TW200831387A - A rigging system for supporting and pointing solar concentrator arrays - Google Patents

A rigging system for supporting and pointing solar concentrator arrays Download PDF

Info

Publication number
TW200831387A
TW200831387A TW096131496A TW96131496A TW200831387A TW 200831387 A TW200831387 A TW 200831387A TW 096131496 A TW096131496 A TW 096131496A TW 96131496 A TW96131496 A TW 96131496A TW 200831387 A TW200831387 A TW 200831387A
Authority
TW
Taiwan
Prior art keywords
cable
frame
tension
cables
solar
Prior art date
Application number
TW096131496A
Other languages
Chinese (zh)
Inventor
Eric Bryant Cummings
Kirsten Kaye Pace
Jacques Jean Belanger
Original Assignee
Coolearth Solar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coolearth Solar filed Critical Coolearth Solar
Publication of TW200831387A publication Critical patent/TW200831387A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/50Arrangement of stationary mountings or supports for solar heat collector modules comprising elongate non-rigid elements, e.g. straps, wires or ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/80Airborne solar heat collector modules, e.g. inflatable structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/455Horizontal primary axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/017Tensioning means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/133Transmissions in the form of flexible elements, e.g. belts, chains, ropes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Soil Working Implements (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Embodiments in accordance with the present invention relate to the design of inexpensive mounting and pointing apparatuses for linear arrays of solar energy collectors and converters. Particular embodiments in accordance with the present invention disclose a rigging system comprising at least one, and preferably a plurality of, tensile cables onto which a plurality of solar modules are fastened. Such an arrangement provides a way of suspending solar modules over land, vegetation, bodies of water, and other geographic features without substantial perturbation of the underlying terrain. Certain embodiments comprise additional tensile cables fastened to the solar modules, such that differential axial motion of the cables produces a rotational motion component of the individual solar modules of the array. This rotational motion component effects an orientation control along one rotational axis.

Description

200831387 九、發明說明: 【發明所屬之技術領域】 本發明係關於一索具糸統’特別是關於支持及指向太陽 能之集光陣列。 【先前技術】 . 太陽輻射為地球上最豐富的能源。然而,大規模地利用 太%能供電之嘗試迄今為止未能在經濟上與多數化石燃料 能源競爭。 Ο 沒有大規模地採用太陽能能源之一理由為化石燃料能源 具有經濟外部性之優勢’諸如低成本或無成本的污染及排 放。政治解決方案已長期在寻求糾正此等不平衡。 沒有大規模地採用太陽能能源之另一理由為太陽通量不 足夠強烈而使在一太陽通量下之直接轉換具成本效益。太 陽能集光技術已尋求解決此問題。 具體言之’太陽輻射為最易於操縱及集光之能量形式中 的一者。其可藉由僅利用適度材料而使初始通量折射、繞 C/ 射或反射數千次。 藉由如此多之可能方法,已存在實施低成本太陽能集光 • 器之大量先前嘗試。然而,迄今為止,太陽能集光系統成 “ 本過高以致於在不受資助的情況下不能與化石燃料競爭, 此部分係因為收集器之機械支持件及太陽追蹤裝置中之過 多材料及安裴成本。儘管許多太陽能收集器利用支持構 架,但其架構導致過多材料使用,及複雜及費時的組裝及 安裝,從而致使其不適於大規模太陽能耕作。 另外,習知集光支持系統需要大範圍的地面準備,此經 124235.doc 200831387 常使土地不適於其他用途且破壞自然生態環境。 口此,在此項技術中存在高效及有效地支持及對準太陽 忐集光器而不造成過多安裝負擔之設計需要。 【發明内容】 本發明之實施例係關於用於太陽能收集器及轉換器之線 " 料列之低廉的安裝及指向裝置的設計。根據本發明之特 . 冑實施例揭示-種索具系統’其包含至少—個,且較佳複 ㈣緊111複數個太陽能模組之張力纜索。此配置提供將太 I 帛能模組懸吊於土地、植被、水體及其他地理特徵:而不 實質擾動下層地形之方式。特定實施例包含緊固至太陽能 模組之額外張力纔索,以使得纜索之差速軸向運動產生該 2列之個別太陽能模組的旋轉運動分量。此旋轉運動分量/ 實現沿一旋轉軸線之定向控制。 根據本發明之一實施例進一步包含複數個支持件,其提 供至少-境索垂直於其軸之運動。此產生該陣列之個別太 m组的旋轉運動分量以實現沿第二旋轉軸線之定向控 “ 制。 二 特定實施例提供連接至模組之複數個纜索的共同平移。 此允許模組之陣列垂直於軸線而平移。另一實施例提供雙 索之共同軸向平移,以使得模組可在轴向方向上平移。 本發明之料實施例可與具有可變橫截面之至少_ 絞車捲筒合作之旋轉致動器,該絞車捲筒經設計以在適春 及大體不匹配之速率下饋送及抽拉附著至本發明之結構: 控制纜索以實現該等結構之受控運動。 本發明之特定實施例可另外包含用以減少在風負載等下 124235.doc 200831387 之運動的振動阻尼器。特定實施例可使用一或多個基於繞 索之致動系統以調整沿旋轉軸線之定向。200831387 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a rigging system, particularly for a light collecting array that supports and directs solar energy. [Prior Art] . Solar radiation is the most abundant energy on earth. However, attempts to use too much power on a large scale have so far failed to compete economically with most fossil fuel energy sources.之一 One reason for not using solar energy on a large scale is that fossil fuel energy has the advantage of economic externalities such as low-cost or no-cost pollution and emissions. Political solutions have long sought to correct these imbalances. Another reason for not using solar energy on a large scale is that solar flux is not strong enough to make direct conversion under a solar flux cost-effective. Solar concentrating technology has sought to solve this problem. Specifically, solar radiation is one of the most energy forms that are easy to manipulate and collect. It can refract the initial flux, wind around C/reflect or reflect thousands of times by using only moderate materials. With so many possible approaches, there have been a number of previous attempts to implement low cost solar concentrators. However, to date, solar concentrating systems have become “too high to compete with fossil fuels without funding, due in part to the mechanical support of the collectors and the excessive materials and ampoules in the solar tracking devices. Cost. Although many solar collectors utilize a support structure, their architecture results in excessive material use and complex and time-consuming assembly and installation, making them unsuitable for large-scale solar farming. In addition, conventional light collection systems require a wide range of Ground preparation, this 124235.doc 200831387 often makes the land unsuitable for other uses and destroys the natural ecological environment. In this technology, there is efficient and effective support and alignment of the solar collector in this technology without causing excessive installation burden. SUMMARY OF THE INVENTION [0001] Embodiments of the present invention relate to the design of an inexpensive mounting and pointing device for a line of solar collectors and converters. According to an embodiment of the present invention, an embodiment is disclosed - a rigging system that includes at least one, and preferably a plurality of (four) tightly 111 plurality of solar module tension cables This configuration provides a means of suspending a Tai I module to land, vegetation, water, and other geographic features without substantially disturbing the underlying terrain. Particular embodiments include additional tension to the solar module. The rotational motion component of the individual solar modules of the two columns is generated by differential axial movement of the cable. The rotational motion component / is controlled to be oriented along an axis of rotation. According to an embodiment of the invention, a plurality of support members are further included. Providing at least - motion of the axis perpendicular to its axis. This produces a rotational motion component of the individual m groups of the array to effect orientation control along the second axis of rotation. Two specific embodiments provide for common translation of a plurality of cables connected to the module. This allows the array of modules to translate perpendicular to the axis. Another embodiment provides for common axial translation of the double cables such that the modules are translatable in the axial direction. Embodiments of the present invention may be coupled to a rotary actuator having at least a winch reel having a variable cross-section that is designed to feed and pull attachment to the present at a rate of spring and substantially mismatch Structure of the Invention: The cable is controlled to effect controlled movement of the structures. Particular embodiments of the present invention may additionally include a vibration damper to reduce motion under wind load or the like 124235.doc 200831387. Particular embodiments may use one or more loop-based actuation systems to adjust the orientation along the axis of rotation.

特定實施例可使用地面安裝之剛性支柱以錨定系統且將 壓縮及其他負載傳送至地面。特定實施例可進一步使用具 有拉繞及地錨之系統以將負載分配至地面且減少地面安震 支柱中之彎曲力。此等地錨之特定實施例藉由筒夾(其夾 持力隨拉纜負載而增加)而提供對相對拉纜位置的調整。 此等地錨之特定實施例進一步經由有螺紋元件提供之機械 ,負+載來提供對此等筒夾之拉緊。地錨之特定實施例提供 安裝及分度特徵以支持使用可移式液壓纜索張力器工具, ^ 〃與具有機械預負载之構件合作以允許在高張力負載 下進行方便及可靠的纜索張力調整。地錨之特定實施例進 一有機械特徵以經由可進一步提供可與旋轉協調之軸 向[細或運動的旋轉工具將地鋪驅動至地面中而允許在地 中之安衣。此工具及錨之特定實施例可進一步提供在驅 動操作之前或與驅動操作同時鑽錨之導向孔。 =據本u之方法之_實施例包含在張力下將太陽能模 組=固至至少-齡,料㈣中之至少―者連接至阻尼 根據本發明之總成之_實施例包含由張 陽能集光器。 双 :::發明之地錨之_實施例包含具有經組態以與地面 開部分端及:第一末端相對之開放端的管。具有張 出。二:形筒夾安置於管内,|窄的有螺紋末端自管突 出螺巾1經組態以响合有螺紋端,且可旋轉以失緊安置於 124235.doc 200831387 筒夾内之纜索。 根據本發明之將張力自構架結構轉移至地面之方法之一 實施例包含在第—階段中’將複數個張力纜索抽拉在一起 以在樞軸處聚集’且在第二階段中,將纜索中之張力自樞 軸轉移至地面。 根據本發明之使構架旋轉之方法之一實施例包含提供具 有第一末端及第二末端及接觸點之構架,該構架經組態以 繞枢轉點旋轉,及提供驅動機構。將第一纜索之第一末端 連接至構架之第一末端,且將第一纜索之第二末端連接至 驅動機構。將第二纜索之第一末端連接至構架之第二末 端,且將第二纜索之第二末端連接至驅動機構。促使驅動 機構以第一速率牵拉第一纜索且以第二速率牵拉第二纜 索,使得構架旋轉且接觸點嚙合第一纜索或第二欖索,藉 此將額外旋轉力矩賦予至構架之樞軸。 將結合以下文予及隨附圖式更詳細地描述本發明之此等 及其他實施例,以及其特徵及一些潛在優勢。 【實施方式】 本發明之實施例係關於用於太陽能收集器及轉換器之線 性陣列之低廉及最少材料的安裝及指向裝置的設計。本發 明之特定實施例揭示一種索具系統之設計,該索具系統包 含緊固複數個太陽能模組之至少一張力纟覽索,從而提供將 太陽能模組懸吊於土地、植被、水體及其他地理特徵上而 不準備擾動下層地形的方法。在圖1中展示一個此實施例 100 °為了清楚起見,圖1A展示圖1中之陣列之典型内部區 124235.doc -9 - 200831387 段的細節。 圖1及圖1A申之元件102為需要沿兩個旋轉軸線精確指向 及追蹤陽光之二維太陽能集光器。在此實施例中,此等集 光器之直徑為2.5 m且垂直支柱之間的距離為2〇 m。此等 集光器之並列配置在共用裝備、最小化支持管道及纜索線 之長度等能力中提供成本優勢。 一旋轉軸線104與索具系統之長軸線重合。每一集光器 沿垂直於第一軸線之直徑繞第二旋轉軸線1〇6個別地樞 轉。 元件108為構架,其包含用以在張力下在垂直於集光器 之第二旋轉軸線之平面中提供硬度的元件。元件11〇為張 力構木’其弟一軸線提供硬度且沿集光器之直徑進一步 提供張力,該張力幫助維持元件在集光器内之相對位置且 促進維護集光器。元件112為樞轉壓縮構架,其在陣列之 内。卩位置處支持張力構架。元件丨丨4為樞轉壓縮構架,其 在陣列之終端處支持張力構架。 π件116為多元件纜索,其包括阻尼振動之熱管理系 統。此多元件纜索之實施例詳細地描述於2〇〇6年8月23曰 申請之美國臨時專利申請案第6〇/839,855號中,且該申請 案為達成所有目的而以引用的方式併入本文中。元件ιΐ8 為提供額外振動阻尼之液體_空氣熱交換器。 需要壓縮力以維持纜索中之張力。支柱120及壓縮構架 112及114支持壓縮負載之一部分,但張力構架之主要壓縮 骨架為地面,系統經由錨具122安裝於地面上。根據本發 124235.doc -10- 200831387 明之實施例的架構將地面用作主要壓縮結構元件,且藉企 使大量結構材料成本外部化。 曰 元件124為壓縮構架之特徵,其有助於沿系統之主輻線 的致動。元件126為自專用捲筒絞車128抽拉及饋送之纜索 以使壓縮構架沿主軸線旋轉,藉此使整個張力構架系統及 集光器旋轉。類似致動機制用於集光器之次要軸線上。張 、 力繞索之所得相對運動使每一集光器樞轉。 〇 太陽能模組提供與模組之收集面積大致成比例的電、熱 或其他轉換產物。為了獲得高的總收集面積,排列多個= 同太陽能模組而非單一大的太陽能模組存在若干優勢,例 T,易於分配、安裝及維護,以提供較多實際太陽能追蹤 等。太陽能收集器之一最少材料實施例為圖i及圖1A中所 示之膨脹集光器或”氣球,,。於本文中使用時,術語,,氣球,, 係指此特定類型之集光器,但更大體而言意欲指代任何類 型之太陽能收集器,例如,一太陽太陽能單元及模組、剛 J 性集光鏡、菲涅爾(Fresnel)透鏡等。 安裝太陽能模組之習知方法為使用由橫桿及支持壓縮負 載之擠製件製成之延伸構架,且因此需要大量材料以抵抗 在風負載下之屈曲及變形,或完全分離座架,每一橫桿及 擠製件個別地連接至固體表面,例如,經由混凝土基座連 接至地面。此等習知座架可能會提供劣勢,因為其·· •可能需要過多·材料來支持張力貞載且防止偏轉; •可能需要冗餘安裝及指向裝置;及/或; •可能需要過度準備或使用模組之下的地形,從而對使用 124235.doc 200831387 模組之下的土地發生影響且潛在地增加太陽能安裝之環 境影響。 此外,剛性結構必須經設計在最重設計負載下不會翹曲 或不會彎曲或扭斷,此等最重設計負載通常比在最大操作 負載下之負載嚴重得多。舉例而言,太陽能安裝可經設計 以經受得住125 mph之風暴,但可能經設計以僅在25 mph ' 或更小之風速下有效地操作。在該種狀況下,在極限條件 n (SUrvival condition)下風在結構上所產生之力比在最嚴重 操作條件下遭遇之力大25倍。 可撓性纜索的使用允許吾人在操作狀態與極限狀態之間 採用較大差異。舉例而言,可預拉纜索以使得其在操作條 件下始終保持於張力下,但可在極限條件下變得鬆弛(在 壓縮下)。因為纜索通常並非不能彎曲或翹曲,所以應力 考慮需要纜索僅經設計以在極限條件下經受得住最大張力 負載。 〇 因為指向穩定性可能在許多應用中為重要的,所以硬度 考慮通常驅動根據本發明之構架元件的大小。在張力下, 纜索之軸向硬度及機械行為與每單位軸向長度具有相同材 料之剛性圓柱形擠製件的軸向硬度及機械行為並非實質上 不同。對於給定跨度及材料使用,伸長硬度通常比彎曲或 扭轉硬度大得多。本發明之實施例經構造以大體上依賴於 軸向硬度,從而潛在地驅動比習知收集器座架每單位收集 器面積使用少得多的材料。 最少材料結構之可能劣勢為其呈現振動共振之傾向。此 124235.doc 200831387 等結構之偏轉在動態強迫下比在靜態強迫下大得多,、 動態強迫具有接近振動共振頻率或處⑥振動共振頻率< 譜分量。 、 ^ 因此,減輕動態偏轉之方法可包括下列各項之一或多 各種組合: > •增加結構元件之橫截面面積以使其較硬; ^ •调整繞索張力以驅動共振遠離主激勵頻率; f) 在週期性(重複)、非週期性(非重複)或準非週期性(偶爾 重複)之間隔下將至少一節點添加至至少一構架; •在週期性(重複)、非週期性(非重複)或準非週期性(偶爾 重複)之間隔下將至少一塊體(包括不相等的塊體)添加至 至少一構架; •在週期性(重複)、非週期性(非重複)或準非週期性(偶爾 重複)之間隔下將至少一彈簧(包括不相等的彈簧)添加至 至少一構架; U •至少部分自内在地阻尼振動之材料建構至少一構架; •至少部分自比組件材料之總成呈現增強之振動阻尼的材 料戈、、二圖案化之材料的總成建構至少一構架; /々、加構杀總成不直接相關聯之至少一振動阻尼器,例 女填充有液體之囊狀物、具有或不具有氣囊之管的平 直及蛇形配置、多元件可撓性纜索、緩衝筒、滑撬、在 振動下發生摩擦之元件及其類似物。 併有此等方法以減少動態偏轉之特定實施例使用謹慎的 材料t擇或操作(例如,選擇振動阻尼纜索材料或適當規 124235.doc -13· 200831387 索張力),提供次要功能(例如,使用亦促進熱管理之填充 有液體之通道或氣體/液體通道)。其他實施例包括可回應 於觀測到之振動問題(例如,不用於其他目的之填充有液 體或填充有液體-氣體的阻尼器、塊體,或構架元件之間 或纜索與固定物件之間的緩衝筒)而方便料裝於場地中 的特徵。 因此’本發明之實施例使用複數個固體(亦即,能夠抵 抗靜應力)高縱橫比之張力部件。本發明之替代實施例可 使用複數個非固體部件。 於本文中使用時,術言丘”繼各丨丨 a ^索可包含至少一金屬線、擠 製件、鋼絲索、天鈇痞人屮舰太 t …、〆口成澠索、織物、纖維加強型複合 物、纖維加強型絕索、繞索總成及其類似物。在特定實施 例中,可使用能夠在I縮下翹曲而不損壞之可挽性金屬帶 =帶:於本文中使用時,術語"纔索"亦可指代在正常操 不南要支持實質幫曲負載或抽向塵縮而不管實際部件 t身是否能夠支持彎曲或壓縮之任何結構部件。因此,本 = 例提供使用—或多個習知塵縮構架元件(諸如 有角擠製件、1形擠製件、C形擠製件、桿、管或矩形棒) 來取代鋼絲索或其類似物。 〆 + 方 中使用時’術'吾’’緊固’’意謂至少部分對在至少一 方向上之相對平移的約束或部分地 圍内對至少一方向上之相㈣之至V有限祀 l 之相對旋轉的約束。本發明之另一要 素為將氣球緊固至纜索之方法。 接至-余 s a 扣件必須將氣球穩固地附 且允許在追縱期間的平滑旋轉。此等扣件可包 124235.doc 200831387 含擠屋成型球、套管、雙套管、金屬環、麗食系帶、夹甜 及其類似物。扣件之較佳實施例為可撓性材料之環圈,諸 如在纜索周圍拉緊且附接至氣球之繩索或金屬線。因為氣 球由單一股線或纜索固持,所以其可環繞股線或纜索之軸 自由旋轉’同時保持穩固的附接。用經受彈性扭力之纔索 對軸承及滑動接頭的此替代為本發明之其他實施例的要 素,包括在陣列之尾端處替換止推軸承等。 本發明之-簡單實施例包含緊固多個太陽能模組之單— 拉緊《 n此配置可為模組提供較少旋轉穩定性。 因此’本發明之另—實施例包含經間隔以使得在兩個單獨 點處緊固模組的複數個拉緊鏡索’且因此比對於單一境索 而言’其環繞分開境索之軸的旋轉更受約束。根據特=實 施例,纜索可定向為大體上彼此平行。 大圖2至圖2A分別為根據本發明之—實施例之使用兩個此 等張力鐵索之-維追縱太陽能收集器2〇〇之内部區段的透 視圖及放大圖。元件202為張力纔索;元件2〇4為壓縮構 架;元件206為壓縮支柱;且元件細為太陽能收集器㈤ 如,太陽能面板)。元件21〇為用以減少循環應力之可選振 動阻尼器。 元件2〇4經設計以使用與專用轉鼓m合作之抽拉及饋送 規索212來支持致動。然而,廣泛範圍之替代致動機制為 可能的’包括(但不限於)齒輪馬達、棘輪馬達、馬達驅動 滑輪或鏈條、旋轉液壓或氣動致動器、線性電、液壓或氣 動致動器等。或者,固玄十 X有固疋或手動調整為可能的。 124235.doc 200831387 % =可因為動力對指向角誤差具有餘弦依賴性的收集器而 —同圖1及圖丨A中之彼等纜索構架之較複雜纜索構架 、’費及複雜性為正當。然而,諸如在大規模振動下之振 /、振及循j衣負載的考慮可證明使用較硬設計為正當的。 可大體上以秦t f 疋向女波此非追縱或一維追縱收集器障 ^ 列。 一平 口口圖3展不根據本發明之一實施例之二維追縱太陽能收集 〇 姦300之内部區段的圖式。如同在圖1至圖2A中,整個陣列 、、:軸線302樞轉。另外,類似於圖1至圖1A中之實施例, 每一收集器繞個別次要軸線3〇4樞轉。 在圖3之實施例中,此旋轉係由控制纜索3〇8相對於另一 控制纜索310之運動3〇6引起,在此實施例中,控制纜索 31〇兼充當結構支持纜索。樞轉繫栓點312將相對纜索運動 轉換為太陽能收集器之旋轉運動。 在該實施例300中,構架包含收集器之側面、壓縮元件 〇 3 14及張力元件316。可大體上以北_南定向來安裝此二維 收集器陣列,以使得可藉由在東-西方向上將此等陣列之 平行列進一步間隔開而在接近黎明及黃昏時減少自我遮光 效應,從而較低效率地使用土地面積,但較高效率地使用 太陽能收集器面積。 在該實施例300中,阻尼器320經由元件318連接至構 架。阻尼器320可為部分地填充有液體或固體之中空部 件,用以回應於外力(諸如風)而限制構架之振動或顫動。 如圖5A之實施例中所示,根據本發明之實施例的另一態 124235.doc -16- 200831387 ;為用以提供緊固至模組之纜索的共同軸向運動以實現模 級之軸肖運動的機構。料動可用以(例如)最小化安置於 不同、見索系統上之太陽能模組之相鄰列之間在一天之不同 夺門及4之不同天的遮蔽效應。可在安裝時固定、手動 調整或致動此共同軸向移位。 〃根據本發明之實施例的另_要素為提供至少窥索之共同 平移的機構’该等纜索在具有垂直於纜索之軸線之組件的 〇 方向上緊固至集光器。如圖5B<實施例中所示,此允許模 組具有類似平移。此運動(例如)可用以升高及降低模組組 成以(例如)易於安裝或維護,以減輕風負載、最小化灰 塵沈積,或減少遮蔽效應。 根據本發明之實施例的另一要素為提供待被升高或降低 之繞索中之張力的機構。舉例而言,此機構可使纔索鬆弛 以促進降低P車列以(例如)用於維護以避免風應力等。此機 構可由下列各物之任何組合完成··絞車、滑塊、夾板、滑 Ο 輪系統、動力絞車、墊木、夾鉗及其類似物。 根據本發明之實施例的另一要素包含第三控制纜索,其 緊固至模組以使得一或多個纜索之相對軸向運動產生模組 之疑轉運動分量。因此,如圖5C之實施例中所示,此第三 控制纜索提供模組在一方向上之有角定位。 大體而言,張力構架中之纜索的數目將大於控制纜索之 數目。在此等實施例中所述之控制纜索的數目係指具有控 制纜索之運動效應的結構,亦即,運動控制纜索可為纜索 及在邏輯上可由單一纜索替代以執行運動操作之壓縮元件 124235.doc -17- 200831387 的總成。 另一實施例包含在太陽能收集器模組上配置緊固點以使 得旋轉軸線大體上垂直於纜索之軸線。如圖3中所示,本 發明之另一實施例包含附接至模組之第四纜索。如圖5D中 所示,與第三纜索結合使用第四纜索,以使得第三纜索及 第四纜索相對於第一纜索及第二纜索之差速軸向運動產生 模組之旋轉運動。第四纜索在運動學上為冗餘的,但可減Particular embodiments may use ground mounted rigid struts to anchor the system and deliver compression and other loads to the surface. Particular embodiments may further use a system with a pull and ground anchor to distribute the load to the ground and reduce the bending forces in the ground seismic strut. A particular embodiment of such ground anchors provides for adjustment of the relative cable position by a collet whose gripping force increases with cable load. Specific embodiments of such ground anchors further provide tensioning of the collet by mechanical, negative + loading provided by the threaded element. Specific embodiments of ground anchors provide mounting and indexing features to support the use of a movable hydraulic cable tensioner tool, ^ 合作 cooperate with components with mechanical preload to allow for convenient and reliable cable tension adjustment under high tension loads. The particular embodiment of the ground anchor is further mechanically characterized to allow for clothing in the ground via an axial (smooth or moving rotary tool that can be coordinated with rotation) to drive the ground floor into the ground. The particular embodiment of the tool and anchor may further provide a pilot hole for drilling the anchor prior to or during the drive operation. According to the method of the present invention, the embodiment comprises: the solar module = solidified to at least - age under tension, at least one of the materials (four) connected to the damping assembly according to the invention - the embodiment comprises Light collector. Double ::: The anchor of the invention - The embodiment comprises a tube having an open end configured to oppose the ground end portion and the first end. Has an out. Two: The collet is placed in the tube, and the narrow, threaded end from the tube projecting screw 1 is configured to ring with the threaded end and is rotatable to be placed in the cable of the collet in the 124235.doc 200831387 collet. One embodiment of a method of transferring tension from a truss structure to the ground in accordance with the present invention includes 'pulling a plurality of tension cables together to gather at a pivot' in a first stage and in the second stage, the cable The tension in the transfer is transferred from the pivot to the ground. One embodiment of a method of rotating a frame in accordance with the present invention includes providing a frame having a first end and a second end and a contact point that is configured to rotate about a pivot point and provide a drive mechanism. A first end of the first cable is coupled to the first end of the frame and a second end of the first cable is coupled to the drive mechanism. A first end of the second cable is coupled to the second end of the frame and a second end of the second cable is coupled to the drive mechanism. Urging the drive mechanism to pull the first cable at a first rate and pulling the second cable at a second rate such that the frame rotates and the contact point engages the first cable or the second cable, thereby imparting additional rotational torque to the pivot of the frame axis. These and other embodiments of the present invention, as well as its features and some potential advantages, are described in more detail in conjunction with the accompanying drawings. [Embodiment] Embodiments of the present invention relate to the design of inexpensive and minimal material mounting and pointing devices for linear arrays of solar collectors and converters. A particular embodiment of the present invention discloses a design of a rigging system that includes securing at least one force cable of a plurality of solar modules to provide suspension of the solar module to land, vegetation, water, and the like. A method of geographical feature that is not intended to disturb the underlying terrain. One such embodiment is shown in Figure 1 for clarity. Figure 1A shows details of a typical internal region of the array of Figure 1 124235.doc -9 - 200831387 for clarity. The component 102 of Figures 1 and 1A is a two-dimensional solar concentrator that requires precise pointing and tracking of sunlight along two axes of rotation. In this embodiment, the collectors have a diameter of 2.5 m and a distance between the vertical struts of 2 〇 m. The juxtaposition of such concentrators provides a cost advantage in the ability to share equipment, minimize the length of support pipes, and cable lengths. An axis of rotation 104 coincides with the long axis of the rigging system. Each concentrator is individually pivoted about a second axis of rotation 1 〇 6 along a diameter perpendicular to the first axis. Element 108 is a frame that includes elements to provide stiffness under tension in a plane perpendicular to the second axis of rotation of the concentrator. Element 11 is a tensioning member that provides rigidity to one axis and further provides tension along the diameter of the concentrator, which helps maintain the relative position of the elements within the concentrator and facilitates maintenance of the concentrator. Element 112 is a pivoting compression frame that is within the array. The tension frame is supported at the 卩 position. Element 丨丨 4 is a pivoting compression frame that supports a tension frame at the end of the array. The π member 116 is a multi-element cable that includes a thermal management system that dampens vibration. An embodiment of such a multi-element cable is described in detail in U.S. Provisional Patent Application Serial No. 6/839,855, filed on Jan. 23, 2011-0, file, In this article. Element ιΐ8 is a liquid_air heat exchanger that provides additional vibration damping. A compressive force is required to maintain the tension in the cable. The struts 120 and compression frames 112 and 114 support a portion of the compression load, but the primary compression frame of the tension frame is the ground and the system is mounted to the ground via anchors 122. The architecture according to the embodiment of the present invention 124235.doc -10- 200831387 uses the ground as the primary compression structural element and externalizes the cost of a large amount of structural material.曰 Element 124 is a feature of a compression frame that facilitates actuation along the main spokes of the system. Element 126 is a cable that is drawn and fed from a dedicated reel winch 128 to rotate the compression frame along the main axis, thereby rotating the entire tension frame system and the concentrator. A similar actuation mechanism is used on the secondary axis of the concentrator. The resulting relative motion of the tension and force cables causes each concentrator to pivot.太阳能 The solar module provides electrical, thermal or other conversion products that are roughly proportional to the collection area of the module. In order to achieve a high total collection area, there are several advantages to arranging multiple = same solar modules rather than a single large solar module, for example, easy to allocate, install and maintain to provide more actual solar tracking. One of the least material embodiments of the solar collector is the expanded concentrator or "balloon" shown in Figures i and 1A. As used herein, the term, balloon, refers to this particular type of concentrator. More specifically, it is intended to refer to any type of solar collector, such as a solar solar unit and module, a J-shaped concentrator, a Fresnel lens, etc. A conventional method of installing a solar module In order to use an extended frame made of crossbars and extruded parts that support a compressive load, and therefore require a large amount of material to resist buckling and deformation under wind loads, or to completely separate the mounts, each crossbar and individual parts of the extrusion Grounded to a solid surface, for example, connected to the ground via a concrete pedestal. Such conventional mounts may provide a disadvantage because they may require too much material to support tension loading and prevent deflection; Additional installation and pointing devices; and/or; • may require over-preparation or use of terrain beneath the module, thereby affecting and potentially using land under the 124235.doc 200831387 module In addition, the rigid structure must be designed to not warp or bend or twist under the heaviest design load, and these heaviest design loads are usually much more severe than the load at maximum operating load. For example, solar installations can be designed to withstand a 125 mph storm, but may be designed to operate effectively at wind speeds of only 25 mph ' or less. In this case, under extreme conditions n ( SUrvival condition) The downwind is structurally 25 times more powerful than the one encountered under the most severe operating conditions. The use of flexible cables allows us to make large differences between the operational and limit states. The cable can be pre-tensioned so that it remains under tension under operating conditions, but can become slack (under compression) under extreme conditions. Because the cable is usually not inflexible or warped, stress considerations require that the cable only Designed to withstand the maximum tensile load under extreme conditions. 〇Because pointing stability may be important in many applications, hardness considerations are usually driven The size of the frame member according to the present invention. Under axial tension, the axial stiffness and mechanical behavior of the cable are not substantially different from the axial stiffness and mechanical behavior of a rigid cylindrical extrusion having the same material per unit axial length. The elongation stiffness is typically much greater than the bending or torsional stiffness for a given span and material usage. Embodiments of the present invention are constructed to be substantially dependent on axial stiffness, thereby potentially driving per unit collection than conventional collector mounts. The area of the device is much less material. The possible disadvantage of the minimum material structure is its tendency to exhibit vibrational resonance. The deflection of structures such as 124235.doc 200831387 is much larger under dynamic forcing than under static forcing, and dynamic forcing is close. The vibration resonance frequency or the 6 vibration resonance frequency < spectral component. Thus, the method of mitigating dynamic deflection may include one or more of the following combinations: > • Increasing the cross-sectional area of the structural element to make it stiffer; ^ • Adjusting the cable tension to drive the resonance away from the main excitation frequency f) adding at least one node to at least one frame at intervals of periodic (repetitive), aperiodic (non-repetitive) or quasi-aperiodic (occasionally repeated); • in periodic (repetitive), aperiodic Adding at least one piece (including unequal blocks) to at least one frame at intervals of (non-repetitive) or quasi-aperiodic (occasionally repeated); • in periodic (repetitive), aperiodic (non-repetitive) or Adding at least one spring (including unequal springs) to at least one frame at a quasi-aperiodic (occasionally repeated) interval; U • constructing at least one frame from at least a portion of the material that internally dampens vibration; • at least partially self-aligning components The assembly of the material exhibits an enhanced vibration damping material, and the assembly of the two patterned materials constructs at least one frame; /々, the addition of the assembly is not directly related to One less vibration damper, such as a liquid-filled bladder, a straight and serpentine configuration with or without a balloon, a multi-component flexible cable, a buffer cylinder, a skid, and friction under vibration Components and their analogues. And there are such methods to reduce the dynamic deflection of a particular embodiment using a cautious material selection or operation (eg, selecting a vibration damped cable material or an appropriate gauge 124235.doc -13. 200831387 cable tension) to provide secondary functionality (eg, Use a liquid-filled channel or gas/liquid channel that also promotes thermal management. Other embodiments include buffering in response to observed vibration problems (eg, dampers filled with liquid or filled with liquid-gas, blocks, or between frame elements or between cables and fixed objects that are not used for other purposes) Cartridge) A feature that facilitates loading in the field. Thus, embodiments of the present invention use a plurality of solids (i.e., capable of resisting static stress) tensile members having a high aspect ratio. Alternative embodiments of the invention may use a plurality of non-solid components. As used herein, the syllabus may include at least one wire, extruded piece, wire rope, scorpion stern, scorpion, woven fabric, fabric, fiber. Reinforced composites, fiber reinforced cables, lanyard assemblies, and the like. In certain embodiments, a leapable metal strip capable of being warped under I without damage can be used. In use, the term "才索" can also refer to any structural component that is capable of supporting a substantial companion load or pumping dust in the normal operation, regardless of whether the actual part t body can support bending or compression. = Examples provide use - or a plurality of conventional dust-reducing frame elements (such as angular extrusions, 1-shaped extrusions, C-shaped extrusions, rods, tubes or rectangular bars) in place of wire ropes or the like. When used in 〆+方, '''''''''''''''''' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' The constraint of rotation. Another element of the invention is to fasten the balloon to the cable The connection to the -ssa fastener must be securely attached to the balloon and allow for smooth rotation during the tracking. These fasteners can be packaged 124235.doc 200831387 with extruded shell balls, casings, double casings, metal rings , a ligament, a sweet, and the like. A preferred embodiment of the fastener is a loop of flexible material, such as a cord or wire that is tensioned around the cable and attached to the balloon. The strands or cables are held so that they can freely rotate around the axis of the strands or cables' while maintaining a secure attachment. This replacement of the bearings and sliding joints with elastic torsion is an element of other embodiments of the invention. Included in the replacement of thrust bearings at the end of the array, etc. The simple embodiment of the present invention includes a single-tightening of a plurality of solar modules. This configuration provides less rotational stability to the module. 'Another embodiment of the invention includes a plurality of tensioning mirrors that are spaced such that the module is fastened at two separate points' and thus rotates about the axis of the surrounding cable for a single environment. More constrained. According to a specific embodiment, the cables may be oriented substantially parallel to each other. Large Figures 2 to 2A are respectively a two-dimensionally-tracked solar collector using two of these tensioning irons according to an embodiment of the present invention. A perspective view and an enlarged view of the inner section. The element 202 is a tension cable; the element 2〇4 is a compression frame; the element 206 is a compression strut; and the component is a solar collector (5), such as a solar panel). Optional vibration damper to reduce cyclic stress. Element 2〇4 is designed to support actuation using a pull and feed gauge 212 in cooperation with a dedicated drum m. However, a wide range of alternative actuation mechanisms are possible. 'Includes, but is not limited to, gear motors, ratchet motors, motorized drive pulleys or chains, rotary hydraulic or pneumatic actuators, linear electric, hydraulic or pneumatic actuators, etc. Or, it is possible to fix the solid Xuan X X or manually. 124235.doc 200831387 % = Due to the cosine-dependent collector of power versus angular error - the more complex cable construction, the cost and complexity of the cable structures in Figure 1 and Figure A are justified. However, considerations such as vibration/vibration and shock load under large-scale vibrations may prove to be justified using a harder design. In general, Qin t f 疋 to the female wave this non-recovery or one-dimensional tracking collector barrier ^ column. A flat mouth Figure 3 shows a diagram of an internal section of a two-dimensional tracking solar energy collection according to an embodiment of the present invention. As in Figures 1 through 2A, the entire array, axis 302 is pivoted. Additionally, similar to the embodiment of Figures 1 through 1A, each collector pivots about an individual secondary axis 3〇4. In the embodiment of Fig. 3, this rotation is caused by the movement 3〇6 of the control cable 3〇8 relative to the other control cable 310. In this embodiment, the control cable 31〇 also serves as a structural support cable. The pivot tether point 312 converts the relative cable motion into a rotational motion of the solar collector. In this embodiment 300, the frame includes sides of the collector, compression element 〇 314 and tension element 316. The two-dimensional collector array can be mounted generally in a north-south orientation such that the self-shading effect can be reduced near dawn and dusk by further spacing the parallel columns of the arrays in the east-west direction Use land area less efficiently, but use solar collector area more efficiently. In this embodiment 300, damper 320 is coupled to the frame via element 318. The damper 320 may be a hollow member partially filled with a liquid or solid to limit vibration or chattering of the frame in response to an external force such as wind. As shown in the embodiment of Figure 5A, another state 124235.doc -16-200831387 is used to provide a common axial movement of the cable fastened to the module to achieve the axis of the die stage in accordance with an embodiment of the present invention. Xiao movement agency. Feeding can be used, for example, to minimize the shadowing effect between adjacent columns of solar modules placed on different, cable systems in different days and different days. This common axial shift can be fixed, manually adjusted or actuated during installation. Another element in accordance with an embodiment of the present invention is a mechanism that provides at least a common translation of the plucking. The cables are fastened to the concentrator in a 〇 direction with components perpendicular to the axis of the cable. This allows the module to have a similar translation as shown in the embodiment of Figure 5B< This movement, for example, can be used to raise and lower the module assembly to, for example, ease of installation or maintenance to mitigate wind loads, minimize dust deposition, or reduce shadowing effects. Another element in accordance with an embodiment of the present invention is a mechanism that provides tension in the cable to be raised or lowered. For example, this mechanism can relax the cable to facilitate lowering the P train for, for example, maintenance to avoid wind stress and the like. This mechanism can be completed by any combination of the following: winches, sliders, splints, skid wheel systems, power winches, skids, clamps and the like. Another element in accordance with an embodiment of the present invention includes a third control cable that is secured to the module such that relative axial movement of one or more cables produces a suspected rotational motion component of the module. Thus, as shown in the embodiment of Figure 5C, the third control cable provides angular positioning of the module in one direction. In general, the number of cables in the tension frame will be greater than the number of control cables. The number of control cables described in these embodiments refers to a structure having a motion effect of the control cable, that is, the motion control cable can be a cable and a compression element 124235 that can be logically replaced by a single cable to perform a motion operation. Doc -17- 200831387's assembly. Another embodiment includes disposing a fastening point on the solar collector module such that the axis of rotation is substantially perpendicular to the axis of the cable. As shown in Figure 3, another embodiment of the invention includes a fourth cable attached to the module. As shown in Figure 5D, a fourth cable is used in conjunction with the third cable such that differential axial movement of the third cable and the fourth cable relative to the first cable and the second cable produces rotational motion of the module. The fourth cable is kinematically redundant but can be reduced

少與在太陽能收集器模組之旋轉或風負載相關聯的應力或 力矩。 本發明之另一實施例包含配置六個纜索,該等纜索經安 置以使得三個大體上平行的纜索對之相對運動實現與並列 配置之兩個集光器大體上相同的旋轉。此組態由圖丨及圖 1A中所示之實施例使用。此配置在集光器之間使用剛性連 接以排除一對控制纜索。 &本發明之另_實施例包含配置具有與六境索系統之相同 結構’但在中心處提供額外控㈣索的七個纜索。此組態 可減少集光器之間的連接中的扭轉負载或應力。 本:明之另—實施例包含配置八個纜索以維護兩個並列 二D在此配置中’集光器之間的連接(若存在)未必承 載任何與指向相關之負載。 4=發明之-實施例的另-要素包含用於(例如)回應 之:摄 如臨界熱度過高)而使太陽能模組快速旋轉 •。根據本發明之—實施例的旋轉機構 自動釋放機構。此釋放機構可自動或手動地恢復至操= 124235.doc -18- 200831387 置。 根據本發明之一實施例的另一要素包含提供至少一纜索 相對於其他鐵素之具有垂直於纜索轴線之分量的運動:使 得太陽能模組經歷具有旋轉分量之運動的機構。 △根據本發明之—實施例的另—要素包含提供緊·太陽 能模組之所有纜索繞某一軸線在大體剛體旋轉運動之執道 中運動的機構。如圖5E中及圖!至圖3中之實施例所示,此Less stress or torque associated with the rotation or wind load of the solar collector module. Another embodiment of the invention includes configuring six cables that are positioned such that relative movement of three substantially parallel pairs of cables achieve substantially the same rotation as the two concentrators of the side-by-side configuration. This configuration is used by the embodiment shown in Figure 1A and Figure 1A. This configuration uses a rigid connection between the concentrators to exclude a pair of control cables. & Another embodiment of the invention comprises configuring seven cables having the same structure as the six-element system but providing an additional control (four) cable at the center. This configuration reduces torsional loads or stresses in the connections between the concentrators. The present invention includes the configuration of eight cables to maintain two parallels. In this configuration, the connections between the concentrators, if any, do not necessarily carry any load associated with the pointing. 4 = Invention - Another element of the embodiment includes, for example, a response: the critical heat is too high to cause the solar module to rotate rapidly. A rotary mechanism automatic release mechanism according to an embodiment of the present invention. This release mechanism can be automatically or manually restored to operation = 124235.doc -18- 200831387. Another element in accordance with an embodiment of the present invention includes providing movement of at least one cable relative to other ferrite having a component perpendicular to the cable axis: a mechanism that causes the solar module to experience motion with a rotational component. The other element of the embodiment according to the invention comprises means for providing movement of all of the cables of the compact solar module about an axis in the course of the generally rigid body rotational motion. As shown in Figure 5E! As shown in the embodiment of Figure 3, this

境索運動產生在繞索之軸向方向上具有分量之太陽能模組 的旋轉運動。較佳旋轉軸線與自、纜索張力大體上無力矩且 可環繞實質上處於張力下之樞軸旋轉之機構上的點重合。 致動 動皮帶等耦接至構架 、因為繞索僅大體上支持張力負載,所以此等機構之協調 運動可至少在接近繞索之兩端處發生(如圖4八中所示)且亦 可能在巾間的點處發生(如圖4B中及圖i至圖3中之實施例 斤示)可藉由使用廣泛種類之機構或機制(包括剛性機械 連接裝置、從屬伺服馬達、旋轉電、氣動或液壓致動器或 馬達或線十生電、^動或液壓致動器等)來f周節此協調運 動。致動器之運動可經由一或多個齒輪、滑輪、鏈條、確 以上配置中之任一者可支持本發明之實施例。然而,較 佳實施例可使用處於張力下之一或多個額外索,其轴向 運動產生所有機構之共同致動。 此♦見索可使滑輪轉動,較佳經設計而以驅動可旋轉元件 (諸如齒輪、齒輪系、輪或輪段或其類似物)以致動協調運 124235.doc -19· 200831387 動之確動皮帶的方式分度纜索上之特徵。致動Μ可 觀索接頭或並聯連接(例如,經由㈣或夾甜)以促進致 位於、纜索終端之間的機構。或者,可直接或經由滑輪或宜 他力方向改變元件(foree_direction_changing來使 用致動纜索自身以藉由施加張力而致動機構。The motion of the cable produces a rotational motion of the solar module having a component in the axial direction of the cable. Preferably, the axis of rotation coincides with the point at which the cable tension is substantially torque free and can be pivoted about a mechanism that is substantially pivoted under tension. Actuating the moving belt or the like is coupled to the frame, since the windings only substantially support the tension load, the coordinated motion of such mechanisms can occur at least near the ends of the cable (as shown in Figure 4) and possibly Occurs at the point between the towels (as in the embodiment of Figures 4B and Figures i to 3) by using a wide variety of mechanisms or mechanisms (including rigid mechanical linkages, slave servo motors, rotary electric, pneumatic) Or a hydraulic actuator or a motor or a line of electric power, a hydraulic actuator, or the like, to coordinate the movement. The movement of the actuator can support embodiments of the present invention via one or more of a gear, pulley, chain, and indeed any of the above configurations. However, a preferred embodiment may use one or more additional cables under tension whose axial motion produces a common actuation of all mechanisms. This ♦ can be used to rotate the pulley, preferably designed to drive a rotatable element (such as a gear, gear train, wheel or wheel segment or the like) to actuate the coordination. 124235.doc -19· 200831387 The way the belt is indexed on the cable. The actuators can be actuated by a cable connector or in parallel (e.g., via (4) or pinch) to facilitate the mechanism between the cable terminals. Alternatively, the element can be actuated directly or via a pulley or a direction of force (foree_direction_changing to actuate the cable itself to actuate the mechanism by applying tension.

在特定實施例中,張力可由彈菁力之組合,或來自互補 纜索之張力抵抗。根據一實施例,互補纜索為(例如)藉由 -⑽度方向改變之滑輪的作用而在大體相反方向切動 之同-纜索的延伸部分。另一較佳實施例使用兩個接頭在 同一纜索之互補側上之互補軸向運動。 此等致動纜索可能不足夠硬以在長期運轉期間致動。在 本發明之-些實施例中,可以比整個陣列短之間隔置放致 動機構以增加硬度且提供較好的風負载處理。 圖6展示用於自構架之參考框架致動支持構架6〇2相對於 較小滑輪6丨2之旋轉之滑輪系統6〇〇的圖解。在此框架中, 較小滑輪在弧6U中環繞構架之樞轉點移動。同時抽拉及 饋送繞索6〇8及61〇以產生此運動。此旋轉致動使用圓形滑 輪或弧段B之可能優勢可為饋送及抽拉6〇8及之速率為 相同的’且在給定料速率下之㈣料為恆定的。使用 圓弧滑輪之可能劣勢為僅維持滑輪之圓形形狀即需要大量 材料。 在說明性具材料效益的滑輪6〇4中,輪輻之間的區域在 皮帶張力下經受彎曲。此彎曲可減少致動之硬度且減少在 風、重力及慣性負載下之追蹤精確性。可能需要一定量之 124235.doc -20- 200831387 材料以製造足夠硬的滑輪以維持剛性。此外,旋轉力可僅 在諸如606之滑輪接近構架元件之點處被傳送至構架框 架。若此等連接點位於構架元件之内部,則致動之強度及 硬度進一步依賴於構架元件之彎曲強度及硬度。 曰代地,根據本發明之其他實施例使用大體消除彎曲之 最少材料繞索敷設機制。此替代方法可利用壓縮構架總成 * 之現有元件。 f、 圖7展示採用構架之參考框架之此致動方法的實施例 7〇〇。藉由使用機構712抽拉及饋送纜索7〇8及71〇,壓縮構 木702¼繞其樞轉點72〇旋轉。驅動機構可替代地安裝 於待被致動之構架上,且纜索7〇8及71〇牵拉點且在位於另 一參考框架(例如,地面或另一構架元件之框架)中之樞軸 上。纜素7〇8及710(其可為同一纜索之部分或兩個不同纜 索)在點71 6處直接牵拉構架。 在某角度範圍上,708及710橫過由構架部件7〇4固持 ( 於適當位置之接觸點718處。此接觸點防止纜索7〇8及71〇 與樞軸之間的槓桿臂隨構架之旋轉而變化過大。接觸點 718及兩個點716可視作圓弧之三角形近似值。額外樞轉點 之使用可提供較好的弧近似值(若許可)。因為構架環繞其 樞軸旋轉,所以驅動機構7丨2相對於構架沿弧714移動。 此配置之可能優勢為對於給定致動器硬度之材料效率·· 致動器硬度主要源自構架元件之軸向硬度。此外,支持樞 軸之構架元件可給予其他優勢。 舉例而言,在圖7中之構架之實施例中,樞軸支持元件 124235.doc -21- 200831387 704可以在其他元件中使用較少材料之 之壓縮應力。專門用於致動所需之唯一 觸點川之部件的末端,其與圖6中之額 為緊密且簡單的。 圖7 _所不之方法可能提供f要以不同速率及以 之位置而變之速率來抽拉及饋送繞索現^In a particular embodiment, the tension may be resisted by a combination of elastic forces or tension from a complementary cable. According to an embodiment, the complementary cable is an extension of the same-cable that is cut in generally opposite directions, for example by the action of a pulley that changes direction - (10) degrees. Another preferred embodiment uses complementary axial movement of the two joints on the complementary sides of the same cable. These actuation cables may not be stiff enough to be actuated during long term operation. In some embodiments of the invention, the actuators can be placed at a shorter interval than the entire array to increase stiffness and provide better wind load handling. Figure 6 shows an illustration of a pulley system 6〇〇 for the rotation of the reference frame actuation support frame 〇2 relative to the smaller pulley 6丨2 from the frame. In this frame, the smaller pulley moves in the arc 6U around the pivot point of the frame. At the same time, the windings 6〇8 and 61〇 are pulled and fed to generate this movement. The possible advantage of this rotary actuation using a circular pulley or arc B is that the feed and draw 6 〇 8 and the rate are the same 'and the feed at a given feed rate is constant. A possible disadvantage of using a circular pulley is that only a large amount of material is required to maintain the circular shape of the pulley. In the illustrative material-efficient pulley 6〇4, the area between the spokes is subjected to bending under belt tension. This bending reduces the stiffness of the actuation and reduces tracking accuracy under wind, gravity and inertial loads. A certain amount of 124235.doc -20- 200831387 material may be required to make a sufficiently stiff pulley to maintain rigidity. In addition, the rotational force can be transmitted to the frame frame only at the point where the pulley such as 606 approaches the frame member. If such joints are located inside the frame member, the strength and stiffness of the actuation are further dependent on the bending strength and stiffness of the frame members. Deuteratedly, other material winding mechanisms that substantially eliminate bending are used in accordance with other embodiments of the present invention. This alternative method can utilize existing components of the compression frame assembly *. f. Figure 7 shows an embodiment of this actuation method using a framed reference frame. By using the mechanism 712 to pull and feed the cables 7〇8 and 71〇, the compression member 7021⁄4 rotates about its pivot point 72〇. The drive mechanism can alternatively be mounted to the frame to be actuated, and the cables 7〇8 and 71〇 pull the point and on a pivot in another reference frame (eg, the frame of the ground or another frame element) . Cables 7〇8 and 710 (which may be part of the same cable or two different cables) directly pull the frame at point 71 6 . Over a range of angles, 708 and 710 are traversed by the frame member 7〇4 (at a suitable point of contact 718. This contact prevents the lever arm between the cables 7〇8 and 71〇 and the pivot from following the frame The rotation changes too much. The contact point 718 and the two points 716 can be considered as triangle approximations of the arc. The use of additional pivot points provides a better approximation of the arc (if permissible). Because the frame rotates around its pivot, the drive mechanism 7丨2 moves relative to the frame along the arc 714. A possible advantage of this configuration is the material efficiency for a given actuator stiffness. The actuator stiffness is primarily derived from the axial stiffness of the frame member. In addition, the pivot-supporting frame The components may give other advantages. For example, in the embodiment of the framework of Figure 7, the pivot support members 124235.doc - 21 - 200831387 704 may use less compressive stress in other components. The end of the component of the only contact that is required to actuate is tight and simple compared to the amount in Figure 6. Figure 7 _ The method may provide f to be at different rates and at different rates. Pulling and Feeding around the cable ^

"料達來㈣(例如)f知㈣絞車以單獨地 饋运及抽拉纜索而克服此劣勢。 有製造機械棘輪設備,其採用控魏索及結構之 ==性以允許單—馬教替地饋送及抽拉«,同時不 =索_。此配置具有能夠藉由調整相對量之抽拉及自 -運動上匹配的理想狀況釋放而調節纔索張力之優勢。然 而’除非使用單獨制動機構,否則其具有機械複雜性、需、 ,在負載下頻繁操作棘輪及棘爪及需要複雜機構以十足額 定風速抵抗負載之劣勢。"Materials (4) (for example) F know (four) winches to overcome the disadvantage by separately feeding and pulling the cable. There is a manufacturing mechanical ratchet device that uses the control system and the structure == to allow the single-horse to feed and pull «, while not = cable. This configuration has the advantage of being able to adjust the tension of the cable by adjusting the relative amount of pull and the ideal conditional release of the -sports match. However, unless a separate brake mechanism is used, it has mechanical complexity, needs, frequent operation of the ratchet and pawl under load, and the need for complex mechanisms to withstand the load at a sufficient wind speed.

方式再分配構架中 構架部分為形成接 外輪(604)比較起來 如圖8 Α至圖8 Β中所示,较勒民、去々 〜V 丁致動馬達之一實施例使用經特 十之轉豉°亥轉豉建構為在以構架所需之大體上運動 匹配速率旋轉時來饋送及抽拉纜索。轉鼓可進一步經設計 以使得構架之旋轉速率與轉鼓之旋轉速率恆定地成比例而 與角度無關。 、此等轉鼓之設計為直接的,但可能需要迭代。第一步驟 為分析纜索座架及樞轉點、構架樞轉點之執道,及轉鼓之 位置。在第一迭代中,轉鼓可大致具有固定纜索直徑。可 針對所有構架角計算所需之饋送及抽拉速率。 124235.doc -22- 200831387 料轉鼓半徑應大致等於所f之各別饋送或抽拉速率。 接者可在考慮實際鐵索角度、平面外運動及繞索拉伸之 情況下送代地改進轉鼓半徑與角度之曲線。 /覽索拉伸計算可考慮致動器境索上之靜態負載(例如, 來自糸統重量以及續会:^ 里乂及、,見索預拉)。向度改進之轉鼓設 f致動器規索中之較少張力變化及改良的絕對角精確; 荨。然而,由於致動考系絲一 又 σ 斤有元件的有限剛性,近似 Ο 轉豉設計可足夠滿足需要。有可能藉由添加㈣ :節轉鼓不精確度’然而此降低致動器之硬度。並2 為纜索將不跟隨轉鼓半徑中 因 τ乏局部壓痕,而將在壓痕上白 一切線表面跳躍至下一切 r丄目 常μ不下心『 不正常調節之轉鼓通 “心正常_之幾何結構’例如’尖銳樞轉點。 為了避免此問題,纜索枢軸可設計為經設計 單的弧形,以使得纜索在表 、、桌或間 斤、隹衣面大體上與已脫離之 相切的一點處與樞軸嚙合 斗 ’、玉 大,則其可能會藉由產生造成"“樞轴製造得過 載而減少硬度。生“…曲之離開元件轴的負 因為構架及其角旋轉範圍為對稱的,In the mode redistribution frame, the frame portion is formed to form the outer ring (604). As shown in FIG. 8A to FIG. 8 , an embodiment of the Lemin, V~V-actuated motor is used. The 亥°海豉 is constructed to feed and pull the cable as it rotates at the substantially motion matching rate required by the frame. The drum can be further designed such that the rate of rotation of the frame is constantly proportional to the rate of rotation of the drum regardless of the angle. The design of these drums is straightforward, but may require iteration. The first step is to analyze the cable seat and pivot point, the pivot point of the frame, and the position of the drum. In the first iteration, the drum may have a fixed cable diameter. The required feed and pull rate can be calculated for all frame angles. 124235.doc -22- 200831387 The drum radius should be approximately equal to the individual feed or withdrawal rate of f. The receiver can improve the curve of the drum radius and angle by considering the actual cable angle, out-of-plane motion and cable tension. / Cable tension calculations can take into account the static load on the actuator (for example, from the weight of the system and the continuation: ^ 乂 乂,, see the pre-tension). The degree of improvement of the drum is set to less tension change in the actuator gauge and improved absolute angle accuracy; However, due to the limited rigidity of the actuating wire and the components, the approximate Ο turn design is sufficient. It is possible to increase the hardness of the actuator by adding (4): the drum inaccuracy'. And 2 for the cable will not follow the radius of the drum due to τ lack of local indentation, but will jump on the surface of the indentation on all the lines of the line to the next r丄 often often do not mind "not normal adjustment of the drum pass" normal Geometric structure 'for example, sharp pivot point. In order to avoid this problem, the cable pivot can be designed as a single curved shape so that the cable is substantially separated from the table, the table or the table. A tangential point of engagement with the pivoting bucket ', Jade, may reduce the hardness by creating an overload caused by the pivot. "The difference in the axis of the element is due to the symmetry of the frame and its angular rotation,

中之轉鼓可分解為 《8Α至圖8B 之-些實施例中,此二'置:之相同轉鼓。在本發明 同速率反向旋轉(如圖9轉中^ 示)。同向旋轉與方向旋同向旋轉(如圖H)中所 如,馬達、曲柄等)之方便驅動。 轉致動益(例 124235.doc -23- 200831387 在本發明之一些實施例中,相對於共同馬達軸直徑而 曰,可採用相對較大直徑之轉鼓以(例如)藉由使用馬達軸 上之小齒、蜗桿或螺旋齒輪及安裝、澆鑄或機器加工至一 或多個轉鼓上之圓周齒或螺旋齒輪來提供顯著有效的齒輪 比。此配置可排除或減輕對使轉鼓轉動之旋轉致動器的任 何額外齒輪傳動需求。如較早所描述,亦可藉由抽拉纜 索、滑輪或確動皮帶來致動多個轉鼓以減少致動器驅動器 之數目。纟圖10中之同向旋轉配置中,兩個纜索位於垂直 於其旋轉軸線之大體相同平面中。亦有可能使轉鼓中之一 者的軸向運動與旋轉協調以使得Μ之平面外運動大體上 得到抑制。 在本發明之-些實施例中,制動設備或機械鎖存器可經 布署以鎖定陣列之位置,例如,以為嚴重風暴作準備。此 鎖t器可布署於整個行進之角範圍中或在—或多個特定 原”位置處的適當位置中。 振盪阻尼及抑制 若所有纜索在模組之負載下且古 /、有類似的懸鏈線形狀且纜 索彼此平行,則經激勵纜索( 4 Mm , 糟由風力)之最低次模 :的振盛不引起模組旋轉。此特徵可用於使用以高率光因 子進行太陽能集光的太陽能模組,因為非故音旋=因 度未對準,其嚴重地降低模組效率。 〜 角 然而,較高次振盪模式可產 _ ., Θ!禾對準。本發明之膏 她例之一要素為在纜索上布署 佩阻尼兀件以減Φ古士 盪,包括自一纜索穿過到達另一㉟ N _振 、、見索之阻尼元件及沿一纜 124235.doc -24. 200831387 索擴展之元件。如圖1至圖2中之實施例中所示,此等阻尼 元件可包括部分填充有液體(例如,水)、凝膠、糊狀物、 乳液、觸變材料、膠狀懸浮液、纖維或粒狀材料(例如, 泥土、砂、鋸屑及其類似物)之剛性或可撓性管道,或實 夤上填充有液體及可能懸浮粒子之可撓性管道,以使得由 纜索振盪力引起的液體晃動阻尼振蘯能量。 本發明之特定實施例可藉由使用冷卻劑作為該液體而將 此等管道進一步用作太陽能模組之熱交換組件。或者,可 使用與用於多風區域中之電力纜索上的阻尼器類似的空氣 動力顫動阻尼器。 纜索朝向及遠離彼此之低次相對振盪可在可影響其功能 或壽命之太陽能模組上產生壓縮應力及張應力。支持緊固 於大體上垂直於纜索軸線之纜索之間的壓縮及/或張力的 一或多個連接裝置可減少此損壞或降級。在需要時可插入 此等連接裝£。因顫動而產生之繞索的相對軸向運動可藉 由配置相對於纜索軸線之法線成一角度傾斜的此等連接裝 置而受到抑制。此等連接裝置可運動地支持需要指向太陽 能模組之任何相對纜索運動。 張力構架 最簡單的張力構架為拉緊纜索。此構架通常在軸向方向 上比在垂直於此軸線之方向上具有相當大的硬度。拉緊纜 索用最初與移位與纜索長度之比率成線性關係的力來抵抗 軸向偏轉’而對垂直偏轉之抵抗力最初為移位與♦覽索長度 之比率的一 p白’且因此具有小得多的硬度以迫使垂直於繞 124235.doc -25 - 200831387 索。 諸如非集光或低集光因子太陽能收集器之一些應用可容 許大的垂直偏轉。其他應用需要較大硬度及使用較複雜的 張力構架結構。 可藉由使用張力構架結構(諸如圖丨丨中所示之張力構架 結構)來增加根據本發明之纜索系統的硬度。此張力構架 1100為圖1至圖1A中所示之實施例的部分。 主纜索1102被充分地拉緊以使得橫向元件(在此為垂直 纜索)1106在正常操作中實質上處於張力下。第三纜索 1104可沿其軸線提供硬度。橫向元件之軸向偏轉由纜索 1106之軸向硬度及纜索11〇2之軸向硬度抵抗。亦即,元件 之垂直運動需要纜索1102之一階軸向移位。在不具有此張 力構架之情況下,纜索對於垂直於其軸線之偏轉的抵抗力 增大起來要慢得多,最初為移位之立方。然而,此硬度優 勢可視支持纜索1102之方式而損失。 本發明之一些實施例利用壓縮構架來約束纜索11〇2實質 上抵抗垂直於其軸線之運動。此等實施例依賴於在一系列 張力構架之内部白勺大體空間均一的風負冑來對稱地抑制差 速轴向移位。 其他實施例在一系列張力構架内利用處於各種位置(例 如週期丨生、非週期性或準非週期性)之額外壓縮構架工 件以使抵抗纜索11 06之差速轴向移位的構架變硬。其他實 施例利用it度彎曲應力及橫桿撓曲以抵抗或減輕此等不必 要的移位。在㈣11G2之差速軸向運動係由風負載產生之 124235.doc -26- 200831387 情形下,此等移位很可能為循環或振動的。在本發明之一 些實施例中’如先前所論述,藉由使用阻尼器來^輕此等 循環移位。 /曰㈣本發明之實施例㈣代張力構架架構包括設計以使 得藉由㈣索直接拉伸接近所安裝之裝置來消除額外張力 纜索及自壓縮構架或某些或所有垂直纜索i 1〇6上之點的拉 伸。 圖12描繪圖1至圖1A中所示之實施例的另一元件。詳言 之,圖12展示分離的張力構架12〇〇,其中元件12〇6可包含 與集光器相關之裝置。 最少材料及強健集光器設計可受益於張力之應用。舉例 而吕,在圖1至圖1A中所示之實施例中,元件13〇中之張力 用以減少太陽能接收器模組之座架中的材料,且提供用於 僅使用構架之外緣(例如,位置132)來安裝及拆卸集光器之 方便方法。如同圖1 1中之構架,此張力構架亦使系統變 硬0 圖13A至圖13B展示根據本發明之包含三維框架之張力 構架的兩個實施例。此等框架可用於在多個方向上提供硬 度或張力。 包含摺疊張力構架1302之框架1300為產生張力1304之簡 單方式。然而,負载1308之中心與主張力纜索之間的移位 可產生使陣列可旋轉地偏轉之力矩(如1306所指示)。因 此,此摺疊構架框架對於高精確度指向裝置較不適用。 相比之下,作為圖1至圖1A中所示之實施例之一部分的 124235.doc -27- 200831387 矩及其所導致的旋轉 較複雜框架1350大體上避免了此等力 移位。 壓縮構架 根據本發明之實施例的架構將地面用作主壓縮元件,但 通常不可能消除任何重要設計中的額外壓縮元件。於本文 中使用時,壓縮構架為具有至少一結構元件之總成以使得 該總成中之至少一結才籌元件以常操作期間經歷壓縮負 載0The drum in the middle can be decomposed into "the same drum" as in the "8" to 8B embodiment. In the present invention, the same rate is reversely rotated (as shown in Fig. 9). The same direction rotation and direction rotation (such as Figure H), such as the motor, crank, etc., are convenient to drive. Transferring benefits (Example 124235.doc -23- 200831387 In some embodiments of the invention, a relatively large diameter drum may be employed relative to the common motor shaft diameter, for example by using a motor shaft Small teeth, worm or helical gears and circumferential or helical gears mounted, cast or machined to one or more drums to provide a significantly effective gear ratio. This configuration eliminates or reduces the rotation of the drum. Any additional gearing requirements for the rotary actuator. As described earlier, the plurality of drums can also be actuated by pulling the cable, pulley or actuating the belt to reduce the number of actuator drives. In the co-rotating configuration, the two cables are located in substantially the same plane perpendicular to their axis of rotation. It is also possible to coordinate the axial movement of one of the drums with the rotation so that the out-of-plane motion of the cymbal is substantially suppressed In some embodiments of the invention, the brake device or mechanical latch may be deployed to lock the position of the array, for example, in preparation for a severe storm. This lock can be deployed throughout the range of travel angles. In or in the appropriate position at the location of - or a plurality of specific originals. Oscillation Damping and Suppression If all cables are under the load of the module and have a similar shape of a catenary and the cables are parallel to each other, the excited cable (4 Mm, the worst mode of the wind): the vibration does not cause the module to rotate. This feature can be used for solar modules that use solar energy to collect light with high-rate light factor, because the sound is not Alignment, which seriously reduces the efficiency of the module. ~ Angle However, the higher-order oscillation mode can produce _., Θ! Wo alignment. One of the elements of the paste of the present invention is the deployment of the damper element on the cable. To reduce the Φ Gusto, including from a cable to another 35 N _ vibration, see the damping element and along the cable 124235.doc -24. 200831387 cable expansion. As shown in Figure 1 to Figure 2 As shown in the embodiments, the damping elements may comprise a portion filled with a liquid (eg, water), a gel, a paste, an emulsion, a thixotropic material, a colloidal suspension, a fiber, or a particulate material (eg, soil). Rigid or flexible tube of sand, sawdust and the like) a channel, or a flexible tube filled with liquid and possibly suspended particles, such that liquid sloshing caused by cable oscillating forces dampens the oscillating energy. Certain embodiments of the invention may be by using a coolant as the liquid. These pipes are further used as heat exchange components for solar modules. Alternatively, aerodynamic chatter dampers similar to those used on power cables in windy areas can be used. Cables are oriented at low and relatively low relative to each other. Oscillation can create compressive and tensile stresses on a solar module that can affect its function or life. One or more connections that support compression and/or tension between cables that are substantially perpendicular to the cable axis can be reduced This damage or degradation can be inserted into the connection as needed. The relative axial movement of the cable due to the chatter can be suppressed by arranging such attachments that are inclined at an angle relative to the normal to the cable axis. . These attachments movably support any relative cable motion that requires pointing to the solar module. Tension Frame The simplest tension frame is the tensioning cable. This frame generally has a relatively large hardness in the axial direction than in the direction perpendicular to this axis. The tensioning cable resists the axial deflection with a force that is initially linear with the ratio of the displacement to the length of the cable, and the resistance to the vertical deflection is initially a shift of the ratio of the length of the cable to the length of the cable, and thus has A much smaller hardness is forced perpendicular to the winding 124235.doc -25 - 200831387. Some applications, such as non-concentrating or low-concentration solar collectors, allow for large vertical deflections. Other applications require greater stiffness and the use of more complex tension frame structures. The stiffness of the cable system according to the present invention can be increased by the use of a tension frame structure such as the tension frame structure shown in Figure 。. This tension frame 1100 is part of the embodiment shown in Figures 1 to 1A. The main cable 1102 is sufficiently tensioned such that the transverse elements (here, vertical cables) 1106 are substantially under tension during normal operation. The third cable 1104 can provide stiffness along its axis. The axial deflection of the transverse element is resisted by the axial stiffness of the cable 1106 and the axial stiffness of the cable 11〇2. That is, the vertical movement of the component requires a one-step axial displacement of the cable 1102. Without this tension frame, the cable's resistance to deflection perpendicular to its axis increases much more slowly, initially as a cubic of displacement. However, this hardness advantage can be lost in the manner in which the cable 1102 is supported. Some embodiments of the present invention utilize a compression frame to constrain the cable 11〇2 to substantially resist movement perpendicular to its axis. These embodiments rely on a substantially uniform spatial wind yoke inside a series of tension frames to symmetrically suppress differential axial displacement. Other embodiments utilize additional compression frame workpieces in various positions (e.g., periodic twin, aperiodic or quasi-aperiodic) within a series of tension frames to stiffen the frame against differential axial displacement of the cable 106. . Other embodiments utilize it degree bending stress and crossbar deflection to resist or mitigate such unnecessary displacement. In the case of (iv) 11G2 differential axial motion system generated by wind load 124235.doc -26- 200831387, these displacements are likely to be cyclic or vibrating. In some embodiments of the invention, as discussed previously, such cyclic shifts are mitigated by the use of dampers. / (4) Embodiments of the Invention (IV) The generation of the tension frame structure includes a design to eliminate the extra tension cable and the self-compressing frame or some or all of the vertical cables i 1〇6 by direct stretching of the (4) cable close to the installed device. The point of stretching. Figure 12 depicts another element of the embodiment shown in Figures 1 through 1A. In particular, Figure 12 shows a separate tension frame 12A in which elements 12A can include devices associated with the concentrator. The minimum material and robust concentrator design can benefit from the application of tension. By way of example, in the embodiment shown in Figures 1 through 1A, the tension in the element 13 is used to reduce the material in the mount of the solar receiver module and is provided for use only the outer edge of the frame ( For example, location 132) is a convenient way to install and remove the concentrator. This tension frame also stiffens the system as in the frame of Fig. 11. Fig. 13A-13B show two embodiments of a tension frame comprising a three-dimensional frame in accordance with the present invention. These frames can be used to provide stiffness or tension in multiple directions. The frame 1300 comprising the folded tension frame 1302 is a simple way to create tension 1304. However, the displacement between the center of the load 1308 and the primary tension cable can produce a torque that rotatably deflects the array (as indicated by 1306). Therefore, this folded frame frame is less suitable for high precision pointing devices. In contrast, the moments 124235.doc -27-200831387 as part of the embodiment shown in Figures 1 through 1A and the resulting rotation of the more complex frame 1350 substantially avoids such force shifting. Compression Framework The architecture according to an embodiment of the invention uses the ground as the primary compression element, but it is generally not possible to eliminate the extra compression elements in any important design. As used herein, a compression frame is an assembly having at least one structural element such that at least one of the components of the assembly undergoes a compression load during normal operation.

Ο 根據本發明之壓縮元件的設計目標為對於給定安裴剛性 最小化整體結構材料成本。最簡單的壓縮"構架”為約束至 少一纜索之運動的單一元件。 舉例而言,根據本發明之實施例的固定角收集器可安裝 於伸展於至少—支柱之間且由纟少一 土也面安裝之鐵索端接 的張力構架上。在此實施例中,壓縮構架簡單地為支柱。 本發明之許多實施例利用至少一支柱作為壓縮元件,通 常(但不普遍)與額外錨具(諸如纜索及地錨)合作。作為其 壓縮硬度之補充或替代,此等支柱可使用其對彎曲之抵抗 力來使索具系統變硬。若需要管曲抵抗力(包括用以抵抗 直接產生彎曲之負載或防止翹曲),則此等支柱之較佳實 施例為相對於其單位質量成本具有彈性模數與二級慣性力 矩之較大乘積的彼等實施例。 通常’其他有利因素包括良好的振動阻尼能力。有利材 料為在此項技術中所熟知之木質橫桿及電桿,例如,電線 杯、”鐵路枕木”、經加壓處理、用雜酚油浸製過或以其他 124235.doc -28- 200831387 方式受環境保護的木材、紅木、松木、雲 楔形鋼及鋁擠萝杜寻筆直及 有*凝土m類㈣。其他有利材料包括填充 泥土、泡沫或礫石及水的中空材料等。 在需要-個角度或兩個角度追縱陽光之實施例中 …額外壓縮構架元件。此元件可與支持-個以上:力 几件(其支持收集器)之單一元件一 ^ 經由施加至元件之力矩發生旋轉而得:致動且;ΓΓ压缩 The design of the compression element in accordance with the present invention is directed to minimizing the overall structural material cost for a given ampoule rigidity. The simplest compression "framework" is a single element that constrains the movement of at least one cable. For example, a fixed angle collector in accordance with an embodiment of the present invention can be mounted to extend between at least the struts and Also mounted on a cable-terminated tension frame. In this embodiment, the compression frame is simply a strut. Many embodiments of the present invention utilize at least one strut as a compression element, typically (but not universally) with additional anchors ( In cooperation with, for example, cables and ground anchors, these pillars may use their resistance to bending to stiffen the rigging system, if required for bending resistance (including resistance to direct bending) The preferred embodiment of such pillars is one in which there is a greater product of the modulus of elasticity and the magnitude of the secondary moment of inertia relative to its unit mass cost. Typically, other advantageous factors include good Vibration damping capacity. Advantageous materials are wooden crossbars and poles well known in the art, for example, wire cups, "rail sleepers", pressurized Liquefied with creosote or other environmentally friendly wood, mahogany, pine, cloud wedge steel and aluminum extruded straight and with * methane (4). Advantageous materials include hollow materials filled with dirt, foam or gravel and water, etc. In embodiments where one angle or two angles of sunlight are required... additional compression of the frame element. This element can be supported with more than one: force The single element (which supports the collector) is obtained by rotating the moment applied to the element: actuation and;

=元件:由-或多個元件致動。此等元件可為二、:的一 (例如,來自線性致動器之推力桿),或可拉伸的(例如,斑 致動器連接之纜索)。 、 為了達成多種目的’可將額外元件添加至壓縮構架。此 等目的之實例包括(但不限於)增加每重量或成本之靜態或 動態硬度、避免或最小化收集器之遮光、支持致動,及支 持辅助硬體(諸如互連件及熱交換器等)。 圖14展示根據本發明之一實施例之經設計以支持串聯收 集器之張力構架的實例。此構架1400經設計以支持環繞柩 轉點1402之旋轉。壓縮臂14〇4通常經設計以避免在應^負 載下發生翹曲。所示之圓形管幾何結構每單位材料具有較 大特定二級慣性力矩,但替代橫截面,例如,橫桿、c 形通道、正方形或矩形擠製件、大體實木,可為較有利的 給定特殊應用負載及振動阻尼需求等。 元件1406支持圖12中之張力構架。元件14〇8及141〇支持 圖11中之張力構架。此等構架之組合具有圖丨3B之幾何結 構(13 10及13 12)。元件1412為用以提供規索(例如,圖 124235.doc -29- 200831387 11(1104))之通道的特徵。 藉由設計,可自最小數目之不同組件或經不同設計之零 件建構此構架。然而,其不含用於致動之構件,且在“Μ 及1408中需要張力構架之不同厚度纜索以在負載下使移位 相等,此係因為歸因於(例如)風力及/或重力,連接至“⑺ 之纜索可比連接至1408之纜索承載更多力(例如,兩倍的 力)。 圖15展示構架設計之另一實施例。構架1500環繞1502樞 轉元件1504支持張力構架纟覽索1506。其張力以使藉由在 點15 10處約束另一張力構架而形成之壓縮偏移的張力來預 載元件1 5 0 8。 此構架設計與其他設計之間的差異為併有與纜索152〇及 樞軸1 5 2 2起使用之元件1 5 18以如先前所述支持旋轉致 動。1520之預拉再分配負載以使得元件15 14在操作中始終 處於張力下。為此,在此設計中,1514可採用纜索或低剖 面剛性部件(諸如桿或細長棒)之形式,該形式為偶然的, 因為其處於在一天及一年之特定時間使集光器遮光之位 置。 在圖14及圖15中所示之兩個大體上平面設計之一問題為 其對剪應力、扭力及/或彎曲之依賴性以抵抗平面外扭 曲。此扭曲可由不平衡或動態風力引起。 圖16A至圖16D展示自圖i至圖ία中所示之實施例所取之 替代没汁的不同視圖,該設計使用平面外構架結構以使抵 抗平面外偏轉之壓縮構架變硬。作為圖15中之元件的補 124235.doc -30- 200831387 充,在圖16A至圖16D中之設計16〇〇含有張力元件觀及 壓縮元件1604,此等元件合作作用以產生一或多個元件至 平面外偏轉之線性軸向移位(整個總成之剛體旋轉除外)。 此平面外硬度之益處視風負載之性質(均一與非均_)及結 構阻尼振動之能力而定。在本發明之一些實施例中,可僅 在需要時以週期性、非週期性或準週期性間隔布署此平面 外硬化。 安裝時間之成本及此等平面外加強件之複雜性可為一重 要考慮因素。圖17展示圖i至圖^中之實施例之内部壓縮 構架設計1700的細節。元件17〇2為可伸長或縮短壓縮元件 1704之螺桿調整裝置。伸長元件17〇2使元件η%彎曲及/ 或旋轉以使得可拉緊在17〇4與17〇6之相交處交叉的纜索 1 708。此调整特徵為有利的,因為其可消除昂貴的硬體 (例如’鬆緊螺旋扣等)。此外,此等元件之供應可低廉地 建置於系統中且僅在條件許可之情況下被實際安裝。 尾端 因為需要將張力自張力構架轉移至延伸表面 (firmament) ’所以纜索列之末端可能需要特殊處理。一種 處理可為將一或多個纜索錨定至固定於延伸表面中之一或 夕個门]f生支柱’具有或不具有加強件以減輕彎曲應力且限 制支柱之偏轉。此等加強件可為在此項技術中已知之纜索 或壓縮構架元件。 在系統經由一或兩個角度追蹤陽光之情況下,可需要較 、复雜的、、s鳊機制。舉例而言,一或多個纟覽索可錨定至可在 124235.doc -31- 200831387 置中l伸表面中之剛性結構上樞轉的剛性棒。在此等配 跨越5公尺::之=终端之元件,且因此可能尤咖 之材料。㈣水A h實施例)而言需要過多量 上依賴於對元件之= 端之特定實施例大體 料成本。 °且最大地利用張力元件以減少材= component: actuated by - or multiple components. These elements can be either one of: (e.g., a thrust rod from a linear actuator) or stretchable (e.g., a cable to which a spot actuator is attached). Additional components can be added to the compression framework for a variety of purposes. Examples of such purposes include, but are not limited to, increasing static or dynamic hardness per weight or cost, avoiding or minimizing collector shading, supporting actuation, and supporting auxiliary hardware (such as interconnects and heat exchangers, etc.) ). Figure 14 shows an example of a tension frame designed to support a tandem collector in accordance with an embodiment of the present invention. This frame 1400 is designed to support rotation about the twist point 1402. The compression arms 14〇4 are typically designed to avoid warping under load. The circular tube geometry shown has a relatively large specific moment of inertia per unit of material, but instead of a cross section, for example, a crossbar, a c-shaped channel, a square or rectangular extrusion, a substantially solid wood, may be more advantageous Special application load and vibration damping requirements. Element 1406 supports the tension frame of Figure 12. Elements 14〇8 and 141〇 support the tension frame of Figure 11. The combination of these architectures has the geometry of Figures 3B (13 10 and 13 12). Element 1412 is a feature that provides a channel for the specification (e.g., Figure 124235.doc -29-200831387 11 (1104)). By design, this architecture can be constructed from a minimum number of different components or components of different designs. However, it does not contain the components for actuation, and the different thickness cables of the tension frame are required in "Μ and 1408 to equalize the displacement under load, due to, for example, wind and/or gravity, due to, for example, wind and/or gravity. The cable connected to "(7) can carry more force (eg, twice the force) than the cable connected to 1408. Figure 15 shows another embodiment of a frame design. The frame 1500 surrounds the 1502 pivoting member 1504 to support the tension frame cable 1506. The tension is such that the element 1 500 is preloaded by the tension of the compression offset formed by constraining the other tension frame at point 15 10 . The difference between this framing design and other designs is that there are elements 1 5 18 that are used with the cable 152 and the pivot 1 52 to support rotational actuation as previously described. The pre-tensioning of 1520 redistributes the load so that element 15 14 is always under tension during operation. To this end, in this design, 1514 may take the form of a cable or a low profile rigid member such as a rod or an elongated rod, which is accidental because it is opaque to the concentrator at a particular time of day and year. position. One of the two substantially planar designs shown in Figures 14 and 15 is its dependence on shear stress, torsion and/or bending to resist out-of-plane torsion. This distortion can be caused by an imbalance or dynamic wind. Figures 16A-16D show different views of alternative juices taken from the embodiment shown in Figures i through ία using an out-of-plane frame structure to stiffen the compression frame against out-of-plane deflection. As a component in Fig. 15, the supplement 124235.doc -30-200831387 is charged, and the design 16〇〇 in Fig. 16A to Fig. 16D contains a tension member and a compression member 1604, which cooperate to produce one or more components. Linear axial displacement to out-of-plane deflection (except for rigid body rotation of the entire assembly). The benefits of this out-of-plane hardness depend on the nature of the wind load (uniform and non-uniform) and the ability of the structure to dampen vibration. In some embodiments of the invention, this out-of-plane hardening may be deployed at periodic, non-periodic or quasi-periodic intervals only when needed. The cost of installation time and the complexity of such out-of-plane reinforcements can be an important consideration. Figure 17 shows details of the internal compression architecture design 1700 of the embodiment of Figures i through II. Element 17〇2 is a screw adjustment device that can extend or shorten compression element 1704. The elongate member 17A2 bends and/or rotates the element η% such that the cable 1 708 that intersects at the intersection of 17〇4 and 17〇6 can be tensioned. This adjustment feature is advantageous because it eliminates expensive hardware (e.g., 'sturdy screw buckles, etc.). In addition, the supply of such components can be inexpensively built into the system and installed only when conditions permit. Tail The end of the cable train may require special handling because of the need to transfer the tension from the tension frame to the firmament. One treatment may be to anchor one or more cables to one of the extended surfaces or to have a stiffener with or without stiffeners to relieve bending stress and limit deflection of the strut. Such stiffeners can be cable or compression frame elements known in the art. In the case where the system tracks sunlight through one or two angles, a more complex, complex mechanism may be required. For example, one or more of the viewing cables can be anchored to a rigid rod that can pivot on a rigid structure in the extended surface of 124235.doc -31-200831387. In this case, the component spans 5 meters:: = terminal, and therefore may be the material of the coffee. (4) Water A h Example) The amount required to be excessive depends on the specific material cost of the specific embodiment of the = end of the component. ° and make maximum use of tensioning elements to reduce material

C 有間 實施例的張力收集器支持結構通常含 樞韓K —個以域索。為了允許此等纜索環繞-軸線 ’可將此等纜索或其承载之張力組合至環繞樞轉軸安 之目對小的區域’且將負载自環繞此樞轉軸安置之相對 小的區域轉移至地面。 ^ 二只施例中,將張應力轉移至地面包括兩個階段。 弟一階段為(例如)藉由形成纜索束、將纜索機械配合至共 :剛性零件或次要纜索等來同時纜索或張力抽拉至枢軸。 :二階段為(例如)藉由將-或多個纜索或張力元件帶至地 麵或底座或藉由(具較低材料效益)壓縮元件或彎曲力來將 彼等力自樞軸轉移至延伸表面。 見索此夠大體上扭曲而不疲勞之能力提供排除單獨樞軸 /牛(例如軸承或襯套中之機械軸)的機會。為其股線直 /之百至較佺1000倍或在長度上更長的纜索區段可在最 低限度降級之情況下重複地扭曲⑽度。此等繞索區段可 包含根據本發明之低廉樞軸。 、在本發明之許多實施例中,需要將負載分配至多個地錨 或底座。在一些實施例中,自張力支持纜索形成束、將束 124235.doc -32 · 200831387 自身用作樞軸或使束穿過單獨樞軸結構,接著使來自該束 之纜索中之一者以上分成開以進入單獨地面位置為具成本 效益的。 在一些實施例(諸如圖1中之實施例)中,環繞樞轉點非 對稱地移位張力結構纜索。此移位經常必須提供全角樞轉 範圍且提供内部支柱之側加固等。在此等狀況下,在使纜 索與軸線成一直線時,將張力結構纜索中之力的分量傳送 至元件、樞軸及鄰近壓縮構架之支柱。此額外負載可能需 要對壓縮構架及接近終端處之錨具之設計的顯著變化。或 者或聯合地,可添加階段至將張力自構架結構至地面之轉 移。 圖18A及圖18B展示具有三個此等轉移階段之終端的視 圖。(圖1 8 A為僅有一支柱可見之端視圖)。在第一階段 中,將張力纟覽索1 802成群地拉攏至位於一軸線處之纟覽索板 總成1804,此減輕在最後壓縮構架上的不尋常負載剖面 (由虛線所指示)。在第二階段中,壓縮元件18〇6自將張力 轉移至樞軸中獲得大量不平衡負載且將此等負載轉移至延 伸表面。在第三階段中,將張力負載之其餘部分轉移至延 伸表面。 為了保持張力構架系統之剛性,可(例如)經由最少材料 致動構件1 808’或先前所揭示之廣泛範圍的替代技術來嚴 格地控制纜索板之角位。此外,添加構架181〇以使終端系 統變硬可為有利的。 圖18A至圖1 8B中之終端實施例對最後壓縮構架產生大 124235.doc -33- 200831387 :& [縮力。圖19A至圖19B展示三階段終端設計之替 代實施例,其中在將複數個纜索(例如,較外組纜索1904) 組合為第二群(例如,經捆紮)後,將纜索分群或將其力帶 2樞軸19G8之位置處的緊密位置,或將其所承載之力另外 V至緊在位置19〇6。支持力之此重定向所需的反作用力由 構架系統1910提供,構架系統191〇可進一步充當最少材料 ' 致動系統中之組件。 〇 圖I%展示包含一邊緣沿枢軸安裝之四面體構架的替代 實施例。此四面體構架利用至少兩個壓縮元件1918。其他 四個元件’例如’ 1920、1922及1924可完全拉伸。在所示 之實施例中,此四面體構架自镜索、歷縮元件、支柱及錯 具之配置導出相對於最後内部壓縮構架i 9〇2之足夠扭轉硬 度以排除單獨旋轉致動器。在其他實施例中,此四面體構 架可經致動以進一步使系統變硬。 在圖19中之設計中,此致動系統可使用由内部致動器使 肖之相同裝置及轉鼓。然而,此特定設計之-態樣為構架 1910之臂1912為長的且可經沉重地負載,從而可能需要過 多材料以避免屈曲。根據本發明之替代實施例,構架可經 叹计以使彳于氟索較緊密地組合至樞轉點以減少力及壓縮元 件長度。 根據本發明之廣泛範圍的替代分級架構可由熟習此項技 術者設計。可能架構包括最小化材料、再使用在別處使用 之組件、最小化佔據面積等之彼等架構。根據本發明之終 端的一些實施例在地面元件(例如,1914及1916)之間提供 124235.doc -34- 200831387 大體開放區域,以使得維護車或交通工具可在一天之至少 部分時間穿過此區域。可設想根據本發明之特定實施例具 有在終端之中且穿過終端導引的通路及維護道路。 拉緊纜索之末端的機構應能夠支持纜索張力連同由風產 生之任何側向力或增加的張力。此機構之一實施例為使用 纜索作為張力元件及最小數目之壓縮元件以執行其功能的 、 構架,因為該配置應提供最小化纜索附接裝置之數目及構 ^ 架材料,且因此最小化成本。 終端機構與座架延伸表面之間的連接裝置之實施例為電 桿,其置放或凹進於延伸表面中且經固定以使得電桿大體 上承載壓縮應力且拉線承載張應力,該張應力經由機械連 接底木、此’旋土基座或其類似物而傳達至座架延伸表 面於本文中使用時,術語’’延伸表面’’意謂負載支持結 構’諸如屋頂、牆壁、鋪砌路表面、地面、基岩、湖床、 海底等。 〇 根據本發明之實施例可包含緊固至太陽能模組之額外張 力續:索。根據此等實施例,纜索之差速軸向運動產生陣列 之個別太陽能模組的旋轉運動分量,以實現沿一旋轉轴線 之定向控制。 根據本發明之一實施例可進一步包含複數個支持件。此 等支持件提供至少一纜索垂直於其軸線之運動以產生陣列 之個別太陽能模組的旋轉運動分量,以實現沿第二旋轉轴 線之定向控制。 根據本發明之一實施例可進一步提供連接至模組之纟覽索 124235.doc -35- 200831387 的共同平移,以使得模組之陣列可垂直於軸線而平移。根 據本發明之其他實施例提供纜索之共同軸向平移,以使得 模組可在軸向方向上平移。 圖20A至圖20D展示用以將負載轉移至延伸表面之座架 系統的若干實施例。此等實例展示使用安裝於地面中之支 柱2002,地面之表面由2004指示。 件2006為地錨、底座或其他座架元件。元件2〇〇8為纜 索配置肖牵板、構架或減輕支柱之彎曲應力同時為繞索 自收集器及收集器支持件穿越提供空間的其他可選加強 件。 圖20B展示圖20A中所示之座架之頂㈣域的細節。在 此κ鈿例中,加強件2〇 1 〇經配置以為無纜索之壓縮構架提 供枢轴。舉例而言’鏡索2_可穿過中空轴2012中之孔或 安裝至2G12。在此實施例中,2()12經受懸臂負載且由於 中之張力而彎曲。由於相對緊密的幾何結構,元件 2012可經设相在彎曲、應力或成本不過量之情況下處理 此等負載。 圖2〇C展示座架僅被固定在一側,從而使另-側無镜索 之替代座架系統。圓點2〇13指示未圖示之其他結構元件的 合作°在此實施例中’較佳交替或改變被固定之側。 圖20D展示在兩個支柱之間共用單―錯以防止軸向運動 之替代配置。此配置可在材料效率及安裝方便性方面具有 優勢’然:而,錯具必須經設計以抵抗侧面負载。 拉緊k索之末端的機構應能夠支持境索張力連同由風產 124235.doc -36- 200831387 =之任何側向力或增加的張力。此機構之一實施例為使用 、、見^作為張力元件及最小數目之壓縮元件以執行其功能的 冓呆口為该配置應提供最小化纜索附接裝置之數目及構 架材料,且因此最小化成本。 、、s舳機構與座架延伸表面之間的連接裝置之實施例為電 杯,其置放或凹進於延伸表面中且經固定以使得電桿大體 上承載壓縮應力且拉線承載張應力,該張應力經由機械連 ^ 接抑底杀、混/旋土基座或其類似物而傳達至座架延伸表 面。於本文中使用時,術語”延伸表面π意 構,諸如屋頂、牆壁、傭石切路表面、地面、基岩、湖= 海底等。 根據本發明之實施例可包含緊固至太陽能模組之額外張 力繞索。根據此等實施例,繞索之差速軸向運動產生陣列 之個別太陽能模組的旋轉運動分量,以實現沿一旋轉轴線 之定向控制。 y大根據本發明之-實施例可進一步包含複數個支持件。此 等支持件提供至少一纜索垂直於其轴線之運動以產生陣列 之個別太陽能模組的旋轉運動分量,以實現沿第二旋轉軸 線之定向控制。 本發明之一實施例可進一步提供連接至模組之纜索的共 同平移,以使得模組之陣列可垂直於轴線而平移。本發明 之其他實施例提供繞索之共同轴向平移,以使得模㈣在 轴向方向上平移。 錨具 124235.doc -37- 200831387 本發明之實施例的要素為使太陽能收集器系統之主要壓 縮骨架的成本外部化。系統至地面之界面為此等安裝所相 關的。 地$田解決方案為在此項技術中所熟知的。在圖21至圖 21Α中展示根據本發明之實施例使用之地錨21 00的特定實 施例。在圖2 1Α中,咼扭轉強度結構(例如,正方形或圓形The tension collector support structure of the embodiment C usually contains a hinge. To allow such cables to wrap around - the axis ' can be combined with the cable or the tension it carries to a small area around the pivot axis' and transfer the load from a relatively small area disposed about the pivot axis to the ground. ^ In the two examples, the transfer of tensile stress to the ground consists of two phases. The first stage is to pull the cable or tension to the pivot at the same time, for example, by forming a cable bundle, mechanically fitting the cable to a common: rigid part or secondary cable or the like. The second stage is to transfer the forces from the pivot to the extension, for example by bringing - or a plurality of cables or tensioning elements to the ground or the base or by compressing the elements or bending forces (with lower material efficiency). surface. The ability to see that this is generally distorted and not fatigue provides the opportunity to exclude individual pivots/bovines (such as mechanical shafts in bearings or bushings). Cable segments that are straight/hundred to 1000 times longer or longer in length can be repeatedly distorted (10) degrees with minimal degradation. These roping sections may comprise an inexpensive pivot in accordance with the present invention. In many embodiments of the invention, the load needs to be distributed to a plurality of ground anchors or bases. In some embodiments, the self-tensioning support cable forms a bundle, the beam 124235.doc -32 - 200831387 itself is used as a pivot or the bundle is passed through a separate pivot structure, and then one of the cables from the bundle is divided into Opening to a separate ground location is cost effective. In some embodiments, such as the embodiment of Figure 1, the tensioning structure cable is asymmetrically displaced about the pivot point. This displacement often must provide a full-angle pivot range and provide side reinforcement of the internal struts. Under these conditions, the component of the force in the tensioning structure cable is transmitted to the component, the pivot, and the struts adjacent the compression frame when the cable is aligned with the axis. This additional load may require significant changes to the design of the compression frame and the anchors near the end. Alternatively or in combination, a stage can be added to transfer the tension from the truss structure to the ground. Figures 18A and 18B show views of a terminal having three such transfer stages. (Figure 1 8 A is an end view with only one pillar visible). In the first stage, the tension cable 1 802 is drawn in groups to the viewing cable assembly 1804 at an axis which mitigates the unusual load profile (indicated by the dashed lines) on the final compression frame. In the second stage, the compression element 18〇6 transfers a large amount of unbalanced load from the tension to the pivot and transfers the load to the extended surface. In the third stage, the remainder of the tensile load is transferred to the extended surface. In order to maintain the rigidity of the tension frame system, the angular position of the cable plate can be tightly controlled, for example, via a minimum of material actuating member 1 808' or a wide range of alternative techniques previously disclosed. In addition, it may be advantageous to add a frame 181 to stiffen the terminal system. The terminal embodiment of Figures 18A through 1B produces a large 124235.doc -33 - 200831387 :& [shrinkage. 19A-19B illustrate an alternate embodiment of a three-stage terminal design in which the cables are grouped or forced after combining a plurality of cables (eg, outer group cables 1904) into a second group (eg, bundled). The tight position at the position with the 2 pivot 19G8, or the force it carries, is additionally V to the position 19〇6. The reaction force required for this redirection of support is provided by the framework system 1910, which can further serve as a component in the minimum material 'actuation system'. 〇 Figure I% shows an alternative embodiment of a tetrahedral frame that includes a pivotally mounted edge. This tetrahedral frame utilizes at least two compression elements 1918. The other four elements 'e.g., '1920, 1922, and 1924 can be fully stretched. In the illustrated embodiment, the tetrahedral frame derives sufficient torsional stiffness relative to the last internal compression frame i 9〇2 from the configuration of the mirror, the indexing element, the strut and the tool to exclude the individual rotary actuators. In other embodiments, the tetrahedral frame can be actuated to further stiffen the system. In the design of Figure 19, the actuation system can use the same device and drum that are made by an internal actuator. However, this particular design is such that the arms 1912 of the frame 1910 are long and can be heavily loaded, so that too much material may be required to avoid buckling. In accordance with an alternate embodiment of the present invention, the frame can be stunned to allow the helium to be more tightly combined to the pivot point to reduce force and compress component length. An alternative hierarchical architecture in accordance with the broad scope of the present invention can be devised by those skilled in the art. Possible architectures include minimizing materials, reusing components used elsewhere, minimizing footprint, and the like. Some embodiments of the terminal in accordance with the present invention provide 124235.doc -34 - 200831387 generally open areas between ground elements (eg, 1914 and 1916) such that the maintenance vehicle or vehicle can pass through at least part of the day region. It is contemplated that certain embodiments in accordance with the present invention have access and maintenance paths within and through the terminal. The mechanism for tightening the end of the cable should be capable of supporting cable tension as well as any lateral forces or increased tension generated by the wind. One embodiment of this mechanism is a frame that uses a cable as a tensioning element and a minimum number of compression elements to perform its function, as this configuration should provide for minimizing the number of cable attachment devices and frame materials, and thus minimizing costs . An embodiment of the connection between the terminal mechanism and the extended surface of the mount is a pole that is placed or recessed in the extended surface and secured such that the pole generally carries compressive stress and the pull wire carries tensile stress, the sheet The stress is conveyed to the frame extension surface via a mechanical connection base, this 'spinning base or the like. As used herein, the term 'extended surface' means a load support structure such as a roof, a wall, a paving road. Surface, ground, bedrock, lake bed, seabed, etc.实施 An embodiment of the invention may include an additional tension to the solar module. According to these embodiments, the differential axial movement of the cable produces a rotational motion component of the individual solar modules of the array to effect directional control along an axis of rotation. A plurality of supports may be further included in accordance with an embodiment of the present invention. The support members provide movement of at least one cable perpendicular to its axis to produce a rotational motion component of the individual solar modules of the array for directional control along the second axis of rotation. A common translation of the cable 124235.doc-35-200831387 connected to the module can be further provided in accordance with an embodiment of the present invention such that the array of modules can be translated perpendicular to the axis. A common axial translation of the cable is provided in accordance with other embodiments of the present invention to enable the module to translate in the axial direction. 20A-20D show several embodiments of a mount system for transferring a load to an extended surface. These examples show the use of a post 2002 mounted in the ground, the surface of which is indicated by 2004. Piece 2006 is a ground anchor, base or other mount component. Element 2〇〇8 is a cable configuration for the sloping plate, frame or mitigation of the bending stress of the struts while providing additional space for the rapper to provide space for the collector and collector support traverse. Figure 20B shows details of the top (four) domain of the mount shown in Figure 20A. In this example, the stiffener 2〇1〇 is configured to provide a pivot for a cable-free compression frame. For example, the mirror cable 2_ can pass through a hole in the hollow shaft 2012 or be mounted to the 2G12. In this embodiment, 2() 12 is subjected to a cantilever load and is bent due to the tension in it. Due to the relatively tight geometry, component 2012 can handle these loads with bending, stress or cost. Figure 2〇C shows that the mount is only fixed to one side, thus replacing the mount system with the other side without a mirror. Dots 2〇13 indicate cooperation of other structural elements not shown. In this embodiment, it is preferable to alternate or change the side to be fixed. Figure 20D shows an alternative configuration in which a single error is shared between the two legs to prevent axial movement. This configuration offers advantages in material efficiency and ease of installation. However, the tool must be designed to resist side loads. The mechanism that tightens the end of the k-wire should be able to support the tension of the cable as well as any lateral force or increased tension by the wind production 124235.doc -36- 200831387. One embodiment of this mechanism is to use, see ^ as a tensioning element and a minimum number of compression elements to perform its function. This configuration should provide for minimizing the number of cable attachment devices and the frame material, and thus minimizing cost. An embodiment of the connection means between the s舳 mechanism and the extended surface of the mount is an electric cup placed or recessed in the extended surface and fixed such that the pole generally carries compressive stress and the pull wire carries tensile stress The tensile stress is transmitted to the extended surface of the mount via a mechanical connection, a mixing/spinning base or the like. As used herein, the term "extended surface π", such as roof, wall, masonry road surface, ground, bedrock, lake = sea floor, etc. may include additional fastening to solar modules in accordance with embodiments of the present invention. Tensile cable. According to these embodiments, the differential axial movement of the cable produces a rotational motion component of the individual solar modules of the array to effect directional control along an axis of rotation. A plurality of support members can be further included. The support members provide movement of at least one cable perpendicular to its axis to produce a rotational motion component of the individual solar modules of the array to effect directional control along the second axis of rotation. An embodiment may further provide for common translation of the cables connected to the modules such that the array of modules is translatable perpendicular to the axis. Other embodiments of the present invention provide for common axial translation of the slings such that the dies (four) are Translation in the axial direction. Anchors 124235.doc -37- 200831387 Elements of an embodiment of the invention are the main compression skeleton of the solar collector system Externalization. The system-to-ground interface is relevant for this installation. The field solution is well known in the art. The ground anchor 21 used in accordance with an embodiment of the present invention is shown in Figures 21-21. A particular embodiment of 00. In Figure 21, a twisted strength structure (eg, a square or a circle)

Ο 管或導管)連接至地錨之寬闊螺旋形特徵2丨04(如此項技術 中所已知)。 管2 1 02之末端可視情況含有特徵2丨〇6(例如,使邊緣尖 銳之斜面 '鋸齒),其幫助切割及移位土壤、黏土或岩石 等。朝向主體21〇2之頂部的為特徵21〇8,其提供與旋轉工 具之嚙合以驅動地錨。此旋轉工具可進一步提供軸向力或 較佳與旋轉運動協調之移位以使得螺旋管21〇4平滑地驅動 至延伸表面中。 21〇2之長度及2104之尺寸應足以固持給定延伸表面之所 需負載。21G2之大小及材料厚度應與其長度及21()4之尺寸 協調以使得扭轉或抗壓強度至少經常不被超過,同時將錯 驅動至延伸表面中。 元件2UG為將至少—境索固持於其孔2112中之筒夾。筒 夾2114及女卡盍2116之錐度確保在負載筒夾時(例如,藉 由螺帽2118在螺紋上之動作), ^ 乍)、、息成穩固地夾緊穿過2112 之乡克索。此錐度進一步確伴螬去击 + ^ ^隹保、、見索中之張力用以增加纜索上 之夹持負載。 錐度可以若干方式起作用。 乍用在一實施例中,使筒夾與蓋 124235.doc -38- 200831387 之錐度大體上匹配。在所示之實施財,筒夹與蓋之雜度 不同以使得纜索上之壓縮力沿筒央進一步集中。錐度之: 失配可提供筒夹與蓋之增強”結合"’且降低對持續:索張 力或自211 8預拉的長期依賴性。 錨上之特徵2120經設計以與液壓纜索張力器緊密配合。 此張力器可夾持或坐置(threat)於此特徵上、夾緊至由錯固 持之纜索且進行纜索長度之調整以達成所要的張力或移 位。 連接至特徵2120之液壓張力器裝置可(例如)藉由使螺帽 2118轉動,接著朝向蓋21〇8按壓2118或以其他方式釋放預 拉器2 11 8(包括例如藉由手動地使螺帽轉動而手動地釋放 預拉器之狀況)來進一步,,解開”或鬆開筒夾211〇。此設備可 在調整之後進一步提供自動或手動預拉,例如藉由使自夾 钳釋放纜索之步驟反向。 在圖1至圖1A中所示之實施例的若干位置中,一或多個 拉緊纜索較佳耦接至一或多個其他纜索。舉例而言,圖22 展不提供八個高度拉緊纜索22〇4之間連接的纜索板22〇2, 该等續:索2204包含構架之主張力結構及22〇6 ,2206為將組 合張力傳達至裝置之尾端的纜索。此板之一替代實施例將 具有多個纜索之此等纜索耦接至尾端。 種在此項技術中已知之組合纜索的方法為使用各種壓 接件(crimp)及夾鉗。使用圖22中之纜索板的優勢為可較容 易地拉緊個別纜索。 如同圖21至圖21A中之地錨,纜索板使用筒夾、楔形孔 124235.doc •39- 200831387 及預拉螺帽來夾緊窥索。亦如同圖21至圖2ια中之地錨, 失持結構含有液壓張力器裝置之座架特徵。 本發明之特定實施例之_能样& > . ^ L樣為在不處於張力下時能夠 使至少某一張力結構撓曲、蠻 ^ 4曲或捲曲的能力。此可提供 Ο υ 尺寸精確的總成之預製、方便的分配,及場地中之方便及 精確組裝。舉例而t,此等纜索總成之完整區段或多區段 接續物可使用自動裝置來製造且分配於線軸、滾筒或其他 方便的分配輔助設備上。因&,在此等實施例中,連接至 規索之任何元件可足夠可撓或緊密及緊固以避免在使總成 撓曲時損壞。 圖23A及圖23B展示說明此等境索連接器之特徵之瘦索 連接的設計。圖23A中之設計提供經由將纜索夾在兩個緊 密的剛性壓印薄片金屬板咖與靡之間而附接兩個大體 正交的繞索2306及23〇8。此連接器可用以促進使集光器環 繞其次要軸線之樞轉。 在其他實施例中’纜索可經由在此項技術中已知之一組 技術(例如,射出成形、澆鑄(包括鋅合金澆鑄卜擠壓等) 而固持於所製成之單一或多個段總成中。在其他實施例 中,此等物件可經由扣件(例如,2314),經由夹甜、型 石占、壓接件、黏著劑、焊料、銅焊、焊接等而附接至纔 索0 焊接及高溫操作可不利地影響纜索之強度。或者,可利 用較低溫度配合技術(諸如熔融鋅或軟焊),包括直接在纜 索上澆鑄零件。 ^ 124235.doc -40- 200831387 圖23中之設計在由虛線指示之區域23丨〇中提供纜索之清 除,從而允許在比原本之可能情況更廣之角範圍内樞轉安 裝至位置23 12之裝置。此設計保持纜索23〇6之軸線上的垂 直負載,且因此提供增強的垂直硬度。此調節對於纜索 2308而言同樣可能。 在一些實施例中,在三個纜索之相交處需要此等連接 器。一或多個緊密剛性段在纜索相交處之使用可補償纜索 或其他裝置之有限大小以允許大體上沿一或多個纜索之軸 線置放負載。此等交叉連接器可進一步提供纜索在操作期 間之樞轉或受約束地移動,以使得纜索總成可在不損壞之 情況下捲曲,但在使纜索旋轉至其操作位置中時為剛性 的。 圖23B展示根據本發明之纜索安裝樞軸之一實施例。在 此種情況下,經由來自機械扣件2322之力而夾緊纜索 23 16,但在其他實施例中,如先前所論述,此連接器可經 壓接、鍛造,或以其他方式與纜索緊密配合。因為來自 2318之負載偏離纜索之轴線,所以與2318緊密配合之元件 應經設計以在剛性為重要之情況下防止此等所產生之兩個 物件的動作使纜索2316彎曲或扭曲。 可以許多方式進行、㈣之間的連接。—種有利技術為藉 由分離其股線而使纜索穿過另一纜索之中心。接著,可經 由單獨或與整個或部分套管結合而使用一或多個壓接件或 型砧來緊固纜索。可替代地藉由軟焊、鋅或鋅合金澆鑄, 或鋅或溶融鋅膠合等來固定镜索。 124235.doc -41 - 200831387 圖24展示根據本發明之一實施例之太陽能農場的平面 圖。以細長列最有效地置放收集器陣列。若此等陣列在兩 個維度上追蹤陽光,則如先前所揭示,可以大體上北·南 定向來最有利地置放此等列。此定向允許沿主軸線盡可能 緊岔地封裝收集裔,同時避免自我遮光,此提供最少材料 使用。若使用集光為之多個列,則此等列之間距應足夠寬 以使得在一天之開始或結束時自我遮光為可接受的。 相鄰列之間的距離應至少足夠寬以提供方便的維護。在 一些實施例中,列之間的間距可受其他因素影響,例如, 支持在陣列下方停車所需之空間、種植及收穫所需之空間 等。 工0 稍微向西傾斜至土地通常為合意的,此係因為其使操作 窗朝一天之結束時(此時能量需求較強)間偏置。若沿一戋 多個軸線之追蹤為手動的,則其可有利地將陣列定向^ 東-西,所以因季節變化而僅需要調整一軸線。因為此定 向限制系統之生產率,所以預期此取捨並非始終合理。 在已如此描述本發明之例示性實施例後,熟習此項技術 者應注意,所揭示内容僅為例示性的且可在本發明之範疇 内進行各種其他替代、調適及修改。因此,本發明不限^ 本文中所說明之特定實施例,而僅受以下申請專利範圍之 限制。 【圖式簡單說明】 圖1展示根據本發明之一實施例之利用索具、阻尼、致 動及“具之向集光因子兩角度追蹤太陽能收㈣系統的圖 124235.doc -42- 200831387 式。圖1A展示圖1中之太陽能收集器系統之内部區段的細 節。 圖2展示根據本發明之一實施例之使用索具、阻尼、致 動及錯具之單角度追蹤太陽能收集器系統的透視圖。圖2 a 展示圖2之系統的放大圖。 * 圖3展示根據本發明之一實施例之說明索具及致動之兩 - 角度追蹤太陽能收集器系統的簡化透視圖。 P 圖4 A展示說明根據本發明之一實施例的簡化示意圖。圖 4a之實施例展示根據本發明之太陽能模組的三纜索索具總 成,其中僅在終點處控制該總成。 圖4B展示可在終點及内部點處控制之索具總成的簡化示 意圖。額外内部控制點可用以維持在較大距離上的控制 力。 圖5 A展示根據本發明之一實施例的簡化示意圖,其中控 制纜索之共同軸向運動使模組轴向平移。該實施例將(例 〇 如)允許操作者減輕模組之列之間的遮光。 圖5B展示一實施例之簡化示意圖,其中控制纜索垂直於 其轴的共同運動使模組相應地平移。該實施例將(例如)允 許操作者降低模组以用於維護。 圖5 C展示根據本發明之另一實施例之包括太陽能模組之 二繞索索具總成的簡化示意圖。根據圖5(:之實施例,纜索 3相對於纜索1及纜索2軸向地移動以同時使太陽能模組旋 轉。 圖5D展示根據本發明之另一實施例之包括太陽能模組之 124235.doc -43· 200831387 、見臣索索具總成的簡化示意圖。根據圖5D之實施例,纜索 及、見索4相對於纜索1及纜索2軸向地移動以同時使太陽能 才果組旋轉。一 ^ ^ . 几餘繞索的使用防止風力對太陽能模組產生 較大扭力。 ”圖5E展不根據本發明之另_實施例的簡化示意圖。根據 圖5£之具訑例,控制纜索垂直於其轴的相對運動產生模組 繞纜索軸之旋轉運動。 圖6展不經由圓形滑輪致動之構架元件的圖式。 圖7具材料效益展示根據本發明之一實施例之組件的經 由具材料效益驅動機制致動之構架元件的圖式。 圖8Α至圖8Β展示根據本發明之實施例之組件的可致動 圖7中所示之構架元件之單一鼓形滚筒的視圖。 圖9展不根據本發明之實施例之組件的可致動圖7中所示 之構架元件的兩個反向旋轉轉鼓機構。 圖10展示根據本發明之實施例之組件的可致動圖7中所 示之構架元件的兩個同向旋轉轉鼓機構。 圖11展示用於圖1及圖1Α中的本發明之實施例中之張力The manifold or conduit is connected to the broad spiral feature 2丨04 of the ground anchor (as known in the art). The end of the tube 2 1 02 may optionally contain features 2丨〇6 (for example, a sharp-edged beveled 'edge') that aids in the cutting and displacement of soil, clay or rock. Toward the top of the body 21〇2 is a feature 21〇8 that provides engagement with a rotating tool to drive the ground anchor. The rotary tool can further provide an axial force or displacement that is preferably coordinated with the rotational motion to cause the helical tube 21〇4 to be smoothly driven into the extended surface. The length of 21〇2 and the size of 2104 should be sufficient to hold the required load for a given extended surface. The size and material thickness of the 21G2 should be coordinated with its length and size of 21 () 4 so that the torsional or compressive strength is at least often not exceeded and the drive is misdirected into the extended surface. Element 2UG is a collet that holds at least the cord in its aperture 2112. The taper of the collet 2114 and the female latch 2116 ensures that when the collet is loaded (e.g., by the action of the nut 2118 on the thread), ^ 乍), the grip is firmly clamped through the 2112. This taper is further accompanied by a strike to strike the + ^ ^ guarantee, and the tension in the cable is used to increase the clamping load on the cable. Taper can function in several ways. In one embodiment, the collet is substantially matched to the taper of the cover 124235.doc -38- 200831387. In the implementation shown, the cleats of the collet and the cover are different so that the compressive force on the cable is further concentrated along the center of the barrel. Taper: Mismatch provides an enhanced "combination" between the collet and the cover and reduces the persistence: cable tension or long-term dependence on pre-tensioning of 2108. The anchor feature 2120 is designed to be tight with the hydraulic cable tensioner The tensioner can be clamped or seated on the feature, clamped to the cable that is held in error, and adjusted for cable length to achieve the desired tension or displacement. Hydraulic tensioner coupled to feature 2120 The device can, for example, be rotated by the nut 2118, then pressed 2118 toward the cover 21〇8 or otherwise released the pre-tensioner 2 11 8 (including manually releasing the pre-tensioner, for example by manually rotating the nut) The condition) to further, untie "or loosen the collet 211". The device can be further provided with automatic or manual pre-tensioning after adjustment, for example by reversing the step of releasing the cable from the clamp. In several positions of the embodiment shown in Figures 1 through 1A, one or more tensioning cables are preferably coupled to one or more other cables. For example, Figure 22 does not provide a cable plate 22〇2 that is connected between eight highly tensioning cables 22〇4. The continuation: cable 2204 contains the main tension structure of the frame and 22〇6, 2206 for the combined tension A cable that is communicated to the end of the device. An alternative embodiment of this board couples such cables having a plurality of cables to the trailing end. A method of combining cables known in the art is to use a variety of crimps and clamps. The advantage of using the cable plate of Figure 22 is that it is easier to tension individual cables. Like the ground anchors in Figures 21-21A, the cable plate uses a collet, wedge-shaped holes 124235.doc •39- 200831387 and pre-tensioned nuts to clamp the pluck. Also like the ground anchor in Figures 21 to 2, the lost structure contains the frame features of the hydraulic tensioner device. The specific sample of the present invention is capable of deflecting, buckling or curling at least one of the tension structures without being under tension. This provides a prefabricated, convenient distribution of Ο 尺寸 accurate dimensions and easy and precise assembly in the field. By way of example, a complete section or multi-segment connection of such cable assemblies can be manufactured using automated devices and distributed to bobbins, rollers or other convenient dispensing aids. Because of & in these embodiments, any component attached to the gauge can be sufficiently flexible or tight and tight to avoid damage when the assembly is flexed. Figures 23A and 23B show the design of a thin cable connection illustrating the characteristics of such a cable connector. The design of Figure 23A provides for the attachment of two generally orthogonal slings 2306 and 23〇8 by sandwiching the cable between two tight rigid embossed sheet metal slabs. This connector can be used to facilitate pivoting the concentrator to its secondary axis. In other embodiments, the cable may be held in a single or multiple segment assemblies made by a group of techniques known in the art (eg, injection molding, casting (including zinc alloy casting, etc.). In other embodiments, such items may be attached to the cable via a fastener (eg, 2314) via a pinch, a stone, a crimp, an adhesive, solder, braze, solder, or the like. Welding and high temperature operation can adversely affect the strength of the cable. Alternatively, lower temperature mating techniques (such as molten zinc or soldering) can be utilized, including casting the part directly on the cable. ^ 124235.doc -40- 200831387 The design provides for the removal of the cable in the area 23丨〇 indicated by the dashed line, thereby allowing the device to be pivotally mounted to the position 23 12 over a wider range than would otherwise be possible. This design maintains the axis of the cable 23〇6 The vertical load, and thus the increased vertical stiffness. This adjustment is equally possible for the cable 2308. In some embodiments, such connectors are required at the intersection of the three cables. One or more tight The use of the segments at the intersection of the cables can compensate for the limited size of the cable or other device to allow the load to be placed substantially along the axis of one or more cables. Such cross connectors can further provide for pivoting or receiving of the cable during operation. The restraining is moved so that the cable assembly can be crimped without damage, but is rigid when the cable is rotated into its operative position. Figure 23B shows an embodiment of a cable mounting pivot in accordance with the present invention. In this case, the cable 23 is clamped via force from the mechanical fastener 2322, but in other embodiments, the connector may be crimped, forged, or otherwise mated with the cable as previously discussed. Since the load from 2318 deviates from the axis of the cable, the components that are mated with 2318 should be designed to prevent the action of the two objects produced by these two items from bending or twisting the cable 2316 if rigidity is important. Way of doing, (4) connection. An advantageous technique is to pass the cable through the center of the other cable by separating its strands. Then, it can be done separately or One or more crimps or anvils are used in conjunction with the entire or partial sleeve to secure the cable. Alternatively, the mirror cable can be secured by soldering, zinc or zinc alloy casting, or zinc or melt zinc bonding. 124235.doc -41 - 200831387 Figure 24 shows a plan view of a solar farm in accordance with an embodiment of the present invention. The collector array is most efficiently placed in an elongated column. If the array tracks sunlight in two dimensions, as before It is disclosed that these columns can be placed most advantageously in a north-south orientation. This orientation allows the collection of collectors as tightly as possible along the main axis while avoiding self-shading, which provides minimal material use. For multiple columns, the spacing between the columns should be wide enough to allow self-shading to be acceptable at the beginning or end of the day. The distance between adjacent columns should be at least wide enough to provide convenient maintenance. In some embodiments, the spacing between the columns can be affected by other factors, such as supporting the space required to park below the array, the space required for planting and harvesting, and the like. It is usually desirable to tilt the west slightly to the west because it biases the operating window towards the end of the day (where energy demand is strong). If tracking along a plurality of axes is manual, it can advantageously orient the array east-west, so only one axis needs to be adjusted due to seasonal variations. Because this direction limits the productivity of the system, it is not always reasonable to expect this trade-off. Having described the exemplary embodiments of the present invention, it is to be understood by those skilled in the art that the disclosure is only illustrative and that various other alternatives, modifications, and modifications are possible within the scope of the invention. Therefore, the present invention is not limited to the specific embodiments described herein, but only by the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the use of a rigging, damping, actuation, and a two-angle tracking solar energy collection system in accordance with an embodiment of the present invention. 124235.doc -42 - 200831387 Figure 1A shows details of the inner section of the solar collector system of Figure 1. Figure 2 shows a single angle tracking solar collector system using rigging, damping, actuation and misalignment in accordance with an embodiment of the present invention. Fig. 2a shows an enlarged view of the system of Fig. 2. * Fig. 3 shows a simplified perspective view of a rigging and actuating two-angle tracking solar collector system in accordance with an embodiment of the present invention. A shows a simplified schematic diagram in accordance with an embodiment of the present invention. The embodiment of Figure 4a shows a three cable rigging assembly for a solar module according to the present invention, wherein the assembly is controlled only at the end point. Figure 4B shows A simplified schematic of the rigging assembly controlled at the end point and at the interior point. Additional internal control points can be used to maintain control over a greater distance. Figure 5A shows a simplified schematic diagram in accordance with an embodiment of the present invention. Wherein the common axial movement of the control cables causes the module to translate axially. This embodiment will, for example, allow the operator to reduce the shading between the modules. Figure 5B shows a simplified schematic of an embodiment in which the control cable is The common motion perpendicular to its axis causes the module to translate accordingly. This embodiment will, for example, allow the operator to lower the module for maintenance. Figure 5C shows a solar module in accordance with another embodiment of the present invention. A simplified schematic view of a two-rope rigging assembly. According to Figure 5 (in the embodiment, the cable 3 is moved axially relative to the cable 1 and the cable 2 to simultaneously rotate the solar module. Figure 5D shows another implementation in accordance with the present invention. For example, a simplified schematic diagram of the solar cable module 124235.doc-43·200831387, the sorcerer assembly is assembled. According to the embodiment of Fig. 5D, the cable and cable 4 are axially moved relative to the cable 1 and the cable 2 At the same time, the solar energy group is rotated. The use of several cables prevents the wind from generating a large torque on the solar module. Fig. 5E shows a simplified schematic diagram of another embodiment according to the invention. In the example of Fig. 5, the relative movement of the control cable perpendicular to its axis produces a rotational movement of the module about the cable axis. Figure 6 shows a diagram of the frame element that is not actuated by a circular pulley. Figure 7 shows the material benefit A diagram of a frame element actuated by a material efficient drive mechanism in accordance with an embodiment of the present invention. Figures 8A through 8B show an embodiment of an embodiment of the present invention that can actuate the frame shown in Figure 7. A view of a single drum of an element. Figure 9 shows two counter-rotating drum mechanisms that can actuate the frame elements shown in Figure 7 in accordance with an assembly of embodiments of the present invention. Figure 10 shows a The components of the embodiment actuate two co-rotating drum mechanisms of the frame members shown in FIG. Figure 11 shows the tension used in the embodiment of the invention of Figures 1 and 1

構架。 X 圖12展示用於圖1及圖1A +的本發明之實施例中之將張 力負載傳送至其他裝置的張力構架。 圖13A至圖13B展示本發明之實施例的兩個替代三維張 力構架組件。 圖14展示本發明之實施例之用於支持張力結構的壓縮構 架組件。 124235.doc -44- 200831387 圖1 5展示根據本發明之實施例 例之組件之提供減少的太陽 能收集器遮光且使用具材料效益趟 十双凰铖制致動的壓縮構架組 件0 一圖16A至圖16D展示用於在圖1a_ia中所示的本發明之 實施例中之具有增加之平面外硬度之壓縮構架的視圖。 圖1 7展示平面外加強件之細節。 圖1 8 A至圖18B展示根據本發明之陳 <丨早列之尾端的實施Architecture. X Figure 12 shows a tension frame for transferring tension loads to other devices in the embodiment of the invention of Figures 1 and 1A+. Figures 13A-13B show two alternative three-dimensional tension frame assemblies in accordance with an embodiment of the present invention. Figure 14 shows a compression frame assembly for supporting a tension structure in accordance with an embodiment of the present invention. 124235.doc -44- 200831387 Figure 145 shows a reduction in the provision of solar collector shading in accordance with an embodiment of the present invention and the use of a material-effective 趟 双 铖 致 的 的 压缩 压缩 压缩 一 一 一 一 一Figure 16D shows a view of a compression frame with increased out-of-plane stiffness for use in the embodiment of the invention illustrated in Figures 1a-ia. Figure 17 shows the details of the out-of-plane reinforcement. Figure 1 8 A to Figure 18B show the implementation of the end of the <

例’其中在—階段中使張力緵索聚集在—#,且在另一階 段中使其張力負載轉移至樞軸且接著在第三階段中轉移至 錯具。 接著在第三階段中聚集至|苗具。 圖20A至圖20D展示用於陣列内之内部支持件的支柱及 銷具的實施例。 圖19A至圖19C展示根據本發明之陣列之尾端的實施 例,其中在一階段中使外部張力纜索組聚集在一起,接著 在另-階段中使整組缆索或纜索之張力負載聚#至_且 圖21至圖21八分別展示在圖!、圖1A及圖2中所示之本發 明之實施例之地錨組件的透視圖及詳圖。 圖22展示纜索耦合板的細節,其為在圖!及圖以中所示 之本發明之實施例之一組件。 圖23A至圖23B展示由圖1中之本發明之實施例使用之纜 索座架的細節。 ' 圖24展不包含裝上索具之太陽能模組之順序及並列陣列 之1 MW農場的平面圖。 124235.doc -45- 200831387 【主要元件符號說明】 100 索具系統 102 二維太陽能集光器 104 旋轉軸線 106 第二旋轉軸線 108 構架 110 張力構架 112 樞轉壓縮構架 114 樞轉壓縮構架 116 多元件纜索 118 液體-空氣熱交換器 120 支柱 122 錨具 124 壓縮構架之特徵 126 纜索 128 捲筒絞車 130 元件 132 位置 200 一維追蹤太陽能收集器 202 張力纜索 204 壓縮構架 206 壓縮支柱 208 太陽能收集器 210 振動阻尼器 124235.doc -46- 200831387 Γ 212 抽拉及饋送 214 轉鼓 300 二維追蹤太 302 轴線 304 次要軸線 306 運動 308 控制纜索 310 控制纜索 312 樞轉繫栓點 314 壓縮元件 316 張力元件 318 元件 320 阻尼器 600 滑輪系統 602 支持構架 604 滑輪 606 點 608 纜索 610 纜索 612 較小滑輪 614 弧 700 實施例 702 壓縮構架 704 構架部件/相 124235.doc -47- 200831387 ΓIn the example, the tension chord is gathered in the -#, and in another stage its tensile load is transferred to the pivot and then transferred to the wrong tool in the third stage. Then in the third stage, gather to the seedlings. 20A-20D show an embodiment of a post and pin for an internal support within an array. 19A-19C show an embodiment of the trailing end of the array in accordance with the present invention, wherein the outer tension cable sets are brought together in one stage, and then the tension of the entire set of cables or cables is concentrated in another stage. And Figure 21 to Figure 21 are shown in the figure! A perspective view and detailed view of the ground anchor assembly of the embodiment of the present invention shown in Figures 1A and 2. Figure 22 shows the details of the cable coupling plate, which is in the figure! And one of the components of the embodiments of the invention shown in the figures. Figures 23A-23B show details of the cable mount used by the embodiment of the invention of Figure 1. Figure 24 shows the layout of the solar modules with rigging and the plan of the 1 MW farm in a side-by-side array. 124235.doc -45- 200831387 [Main component symbol description] 100 rigging system 102 two-dimensional solar concentrator 104 rotation axis 106 second rotation axis 108 frame 110 tension frame 112 pivot compression frame 114 pivot compression frame 116 multi-element Cable 118 Liquid-to-air heat exchanger 120 Pillar 122 Anchor 124 Features of the compression frame 126 Cable 128 Reel winch 130 Element 132 Position 200 One-dimensional tracking solar collector 202 Tension cable 204 Compression frame 206 Compression strut 208 Solar collector 210 Vibration Damper 124235.doc -46- 200831387 Γ 212 Pull and feed 214 Drum 300 Two-dimensional tracking too 302 Axis 304 Minor axis 306 Motion 308 Control cable 310 Control cable 312 Pivot tie point 314 Compression element 316 Tension element 318 Element 320 Damper 600 Pulley system 602 Support frame 604 Pulley 606 Point 608 Cable 610 Cable 612 Small pulley 614 Arc 700 Example 702 Compression frame 704 Frame part / phase 124235.doc -47- 200831387 Γ

708 纜索 710 纜索 712 驅動機構 714 弧 716 點 718 接觸點 720 樞轉點 1100 張力構架 1102 主纜索 1104 第三、纟覽索 1106 垂直纜索 1200 張力構架 1206 元件 1300 框架 1302 張力構架 1304 張力 1306 力矩 1308 負載 1310 幾何結構 1312 幾何結構 1350 框架 1400 構架 1402 樞轉點 1404 壓縮臂 -48- 124235.doc 200831387 1406 元件 1408 元件 1410 元件 1412 元件/特徵 1500 構架 ^ 1502 樞轉點 . 1504 元件 1506 Γ 張力構架纜索 1508 元件 1510 點 1514 元件 1518 元件 1520 纜索 1522 搞轴 1600 設計 1602 張力元件 1604 壓縮元件 1700 内部壓縮構架設計 1702 螺桿調整裝置/伸長元件 ’ 1704 壓縮元件 1706 元件 1708 纜索 1802 張力纜索 1804 纜索板總成 124235.doc -49- 200831387708 Cable 710 Cable 712 Drive Mechanism 714 Arc 716 Point 718 Contact Point 720 Pivot Point 1100 Tension Frame 1102 Main Cable 1104 Third, Cable 1106 Vertical Cable 1200 Tension Frame 1206 Component 1300 Frame 1302 Tension Frame 1304 Tension 1306 Torque 1308 Load 1310 Geometry 1312 Geometry 1350 Frame 1400 Frame 1402 Pivot Point 1404 Compression Arm -48- 124235.doc 200831387 1406 Element 1408 Element 1410 Element 1412 Element/Feature 1500 Frame ^ 1502 Pivot Point 1504 Element 1506 张力 Tension Frame Cable 1508 Element 1510 point 1514 element 1518 element 1520 cable 1522 shaft 1600 design 1602 tension element 1604 compression element 1700 internal compression frame design 1702 screw adjustment device / extension element '704 compression element 1706 element 1708 cable 1802 tension cable 1804 cable plate assembly 124235. Doc -49- 200831387

1806 壓縮元件 1808 致動構件 1810 構架 1902 壓縮構架 1904 纜索 1906 緊密位置 1908 樞軸 1910 構架系統 1912 臂 1914 地面元件 1916 地面元件 1918 壓縮元件 1920 元件 1922 元件 1924 元件 2002 支柱 2004 地面之表面 2006 地銷/底座 2008 纜索配置/角牵板/構架 2010 加強件/纜索 2012 中空軸 2013 圓點 2100 地1苗 2102 管 -50- 124235.doc 200831387 2104 螺旋形特徵/螺旋管 2106 特徵 2108 特徵 2110 筒夾 2112 ' 2114 筒夾 . 2116 安卡蓋 2118 Γ 螺帽/預拉器 2120 特徵 2202 纜索板 2204 纜索 2206 纜索 2302 金屬板 2304 金屬板 2306 纜索 ( 2308 緵索 2310 區域 2312 位置 2314 扣件 — 2316 纜索 2322 機械扣件 124235.doc -51 -1806 Compression element 1808 Actuating member 1810 Frame 1902 Compression frame 1904 Cable 1906 Tight position 1908 Pivot 1910 Frame system 1912 Arm 1914 Ground element 1916 Ground element 1918 Compression element 1920 Element 1922 Element 1924 Element 2002 Pillar 2004 Ground surface 2006 Ground pin / Base 2008 Cable Configuration / Angle Ply / Frame 2010 Reinforcement / Cable 2012 Hollow Shaft 2013 Dot 2100 Ground 1 Seedling 2102 Tube - 50 - 124235.doc 200831387 2104 Spiral Features / Spiral Tube 2106 Features 2108 Features 2110 Collet 2112 ' 2114 Collet. 2116 Ankay 2118 Γ Nut/Pretensioner 2120 Features 2202 Cable 2204 Cable 2206 Cable 2302 Metal Plate 2304 Metal Plate 2306 Cable (2308 緵索2310 Area 2312 Position 2314 Fasteners - 2316 Cable 2322 Mechanical Buckle Item 124235.doc -51 -

Claims (1)

200831387 十、申請專利範圍·· 一種將太陽能模組緊固至處於張力下之至少—㈣之方 法:等纜索中的至少一者連接至一阻尼元件。 ,:长項1之方法’其藉由向連接至該等太陽能模組之 、'索施加-共同軸向平移’而提供該等模組之陣列的軸 3. C 如請求項1之方法 線之一共同平移, 該纜索軸線之運動 ,其藉由施加該等纜索垂直於纜索軸 而提供太陽能模組之該等陣列垂直於 4. 一纜索與至少兩個其 而提供該等太陽能模 如請求項1之方法,其藉由在至少 他蜕索之間施加一相對軸向運動, 組之旋轉。 5·如研求項1之方法’其藉由㈣索施加-垂直於軸向方 向:相對運動而提供該等太陽能模組之旋轉。、 L) :;::!5之方法,其中經由-拉緊纜索完成該致動。 月未項1之方法,其中至少一 連接、電連接、流體連接敎」 具有選自機械 連接之功能中之一或多者的―纔卜…連接、網路 8. 如請求们之方法,其中藉由 體之管道來抑制該拉緊纜索之顫動。〃、有剛性液 9. 如π求項i之方法,其中藉由使 充有可撓性液體之管道來抑制今拉二大體上全部填 10. -種包含一由一張力構架支::索之頸動。 η·如請求項Π)之總成,其中兮 ^集光器之總成。 亥張力構架包含由-橫向元件 124235.doc 200831387 連接之至少兩個拉緊纜索。 12 ·如请求項11之總成,其中該張力構架經組態以呈現一一 階恢復力來抵抗沿該等拉緊纟覽索垂直於該構架之一細線 的移位。 13·如請求項11之總成,其中該張力構架進一步包含一連接 至该第一拉緊纜索與第二拉緊纜索之間的該橫向元件之 第三拉緊纜索。 14·如請求項13之總成,其中該張力構架經組態以在該横向 元件與第二拉緊纜索之間的一連接處呈現一一階恢復 力,來抵抗沿一由該橫向元件及該第三拉緊纜索界定之 平面在任何方向上的移位。 15·如明求項14之總成,其進一步包含一根據請求項η之第 一張力構杀,該弟一張力構架經定向位於一與該第一張 力構架不同之平面中。 16· —種地錨,其包含: 一管,其具有一經組態以與地面接觸之第一端,及一 與該第一端相對之開放端; 一具有一張開部分之楔形筒夾,其安置於該管内且一 狹窄有螺紋端自該管突出;及 :螺帽’其經組態以嚙合該有螺紋端且可旋轉以夹緊 女置於該筒夾内之繞索。 、 種將張力自才冓架結構轉移至地面之方法,該方法包 含: 在一第-階段中,在一樞轴處將複數個張力繞索抽拉 124235.doc 200831387 在一起成為一群;及 在一第二階段中,將 地面。 4矣見索中之張力自樞軸轉移至 18.如請求項17之方法,並 , ” 步包含一第三階段,1中在 f先將複數個纜索抽拉在一 ’、 t t ^ ^ ^ ^I成為一弟二群後將該等纜 系甲之張力轉移至該樞軸。 1 9.如請求項1 7之方法,1 φ ^ ^ ^ ^ 八错由形成一纜索束、將該等纜 常械械配合至一共同剛性 ,^ ^ η生零件,或將該等纜索機械配合 至一乂要繞索來建立該群。 20·如請求項1 7之方法,1 件帶5 ,、中精由將-或多個纜索或張力元 仵T至地錯或底座,或葬出 ……精由屋縮凡件或彎曲力來將該等 張力自5亥樞軸轉移至地面。 21•一種使一構架旋轉之方法,帛方法包含·· 提供一具有一第一端及一第二端及一接觸點之構,, 该構架經組態以環繞一樞轉點旋轉; ’、 提供一驅動機構; 將一第-纜索之-第-端連接至該構架之—第 且將該第-镜索之一第二端連接至該驅動機構;4 ’ 將一第二纜索之-第-端連接至該構架之—第 且將該第二纜索之一第二端連接至該驅動機構;及 」吏得該驅動機構以一第一速率牵拉該第一纜索^一 弟二速率牵拉該第二繞索,以使得該構架旋轉且該= 點嚙合該第一纜索或該第二纜*,藉此將 接觸 賦予至該構架之樞軸。 力矩 124235.doc 200831387 22. 如請求項21之方法,其中該驅動機構包含一旋轉轉鼓。 23. 如請求項22之方法,其中該第一速率係由該轉鼓之與該 第一纜索接觸之一第一半徑賦予,且該第二速率係由該 轉鼓之與該第二纜索接觸之一第二半徑賦予。 24. 如請求項21之方法,其中該驅動機構包含: 一第一旋轉轉鼓,其與該第一纜索接觸且經組態以在 一第一速度下旋轉;及 一第二旋轉轉鼓,其與該第二纜索接觸且經組態以在 一第二速度下旋轉。 124235.doc200831387 X. Patent application scope · A method of fastening a solar module to at least under tension—(4): at least one of the cables is connected to a damping element. , method of long term 1 'providing an axis of the array of modules by means of a cable-to-coaxial translation of the solar modules connected to the solar modules 3. C. a common translation, the movement of the cable axis, the array of solar modules being provided perpendicular to the cable shaft by applying the cables perpendicular to the cable. The cable is provided perpendicular to the cable. The method of item 1, wherein the group is rotated by applying a relative axial movement between at least his chord. 5. The method of claim 1 wherein the rotation of the solar modules is provided by (4) cable application - perpendicular to the axial direction: relative motion. , L) ::::! 5, wherein the actuation is accomplished via a tensioning cable. The method of claim 1, wherein at least one of the connection, the electrical connection, and the fluid connection has a function selected from one or more of the functions of the mechanical connection, the connection, the network 8. The method of the requester, wherein The vibration of the tensioning cable is suppressed by the pipe of the body. 〃, has a rigid liquid 9. The method of π, i, wherein the pipe is filled with a flexible liquid to suppress the total filling of the two. The neck is moving. η·such as the request item Π), where 兮 ^ the assembly of the concentrator. The Hermetic Tension Frame comprises at least two tensioning cables connected by a transverse element 124235.doc 200831387. 12. The assembly of claim 11, wherein the tension frame is configured to exhibit a first order restoring force to resist displacement along a line of tension of the one of the tensioning cables. 13. The assembly of claim 11, wherein the tension frame further comprises a third tensioning cable coupled to the transverse member between the first tensioning cable and the second tensioning cable. 14. The assembly of claim 13, wherein the tension frame is configured to exhibit a first order restoring force at a junction between the transverse element and the second tensioning cable to resist along a transverse element and The plane of the third tensioning cable defines a displacement in any direction. 15. The assembly of claim 14, further comprising: constructing a force according to a first tension of the request item η, the body frame being oriented in a plane different from the first tension frame. 16 - a ground anchor comprising: a tube having a first end configured to contact the ground, and an open end opposite the first end; a wedge shaped collet having an open portion, It is disposed within the tube and a narrow threaded end projects from the tube; and: a nut 'configured to engage the threaded end and rotatable to grip a female cable placed within the collet. a method for transferring a tension self-supporting truss structure to the ground, the method comprising: in a first stage, pulling a plurality of tension cables around a pivot at 124235.doc 200831387 together into a group; In the second phase, the ground will be. 4 矣 see the tension in the cable from the pivot to 18. As in the method of claim 17, and, the step contains a third stage, in 1 first pull a plurality of cables in a ', tt ^ ^ ^ ^I becomes the second group and then transfers the tension of the cable armor to the pivot. 1 9. According to the method of claim 17, 1 φ ^ ^ ^ ^ eight errors are formed by forming a cable bundle, etc. The cable is normally mechanically coupled to a common rigid, ^^ η raw part, or the cable is mechanically coupled to a loop to establish the group. 20. According to the method of claim 1 7 , 1 piece with 5 , The fines will be - or a plurality of cables or tension elements T to the ground or the base, or burial... the tension is transferred from the 5th pivot to the ground by the house or bending force. A method of rotating a frame, the method comprising: providing a first end and a second end and a contact point, the frame configured to rotate around a pivot point; ', providing a drive a mechanism connecting a first end of the first cable to the frame - and connecting the second end of one of the first cable to the drive ; 4 'connecting the second end of the second cable to the frame - and connecting the second end of one of the second cables to the drive mechanism; and" the drive mechanism is pulled at a first rate Pulling the first cable to pull the second cable at a rate such that the frame rotates and the = point engages the first cable or the second cable*, thereby imparting contact to the pivot of the frame . The method of claim 21, wherein the drive mechanism comprises a rotary drum. 23. The method of claim 22, wherein the first rate is imparted by a first radius of the drum in contact with the first cable, and the second rate is contacted by the drum with the second cable One of the second radii is assigned. 24. The method of claim 21, wherein the drive mechanism comprises: a first rotary drum that is in contact with the first cable and configured to rotate at a first speed; and a second rotary drum, It is in contact with the second cable and is configured to rotate at a second speed. 124235.doc
TW096131496A 2006-08-25 2007-08-24 A rigging system for supporting and pointing solar concentrator arrays TW200831387A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84011006P 2006-08-25 2006-08-25

Publications (1)

Publication Number Publication Date
TW200831387A true TW200831387A (en) 2008-08-01

Family

ID=39107738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096131496A TW200831387A (en) 2006-08-25 2007-08-24 A rigging system for supporting and pointing solar concentrator arrays

Country Status (2)

Country Link
TW (1) TW200831387A (en)
WO (1) WO2008025001A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374107B (en) * 2008-05-16 2017-07-18 P4P控股有限公司 Solar battery array bearing method and system
CH699119B1 (en) * 2008-07-14 2012-05-31 Solar Wings Ag Solar plant.
ES2458090T3 (en) * 2009-07-10 2014-04-29 King Abdulaziz City For Science And Technology Residential solar collector mirror for large and low concentration collectors
DE102010033702A1 (en) 2010-07-30 2012-02-02 Friedrich Grimm Solar energy collector box installed at multi-track motorway, has support that is provided with upper node point and lower node point with preset spacing so as to form column-free space
NL2006117C2 (en) * 2010-11-10 2012-05-14 Kranendonk Inv S Holding B V Van Solar energy system.
DE102012016671A1 (en) * 2012-08-23 2014-05-15 Adensis Gmbh PV generator with eaves drain
DE102012021697B4 (en) 2012-10-30 2015-02-19 Friedrich Grimm Support system for the stabilization of at least one mast
CN110140016A (en) * 2015-01-28 2019-08-16 天阳有限责任公司 Mixed type heliostat in groups
CN106406364B (en) * 2016-12-12 2023-04-25 杨大楼 Double-shaft tracking type photovoltaic or photo-thermal bracket
ES2968302A1 (en) * 2022-10-07 2024-05-08 Ingecid Investig Y Desarrollo De Proyectos S L SOLAR PANELS FIXING SYSTEM (Machine-translation by Google Translate, not legally binding)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102326A (en) * 1977-09-28 1978-07-25 Sommer Warren T Central receiver solar collector using mechanically linked mirrors
US4628851A (en) * 1984-12-24 1986-12-16 Allied Corporation Vibration isolation module
US4848319A (en) * 1985-09-09 1989-07-18 Minnesota Mining And Manufacturing Company Refracting solar energy concentrator and thin flexible Fresnel lens
US5833176A (en) * 1996-11-14 1998-11-10 Hughes Electronics Corporation Bowed solar array

Also Published As

Publication number Publication date
WO2008025001A2 (en) 2008-02-28
WO2008025001A3 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
US20080168981A1 (en) Rigging system for supporting and pointing solar concentrator arrays
TW200831387A (en) A rigging system for supporting and pointing solar concentrator arrays
US9285139B2 (en) Structure and articulation system for solar collectors
AU2008234169B2 (en) Parabolic trough collector
US8273978B2 (en) Solar panel array sun tracking system
US8322333B2 (en) Torque transfer between trough collector modules
CN109690207A (en) For rotatable installation and the system and method for locking solar panels
US20100294265A1 (en) Dual axis support for high wind solar panels
JP6053328B2 (en) Photovoltaic panel support device
KR101926239B1 (en) Multi-layer wire frame solar power generation system
CN104781549A (en) Tower construction of a wind turbine and method for stabilizing a tower construction of a wind turbine
KR20120123101A (en) Automatic sunlight-tracking device
CN102621996A (en) Linked uniaxial solar tracker system and rotational drive mechanism thereof
US20200195191A1 (en) Solar tracking installation
CN110535420B (en) Oblique single-axis tracking system of flexible support of prestressing force
CN102536680A (en) Pre-stressed stiffening system for a wind turbine generator frame
US11611309B2 (en) Fixed-tilt solar arrays and related systems
US10634386B2 (en) Holding device
AU2018279017B2 (en) Solar Tracking Installation
US20120291766A1 (en) Solar energy collection apparatus
DE102008051807A1 (en) Parabolic trough collector for concentrating sunlight on absorber, has drives engaged at support ribs exterior to longitudinal direction for rotating collector around rotation axes, where drives are synchronized together
WO2020215482A1 (en) Resilient mounting photovoltaic tracking bracket having self-locking function
CN105576337A (en) Foldable radar antenna framework and working method thereof
CN215300565U (en) Multi-point drive photovoltaic tracking support
CN217824850U (en) Photovoltaic tracking support installed in small space