier; a power supply modulation unit that determines the assignment based on an input signal of the amplifier a power supply modulation voltage of the amplifier; and a control unit that controls the power supply modulation unit to determine a parameter of the power supply modulation voltage. Further, in addition to 200838125, the control unit is configured to provide the variable voltage according to the amplifier. The above-described parameter configuration for determining the power supply modulation voltage is controlled. When the present invention is used, the control unit can control the parameter for determining the power supply modulation voltage to adjust the power supply modulation voltage, and thus the amplifier efficiency. The present invention is an amplifier circuit, an amplifier, and a power supply modulation unit that determines a power supply modulation voltage given to the amplifier according to an input of the amplifier; the distortion compensation unit is based on an amplifier model that displays characteristics of the amplifier. The distortion compensation of the front device is performed, and the control unit can control the parameters of the release type and the parameters for determining the power supply modulation voltage of the amplifier from the input signal of the amplifier. By the control unit, the parameters of the model can be controlled together, and used for the aforementioned amplifier The input signal determines the parameter of the power supply modulation voltage of the amplifier. Therefore, the efficiency distortion characteristic can be adjusted. The present invention, viewed from a fourth point of view, is a wireless communication device having a front circuit for amplifying a transmission signal or amplifying a reception signal. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows a communication system having a wireless base as a wireless communication device and terminal devices 1 b, lc, 1 c as the same wireless communication device. The above-mentioned adjustable can be: a signal, > which is a wireless amplifier - 1 lb, 1 which is a wireless amplifier - 10, 200838125, which is used to amplify the first characteristic and the amplifier. Each of c and 1 d includes a receiver 1 for receiving a wireless signal, a transmitter 1 for transmitting a wireless signal, and a processing unit 13 for processing a transmission and reception signal. The receiver 11 receives a linear modulated signal having a low noise amplifying circuit 1 1 a for receiving a linear modulated signal for amplification. Further, the conveyor 12 is a power amplifying circuit 12a which transmits a linear modulation signal and which amplifies a linear modulation signal. The basic configuration of the low noise amplifying circuit 11a and the power amplifying circuit 12a is the same. Therefore, the power amplifying circuit 12a will be described below as an example. Fig. 2 shows the hardware configuration of the power amplifying circuit 12a. The power amplifier circuit 12a includes a digital signal processing unit (DSP) 21, an RF power amplifier (hereinafter abbreviated as amplifier) 22, and an envelope amplifier 23°. The amplifier 22 is used to amplify a linear modulation signal. However, an operation region having a non-linear characteristic is provided, and the distortion compensating unit 30 of Fig. 3 to be described later is required. In addition, in the amplifier 22, the power efficiency and distortion characteristics vary depending on changes in the input signal and variations in amplifier characteristics. The digital signal processing unit 2 1 can output a signal (baseband signal) input to the amplifier 22, and obtain an output (baseband signal) of the amplifier 22. Further, between the digital signal processing unit 21 and the input terminal of the amplifier 22, a DA converter (DAC) 24, a low pass filter (LPF) 25, an up converter 26, a band pass filter 27, and a driver are provided. 28. Further, between the output terminal of the amplifier 22 and the digital signal processing unit 21, a down converter 29a, a low pass filter 29b, and an AD converter -11-200838125 (ADC) 29c are provided. Further, the digital signal processing unit 21 outputs a signal (digital signal) indicating the power supply voltage to the amplifier 22 to the envelope amplifier 23. Further, between the digital signal processing unit 21 and the input terminal of the envelope amplifier 23, a DA converter (DAC) 24 and a low-pass filter 29d are provided. Fig. 3 is a block diagram showing the function of the amplifier 22 in the function of the digital signal processing unit 21. As shown in the figure, the digital signal processing unit 21 includes a predistorter (distortion compensation unit) 30 that performs distortion compensation of a signal applied to the amplifier f22, and a power supply modulation voltage (bungee voltage) that is applied to the amplifier 22. The power supply modulation unit 31 and the control unit 32 that controls the distortion compensation unit 30 and the power supply modulation unit 31. The pre-corrector 30 performs distortion compensation processing on the signal (distortion-compensated pre-baseband signal) X(n) according to the distortion characteristic of the amplifier 22, and obtains the fe number (distortion-added baseband fg number) u (η) By. The distortion compensation is performed by previously adding the inverse characteristic of the distortion characteristic of the amplifier 22 to the signal χ(η). The output ζ(η) with less distortion is obtained from the amplifier 22 by giving the output signal u(n) of the predistorter 30 which has been subjected to distortion compensation in advance to the amplifier 22'. Hereinafter, a power series model (PSM: Power S eries Model) showing the distortion compensation characteristic of the pre-aligner 30 PS PS Μ u of the distortion compensation characteristic of the pre-aligner: Amplifier-compensated amplifier input U = Z Sj#xj Coefficient (parameter of the inverse characteristic of the amplifier) Amplifier input before distortion compensation 12- 200838125 Power supply modulation section 3 1 Envelope of the input signal (output signal of pre-aligner 30) u (η) according to amplifier 22 (enve 1 The amplitude of the power supply voltage v(n) given to the amplifier 22 is varied. That is, the power supply modulation unit 31 has a small power supply voltage v(n) when the input signal u(n) (the envelope amplitude) is small, and the power supply when the input signal u(n) (the envelope amplitude) is large. The voltage v(n) is also large to determine the power supply modulation voltage v(n) as a function of the input signal u(n). The power supply modulation unit 31 can determine the power efficiency of the amplifier 22 by determining the power supply modulation voltage v(n) according to the input signal u(n). Hereinafter, a power series model (PSM) of the power supply modulation characteristic of the power supply modulation unit 31 is displayed.

電源調變特性之PSM v :電源調變電壓 v = ^ £j#uJ 係數(電源調變特性之參 ' 數) V:放大器輸入 控制部32具有控制預矯正器30從失真補償前信號x(n) 決定失真補償信號u(n)用的參數(放大器22之反特性(反 模型)的參數二失真補償特性之參數)g的功能。 因爲可調整預矯正器30之參數,所以藉由適當地決定 在控制部3 2中預矯正器之參數,可自由地調整失真補償特 性。 再者,控制部32具有控制電源調變部3 1從放大器輸 入信號(預矯正器輸出信號)u(n)決定電源調變電壓v(n) 用之參數h的功能。 因爲可調整電源調變部3 1之參數,所以藉由適當地決 -13- 200838125 定在控制部3 2中電源調變部3 1之參數,可自由地調整電 源調變特性,進而可自由地調整放大器22之效率。 如以上所述,因爲控制部3 2可分別控制預矯正器3 0 及電源調變部3 1之參數,所以可分別控制放大器22之電 源調變特性與失真補償特性。 因此如後述,可進行放大器2 2之電源調變特性與失真 補償特性兩者之適應控制,而獲得成爲「效率最大、失真 最小」之最佳放大器特性。 f% 此外,犧牲效率與失真之任何一方,而使另一方性能 提高之控制,亦可藉由參數之調整來進行。 爲了獲得放大器22之效率最大,並且失真最小之放大 器特性,本實施形態之控制部32具有:放大器模型32a、 放大器之效率特性模型32b及評估部32c。 此處之放大器模型32a係作爲顯示放大器(PA ) 22之 非線形特性的反特性之PA反模型而構成。亦即,放大器模 型32a於賦予放大器輸出z(n)與電源調變電壓v(n)時,可 ( 依參數g運算放大器輸入之估計値。另外,參數g之決定 方法於後述。 另外,放大器22之非線形特性的冪級數模型(pSM ), 與放大器22之非線形反特性(PA反模型)的冪級數模型 (PSM )分別如下述。 放大器之非線形特性的P S Μ -14- 200838125 Z :放大器輸出 z = · v1 ®uJ Pu :係數(參數)PSM of power modulation characteristics: power supply modulation voltage v = ^ £j#uJ coefficient (parameter of power modulation characteristics) V: amplifier input control section 32 has control pre-corrector 30 from distortion compensation pre-signal x ( n) A function of determining the parameter (the parameter of the parameter two-distortion compensation characteristic of the inverse characteristic (inverse model) of the amplifier 22) for the distortion compensation signal u(n). Since the parameters of the predistorter 30 can be adjusted, the distortion compensating property can be freely adjusted by appropriately determining the parameters of the predistorter in the control unit 32. Further, the control unit 32 has a function of controlling the power supply modulation unit 31 to determine the parameter h for the power supply modulation voltage v(n) from the amplifier input signal (pre-corrector output signal) u(n). Since the parameters of the power supply modulation unit 31 can be adjusted, the power modulation characteristics can be freely adjusted by appropriately setting the parameters of the power supply modulation unit 31 in the control unit 3 2, and thus freely adjustable. The efficiency of the amplifier 22 is adjusted. As described above, since the control unit 32 can separately control the parameters of the predistorter 30 and the power supply modulation unit 31, the power modulation characteristics and the distortion compensation characteristics of the amplifier 22 can be separately controlled. Therefore, as will be described later, adaptive control of both the power modulation characteristics and the distortion compensation characteristics of the amplifier 2 can be performed, and the optimum amplifier characteristics of "maximum efficiency and minimum distortion" can be obtained. F% In addition, the control that sacrifices efficiency and distortion, and improves the performance of the other side, can also be adjusted by parameters. In order to obtain the amplifier characteristics in which the efficiency of the amplifier 22 is the largest and the distortion is the smallest, the control unit 32 of the present embodiment includes an amplifier model 32a, an efficiency characteristic model 32b of the amplifier, and an evaluation unit 32c. The amplifier model 32a here is constructed as a PA inverse model of the inverse characteristic of the non-linear characteristic of the display amplifier (PA) 22. In other words, when the amplifier model 32a is supplied with the amplifier output z(n) and the power supply modulation voltage v(n), the estimation of the input of the amplifier can be performed according to the parameter g. The method for determining the parameter g will be described later. The power series model (pSM) of the non-linear characteristic of 22, and the power series model (PSM) of the nonlinear inverse characteristic (PA inverse model) of the amplifier 22 are as follows. PS of the non-linear characteristic of the amplifier Μ -14- 200838125 Z : Amplifier output z = · v1 ®uJ Pu : coefficient (parameter)

iJ V1 :電源調變電壓 V :放大器輸入 放大器之非線形反特性的p S μ 放大器輸入之估計値 ^ :係數(放大器反特性之參 u = y g. ^v1· zj tr J 數) :電源調變電壓 :放大器輸出 此外,控制部32從放大器模型32a之PA反模型算出 的放大器之估計輸入信號與實際之放大器輸入信號運算兩 者之誤差e(n)。該誤差e(n)賦予評估部32c。 另外,誤差e(n)之運算式如下述。 放大器輸入信號u(n)與估計輸入信號ύ(η)之誤差e(n) e(n) = u(n) — ύ(η) 此外,此時之效率特性模型32b係以放大器22之汲極 效率特性(電力效率特性)W的反函數(效率反^^性模型) //構成。 該反函數//如下述°iJ V1: power supply modulation voltage V: estimation of the non-linear inverse characteristic of the amplifier input amplifier p S μ amplifier input :^: coefficient (parameter of the inverse characteristic of the amplifier u = y g. ^v1· zj tr J number): power supply Variable Voltage: Amplifier Output In addition, the control unit 32 calculates an error e(n) between the estimated input signal of the amplifier calculated from the PA inverse model of the amplifier model 32a and the actual amplifier input signal. This error e(n) is given to the evaluation unit 32c. In addition, the arithmetic expression of the error e(n) is as follows. The error e(n) e(n) = u(n) - ύ(η) of the amplifier input signal u(n) and the estimated input signal ύ(η). In addition, the efficiency characteristic model 32b at this time is the same as the amplifier 22. The inverse function of the extreme efficiency characteristic (power efficiency characteristic) W (efficiency inverse model) // constitutes. The inverse function // is as follows

放大器之效率特性▽的反函數V之PSM -15- 200838125 = Zfu#yi#zj fu :係數(效率特性之已 知參數) V1 :電源調變電壓 Z」:放大器輸出 該效率特性模型3 2b預先賦予控制部3 2。亦即,對於 控制部3 2預先賦予上述反函數中之效率特性參數f,且對 於控制部3 2賦予電源調變電壓v (η)與放大器輸出z (η)時, 控制部3 2可運算效率7?的反函數値//。另外,因爲效率特 性(之參數)依電源調變電壓而不同,所以預先測定依各 種電源調變電壓及放大器輸入信號的效率特性參數,並將 該效率特性參數記憶於控制部3 2。 另外,效率特性亦可藉由電源調變電壓ν(η)與放大器 輸入u(n)之關係來表示。 將如以上地算出之/z賦予評估部3 2c。 評估部 32c依據賦予之誤差e(n)與效率之反函數値 // ,使誤差e(n)成爲最小,並且使//成爲最小(效率最 大)而最佳化。 具體而言’評估部32c具有縮小放大器之誤差(失真) e (η)及效率特性之反函數Μ兩者的下述評估函數】,而進行 縮小該評估函數之處理。The inverse characteristic of the efficiency characteristic of the amplifier V PSM -15- 200838125 = Zfu#yi#zj fu : coefficient (known parameter of efficiency characteristic) V1 : power supply modulation voltage Z": amplifier output the efficiency characteristic model 3 2b in advance The control unit 32 is provided. In other words, when the control unit 32 applies the efficiency characteristic parameter f in the inverse function in advance, and the power supply modulation voltage v (η) and the amplifier output z (η) are applied to the control unit 32, the control unit 32 can calculate The inverse of the efficiency of 7? 値 / /. Further, since the efficiency characteristic (the parameter) differs depending on the power supply modulation voltage, the efficiency characteristic parameters of the various power supply modulation voltages and the amplifier input signals are measured in advance, and the efficiency characteristic parameters are stored in the control unit 32. In addition, the efficiency characteristic can also be expressed by the relationship between the power supply modulation voltage ν(η) and the amplifier input u(n). The evaluation unit 3 2c is given /z calculated as above. The evaluation unit 32c optimizes the error e(n) by minimizing the error e(n) based on the error e(n) and the inverse function of the given value 値 //, and minimizes it. Specifically, the evaluation unit 32c has the following evaluation function for reducing the error (distortion) e (η) of the amplifier and the inverse function 效率 of the efficiency characteristic, and performs the process of reducing the evaluation function.

評估函數J = ⑻+ αμ2 §係&之向量表現 iW系&之向量表現 此時,由於前述誤差(失真)e(n)係放大器輸入信號與 -16 - 200838125 估計輸入信號之差,因此賦予放大器輸出z(n)與電源調變 電壓v(n)時,係藉由PA反模型32之係數(參數)g所決 定之値。 此外,電源調變電壓v(n),於賦予放大器輸入u(n)時, 係藉由電源調變特性之係數(參數)h所決定之値。 再者,效率7/之反函數//於賦予放大器輸出z(n)與電 源調變電壓v(n)時,藉由已知之係數(參數)f決定,電源 調變電壓v(n)於賦予放大器輸入u(n)時,係藉由電源調變 「特性之係數(參數)h所決定之値。 因此,評估部32c藉由適應控制放大器模型32a之PA 反模型的係數(放大器模型之參數)g及電源調變特性之 係數(用於決定電源調變電壓之參數)h,可使前述評估函 數最小化。 更具體而言,評估部32c藉由梯度法運算而將評估函 數予以最小化。藉由梯度法逐次決定放大器模型32a之PA 反模型的係數(放大器模型之參數)g與電源調變特性之 , 係數(用於決定電源調變電壓之參數)h用的參數適應法 則如下述。 另外,用於將參數最佳化之運算法不限於梯度法。 藉由梯度法之參數適應法則 g之適應法貝[J g(h + l)4⑻一 ϋ之適應法則 £(h+i) = ii⑻- ah rg係關於向量έ之步進參數 rh係關於向量£之步進參數 έ*係έ之共軛(向量) -17- 200838125 如上述,控制部3 2適應認定使用放大器之輸入輸出信 號及電源調變電壓的放大器22之反模型(多項式近似), 而逐次決定其係數値(放大器模型32a之參數)g。 再者,控制部32使用適應認定之放大器模型32a的係 數値.g、放大器輸入輸出信號u(n),z(n)、電源調變電壓 ν(η)、及放大器之效率特性模型32b,而逐次決定用於決定 電源調變電壓之參數h。 結果,與藉由預矯正器30進行失真補償相同,逐次計 算對輸入信號之最佳的電源調變特性,以進行電源調變特 性與失真補償特性兩者之適應控制。 因而,採用本實施形態之控制部3 2時,放大電路本身 可自動地進行有取捨關係之放大器的效率與失真特性之最 佳化。 藉此,比先前可實現更精密之電源調變特性,可將失 真性能容納於規格內,並謀求效率之最大化。此外,對於 放大器特性之變動亦可充分對應。 再者,採用本實施形態之控制部3 2時,即使傳送信號 之調變方式改變時,仍可不變更軟體及電路設計而對應。 此外’欲犧牲若干效率或失真,而提高另一方性能情況下, 只須變更參數即可,可簡單地進行調整。 另外,本發明不限定於上述實施形態,可作各種改良。 以上,參照特定之實施形態詳細地說明本發明,不過, 熟悉本技術之業者明瞭在不脫離本發明之精神與範圍內, 可進行各種變更及修正。本專利申請係依據2007年1月19 -18- 200838125 曰之日本專利申請(特願2007— 010181)者,其內容援用 於此作參照。 【圖式簡單說明】 第1圖係無線通信系統之區塊圖。 第2圖係放大電路之硬體構成圖。 第3圖係放大電路之功能區塊圖。 第4圖係先前之放大電路的功能區塊圖。 【主要元件符號說明】 la 無線基地台 lb,lc ,Id 終端裝置 11 接收機 1 la 低雜訊放大電路 12 傳送機 12a 電力放大電路 13 處理部 21 數位信號處理部 22 RF電力放大器 23 包絡線放大器 24 D A轉換器 25 低通濾波器 26 向上轉換器 27 帶通濾波器 28 驅動器 29a 向下轉換器 29b 低通濾波器 -19- 200838125 f 29c AD轉換器 30 預矯正器(失真補償部) 3 1 電源調變部 32 控制部 32a 放大器模型 32b 效率特性模型 32c 評估部 100 電力放大器 101 電源調變部 102 PA反模型認定部 103 預矯正器Evaluation function J = (8) + αμ2 § System & vector representation iW system & vector representation At this time, due to the aforementioned error (distortion) e(n) is the difference between the amplifier input signal and the -16 - 200838125 estimated input signal, When the amplifier output z(n) and the power supply modulation voltage v(n) are given, it is determined by the coefficient (parameter) g of the PA inverse model 32. In addition, the power supply modulation voltage v(n) is determined by the coefficient (parameter) h of the power supply modulation characteristic when the amplifier input u(n) is applied. Furthermore, the inverse function of the efficiency 7// when the amplifier output z(n) and the power supply modulation voltage v(n) are given, the power supply modulation voltage v(n) is determined by the known coefficient (parameter) f. When the input u(n) is given to the amplifier, it is determined by the power supply modulation "the coefficient of the characteristic (parameter) h. Therefore, the evaluation unit 32c adapts the coefficient of the PA inverse model of the control amplifier model 32a (amplifier model) The parameter g) and the coefficient of the power modulation characteristic (the parameter for determining the power supply modulation voltage) h can minimize the aforementioned evaluation function. More specifically, the evaluation unit 32c minimizes the evaluation function by the gradient method operation. The parameters of the PA inverse model of the amplifier model 32a (parameters of the amplifier model) g and the power modulation characteristics are determined successively by the gradient method, and the parameters of the parameters (the parameters used to determine the power supply modulation voltage) h are as follows: In addition, the algorithm for optimizing the parameters is not limited to the gradient method. The parameter adaptation rule by the gradient method g is adapted to the law [J g(h + l) 4(8) one-step adaptation rule £ (h+ i) = ii(8)- ah rg is the step of the vector The parameter rh is a step parameter of the vector έ* 共 conjugate (vector) -17- 200838125 As described above, the control unit 32 adapts to the inverse of the amplifier 22 that determines the input and output signals of the amplifier and the power supply modulation voltage. The model (polynomial approximation) is sequentially determined by the coefficient 値 (parameter of the amplifier model 32a) g. Further, the control unit 32 uses the coefficient 値.g of the adaptive amplifier model 32a, the amplifier input/output signal u(n), z. (n), the power supply modulation voltage ν(η), and the efficiency characteristic model 32b of the amplifier, and the parameter h for determining the power supply modulation voltage is successively determined. As a result, the same as the distortion compensation by the predistorter 30, successively The optimum power modulation characteristics of the input signal are calculated to perform adaptive control of both the power modulation characteristics and the distortion compensation characteristics. Therefore, when the control unit 32 of the present embodiment is used, the amplification circuit itself can be automatically performed. The efficiency and distortion characteristics of the amplifiers of the trade-off relationship are optimized. Thereby, the power modulation characteristics can be more precise than before, and the distortion performance can be accommodated in the specifications, and In addition, the fluctuation of the characteristics of the amplifier can be sufficiently matched. Further, when the control unit 32 of the present embodiment is used, the software and the circuit design can be changed without changing the modulation mode of the transmission signal. In addition, in order to sacrifice some efficiency or distortion and improve the performance of the other side, it is only necessary to change the parameters, and the adjustment can be easily performed. The present invention is not limited to the above embodiment, and various modifications can be made. The present invention will be described in detail with reference to the preferred embodiments of the present invention. It will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application is based on January 19, 2007- 200838125 Japanese Patent Application (Japanese Patent Application No. 2007-010181), the contents of which are hereby incorporated by reference. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram of a wireless communication system. Fig. 2 is a diagram showing the hardware configuration of the amplifier circuit. Figure 3 is a functional block diagram of the amplifier circuit. Figure 4 is a functional block diagram of the prior amplification circuit. [Description of main components] la radio base station lb, lc, Id terminal device 11 receiver 1 la low noise amplifier circuit 12 transmitter 12a power amplifier circuit 13 processing unit 21 digital signal processing unit 22 RF power amplifier 23 envelope amplifier 24 DA converter 25 low pass filter 26 up converter 27 band pass filter 28 driver 29a down converter 29b low pass filter -19- 200838125 f 29c AD converter 30 predistorter (distortion compensation unit) 3 1 Power supply modulation unit 32 Control unit 32a Amplifier model 32b Efficiency characteristic model 32c Evaluation unit 100 Power amplifier 101 Power supply modulation unit 102 PA inverse model identification unit 103 Pre-aligner

-20 --20 -

Claims (1)

200838125 十、申請專利範圍: 1. 一種放大電路,其特徵爲具備: 放大器; 電源調變部,其係依據前述放大器之輸入信號,決定 賦予前述放大器之電源調變電壓; 失真補償部,其係依據顯示前述放大器之特性的放大 器模型,進行前述放大器之失真補償;及 控制部,其係控制前述電源調變部及前述失真補償部; 前述控制部以依據前述放大器之輸出信號及輸入信 號,以及賦予前述放大器之前述電源調變電壓,來認定 前述放大器模型之方式構成,且 以依據前述放大器模型,來控制用於決定前述電源調 變電壓之參數的方式構成。 2. 如申請專利範圍第1項之放大電路,其中前述控制部以 使前述放大器之輸入信號與藉由前述放大器模型而獲得 之放大器的估計輸入信號之差異最小化,並且使放大器 電力效率最大化,而求出用於決定前述電源調變電壓之 參數的方式構成。 3 .如申請專利範圍第2項之放大電路,其中前述控制部藉 由梯度法進行前述差異之最小化與前述效率之最大化。 4.如申請專利範圍第1項至第3項中任一項之放大電路, 其中前述控制部求出用於決定前述電源調變電壓之參數 時,使用: 以冪級數表現之前述放大器模型;及 以冪級數表現之電源調變電壓對前述放大器之輸入信 -21- 200838125 號的函數。 5. —種放大電路,其特徵爲具備: 放大器; 電源調變部,其係依據前述放大器之輸入信號,決定 賦予前述放大器之電源調變電壓;及 控制部,其係控制前述電源調變部用於決定前述電源 調變電壓之參數。 6. —種放大電路,其特徵爲具備: ί ' 放大器; 電源調變部,其係依據前述放大器之輸入信號,決定 賦予前述放大器之電源調變電壓; 失真補償部,其係依據顯示前述放大器之特性的放大 器模型,進行前述放大器之失真補償;及 控制部,其係可一起控制前述放大器模型之參數、及 用於從前述放大器之輸入信號決定賦予前述放大器之電 源調變電壓的參數。 I 7 . —種無線通信裝置,係爲了傳送信號之放大或接收信號 之放大,而具備申請專利範圍第1、 2、 3、 5項中任 一項之前述放大電路。 8. —種無線通信裝置,係爲了傳送信號之放大或接收信號 之放大,而具備申請專利範圍第4項之前述放大電路。 -22-200838125 X. Patent application scope: 1. An amplifying circuit, comprising: an amplifier; a power supply modulation unit, which determines a power supply modulation voltage applied to the amplifier according to an input signal of the amplifier; a distortion compensation unit Performing distortion compensation of the amplifier according to an amplifier model showing characteristics of the amplifier; and a control unit for controlling the power supply modulation unit and the distortion compensation unit; wherein the control unit is based on an output signal and an input signal of the amplifier, and The power supply modulation voltage of the amplifier is given to determine the configuration of the amplifier model, and the parameter for determining the power supply modulation voltage is controlled in accordance with the amplifier model. 2. The amplifying circuit of claim 1, wherein the control unit minimizes a difference between an input signal of the amplifier and an estimated input signal of an amplifier obtained by the amplifier model, and maximizes amplifier power efficiency. Then, the configuration for determining the parameters of the power supply modulation voltage is determined. 3. The amplifying circuit of claim 2, wherein the control unit minimizes the aforementioned difference and maximizes the aforementioned efficiency by a gradient method. 4. The amplifier circuit according to any one of claims 1 to 3, wherein the control unit obtains a parameter for determining the power supply modulation voltage, and uses: the foregoing amplifier model expressed in a power series And a function of the power supply modulation voltage expressed in power series for the input signal of the aforementioned amplifier - 21-200838125. 5. An amplifier circuit, comprising: an amplifier; a power supply modulation unit that determines a power supply modulation voltage applied to the amplifier according to an input signal of the amplifier; and a control unit that controls the power supply modulation unit A parameter used to determine the aforementioned power supply modulation voltage. 6. An amplification circuit characterized by comprising: ί ' amplifier; a power supply modulation unit that determines a power supply modulation voltage applied to the amplifier according to an input signal of the amplifier; and a distortion compensation unit that displays the amplifier according to the display The amplifier model of the characteristic performs distortion compensation of the amplifier; and a control unit that can control parameters of the amplifier model together and parameters for determining a power supply modulation voltage applied to the amplifier from an input signal of the amplifier. A wireless communication device is provided with the amplifying circuit of any one of claims 1, 2, 3, and 5 in order to amplify a transmission signal or amplify a received signal. 8. A wireless communication device comprising the amplifying circuit of claim 4 in order to amplify a transmission signal or amplify a received signal. -twenty two-
TW97101872A 2007-01-19 2008-01-18 Amplifying circuit and wireless communication device TW200838125A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010181A JP2008177899A (en) 2007-01-19 2007-01-19 Amplifier circuit, and radio communication equipment

Publications (1)

Publication Number Publication Date
TW200838125A true TW200838125A (en) 2008-09-16

Family

ID=39636026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97101872A TW200838125A (en) 2007-01-19 2008-01-18 Amplifying circuit and wireless communication device

Country Status (3)

Country Link
JP (1) JP2008177899A (en)
TW (1) TW200838125A (en)
WO (1) WO2008088025A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115979B2 (en) * 2008-07-24 2013-01-09 日本無線株式会社 Predistorter
JP2010166453A (en) * 2009-01-16 2010-07-29 Sumitomo Electric Ind Ltd Distortion compensating apparatus and radio base station
JP5260335B2 (en) * 2009-01-23 2013-08-14 日本無線株式会社 Predistorter
JP5323950B2 (en) * 2009-03-09 2013-10-23 ゼットティーイー ウィストロン テレコム アーベー Method and apparatus for linearization of nonlinear power amplifier
JP2010278992A (en) * 2009-06-01 2010-12-09 Panasonic Corp Rf amplification apparatus
EP2290811A1 (en) * 2009-08-05 2011-03-02 STmicroelectronics SA Digital predistorter for variable supply amplifier
WO2011105359A1 (en) * 2010-02-24 2011-09-01 住友電気工業株式会社 Amplifying device, signal processing device, wireless communication device, connector mounting structure, and coaxial connector
JP2011176529A (en) * 2010-02-24 2011-09-08 Sumitomo Electric Ind Ltd Amplifier and signal processing apparatus
JPWO2012086830A1 (en) * 2010-12-20 2014-06-05 日本電気株式会社 Amplifying device and control method thereof
GB2500708B (en) * 2012-03-30 2016-04-13 Nujira Ltd Determination of envelope shaping and signal path predistortion of an ET amplification stage using device characterisation data
JP2014049939A (en) * 2012-08-31 2014-03-17 Japan Radio Co Ltd Nonlinear compensation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005784A1 (en) * 1997-07-28 1999-02-04 Rohde & Schwarz Gmbh & Co. Kg Measuring method and device for measuring the distortion of a high frequency power amplifier and correction method and device for the automatic correction of a high frequency power amplifier
JP4576221B2 (en) * 2004-02-03 2010-11-04 株式会社エヌ・ティ・ティ・ドコモ Power series predistorter for multi-frequency band
JP2005269440A (en) * 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd Polar modulation transmitter and polar modulation method
JP4961661B2 (en) * 2004-09-10 2012-06-27 株式会社日立製作所 Digital predistortion type transmitter and radio base station

Also Published As

Publication number Publication date
JP2008177899A (en) 2008-07-31
WO2008088025A1 (en) 2008-07-24

Similar Documents

Publication Publication Date Title
TW200838125A (en) Amplifying circuit and wireless communication device
JP5206526B2 (en) Amplifying device and transmitting device
US8369802B2 (en) Polar modulation transmission apparatus and polar modulation transmission method
US8665018B2 (en) Integrated circuit, wireless communication unit and method for a differential interface for an envelope tracking signal
US20110201287A1 (en) Wireless communication unit, integrated circuit and method of power control of a power amplifier therefor
US7894546B2 (en) Replica linearized power amplifier
EP1292019B1 (en) Multiple stage and/or nested predistortion system and method
US7570928B2 (en) System and method for low delay corrective feedback power amplifier control
JP5907073B2 (en) Amplifier circuit and wireless communication device
WO2012096337A1 (en) Amplifying device
US20100148862A1 (en) Method and apparatus for enhancing performance of doherty power amplifier
WO2004001958A1 (en) Efficient generation of radio frequency currents
US8515367B2 (en) Transmission circuit and transmission method
JP2006253749A (en) Distortion-compensating device and method thereof
JP5056586B2 (en) Amplifier circuit
JP2010045507A (en) Amplifier circuit and wireless communication apparatus
JP6565288B2 (en) Wireless device
KR101358096B1 (en) Power amplifier
US8742865B2 (en) Polar modulation transmission circuit and polar modulation transmission method
JP2010045508A (en) Amplifier circuit and wireless communication apparatus
US7319362B2 (en) Power amplifying apparatus
US9219448B2 (en) Amplifier and amplification method
KR20120070143A (en) Apparatus for reducing envelope distortion in power amplifier
KR100976863B1 (en) Apparatus and method for compensating nonlinear distortion of power amplifier
JP2011228999A (en) Amplifier circuit and wireless communication device