TW200832853A - Method for manufacturing cleaved facets of nitride semiconductor devices - Google Patents

Method for manufacturing cleaved facets of nitride semiconductor devices Download PDF

Info

Publication number
TW200832853A
TW200832853A TW96102229A TW96102229A TW200832853A TW 200832853 A TW200832853 A TW 200832853A TW 96102229 A TW96102229 A TW 96102229A TW 96102229 A TW96102229 A TW 96102229A TW 200832853 A TW200832853 A TW 200832853A
Authority
TW
Taiwan
Prior art keywords
gallium nitride
nitride semiconductor
fabricating
semiconductor device
laser
Prior art date
Application number
TW96102229A
Other languages
Chinese (zh)
Other versions
TWI328907B (en
Inventor
Wei-Li Chen
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW96102229A priority Critical patent/TWI328907B/en
Publication of TW200832853A publication Critical patent/TW200832853A/en
Application granted granted Critical
Publication of TWI328907B publication Critical patent/TWI328907B/en

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Drying Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

A method for manufacturing cleaved facets of GaN semiconductor devices is disclosed. At least one nitride semiconductor film is deposited on a transparent substrate. Reserved and sacrificial regions are defined on top of nitride films by lithography. Anisotropic etch is employed to vertically etch exposed nitride semiconductor films in order to expose the transparent substrate. A high power laser pulse shining on the bottom side of the sacrificial region of the substrate is absorbed by the nitride film near the film/substrate interface. A small portion of the nitride film near the interface is decomposed by heat. Nitrogen escapes and the metal specie is left over. The metal is removed by an acid dip. The suspended sacrificial region film can be cleaved mechanically or ultrasonically. The cleaved facets are atomically flat.

Description

200832853 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種製作氮化鎵半導體元件中劈裂 鏡面之方法,且特別是有關於一種以高功率雷射製作氮化 鎵半導體元件中劈裂鏡面之方法。 【先前技術】 在光電產業中,以氮化鎵系化合物為基材的半導體廣 泛地使用於各種光電元件中,如藍光發光二極體(blue light emitting diodes ; blue LEDs),白光發光二極體(white light emitting diodes ; white LEDs)和雷射二極體(laser diode ; LD) 〇 上述幾類以氮化鎵為主要基材之二極體的發明可說 是次世代的白光照明,全彩顯示器和高容量光碟機等產業 領域的主要推手。例如需要高功率光源的高容量光碟機便 採用了波長為405奈米(nm)的側射型雷射二極體(edge emitting laser diode) 〇 在包含Fabry-Perot共振腔的半導體雷射中,其共振腔 内往返增益(round-trip gain)的效率係依賴共振腔兩端垂直 鏡面之平整度而定。因此,如何增進共振腔兩端鏡面平整 度之製程實為製作半導體雷射亟需改善之課題。 目前氮化物Fabry-Perot共振腔雷射之端面鏡主要有三 種製造方法。第一種方法如美國專利7015053號所述,是 以活性離子钱刻(Reactive Ion Etch ; RIE)、感應搞合電敷 6 200832853 . (Inductively Coupled Plasma ; ICP)等乾蝕刻技術製造雷射 ^ 端面鏡。此法無法避免光阻於蝕刻過程產生的變形,鏡面 平整度約在5奈米以上,而維持鏡面垂直度也是製程的一 大考驗。 • 第二種方法如美國專利6379985號所述,是將藍寶石 • 基板磨薄,再將其劈裂,此法與立方(Cubic)結構基板的劈裂 製程類似’但因氮化物薄膜與藍寶石基板的晶格方向不一 ◎ 致,微觀上薄膜劈裂面呈鋸齒狀,無法得到如砷化鎵磷化 姻等材料之原子級平整度劈裂鏡面。 第三種方式如美國專利5985687號所述,是先將長在 藍寶石基板上的氮化物薄膜利用雷射剝離技術轉置到容 易刀 4 的基板上,如Sl(1〇〇)、GaAs(1〇〇)、Ιηρ(ι〇〇),將纖 維辞礦(Wumite)結構的氮化物薄膜<i 〇〇>方向對準立方結 構基板的<11〇>方向,再劈裂基板即可得到劈裂鏡面。此 法在基板轉置時需要對準薄膜與基板方向,稍有誤差即易 : 纟生類似第"種方法㈣齒狀劈裂面,而較複雜的製程製 造成本也較高。 ^ 【發明内容】 本發明的目的就是在提供— μ丄* 種製作氮化鎵半導體3 件中劣裂鏡面之方法,以形成+ /风十整度較佳之平滑鏡面,。 根據本發明之上述目的, ♦射A t 如出一種應用於製作氮化彩 田射一極體元件與光電積體電 士政αα 刀凌鏡面之方法。依既 本發明一較佳實施例,至少 … 乂巴3下列步驟: 200832853 • (A)在透明基材上沈積一層或一層以上氮化物半導體 薄膜。 (B)以微影術在該一層或一層以上氮化物半導體薄膜 之頂面定義保留區與犧牲區之圖案,且保留區與犧牲區之 β 間設有凹陷圖案。 . (C)以異向性蝕刻將該氮化物半導體薄膜之頂面除了 步驟(Β)中所①義圖案以外的區域钱刻i露出$透明基材 fV 為止。 (D) 以雷射脈衝由透明基材之底面往頂面照射,熱分解 犧牲區底部之部分厚度,且殘留被分解之部分厚度中原本 包含之金屬成分。 (E) 清除殘留之金屬成分。 (F) 將與透明基材分離之犧牲區懸浮部分劈裂,保留區 〃犧牲區間Φ KJ P曰圖帛定義之位置即形&平滑之劈裂鏡 面0 【實施方式】 …參照第1目,其繪示依照本發明一第一實施例的一種 半導體元件之劈裂鏡面製造方法第—階段之立體圖。此第 一階段的半導體元件⑽包含基材ιι〇,缓衝層12〇與活 性層(active layer) 130。 基材110為透明材料,此透明材料為氧化铭(Al2〇3), 碳化矽(Sic),氧化鎂(Mg0)、氧化辞(Zn〇)或硼化錯 卿2),且上述之透明材料可供特定種類的雷射光通過而 8 200832853 不致完全吸收。 緩衝層120的材料為氮化鎵(GaN)、氮化銦(InN)、氮 化鋁(A1N)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鋁 銦(AlInN)或氮化鋁鎵銦(AlGalnN)。此緩衝層120可為單 層結構或多層結構,材料則以氮化鎵(GaN)最為普遍。 活性層130可為氮化鎵(GaN)、氮化銦(InN)、氮化銘 (A1N)、氮化鋁鎵(八1〇3州、氮化銦鎵(111〇3>〇、氮化鋁銦 (AlInN)或氮化鋁鎵銦(AlGalnN)等氮化物薄膜。此活性層 130可為單層或多層結構。 製作半導體元件100的方法是:在基材110的頂面上 沈積緩衝層120與活性層130,沈積方式可利用有機金屬 化學氣相沈積法(Metal Organic Chemical Vapor Deposition ; MOCVD)或分子束磊晶法(Molecular Beam Epitaxy ; MBE)進行。 參照第2圖,其分別繪示依照本發明一第一實施例的 一種半導體元件之劈裂鏡面製造方法第二階段之立體 圖。在活性層130上以旋鍍的方式鏡上一層光阻140,並 以微影術定義出所需要的保留區141與犧牲區142,亦即 將保留區141與犧牲區142部分的光阻140去除乾淨。微 影術所使用的光罩圖案中,包含了保留區141與犧牲區142 之間的凹陷圖案143以作為微劈裂(micro-cleaving)步驟之 用。劈裂面的寬度與位置由凹陷圖案143與保留區141與 犧牲區142圖案共同決定。其中保留區141的寬度大於i 微米’長度大於5微米。 9 200832853 氮化物半導體雷射Fabry-Perot共振腔的長度由保留 區141兩端的平行劈裂鏡面決定,通常介於300微米到 3500微米之間。 參照第3圖,其繪示依照本發明一第一實施例的一種 半導體元件之劈裂鏡面製造方法第三階段之立體圖。再沈 積一金屬層150,此一金屬層150的材料為鈦或鎳,且厚 度介於0.05微米到0.4微米之間,金屬層150沈積方式可 利用電子束蒸鑛法(Electron Beam Evaporation)、錢鑛法 (Sputtering)或熱蒸鍵法(Thermal Evaporation)進行。以舉離 (Lift-off)法將剩餘的光阻140去除,使金屬層150留在活 性層130上,在保留區141與犧牲區142已去除部分光阻 140的空間中。 參照第4圖,其繪示依照本發明一第一實施例的一種 半導體元件之劈裂鏡面製造方法第四階段之立體圖。接著 以乾式蝕刻方式將保留區141與犧牲區142範圍以外的活 性層130及其緩衝層120蝕刻至透明基材110為止,可使 用的乾式蝕刻方式如活性離子蝕刻(RIE),感應耦合電漿蝕 刻(ICP),電子環繞共振式蝕刻(Electron Cyclotron Resonance ; ECR),化學輔助離子式 ϋ 刻(Chemically Assisted Ion Beam Etching ; CAIBE)與離子研磨(i〇n milling), 或濕式# 刻如光電化學法 (Photoelectrochemistry ; PEC)。上述的#刻方法以具有異 向性的蝕刻方法較佳,可避免因等向性蝕刻而造成的「底 切」(undercut)效應減損了保留區141與犧牲區142所覆蓋 〇200832853 IX. Description of the Invention: [Technical Field] The present invention relates to a method for fabricating a split mirror surface in a gallium nitride semiconductor device, and more particularly to a method for fabricating a gallium nitride semiconductor device with high power laser The method of splitting the mirror. [Prior Art] In the photovoltaic industry, semiconductors based on gallium nitride-based compounds are widely used in various photovoltaic elements, such as blue light emitting diodes (blue LEDs), white light emitting diodes. (white light emitting diodes; white LEDs) and laser diodes (LD) 〇 The above-mentioned types of diodes with GaN as the main substrate can be said to be the next generation of white light, full color The main pushers in the industrial fields such as displays and high-capacity optical disc drives. For example, a high-capacity optical disc drive that requires a high-power light source uses a side-emitting laser diode with a wavelength of 405 nm (nm) in a semiconductor laser including a Fabry-Perot resonator. The efficiency of the round-trip gain in the cavity depends on the flatness of the vertical mirror at both ends of the cavity. Therefore, how to improve the mirror flatness at both ends of the resonant cavity is a problem that needs to be improved in the production of semiconductor lasers. At present, there are mainly three manufacturing methods for the end face mirror of the nitride Fabry-Perot resonator. The first method, as described in U.S. Patent No. 7,015,053, is to manufacture a laser surface by a dry etching technique such as Reactive Ion Etch (RIE), Inductively Coupled Plasma (ICP), and the like. mirror. This method cannot avoid the deformation caused by the photoresist during the etching process, and the mirror flatness is about 5 nm or more, and maintaining the mirror perpendicularity is also a major test of the process. • The second method, as described in U.S. Patent No. 6,379,985, is to smear the sapphire substrate and then split it. This method is similar to the cleaving process of a cubic substrate (but due to nitride film and sapphire substrate). The orientation of the crystal lattice is different. The microscopically cracked surface of the film is jagged, and the atomic-level flattening mirror of materials such as gallium arsenide phosphate cannot be obtained. A third way, as described in U.S. Patent No. 5,985,687, is to first transfer a nitride film grown on a sapphire substrate to a substrate of the easy blade 4 by a laser lift-off technique, such as Sl(1〇〇), GaAs(1). 〇〇), Ιηρ(ι〇〇), aligning the nitride film <i 〇〇> direction of the fiberite structure (Wumite) to the <11〇> direction of the cubic structure substrate, and then splitting the substrate A split mirror is available. This method needs to align the direction of the film and the substrate when the substrate is transposed. A slight error is easy: a similar method of the fourth method (4) tooth-shaped split surface, and the more complicated process system is also higher. SUMMARY OF THE INVENTION The object of the present invention is to provide a method for fabricating a gallium nitride semiconductor in a three-piece GaN semiconductor to form a smooth mirror with a better +/- wind. According to the above object of the present invention, a method for producing a nitrided color field element and an optoelectronic integrated metallurgical alpha alpha knife mirror is used. According to a preferred embodiment of the present invention, at least the following steps are performed: 200832853 • (A) depositing one or more layers of a nitride semiconductor film on a transparent substrate. (B) defining a pattern of the reserved region and the sacrificial region on the top surface of the one or more nitride semiconductor thin films by lithography, and a recess pattern is provided between the reserved region and the sacrificial region β. (C) Anisotropic etching exposes the top surface of the nitride semiconductor thin film except for the pattern in the step (Β) to the transparent substrate fV. (D) The laser beam is irradiated from the bottom surface of the transparent substrate to the top surface to thermally decompose a portion of the thickness of the bottom portion of the sacrificial region, and the metal component originally contained in the portion of the decomposed portion remains. (E) Remove residual metal components. (F) Splitting the suspended portion of the sacrificial region separated from the transparent substrate, the retention region 〃 sacrificial interval Φ KJ P 曰 帛 帛 帛 & & & 平滑 平滑 平滑 平滑 平滑 平滑 平滑 平滑 平滑 平滑 平滑 【 【 【 【 【 【 【 【 【 【 【 【 A perspective view of a first stage of a method of fabricating a split mirror of a semiconductor device in accordance with a first embodiment of the present invention is shown. The first stage semiconductor component (10) comprises a substrate ιι, a buffer layer 12 and an active layer 130. The substrate 110 is a transparent material, and the transparent material is oxidized (Al2〇3), strontium carbide (Sic), magnesium oxide (Mg0), oxidized (Zn〇) or borated (2), and the above transparent material It can be used for certain types of laser light and 8 200832853 will not be fully absorbed. The material of the buffer layer 120 is gallium nitride (GaN), indium nitride (InN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN). Or aluminum gallium indium nitride (AlGalnN). The buffer layer 120 may be a single layer structure or a multilayer structure, and the material is most commonly used as gallium nitride (GaN). The active layer 130 may be gallium nitride (GaN), indium nitride (InN), nitriding (A1N), aluminum gallium nitride (eight 〇 3 states, indium gallium nitride (111 〇 3 〇 〇, nitriding) A nitride film such as aluminum indium (AlInN) or aluminum gallium indium nitride (AlGalnN). The active layer 130 may be a single layer or a multilayer structure. The method of fabricating the semiconductor device 100 is to deposit a buffer layer on the top surface of the substrate 110. 120 and the active layer 130, the deposition method can be performed by Metal Organic Chemical Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE). Referring to FIG. 2, respectively, A perspective view of a second stage of a method for fabricating a split-mirror surface of a semiconductor device in accordance with a first embodiment of the present invention. A layer of photoresist 140 is mirrored on the active layer 130 by spin-drying, and the desired is defined by lithography. The photoresist 141 and the sacrificial region 142, that is, the photoresist 140 of the sacrificial region 142 and the portion of the sacrificial region 142 are removed. The mask pattern used in the lithography includes a recess pattern between the remaining region 141 and the sacrificial region 142. 143 as micro-cleaving The width and position of the cleavage plane are determined by the pattern of the recessed pattern 143 and the pattern of the reserved area 141 and the sacrificial area 142. The width of the reserved area 141 is greater than i microns and the length is greater than 5 microns. 9 200832853 Nitride Semiconductor Laser Fabry The length of the -Perot resonator is determined by the parallel split mirror at both ends of the retention region 141, typically between 300 microns and 3500 microns. Referring to Figure 3, a semiconductor component in accordance with a first embodiment of the present invention is illustrated. A perspective view of the third stage of the split mirror manufacturing method. A metal layer 150 is deposited, the material of the metal layer 150 is titanium or nickel, and the thickness is between 0.05 micrometers and 0.4 micrometers, and the metal layer 150 can be deposited by using electrons. Performed by Electron Beam Evaporation, Sputtering, or Thermal Evaporation. The remaining photoresist 140 is removed by Lift-off method to leave the metal layer 150 in place. On the active layer 130, in a space where the portion of the photoresist 140 has been removed from the remaining region 141 and the sacrificial region 142. Referring to FIG. 4, a semiconductor device according to a first embodiment of the present invention is illustrated. A perspective view of the fourth stage of the crack mirror manufacturing method. Next, the active layer 130 and the buffer layer 120 outside the range of the remaining region 141 and the sacrificial region 142 are etched to the transparent substrate 110 by dry etching, and a dry etching method such as active can be used. Ion etching (RIE), inductively coupled plasma etching (ICP), Electron Cyclotron Resonance (ECR), Chemically Assisted Ion Beam Etching (CAIBE) and ion milling (i〇n) Milling), or wet-type photoelectrochemistry (PEC). The above-described etching method is preferably an anisotropic etching method, which can prevent the "undercut" effect caused by the isotropic etching from degrading the coverage of the reserved region 141 and the sacrificial region 142.

200832853 的面積°使用感_合電㈣刻時,係 反應氣率騎* 做為 參照第5圖與第6圖,苴分科微:到〇.4微米。 ^刀別繪不本發明一第一實施 例的-種半導體元件之劈裂鏡面製造方法第五階段及第 六階段之立體圖。將半導體元们⑼#合至固定基板· 由圖中可知’使用高功率雷射以特定波長與脈衝的方式, 由基材U〇的底面往頂面的方向照射。此雷射脈衝210可 穿過透明基材110’但卻大部分均為緩衝層12〇所吸收, 因而造成緩衝層120在犧牲區142與保留區141接近凹陷 圖案143附近區域的一部分厚度被雷射脈衝21〇所分解, 故剩下與透明基材110分離之部分呈懸臂狀的緩衝層12〇 與其上之活性層130。上述被雷射脈衝21〇分解的緩衝層 120之厚度約為1〇〇奈米以下。另外,緩衝層12〇中被分 解留下的金屬成分,如|呂、鎵或銦等仍留在透明基材11〇 上。然後去除固定基板220。 上述之雷射脈衝210可使用準分子雷射(£xcimer Laser),如波長為248微米的KrF雷射,波長為282微米 的XeBr雷射,波長為308微米的XeCl雷射或波長為351 微米的XeF雷射。或亦可使用固態雷射(Solid-State Laser),如波長為266微米的Nd:YAG雷射,波長為355 微米的Nd:YAG雷射,波長為266微米的Nd:YV04雷射, 波長為355微米的Nd:YV04雷射,波長為262微米的 Nd:YLF雷射,波長為263微米的Nd:YLF雷射,波長為 349微米的Nd:YLF雷射或波長為351微米的Nd:YLF雷 11 200832853 射。以本發明一較佳實施例而言,可使用一部波長 Μ 微米’平均脈衝能量密度為· i _毫焦耳/平方公分 (mJ/n耻YAG雷射作為上述之雷射脈衝210。 麥照第7圖,其綠示依照本發明一第一實施例的一種 半導體元件之劈裂鏡面製造方法第七階段之立體圖。以硫 酸水溶液(h2s〇4 ·· h2〇2 : DI Water=5:丨·卜 DI Water 為去離 子水)將金屬層15G清除,再以鹽酸:水=1:1的溶液清除緩 Ο Ο 衝層120被分解殘留在透明基材11〇頂面的金屬成分,如 鋁、鎵或銦等金屬。 參照第8圖,其綠示依照本發明一第—實施例的一種 半導體元件之劈裂鏡面製造方法第八階段之立體圖。以機 械方法或超音波方法將兩側懸臂狀的緩衝層12〇辟裂去 除:因緩衝層120與活性層130緊密相連,故位於;臂狀 的緩衝層120上方之部分活性$ 13〇 ,亦同時被劈裂去除。 即可獲得位於保留d 141兩端由緩衝層12〇與活性層 的截面所組成之劈裂鏡面144。這些劈裂鏡面144的平整 度(roughness)較習知技術所製成的鏡面為佳。 參第9圖’其繪示依照本發明一第二實施例的一種 半導體元件之劈裂鏡面製造方法第一階段之側面圖。此第 一階段的半導體元件3⑽包含基材3H),緩衝層320與活 性層(active layer)330。 山基材310為透明材料,此透明材料為氧化銘(Al2〇3), 石反化矽(SiC) ’氧化鎂(Mg〇)、氧化辞(Zn〇)或硼化鍅 (ZrB2),且上述之透明材料可供特定種類的雷射光通過而 12 200832853 不致完全吸收。 缓衝層320的材料為氮化鎵(GaN)、氮化銦(InN)、氮 化鋁(A1N)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鋁 銦(AlInN)或氮化鋁鎵銦(AlGalnN)。此緩衝層320可為單 層結構或多層結構,材料則以氮化鎵(GaN)最為普遍。 活性層330可為氮化鎵(GaN)、氮化銦(InN)、氮化鋁 (A1N)、氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鋁銦 (AlInN)或氮化鋁鎵銦(AlGalnN)等氮化物薄膜。此活性層 330可為單層或多層結構。 製作半導體元件300的方法是:在基材310的頂面上 沈積緩衝層320與活性層330,沈積方式可利用有機金屬 化學氣相沈積法(MOCVD)或分子束磊晶法(MBE)進行。 參照第10圖,其繪示依照本發明一第二實施例的一 種半導體元件之劈裂鏡面製造方法第二階段之側面圖。在 活性層330上以旋鍍的方式鍍上一層光阻332,並以微影 術定義出所需要的淺蝕刻區33 1。 參照第11圖,其繪示依照本發明一第二實施例的一種 半導體元件之劈裂鏡面製造方法第三階段之側面圖。以蝕 刻方式將淺蝕刻區331範圍内的活性層330蝕刻30至300 奈米,可使用的乾式蝕刻方式如活性離子蝕刻,感應耦合 電漿蝕刻(ICP),電子環繞共振式蝕刻(ECR),化學輔助離 子式14刻(CAIBE)與離子研磨(ion milling),或濕式餘刻如 光電化學法(PEC)。使用感應耦合電漿蝕刻時,係以氯氣 與氬氣做為反應氣體,垂直蝕刻率為每分鐘0.2微米到0.4 13 200832853 微米。蝕刻之後將光阻清除。 參照第12圖,其分別繪示依照本發明一第二實施例 的一種半導體元件之劈裂鏡面製造方法第四階段之側面 圖與平面圖。在活性層330上以旋鍍的方式鍍上一層光阻 340,並以微影術定義出所需要的保留區341與犧牲區 342,亦即將保留區341與犧牲區342部分的光阻340去 除乾淨。微影術所使用的光罩圖案中,包含了保留區341 與犧牲區342之間的凹陷圖案343以作為微劈裂 (micro-cleaving)步驟之用。劈裂面的寬度與位置由凹陷圖 案343與保留區341與犧牲區342圖案共同決定。其中保 留區341的寬度大於1微米,長度大於50微米。 氮化物半導體雷射Fabry-Perot共振腔的長度由保留 區341兩端的平行劈裂鏡面決定,通常介於300微米到 3500微米之間。 參照第13圖,其繪示依照本發明一第二實施例的一 種半導體元件之劈裂鏡面製造方法第五階段之側面圖。沈 積一金屬層350,此金屬層350的材料為鈦或鉑,且厚度 介於0.05微米到0.3微米之間,金屬層350沈積方式可利 用電子束蒸鑛法(Electron Beam Evaporation)、濺鍍法 (Sputtering)或熱蒸鍍法(Thermal Evaporation)進行。以舉離 (Lift-off)法將剩餘的光阻340去除,使金屬層350留在活 性層330上,僅位在保留區341與犧牲區342上方。 參照第14圖,其繪示依照本發明一第二實施例的一 種半導體元件之劈裂鏡面製造方法第六階段之側面圖。接 14 200832853 一 著以餘刻方式將保留區341與犧牲區342範圍以外的活性 層330及其緩衝層320餘刻至基材310為止,可使用的乾 式敍刻方式如活性離子姓刻,感應麵合電漿钱刻(ICp),電 子環繞共振式蝕刻(ECR),化學輔助離子式蝕刻(CaiBE) • 與離子研磨(i〇n milling),或濕式蝕刻如光電化學法 (PEC)。上述的蚀刻方法以具有異向性的餘刻方法較佳, 可避免因等向性蝕刻而造成的「底切」(undercut)效應減損 f) 了保留區341與犧牲區342所覆蓋的面積。使用感應耦合 電漿餘刻時,係以氯氣與氬氣做為反應氣體,垂直蝕刻率 為每分鐘0.2微米到0.4微米。 參照第15圖,其繪示依照本發明一第二實施例的一 種半導體元件之劈裂鏡面製造方法第七階段之側面圖。以 濕蝕刻方式移除金屬層350。再以微影術與舉離製程,於 保留區沈積第一型接面金屬層360,此金屬層36〇的材料 為鎳/金、鈦/鋁/鉑/金、或鉻/鉑/金,並在一轉置基板41〇 j 上沈積一金屬層420,材料為金,沈積方式可利用電子束 k 蒸鍍法(Electron Beam Evaporatlon)、濺鍍法(SpuUering)或 熱蒸鑛法(Thermal Evaporation)進行。 #照第16 ’其繪示本發明—第二實刻的一種半 導體元件之劈裂鏡面製造方法第八階段之側面圖。將第15 圖所示之結構與轉置基板41〇接合。 參照第17圖與第18圖,其分別繪示本發明一第二實 ,例的-種半導體元件之劈裂鏡面製造方法第九㈣及 第十階段之側面圖。使用高功率雷射以特定波長與脈衝的 15 200832853 方式,由基材310的底面往頂面的方向照射。此雷射脈衝 可穿過基材310,但卻大部分均為緩衝層320所吸收,因 而造成緩衝層320的一部分厚度被雷射脈衝210所分解。 上述被雷射脈衝分解的緩衝層320之厚度約為100奈米以 下。參照第18圖,基材310被移除,緩衝層320中被分 解留下的金屬成分,如鋁、鎵或銦仍留在緩衝層320上, 再以鹽酸:水= 1:1的溶液清除緩衝層320被分解殘留在緩 衝層320頂面的金屬成分。 上述之雷射脈衝可使用準分子雷射(Excimer Laser), 如波長為248微米的KrF雷射,波長為282微米的XeBr 雷射,波長為308微米的XeCl雷射或波長為351微米的 XeF雷射。或亦可使用固態雷射(Solid-State Laser),如波 長為266微米的Nd:YAG雷射,波長為355微米的Nd:YAG 雷射,波長為266微米的Nd:YV04雷射,波長為355微米 的Nd:YV04雷射,波長為262微米的Nd:YLF雷射,波長 為263微米的Nd:YLF雷射,波長為349微米的Nd:YLF 雷射或波長為351微米的Nd:YLF雷射。以本發明一較佳 實施例而言,可使用一部波長為355微米,平均脈衝能量 密度為300至600毫焦耳/平方公分(mJ/cm2)的Nd:YAG雷 射作為上述之雷射脈衝。 參照第19圖,其繪示依照本發明一第二實施例的一 種半導體元件之劈裂鏡面製造方法第十一階段之側面 圖。在緩衝層320上沈積第二型接面金屬層370,此金屬 層370的材料為鎳/金、鈦/鋁/鉑/金、或鉻/鉑/金。 16 200832853 t "、、帛2G圖,料示依照本發明-第三實施例的-:半導體元件之劈裂鏡面製造方法第十二階段之側面 L、機械方法或超音波方法將33〇、似、谓兩側懸臂 冓身裂去除’即可獲得由緩衝層32g與活性層的截 面所組成之劈裂鏡面344。 參照第21圖,為利用微劈裂方式製造之氮化物垂直 鏡面的電子顯微鏡照片,放大倍率為15〇〇〇倍。從第21 Ο 圖中可看出,k些劈裂鏡面344的平整度較習 知技術所製成的鏡面為佳。 、Μ本發明已以一較佳實施例揭露如上,然其並非用 :=本^月,任何熟習此技藝者,在不脫離本發明之精 砷和扼圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之中請專·_界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他㈣、特徵、優點與實施例 能更:顯易懂,所附圖式之詳細說明如下: 一第1圖係繪示依照本發明一第一實施例的一種半導體 &件=劈裂鏡面製造方法第-階段之立體圖。 一第2圖係繪示依照本發明一第一實施例的一種半導體 元件之刀4鏡面製造方法第二階段之立體圖。 一第3圖係繪示依照本發明一第一實施例的一種半導體 %件,劈n鏡面製造方法第三階段之立體圖。 第4圖係繪不依照本發明一第一實施例的一種半導體 17 200832853 凡件之劈裂鏡面製造方法第四階段之立體圖。 一第5圖係繪示依照本發明一第一實施例的一種半導體 凡件之劈裂鏡面製造方法第五階段之立體圖。 一第6圖係繪示依照本發明一第一實施例的一種半導體 元件之身裂鏡面製造方法第六階段之立體圖。 Ο 一第7圖係繪示依照本發明一第一實施例的一種半導體 疋件=劈裂鏡面製造方法第七階段之立體圖。 一 ^ ®係、會示依照本發明一第一實施例的一種半導體 几件^裂鏡面製造方法第人階段之立體圖。 一第9圖係繪示依照本發明一第二實施例的一種半導體 牛=刀4鏡面製造方法第一階段之側面圖。 一第10圖係繪示依照本發明一第二實施例的一種半導 體疋:之劈裂鏡面製造方法第二階段之側面圖。 第 圖係繪不依照本發明一第二實施例的一種半導 體元件之劈裂# t ^ 戈面氣這方法第三階段之側面圖。 "" 圖係繪不依照本發明一第二實施例的一種半導 體元件之劈裂鏡面赞 回I化方法第四階段之側面圖。 弟13圖你給— 口係、會不依照本發明一第二實施例的一種半導 體70件之彳裂鏡面萝 叫Ik方法第五階段之側面圖。 第14圖係綠+ π 。 ,、依々、本發明一第二實施例的一種半導 體兀件之刀;^鏡面掣 ♦ 表k方法弟六階段之側面圖。 第15圖係給;# 體元件之劈裂鏡:二:本:㈣二實施例 # K 辰坆方法弟七階段之側面圖。 弟1 β圖係给 曰^、依照本發明一第二實施例的一種半導 18 200832853 . 體兀件之劈裂鏡面製造方法第八階段之側面圖。 第17圖係繪示依照本發明一第二實施例的一種半導 體70件之劈裂鏡面製造方法第九階段之側面圖。 第18圖係繪示依照本發明一第二實施例的一種半導 體元件之劈裂鏡面製造方法第十階段之側面圖。 . 第19圖係綠示依照本發明一第二實施例的一種半導 體兀件之劈裂鏡面製造方法第十一階段之側面圖。 ζ) 第2〇圖係繪示依照本發明一第二實施例的一種半導 體凡件之劈裂鏡面製造方法第十二階段之側面圖。 第21圖為利用微劈裂方式製造之氮化物垂直鏡面的 電子顯微鏡照片。 【主要元件符號說明】 100 :半導體元件 110 :基材 120 :緩衝層 130 :活性層 140 :光阻層 141 :保留區 142:犧牲區 143 :凹陷圖案 144:劈裂鏡面 150 :金屬層 210:雷射脈衝 220 :固定基板 300 :半導體元件 3 10 :基材 3 2 〇 ·緩衝層 330 :活性層 3 3 1 ·淺钱刻區 332 :光阻層 340 ·光阻層 341 :保留區 342 :犧牲區 343 :凹陷圖案 19 200832853 344 :劈裂鏡面 350 :金屬層 360 ··第一型接面金屬層 370:第二型接面金屬層 410 :轉置基板 420 :金屬層 〇 20The area of 200832853 ° feeling of use _ _ electric (four) engraved, the reaction gas rate riding * as reference to Figure 5 and Figure 6, 苴 科 division micro: to 〇. 4 microns. A cutaway view of a fifth stage and a sixth stage of a method for fabricating a split-mirror of a semiconductor device according to a first embodiment of the present invention. The semiconductor element (9) # is bonded to the fixed substrate. As can be seen from the figure, the high-power laser is irradiated in the direction of the top surface from the bottom surface of the substrate U〇 at a specific wavelength and pulse. The laser pulse 210 can pass through the transparent substrate 110' but is mostly absorbed by the buffer layer 12, thereby causing a portion of the thickness of the buffer layer 120 in the vicinity of the sacrificial region 142 and the retention region 141 near the recess pattern 143. The shot pulse 21 is decomposed, so that the portion separated from the transparent substrate 110 has a cantilevered buffer layer 12 and an active layer 130 thereon. The buffer layer 120 which is decomposed by the laser pulse 21 is thicker than about 1 nm. Further, the metal component left in the buffer layer 12, such as |Lu, gallium or indium, remains on the transparent substrate 11?. The fixed substrate 220 is then removed. The above-described laser pulse 210 can use a pseudo-energy laser (£xcimer laser) such as a KrF laser having a wavelength of 248 μm, a XeBr laser having a wavelength of 282 μm, a XeCl laser having a wavelength of 308 μm or a wavelength of 351 μm. XeF laser. Or a solid-state laser such as a Nd:YAG laser with a wavelength of 266 microns, a Nd:YAG laser with a wavelength of 355 microns, a Nd:YV04 laser with a wavelength of 266 microns, and a wavelength of 355 micron Nd:YV04 laser, 262 micron Nd:YLF laser, 263 micron Nd:YLF laser, 349 micron Nd:YLF laser or 351 micron Nd:YLF Ray 11 200832853 shot. In a preferred embodiment of the invention, a wavelength Μ micron 'average pulse energy density of · i _ millijoules per square centimeter (mJ / n shame YAG laser) can be used as the laser pulse 210 described above. Figure 7 is a perspective view showing a seventh stage of a method for fabricating a split-mirror surface of a semiconductor device according to a first embodiment of the present invention. An aqueous solution of sulfuric acid (h2s〇4 ··h2〇2 : DI Water=5:丨) ·Di water is deionized water), the metal layer 15G is removed, and then the solution of hydrochloric acid: water = 1:1 is used to remove the buffer. The metal layer of the top surface of the transparent substrate 11 is decomposed, such as aluminum. a metal such as gallium or indium. Referring to Fig. 8, a green view shows an eighth stage of a method for fabricating a split-mirror surface of a semiconductor device according to a first embodiment of the present invention. The two sides are cantilevered by mechanical means or ultrasonic method. The buffer layer 12 is detached and removed: since the buffer layer 120 is closely connected to the active layer 130, a portion of the activity above the arm-shaped buffer layer 120 is $13 〇, which is also removed by cleaving. d 141 is supported by buffer layer 12 and active at both ends The cross-section consists of a split mirror 144. The flatness of the split mirror 144 is better than that of the mirror made by the prior art. Figure 9 is a second embodiment of the present invention. A side view of a first stage of a method of fabricating a split mirror of a semiconductor device. The semiconductor element 3 (10) of this first stage comprises a substrate 3H), a buffer layer 320 and an active layer 330. The mountain substrate 310 is a transparent material, and the transparent material is Oxygen (Al2〇3), stone antimony (SiC) 'magnesium oxide (Mg〇), oxidized (Zn〇) or lanthanum boride (ZrB2), and The above transparent materials are available for a specific type of laser light to pass through and 12 200832853 is not fully absorbed. The material of the buffer layer 320 is gallium nitride (GaN), indium nitride (InN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN). Or aluminum gallium indium nitride (AlGalnN). The buffer layer 320 may be a single layer structure or a multilayer structure, and the material is most commonly used as gallium nitride (GaN). The active layer 330 may be gallium nitride (GaN), indium nitride (InN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN) or A nitride film such as aluminum gallium indium nitride (AlGalnN). This active layer 330 may be a single layer or a multilayer structure. The semiconductor device 300 is formed by depositing a buffer layer 320 and an active layer 330 on the top surface of the substrate 310 by a metalorganic chemical vapor deposition (MOCVD) or a molecular beam epitaxy (MBE). Referring to Fig. 10, there is shown a side view of a second stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. A layer of photoresist 332 is spin-plated on the active layer 330 and the desired shallow etched regions 33 1 are defined by lithography. Referring to Fig. 11, there is shown a side view of a third stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. The active layer 330 in the range of the shallow etched region 331 is etched by etching to 30 to 300 nm, and dry etching methods such as reactive ion etching, inductively coupled plasma etching (ICP), and electronic surround resonant etching (ECR) can be used. Chemically assisted ion-type 14 (CAIBE) and ion milling, or wet remnant such as photoelectrochemical (PEC). When using inductively coupled plasma etching, chlorine and argon are used as reactive gases, and the vertical etching rate is 0.2 μm to 0.4 13 200832853 μm per minute. The photoresist is removed after etching. Referring to Figure 12, there is shown a side view and a plan view, respectively, showing a fourth stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. A layer of photoresist 340 is plated on the active layer 330 by spin-drying, and the required retention area 341 and sacrificial area 342 are defined by lithography, that is, the photoresist 340 of the remaining area 341 and the sacrificial area 342 is removed. . The reticle pattern used in lithography includes a recess pattern 343 between the reserved area 341 and the sacrificial area 342 for use as a micro-cleaving step. The width and position of the split face are determined by the combination of the recess pattern 343 and the pattern of the reserved area 341 and the sacrificial area 342. The retention zone 341 has a width greater than 1 micrometer and a length greater than 50 micrometers. The length of the nitride semiconductor laser Fabry-Perot resonator is determined by the parallel split mirror at both ends of the retention zone 341, typically between 300 microns and 3500 microns. Referring to Figure 13, there is shown a side view of a fifth stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. Depositing a metal layer 350, the material of which is titanium or platinum, and having a thickness between 0.05 micrometers and 0.3 micrometers. The metal layer 350 can be deposited by Electron Beam Evaporation or sputtering. (Sputtering) or thermal evaporation (Thermal Evaporation). The remaining photoresist 340 is removed by a Lift-off method to leave the metal layer 350 on the active layer 330, only over the retention region 341 and the sacrificial region 342. Referring to Figure 14, there is shown a side view of a sixth stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. 14 200832853 The remaining layer 341 and the active layer 330 outside the sacrificial region 342 and the buffer layer 320 thereof are left to the substrate 310 in a residual manner, and the dry stencil method such as active ion surname can be used. Face-to-face plasma (ICp), electronic surround resonant etching (ECR), chemically assisted ion etching (CaiBE) • and ion milling, or wet etching such as photoelectrochemical (PEC). The etching method described above is preferably a method having an anisotropy, which avoids the "undercut" effect of the isotropic etching f) the area covered by the reserved region 341 and the sacrificial region 342. Inductively coupled plasma reverberation uses chlorine and argon as reactive gases with a vertical etch rate of 0.2 to 0.4 microns per minute. Referring to Figure 15, there is shown a side view of a seventh stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. The metal layer 350 is removed by wet etching. The first type of junction metal layer 360 is deposited in the reserved area by a micro-shadowing and lift-off process. The material of the metal layer 36 is nickel/gold, titanium/aluminum/platinum/gold, or chromium/platinum/gold. And depositing a metal layer 420 on a transposed substrate 41〇j, the material is gold, and the deposition method can be performed by Electron Beam Evaporatlon, SpuUering or Thermal Evaporation. )get on. #照第16'' is a side view showing the eighth stage of the method of manufacturing a split mirror of a semiconductor element of the second embodiment. The structure shown in Fig. 15 is bonded to the transposed substrate 41. Referring to Figures 17 and 18, there are respectively side views of the ninth (fourth) and tenth stages of the method for fabricating a split mirror of a semiconductor device according to a second embodiment of the present invention. The high power laser is irradiated from the bottom surface of the substrate 310 toward the top surface in a manner of a specific wavelength and pulse of 15 200832853. This laser pulse can pass through the substrate 310, but is mostly absorbed by the buffer layer 320, thereby causing a portion of the thickness of the buffer layer 320 to be decomposed by the laser pulse 210. The buffer layer 320 decomposed by the laser pulse described above has a thickness of about 100 nm or less. Referring to Fig. 18, the substrate 310 is removed, and the metal component left in the buffer layer 320, such as aluminum, gallium or indium, remains on the buffer layer 320, and is removed by a solution of hydrochloric acid: water = 1:1. The buffer layer 320 is decomposed into a metal component remaining on the top surface of the buffer layer 320. The above-mentioned laser pulse can use Excimer Laser, such as KrF laser with a wavelength of 248 μm, XeBr laser with a wavelength of 282 μm, XeCl laser with a wavelength of 308 μm or XeF with a wavelength of 351 μm. Laser. Or a solid-state laser such as a Nd:YAG laser with a wavelength of 266 microns, a Nd:YAG laser with a wavelength of 355 microns, a Nd:YV04 laser with a wavelength of 266 microns, and a wavelength of 355 micron Nd:YV04 laser, 262 micron Nd:YLF laser, 263 micron Nd:YLF laser, 349 micron Nd:YLF laser or 351 micron Nd:YLF Laser. In a preferred embodiment of the invention, a Nd:YAG laser having a wavelength of 355 microns and an average pulse energy density of 300 to 600 mJ/cm 2 (mJ/cm 2 ) can be used as the laser pulse described above. . Referring to Fig. 19, there is shown a side view of an eleventh stage of a method of fabricating a split mirror of a semiconductor device in accordance with a second embodiment of the present invention. A second type of junction metal layer 370 is deposited over the buffer layer 320. The material of the metal layer 370 is nickel/gold, titanium/aluminum/platinum/gold, or chromium/platinum/gold. 16 200832853 t ", 帛 2G diagram, showing the side-by-side L, mechanical method or ultrasonic method of the twelfth stage of the method for manufacturing a splitting mirror according to the third embodiment of the present invention - 33 〇 The splitting mirror 344 consisting of the buffer layer 32g and the cross section of the active layer can be obtained. Referring to Fig. 21, an electron micrograph of a nitride vertical mirror surface manufactured by a microcracking method has a magnification of 15 times. As can be seen from the 21st drawing, the flatness of the k-split mirror 344 is better than that of the mirror made by the prior art. The present invention has been disclosed above with reference to a preferred embodiment. However, it is not intended to be used in the art. Anyone skilled in the art can make various changes without departing from the essence and the scope of the present invention. Retouching, therefore, the scope of protection of the present invention is subject to the definition of the _ defined. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other (four), features, advantages and embodiments of the present invention more comprehensible, the detailed description of the drawings is as follows: A semiconductor & piece of the embodiment = a perspective view of the first stage of the method of manufacturing the split mirror. Fig. 2 is a perspective view showing the second stage of the mirror manufacturing method of the knives 4 of a semiconductor device in accordance with a first embodiment of the present invention. Figure 3 is a perspective view showing a third stage of a semiconductor device in accordance with a first embodiment of the present invention. Figure 4 is a perspective view of a fourth stage of a method for fabricating a split-mirror mirror according to a first embodiment of the present invention. Fig. 5 is a perspective view showing the fifth stage of the method for manufacturing a split mirror of a semiconductor article in accordance with a first embodiment of the present invention. Figure 6 is a perspective view showing a sixth stage of a method for manufacturing a split mirror surface of a semiconductor device in accordance with a first embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 is a perspective view showing a seventh stage of a method for fabricating a semiconductor element=split mirror according to a first embodiment of the present invention. A perspective view showing a first stage of a semiconductor chip cracking mirror manufacturing method in accordance with a first embodiment of the present invention. Figure 9 is a side elevational view showing the first stage of a semiconductor cow=knife 4 mirror manufacturing method in accordance with a second embodiment of the present invention. Figure 10 is a side elevational view of a second stage of a method of fabricating a split mirror in accordance with a second embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The figure is a side view of a third stage of the method of splitting a t-shaped element of a semiconductor element not according to a second embodiment of the present invention. "" The drawing depicts a side view of the fourth stage of the splitting mirror of a semiconductor element not according to a second embodiment of the present invention. Figure 13 shows a side view of the fifth stage of the Ik method, which is a type of semi-conductor 70 piece that does not follow a second embodiment of the present invention. Figure 14 is green + π. , a nesting knife according to a second embodiment of the present invention; a mirror surface ♦ ♦ a side view of the six-stage method of the method k. Figure 15 is given; #体体的劈裂镜:二:本:(四)二实施例# K 辰坆 Method brother seven-stage side view. The first embodiment of the eighth stage of the method for manufacturing a split mirror of a body member. Figure 17 is a side elevational view showing the ninth stage of a method of manufacturing a split mirror of a 70-semiconductor according to a second embodiment of the present invention. Figure 18 is a side elevational view showing the tenth stage of a method of manufacturing a split mirror of a semiconductor element in accordance with a second embodiment of the present invention. Fig. 19 is a side elevational view showing the eleventh stage of a method of manufacturing a split mirror of a semiconductor element in accordance with a second embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 2 is a side view showing a twelfth stage of a method for manufacturing a split mirror of a semiconductor according to a second embodiment of the present invention. Figure 21 is an electron micrograph of a vertical mirror of nitride produced by microcracking. [Main Element Symbol Description] 100: Semiconductor Element 110: Substrate 120: Buffer Layer 130: Active Layer 140: Photoresist Layer 141: Reserved Area 142: Sacrificial Area 143: Depression Pattern 144: Splitting Mirror Surface 150: Metal Layer 210: Laser pulse 220: fixed substrate 300: semiconductor element 3 10: substrate 3 2 〇 buffer layer 330: active layer 3 3 1 · etched area 332: photoresist layer 340 · photoresist layer 341: reserved area 342: Sacrificial area 343: recessed pattern 19 200832853 344: split mirror 350: metal layer 360 · first type junction metal layer 370: second type junction metal layer 410: transposed substrate 420: metal layer 〇 20

Claims (1)

之方法,至Method, to 200832853 十、申請專利範園: 1.-種製作氮化鎵半導體元件中劈裂鏡面 少包含下列步驟: (A) 在一透明基材上形成一緩衝層; (B) 在該緩衝層上形成一活性層,· (C) 在該活性層上形成一光阻; ⑼在該光阻上定義一圖案,該圖案至少包含一保留 區,兩個犧牲區與兩個凹陷圖案,且該些犧牲區連接於該 保留區之兩側’該些凹陷圖案則分別介於該保留二 犧牲區之間; ”二 ⑻將該圖案内之光阻曝光顯影至露出該活性層為 止’再沈積一金屬層至該活性層上; (F) 以舉離(lift_Gff)方式去除光阻並得収義的金屬圖 案; (G) 依序將未被該金屬層所覆蓋之該活性層與該緩衝 層的部分蝕刻至露出該透明基材為止; (H) 以一雷射脈衝由該透明基材之底面往頂面照射,分 解忒緩衝層底部之部分厚度,且至少一殘留金屬成分於該 透明基材上; (I) 以/各液清除該殘留金屬成分,且該些犧牲區並形 成懸空結構;以及 (J) 將與该透明基材分離之該緩衝層的部分與該活性 層由該凹陷圖幸t t ^ 口系道仃劈裂,則該緩衝層與該活性層之兩側 即形成兩個劈裂鏡面。 21 200832853 2. 如申請專利範圍第1項所述之製作氮化鎵半導體 凡件中劈裂鏡面之方法,其中步驟(Α)之該透明基材之材料 為氧化銘(Al2〇3)、碳化矽(SiC)、氧化鎂(MgO)、氧化辞(Ζη〇) 或棚化錯(ZrBa) ’且該透明基材可讓該雷射脈衝通過。 3. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(A)之該緩衝層之材料為 氮化鎵(GaN)、氮化銦(InN)、氮化鋁(A1N)、氮化鋁鎵 (AlGaN)、氮化銦鎵(InGaN)、氮化鋁銦(A1InN)或氮化鋁鎵 銦(AlGalnN)。 4·如申請專利範圍第i項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(A)之該緩衝層為單層結 構’且厚度為〇_〇5微米以上。 5·如申請專利範圍第1項所述之製作氮化鎵半導體 兀件中劈裂鏡面之方法,其中步驟(A)之該緩衝層為多層結 構,且厚度為〇 〇5微米以上。 6·如申凊專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(B)之該活性層為多層結 座層内部的一部份形成一 Fabry-Perot共振腔。 22 200832853 7·如申請專利範圍第 s 元件中劈裂鏡面之方法2項所述之製作氮化鎵半導體 構,且絲性層”的’—V;㈣⑻之能性層為多層結 们 4份形成一波導結構。 :株明專利範圍第1項所述之製作氮化鎵半導體 兀件中S裂鏡面之方、、表,甘 於1微米。 忐/、中步驟(D)之該保留區的寬度大 Ο _ 1韻狀製純化鎵半導體 疋件中身4鏡面之方法,其中步驟⑻之該金屬層之材料為 欽0 —1〇·如申請專利範圍帛1項所述之製作氮化鎵半導體 π件中劈裂鏡面之方法,其中步驟⑹之該金屬層之材料為 銷。 一 U·如申請專利範圍第1項所述之製作氮化鎵半導體 兀:中劈裂鏡面之方法,其中步驟⑻之該金屬層的沈積方 利用笔子束蒸鑛法(Electron Beam Evaporation)進行。 12.如申請專利範圍第丨項所述之製作氮化鎵半導體 凡件中劈裂鏡面之方法,其中步驟(E)之該金屬層的沈積方 式了利用濺鑛法(Sputtering)進行。 23 200832853 13. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(E)之該金屬層的沈積方 式可利用熱蒸鑛法(Thermal Evaporation)進行。 14. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該蝕刻方式為活性 離子# 刻(Reactive Ion Etch ; RIE)。 15. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該蝕刻方式為感應 ♦馬合電漿餘刻(Inductance Coupled Plasma ; ICP)。 16. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該蝕刻方式為電子 環繞共振式# 刻(Electron Cyclotron Resonance ; ECR)。 17. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該蝕刻方式為化學 輔助離子式餘刻(Chemically Assisted Ion Beam Etching ; CAIBE)。 18. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該乾式蝕刻方式為 離子研磨(Ion milling)。 24 200832853 19. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(G)之該蝕刻方式為光電 化學(Photoelectrochemistry ; PEC)餘刻。 20. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(H)之該雷射脈衝為一準 分子雷射。 21. 如申請專利範圍第20項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中該準分子雷射為一波長為 248微米的KrF雷射,一波長為282微米的XeBr雷射, 一波長為308微米的XeCl雷射或一波長為351微米的XeF 雷射。 22. 如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟(H)之該雷射脈衝為一固 態雷射。 23. 如申請專利範圍第22項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中該固態雷射為一波長為 266微米的Nd:YAG雷射,一波長為355微米的Nd._YAG 雷射,一波長為266微米的Nd:YV04雷射,一波長為355 微米的Nd:YV04雷射,一波長為262微米的Nd:YLF雷射, 25 200832853 一波長為263微米的Nd:YLF雷射,一波長為349微米的 Nd:YLF雷射或一波長為351微米的Nd:YLF雷射。 24_如申請專利範圍第23項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中該波長為355微米的 Nd:YAG雷射之平均脈衝能量密度為3〇〇至600毫焦耳/平 方公分(mJ/cm2)。 25·如申請專利範圍第1項所述之製作氮化鎵半導體 元件中劈裂鏡面之方法,其中步驟⑴之該溶液係由鹽酸與 水以1:1之比例製成。 26·如申請專利範圍第1項所述之製作氮化鎵半導體 兀件中劈裂鏡面之方法,其中步驟(E)沈積之該金屬層如需 去除,可使用硫酸水溶液,該硫酸水溶液係由硫酸 (HbSO4)過氧化氫(H2〇2)與去離子水(di water)以5:1:1之 比例製成。 —27.如申請專利範圍帛1項所述之製作氮化鎵半導體 几件中劈裂鏡©之方法’其中步驟⑺之該劈裂為機械方 法。 28.如申請專利範圍第 元件中劈裂鏡面之方法,其 1項所述之製作氮化鎵半導體 中步驟(J)之該劈裂為超音波方 26 200832853 法。 29·如申凊專利範圍第28項所述之製作氮化鎵半導體 几件中劈裂鏡面之方法,其中該超音波方法使用頻率範圍 為 44kHz〜250kHz。 3〇· —種製作氮化鎵半導體元件中劈裂鏡面之方法, 至少包含下列步驟: (A) 在一透明基板上形成一緩衝層; (B) 在該緩衝層上形成一活性層; (C) 在該活性層上以光阻定義一圖案; (E) 將該圖案内露出之該活性層為止; (F) 將該圖案内露出之該活性層蝕刻約5〇_3〇〇奈米深 之淺蝕刻區; (G) 清除光阻; (H) 在該活性層上形成一光阻; (I) 在该光阻上定義一圖案,該圖案至少包含一保留 區,兩個犧牲區與兩個凹陷圖案,且該些犧牲區連接於該 保留區之兩側,該些凹陷圖案則分別介於該保留區與該些 犧牲區之間,該些犧牲區位與該些凹陷圖案位於步驟(F) 之淺钱刻區内’且該些凹陷圖案位於該些淺㈣區内距其 邊緣約1-5微米; (j)將該圖案内之光阻曝光顯影至露出該活性層為 止,再沈積一金屬層至該活性層上; 27 200832853 (κ)以舉離(lift-off)方式去除光阻並得到定義的金屬 圖案; (L)依序將未被該金屬層所覆蓋之該活性層與該緩衝 層的部分蝕刻至露出該透明基板為止; - (M)以一溶液清除該金屬層; . (N)在該活性層上沈積一第一型接面金屬層; (0)在一轉置基板上沈積一金屬層,成分為金; Q (P)將該透明基板與該轉置基板接合; (Q) 以一雷射脈衝由該透明基板之底面往頂面照射,分 解該緩衝層底部之部分厚度,且至少一殘留金屬成分於該 透明基板上; (R) 移除透明基板,以一溶液清除該殘留金屬成分,且 該些犧牲區在轉置基板上形成懸空結構; (S) 在該活性層上沈積一第一型接面金屬層,成分為鎳 /金、鈦/銘/麵/金 '或鉻/翻/金;以及 () (T)將與該轉置基板分離該犧牲區之該緩衝層與該活 性層由該凹陷圖案處進行劈裂,則該保留區之兩側即形成 兩個劈裂鏡面。 31·如申請專利範圍第3〇項所述之製作氮化鎵半導 * 體元件中劈裂鏡面之方法,其中步驟(Α)之該透明基板之材 • 料為氧化鋁(Al2〇3)、碳化矽(SiC)、氧化鎂(MgO)、氧化鋅 (ZnO)或硼化鍅(ZrB2),且該透明基板可讓該雷射脈衝通 過0 28 200832853 32.如申晴專利範圍第3〇項所述之製作氮化鎵半導 體:件:劈裂鏡面之方法,其中步驟⑷之該緩衝層之材料 為氮化鎵(⑽)、氮化銦(涵)、lUbig(AlN)、氮化銘鎵 (AlGaN)、虱化銦鎵(InGaN)、氮化鋁銦(AiinN)或氮化鋁鎵 銦(AlGalnN)。200832853 X. Application for Patent Park: 1. The preparation of a gallium nitride semiconductor device in a gallium-shielded mirror includes less than the following steps: (A) forming a buffer layer on a transparent substrate; (B) forming on the buffer layer An active layer, (C) forming a photoresist on the active layer; (9) defining a pattern on the photoresist, the pattern comprising at least one reserved region, two sacrificial regions and two recess patterns, and the sacrifices a region is connected to both sides of the reserved region. The recess patterns are respectively between the remaining two sacrificial regions; "two (8) exposing and developing the photoresist in the pattern until the active layer is exposed" to redeposit a metal layer Up to the active layer; (F) removing the photoresist in a lift_gff manner and obtaining a metal pattern; (G) sequentially disposing the active layer not covered by the metal layer and a portion of the buffer layer Etching until the transparent substrate is exposed; (H) irradiating a top surface of the transparent substrate with a laser pulse to decompose a portion of the thickness of the bottom portion of the buffer layer, and at least one residual metal component on the transparent substrate ; (I) remove the residue with / liquid Retaining a metal component, and the sacrificial regions form a suspended structure; and (J) splitting a portion of the buffer layer separated from the transparent substrate from the active layer by the recessed pattern The buffer layer and the two sides of the active layer form two split mirrors. 21 200832853 2. The method for fabricating a split mirror surface in a gallium nitride semiconductor article according to claim 1 of the patent application, wherein the step (Α The material of the transparent substrate is oxidized (Al2〇3), tantalum carbide (SiC), magnesium oxide (MgO), oxidized (Ζη〇) or shed (ZrBa)' and the transparent substrate allows 3. The laser pulse is passed through. 3. The method for fabricating a split mirror in a gallium nitride semiconductor device according to claim 1, wherein the buffer layer of the step (A) is gallium nitride (GaN). Indium nitride (InN), aluminum nitride (A1N), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (A1InN) or aluminum gallium indium nitride (AlGalnN). A method for fabricating a split mirror surface in a gallium nitride semiconductor device according to the invention of claim i, wherein the step (A) The buffer layer has a single-layer structure and has a thickness of 〇_〇 5 micrometers or more. 5. The method for fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the step (A) The buffer layer has a multilayer structure and has a thickness of 〇〇5 μm or more. 6. The method for fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the activity of the step (B) The layer is a portion of the interior of the multi-layered agglomerate layer to form a Fabry-Perot resonant cavity. 22 200832853 7· Manufacture of a gallium nitride semiconductor structure as described in the method of splitting the mirror surface in the s element of the patent application scope The energy layer of '-V; (4) (8) forms a waveguide structure for four layers of multilayer layers. The square of the S-split mirror surface in the gallium nitride semiconductor device described in the first paragraph of the Zhuming patent scope is 1 micron.忐 /, the width of the reserved area of the step (D) is greater than _ 1 rhyme method for purifying the mirror surface of the middle body 4 of the gallium semiconductor element, wherein the material of the metal layer of the step (8) is a 0-1 〇 · application The method for fabricating a split mirror surface in a GaN device of the GaN device according to the invention, wherein the material of the metal layer in the step (6) is a pin. A method for fabricating a gallium nitride semiconductor germanium as described in claim 1, wherein the deposition of the metal layer in the step (8) is performed by an Electron Beam Evaporation method. . 12. A method of fabricating a mirrored surface in a gallium nitride semiconductor article as described in the scope of the patent application, wherein the depositing of the metal layer in step (E) is carried out by sputtering. 23 200832853 13. The method for fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the metal layer of the step (E) is deposited by a thermal evaporation method (Thermal Evaporation) . 14. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the etching method of the step (G) is reactive ion (Reactive Ion Etch; RIE). 15. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the etching method of the step (G) is an Inductance Coupled Plasma (ICP). . 16. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the etching method of the step (G) is Electron Cyclotron Resonance (ECR). 17. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the etching method of the step (G) is a chemically assisted ion implantation (CAIBE). . 18. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 1, wherein the dry etching of the step (G) is ion milling. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 1, wherein the etching method of the step (G) is photoelectrochemistry (PEC). 20. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 1, wherein the laser pulse of step (H) is a quasi-molecular laser. 21. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 20, wherein the excimer laser is a KrF laser having a wavelength of 248 microns and a XeBr Ray having a wavelength of 282 microns. Shot, a XeCl laser with a wavelength of 308 microns or a XeF laser with a wavelength of 351 microns. 22. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 1, wherein the laser pulse of step (H) is a solid state laser. 23. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 22, wherein the solid state laser is a Nd:YAG laser having a wavelength of 266 microns and a Nd having a wavelength of 355 microns. ._YAG laser, a Nd:YV04 laser with a wavelength of 266 microns, a Nd:YV04 laser with a wavelength of 355 microns, a Nd:YLF laser with a wavelength of 262 microns, 25 200832853 Nd with a wavelength of 263 microns : YLF laser, a Nd:YLF laser with a wavelength of 349 microns or a Nd:YLF laser with a wavelength of 351 microns. [24] A method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 23, wherein the average pulse energy density of the Nd:YAG laser having a wavelength of 355 μm is 3 〇〇 to 600 mJ / square centimeter (mJ/cm2). The method of producing a split mirror surface in a gallium nitride semiconductor device according to the first aspect of the invention, wherein the solution of the step (1) is prepared by a ratio of hydrochloric acid to water at a ratio of 1:1. 26. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 1, wherein the metal layer deposited in step (E) is removed, and an aqueous sulfuric acid solution is used. Sulfuric acid (HbSO4) hydrogen peroxide (H2〇2) and deionized water (di water) were prepared in a ratio of 5:1:1. - 27. The method of fabricating a gallium nitride semiconductor in a plurality of pieces of a gallium splitting mirror as described in claim 1 wherein the splitting of the step (7) is a mechanical method. 28. The method of splitting a mirror surface in a component of the patent application, wherein the splitting of the step (J) in the fabrication of the gallium nitride semiconductor according to the invention is the ultrasonic wave method 26 200832853. 29. A method of fabricating a split-mirror mirror in a plurality of gallium nitride semiconductors as described in claim 28, wherein the ultrasonic method uses a frequency range of 44 kHz to 250 kHz. 3. A method for fabricating a split mirror in a gallium nitride semiconductor device, comprising at least the following steps: (A) forming a buffer layer on a transparent substrate; (B) forming an active layer on the buffer layer; C) defining a pattern by photoresist on the active layer; (E) exposing the active layer to the active layer; (F) etching the active layer exposed in the pattern by about 5 〇 3 〇〇 nm a deep shallow etched region; (G) a photoresist is removed; (H) a photoresist is formed on the active layer; (I) a pattern is defined on the photoresist, the pattern comprising at least one reserved region, and two sacrificial regions And two recessed patterns, wherein the sacrificial regions are connected to the two sides of the reserved region, the recessed patterns are respectively between the reserved region and the plurality of sacrificial regions, and the sacrificial regions and the recessed patterns are located at the step (F) in the shallow engraved area 'and the recessed patterns are located in the shallow (four) regions about 1-5 microns from the edge thereof; (j) exposing the photoresist in the pattern to the exposed active layer Re-depositing a metal layer onto the active layer; 27 200832853 (κ) with lift-off Removing the photoresist and obtaining a defined metal pattern; (L) sequentially etching the active layer and the buffer layer not covered by the metal layer to expose the transparent substrate; - (M) removing with a solution The metal layer; (N) depositing a first type of junction metal layer on the active layer; (0) depositing a metal layer on a transposed substrate, the composition is gold; Q (P) the transparent substrate and The transposed substrate is bonded; (Q) is irradiated from the bottom surface of the transparent substrate to the top surface by a laser pulse, and a portion of the thickness of the bottom portion of the buffer layer is decomposed, and at least one residual metal component is on the transparent substrate; (R) shifting Except for the transparent substrate, the residual metal component is removed by a solution, and the sacrificial regions form a suspended structure on the transposed substrate; (S) depositing a first type of junction metal layer on the active layer, the composition is nickel/gold , titanium/ming/face/gold' or chrome/turn/gold; and () (T) separating the buffer layer of the sacrificial region from the transposed substrate and the active layer being cleaved by the recess pattern, Two split mirrors are formed on both sides of the reserved area. 31. The method for producing a split mirror surface in a gallium nitride semiconductor device according to the third aspect of the patent application, wherein the material of the transparent substrate in the step (Α) is alumina (Al2〇3) , SiC, MgO, ZnO or ZrB2, and the transparent substrate can pass the laser pulse through 0 28 200832853 32. The invention relates to a method for fabricating a gallium nitride semiconductor: a method for cleaving a mirror surface, wherein the material of the buffer layer in the step (4) is gallium nitride ((10)), indium nitride (culvert), lUbig (AlN), nitriding Gallium (AlGaN), indium gallium telluride (InGaN), aluminum indium nitride (AiinN) or aluminum gallium indium nitride (AlGalnN). 〇 33.如申請專利範圍第3〇項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(A)之該緩衝層為單層 結構,且厚度為0.05微米以上。 34·如中請專利範圍第3()項所述之製作氮化嫁半導 體兀件中劈裂鏡面之方法’其中步驟⑷之該緩衝層為多層 結構,且厚度為0.05微米以上。 申明專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(B)之該活性層為多層 結構’且该活性層内部的—部份形成—驗y_pen)t共振腔 〇 =如巾請專利範圍第3G項所述之製作氮化嫁半導 :件中劈裂鏡面之方法,其中步_)之該活性層為 、。構’且該活性層内部的-部份形成一波導結構。 37·如中請專利範圍第3Q項所述之製作氮化嫁半導 29 200832853 體元件中劈裂鏡 約50-300奈米。 面之方法,其中步驟(F)之該淺蝕刻區深度 38·如申睛專利範圍第30項所述之製作氮化鎵半導 體元件中劈 _ 刀我鏡面之方法,其中步驟(I)之該保留區的寬度 • 大於1微米,長度大於5〇微米。 _ 39·如+請專利範圍第30項所述之製作氮化鎵半導 體疋件中劈裂鏡面之方法,其中步驟(J)之該金屬層之材料 40·如申請專利範圍第 體元件中劈裂鏡面之方法, 為翻。 3〇項所述之製作氮化鎵半導 其中步驟(J)之該金屬層之材料 〇 41·如中睛專利範圍第3()項所述之製作氮化蘇半導 體疋件中劈裂鏡面之方法,其中步驟⑺、⑼、⑼與⑻ 中之5亥金屬層的沈積方式可利 巧用電子束蒸鍍法(Electron Beam Evaporation)進行。 42·如申請專利範圍第3〇 員所述之製作氮化鎵半導 -兀件中劈裂鏡面之方法’其中步驟⑺、(Ν)、⑼盎⑻ 甲之該金屬層的沈積方式可利用濺鍍法(S帅edng)進行。 30 200832853 43. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(J)、(N)、(0)與(S) 中之該金屬層的沈積方式可利用熱蒸鑛法(Thermal Evaporation)進行。 44. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該蝕刻方式為活 性離子钱刻(Reactive Ion Etch ; RIE)。 45. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該蝕刻方式為感 應搞合電漿# 刻(Inductance Coupled Plasma ; ICP)。 46. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該蝕刻方式為電 子環繞共振式 I虫刻(Electron Cyclotron Resonance ; ECR)。 47. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該蝕刻方式為化 學輔助離子式餘刻(Chemically Assisted Ion Beam Etching ; CAIBE)。 48. 如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該乾式蝕刻方式 31 200832853 為離子研磨(Ion milling)。 49.如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(L)之該蝕刻方式為光 電化學(Photoelectrochemistry ; PEC)餘刻。 50·如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(M)之該溶液係由硫 酸(ΗΑ〇4),過氧化氫(H2〇2)與去離子水(mwater)u 5 /I 之比例製成。 51.如申請專利範圍第30項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(N)之該第一型接面金 屬層的材料為鎳/金、鈦/銘/翻/金、或絡。 G 52.如申請專利範圍第30項所述之製作氮化鎵半導 ' 體元件中劈裂鏡面之方法,其中.步驟(Q)之該雷射脈衝為一 準分子雷射。 53·如中請專利範圍第52項所述之製作氮化嫁半導 體元件中劈裂鏡面之方法,其中該準分子雷射為一波長為 • 248微米的KrF雷射’一波長為282微米的XeBr雷射, 一波長為308微米的XeCl雷射或_波長為351微米的X# 雷射。 32 200832853 54.如申請專利範圍第3〇項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中步驟(Q)之該雷射脈衝為一 固態雷射。 55.如申請專利範圍第54項所述之製作氮化鎵半導 體元件中劈裂鏡面之方法,其中該固態雷射為一波長為 266微米的Nd:YAG雷射,一波長為355微米的Nd:YAG 雷射,一波長為266微米的Nd:YV〇4雷射,一波長為355 微米的Nd:YVO4雷射,一波長為262微米的Nd:YLF雷射, 一波長為263微米的Nd:YLF雷射,一波長為349微米的 Nd:YLF雷射或一波長為351微米的Nd:YLF雷射。 56·如申請專利範圍第55項所述之製作氮化鎵半導 體兀件中劈裂鏡面之方法,其中該波長為355微米的 Nd:YAG雷射之平均脈衝能量密度為3〇〇至6〇〇毫焦耳/平 方公分(mj/cm2)。 57·如申睛專利範圍第30項所述之製作氮化鎵半導 體凡件中劈裂鏡面之方法,其中步驟之該溶液係由鹽酸 與水以1:1之比例製成。 58.如申請專利範圍第3〇項所述之製作氮化鎵半導 體兀件中劈裂鏡面之方法,其中步驟(S)之該第二型接面金 33 200832853 屬層的材料為鎳/金、鈦/鋁/鉑/金或鉻/鉑/金。 59.如中請專利範圍第3()項所狀製作氮化嫁半導 體元件中劈裂鏡面之方法,其中步驟⑺之該劈裂為機械方 60·如申請專利範圍第3〇項所述之製作氮化鎵半導 體疋件中劈裂鏡面之方法,其中步驟⑺之該劈裂為超音波 _ 61·如申請專利範圍第61項所述之製作氮化鎵半導 體凡件中劈裂鏡面之方法,其中該超音波方法使用頻率範 圍為 44kHz〜250kHz。 34The method of producing a split mirror surface in a gallium nitride semiconductor device according to the third aspect of the invention, wherein the buffer layer of the step (A) has a single layer structure and has a thickness of 0.05 μm or more. 34. The method for producing a split mirror surface in a nitrided semiconductor package according to the third aspect of the patent scope, wherein the buffer layer of the step (4) has a multilayer structure and a thickness of 0.05 μm or more. A method for fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 30, wherein the active layer of the step (B) is a multilayer structure 'and a portion of the active layer is formed - y_pen) Resonant cavity 〇 = 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化The structure of the inside of the active layer forms a waveguide structure. 37. The production of nitrided semi-conducting halves as described in item 3Q of the patent scope 29 200832853 The splitting mirror in the body element is about 50-300 nm. The method of the surface, wherein the shallow etched region depth of the step (F) is as described in claim 30, wherein the method of fabricating the mirror in the gallium nitride semiconductor device, wherein the step (I) The width of the reserved area is greater than 1 micron and the length is greater than 5 microns. _ 39 · For example, the method for fabricating a split mirror in a gallium nitride semiconductor device according to the scope of claim 30, wherein the material of the metal layer of step (J) is as described in the first component of the patent scope The method of splitting the mirror surface is to turn over. Manufacture of gallium nitride semiconductor according to item 3: wherein the material of the metal layer of step (J) is 〇41· 劈 镜 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作The method, wherein the deposition of the 5 ohm metal layer in the steps (7), (9), (9) and (8) can be carried out by electron beam evaporation (Electron Beam Evaporation). 42. The method for producing a split-mirror mirror in a gallium nitride semi-conductive member according to the third member of the patent application section, wherein the deposition method of the metal layer of steps (7), (Ν), (9) Ang (8) can be utilized. Sputtering (S handsome edng) was carried out. 30 200832853 43. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 30, wherein the metal layer in steps (J), (N), (0) and (S) The deposition method can be carried out by using the Thermal Evaporation method. 44. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 30, wherein the etching method of the step (L) is a reactive ion etch (Reactive Ion Etch; RIE). 45. The method of fabricating a split mirror in a gallium nitride semiconductor component according to claim 30, wherein the etching of the step (L) is an Inductance Coupled Plasma (ICP). 46. The method of fabricating a split mirror in a gallium nitride semiconductor component according to claim 30, wherein the etching of the step (L) is an Electron Cyclotron Resonance (ECR). 47. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 30, wherein the etching method of step (L) is Chemically Assisted Ion Beam Etching (CAIBE). . 48. A method of fabricating a split mirror in a gallium nitride semiconductor component as described in claim 30, wherein the dry etching mode 31 200832853 of step (L) is ion milling. 49. A method of fabricating a split mirror in a gallium nitride semiconductor component according to claim 30, wherein the etching of step (L) is photoelectrochemistry (PEC). 50. The method for producing a split mirror surface in a gallium nitride semiconductor device according to claim 30, wherein the solution of the step (M) is sulfuric acid (ΗΑ〇4), hydrogen peroxide (H2〇2) Made with a ratio of deionized water (mwater) u 5 /I. 51. The method of fabricating a split mirror surface in a gallium nitride semiconductor device according to claim 30, wherein the material of the first type of junction metal layer of step (N) is nickel/gold, titanium/ming/ Turn over / gold, or network. G 52. The method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 30, wherein the laser pulse of step (Q) is a quasi-molecular laser. 53. A method of fabricating a split mirror in a nitrided semiconductor device as described in claim 52, wherein the excimer laser is a KrF laser having a wavelength of 248 microns and having a wavelength of 282 microns. XeBr laser, a XeCl laser with a wavelength of 308 microns or an X# laser with a wavelength of 351 microns. 32. The method of fabricating a split mirror in a gallium nitride semiconductor component according to claim 3, wherein the laser pulse of step (Q) is a solid state laser. 55. A method of fabricating a split mirror in a gallium nitride semiconductor device according to claim 54 wherein the solid state laser is a Nd:YAG laser having a wavelength of 266 microns and a Nd having a wavelength of 355 microns. : YAG laser, a Nd:YV〇4 laser with a wavelength of 266 microns, a Nd:YVO4 laser with a wavelength of 355 microns, a Nd:YLF laser with a wavelength of 262 microns, and a Nd with a wavelength of 263 microns : YLF laser, a Nd:YLF laser with a wavelength of 349 microns or a Nd:YLF laser with a wavelength of 351 microns. 56. The method of fabricating a split mirror in a gallium nitride semiconductor device as described in claim 55, wherein the average pulse energy density of the Nd:YAG laser having a wavelength of 355 micrometers is from 3 〇〇 to 6 〇. 〇mJ/cm^2 (mj/cm2). 57. A method of fabricating a mirrored surface in a gallium nitride semiconductor article as recited in claim 30, wherein the solution is prepared from a ratio of hydrochloric acid to water in a ratio of 1:1. 58. The method of fabricating a split mirror in a gallium nitride semiconductor device as described in claim 3, wherein the material of the second type of junction 33 of the step (S) is a nickel/gold material. , titanium / aluminum / platinum / gold or chromium / platinum / gold. 59. The method for producing a split mirror surface in a nitrided semiconductor device according to the third aspect of the patent scope, wherein the splitting of the step (7) is a mechanical side. 60. A method for fabricating a split mirror surface in a gallium nitride semiconductor device, wherein the splitting of the step (7) is ultrasonic _ 61. The method for fabricating a split mirror in a gallium nitride semiconductor article as described in claim 61 Where the ultrasonic method uses a frequency range of 44 kHz to 250 kHz. 34
TW96102229A 2007-01-19 2007-01-19 Method for manufacturing cleaved facets of nitride semiconductor devices TWI328907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96102229A TWI328907B (en) 2007-01-19 2007-01-19 Method for manufacturing cleaved facets of nitride semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96102229A TWI328907B (en) 2007-01-19 2007-01-19 Method for manufacturing cleaved facets of nitride semiconductor devices

Publications (2)

Publication Number Publication Date
TW200832853A true TW200832853A (en) 2008-08-01
TWI328907B TWI328907B (en) 2010-08-11

Family

ID=44818992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96102229A TWI328907B (en) 2007-01-19 2007-01-19 Method for manufacturing cleaved facets of nitride semiconductor devices

Country Status (1)

Country Link
TW (1) TWI328907B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204719A (en) * 2020-02-29 2020-05-29 华南理工大学 Gallium nitride nanotube and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111204719A (en) * 2020-02-29 2020-05-29 华南理工大学 Gallium nitride nanotube and preparation method thereof

Also Published As

Publication number Publication date
TWI328907B (en) 2010-08-11

Similar Documents

Publication Publication Date Title
TWI520206B (en) Method of at least partially releasing an epitaxial layer
KR101300069B1 (en) Nitride semiconductor layer-containing structure, nitride semiconductor layer-containing composite substrate and production methods of these
US8975615B2 (en) Method of fabricating optical devices using laser treatment of contact regions of gallium and nitrogen containing material
CN111095483B (en) Method for removing substrate by cutting technology
EP1577958B1 (en) Photonic crystal light emitting device
JP4818464B2 (en) Microstructure manufacturing method
TW200416812A (en) Methods of forming semiconductor devices including mesa structures and multiple passivation layers and related devices
TW201118946A (en) Method for manufacturing free-standing substrate and free-standing light-emitting device
JP2015154074A (en) Method for manufacturing gallium and nitrogen bearing laser devices with improved usage of substrate material
US20130228809A1 (en) Semiconductor structure for substrate separation and method for manufacturing the same
JP2001085736A (en) Method for manufacturing nitride semiconductor chip
JP2012114407A (en) Method for fabricating vertical light emitting devices and substrate module for the same
JP2005012188A (en) Manufacturing method for semiconductor device
TW201225171A (en) Method of manufacturing a semiconductor device
TW200945416A (en) Method of fabricating photoelectric device of III-nitride based semiconductor and structure thereof
WO2006041134A1 (en) Nitride compound semiconductor element and production method therefor
WO2004064212A1 (en) Nitride semiconductor device, method for manufacturing same and method for manufacturing nitride semiconductor substrate
CN114830296A (en) Method for manufacturing resonant cavity and distributed Bragg reflector mirror for vertical cavity surface emitting laser on wing of epitaxial lateral overgrowth region
JP3962283B2 (en) Manufacturing method of semiconductor device
JP2008066475A (en) Compound semiconductor device and its manufacturing method
JP2007273844A (en) Semiconductor device
JP2009283762A (en) Method for manufacturing nitride compound semiconductor led
JP2003037286A (en) Method of manufacturing semiconductor device
JP2006229153A (en) Nitride semiconductor device and method of manufacturing the same
JP2011023453A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees