TW200828344A - Composition of polymer thick film resistor and manufacturing method thereof - Google Patents

Composition of polymer thick film resistor and manufacturing method thereof Download PDF

Info

Publication number
TW200828344A
TW200828344A TW95149733A TW95149733A TW200828344A TW 200828344 A TW200828344 A TW 200828344A TW 95149733 A TW95149733 A TW 95149733A TW 95149733 A TW95149733 A TW 95149733A TW 200828344 A TW200828344 A TW 200828344A
Authority
TW
Taiwan
Prior art keywords
thick film
film resistor
epoxy resin
polymer thick
polymer
Prior art date
Application number
TW95149733A
Other languages
Chinese (zh)
Other versions
TWI336085B (en
Inventor
Man-Chun Yu
Shur-Fen Liu
Meng-Hua Chen
Jinn-Shing King
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95149733A priority Critical patent/TWI336085B/en
Publication of TW200828344A publication Critical patent/TW200828344A/en
Application granted granted Critical
Publication of TWI336085B publication Critical patent/TWI336085B/en

Links

Abstract

A composition of polymer thick film resistor comprises an epoxy resin system, at least one conductive powder, a polymer disperser and a hardener. The epoxy resin comprises a multi-functional epoxy resin with a multi-function number equal to or greater than 4. The conductive powder has an average grain size between 10-100 nm. By blending and dispersing processes, the resistance tolerance of the polymer thick film resistor can be significantly diminished, and as a result the polymer thick film resistor is suitable to serve as an embedded resistor in a printed circuit board or an IC substrate.

Description

200828344 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種電阻組成及其製作方法,特別是關於 一種高分子厚膜電阻組成及其製作方法。 【先前技術】 隨著通訊電子產品高功能化的需求,以及訊號傳輸的高 速高頻化,使得被動元件與主動元件需求大幅增加。為了 提高被動元件效能,減少被動元件數量,降低電路板面 _ 積,利用小型化技術的優點,係將電容、電阻及電感等獨 立式被動元件逐漸變成内埋式被動元件,崁入電路板中, 以提高裝置密度並縮小基板面積。 訊號傳輸的高速高頻化以及傳輸距離的縮短,相對的也 產生一些亟待改善的問題,如快速發展的高密度互連技術 (High Density Intercomiection ; HDI ),當元件間密度提 高,元件與元件間之寄生效應日亦明顯,特別在高頻傳輸 之應用上,更易造成雜訊與訊號延遲、電磁干擾 _ (Electromagnetic Interference ; EMI)等問題;若改使用埋 入式電容電阻,將可降低或減少寄生效應,大幅提升產品 在高頻高速下作用之表現。同時也減少銲錫接合(Solder Joint)、穿孔(Through Hole)、及微孔(Micrvia)數目,並提 升產品之良率。 内埋式電阻的優點在於能縮小基板面積、降低成本、及 有效提升元件功能。使用内埋式電阻時,所產生的串聯電 感遠比獨立式電阻來的小。而在上升時間(Rise time)很短 100210-116389 005936987-1 200828344 的情況下,使用獨立式電阻所產生的感應阻抗隨之提升。 使用内埋式電阻,由於傳輸距離短,幾乎可以忽略此感應 阻抗。但當傳輸頻率超過1 ΟΌΜΗζ以上時,電阻所需的數 量遽增。為降低組裝成本,提高效能,減少使用面積並提 高可靠度,更是需要以内埋式電阻取代表面黏著式(SMT) 電阻。其典型性之應用有:數位電阻產品之開口接收器、 LED電流控制、線路終結等等。内埋式電阻在產品上可分 成兩大類,一為薄膜電阻,一為厚膜電阻,前者可使用電 • 解鑛著法(Electroplate)、錢鍍法(Sputter)或化學汽相沉積 (CVD)等方法;後者則是使用傳統網印法為主。 常見的厚膜電阻在應用上,依基材的選擇與後續的熱反 應,可分為高溫燒結型及低溫烘烤型兩種。高溫燒結型係 指厚膜經500〜900°C燒結而成的,適合整合於陶瓷基板 中;而另一適合用於PCB内埋技術的厚膜電阻則是屬於低 溫烘烤型,再利用網印製程後以120〜200°C的熱風烘烤或 使用UV照射,除使溶劑揮發之外,塗料中的熱固型樹脂 ^ 產生交聯硬化形成所要的圖形,即所謂的高分子厚膜電阻 (Polymer Thick Film Resistor),簡稱PTF 電阻。PTF 電阻主 要以高分子樹脂為基礎,填充導電性物質,其特色在於可 使用一般的厚膜印刷,筆直地將圖形印刷在介電層或是已 蝕刻好的銅線路上,且烘烤溫度符合一般的PCB製程,體 積小、重量輕且價格便宜,並有較大的片電阻(Sheet Resistance)範圍,可從15 Ω〜1M Ω;但缺點是變異性 (Tolerance)較大,約10〜50%不等,為改善此缺點並擴大其 100210-116389 005936987-1 -6- 200828344 應用性,提高電阻值的範圍與降低誤差變異性(< 5 %)是 重點所在。 埋入式被動元件技術的開發已有多年之時間,在專利 上,大部分的揭露者多以電阻製程方面及關於低溫共燒多 層陶瓷(LTCC)的專利,材料配方僅為部分,電阻材料配方 都只是簡單描述為高分子樹脂(如環氧樹脂)與導電粉體 (如碳黑)的混成物,殊不知其中仍有相當多重要配方技術 需釐清,實非習知之高分子樹脂(如環氧樹脂)與導電粉體 的混合可任意達成。200828344 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a resistor composition and a method of fabricating the same, and more particularly to a polymer thick film resistor composition and a method of fabricating the same. [Prior Art] With the demand for high functionality of communication electronic products and the high frequency of signal transmission, the demand for passive components and active components has increased significantly. In order to improve the performance of passive components, reduce the number of passive components, reduce the surface area of the board, and take advantage of the miniaturization technology, independent passive components such as capacitors, resistors and inductors are gradually become embedded passive components, which are inserted into the circuit board. To increase device density and reduce substrate area. The high-speed high-frequency transmission of signal transmission and the shortening of transmission distance also have some problems to be improved, such as the rapid development of High Density Intercomiection (HDI), when the density between components is increased, between components and components. The parasitic effect is also obvious. Especially in high-frequency transmission applications, it is more likely to cause problems such as noise and signal delay, and electromagnetic interference (EMI). If you use buried capacitors, you can reduce or reduce them. The parasitic effect greatly enhances the performance of the product at high speed and high speed. It also reduces the number of Solder Joints, Through Holes, and Micrvias, and increases the yield of the product. The advantages of the buried resistor are that it can reduce the substrate area, reduce the cost, and effectively improve the function of the component. When a buried resistor is used, the resulting series inductance is much smaller than that of a freestanding resistor. In the case where the rise time (Rise time) is very short, 100210-116389 005936987-1 200828344, the induced impedance generated by using a freestanding resistor increases. With built-in resistors, this inductive impedance can be almost ignored due to the short transmission distance. However, when the transmission frequency exceeds 1 ΟΌΜΗζ, the amount of resistance required increases. In order to reduce assembly costs, improve performance, reduce the use area and improve reliability, it is necessary to replace the surface mount (SMT) resistor with a buried resistor. Typical applications include: open receivers for digital resistor products, LED current control, line termination, and more. Buried resistors can be divided into two categories on the product, one is a thin film resistor and the other is a thick film resistor. The former can use Electroplate, Sputter or Chemical Vapor Deposition (CVD). The latter method is based on the traditional screen printing method. Common thick film resistors can be divided into high temperature sintering type and low temperature baking type according to the choice of substrate and subsequent thermal reaction. High-temperature sintering type refers to a thick film sintered at 500~900 °C, suitable for integration in a ceramic substrate; and another thick film resistor suitable for PCB buried technology is a low-temperature baking type. After the printing process, baking with hot air at 120~200 °C or using UV irradiation, in addition to volatilizing the solvent, the thermosetting resin in the coating generates cross-linking hardening to form a desired pattern, so-called polymer thick film resistor (Polymer Thick Film Resistor), referred to as PTF resistor. PTF resistors are mainly based on polymer resins and filled with conductive materials. They are characterized by the use of general thick film printing, which prints the pattern straight on the dielectric layer or the etched copper line, and the baking temperature is consistent. The general PCB process is small in size, light in weight and inexpensive, and has a large sheet resistance range from 15 Ω to 1 M Ω. However, the disadvantage is that the variability (Tolerance) is large, about 10 to 50. % is not equal, in order to improve this shortcoming and expand its applicability of 100210-116389 005936987-1 -6- 200828344, increasing the range of resistance values and reducing the error variability (< 5%) is the focus. The development of embedded passive component technology has been for many years. In the patent, most of the exposers mostly use the patents on resistance process and low temperature co-fired multilayer ceramics (LTCC). The material formulation is only part of the resistance material formula. They are simply described as a mixture of a polymer resin (such as an epoxy resin) and a conductive powder (such as carbon black). It is not known that there are still quite a few important formulation techniques to be clarified, and it is not a conventional polymer resin (such as epoxy). The mixing of the resin and the conductive powder can be arbitrarily achieved.

以目前有關PTF材料專利而言,自1984年起RCA Corp. 便有PTF電阻配方的開發(美國專利US 4,479,890),不過當 時並未揭露關於内埋電阻之應用。另,Advanced Products Inc·從1991開始陸續申請有關高分子厚膜電阻材料配方之 專利(美國專利US 5,049,313、US 5,200,264),其提出以 苯氧基(phenoxy)和團聯聚異氰酸鹽樹脂(blocked polyisocyanate resin)系統為其主的樹脂,與導電粉體以適 當比例混合,並以網版印刷(screen-printing)方法,在低溫 且短時間即可固化成型,其PTF除具有材料儲存性佳、撓 曲性佳、抗溶劑性佳及良好接著性,在高溫短時間放置下 更是具有良好的穩定性,其主要是針對材料信賴性進行研 究,並未針對阻值及尺寸穩定性方面加以討論。而在過去 解決厚膜電阻尺寸穩定性問題之方法,不外乎一是改變方 法,另一是改變材料配方,經由Hui-min Huang、Cliia-Tin Chung等人於2000年提出之有關材料配方之專利(US 100210-116389 005936987-1 -7- 200828344 6’〇30,553),就是屬於後者,其強調以環狀脂肪族結構之 為主體,並為無溶劑系統,經由網印成型後, 用UV曝光將該電阻之外部硬化定型,再由加熱方式進行 交聯及固化内部結構,進而得到尺寸穩定之厚膜電阻,作 因其增加過程繁複之步驟,會造成成本的提高。另外長興 化工也在2005年提出電阻材料之專利(cn丨567485),其亦With regard to current PTF material patents, RCA Corp. has developed PTF resistor formulations since 1984 (US Patent 4,479,890), but did not disclose the application of buried resistors. In addition, Advanced Products Inc. has been applying for a patent for a polymer thick film resistor material formulation since 1991 (U.S. Patent No. 5,049,313, US Pat. No. 5,200,264), which is incorporated herein by reference. Blocked polyisocyanate resin) The system is the main resin, mixed with the conductive powder in an appropriate ratio, and screen-printing method, can be cured at low temperature and in a short time, and its PTF has good material storage. Good flexibility, good solvent resistance and good adhesion. It has good stability under high temperature and short time. It is mainly for material reliability research, and it is not for resistance and dimensional stability. discuss. In the past, the solution to the problem of dimensional stability of thick film resistors was nothing more than a change in the method, and the other was to change the material formulation, which was proposed by Hui-min Huang, Cliia-Tin Chung et al. in 2000. The patent (US 100210-116389 005936987-1 -7- 200828344 6'〇30,553) belongs to the latter, which emphasizes the cyclic aliphatic structure as the main body and is a solvent-free system. After screen printing, UV exposure The external hardening of the resistor is fixed, and the internal structure is cross-linked and cured by heating, thereby obtaining a thick-film resistor having a dimensional stability, which is caused by a complicated step of increasing the process, which causes an increase in cost. In addition, Changxing Chemical also proposed a patent for resistive materials (cn丨567485) in 2005.

強調為無溶㈣統,完成之厚膜電阻具有良好尺寸穩定性 及良好流變特性,但阻值穩定性仍未臻完善。 【發明内容】 ^ 本發明係揭露-具良好之阻值穩定性之預反應型高分 子/奈米粉體之混成材料,其中以高分子環氧樹脂為基礎 配方’經由添加奈米導體及進行預反應過程,改善阻值不 穩定之狀況,並兼顧PCB製程可行性及材料特性。 本發明之高分子厚膜電阻材料具有高玻璃轉移溫度、較 小的誤差變異性’以及優良之膜厚穩定性,可應用於埋入 式電阻材料之應用。所使用之原料包括⑷—環氧樹脂系 統,其包含一高官能基之環氧樹脂,其官能基大於等於4 ; (b)—導電粉體(例如碳黑),含至少一種以上粒徑分佈,且 其中包含一種奈米粉體;以及(c)高分子分散劑。 上述之高分子厚膜電阻組成可由下列步驟製作。首先, 混合環氧樹脂系統及至少一導電粉體,其中該環氧樹脂系 統包含一南官能基之環氧樹脂,其官能基大於等於4,且將 J展氧樹脂系統及導電粉體於100-140〇c之溫度加熱3〇分鐘 至5小時以進行預反應。之後加入硬化劑及催化劑後降溫, 100210-116389 005936987-1 200828344 並::高广子:分散劑,經由三滾輪分散後以製得電阻漿料。 '程而口,本發明揭露前案所未提及但卻相 材料配方技術,即預加埶 要的 電阻材料具有極佳之電方父強調所製出之厚膜 容性。採用之手段包括(二二,,合。C_ 门士 又匕括(1)遂擇適當之環氧樹脂組成,來 同時平衡耐燃性與接著拇 撤半刑( )%錢财填充奈米型及 二、冋W生粉體以調配其電阻值;以及⑺選擇適當Emphasis is placed on the insoluble (four) system, the completed thick film resistor has good dimensional stability and good rheological properties, but the resistance stability is still not perfect. SUMMARY OF THE INVENTION The present invention discloses a pre-reactive polymer/nano powder mixed material having good resistance stability, wherein a polymer epoxy resin-based formulation is prepared by adding a nano conductor and pre-forming The reaction process improves the instability of the resistance and takes into account the feasibility and material properties of the PCB process. The polymer thick film resistor material of the present invention has high glass transition temperature, small error variability, and excellent film thickness stability, and can be applied to applications of buried resistor materials. The raw materials used include (4)-epoxy resin system comprising a high-functional epoxy resin having a functional group of 4 or more; (b) conductive powder (for example, carbon black) having at least one particle size distribution And comprising a nano-powder; and (c) a polymeric dispersant. The above polymer thick film resistor composition can be produced by the following steps. First, a mixed epoxy resin system and at least one conductive powder, wherein the epoxy resin system comprises a south functional epoxy resin having a functional group of 4 or more, and the J-oxygen resin system and the conductive powder are 100 The temperature of -140 〇c is heated for 3 minutes to 5 hours for pre-reaction. After the addition of the hardener and the catalyst, the temperature is lowered, 100210-116389 005936987-1 200828344 and:: Gao Guangzi: a dispersant, which is dispersed through three rollers to obtain a resistor paste. 'Cheng's mouth, the present invention discloses a material formulation technique that is not mentioned in the previous case, that is, the pre-added resistance material has an excellent electric film to emphasize the thick film capacity. The means used include (2nd, 2nd, and C. Mens also include (1) choose the appropriate epoxy resin composition to balance the flame resistance and then the half of the thumb ( )% of the money filled with nano type and Second, 冋W raw powder to adjust its resistance value; and (7) choose appropriate

:同刀子型分散劑,_方面可改善低分子型分散性之低耐 熱性,-方面切^提升未來產品應用之可靠性,其原 理主要是藉由特殊高分子型分散劑,可輕易地附著於盔機 粉體表面’與有機樹脂間具有優良相容性甚至些許反應 座可有效解決低分子型分散劑之缺點,利用預反應的過 程,提升其材料之阻值穩定性。 所得到之電阻漿料,經由網板印刷技術及低溫硬化溫度 $件,製得具有高玻璃轉移溫度(丁g>15〇c>c)、優良之阻值 穩疋性及較小的誤差變異性(T〇lerance ^ 6%)之電阻材料。 詳言之,電阻材料的應用已相當廣泛,但一般製程仍以 兩溫燒結為主,難以應用在有機基板或傳統PCB製程上, 而若使用高分子/奈米導體混成材料,藉由高分子樹脂材 料與基板的相容特性,可使用一般基板或pCB製程來完成 埋入式電阻的製作。為了使高分子/奈米導體混成材料有 良好的特性’包括電性穩定性與熱安定性,基本上可由樹 月曰系統的選擇與網印技術來決定;其中如低溫硬化、高溫 的穩定性佳’以及鋼層與介電層及基板間有良好的接著性 100210-116389 005936987-1 -9- 200828344 等,必須由樹脂系統的選擇來達成,而材料所需之導電特 性,則必須藉由添加奈米導電粉體來提供,至於電性之穩 定性則須經由特殊預反應製程來達到,這樣才能製作出同 時兼具樹脂之低溫加工性與阻值穩定性融於一體的高分 子/奈米導體混成材料。 由於埋入式電阻基板之需求主要應用於高頻與高速電 子產品,對於熱性質及電性質之穩定性需求逐漸增加,因 此所揭露之預反應型高分子/奈米導體混成材料,除了重 視阻值之準確性外,也必須同時重視其熱性質以及電性之 穩定性問題。因此材料配方比例之調配,製程條件之掌 控,以及網印之技術,均為本發明之重點。 【實施方式】 本發明之高分子厚膜電阻組成所包含之原料可選擇如 下: 玉哀乳樹月旨 (a): With the knife-type dispersant, _ can improve the low heat resistance of low molecular type dispersibility, and improve the reliability of future product application. The principle is mainly that it can be easily attached by special polymer type dispersant. It has excellent compatibility with the organic resin on the surface of the helmet powder and even a few reaction seats can effectively solve the shortcomings of the low molecular type dispersant, and utilizes the pre-reaction process to improve the resistance stability of the material. The obtained resistive paste has a high glass transition temperature (dg>15〇c>c), excellent resistance stability and small error variation through screen printing technology and low temperature hardening temperature. Resistance material (T〇lerance ^ 6%). In particular, the application of resistive materials has been quite extensive, but the general process is still dominated by two-temperature sintering, which is difficult to apply to organic substrates or traditional PCB processes. If polymer/nanoconductor hybrid materials are used, polymers are used. The compatibility of the resin material with the substrate can be achieved by using a general substrate or a pCB process to complete the fabrication of the buried resistor. In order to make the polymer/nanoconductor hybrid material have good characteristics, including electrical stability and thermal stability, it can be basically determined by the choice of the tree 曰 system and screen printing technology; such as low temperature hardening, high temperature stability Good' and good adhesion between the steel layer and the dielectric layer and the substrate 100210-116389 005936987-1 -9- 200828344, etc., must be achieved by the choice of resin system, and the conductive properties required by the material must be Adding nano-conductive powder to provide, as for the electrical stability, it must be achieved through a special pre-reaction process, in order to produce a polymer/nai that combines both low-temperature processability and resistance stability of the resin. Rice conductor hybrid material. Since the demand for buried resistor substrates is mainly applied to high-frequency and high-speed electronic products, the demand for thermal properties and electrical properties is gradually increasing. Therefore, the disclosed pre-reactive polymer/nanoconductor hybrid materials are not only important. In addition to the accuracy of the value, it is also necessary to pay attention to both the thermal properties and the stability of the electrical properties. Therefore, the formulation of the material formulation ratio, the control of the process conditions, and the technology of screen printing are the focus of the present invention. [Embodiment] The raw material of the polymer thick film resistor composition of the present invention may be selected as follows:

(b) 雙紛-Α·二縮水甘油醚環氧樹脂(Diglycidyl ether of bisphenol A epoxy) (c) 四溴雙紛-A-二縮水甘油環氧樹脂(Tetrabronio bisphenol A diglycidyl ether epoxy) (d) 環狀脂肪族環氧樹脂(Cyclo aliphatic epoxy 100210-116389 005936987-1 -10- 200828344 resin)。例如:二環戊二烯環氧樹脂(dicyclopentadiene epoxy resin) 〇 (e) 含萘環環氧樹脂(Naphthalene epoxy resin)。 (f) 雙苯基環氧樹脂(Diphenylene epoxy resin)。 (g) 紛酸環氧樹脂(Phenol Novolac epoxy resin) (h) 鄰曱酴藤環氧樹脂(O-cresol Novolac epoxy resin) 硬化劑 (a)雙胺(diamine): H2N —Ri — NH2 Φ Ri可為芳香基、脂肪基、環脂肪基或含silane脂肪 基等,例如:(b) Diglycidyl ether of bisphenol A epoxy (c) Tetrabronio bisphenol A diglycidyl ether epoxy (d) A cyclic aliphatic epoxy resin (Cyclo aliphatic epoxy 100210-116389 005936987-1 -10- 200828344 resin). For example: dicyclopentadiene epoxy resin 〇 (e) Naphthalene epoxy resin. (f) Diphenylene epoxy resin. (g) Phenol Novolac epoxy resin (h) O-cresol Novolac epoxy resin Hardener (a) Diamine: H2N —Ri — NH2 Φ Ri It may be an aromatic group, a fat group, a cycloaliphatic group or a silane-containing aliphatic group, etc., for example:

R2: X,ch2, S02, 0, s,c(ch3)2 r3〜r1(): h,ch3, c2h5, c3h7, c(ch3)3,… (b)紛樹脂(phenol resin) 紛基樹酯(Phenol based resin),例如:R2: X, ch2, S02, 0, s, c(ch3)2 r3~r1(): h,ch3, c2h5, c3h7, c(ch3)3,... (b) phenol resin (Phenol based resin), for example:

萘紛基樹酯(Naphthol based resin),例如Naphthol based resin, for example

OH OH 100210-116389 005936987-1 -11- 200828344OH OH 100210-116389 005936987-1 -11- 200828344

二環戊二烯樹 i旨(Dicyclopentadiene resin)Dicyclopentadiene resin

4,4’,4”亞乙基三苯酚(4,4,,4”Etliylideiietrisphenol)4,4',4"Ethylenetriphenol (4,4,,4" Etliylideiietrisphenol)

OHOH

四苯氧乙烧(Tetra phenylolethane)Tetra phenylolethane

HO OHHO OH

HO 〇H 四二甲紛乙烧(Tetraxylenol ethane)HO 〇H Tetraxylenol ethane

四曱紛氧乙烧(Tetracresololethane) 100210-116389 005936987-1 -12- 200828344Tetracresololethane 100210-116389 005936987-1 -12- 200828344

催化劑 (a) 陽離子系觸媒 三氟化硼錯物,如 RNH2 · BF3、R2NH · BF3、R3N · BF3 等 (b) 陰離子系觸媒 _ 三級胺、金屬氫氧化物、單環氧化物之配位陰離子觸 媒,如 R3N,TMG,NCH2C-C(NH)-N(CH3)2等 (c) 咪唾(Imidazole) 1 -甲基 口米嗤(1 -methylimidazole) 1,2-二甲基口米嗤(1,2-dimethylimidazole) 2-七癸味♦ (2-heptadecylimidazole) 2-乙基-4-曱基味唆(2-ethyl_4-methylimidazole) 分散劑 ® 本發明中所採用的高分子型分散劑,使其與無機粉體具 有良好的接著性及分散性,且又與有機樹脂間有優良之相 容性及分散性。可用之高分子分散劑包括有共聚酯-醯 胺、聚酯類等。 導電粉體 主要為高導電之粉體,例如··金屬粉體(如金、銀、銅、 I呂、銀錤合金…等)、金屬氧化物(如氧化銀、氧化铭…等)、 碳黑、石墨等。 100210-116389 005936987-1 -13- 200828344 以下將舉例說明本發明之技術所在,其材料含量如表一 所示,其中Epoxy 1為雙紛-A-二縮水甘油醚(bisphenol-A diglycidyl ether),Epoxy 2為四溴雙酴-A-二縮水甘油醚 (tetrabromo disphenol-A diglcidyl ether),而 Epoxy 3 為環 狀脂肪族環氧樹脂(cyclo aliphatic epoxy)。Epoxy 4為多官 能基樹脂(Multifunctional epoxy),其化學式如下,且其官 能基大於等於4。Catalyst (a) Cationic catalyst boron trifluoride complex, such as RNH2 · BF3, R2NH · BF3, R3N · BF3, etc. (b) Anionic catalyst _ tertiary amine, metal hydroxide, monoepoxide Coordination anion catalysts, such as R3N, TMG, NCH2C-C(NH)-N(CH3)2, etc. (c) Imidazole 1 -methylimidazole 1,2-dimethyl 1,2-dimethylimidazole 2-heptadecylimidazole 2-ethyl-4-methylimidazole Dispersant® High in the present invention The molecular type dispersant has good adhesion and dispersibility with the inorganic powder, and has excellent compatibility and dispersibility with the organic resin. Polymer dispersants which can be used include copolyesters, guanamines, polyesters and the like. Conductive powders are mainly highly conductive powders, such as · metal powders (such as gold, silver, copper, Ilu, silver iridium alloys, etc.), metal oxides (such as silver oxide, oxidized...etc.), carbon Black, graphite, etc. 100210-116389 005936987-1 -13- 200828344 The technology of the present invention will be exemplified below, and the material content thereof is shown in Table 1, wherein Epoxy 1 is bisphenol-A diglycidyl ether. Epoxy 2 is tetrabromo disphenol-A diglcidyl ether, and Epoxy 3 is a cyclo aliphatic epoxy. Epoxy 4 is a multifunctional epoxy having the following chemical formula and having a functional group of 4 or more.

表一 組成 比較例1 實施例1 實施例2 實施例3 實施例4 預反應 無 有 Epoxy 1 (g) 7.11 7.1 7.0 6.93 6.93 Epoxy 2(g) 4.44 4.44 4.38 4.33 4.33 Epoxy 3 (g) 1.24 1.24 1.22 1.21 1.21 Epoxy 4 (g) 1.78 1.77 1.75 1.73 1.73 硬化劑(g) 3.36 3.36 3.31 3.28 3.28 催化劑(g) 0.0626 0.0625 0.062 0.061 0.061 分散劑1 (g) 0.513 0.513 0.51 0.51 0.51 礙黑(g) 4.04 4.06 4.04 3.88 4.08 銀片(g) 0 0 0 29 30 該環氧樹脂總共佔總固體含量30〜80%之重量百分比, 該碳黑佔總固體粉體5〜20%之重量百分比,高分子分散劑 佔總固體粉體0·5〜5%之重量百分比。該硬化劑佔總固體粉 體3-20%之重量百分比。另外,實施例1到4中,該銀片佔 總固體粉體0-60%之重量百分比。 表一中實施例之製造程序如下,惟比較例係不執行下列 100210-116389 005936987-1 -14- 200828344 步驟3之預反應製程。 1. 將環氧樹脂Epoxy 1〜4與溶劑置於反應瓶中加熱至 90〜95°C使之混合,待冷卻。 2. 於上述溶液中添加適量高導電性粉體,而後高速攪 摔均勻成混成溶液。所添加之南導電性粉體之含量大約佔 總固體粉體5〜65 %之重量百分比。 3. 將上述混成溶液在高溫100〜140°C進行預反應約30 分鐘至5小時,而後降至80°C,並加入適量硬化劑及催化 ® 劑以充分溶解,再降至室溫。 4. 取適量環氧樹脂混成溶液,並加入適量分散劑及其 他導電粉體(視需要添加)。 5·將得到之混合物在以三滾輪分散完全,即可得到分 散良好之混成物電阻漿料。 6. 將上述之混成物電阻漿料藉由網版印刷製程,印製 在具有圖案(pattern)之位置上形成電阻。 7. 製得之電阻經電性量測後,依材料組成份之不同所 ^ 得到之阻值範圍約為35Ω〜1.5 kD。 8. 在熱性質測試上,電阻組成之Tg在150〜190°C範圍。 詳言之,首先在反應瓶中加入適量的環氧樹脂,之後加 入適量的溶劑BC(二乙二醇單丁醚,Diethylene Glycol Monobutyl ether)及二甲基甲醯胺(Dimethyl formamide ; DMF),而後加熱至90°C〜95°C使環氧樹脂完全溶解並降 溫。將上述溶液中添加適量導電性粉體’而後南速擾摔均 勻後,在高溫下進行預反應或是不反應方式,而後降溫後 100210-116389 005936987-1 -15 - 200828344 加入適量硬化劑如雙胺或紛樹脂及催化劑以充分溶解,再 降至室溫。取前配製之高分子/導電粉體混成溶液,加入 適量的高分子型分散劑(分散劑1),隨後若導電性不足可 再加入適量比例的導電粉體(如碳黑,粒徑10〜1 OOnm )、 銀片(1〜10 μπι)或其他添加劑,均勻攪拌並經三滾輪分散 後,形成聚合物/導電粉體混成漿料,並用鋼絲板網印方 法印在固定的圖案上,以加熱烘烤方式去除溶劑,並使之 交聯硬化形成厚膜電阻。本發明厚膜電阻之製作流程可歸 納如圖1所示。 該厚膜電阻之測試結果列於表二,其中玻璃轉移溫度 (Tg)係以熱機械分析儀(Thermal Mechanical Analyzer ; TMA)測得之。 表二 特性 比較例1 實施例1 實施例2 實施例3 實施例4 Tg(°C) 171 172 175 177 178 電阻(Ω) 746〜1041 827〜898 768〜832 39.17 〜42.69 38.05〜41.95 變異性 (+18.08, -15.38) (+3.67, -4.53) (+3.29, -4.66) (+5.32, -3.36) (+6.03, -3.82) # 比較例1為未進行預加熱反應過程,其中所含成分和實 施例1及實施例2之比例大致相同,但其網印後的電阻值變 異性(Tolerance)就差異很大,因為預加熱反應的過程可促 使奈米粉體與環氧部分結構進行反應,形成分子量較大且 較穩定的分子結構。另外實施例3及實施例4為添加2種導 電粉體之配方(其中碳黑粒徑為10〜100nm、銀片粒徑為 1〜10 μπι),都有經過預反應過程,其所做出之電阻材料, 除阻值較小外,電阻值變異性也較小。 100210-116389 005936987-1 -16- 200828344 由以上的結果得知,要獲得一個具高穩定阻值之高分子 /導電粉體混成材料,其配方中必須包含至少一高官能基 之環氧樹脂、高分子型分散劑、以及至少一具奈米粒徑之 導電粉體,如此才能製得一類真正具有應用價值之埋入式 電阻材料。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種 不背離本發明精神之替換及修飾。因此,本發明之保護範 • 圍應不限於實施例所揭示者,而應包括各種不背離本發明 之替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡单說明】 圖1顯示本發明之高分子厚膜電阻組成之製作流程。 【主要元件符號說明】 無 100210-116389 005936987-1 -17-Table 1 Composition Comparative Example 1 Example 1 Example 2 Example 3 Example 4 Pre-reaction without Epoxy 1 (g) 7.11 7.1 7.0 6.93 6.93 Epoxy 2(g) 4.44 4.44 4.38 4.33 4.33 Epoxy 3 (g) 1.24 1.24 1.22 1.21 1.21 Epoxy 4 (g) 1.78 1.77 1.75 1.73 1.73 Hardener (g) 3.36 3.36 3.31 3.28 3.28 Catalyst (g) 0.0626 0.0625 0.062 0.061 0.061 Dispersant 1 (g) 0.513 0.513 0.51 0.51 0.51 black (g) 4.04 4.06 4.04 3.88 4.08 silver plate (g) 0 0 0 29 30 The epoxy resin accounts for 30~80% by weight of the total solid content, the carbon black accounts for 5~20% by weight of the total solid powder, and the polymer dispersant accounts for The total solid powder is 0. 5 to 5% by weight. The hardener accounts for 3-20% by weight of the total solid powder. Further, in Examples 1 to 4, the silver flakes accounted for 0-60% by weight of the total solid powder. The manufacturing procedure of the examples in Table 1 is as follows, except that the comparative example does not perform the pre-reaction process of step 3 of the following 100210-116389 005936987-1 -14-200828344. 1. Epoxy Epoxy 1~4 and solvent are placed in a reaction flask and heated to 90~95 °C for mixing. 2. Add an appropriate amount of highly conductive powder to the above solution, and then mix it at high speed to form a mixed solution. The amount of the south conductive powder added is about 5 to 65% by weight based on the total solid powder. 3. The above mixed solution is pre-reacted at a high temperature of 100 to 140 ° C for about 30 minutes to 5 hours, and then lowered to 80 ° C, and an appropriate amount of a hardener and a catalytic agent are added to fully dissolve and then lowered to room temperature. 4. Take an appropriate amount of epoxy resin mixture solution and add appropriate amount of dispersant and other conductive powder (add as needed). 5. The obtained mixture was dispersed in three rolls to obtain a well-dispersed mixed resistance resin. 6. The above-mentioned mixed resistive paste is printed by a screen printing process to form a resistor at a position having a pattern. 7. After the electrical resistance measured by the electrical measurement, the resistance range obtained from the difference of the material composition is about 35 Ω~1.5 kD. 8. In the thermal property test, the Tg of the resistance component is in the range of 150 to 190 °C. In particular, first add an appropriate amount of epoxy resin to the reaction flask, and then add an appropriate amount of solvent BC (Diethylene Glycol Monobutyl ether) and Dimethyl formamide (DMF). Then, heating to 90 ° C ~ 95 ° C allows the epoxy resin to completely dissolve and cool. Adding an appropriate amount of conductive powder to the above solution and then uniformly dispersing it at a south speed, and performing a pre-reaction or a non-reaction method at a high temperature, and then adding a suitable amount of a hardening agent such as a double after cooling down 100210-116389 005936987-1 -15 - 200828344 The amine or the resin and the catalyst are fully dissolved and then lowered to room temperature. The polymer/conductive powder mixture solution prepared beforehand is added, and an appropriate amount of the polymer type dispersant (dispersant 1) is added. Then, if the conductivity is insufficient, an appropriate amount of the conductive powder (such as carbon black, particle size 10~) may be added. 1 OOnm ), silver plate (1~10 μπι) or other additives, uniformly stirred and dispersed by three rollers to form a polymer/conductive powder mixed slurry, and printed on a fixed pattern by wire mesh screen printing method, The solvent is removed by heat baking and cross-linked to form a thick film resistor. The manufacturing process of the thick film resistor of the present invention can be summarized as shown in Fig. 1. The test results of the thick film resistor are shown in Table 2, wherein the glass transition temperature (Tg) is measured by a Thermo Mechanical Analyzer (TMA). Table 2 Characteristics Comparative Example 1 Example 1 Example 2 Example 3 Example 4 Tg (°C) 171 172 175 177 178 Resistance (Ω) 746~1041 827~898 768~832 39.17 ~42.69 38.05~41.95 Variability ( +18.08, -15.38) (+3.67, -4.53) (+3.29, -4.66) (+5.32, -3.36) (+6.03, -3.82) # Comparative Example 1 is a preheating reaction process in which the components are contained. The ratios of the first embodiment and the second embodiment are substantially the same, but the resistance value variability (Tolerance) after screen printing differs greatly because the preheating reaction process promotes the reaction of the nano powder with the epoxy moiety structure. A molecular structure having a large molecular weight and a relatively stable structure is formed. Further, in the third embodiment and the fourth embodiment, a formulation in which two kinds of conductive powders are added (in which the carbon black has a particle diameter of 10 to 100 nm and a silver plate particle diameter of 1 to 10 μπι) is subjected to a pre-reaction process, which is The resistance material has a small resistance value variability except for a small resistance value. 100210-116389 005936987-1 -16- 200828344 It is known from the above results that in order to obtain a high-stability resistance polymer/conductive powder hybrid material, the formulation must contain at least one high-functional epoxy resin. A polymer type dispersant and at least one conductive powder having a nanometer particle size can be used to obtain a kind of embedded resistance material which is truly useful. The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is not limited by the scope of the invention, and the invention is intended to cover various modifications and alternatives. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a manufacturing process of a polymer thick film resistor composition of the present invention. [Main component symbol description] None 100210-116389 005936987-1 -17-

Claims (1)

200828344 十、申請專利範圍: 1 · 一種高分子厚膜電阻組成,包含: -裱氧樹脂系統,包含一環氧樹脂,其官能基大於等 於4 ; 至少一導電粉體,其平均粒徑介於1〇〜1〇〇nm; 一硬化劑;以及 一高分子分散劑; 藉由選用該ί哀氧樹脂系統,使該高分子厚膜電阻組成 φ 之玻璃轉移溫度至少15(TC。 2.根據請求項!之高分子厚膜電阻組成,纟中該環氧樹脂 包含如下之化學結構:200828344 X. Patent application scope: 1 · A polymer thick film resistor consisting of: - a silicone resin system comprising an epoxy resin having a functional group of 4 or more; at least one conductive powder having an average particle size of 1〇~1〇〇nm; a hardener; and a polymer dispersant; by using the oxygen resin system, the polymer thick film resistor composition φ glass transition temperature is at least 15 (TC. 2. According to The request item has a polymer thick film resistor composition, and the epoxy resin comprises the following chemical structure: 3·根據請求項1之高分子厚膜電阻組成,其中該環氧樹脂 系統另至少包含雙酚A型環氧樹脂、環狀脂肪族環氧樹 脂、含萘環環氧樹脂、雙苯基環氧樹脂或酚醛環氧樹脂。 4·根據請求項1之高分子厚膜電阻組成,其中該環氧樹脂 系統另包含雙酚二縮水甘油醚環氧樹脂、四溴雙酚 二縮水甘油醚環氧樹脂以及環狀脂肪族環氧樹脂。 5·根據請求項1之高分子厚膜電阻組成,其中該環氧樹脂 系統佔總固體含量30〜80%之重量百分比。 6·根據請求項1之高分子厚膜電阻組成,其中該導電粉體 包含兩種或兩種以上之粒徑分佈。 I〇〇2i〇-n6389 0〇5936987-i 200828344 7·根據凊求項1之高分子厚膜電阻組成,其中該導電粉體 選自銀粉、碳黑及石墨組成之群。 8·根據明求項1之高分子厚膜電阻組成,其中該導電粉體 佔總固體粉體5-65%之重量百分比。 9_根據請求項丨之高分子厚膜電阻組成,其中該導電粉體 係碳黑。 10_根據凊求項9之高分子厚膜電阻組成,其中該碳黑佔總 固體粉體5〜20〇/〇之重量百分比。 Π.根據請求項9之高分子厚膜電阻組成,其中該導電粉體 另包含銀片,且其平均粒徑介於bWpm。 12·根據请求項丨丨之高分子厚膜電阻組成,其中該銀片佔總 固體粉體0-60%之重量百分比。 13·根據請求項丨之高分子厚膜電阻組成,其中該高分子分 散劑係選自共聚酯-醯胺及聚酯類組成之群。 14·根據請求項!之高分子厚膜電阻組成,其中該高分子分 散劑佔總固體粉體〇.5〜5 〇/。之重量百分比。 15·根據請求項丨之高分子厚膜電阻組成,其中該硬化劑佔 總固體粉體3-20%之重量百分比。 16·根據請求項15之高分子厚膜電阻組成,其中該硬化劑係 選自雙胺、紛樹脂及酸無水物組成之群。 17·根據請求項丨之高分子厚膜電阻組成,其中該環氧樹脂 系統和該導電粉體係先混合,並在1〇〇〜14(rCi溫度進 行預反應3 0分鐘至5小時。 18·根據請求項1之高分子厚膜電阻組成,其可藉由網印製 200828344 程,應用於印刷電路板或1C基板用之内埋式電阻元件。 19 ·根據清求項1之焉分子厚膜電阻組成,其另包含一催化 劑。 2 0 ·根據请求項19之南分子厚膜電阻組成,其中該催化劑係 選自陽離子系觸媒、陰離子系觸媒及味唾組成之群。 21 · —種高分子厚膜電阻組成之製作方法,包含下列步驟: 混合一環氧樹脂糸統及至少一導電粉體,其中該環氧 樹脂系統所製成之高分子厚膜電阻具有至少15 〇 °C的玻 璃轉移溫度’且包含一壞氧樹脂’其官能基大於等於4 ; 加熱該環氧樹脂系統及導電粉體以進行預反應; 加入一硬化劑後降溫;以及 加入一高分子分散劑以製成電阻漿料。 22·根據請求項21之高分子厚膜電阻組成之製作方法,其中 該環氧樹脂系統及導電粉體係於100-14〇°C之溫度加熱 30分鐘至5小時以進行預反應。 23·根據請求項21之高分子厚膜電阻組成之製作方法,其另 _ 包含將該電阻漿料利用網版印刷製作厚膜電阻之步驟。 24·根據請求項21之高分子厚膜電阻組成之製作方法,其中 降溫後係再次添加導電粉體。 25·根據請求項21之高分子厚膜電阻組成之製作方法,其中 該環氧樹脂系統包含如下之化學結構: 100210-116389 005936987-13. The polymer thick film resistor composition according to claim 1, wherein the epoxy resin system further comprises at least a bisphenol A type epoxy resin, a cyclic aliphatic epoxy resin, a naphthalene ring-containing epoxy resin, and a diphenyl ring. Oxygen resin or phenolic epoxy resin. 4. The polymer thick film resistor composition according to claim 1, wherein the epoxy resin system further comprises bisphenol diglycidyl ether epoxy resin, tetrabromobisphenol diglycidyl ether epoxy resin, and cyclic aliphatic epoxy Resin. 5. The polymer thick film resistor composition according to claim 1, wherein the epoxy resin system accounts for 30 to 80% by weight of the total solid content. 6. The polymer thick film resistor composition according to claim 1, wherein the conductive powder contains two or more particle size distributions. I〇〇2i〇-n6389 0〇5936987-i 200828344 7. The polymer thick film resistor composition according to claim 1, wherein the conductive powder is selected from the group consisting of silver powder, carbon black, and graphite. 8. The polymer thick film resistor composition according to claim 1, wherein the conductive powder accounts for 5-65% by weight of the total solid powder. 9_ According to the request item, the polymer thick film resistor composition, wherein the conductive powder is carbon black. 10_ The polymer thick film resistor composition according to claim 9, wherein the carbon black accounts for 5 to 20 Å/〇 of the total solid powder. The polymer thick film resistor composition according to claim 9, wherein the conductive powder further comprises a silver flake and an average particle diameter of bWpm. 12. The polymer thick film resistor composition according to the claim, wherein the silver sheet comprises 0-60% by weight of the total solid powder. 13. The polymer thick film resistor composition according to the claim, wherein the polymer dispersant is selected from the group consisting of copolyester-melamine and polyester. 14. According to the request item! The composition of the polymer thick film resistor, wherein the polymer dispersant accounts for 总.5~5 〇/ of the total solid powder. The weight percentage. 15. The polymer thick film resistor composition according to the claim, wherein the hardener comprises 3-20% by weight of the total solid powder. The polymer thick film resistor composition according to claim 15, wherein the hardener is selected from the group consisting of a diamine, a resin, and an acid anhydride. 17. The polymer thick film resistor composition according to the claim ,, wherein the epoxy resin system and the conductive powder system are first mixed and pre-reacted at a temperature of from 1 to 14 (rCi temperature for 30 minutes to 5 hours. According to the composition of the polymer thick film resistor of claim 1, it can be applied to a buried resistive element for a printed circuit board or a 1C substrate by screen printing 200828344. 19 · Molecular thick film according to the claim 1 The composition of the resistor further comprises a catalyst. 20. The composition of the south molecular thick film resistor according to claim 19, wherein the catalyst is selected from the group consisting of a cationic catalyst, an anionic catalyst, and a saliva. 21 · The manufacturing method of the polymer thick film resistor composition comprises the following steps: mixing an epoxy resin system and at least one conductive powder, wherein the epoxy resin system has a polymer thick film resistor having a capacitance of at least 15 〇 ° C The glass transition temperature 'and contains a bad oxygen resin' having a functional group of 4 or more; heating the epoxy resin system and the conductive powder for pre-reaction; cooling after adding a hardener; and adding a polymer dispersion The agent is used to prepare a resistive paste. 22. The method according to claim 21, wherein the epoxy resin system and the conductive powder system are heated at a temperature of 100-14 ° C for 30 minutes to 5 hours. The pre-reaction is carried out. 23. The method for producing a polymer thick film resistor composition according to claim 21, further comprising the step of producing a thick film resistor by screen printing the film according to claim 21. A method for fabricating a molecular thick film resistor composition, wherein a conductive powder is added again after cooling. 25. The method for fabricating a polymer thick film resistor composition according to claim 21, wherein the epoxy resin system comprises the following chemical structure: 100210- 116389 005936987-1 200828344 ^ fr求項21之商分子厚膜電阻組成之製作方法,其中 樹脂系統另至少包含雙盼A型環氧樹脂、環狀脂 肪麵%氧樹脂、含萘環環氧樹脂、雙苯基環氧樹脂或齡 駿環氧樹脂。 27.根據請求項21之高分子厚膜電阻組成之製作方法,其中 該環氧樹脂系統佔總固體粉體3〇〜8〇%之重量百分比。 28·根據請求項21之高分子厚膜電阻組成之製作方法,其中 該V包粉體係選自銀粉、碳黑及石墨組成之群。 29·根據請求項21之高分子厚膜電阻組成之製作方法,其中 該¥电粉體係奴黑,且其平均粒徑介於1〇〜1〇〇nm。 3〇·根據請求項29之高分子厚膜電阻組成之製作方法,其中 該導電粉體另包含銀片,且其平均粒徑介於 31。根據請求項30之高分子厚膜電阻組成之製作方法,其中 該銀片佔總固體粉體0〜60〇/〇之重量百分比,且該碳黑佔 總固體粉體5〜20%之重量百分比。 32·根據請求項21之高分子厚膜電阻組成之製作方法,其中 該高分子分散劑佔總固體粉體〇·5〜5%之重量百分比。 100210-116389 005936987-1200828344 ^fr. The method for producing a thick film resistor composition of a commercial molecule, wherein the resin system further comprises at least a double-presence A type epoxy resin, a cyclic fat surface % oxygen resin, a naphthalene ring epoxy resin, a double phenyl ring Oxygen resin or ageing epoxy resin. 27. The method of producing a polymer thick film resistor composition according to claim 21, wherein the epoxy resin system comprises 3 to 8% by weight of the total solid powder. 28. The method according to claim 21, wherein the V-coated powder system is selected from the group consisting of silver powder, carbon black and graphite. The method for producing a polymer thick film resistor composition according to claim 21, wherein the electric powder system is black and has an average particle diameter of from 1 〇 to 1 〇〇 nm. 3. The method for producing a polymer thick film resistor composition according to claim 29, wherein the conductive powder further comprises a silver flake and an average particle diameter of 31. The method for preparing a polymer thick film resistor composition according to claim 30, wherein the silver sheet accounts for 0% to 60% by weight of the total solid powder, and the carbon black accounts for 5 to 20% by weight of the total solid powder. . The method for producing a polymer thick film resistor composition according to claim 21, wherein the polymer dispersant accounts for 5 to 5% by weight of the total solid powder. 100210-116389 005936987-1
TW95149733A 2006-12-29 2006-12-29 Composition of polymer thick film resistor and manufacturing method thereof TWI336085B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95149733A TWI336085B (en) 2006-12-29 2006-12-29 Composition of polymer thick film resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95149733A TWI336085B (en) 2006-12-29 2006-12-29 Composition of polymer thick film resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200828344A true TW200828344A (en) 2008-07-01
TWI336085B TWI336085B (en) 2011-01-11

Family

ID=44817634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95149733A TWI336085B (en) 2006-12-29 2006-12-29 Composition of polymer thick film resistor and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI336085B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103694796A (en) * 2013-12-19 2014-04-02 电子科技大学 Method for preparing printed circuit board embedded resistor ink-jet printing ink
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
CN103694796A (en) * 2013-12-19 2014-04-02 电子科技大学 Method for preparing printed circuit board embedded resistor ink-jet printing ink

Also Published As

Publication number Publication date
TWI336085B (en) 2011-01-11

Similar Documents

Publication Publication Date Title
KR101559605B1 (en) Thermosetting conductive paste and laminated ceramic electronic component possessing external electrodes formed using same
JP5400801B2 (en) Conductive paste for external electrode, multilayer ceramic electronic component having external electrode formed using the same, and method for manufacturing multilayer ceramic electronic component
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
JP4855077B2 (en) Conductive paste composition for low-temperature firing and method of forming wiring pattern using the paste composition
TWI378960B (en) Organic/inorganic hybrid material of dielectric composition with electrostatic discharge protection property
TW200927806A (en) Flexible, low dielectric loss composition and manufacture method thereof
JP4235888B2 (en) Conductive paste
JP5458862B2 (en) Heat-curable silver paste and conductor film formed using the same
WO2015099049A1 (en) Conductive paste and conductive film
JP7461191B2 (en) silver paste
TWI336085B (en) Composition of polymer thick film resistor and manufacturing method thereof
KR101348950B1 (en) Via paste for non-sintering ceramic hybrid substrate and producing method the same
TWI262204B (en) Resin composition having high dielectric constant and uses thereof
JP2012201726A (en) Paste composition, and magnetic substance composition made using the same
JP2009263645A (en) Paste composition and magnetic body composition using the same
KR101573372B1 (en) Low temperature cureable conductive paste composition and method thereof
CN101226785B (en) Polymer thick film resistor composition
JP4872166B2 (en) Electrical circuit using conductive paste, method for manufacturing the same, and method for manufacturing conductive paste
CN115124880A (en) Insulating ink for packaging semiconductor passive element, preparation method and application
JP2005002281A (en) High dielectric constant epoxy resin composition
CN112457706A (en) Heat dissipation ink, preparation method and preparation method of heat dissipation shielding case
CN116568428A (en) Paste
TWI631160B (en) Conductive paste and substrate with conductive film
JP2018106906A (en) Paste for electrode, and multilayer ceramic electronic component
JP2017152221A (en) Heat hardening type conductive paste composition and cued article thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees