TW200827953A - Holographic display device - Google Patents

Holographic display device Download PDF

Info

Publication number
TW200827953A
TW200827953A TW96140512A TW96140512A TW200827953A TW 200827953 A TW200827953 A TW 200827953A TW 96140512 A TW96140512 A TW 96140512A TW 96140512 A TW96140512 A TW 96140512A TW 200827953 A TW200827953 A TW 200827953A
Authority
TW
Taiwan
Prior art keywords
light
array
display device
image
holographic
Prior art date
Application number
TW96140512A
Other languages
Chinese (zh)
Other versions
TWI403868B (en
Inventor
Ralf Haubler
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0621360.7A external-priority patent/GB0621360D0/en
Priority claimed from GB0705398A external-priority patent/GB0705398D0/en
Priority claimed from GB0709379A external-priority patent/GB0709379D0/en
Priority claimed from GB0709376A external-priority patent/GB0709376D0/en
Priority claimed from DE102007024236A external-priority patent/DE102007024236A1/en
Priority claimed from DE102007024237A external-priority patent/DE102007024237B4/en
Priority claimed from GB0714272A external-priority patent/GB0714272D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200827953A publication Critical patent/TW200827953A/en
Application granted granted Critical
Publication of TWI403868B publication Critical patent/TWI403868B/en

Links

Landscapes

  • Holo Graphy (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

A holographic display comprising light sources in a 2D light source array, lenses in a 2D lens array, a spatial light modulator (SLM) and a beamsplitter, in which there are m light sources per lens, and the light sources are in m-to-one correspondence with the lenses. The beamsplitter splits the rays leaving the SLM into two bundles, one of which illuminates the virtual observer windows for m left eyes and the other illuminates the virtual observer windows for m right eyes. In one example, m=l. An advantage is 2D-encoding with vertical and horizontal focusing and vertical and horizontal motion parallax.

Description

200827953 九、發明說明: 【發明所屬之技術領域】 本案為一種用於產生三維圖像的全像顯示裝置,尤指電腦產 生的影像全像圖會在其上進行編碼之全像顯示裝置。此裝置會產 生三維全像重建。 、 【先前技術】 _ 電腦產生的影像全像圖(Computer-generated video holograms,CGHs)是由一個或更多的空間光調變器(spatial light modulators,SLMs)所編譯而成;空間光調變器可包括電 子或光學可控制的元件。這些元件根據影像全像圖來對全像圖值 進行編碼,藉此達到調變光的振幅及相位之目的。電腦產生的影 像全像圖是可以被計算出來的,例如通過同調光線追蹤、通過模 擬受到場景反射的光以及參考波之間的干擾,或者通過傅立葉 # (F〇Urier)或菲科(F贿⑴轉換。-個理想的空間光調變器是 能表現任意複數的數值,即分別控制進入光波的相位及振幅。然 而’典型的空間光調變器只能控制振幅或相位其中一種特性,並 且帶有影響其他特性的不良效應。調縣的振幅及她具有幾種 不同的方式,例如细電子式定址液晶空間光調_、光學式定 址液晶空間光調變器、磁光空間光調變器、微鏡裝置或者聲光 變器。光的調變可為空間上連續的或由侧可故元件所構成 可為-維或二維排列、二進制、多階層或連續。 7 200827953 在本發明中,奎 值來對全像圖舰“f詞”卿意指提供空間光調變器控制 重建。所以°”、‘、’/传二維場景可以透過空間光調變器來進行 器上進行^空間光調變器編碼全侧”綠全側在郎調變 到三純自動歧體顯示板,觀察肢過影像全像圖可觀察 眼光波波前的光學重建。三維場景是在延伸於觀察員的 •鲁 u I &光調魏之間或者甚至空間絲變器之後的空間進行 _ $建工間光調變器也能利用影像全像圖進行編碼,使得觀察員 ,在二間麵魏之麵察到重建的三維場景物件,而在空間光 調變器上或其後方觀_其他物件。 空間光調變H的元件是光傳輸性較侧元件,其射線所產生 勺干擾至>、在疋義的位置,並且超過幾毫米的空間同調性長 度。每可提供全像重建至少在—讎度具有足夠的解析度。這類 Φ 型的光將稱為”充份同調光”。 、 ,為了保證足夠的時間同調性,由光源發射的光譜必需限制於 - 一個適當狹窄的波長範圍内,也就是必需接近單色。高亮度發光 二極體(LEDs)的光譜頻寬是足触轉確保全像重建的時間同調 性。在空間光調變器上的繞射角度與波長成比例,意指只有一個 單色光源將導致目標點的重建強烈。寬闊的光譜則導致寬闊的目 標點以及模糊的目標重建。雷射源的光譜可以被當作為單色的。 發光一極體(LED)的光譜線寬是充份狹窄的,能幫助較佳的重建。 200827953 二間同離與光源的橫向寬度錢。制的光源,像是發光 二極體(LEDs)或者冷陰極發紐⑽似,如找們的發射光是 充h狹乍的縫隙也可以滿足這些需求。雷射光源的光可視為 從繞射限制的點光源所發射,輯模型的的純度、將產生目標的 尖銳重建,即每—個目標點被重建為繞射限制的點。 從空間非_光源所產生的光是橫向延伸,並且會造成重建 目心柄糊_糊的情況是由重建在既定位置的目標點寬闊大小所 決定。為了在全像圖重建上使用郎非同調光源,必須在亮度和 利用孔控關統橫向寬度之職到—個折衷點。較小的光源, 會得到比較好的空間同調性。 如果從直角於縱向延展的觀點來觀察,直線光源可被視為點 光源。因此’光波就能在那個方向進行同調傳播,獻非同調於 其他方向。 般而δ,王像圖藉由波在水平和垂直方向的同調超重疊來 全像地重建場景。上_全像稱做全視差全侧。重建 的物件可被視為在水平㈣直方向的義視差,如_實物件。 然而’較大的可視肢f要在郎光調㈣的水平和垂直方向具 有高的解析度。 9 200827953 通常,空間光調變器的需求會因為限制於僅具水平視差(Hp〇) 的全像圖而減少。全像重建僅發生於水平方向,在垂直方向不會 有全像重建。這將導致重建物件具有水平移動視差。透視圖並不 會在垂直織上改變。僅具轉視差的全像圖需要空間光調變器 在垂直方向的解析度會少於全視差的全像圖。僅具垂直視差(νρο) 的全像圖是同樣可以如此的但較為罕見。全像重建只發生在垂直 方向,會產生具有垂直移動視差的重建物件。而在水平方向不會 有移動視差。由於左眼和右眼觀察到的透視圖不同,因此透視圖 必須分別地產生。 討論相關的技術 典型地,用於產生三維圖像的裝置較缺乏緊密,即需要複雜 麝及龐大的光學系統’使其無法使用在可攜式裝置,或在手持式裝 - 置’例如手機。以US4, 20Μ86為例,用於產生較大三維圖_ — 健長度是以公尺為單位。以WG 2GG4/G44659 〇JS2_/_994) 為茶考’用於重建影像三賴像的裝置具有超過1〇公分的厚度❶ 因此,上述的f用裝置對於手機或其他可攜式、手持式或較小的 顯示裝置具有過厚的厚度。 在WO 2G_44659 (_瞄/_994)之中提及藉由充份同調 200827953 光的繞射錢三料景贼置;錢包括點光喊贿光源、用 於對焦光_透鏡以及空間光調變器。她於制 空間光調魏於傳輸模式至少在-個,,虛擬觀料視窗 維場景(關於虛纖察員視窗的描述及相關的技術請參考附件^ II) °每—個虛織察員視窗是設置於觀觀察㈣轉,並且大 1、上受到限制,所以虛擬觀察員視窗是於單—的繞射階級,因此 母-個眼睛可以看見三維場景在_狀重建空_完整重建,圓 鬌錐狀的重建空間是延展於空間光調變器表面及虛擬觀察員視窗之 -間。為了讓全像重建沒有干擾,虛擬觀察員視窗的大小必需不超 過重建的-個繞射階級職性間隔。然而,這必需至少足夠大, 能讓觀耗經由視S看見三維場景的完整重建。另-個眼睛能經 由相同的虛擬觀察員視窗,或是由第二個光源所產生的第二個虛 擬觀察員視絲進行觀察。此時,典型上較大的可見區域會限制 鲁於局心置的虛擬觀察員視窗。習用的解決方法是在由習用高解 度空間光調變器表面所產生的微小化大區域進行重建,以減低至 — 虛擬觀察員視窗的尺寸大小。這將產生由於幾何上原因而較小的 、'心射角度’以及利用消費者層級的計算設備,即足夠實現高品質 即時全像重建的光調變器解析度。 然而,已知產生三維圖像的方法,呈現出由於較大的空間光 凋、交益表面區域,因而需要一個體積大、容量大、重量重及昂貴 11 200827953 的透鏡來聚焦的缺點。因此,梦署 將有大的厚度及重量。另-個 :,f細職域鏡時,由於邊緣的色差將嚴重地減低重 =品貝。在隨6/25_提及—個改進包括透鏡狀陣列的光 源改進方法,雜找應料域__财,於 個參考,。 β在腦撕中提到了產生三維影像的手機。然而,所 &及的二維影像是·自動立體顯示所產生。自動立體顯示 產生三維®像的-_贼在典型上觀看者察翻像是在顯示器 内部,而觀看者的眼睛傾向於集中在顯示器的表社。在許多實 例中,觀看者眼睛的焦點及三維圖像的察覺位置之間的不同,將 可月k成制者不舒服的現象。在_全像技術產生三維圖像的 實例中,這_題將不會發生,或是大大地減少。 【發明内容】 在第-方面,提供了 —個全像顯示裝置,包括二維光源陣列 形式的光源、二維透鏡_形式的透鏡、空間光調變if與光束分 光鏡,在其中每個透鏡對應m個絲,且光源是以m對一的方式 與透鏡對應,光束分光鏡會雜岐觀_絲分成兩束 光’其中一個照射對於m個左眼的虛擬觀察員視窗,另一個照射 對於ra们右眼的虛擬觀察員視窗。全像顯示裝置可為每個透鏡對 應一個光源,且光源是以ϋ方式與透鏡對應,也就是m=l。 12 200827953 王像顯錢置可以發光二極體作為它的光源。 像如可為以二維編個時地在水平與垂直方向提供全像 0 全像顯示可為在其中二維編碼不會產生散光。 、,王像如可為在其巾具有垂直與水平聚焦及垂直與水平移動 視差的二維編碼是可能。 4 全像顯示可為在其中光束分光鏡是為棱鏡陣列。全像顯示可 為在其中光束分域是為—維_錄鏡_。全細示可為在 其中光束分光鏡賊_是整合至或直接在如光觀器上,作 2反射、繞射或全像錢_。全賴柯為在其巾光束分光鏡 是為另-個透鏡_。全賴示可為在財光束分光鏡是為障礙 遮蔽物。全像顯示可為在射絲分光鏡是在空縣調變器之 後。全像顯示可為在其中光束分光鏡是在空間光調變器之前。 全像顯示可為在射每個光源是藉由它的_透鏡成像至觀 察者平面。全賴7F可為在其帽於—個為給定的觀察者,光源 13 200827953 陣列的間戦透鏡__距會使得全部光源_成像在觀察者 平面,也就是包含兩個虛擬觀察員視窗的平面。全像顯示可為在 其中具有一個額外的場透鏡。 全像頒不可為在其中為了提供充份的空間同雛,透鏡陣列 的間距是她於次全像_典型大小。全細示可為在其中的光 鲁源為λ!、的或是點光源。全像齡可為在其巾的魏相是反 繞射或全像的。 ^ 全^柯為在射對於魏與魏的全細是—攔一棚地 又、曰可為在其中光束分光鏡關距是_或是整數倍 間光§聰_距,或是光束分編顺是稍微不同或 疋正數倍數上稍财_空間光調麵的間距,以容許透視縮短。 可私射的絲分級是域射絲 顯不可為在其中具有光源追蹤的實作。像 中棱糊會在左眼虛轉 ne~SQUare_最域,在錢虛_察 、*、 生另一個強度封裝Sinc-S(jUared函數 入 像顯示可為在J:巾心Μ。、 ㈣大值。全 在,、中虛Μ雜减f的高度是較小於_於關於在 14 200827953 空間光調變器的繞射的垂直週期性間隔,虛擬觀察員視窗的寬度 是較小於或等於關於在光束分統的繞㈣水平週期性間隔。 全像顯示可為在其中具有虛擬觀察員視窗的空間多工結合二 維編碼。 全像顯示可為在其巾光束分光鏡是另—個透鏡_,且為靜 態的。全像顯示可為在射光束分光鏡是另—錢鏡陣列,且^ 可變的。 '' 全像顯示可為在其中為了提供充份的空_周性,透鏡陣列 的間距是相似於次全像_典型大小,也就是從—至數毫米 級。 、 全像顯示可輕射對於魏與右_全側是-攔-攔地 交錯。全像顯示可為在射棱辦觸f植是足夠小的,使得眼 目月不讀析賊的結構,且棱鏡的結構不會干擾重建的圖像。 哈特(Burckhanit)編碼。 。全像顯示可為在其中有 全像顯示可為在其中有使用到布克 全像顯示可為在其中有使_振幅編碼 使用到相位編碼。 15 200827953 王細7F可為在其巾虛擬觀察員視窗的分隔是由—個包含封 衣液日日區域(encapsulated liquid-crystal domains)的组合所控 制,使得電場㈣每—區域的反射似及紐射肖度。全像顯示 可為在其中虛擬觀察員«的分隔是由包含棱鏡_結構邊上、的 液晶層的組合所控制,使得電場控制液晶的反射值以及光繞射角 馨度王像頌不可為在其中虛擬觀察員視窗的分隔是由e_w咐_ k鏡^列所控制。全像顯示可為在其巾棱鏡陣列具有高的填充因 子思即接近於100%。全像顯示可為在其中觀察者離空間光調變 器的距離是介於20公分與4公尺之間。全像顯示可為在其中榮幕 的尺寸是介於1公分與5〇射之間。 全_示可利用背光與微透鏡陣列進行照射。微透鏡陣列可 ·’、…區域上提供局部同調性,此區域是顯示器對於使用 在重建物件之給絲的資訊進行編碼的唯—部份。顯示器可包含 反射式偏光片。可包含稜鏡光學膜。 々由在另—方面,提供了—個產生全像4建的方法,包含使用如 中所述的顯示裝置的步驟。 16 200827953 利用"空間光調變器編碼全像圖"意指全像圖是在空間光調 變器上進行編碼。 【實施方式】 A·、、工外線有機發光二極體顯示器與光學式定址空間光調變器的緊 密結合 瞻 ^個實施峨供光學歧址如光調龍與可在光學式定址 空間光峨H上g人圖樣的紅外線發麵示器的緊密結合,這樣 的結合能夠在適當的酬條件下產生三_像。 光學式定址空間光調變器包括感光器層與位於在傳導性電極 之間的液晶(LC)層。當電壓加至電極,入射在感光器層上的光圖 樣將轉換至用於調變讀取光束的液晶層。在習用技術中,入射光 • 圖樣是由電子式定址空間光調變器(EASLM)所調變的寫入光束所 提仏%子式定址空間光調變器是由光源照射並且成像到光學式 疋址空間光調變器上。通常,寫入光束是非同調的,可避免斑點 圖樣現象,而讀取光束是同調性的,具有產生繞射圖案的能力。 光學式定址空間光調變器相較於電子式定址空間光調變器的 優點是光學式定址空間光調·可具有連續、非像素或非圖樣式 的結構,而電子式定址空間光調變器則為像素結構。像素在光的 17 200827953 玉間刀配上產生銳邊·此銳邊相當於高空間頻率。 高空間頻率會導致在光學遠場裡廣角繞射的特性。因此,電 定址空間光觀器會產生錢學遠場林輕出現攸學繞糾 工品’必須錢如空間等已知的技術來錄。在光學處理程 序中,進行空間紐需要增加額外的步驟,這會讓襄置變的較厚 而且會造成光驗費。光學式定址雜光調龍類動裝置優點 是能夠在光學式定址空間光調變器中允許__樣產生。連病 賴樣可讓光強度,具有較少的陡養化在任何給定方向轉換^ 光束傳播的方向。因此,較少的㈣變化擁有能比電子式定址^ 間光調變繼職靖她__酬濃度 2學式疋址空間光調變器的裝置令,較低濃的高空間頻率可促 較為容易’並且比包含電子式定址空間光調變器職 率。此外,她於電子式定址郎光調變n,光學式定 變繼可為雙繼置。因此,光學奴址空間光 可=子式奴空間光調變雜置具有較低的電源需求, ""曰瓜式裝置或错絲置的電池壽命。 在這個實施齡紹不轉成像絲的轉裝置。光 以組 二極體顯示狀直接連接光學式定址空間光調變器,形成不= 像光崎繼,她:喻岐彻_式, 18 200827953 成有機光—極體_。光學式定址空間光調變器可由多個較小 的可舖置型光學式定址空間光調變器所組成。, 人有機極體顯示!!與光學式定址空間光調變器的緊密組 口可以疋透明。透明的有機發光二極體顯示器是目前已知的,例 如在之後的”有機發光二極體材料,,章節中所描述的内容。在一個 馨例子巾’有機發光二極麵示器、與光學式定址空間光調變器的緊 密組合是從對邊至三維圖像所形成的邊進行照射,可見光經由有 機發光一極體與光學式定址空間光調變器向觀察員傳送。更好的 方法疋有機發光二極體顯示器發出紅外線來寫入至光學式定址空 間光凋雙益的紅外線感應感光器層。因為人類的眼睛對紅外線不 敏感,所以觀察者看不見任一種從紅外線寫入光束產生的光。 鲁另一個例子,有機發光二極體顯示器與光學式定址空間光調 變裔的緊密組合可讓寫入光束與讀取光束在光學式定址空間光調 k》的對邊上為人射的。在另—個例子,有機發光二極體顯示哭 與光學式定址空間光調變器的緊密組合可讓反射層是在光學式定 址空間光調變器的邊上,此為有機發光二極體顯示器的對邊,使 付一維圖像可從光學式疋址空間光調變器的相同邊觀察到,也上尤 是有機發光二極體顯示器所在的邊,照射源也如同有機發光一極 體顯示器一樣,位於光學式定址空間光調變器的同邊上:3反 19 200827953 射顯不裔的例子。, 包括紅外線有機發光二極體的陣列的實施例中,紅外線發射 有機毛光-極體允許對由光學式定址空間光調變輯傳送的可見 光的振幅、她或振幅及她的組合進行㈣,賊全像圖在光 學式定址空間光調變器中產生。光學式定址空間光調變器可包含 對透月Ik板’在隔板上塗有兩種電力導電膜,如同參考資料中 US4,941,735所描述的内容。連續或不連續的感光膜可塗至盆中一 個導電膜上。 μ 讀光束的偏化 雙穩態鐵電式液晶或—些其它型式的液晶,可_在另一個 導電膜與感細之間。起動可加至導賴。在光學式定址* ==器中’光學式寫人光束可_逐—像素的方式程式‘ 動光料取光束的魏。寫从束可__起動絲式定址空 間先調__光區來程式光學式定址空間細魏 Γ空間細細心咖_,麵 圖-描述-種實施例。10是照明裝置,用於提 照明,其中卿是具找份㈣雛讀在 =°r=r用於大區域影像全像圖的照明裝置例 询吟如㈣雜㈣自光光源陣列 20 200827953 的形式’例如冷陰極螢統或發㈣麟人射在聚㈣統上的白 、Ά光極體’其中聚焦系統可為緊密的,如透鏡狀陣列或微透 鏡陣列或者’用於10的光源可由紅、綠及藍雷射所組成,或是 發出充份_性光的紅、綠及藍發光二極體所組成。然而,具有 充知工間同β周性的非雷射光源(例如:發光二極體,有機發光二極 體,冷陰極$光燈)是更佳的。雷射光源的缺點,像是在全像重建 ^造成,射斑點、相對上較為昂貴以及所有關於傷害全像顯示觀 者或疋進仃全像顯示裝置組裝工作人員的眼睛等可能的安全問 題。耕ΗΜ3的厚度全部可約為數公分,或是更低。元件u可 =咖陣列,使得彩色光線(例如紅色、綠色及藍色光)的像 ^射向元件12,儘管如果使用彩色統,色彩過抑是不需要 吃有機tr#咖基板上的紅外線有機發光二極斷列。紅外 斷聰使縣-條外財贿光二鋪在元 光。元==二光丄平行且符合從唯—對應的色彩像素發出的 2 _細妓。絲狀址空間光 的=先= 二極體陣列提供寫入光束;元件η發射 的壯^為_光束。位於點14離包括緊密全像圖產生哭15 ω衣二丨^^觀看者’可從丨5的方向觀看到三维圖像。元件 構的-層:::r一實 一果有 __,::::: 21 200827953 連接可限制在雜正麵相尬合制的小區 至較大的輯,甚至整錄面。實體連接可❹^可延伸 來實現,例域由細絲傳送職_方式,叫==雜 =像圖產生㈣,或是藉由其錄何的对(參雜絲造程= 麝 元件10可包含一個或兩倾鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的,例如在us 5,056,892與us 5,9i9,55i中1^ —述的内容。元件可包含偏光元件,或是偏光元件的集合。^ 偏光薄片是其中-個例子。另外—個例子是反射式偏以,可傳 送一個線性偏化狀態,並且反射歧線性偏化狀態_這樣的薄片 是已知的,例如在US 5,828,中所描述的内容。另一個例子是 反射式偏W,可傳送-個圓形偏化狀態,並且反射正交圓形偏 Φ化狀態這樣的薄片是已知的,例如在US6,181,395中所描述的 内谷it件10可包含焦系統,此聚焦系統可為緊密的,例如透 .鏡狀陣列或微透鏡陣列。元件10可包含其它在背光科技的領域中 已知的光學元件。 圖四是習用技術側視圖,指出垂直聚焦系統11〇4的三個聚焦 元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形 式’參照於參考資料WO 2006/119920。並以水平線光源LS2幾近 22 200827953 準直的光束通過照明單位的聚焦元件1102至觀察員平面0p為 例。根據圖四,許多的線光源LSI,LS2, LS3是一個個上下排列。 每一個光源發射的光,在垂直方向是充份空間同調性的,在水平 方向是空間非同調性的。這個光會通過光調變器SLM的傳輸元 件。這個光因為全像圖編碼的光調變器SLM的元件,僅在垂直方 向的繞射。聚焦元件Π02在觀察員平面OP以數個繞射階級(只有 一個是有用的)成像光源LS2。由光源LS2所發射的光束是作為口 通過水焦系統1104的聚焦元件11〇2的例子。在圖四中,二^ 击曰-〃 τ 二個光 束顯示第一繞射階級11〇5、第零繞射階級11〇6及負—繞射卩比級 1107。與單一點光源相比,線光源允許非常高的光強度產生。使 用多個已增加效率與針對重建三維場景的每一個部分進行線光源 排列的全賴域可提升有效的光強度。另—個優點 夕 不巾_射, 夕個为隔的(例如在可為遽光器―部份的槽闌之後)常見光源可產 生充份的同調光。 B•兩對有機發光二極 組合。 體 與光學式定址空間光調變器的組合的緊密 一在更進-步的實施例中,可使用兩對有機發光二極體與光學 式定址空間光觀H的組合的緊練合,以連續及緊密的方式二 :變的振幅及她。因此,由振幅油她成的複數可以逐 素的方式在傳送光中編譯。 23 200827953 這個實施例包含第一由紅外線有機發光二極體陣列及光學式 定址空間光調變器配對的緊密組合及第二由紅外線有機發光二極 體陣列及光學式定址空間光調變器配對的緊密組合。 第一對調變傳送光的振幅,第二對調變傳送光的相位。也可 鲁以第一對調變傳送光的相位,第二對調變傳送光的振幅。每一個 紅外線有機發光極體陣列與光學式定址空間光調變器的緊密組 合可如同在A部份所描述的。兩對紅外線有機發光二極體陣列與 光學式定址空間光婦H的緊密組合是由紅外線過魅所分離, 紅外線過濾器會吸收紅外線而不處理可見光。 在第-步驟巾,第-紅外線有機發光二極體_寫入圖樣, 鲁以提供在第-光學式定址空間光調變器中的振幅調變。在第二步 '驟巾’第二紅外線錢發光二極體_寫人隨,以提供在第二 '光學式定址空間光調變財的鄉觀。紅外線濾光片阻止紅外 線的茂漏從第-緊密組合一對紅外線_有機發光二極體陣列與光學 式定址空耻靖糾第二緊密組合—對紅外線_有機發光二極體 陣列與光學式定址封技調變器.紅外線過脑也預防從第二對紅 、表有機& 極體陣顺光學式定址空間光調變㈣緊密組合 、卜線相至第—對紅外線有機發光二極體卩物與光學式定址 24 200827953 工間H☆的緊密組合。然而,紅外線過濾器傳送從第一對紅 外線有機發光二鋪陣顺光學式定址空間光調_的緊密組合 的可見光’以作為第二對紅外線有機發光二鋪_與光學式定 址二間光撕n的緊密組合中的讀取絲。由第二光學式定址* 間光调k娜送的光已在振幅與她赌輕,因此當觀看者觀 看包含运兩崎餘合制裝置所發射的光時,觀察者可觀 三維圖像。 基於白用相位與振幅的調變技術促進複數數值的表現,有機 發光二極體顯示H與光學式定址㈣絲變器、兩者都具有高解析 度。因此’独實施例可朗於產生全像圖像,使魏看者可看 到三維圖像。 在圖二中’顯示—個實簡例子。20是_裝置,用於提供 平面區域的照明’並且照明具有充份的同雛,能_生三維圖 像。如在US 2_屬71巾提供了 .大區域影像全像圖的實例 即為-個例子。這類型的裝置如同2〇可採用白色光源陣列的形 式,例如冷陰姆紐或翻狀線人射絲纟祕上的白光發 光極體’其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣 列或者,用於20的光源可由紅、綠及藍雷射所組成,或是發出 充份同調性光的紅、綠及藍發光二極断組成。然而,具有充份 25 200827953 空間同調性的非雷射光源(例如:發光二極體,有機發光二極體, 冷陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造 成雷射斑點、姆上較為昂貴以及财_傷害全像顯示觀看者 或疋進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 元件20-23、26_28的厚度全部可約域公分,或是更低。元 件21可包含色彩過遽器陣列,使得彩色光線(例如紅色、綠色及藍 色光)的像素是射向元件22,儘管如果使用彩色光源,色彩過濾器 疋不而要的。tl件22是在透明基板上的紅外線有機發光二極體陣 列。紅外線有機發光二極體陣列將使得每一個紅外線有機發光二 極體在元件23的方向發射的光,平行且符合從唯一對應的色彩像 素毛出的光。7〇件23為光學式定址空間光爾器。關於光學式定 址空間光調變器,紅外線有機發光二極體陣列提供寫入光束;元 件U發射的彩色光束為讀取光束。元件%是紅外線過濾器,只 傳达可見光而中斷紅外線光,使得元件22所發射的紅外線光不影 曰一牛元件27疋光學式定址空間光調變器。元件28是在透 的、’工外線有機發光一極體陣列。紅外線有機發光二極體 陣列將使縣-個紅树錢發光二極體在树27财向發射的 先’平行且符合從唯—對翻色彩像素翻的光。光學式定 址空間光瓣H 27,紅外線有機發光二極體_ %提供寫入光 束;元件26發射的彩色光束為讀取光束。關於傳送光,元件μ 26 200827953 调=振幅,70件27調變相位。也可以元件27調變振幅,元件23 :周=相位因為從透明基板28上紅外線有機發光二極體陣列來的 光疋么射在70件26的方向,元件26可吸收紅外線光,防止元件 28的光至光學式定址雜細變器23。這樣的設定,兩個有機發 光二極體_ 22及28放㈣规,在實f上為相反的方向 保兩個光料定址m細魏23及27可放置在接近的位置。 二光予址工間光賴$ 23及27靠近能狗減少光學耗損及因 光束刀歧ffij產生的像素串音醜:當絲式定址空間光調變器23 及27是非鈴近的,可實猶過光學式定址帥光器的彩色 光線光束的非重疊傳獅較佳近似值。圖二元件27及28的次序 可以相反’但是這不認為是理想雜實現通過光料定址空間光 U3及27的彩色光線光束之間低串音及高傳輸目標的設定。 元件2〇可包含-個或兩健鏡光學膜來增加顯示器的亮度: 這樣的膜是已知的’例如在US 5,056,892與US 5,919,551中所描 迹的内谷。το件20可包含偏光元件’或是偏光元件的集合。線性 偏光薄片是其巾-侧子。另外-個例子歧射式偏光片,可傳 送-個線性偏化狀態,並且反射正交線性偏化狀態_這樣的薄片 是已知的’例如在US 5,828,·中所描述的内容。另一個例子是 反射式偏光片’可傳送-個圓形偏化狀態,並且反射正交圓形偏 化狀態-這樣的薄片是已知的,例如在US6,⑻,39s中所描述的 27 /yj^ 内容。元件20可包含聚焦系統, 鏡狀陣顺微透鏡陣列。元件2〇 已知的光學元件。 此聚焦系統可為緊密的,例如透 可包含其它在背光科技的領域中 位於點24離包括麯全像_ . 看者,可從25的方向觀 $ 25的裝置—些距離的觀200827953 IX. Description of the Invention: [Technical Field of the Invention] The present invention is a holographic display device for generating a three-dimensional image, and more particularly, a holographic display device on which an image hologram generated by a computer is encoded. This device produces a three-dimensional hologram reconstruction. [Prior Art] _ Computer-generated video holograms (CGHs) are compiled from one or more spatial light modulators (SLMs); spatial light modulation The device can include electronic or optically controllable elements. These components encode the hologram values based on the image hologram to achieve the purpose of modulating the amplitude and phase of the light. The computer-generated image hologram can be calculated, for example, by coherent ray tracing, by simulating the interference between the reflected light and the reference wave, or by using Fourier # (F〇Urier) or Fico (F bribe) (1) Conversion. An ideal spatial light modulator is a value that can represent any complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitude or phase characteristics, and With adverse effects affecting other characteristics. The amplitude of the county and her has several different ways, such as fine electronic addressable liquid crystal spatial light _, optically-addressed liquid crystal spatial light modulator, magneto-optical spatial light modulator a micromirror device or an acousto-optic illuminator. The modulation of light may be spatially continuous or composed of side-dead components, which may be -dimensional or two-dimensional, binary, multi-level or continuous. 7 200827953 In the present invention The Kui value comes to provide a spatial light modulator control reconstruction for the hologram ship "f word" Qing meaning. Therefore, the °", ', '/ 2" scene can be transmitted through the spatial light modulator On the whole side of the ^ space light modulator coding "green" side in the Lang to change to the three pure automatic dissection display board, observe the extremity image hologram to observe the optical reconstruction of the eye wave front. The three-dimensional scene is extended In the space between the observer's • Lu u I & Guangwei Wei or even the space filament transformer _ $ Construction Inter-Way Modulator can also use the image hologram to encode, so that the observer, in the two faces Wei Zhichao observed the reconstructed three-dimensional scene object, and on the spatial light modulator or the rear view _ other objects. The space light modulation H component is the light transmission side component, the ray caused by the scoop interference to &gt ; in the position of derogatory, and more than a few millimeters of spatial coherence length. Each holographic reconstruction can provide sufficient resolution at least - the Φ type of light will be called "full dimming" In order to ensure sufficient time homology, the spectrum emitted by the light source must be limited to - in a suitably narrow wavelength range, that is, it must be close to a single color. The spectral bandwidth of high-brightness light-emitting diodes (LEDs) is sufficient. Touch to ensure Like the temporal coherence of reconstruction. The diffraction angle on a spatial light modulator is proportional to the wavelength, meaning that only one monochromatic source will result in a strong reconstruction of the target point. A broad spectrum results in a wide target point and blurred Target reconstruction. The spectrum of the laser source can be regarded as a single color. The spectral line width of the light-emitting diode (LED) is narrow enough to help better reconstruction. 200827953 The lateral width of the two separated light sources The light source, such as light-emitting diodes (LEDs) or cold-cathode hairpins (10), can also meet these needs if the light emitted by the searcher is narrow and narrow. The light of the laser source can be regarded as The diffraction source is emitted by the point source, and the purity of the model will produce a sharp reconstruction of the target, that is, each target point is reconstructed as a point of diffraction limitation. The light generated from the non-source of the space is laterally extended. And it will cause the reconstruction to be ambiguous. The situation is determined by the wide size of the target point of reconstruction at a given location. In order to use a lang non-coherent light source for hologram reconstruction, it is necessary to achieve a compromise between brightness and the use of the hole width. Smaller sources will give better spatial coherence. A linear light source can be considered as a point source if viewed from a right angle to a longitudinal extension. Therefore, the light wave can be transmitted in the same direction in the same direction, and it is not in the same direction. As usual, δ, the image of the image is reconstructed in a holographic manner by the coherent super-overlap of the wave in the horizontal and vertical directions. The upper _ full image is called the full side of the full parallax. Reconstructed objects can be considered as parallax in the horizontal (four) straight direction, such as _ real objects. However, the larger visible limb f has a high resolution in the horizontal and vertical directions of the Lang Guang (4). 9 200827953 In general, the demand for spatial light modulators is reduced by limiting to holograms with only horizontal parallax (Hp〇). The holographic reconstruction only occurs in the horizontal direction, and there is no holographic reconstruction in the vertical direction. This will cause the reconstructed object to have a horizontally moving parallax. The perspective does not change on the vertical weave. A hologram with only a parallax will require a spatial light modulator that will have less resolution in the vertical direction than a full-view full-image. An hologram with only vertical parallax (νρο) is equally ok, but rare. A holographic reconstruction occurs only in the vertical direction, producing a reconstructed object with a vertical moving parallax. There is no moving parallax in the horizontal direction. Since the perspectives observed by the left and right eyes are different, the perspectives must be generated separately. DISCUSSION OF RELATED TECHNIQUES Typically, devices for generating three-dimensional images are less compact, requiring complex and bulky optical systems to be rendered incapable of being used in portable devices, or in handheld devices such as cell phones. Take US4, 20Μ86 as an example to generate a larger three-dimensional map. The health length is in meters. WG 2GG4/G44659 〇JS2_/_994) for the tea test 'The device used to reconstruct the image triple image has a thickness of more than 1 cm. ❶ Therefore, the above f device is for mobile phones or other portable, handheld or Small display devices have an excessive thickness. In WO 2G_44659 (_ aim / _994) mentioned by the co-ordinated 200827953 light diffracted money three material scene thief set; money including light flashing light source, for focusing light lens and space light modulator . She is in the space of light and the transmission mode is at least one, and the virtual viewing window dimension scene (for the description of the virtual fiber viewer window and related technology, please refer to the attachment ^ II) ° Each virtual weaver window It is set to watch observation (four) turn, and the big 1, upper limit, so the virtual observer window is in the single-diffraction class, so the mother-eye can see the three-dimensional scene in the _-shaped reconstruction empty _ complete reconstruction, round cone The reconstruction space is extended between the surface of the spatial light modulator and the virtual observer window. In order for the hologram reconstruction to be undisturbed, the size of the virtual observer window must not exceed the reconstructed--a diffraction-level job interval. However, this must be at least large enough to allow the viewer to see the complete reconstruction of the 3D scene via S. The other eye can be viewed by the same virtual observer window or by a second virtual observer's wire produced by the second source. At this point, a typically large visible area will limit the virtual observer window that is in the dark. A conventional solution is to reconstruct a large area of miniaturization produced by the surface of a conventional high resolution spatial light modulator to reduce to the size of the virtual observer window. This will result in a smaller 'heart shot angle' for geometric reasons and a computing device that utilizes consumer levels, i.e., a light modulator resolution sufficient to achieve high quality instant hologram reconstruction. However, it is known that a method of generating a three-dimensional image exhibits a disadvantage of being large in size, large in capacity, heavy in weight, and expensive by the lens of 200827953 due to a large spatial light and a favorable surface area. Therefore, DreamWorks will have a large thickness and weight. Another - a :, f fine field mirror, due to the color difference of the edge will seriously reduce the weight = pin. As mentioned in 6/25_, an improved light source improvement method including a lenticular array is used. In the brain tear, β refers to a mobile phone that produces three-dimensional images. However, the two-dimensional image of & is generated by autostereoscopic display. Autostereoscopic display The three-dimensional image-generated _ thief typically sees the viewer inside the display, while the viewer's eyes tend to focus on the display's watch. In many instances, the difference between the focus of the viewer's eye and the perceived position of the three-dimensional image will be uncomfortable for the month. In the case of _ hologram technology producing a three-dimensional image, this _ question will not occur, or greatly reduced. SUMMARY OF THE INVENTION In a first aspect, a holographic display device is provided, comprising a light source in the form of a two-dimensional array of light sources, a lens in the form of a two-dimensional lens, a spatial light modulation if and a beam splitter, wherein each lens Corresponding to m filaments, and the light source is corresponding to the lens in a m-to-one manner, the beam splitter will be mixed with the light--the silk is divided into two beams, one of which illuminates the virtual observer window for m left eyes, and the other is for the ra Virtual observer window for the right eye. The hologram display device can correspond to one light source for each lens, and the light source corresponds to the lens in a meandering manner, that is, m=l. 12 200827953 The king's image shows that the light-emitting diode can be used as its light source. For example, if the image is provided in two dimensions, the full image is provided in the horizontal and vertical directions. The full image display may be such that the two-dimensional encoding does not generate astigmatism. For example, it is possible for the king image to have a two-dimensional code with vertical and horizontal focus and vertical and horizontal shift parallax in its towel. The 4 full-image display can be in which the beam splitter is a prism array. The holographic display can be in which the beam splitting is - dimensional_recording mirror _. The full detail can be used in which the beam splitter thief _ is integrated or directly on the light viewer, for 2 reflections, diffraction or hologram _. The full Lai Ke is in the towel beam splitter is another lens. It is all about the shield beam that is used as a barrier in the beam. The holographic display can be performed after the ray splitter is in the empty county modulator. The holographic display can be in which the beam splitter is before the spatial light modulator. The holographic display can be used to image each light source by its _ lens imaging to the viewer plane. Depending on the 7F, it can be a given observer. The inter-lens lens of the light source 13 200827953 array will cause all the light sources to be imaged on the observer plane, that is, the plane containing two virtual observer windows. . The hologram display can have an additional field lens in it. The holographic image is not available in order to provide sufficient space for the chick, and the spacing of the lens array is her sub-image-typical size. The full detail can be either the λ! or the point source in the source. The full age can be reversed or holographic in the Wei phase of the towel. ^ 全^柯为为为魏和魏的的细细—拦 shed, and 曰 can be in which the beam splitter is _ or an integer multiple of light _ _ _ distance, or beam Shun is slightly different or 疋 positive multiples on the space _ spatial light adjustment surface spacing to allow for perspective shortening. The grading of the privately accommodating wire is a field ray which is not an implementation in which the light source is tracked. Like the middle rib paste will turn in the left eye to ne~SQUare_ most domain, in the money _ _, *, and another strength package Sinc-S (jUared function into the image display can be in J: towel heart Μ., (four) The maximum value of the virtual observer window is smaller than or equal to the vertical periodic spacing of the diffraction of the spatial light modulator at 14 200827953. Regarding the horizontal (4) horizontal interval of the beam system, the hologram display can be combined with the two-dimensional code of the space multiplex with the virtual observer window. The holographic display can be another lens in the towel beam splitter _ It is static. The holographic display can be a beam splitter mirror that is another-cursor array, and ^ variable. ''Full-image display can be used in order to provide sufficient empty_circumferential, lens array The spacing is similar to the sub-full image _ typical size, that is, from - to several millimeters. The holographic display can be lightly shot for Wei and right _ all sides are - block - intercepting the interlace. The holographic display can be shot The edge of the touch is small enough that the eye does not read the structure of the thief, and the prism The structure does not interfere with the reconstructed image. The Burckhanit code. The hologram display can be used to display the hologram in it, and the hologram display can be used in it. To phase encoding. 15 200827953 Wang Xi 7F can be controlled by the combination of encapsulated liquid-crystal domains in the virtual observer window of the towel, so that the electric field (four) per-area reflection Like the lasing, the holographic display can be controlled by the combination of the liquid crystal layers on the side of the prism _ structure in which the virtual observer « is separated so that the electric field controls the reflection value of the liquid crystal and the diffraction angle of the light. The king image cannot be controlled by the e_w咐_ k mirror column in which the virtual observer window is separated. The hologram display can be close to 100% with a high fill factor in its towel prism array. The distance between the observer and the spatial light modulator is between 20 cm and 4 meters. The holographic display can be between 1 cm and 5 shots. Available The light and the microlens array are illuminated. The microlens array can provide local homology in the region, which is the only part of the display that encodes the information used to reconstruct the wire of the object. The display can include a reflection The polarizer may comprise a germanium optical film. In another aspect, a method of generating a full image is provided, comprising the steps of using a display device as described in the above. 16 200827953 utilizing "spatial light modulation The coded hologram "quotes" means that the hologram is encoded on the spatial light modulator. [Embodiment] A·,, the external line organic light-emitting diode display and the optically-addressed spatial light modulator are closely In combination with the implementation of the optical interface such as the light-adjusting dragon and the infrared light-emitting device that can be used on the optically-spaced space pupil H, the combination can produce three under appropriate compensation conditions. _image. An optically addressed spatial light modulator includes a photoreceptor layer and a liquid crystal (LC) layer positioned between the conductive electrodes. When a voltage is applied to the electrodes, the light pattern incident on the photoreceptor layer is converted to a liquid crystal layer for modulating the read beam. In conventional techniques, the incident light pattern is a write-on beam modulated by an electronically addressed spatial light modulator (EASLM). The sub-spatial address spatial modulator is illuminated by the source and imaged to the optical疋 address space light modulator. Typically, the write beam is non-coherent to avoid speckle patterns, while the read beam is coherent and has the ability to produce a diffractive pattern. The advantage of an optically addressed spatial optical modulator compared to an electronically addressed spatial optical modulator is that optically addressed spatial light tones can have a continuous, non-pixel or non-patterned structure, while electronically addressed spatial light modulation The device is a pixel structure. The pixel produces a sharp edge on the light of the 2008 2008953 jade knife. This sharp edge is equivalent to a high spatial frequency. High spatial frequencies result in wide-angle diffraction in the optical far field. Therefore, the electric address space opto-mechanism will produce Qian Xueyuan's light-weighted out-of-the-way corrections, which must be recorded by known techniques such as space. In the optical processing program, additional steps are required to make the space, which will make the device thicker and cause a light inspection fee. The advantage of the optically-addressed stray light-like actuator is that it allows __ generation to be produced in an optically addressed spatial light modulator. Even the disease depends on the light intensity, with less sharpening in the direction of the beam propagation in any given direction. Therefore, fewer (four) changes have a device that can be compared with the electronic address, and the lower concentration of the high spatial frequency can promote the device. Easy to use and more than contain electronically-spaced light modulators. In addition, she is electronically positioned to lang, and the optical determinator can be dual-sequence. Therefore, the optical slave address space light = sub-slave space light modulation miscellaneous has a lower power demand, "" 曰 式 device or staggered battery life. In this implementation, the rotating device of the imaging wire is not rotated. The light is directly connected to the optically-addressed spatial light modulator in the form of a diode display, forming no = like Kawasaki, she: Yu Yuche _, 18 200827953 into organic light - polar body _. The optically addressed spatial light modulator can be comprised of a plurality of smaller, deployable optically addressed spatial light modulators. , human organic polar body display!! The tight assembly with the optically addressed spatial light modulator can be transparent. Transparent organic light-emitting diode displays are currently known, for example, in the following "Organic Light-Emitting Diode Materials," as described in the section. In a sinister example, an organic light-emitting diode display, and optics The close combination of the spatially-spaced light modulators illuminates the edges formed by the edges to the three-dimensional image, and the visible light is transmitted to the observer via the organic light-emitting body and the optically-addressed spatial light modulator. A better method疋The organic light-emitting diode display emits infrared light to write to the infrared-sensing photoreceptor layer of the optically-addressed space. Because the human eye is not sensitive to infrared rays, the observer cannot see any kind of infrared light-generated beam. Another example of Lu, the close combination of an organic light-emitting diode display and an optically-addressed spatial light-modulating variable allows the writing beam and the reading beam to be incident on the opposite side of the optically-spaced light tone k" In another example, the close combination of the organic light-emitting diode display crying and the optically-addressed spatial light modulator allows the reflective layer to be optically defined. On the side of the spatial light modulator, this is the opposite side of the organic light-emitting diode display, so that the one-dimensional image can be observed from the same side of the optical address space light modulator, especially organic On the side where the LED display is located, the illumination source is also on the same side of the optically-addressed spatial light modulator as the organic light-emitting diode display: 3 anti-19 200827953 Examples of shooting immigrants., including infrared organic In an embodiment of the array of light-emitting diodes, the infrared-emitting organic hair-light body allows for the amplitude of the visible light transmitted by the optically-spaced spatial light modulation, her or the amplitude and her combination (4), the thief hologram Produced in an optically addressed spatial light modulator. The optically addressed spatial light modulator can include two types of electrically conductive films coated on the separator for the Moon Ik plate, as described in US Pat. No. 4,941,735. The continuous or discontinuous photosensitive film can be applied to a conductive film in the basin. μ The read beam of the polarized bistable ferroelectric liquid crystal or some other type of liquid crystal can be used in another conductive film and Between the fine. Start-up can be added to the guide. In the optical address * == device 'optical writing beam can be _ _ pixel-by-pixel program' moving light to take the beam of the Wei. Write from the beam can __ start wire-type addressing space First adjust the __ light area to program the optical address space, fine Wei Wei space fine heart coffee _, surface map - description - an example. 10 is a lighting device for lighting, where Qing is looking for a copy (four) = °r = r for illumination of large-area image holograms, for example (4) Miscellaneous (four) from the form of light source array 20 200827953 'for example, cold cathode fluorescing or hair (four) lining shot on the poly (four) system , Ά光极体' where the focusing system can be tight, such as a lenticular array or microlens array or 'a light source for 10 can be composed of red, green and blue lasers, or a full red light It is composed of green and blue light-emitting diodes. However, it is better to have a non-laser light source (for example, a light-emitting diode, an organic light-emitting diode, a cold cathode light) that is well-known to the work of β. of. The shortcomings of laser sources, such as the reconstruction of holograms, cause speckles, are relatively expensive, and all possible safety issues with regard to the hologram of the hologram or the eyes of the assembly staff of the holographic display device. The thickness of the tillage 3 can all be about a few centimeters or less. The component u can be an array of colored light, such that the image of colored light (for example, red, green, and blue light) is directed toward the element 12, although if the color system is used, the color suppression is not required to eat the infrared organic light on the organic tr# coffee substrate. Two poles are broken. Infrared Broken Cong made the county----------------------------- The element == two lights are parallel and conform to the 2 _ fine 发出 from the only corresponding color pixel. The filament-like space light = first = the diode array provides the write beam; the element η emits the _ beam. Located at point 14 from the close-up hologram, the crying 15 ω 衣 丨 ^ ^ viewers can view the three-dimensional image from the direction of 丨 5. The structure of the component - layer:::r a real one has __,::::: 21 200827953 The connection can be limited to the mixed area of the front side to the larger series, even the entire recording surface. The physical connection can be extended to achieve the case, the case field is transmitted by the filament, the method is called == miscellaneous = the image is generated (4), or the pair is recorded by it (the wire is made = the component 10 can be One or two mirrored optical films are included to increase the brightness of the display: such films are known, for example, in us 5, 056, 892 and us 5, 9i9, 55i. The elements may comprise polarizing elements or polarized light. A collection of components. ^ Polarized foil is one of them. Another example is a reflective bias, which can transmit a linearly biased state, and a reflective linearly polarized state. Such a thin sheet is known, for example, in US. 5,828, another example is a reflective bias W, which can transmit a circularly polarized state, and a sheet that reflects an orthogonal circular biased state is known, for example, in US 6,181 The inner valley element 10 described in 395 may comprise a focal system, which may be compact, such as a mirror-like array or a microlens array. The element 10 may comprise other opticals known in the art of backlight technology. Figure 4. Figure 4 is a side view of the conventional technology, pointing out The three focusing elements 1101, 1102, 1103 of the direct focusing system 11〇4, in the form of a cylindrical lens arranged horizontally in the array, are referred to reference WO 2006/119920 and collimated with a horizontal line source LS2 nearly 22 200827953. The light beam is exemplified by the focusing element 1102 of the illumination unit to the observer plane 0p. According to Fig. 4, many of the line source LSIs, LS2, LS3 are arranged one above the other. The light emitted by each light source is spatially homogenous in the vertical direction. In the horizontal direction, it is spatially non-coherent. This light passes through the transmission element of the optical modulator SLM. This light is only diffracted in the vertical direction due to the components of the hologram-encoded optical modulator SLM. The component Π 02 has several diffraction stages (only one useful) of the imaging light source LS2 at the observer plane OP. The light beam emitted by the light source LS2 is an example of the focusing element 11 〇 2 passing through the water coke system 1104 as a port. Medium, two ^ 曰 〃 〃 τ two beams show the first diffraction class 11 〇 5, the zeroth diffraction class 11 〇 6 and the negative-diffraction 卩 ratio stage 1107. Compared with a single point source, the line source allows Very high light intensity is produced. The use of multiple added efficiencies and the full range of line source arrangements for reconstructing each part of the 3D scene enhances the effective light intensity. Another advantage is not the eve of the ray, the evening is A common light source (for example, after the tweezers that can be a part of the chopper) can produce sufficient dimming. B• Two pairs of organic light emitting diodes. Combination of body and optical address space light modulators In a more advanced embodiment, a tight fit of the combination of two pairs of organic light-emitting diodes and an optically-addressed spatial light view H can be used, in a continuous and compact manner: the amplitude of the change and her . Therefore, the complex number formed by the amplitude oil can be compiled in the transmitted light in a systematic manner. 23 200827953 This embodiment includes a first intimate combination of an infrared organic light emitting diode array and an optically addressed spatial light modulator pair and a second paired by an infrared organic light emitting diode array and an optically addressed spatial light modulator Close combination. The first pair modulates the amplitude of the transmitted light, and the second pair modulates the phase of the transmitted light. Alternatively, the phase of the transmitted light may be modulated by the first pair, and the amplitude of the transmitted light of the second pair may be modulated. The close combination of each of the infrared organic light emitting body arrays and the optically addressed spatial light modulators can be as described in Section A. The close combination of the two pairs of infrared organic light-emitting diode arrays and the optically-addressed space light H is separated by infrared ray, which absorbs infrared light without processing visible light. In the first step, the first-infrared organic light-emitting diode_write pattern is provided to provide amplitude modulation in the first-optical address spatial light modulator. In the second step 'Spray' second infrared money light-emitting diode _ writes with people to provide a view of the township in the second 'optical-style address space. Infrared filter prevents infrared leakage from the first-tight combination of a pair of infrared-organic light-emitting diode arrays and optically-addressed empty shame-corrected second-infrared-infrared-organic light-emitting diode array and optical addressing Sealing technology modulator. Infrared brain is also prevented from the second pair of red, surface organic & polar body array optical positioning space light modulation (four) tight combination, the line phase to the first - to the infrared organic light emitting diode Close-up combination of physical and optical addressing 24 200827953. However, the infrared filter transmits the closely combined visible light 'from the first pair of infrared organic light-emitting diodes to the optically-addressed spatial light tone _ as the second pair of infrared organic light-emitting two-spreading__ optically-addressed two-light tearing n The read wire in the close combination. The light sent by the second optical address* between the light and the light has been gambling at the amplitude, so that when the viewer observes the light emitted by the two-seven device, the observer has a three-dimensional image. The modulation of the complex value is promoted based on the white phase and amplitude modulation technique, and the organic light emitting diode display H and the optical address (four) filament changer both have high resolution. Therefore, the 'single embodiment can be used to generate a holographic image so that the viewer can see the three-dimensional image. In Figure 2, 'shows a real example. 20 is a device for providing illumination of a planar area and illumination is provided with sufficient stereotypes to produce a three-dimensional image. For example, in the US 2_ genus 71, an example of a large-area image hologram is an example. This type of device can be in the form of an array of white light sources, such as a cold cathode or a white light emitter on a flip line, where the focusing system can be tight, such as a lenticular array or micro. The lens array or the light source for 20 may be composed of red, green, and blue lasers, or red, green, and blue light-emitting diodes that emit sufficient coherent light. However, a non-laser source (e.g., a light-emitting diode, an organic light-emitting diode, a cold cathode fluorescent lamp) having a sufficient spatial homology of 25 200827953 is preferable. The shortcomings of laser sources, such as laser spots on holographic reconstruction, are more expensive, and the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The thickness of the elements 20-23, 26_28 may all be approximately equal centimeters or less. Element 21 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 22, although color filters are not desirable if a colored light source is used. The tl piece 22 is an infrared organic light emitting diode array on a transparent substrate. The infrared organic light emitting diode array will cause each of the infrared organic light emitting diodes to emit light in the direction of the element 23 in parallel and conform to the light emerging from the unique corresponding color pixel. The 7-piece 23 is an optically-spaced space illuminator. Regarding the optical address spatial light modulator, the infrared organic light emitting diode array provides a write beam; the color beam emitted by the element U is a read beam. The component % is an infrared filter that transmits only visible light and interrupts the infrared light, so that the infrared light emitted by the component 22 does not affect the 27-inch optically-spaced optical modulator. Element 28 is a transparent, 'external line organic light emitting diode array. The infrared organic light-emitting diode array will enable the county-a mangrove light-emitting diode to emit in the tree's 27th fiscal direction first and parallel with the light from the only-to-turn color pixel. The optically addressed spatial aperture H 27, the infrared organic light emitting diode _ % provides a write beam; the colored beam emitted by element 26 is a read beam. Regarding the transmitted light, the component μ 26 200827953 tune = amplitude, 70 pieces 27 modulation phase. It is also possible to modulate the amplitude of the element 27, element 23: cycle = phase because the pupil from the infrared organic light emitting diode array on the transparent substrate 28 is incident on the direction of the 70 piece 26, the element 26 can absorb the infrared light, preventing the element 28 Light to optically located amulet 23. With this setting, the two organic light-emitting diodes _ 22 and 28 are placed in the opposite direction, and the opposite directions are in the real f. The two light-material addresses m and fine 23 and 27 can be placed in close proximity. The two-light address site is dependent on the $23 and 27 close to the dog to reduce optical wear and the pixel crosstalk caused by the beam knife ffij: when the wire-addressed spatial light modulators 23 and 27 are non-ringed, A preferred approximation of the non-overlapping lions of the colored light beams of the optically positioned light beam. The order of elements 27 and 28 of Figure 2 can be reversed 'but this is not considered to be an ideal miscellaneous realization of the setting of low crosstalk and high transmission targets between the colored light beams of the light-addressed spatial light U3 and 27. The element 2 can include one or two mirror optical films to increase the brightness of the display: such a film is known, for example, in the inner valleys described in US 5,056,892 and US 5,919,551. The τ block 20 may comprise a polarizing element 'or a collection of polarizing elements. The linear polarizing sheet is its towel-side. In addition, an example of a polarizing polarizer that can transmit a linearly biased state, and which reflects an orthogonal linearly biased state, such as is known, is described, for example, in US 5,828,. Another example is that a reflective polarizer 'transmits a circularly polarized state and reflects an orthogonal circularly polarized state - such a sheet is known, for example 27 27 as described in US 6, (8), 39s. Yj^ content. Element 20 can include a focusing system, a mirror array of microlens arrays. Element 2 已知 Known optical components. This focusing system can be compact, for example, can be included in other areas of backlighting technology, located at point 24, including the hologram _. Viewers, devices that can see $25 from the direction of 25 - some distance views

27及28是配置成實體連7直^像。元件、21、22、23、26、 層,使得整體為單_、統一的1上連接)’每一個形成結構的一 間接的,如果有_中财,體連接可為直接的。或是 在確保,互_:層=伸= 區域,甚至層的整個奈㈤— 种或疋可延伸至較大的 例如藉由使_傳Γ 可由層與_接來實現, 生哭H 4、η #轉黏_方式,以便形《密的全像圖產 σσ ’5、是猎由其它任何的方式(參考概要製造程序部份)。27 and 28 are configured to be connected to a solid image. The elements, 21, 22, 23, 26, and layers, such that the whole is a single _, unified 1 upper connection) 'each indirectly forms a structure, if there is _ zhongcai, the body connection can be direct. Or to ensure that the mutual _: layer = stretch = area, or even the entire layer of the layer (five) - or 疋 can be extended to a larger one, for example, by making _ Γ 可由 can be achieved by layer and _, crying H 4, η #转粘_method, so that the shape of the dense hologram is σσ '5, which is hunted by any other means (refer to the outline manufacturing procedure).

、>在圖一中,理想情況下有機發光二極體陣列22及28放出的 光線疋相當準直的。然而,實際有機發光二極體放㈣光線可能 為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光一極體的光放射並不是十分準直時,有機發光二極體可以盡可 能的靠近對應的光學式定址空間光調變器。在這樣的情況,入射 在光學式定址空間調變器表面的強度將變化至近似入射角餘弦的 平方。在45。或60。的入射光將導致強度僅為垂直入射光的二分之 28 200827953 -或是四分之-。因此,假如有機發光二極體是充份相間隔地隔 ^可見光像素充份叫,並且足齡近光學錢址空間光調變 盗,幾何效應將導致橫越光學式定址空間光 電位差發生重大變化,甚至是在有機發先二極體::= 伯(Lambertian)的限制情況下。入射的紅外線強度在有機發光二極 體的光垂直人射的光學式定址空機_點之間可^不 至零,這可料賴置可實_對輯低。但是如果㈣錄置 結構,減少的對比是可接受的。 二中,理想情況下有機發光二極體陣列22及Μ放出的 光線疋相當準直的。然而,實際有機發光二極體放出的光線可能 為不準直,例如朗伯(Lambertian)(完全擴散)分配的光。當有機發 光極體的光放射疋不準直時,有機發光二極體的幾何光分配可 φ _布拉格(Bragg)過濾器全像光學元件來進行修正,例如在阢 5,153,670 準直,或是比起财錢麵件具有難的準紐。圖八顯示了 布拉格财ϋ全像絲元件的_實例。棚八巾,8G是有機發 光二極體陣列,81是全像光學元件布拉格過濾、器,包含布拉格平 Ο如布拉格平© 84 ’ * 82為絲式定址㈣光調變器。在有 機發光二極體陣列80中的—個單—有機發光二極體83,發射的紅 外線的分佈是如85所示意的分佈。由有機發光二極體陣列8〇所 29 200827953 發射的光射線86,在全像光學元件81中經歷散射,接著近似正交 的入射在光學式定址空間光調變器82上。在這個方法中,改進入 射在光學式定址空間光調變器82上的紅外線的準直性是可以實現 的。 另一個實施例如圖五所示。57是照明裝置,用於提供平面區 _ 域的照明,並且照明具有充份的同雛,能夠產生三維圖像。如 在US 2〇06/25〇671中提供了關於大區域景》像全像圖的實例即為一 , 侧子。這_的裝置可制白色光轉_形式,例如冷陰極 榮絲或發㈣光線人射絲鮮統上的自光發光二極體,其中 聚焦系統可為緊密的’如透鏡狀陣列或微透鏡陣列5〇。或者,用 於57的光源可由紅、綠及藍雷射所組成,或是發出充份同調性光 的紅、綠及藍料二極體所組成。然而,具有充份空卿調性的 # 射光源(例如:發光二極體,有機發光二極體,冷陰極螢光燈) ‘ 疋更佺的。田射光源的缺點,像是在全像重建上造成雷射斑點、 * .相對上較為昂貴以及所有關於傷害全像顯示觀看者或是進行全像 顯示I置組裝工作人員的眼睛等可能的安全問題。 、丄元件57可包含一個或兩個稜鏡光學膜來增加顯示器的亮度: _的膜是已知的,例如在us 5,㈣,892與us 5,919,551中所描 述的内容。元件57可包含偏光元件,或是偏光元件的集合。線性 30 200827953 偏光薄片是其中一個例子。另外一個例子是反射式偏光片,可傳 送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片 是已知的,例如在US 5,828,488中所描述的内容。另一個例子是 反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏 化狀態-這樣的薄片是已知的,例如在US6,⑻,395中所描述的 内容。元件57可包含其它在背光科技的領域中已知的光學元件。 儿件57、50_54的厚度全部可約為數公分,或是更低。元件 Μ可包含色衫過濾轉列,使得彩色光線(例如紅色、綠色及藍色 光)的像素是射向元件52,儘管如果使用彩色光源,色彩過滤器是 不需要的。 凡件52是在透明基板上的紅外線有機發光二極體陣列。紅外 •線有機發光二極體陣列將使得對於每-麵彩像素,-個包含二 、種紅外線有機發光三鋪的唯—鱗在元件53的方向發射的光, .會平行且符合從它們所對應的色彩像素發出的光。第一種的紅外 =有機發光二極體發射第—波長的紅外線。第二獅紅外線有機 备光-極體發射第二波長的紅外線,第二波長與第—波長是不相 同=。7L件53是光學式定址空間光調變器。元件54是另一光學 式疋址空間光調變器。關於光學歧址雜光調變器,紅^ 機發光二極體陣列接供窝人#击·- 、有 篮丨早服供冩人先束,轉51發射的彩色光束為讀取 31 200827953 光束。光學式定址空間光調變器53是由有機發光二極體陣列52 备射的兩個紅外線波長中的第—波長所控制。絲式定址空間光 調變器53對於有機發光二極體陣列52所發射的兩個紅外線波長 的第一波長不敏感’並且會將有機發光二極體陣列%發射的兩個 紅外線波長的第二波長傳送。光學式定址空間光調變器54是由有 機么光—極體陣列52發射的兩個紅外線波長巾的第二波長所控 制。光學式定址空間光調變器54對於有機發光二極體陣列52所 杳射的兩個紅外線波長的第—波長是不敏感的,或者可利用光學 式定址空間光調變器53的魏及/絲防止第—紅外線波長的光 到達光學式定址空間光調變器54,藉由它的吸收,在緊密的全像 圖產生器55巾’並不-定需要對於第—紅外、線>皮長不敏感的光學 式定址空間光調變器54。或者也可使用發射兩種不同波長的單一 種有機發光二極體,兩種不同波長的相對強度是由一個參數所決 定,像是橫越有機發光二極體的電壓。兩種不同波長的放射可利 用時間多工進行控制。 對於傳送光,元件53調變振幅,元件54調變相位。也可以 兀件54調變振幅,元件53調變相位。這樣的設定,有機發光二 極體陣列52發射具有兩種不同波長的光,確保兩個光學式定址空 間光調變器53及54可放置在非常接近的位置。將光學式定址空 間光調變器53及54靠近能夠減少光學耗損及因光束分歧而產生 32 200827953 糾素串1問題當光學式定址空間光調變器53及54是非常靠 ^田值广現通過光學式定址空間光調變器的彩色光線光束的非 重登傳播的較佳近似值。 。占56離包括緊密全像圖產生器%的裝置一些距離的觀 可攸55的方向觀看到三維圖像。元件57、50、5卜52、53 .·及^疋配置成實體連接(真實上連接),每-個形成結構的-層, 使^體為早―、統—的物件。實體連接可為直接的。或是間接 的’如果有薄的中間層,覆蓋在相鄰層之間的膜。實體連接可限 制树保正確的相互排列的小區域中,或是可延伸至較大的區 域甚至層的整個表面。實體連接可由層與層的黏接來實現,例 如藉由使絲學傳送轉翻方^,峽形成緊密的全像圖產生 益55 ’或是藉由其它任何的方式(參考概要製造程序部份)。 ‘在光學式定址空間光調變器執行振幅調變處,在典型的設定 . 中,入射的讀取光學光束將會藉由將光束通過線性偏光片來達到 線性偏化。振幅調變是由在施加電場中液晶的旋轉所控制,其中 %場疋由感光層所產生,影響光的偏化狀態。在這樣的裝置中, 離開光學式定址空間光調變器的光會通過另一個線性偏光片,可 因光的偏化狀態改變而減少強度,如同它通過光學式定址空間光 調變器時一樣。 33 200827953 在光學式定址空間光調變器執行相位調變處,除非它們已處 於疋義的線性偏化狀態,在典型的設定中,入射的讀取光學光束 將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由 施加電場的應用所控制,其中電場是由感光層所產生,影響光的 相位狀態。在相位調變的一個例子中,使用向列型相位液晶,光 軸方向是間隔固定的,但是雙折射是施加電壓的函數。在相位調 變的例子中,使用鐵電性液晶,雙折射是固定的,但是光軸的方 向是由施加電壓所控制。在相位調變實作中,使用其中任一種方 法,輸出光束對於由施加電壓控制的輸入光束而言具有相位差。 可執行相位調變的液晶元件的其中一個例子為Freedericksz元件 排列,在其中使用了具有正介電質異方向性的向列型液晶的反平 行排列區域,如同在US 5,973,817所描述的内容。 C·緊密型光源與電子式定址空間·光調變器的緊密組合。 這们貝知例乂供電子式疋址空間光調變器與充份同調性緊密 型光源的緊密組合,這組合能夠在適當的照明情況下產生三維圖 像。 在這個實施例中,描述了不需要成像光學的電子式定址空間 光調變器鱗密型光_ f密組合。這個實_提供了 —個光源 34 200827953 或多個光源、聚tn電子狀址雜細變帥胤⑹及非 必要的分光鏡元件的緊密組合,此組合㈣在適當的朗情況下 產生三維圖像。 在圖十一中為一個實施例。11〇是照明裝置用於提供平面區域 的照明’其巾朗是具有紐的同雛以便能触生三維圖像。 在US 2006/250671提及-個用於大區域影像全像圖的照明裝置例 子’其中-個例子是在圖四中。如同11〇的裝置可為白光光源陣 列的形式’例如冷陰歸紐或發出的光線人射在聚㈣統上的 白光發光二鋪,其中聚減統可騎密的,如透鏡狀陣列或微 透鏡陣列。或者’用於110的光源可由紅、綠及藍雷射所組成, 或是發出充份_性光的紅、綠域發光二極體所組成。紅色, 綠色及藍色發光二極體可成為有機發光二極體(OLEDs)。然而,具 有充份空_雛_雷射光源(例如:發光二極體,有機發光二 極體’冷陰姆光燈)是更佳的。雷射光_缺點,像是在全像重 建上造成雷射斑點、相對上較為昂責以及所有關於傷害全像顯示 觀看者或是進行全細錢置組紅作人貞的目哺等可能入 問題。 王 _兀件110的厚度可約絲公分’或是更低。在較佳實施例中, 70件11()·113全部厚度會低於三公分,以便提供充份_性的緊密 35 200827953 光源树111可為色彩職n物,使得抑 綠色及藍色光)的像1 色植(例如紅色、 色紐、β θ…向手112,儘管如果使用彩色光源, 元件出是非必要的衫八I疋㊣子式定址空間光調變器。 像圖產生器m解置^ 。位於點m離包括緊密全 到三維圖像。、&巨離的硯看者,可從ns的方向觀看 /^L 1 1 /Λ — > 可包❺個或兩個稜鏡光學膜來增加顯示器的亮 度.這樣的膜是已知的’例如在US 5,056,892與US 5,919,551中 斤描id的内谷元件11()可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中—個例子。另外—個例子是反射式偏光片, 可傳达-個雜偏錄態,纽反射正交雜偏化狀態·這樣的 薄片是已知的,例如在仍5,828,488中所描述的内容。另一個例 籲子疋反射式偏光片’可傳送一個圓形偏化狀態,並且反射正交圓 t 形偏化狀態·這樣的薄片是已知的,例如在US6,⑻,395中所描 -述的内容。70件110可包含其它在背光科技的領域中已知的光學 元件。 電子式定址空間光調變器是空間光調變器的一種,在其中元 件陣列中的每一個元件可利用電子式進行定址。每個元件對入射 的光進行一些作用,例如用來調變它所傳送的光的振幅,或者調 36 200827953 變它所傳送的光的相位,或者調變它所傳送的光的振幅及相位的 組口。在US 5,973,817巾提供了一個電子式定址空間光調變器的 例子,此例子為她爾電子式定址空間光調變器。液晶電子式 ^址空間光調變器為電子故址空間光調變器的-個例子。絲 包子式定址郎光賴為電子式定址^間光調魏的另—個例 子0 元件110,m,m及113是配置成實體連接(真實上連接), 每—個形成結構的-層,使得整體為單―、統—的物件。實體連 接可為直接的。或是間接的,如果有騎巾間層,覆蓋在相鄰層 1的膜貝體連接可限制在確保正綠的相互組合排列的小區域 中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可 由層與層的雜來實現’例如藉由使用光學傳送義_方式, 以便形成f㈣全側產生n 115,或是藉由其它任何的方式(參 考概要製造程序部份)。 圖四是習用技術側視圖,指出垂直聚焦系統11〇4的三個聚焦 元件1101、1102、1103 ’採用圓柱形透鏡水平排列於陣列中的形 式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦= 件1102至觀察員平面0P為例。根據圖四,許多的線光源⑶,政, LS3是-個個上下排列。每—個光源發射的光,在垂直方向是充 37 200827953 伤工間同撒❾在水平方向是㈣非剩性的。這個光會通過 光调U SLM的傳輸辑。這個光因為全像__光調變器 SLM的元件,僅在垂直方向的繞射。聚焦元件·在觀察員平面 〇p以數m級(只有—個是有用的)成像光源⑽。由光源⑶ 所發射的光束是作為只通過聚焦系統測的聚焦元件服的例 子在圖四中’一個光束顯示第_繞射階級聰、第零階級· 及負1¼級11〇7。與單—點光源相比,線統允許非常高的光強 度產生。使用多個已增加效率與針對重建三維場景的每一個部分 進行線光源排觸全像_可提升有效的光強度。另—個優點, 不㈣雷射’多個分_(例如在可城光器—雜的槽闌之後) 常見光源可產生充份的同調光。 通常,全像顯示用來在虛擬觀察員視窗中重建波前。波前是 籲:個實際物體會產生的東西,如果它存在的話。當觀察員的眼睛 7C位於可能為多個虛擬觀察員視窗(v〇w种的一個虛擬觀察員 • 視窗時,他會看見重建的物件。如圖六A所示,全像顯示由刊 構成要素所組成:光源’透鏡,空間光調變ϋ及非必要光束分光 鏡0 為了幫助空間光調變H與可顯示全像圖像的緊密型光源的緊 在組合產生’單-光源及圖六Α的單—透鏡可由光轉列及透鏡 38 200827953 陣列或透鏡狀陣列分別取代’如圖六6所示。在圖六b中,光源 照射空間細變n,並且透鏡成縣源至齡s平面。空間光調 變器編碼全像圖像且調變進入的波前,使得波前可重建在虛擬觀 ^員視窗巾。非必要光束分光鏡元件可使时赶數個虛擬觀察 員視窗,例如-_於左_虛峨察員視f與―_於右眼的 虛擬觀祭貝視窗。 假設使用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光 源必須分隔’使得通過雜_或是透餘_全部透鏡的光同 時至虛擬觀察員視窗。> In Fig. 1, the light emitted by the organic light-emitting diode arrays 22 and 28 is ideally collimated. However, the actual organic light-emitting diodes (4) may be light that is not collimated, such as Lambertian (completely diffused). When the light emission of the organic light-emitting body is not very collimated, the organic light-emitting diode can be as close as possible to the corresponding optically-spaced light modulator. In such a case, the intensity incident on the surface of the optically addressed spatial modulator will vary to approximately the square of the cosine of the incident angle. At 45. Or 60. The incident light will result in a intensity of only two-thirds of the normal incident light. 200827953 - or quarter--. Therefore, if the organic light-emitting diodes are filled with a sufficient interval of visible light pixels, and the optical age of the near-optical optical space is changed, the geometric effect will cause a significant change in the optical potential difference across the optically addressed space. Even in the case of the organic first diode::=Lambertian. The intensity of the incident infrared light can be between zero and the optically-addressed empty machine_point of the organic light-emitting diode. This can be expected to be low. However, if (4) the recording structure, the reduced contrast is acceptable. In the second case, the organic light-emitting diode array 22 and the light emitted by the germanium are ideally collimated. However, the light emitted by the actual organic light-emitting diode may be uncollimated, such as Lambertian (completely diffused) light. When the light emission of the organic light-emitting body is not collimated, the geometric light distribution of the organic light-emitting diode can be corrected by a φ_Bragg filter holographic optical element, for example, 阢5,153,670 collimation, or ratio It is difficult to make money and face. Figure VIII shows an example of a full-featured wire component in Prague. Eight sheds, 8G is an organic light-emitting diode array, 81 is a holographic optical element Bragg filter, and contains a Bragg flat, such as a Bragg flat © 84 ** 82 for a wire-type addressing (four) optical modulator. In the single-organic light-emitting diode 83 in the organic light-emitting diode array 80, the distribution of the emitted infrared rays is a distribution as indicated by 85. The light ray 86 emitted by the organic light emitting diode array 28 200827953 undergoes scattering in the holographic optical element 81 and is then incident approximately orthogonally on the optically addressed spatial light modulator 82. In this method, it is possible to improve the collimation of the infrared rays incident on the optically-addressed spatial light modulator 82. Another implementation is shown in Figure 5. 57 is a lighting device for providing illumination of the flat area _ field, and the illumination has sufficient brood to produce a three-dimensional image. An example of a full-image view of a large-area scene is provided in US 2〇06/25〇671, which is a side, a side. The device can be made in the form of a white light, such as a cold cathode ray or a (four) light-emitting diode, wherein the focusing system can be a compact 'such as a lenticular array or microlens. Array 5〇. Alternatively, the light source for 57 may consist of red, green, and blue lasers, or red, green, and blue diodes that emit sufficient tonal light. However, there is a full-fledged white light source (for example: light-emitting diode, organic light-emitting diode, cold cathode fluorescent lamp) ‘ 疋 佺 。. The shortcomings of the field source, such as the laser spot on the holographic reconstruction, * relatively expensive and all possible damage to the hologram display viewer or the holographic display I set the eyes of the assembly staff problem. The germanium element 57 may comprise one or two germanium optical films to increase the brightness of the display: a film of _ is known, for example as described in us 5, (d), 892 and us 5,919,551. Element 57 can comprise a polarizing element or a collection of polarizing elements. Linear 30 200827953 Polarized sheets are an example of this. Another example is a reflective polarizer that can transmit a linearly biased state and reflect an orthogonal linearly biased state - such a sheet is known, for example, as described in U.S. Patent 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such sheets are known, for example, as described in US 6, (8), 395. Element 57 may comprise other optical elements known in the art of backlight technology. The thickness of the pieces 57, 50_54 may all be about several centimeters or less. The component Μ can include a color filter filter such that the pixels of colored light (e.g., red, green, and blue light) are directed toward element 52, although a color filter is not required if a colored light source is used. The member 52 is an infrared organic light emitting diode array on a transparent substrate. The infrared-line organic light-emitting diode array will enable, for each-face color pixel, a light containing two infra-red organic light-emitting triple-spreads emitted in the direction of element 53 will be parallel and conform to them. The light emitted by the corresponding color pixel. The first infrared = organic light emitting diode emits a first wavelength of infrared light. The second lion infrared organic preparation light-polar body emits infrared light of the second wavelength, and the second wavelength is different from the first wavelength. The 7L piece 53 is an optically addressed spatial light modulator. Element 54 is another optical address space light modulator. Regarding the optical locating stray light modulator, the red illuminating diode array is connected to the nester #打·-, and there is a basket 丨 服 丨 冩 先 先 先 , , , , 51 51 51 51 51 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 . The optically addressed spatial light modulator 53 is controlled by the first wavelength of the two infrared wavelengths that are emitted by the organic light emitting diode array 52. The wire-addressed spatial light modulator 53 is insensitive to the first wavelength of the two infrared wavelengths emitted by the organic light-emitting diode array 52 and will emit the second of the two infrared wavelengths of the organic light-emitting diode array % Wavelength transmission. The optically addressed spatial light modulator 54 is controlled by a second wavelength of two infrared wavelength wipers emitted by the organic photo-polar array 52. The optically addressed spatial light modulator 54 is insensitive to the first wavelength of the two infrared wavelengths emitted by the organic light emitting diode array 52, or may utilize the optically addressed spatial light modulator 53 and/or The wire prevents the first-infrared wavelength of light from reaching the optically-addressed spatial light modulator 54, by its absorption, in the compact hologram generator 55's not necessarily required for the first-infrared, line> Long insensitive optically addressed spatial light modulator 54. Alternatively, a single organic light-emitting diode emitting two different wavelengths may be used. The relative intensities of the two different wavelengths are determined by a parameter such as the voltage across the organic light-emitting diode. Two different wavelengths of radiation can be controlled by time multiplexing. For transmitting light, element 53 is modulated in amplitude and element 54 is modulated in phase. It is also possible to adjust the amplitude of the element 54 and the element 53 to adjust the phase. With such a setting, the organic light emitting diode array 52 emits light having two different wavelengths, ensuring that the two optically addressed spatial light modulators 53 and 54 can be placed in close proximity. The optically-addressed spatial light modulators 53 and 54 are close to each other to reduce optical loss and due to beam divergence. 32 200827953 Correction string 1 problem. Optically-spaced spatial light modulators 53 and 54 are very large. A preferred approximation of the non-re-emission propagation of a colored light beam by an optically addressed spatial light modulator. . A three-dimensional image is viewed in a direction of 55 from a device that includes a percentage of the close-up hologram generator. The elements 57, 50, 5, 52, 53 . . . and ^ are configured to be physically connected (realally connected), each forming a layer of the structure, so that the body is an object of early -, system -. Physical connections can be direct. Or indirect 'if there is a thin intermediate layer, cover the film between adjacent layers. Physical connections can be limited to the correct arrangement of small areas that are mutually aligned, or can extend to larger areas or even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by making the silk transfer transfer, the gorge forming a close-up hologram to generate benefit 55' or by any other means (refer to the outline manufacturing procedure section) ). ‘In the optically addressed spatial light modulator performing amplitude modulation, in a typical setting, the incident reading optical beam will be linearly polarized by passing the beam through a linear polarizer. The amplitude modulation is controlled by the rotation of the liquid crystal in the applied electric field, wherein the % field is generated by the photosensitive layer, affecting the polarization state of the light. In such a device, light exiting the optically addressed spatial light modulator passes through another linear polarizer, which reduces the intensity due to changes in the polarization state of the light, as it does when optically addressing the spatial light modulator. . 33 200827953 Performing phase modulation at optically-addressed spatial light modulators, unless they are in a sinusoidal linearly biased state, in a typical setting, the incident reading optical beam will pass the linear polarization through the beam. The slice is used to achieve linear polarization. Phase modulation is controlled by the application of an applied electric field, where the electric field is generated by the photosensitive layer, affecting the phase state of the light. In one example of phase modulation, nematic phase liquid crystals are used, the optical axis directions being fixed at intervals, but birefringence is a function of applied voltage. In the case of phase modulation, ferroelectric liquid crystal is used, and birefringence is fixed, but the direction of the optical axis is controlled by the applied voltage. In phase modulation implementation, using either of these methods, the output beam has a phase difference for the input beam that is controlled by the applied voltage. An example of a liquid crystal element that can perform phase modulation is a Freedericksz element arrangement in which an anti-parallel arrangement of nematic liquid crystals having a positive dielectric anisotropy is used, as described in US 5,973,817. Close combination of C· compact light source and electronic address space and light modulator. This is a close-knit combination of an electronic address space optical modulator and a fully coherent compact source that produces a three-dimensional image with proper illumination. In this embodiment, an electronically addressed spatial light modulator scaled light-f dense combination that does not require imaging optics is described. This combination provides a close combination of a light source 34 200827953 or multiple light sources, a poly-tn electronic address, and a non-essential beam splitter element. This combination (4) produces a three-dimensional image in the appropriate case. . In Figure 11 is an embodiment. 11〇 is a lighting device used to provide illumination for a flat area. The towel is a new one that can be used to capture a three-dimensional image. An example of a lighting device for a large area image hologram is mentioned in US 2006/250671. One example is shown in Fig. 4. An 11-inch device can be in the form of a white light source array, such as a cold-lighted or emitted light, which is shot on a poly-light system. The poly-lighting system can be mounted on a dense array, such as a lenticular array or micro. Lens array. Alternatively, the light source for 110 may be composed of red, green, and blue lasers, or a red and green-domain light-emitting diode that emits sufficient _ sexual light. Red, green and blue light-emitting diodes can be organic light-emitting diodes (OLEDs). However, it is preferable to have a full-size _ _ laser light source (for example, a light-emitting diode, an organic light-emitting diode). Laser light _ shortcomings, such as the phenomenon of laser spots on the holographic reconstruction, relatively more blame and all the damage to the holographic display of the viewer or the full-money set of red-handed eyes, etc. may be into question . The thickness of the king _ element 110 can be about 1/4 or less. In a preferred embodiment, 70 pieces of 11 () · 113 will have a total thickness of less than three centimeters in order to provide a sufficient _ sex close 35 200827953 light source tree 111 can be a color job, so that green and blue light) Like a 1-color plant (for example, red, color, β θ... to hand 112, although if a color light source is used, the component is an unnecessary one. The image is solved by the image generator m. ^. Located at point m from the close to the three-dimensional image., & Giant away from the viewer, can be viewed from the direction of ns / ^ L 1 1 / Λ - > can contain one or two 稜鏡 optics Membrane to increase the brightness of the display. Such a film is known, for example, in US 5,056,892 and US 5,919,551, the inner grain element 11 () may comprise a polarizing element or a collection of polarizing elements. An example is a reflective polarizer that conveys a hetero-biased recording, a neo-reflective orthogonal hetero-biased state, such as is known, for example, as described in still 5,828,488. Another example is that the sub-reflective polarizer can transmit a circular polarization. State, and reflecting orthogonal circular t-shaped biased states. Such flakes are known, such as those described in US 6, (8), 395. 70 pieces 110 may include other known in the art of backlight technology. Optical elements. Electronically addressed spatial light modulators are a type of spatial light modulator in which each element in an array of elements can be addressed electronically. Each element performs some effect on the incident light, for example To modulate the amplitude of the light it transmits, or to adjust the phase of the light it transmits, or to modulate the amplitude and phase of the light it transmits. An electronic address is provided in US 5,973,817. An example of a spatial light modulator, this example is Herr's electronically addressed spatial light modulator. The liquid crystal electronic space-space optical modulator is an example of an electronic address space optical modulator. The light is electronically addressed. The other example is that the components 110, m, m, and 113 are configured to be physically connected (realally connected), and each layer forms a structure, so that the whole is a single Object The physical connection may be direct or indirect. If there is a layer of the kerchief, the membrane shell connection covering the adjacent layer 1 may be limited to a small area ensuring a positive green arrangement, or may be extended. To a larger area, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer hybrids, for example by using an optical transfer method to form f (four) full-sided generation n 115, or by any other means (Refer to the Summary Manufacturing Procedure section.) Figure 4 is a side view of a conventional technique showing the three focusing elements 1101, 1102, 1103' of the vertical focusing system 11〇4 in the form of cylindrical lenses arranged horizontally in the array. The beam that is nearly collimated with the horizontal line source LS2 passes through the focus of the illumination unit = the piece 1102 to the observer plane 0P as an example. According to Figure 4, many of the line sources (3), politics, and LS3 are arranged one above the other. The light emitted by each light source is charged in the vertical direction. 37 200827953 The injured room is the same as the horizontally (4) non-remaining. This light will pass through the transmission of the light-tuned U SLM. This light is due to the hologram __ ray modulator SLM components, only the diffraction in the vertical direction. Focusing element · Imaging light source (10) in the observer plane 〇p in the order of m (only one is useful). The light beam emitted by the light source (3) is an example of a focusing element which is measured only by the focusing system. In Fig. 4, a beam shows the first ray diffraction class, the zeroth class, and the negative 11⁄4 level 11〇7. The line system allows for very high light intensities compared to single-point sources. Efficient light intensity can be enhanced by using multiple lines of light source illumination with increased efficiency and for reconstructing each part of the 3D scene. Another advantage, not (four) laser 'multiple points _ (for example, after the city can be used - the miscellaneous slot) common light source can produce sufficient coherent light. Typically, the hologram display is used to reconstruct the wavefront in the virtual observer window. The wavefront is a call: something that an actual object will produce if it exists. When the observer's eye 7C is located in a virtual observer window that may be a virtual observer window (v〇w), he will see the reconstructed object. As shown in Figure 6A, the hologram display consists of the journal components: Light source 'lens, spatial light modulation 非 and unnecessary beam splitter 0 To help the spatial light modulation H and the compact light source that can display the holographic image, the combination of the single-light source and the single-figure sheet The lens can be replaced by a light-transfer and lens 38 200827953 array or lenticular array, respectively, as shown in Figure 6 6. In Figure 6b, the light source illumination space is fine-tuned n, and the lens is a county-to-age s-plane. The transformer encodes the holographic image and modulates the incoming wavefront so that the wavefront can be reconstructed in the virtual window. The non-essential beam splitter component can be used to count several virtual observer windows, for example -__left_ The virtual observer sees f and __ in the virtual view of the right eye. If a light source array and a lens array or a lenticular array are used, the light sources in the array must be separated to make it pass through the _ or the _ all lenses. Light at the same time The proposed observer window.

圖六B的襄置適合採用可應用於緊密全像顯示的緊密設計。 這樣的全像顯柯適臉行動制,例如在行_話或個人數位 助理中。典型地’這樣的全像顯示將有一英对或幾英啊級的營 ===碰响^喝。物元件將在 1)光源/光源陣歹 的早—光源可使用於簡單的情況下。如果觀察員移動, 親祭貝^破追蹤’顯示器可進行調整以使得產生_像可讓在新 位置的’她。㈣,柯咖觸視窗的追縱, 39 200827953 就是追蹤是在雜絲n之後使料束麵元件來進行。 可設定的光源陣列可藉由以背光昭 實現。為了產賴線細_,:;、=_ ¥_ 、矣肸能s 一 、有適虽的像素是切換到傳 ,达狀心。_光_雜賴觸小,雜雖供充份 性予目標全建。點光__可與包含二轉顺鏡的透於 陣列一域用。線光__是姉騎包含 ^ 鏡的透鏡狀陣列-起使用。 邛夕烟柱形透 士較好的是將有機發光二極體顯示器作為光源陣列。身為自發 光裝置’比起液晶顯示器A部分產生的光會由如色彩猶器等^ 件吸收或是為處在非充份傳遞狀態下的像素,能具有更好的緊谬 似肤的省電效果。如,液晶顯示器可能比有機發光二^ 喊不益更具有整體價格優勢,即使有機發光二極體顯示器能比液 祕示器以更有效率的方式提供光線。當以有機發光二極體顯示 器作為光聯列時’只有切換至其上的像素需要麵睛位置產生 虛,觀察窗。有機發光二極體顯示器可具有二維排列的像素 或是-維排列的線光源。每一個點光源的發光區域或是每一個線 光源的i度都需要足夠的小’來保證提供充份m關性於目標 的全像重建。同樣的,點光源的陣列較適合與包含二維排列透鏡 的透鏡陣列-械用。線光源的㈣是較適合與包含平行排列圓 200827953 柱形透鏡的透鏡狀陣列一起使用。 2)1焦方法·單一透鏡,透鏡陣列或透鏡狀陣列 聚焦工具成像-個光源或多個光源至觀察員平面。當空間光 調變器是非常靠近聚焦工具時,在空間光調變器中編碼的資訊的 傅立葉轉換是在觀察員平面中。聚焦工具包含一個或數個聚焦元 Φ 件。空間光調變器與聚焦工具的位置是可以交換的。 … 對於電子式定址空間光觀器與充份_性的f密型光源的 緊密組合,薄的聚焦工具是必要的:習用具有凸面的折射透鏡是 過厚的。取而代之的是使用繞射或全像透鏡。繞射或全像透鏡可 具有單一透鏡、透鏡陣列或透鏡狀陣列的功能。這樣的材料是存 在的’如由 Physical Optics Corporation,T〇rrance, CA,USA 所提供 • 的表面起伏全像產品。或者是使用透鏡陣列。透鏡陣列包含二維 -排列的透鏡,每一個透鏡分配至光源陣列的一個光源。另一個選 - 擇是使用透鏡狀陣列。透鏡狀陣列包含一維排列的圓柱形透鏡, 每一個透鏡有一個在光源陣列中的對應光源。如上所述,如果使 用光源陣列與透鏡陣列或是透鏡狀陣列,陣列中的光源必須分 隔,使得通過透鏡陣列或是透鏡狀陣列全部透鏡的光同時至虛擬 觀察員視窗。 200827953 通過透鏡❹丨献透餘_的親的賴雜何其它的透 鏡是非同_。s此’在空間_變紅編碼的全像圖是由次全 像圖所每-個次全像_應至—個透鏡。每一個透鏡的孔 徑必須足夠大,以保證重建物件的解析度足夠。可以使用孔徑與 全像圖編碼區域典型尺寸幾乎—樣大的透鏡,如在 腦_〇顏中所描述的例子。也就是說每一個透鏡的孔徑是 一或數毫米。 3)空間光調變器 全像圖是在空間光調變器上編碼。通常,對於全像圖的編碼 是由複數的:纟幽所_。㈣’理❿_變器應該能 夠調變通過㈣朗魏每—個像素的局部光光相振幅及相 位。然而,-般的空間光調變器只能調變振幅歧相位,The device of Figure 6B is suitable for a compact design that can be applied to a compact hologram display. Such a holographic image is a system of action, such as in a line or personal digital assistant. Typically such a holographic display would have a mile or a few tiers of camp === bang ^ drink. The object element will be used in 1) the light source/light source array early-light source can be used for simple cases. If the observer moves, the spectator will be able to make adjustments so that the _ image can be made in the new position. (4), Kejia touches the window of the memorial, 39 200827953 is to track the mating component after the hybrid yarn n. A configurable array of light sources can be achieved by backlighting. In order to produce the line fine _,:;, = _ ¥ _, 矣肸 can s one, there are suitable pixels are switched to pass, up to the heart. _ light _ 杂 触 触 , , , , , 虽 虽 虽 虽 虽 虽 虽 虽 虽The spot light __ can be used with an array-through field containing a two-turn mirror. The line light __ is the lenticular array that contains the ^ mirror and is used. It is preferable to use an organic light-emitting diode display as an array of light sources. As a self-illuminating device, the light generated by the A portion of the liquid crystal display can be absorbed by a color such as a color device or a pixel that is in a non-perfect state, and can have a better skin-like condition. Electric effect. For example, a liquid crystal display may have an overall price advantage over an organic light-emitting device, even though an organic light-emitting diode display can provide light in a more efficient manner than a liquid-based display device. When an organic light-emitting diode display is used as a light-linked column, only the pixel switched to it needs to be in a virtual position, and an observation window is generated. The organic light emitting diode display can have a two-dimensional array of pixels or a -dimensionally arranged line source. The illuminating area of each point source or the i-degree of each line source needs to be sufficiently small to ensure that a full-image reconstruction of the target is provided. Similarly, an array of point sources is more suitable for use with a lens array comprising two-dimensionally arranged lenses. The line source (4) is more suitable for use with a lenticular array containing parallel-arranged round 200827953 cylindrical lenses. 2) 1 focus method · single lens, lens array or lenticular array Focusing tool imaging - one light source or multiple light sources to the observer plane. When the spatial light modulator is very close to the focusing tool, the Fourier transform of the information encoded in the spatial light modulator is in the observer plane. The focus tool contains one or several focus elements Φ. The position of the spatial light modulator and the focusing tool is interchangeable. ... For the close combination of the electronic address space optome and the full-fledged light source, a thin focusing tool is necessary: the refractive lens with a convex surface is too thick. Instead, a diffractive or holographic lens is used. A diffractive or holographic lens can have the function of a single lens, a lens array or a lenticular array. Such materials are present as a surface relief holographic product as provided by Physical Optics Corporation, T〇rrance, CA, USA. Or use a lens array. The lens array comprises two-dimensionally aligned lenses, each lens being assigned to a light source of the array of light sources. Another option is to use a lenticular array. The lenticular array comprises a one-dimensional array of cylindrical lenses, each lens having a corresponding source in the array of light sources. As noted above, if a source array is used with a lens array or a lenticular array, the light sources in the array must be separated such that light passing through the lens array or the lenticular array of all lenses simultaneously reaches the virtual observer window. 200827953 Through the lens, I don’t know what other lenses are different. The hologram of the space _ red coded is from the sub-image of each sub-image to the lens. The diameter of each lens must be large enough to ensure adequate resolution of the reconstructed object. It is possible to use a lens having an aperture that is almost as large as the typical size of the hologram coding region, as exemplified in the brain. That is to say, the aperture of each lens is one or several millimeters. 3) Spatial light modulator The full image map is coded on a spatial light modulator. Usually, the encoding of the hologram is made up of plurals: 纟幽的_. (4) The theory of the transformer should be able to modulate the amplitude and phase of the local light and light phase of each pixel by (4) Langwei. However, a general spatial light modulator can only modulate the amplitude and phase of the amplitude.

獨立進行調變。 b ,例如布 碼一個複 振幅觀纠賴魏可與執跡她編碼組合使用 克哈_滅娜編碼。它的缺點是需要三個像素來編 數,並且重建的物件亮度較低。 42 200827953 =^子式疋址空間光調變器具有明顯邊緣的特性,這將導 不,望陳高_階級在它們的繞射圖樣中,可藉由使用季軟 衫具线傳送截止的孔 τ ϋ方法的一個例子是具有高斯圖形 ==Γ__°爾⑽轉場換為高 2函數本麵數學結果。耻,她於彻具有在本身傳送圖形 中尖銳截止的孔徑進行傳送,除了橫向比例參數之外,光束強度 波形函數的繞射是不改變的。可使用高斯傳送圖形的薄片陣列。 當這些被提供與f子式定址帥光觀器、倾排列在—起,與具 有在光束傳送圖形中尖銳截止的系統相比,將得到無較高繞射階 喊大量減低喻高繞麵、㈣統。高斯爾器或錄孔徑過滤 益會抑制繞射加工品為高m鮮。高㈣過s或柔軟孔徑過滤 器會最小化在對於左右眼的虛擬觀察員視窗之間的串音。 4)光束分光鏡元件 虛擬觀察員視窗會限制在空間光調變器編碼資訊的傅立葉轉 換的一個週期性區間。使用現有最大解析度的空間光調變器,虛 擬觀察員視窗的大小為10毫米的層級。在一些情況下,對於應用 在沒有追蹤的全像顯示中時,這可能會是太小的。空間多工的虛 擬觀察貝視窗是這個問題的一個解決方法:產生多個虛擬觀察員 43 200827953 視_。在工間多J1的例子中,虛纖察員視窗會在空間光調變器 上不同的位置同日^產生。這可由光束分光鏡來實現。舉例而言, 空間光峨|§上的-組像素編碼虛擬觀察員視窗i的資訊,另一 組像素編碼虛擬觀察員視窗2的資訊。光束分光鏡會區分這二組 j光’使得虛擬觀察員視窗i與虛擬觀察員視窗2會並列在觀察 員平面。可由無接縫配置虛擬觀察員視窗1與虛擬觀察員視窗2 來產生較大的虛擬觀察員視f。多卫也可以絲產生左右眼的虛 纖察員視窗。在這樣的情況下,並不需要無接缝並置,且在對 於左眼的-個或數個虛擬觀察員視窗與對於右眼的—個或數個虛 擬觀察S視窗之間可具有間隔。必f要小心虛峨察貞視窗的較 高繞射階級並不會與其它的虛擬觀察員視窗重疊。 分光鏡元件的一個簡單例子是包含黑色條紋的視差屏障,其 中黑色條紋之間具有透明區域,如在US2〇〇4/223〇49中所描述的 内容。另一個例子是雙凸透鏡狀薄片,如在US2〇〇4/223〇49中所 描述的内容。分光鏡元件的另—侧子是透鏡陣列與稜鏡遮蔽 物。在緊密的全像顯示中,典型地可能會希望具有分光鏡元件, 然而典型10耄米大小的虛擬觀祭員視窗僅足夠提供一眼,這並不 符合一般觀看者具有兩個眼睛,並且相隔約為10公分。然而,可 以使用時間多工來作為空間多工的另一個選擇。在缺少空間多工 的情況下,將不需要再使用分光鏡元件。 44 200827953 工間夕工也可使用在彩色全像重建的產生。對於空間色彩多 工,像素會進行分群,每一群包含紅色,綠色及藍色色彩元素。 這些群是空間上分隔在空間光調變器,並且同時騎紅色,綠色 及藍色光。每一群會利用針對目標對應的色彩元素計算的全像圖 編碼。每一群重建它的全像目標重建的色彩元素。 5)時間多工 在時間多工的情況下,虛擬觀察員視窗會在空間光調變器上 相同的位置她產生。這可由交替光源的位置期時重編碼空間 光調變器來實現。光源的交替位置必須使得觀察員平面中的虛擬 觀察員視妓無接縫並置的。如糾間多工是足夠快的,即完整 週期大於25 Hz,眼睛將會看見連續擴展的虛擬觀察員視窗。 多工也可以用來產生左右眼的虛擬觀察員視窗。在這樣的情 況下,並不需要無接縫並置,且在對於左目艮的一個或數個虛擬觀 察員視窗與對於右眼的一個或數個虛擬觀察員視窗之間可具有間 隔。這樣的多工可為空間或時間多工。 空間與時間白勺多工也可以結合。舉一個例子,三個虛擬觀察 員視_是為空間多,用以產生對於一個眼睛的擴大虛擬觀察員 45 200827953 、這们擴大的虛擬觀察員視窗是時間多工,以產生對於左眼 、κ大虛擬觀祭員視窗以及對於右眼的擴大虛擬觀察員視窗。 必需要小心虛擬觀察員視窗的較高繞射階級錄 虛擬觀察員視窗重疊。 …、 • 狀擴大虛擬觀察員視窗的多工是較建議與空間光調變器的 重編碼—起制,因為它提供了具_觀察員義,視差連續變 化的擴大虛擬觀察員視窗。簡單而言,沒有重編碼的多工,會在 擴大的虛擬觀察員視窗的不卿份,提供重覆的内容。 時間多工也可使用在彩色全像重建的產生。對於三個色彩元 素的時間色彩多工,會依序在空間光調變器上編碼。這三個光源 #會與空間光調變器上的重編碼同時切換。如果完整週期的重覆是 足夠快的,即大於25Ηζ,眼睛會看見連續的色彩重建。 6)不想要的較焉繞射階級的處理 如果較大的虛織察員視t是由較小的虛擬觀察員視窗拼凑 ^的’虛擬觀察員視窗的較高繞射階級,將可能在其它虛擬觀 T、員視窗巾產生猶θ ’除非有執行避免關題的步驟。舉一 〇子 >果每d虛峨察員視窗都是位於空間光調變器編瑪 46 200827953 貝摘傅立葉轉換的第零繞射階級巾,虛織察貞《的第-繞 ㈣級將可能與_的虛織察員視窗重疊。這樣的重疊可能會 導致擾景’如果不想要的圖像強度超過需求圖像強度的約 5%% ’ &將可能會變的制的鶴。在這樣的情況,會傾向於補 償或抑制較高的繞射階級。 如果知射空間光調變II的角度是不變的話,可以使用固定的 角過濾③。這要不是全像顯示不具追蹤功能就是光束分光鏡元件 (例如光束指向元件)是位於空間光調變器之後的狀況。固定的角過 遽器可為布拉格濾波器(Bragg filter)或是法布立-培紋 Perot Etalon) 〇 在空間光調變H產生具不想要的繞射階級的幾何光強度分配 上,可使用布拉格過濾H雜光學元件來職何光強度分配作修 正,例如在US 5,153,670中所描述的内容。布拉格過濾器全像光 +元件可造成與沒使用此元件時不同的光強度分配。圖七顯示了 布拉格過濾&全像光學元件的功能。在圖七中,7()是空間光調變 器,71是全像光學元件布拉格過濾器,包含布拉格平面,例如布 拉格平面74。在空間光調變器70上的單一元件73提供如圖中乃 的繞射光強度分配。由空間光調變器70繞射的光線76,在全像 光學元件71中經歷散射,接著在不同於70與71之間的原始傳播 47 200827953 的方向傳送。如果光線76傳送的方向在70與71之間為不想要的 第一階級繞射光,可以容易看見布拉格過濾器71成功改變這些光 至不同的方向,可使它不會造成不想要且可能妨礙觀看者的光學 加工品,典型的觀看者將會位於接近垂直於70的方向。 在專利申請號DE 10 2006 030 503中提及用於抑制繞射階級 的可調式法布立-培若定規。所提到的是介於兩個塗上部分反射塗 層的共面玻璃薄片之間的液晶層。對於每一個塗層光束的反射, 光束是部分反射及部分舰。傳送絲的干_及它們之間的相 位差將決定預是轉賴性或者為破舰,如在法布立_培若定 規具標準中·述_容。給定—倾長,干擾及傳送會隨著光 束的入射角而改變。 給定-個光傳播額,干擾簡由改·晶對於給定光的傳 =向的獅彻。折峨㈣加繼作 控制。因此,在法布立姻定規具的所有限制中,㈣送特性是 ==齡並錢概___ 可級最佳傳送及第一階級最 送。在法布立-培蝴具的所有二階級與較高階級的傳 j中,延裴置可幫助對於特定 細以输序卿,根_錢傳送或為反射。 48 200827953 空間過滤ϋ可使用在繞射階級的選擇。空間過濾器可設置在 空間光調變ϋ與虛擬虛擬觀察員視t之間,並且包含透明與不透 明區域。這些空間魏器可絲傳送需要的繞射階級,並且阻礙 不想要的繞射階級。這些空間過遽器可為_的或是可設定的。 例如:設置在空間光調變器與虛擬觀察員視窗之間的電子式定址 空間光調變n可作為可設定式空間猶器。 7)眼部追蹤 在具有眼部追縱的電子式定址空間光調變器與充份同雛的 2型光源的緊密組合中,眼部位置_器可侧觀察員的眼部 所以個或數個虛擬觀察員視窗可自動地設 置’使得贿貞可_虛峨察纽窗看難建的物体。 T ’因输卜裝置需求與影響效能的電力需求聞,追縱 疋卩4_ ’尤其對於可攜式裝韻是手持錢置。 助理的實施财’緊密顯示器是可能包含在個人數位 使用者=:::手持式_。個人數位助理或行動電話的 ::r者眼部的位置,並不會有太大的幫助。大家都:手 持式裝置的㈣者會傾向自己改變手上妓的方向,簡縣理手 49 200827953 想的觀看狀態’如同在WO01/96941中所描述的内容。因此,在 這樣的裝置中,並不需要使用者眼部追蹤及複雜且不緊密如包含 掃描鏡的追蹤光學。但是眼睛追蹤可以應用在其它的裝置中,如 果對於裝置而言’額外需求的設備與電源不會造成過度的負擔。 在沒有追蹤的情況下,電子式定址空間光調變器與充份同調 籲性緊密型光源的緊密組合,需要足夠大的虛擬觀察員視窗來簡化 - 顯示器的調整。較好的虛擬觀察員視窗大小應該是眼睛瞳孔大小 .的=倍。這可由使用小間距空間光調變器的單-較大虛擬觀察員 $窗來完成,或是由使狀間距空間光調魏的數個較小虛擬觀 祭貝視窗拼凑而成。 虛擬觀察員視窗的位置是由光源陣列中的光源位置來決定。 眼部位置_器偵測眼部的位置,並且蚊光源的位置,以讓虛 擬觀察員視窗適合眼部的位置。s US2〇〇⑱腦與 US2006/250671中描述了這種類型的追蹤。 。、另-種方式,當光源位於是固定的位置時,虛擬觀察員視窗 :破移動。光源追縱需要對於光源的光人射角變化相對不敏感的 =光調變器。如果光源是為了機虛擬觀察員視窗位置而移 ,由於在緊密組合中可能有異常光傳播情況,這樣的設定將可 50 200827953 很難胃現緊被型光源與空間光調變器的緊密組合,在這樣實例 =_中最後光學元件 的九束4曰向元件,將會有所幫助。 i/ —十—中顯示了光束躺元件。這触束指向元件 麵不器的_端變化絲的纽。它可具有對於X與y追縱可 •控制稜鏡及對於z-追鞭可控制透鏡的光學特性。例如,圖二十及 ‘—十—的光束指向元件的任—個或兩個都可應用於單—裝置内。 光束指向元件是可㈣齡元件歧可㈣騎树。可控制折 射7G件可包含填滿液晶的凹洞陣列,液晶是喪入在具有等向性線 電偶極子電化率張量矩陣中。關具有稜鏡或透鏡的形狀。電場 控制液晶的有效折神朗崎助光束細。電射在元件間變 化,用以產生在元件間變化的光束指向特性。如圖二十所示,電 φ :是施加在透明的電極之間。液晶具有單軸折射特性,並且可: 卜 選擇’以使得垂直它的光軸折射率等同於主體材料或,,矩陣,,的折 '射率。其餘的設定’可從習用技術中獲得。主體材料具有等向折 射率。如果液晶的光軸是沿著ζ方向湖,如圖二十所示的適當 電场應用’沿著Ζ方向傳播的平面波,當它通過光束指向元件時 並不會有折紐生,因的ϋ沒有制任何垂直於它的波映廷向 量(Poyntingvector)的折射率變化。然而,如果施加電場在電極上, 使得液晶的練是垂胁z方向,沿著z方向侧被偏化平行於 51 200827953 光軸的平面波,當它通過_向元件時,將遭遇最 =糊_應_化咐—謝可能的折射 :: 程度?可在這兩個極端例子之間,藉由選擇施加 在主體材料的適當電場而進行調整。 如果凹洞編彡,而不歧鏡做,__絲束指向。 鲁圖-十-顯不對於光束指向合適的稜形。如果液晶的光轴是沿^ 方向排列,如圖二十-所示的適#電_用,沿著Z方向傳播的 •平面波’當它通過光束指向元件時並不會有折射發生,因為它並 沒有在它的偏化方向遇到任何的折射率變化。然而,如果電子領 域是,用橫越電極如此的液晶光軸是與z方向垂直的,平面波傳 播著z 被偏化平行於光赠經驗最乡的折射因為它 光束彳a向元件’因為它經驗最多可能的折射率祕可提供變 #化垂直的它的波映廷向量(P〇ymingvector)。 * 如果化加包場在電極上’使得液晶的光轴是垂直於z方向, •'。著Z方向侧被偏化平行於光軸的平面波,當它通過光束指向 元件~將^遇最多的折射,因為它經歷最多垂直它的(系統可提 ^的)波B^ii^Poyntingveetw)的可能騎率變化。折射的程度 將可在14兩個極端例子之間,藉由選擇施加在主體材料的適當電 場而進行調整。 52 200827953 8)範例 料、絲=4個電子式定址郎光調變賴充份義性緊密 _組合的例子,此組合能夠在適當_情況下產生 -維圖像’减可設置於個人數位賴或行動電話巾。電子式定 址空間光調變n與充份_輯_辆的緊密組合包含作為光 源陣列的有機發光二極體顯示器、電子式定址空間光調變器盘透 鏡陣列,如圖十二所示。 、取決於虛擬觀察員視窗(在圖十二中以〇w代表)的位置需 求’:啟動_發光二極體顯示器中的特定像素。這些像素照射 電子式定址㈣_變器,並且藉由透鏡_成像在觀察員平 面透鏡I1 翔的母個透鏡至少—轉素在有機發光二極體顯示界 中被啟動絲。在魏蚊的尺核小,如果像制鹏卿^ 可細帶有働师橫向增量的虛擬觸視窗。這 準連續的。 有機發光二極體像麵具有部分空間_性的光源。部分的 同調性會產生目標點的模_重建。在_給定的尺寸大小,如 果像素寬度為20微米,在距離顯示器應毫米的目標點會產生帶 有⑽微料橫向模_重建。餅於人練覺纽的解析度是 53 200827953 ^過透鏡陣列的不囉鏡的光,並沒有的制同調性。 同調性的需求是_至透鏡_的每—個單—透鏡。因此,重建 目標點的騎度是由透鏡_關距來決定。對於人類視覺系统 而言,典型的透制距將為〗絲階級,以保證紐解析度。如 果有機發光二極_距是2〇微米,這表示透鏡間距與有機發光二 極體間距的比值為50:卜如果每一個透鏡僅有單一個有機發光二 極體被照亮,這絲每5〇λ2=2,5()()錢發光二鐘巾,僅有一個 有機發光二極體將觀亮。目此,此顯示雜為低功率顯示器。 在此所指的全像顯示與傳财機發光二極體顯的之間的差異是 前者集中光峨看者的鴨,反讀擔縣至%球面度。傳统 的有機發光二極_示1!實_ !,_ ed/mA2的發絲,(發明者 於實作中計算),反之在實務上,簡财機㈣二歸應能實現 WOOcd/ml發光度的數倍。, 虛擬觀察員視窗是限制在空間光調變器中編碼資訊的傅立葉 頻譜的一個繞射階級。如果空間光調變器的像素間距是,並 且需要兩個像素來編碼一個複數,即如果在相位調變電子式定址 空間光調變ϋ上 2她編碼,在,麵的波長,虛擬觀察員 視窗會有10mm寬的寬度。虛擬觀察員視窗可利用空間或時間多 工’將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在* 54 200827953 間多工的情況下,需要額外的光學元件,如光束分光鏡。 衫色全像重建可由時間多工來實現。彩色有機發光二極體顯 不器的紅色,綠色及藍色像素是利用具有對紅色,綠色及藍色光 學波長計算的全像圖的空間光調變器的同步重編碼來相繼地啟 動。 顯不器可包含眼部位置偵測器,用以偵測觀察員的眼睛位 置。眼部位置偵測器連接控制有機發光二極體顯示器的像素活動 的控制單位。 在空間光調變器上編碼的全像圖的計算最好是由外部的編碼 早兀來執行,因為它需要較高的計算能力。顯示資料會接著送至 • 個人數位助理或行動電話,以顯示全像產生的三維圖像。 對於錢務上的例子’可使用由Sany0 (rtm) Epson (RTM) g g Devices Corporation of Japan所製造的2.6英忖螢幕尺吁 XGA液晶顯示器電子式定址空間光調變器。次像素的間距為 17μπι如果這是使用於紅綠藍全像顯示的建構,利用全像圖的振 幅,變編碼,在距離電子式定址空間光調變器〇.4m的地方,觀察 視窗根據叶异為寬。對於單色的情況,觀察視窗根據計算 55 200827953 為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調 變,觀察視窗根據計算為6mm寬。如果使用相同的設定,但是改 用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為 12mm % ° 此外,仍具有其它種高解析度的電子式定址空間光調變器。 ⑩ Seiko (RTM) Epson (RTM) Corporation of Japan 已發表單色電子式 定址空間光調變器,例如D4:L3D13U 1·3英吋螢幕尺寸且像素間 距為15μπι的面板。此公司也發表了同類型的面板 D5:L3DG9U_61GGG,具有〇·9英忖螢幕尺寸及1()μηι的像素間距。 於西兀2006年12 Θ 12日,此公司公告發表同類型的面板 I3D07U-81G00 ’具有〇.7英忖螢幕尺寸及8 —的像素間距。如 果D4:L3D13U 1.3英吋面板用於建構單色的全像顯示,並採用全 鲁像的布克哈特(Burckhardt)振幅調變編碼,則距離電子式定址空間 光調變器0.4m的位置,虛擬觀察員視窗可計算出為5 6職寬^ * D.成對的電子式定址空間光調變器的緊密組合 在另-個實施财’可以依序及緊密的方式,_二個電子 式定址空間細魏的組合來霞光的振幅及她。所以 振幅及相位的複數,可以逐一像素的方式,編碼於傳送光中^ 56 200827953 這個實施地含二個電子歧址郎光調_的f密組合。 第-個電子式定址㈣_魏機傳送杨振幅,第二個電子 式定址空間光調變器調變傳送光的相位。也可以第一個電子式定 址空間光調變器調變傳送光的相位,第二個電子式定址空間光調 變器調變傳送光的振幅。每-個電子式定址空間光調變器都可如c 部份所描述-樣。除了_二個電子狀址空間光調變器之外, •整體的配置可如同c部份所描述的—樣。任何相#於是幫助振幅 及相㈣齡機的其它種二個轩式定址帥_魏調變特 性的任意組合都是可能的。 在第-步驟中’第-電子式定址空間光調變器利用圖樣編 碼’以進行振幅調變。在第一步驟中,第二電子式定址空間光調 '和績細的光已祕軸及她上進行賴,因此,當觀察 員觀察裝置這二個電子式定址处^ 時,可觀察到三維圖像。.以的裝置所發射的光 基於“她她__技敏進複數數_ 式疋址峨聰爾冑難。目 生全像圖來使得三_射她察胃觀麵。 用於產 57 200827953 圖十三為-個實施例。130是照明裝置,用於提供平面區域的 照明’其中·是具有充份的_性以便能夠產生三維圖像。在 US 2006/250671提及-個用於大區域影像全像圖的照、明裝置例 子,其中-個例子是在圖四中。如同⑽的裝置可為白光光源陣 列的形式,例如冷陰减絲或發出的光線人射錢焦祕上的 白光毛光—極體’其中聚焦系統可為緊密的,如透鏡狀陣列或微 •透鏡㈣。或者’祕13G的光源可由紅、綠域雷射所組成, - 或是發出充份_性躺紅、綠及藍發光二極體馳成。紅、綠 及藍發光二極體可為有機發光二極體(OLEDs)。然而,具有充份空 間同雛的非雷射光源(例如:發光二極體,有機發光i極體,^ 陰極螢光燈)是更佳的。雷射光源的缺點,像是在全像重建上造成 雷射斑點、相對上較為昂貴以及所錢於傷害全像顯示觀看者或 是進行全像顯示裝置組裝工作人員的眼睛等可能的安全問題。 _ 元件130可包含-個或兩個稜鏡光學膜來增加顯示器的亮 ' 度:這樣的膜是已知的’例如在US 5,056,892與US 5,919,551中 所描述的内容。元件130可包含偏光元件,或是偏光元件的集合。 線性偏光薄片是其中-個例子。另外一個例子是反 可傳送-個線性偏化狀態’並且反射正交線性偏化狀態-這樣的 薄片是已知的’例如在US 5,828,488中所描述的内容。另一個例 子是反射式偏W,可傳送―個圓形偏化聽,並且反射正交圓 58 200827953 形偏化狀態-這樣的薄片是已知^例如在仍^⑻’奶中所描 述的内容。元件13G可包含聚減統,此聚㈣統可為緊密的, 例如透鏡狀陣列或微透鏡陣列。元件13〇可包含其它在背光科技 的領域中已知的光學元件。 元件130的厚度可約為數公分,或是更低。在較佳的實作中, _元件130·134的厚度全部是小於3公分的,以提供充份同調性的緊 - 密光源。元件m可為色彩過滤器_,使得彩色光線(例如紅色、 -、綠色及藍色光)的像素是射向元件132,儘管如果使用彩色光源, 色彩過遽器是不需要的。元件132是電子式定址空間光調變器。 7L件m疋電子式定址空間光機^。元件134是非必要的光束 分光鏡元件。對於傳送光,元件132調變振幅而元件133調變相 位。或是,由元件133調變振幅而元件132調變相位。將電子式 籲幻止空間光調變器132及133靠近能夠減少光學耗損及因光束^ ,而產生的像素串音問題:當電子式定址空間光調變器说及133 是非常靠近的’可實現通職子式定址空觀騎彩色光線 光束的非重$觸的較佳近似值。位於點⑶離包括$密全像圖 產生器136的農置一些距離的觀看者,可從136財向觀看到三 維圖像。 ^件DO、13卜132、133及134 S配置成實體連接(真實上連 59 200827953 接)’每-個形成結構的一層,使得整體為單一、、统一的物件。實 體連接可為直接的。或是間接的,如果有薄的中間層,覆蓋在相 鄰層之間賴。實體連接可_在確保正確的相互排列的:區域 中,或是可延伸至較大的區域,甚至層的整個表面。實體連接可 由層與層義接來實現,例如藉由錢光學傳送膠糊的方式,Modulate independently. b, for example, the code of a complex amplitude view arguing Wei Ke and the use of her code combination in combination with the Kha _ 娜 na code. Its disadvantage is that it requires three pixels to be programmed, and the reconstructed object is less bright. 42 200827953 = ^ sub-address space optical modulator has obvious edge characteristics, which will not lead, Wang Chen _ class in their diffraction pattern, can be used to transfer the cut-off hole by using the soft-line shirt An example of the τ ϋ method is the mathematical result of a Gaussian graph ==Γ__° (10) transition to a high 2 function. Shame, she transmits with a sharp cut-off aperture in her own transfer pattern. The diffraction of the beam intensity waveform function does not change except for the lateral scale parameter. An array of sheets of Gaussian transfer graphics can be used. When these are provided and arranged in the same way as the system with sharp cutoff in the beam transmission pattern, it will be possible to obtain a large number of reductions without a higher diffraction order. (4) System. The Gaussian device or the recording aperture filter will inhibit the diffraction processed product from being high. A high (four) s or soft aperture filter minimizes crosstalk between the virtual observer windows for the left and right eyes. 4) Beam splitter element The virtual observer window limits the periodic interval of the Fourier transform of the spatial light modulator coded information. Using the existing maximum resolution spatial light modulator, the virtual observer window is 10 millimeters in size. In some cases, this may be too small for applications that are not tracked in the hologram display. Spatial multiplex virtual observation Bay window is a solution to this problem: generating multiple virtual observers 43 200827953 _. In the case of the J1 in the workshop, the virtual fiber viewer window will be generated on the same day on the same position on the spatial light modulator. This can be achieved by a beam splitter. For example, the space group § on the group pixel encodes the information of the virtual observer window i, and the other group of pixels encodes the information of the virtual observer window 2. The beam splitter will distinguish the two sets of j-lights such that the virtual observer window i and the virtual observer window 2 will be juxtaposed on the observer plane. The virtual observer window 1 and the virtual observer window 2 can be configured to create a larger virtual observer view f. Duowei can also create a virtual window of the left and right eyes. In such cases, no seam juxtaposition is required, and there may be a gap between one or several virtual observer windows for the left eye and one or several virtual viewing S windows for the right eye. Be careful to look at the higher diffractive class of the window and not overlap with other virtual observer windows. A simple example of a beam splitter element is a parallax barrier comprising black stripes with a transparent area between the black stripes, as described in US 2 〇〇 4/223 〇 49. Another example is a lenticular sheet, as described in U.S. Patent Application Serial No. 4/223,. The other side of the beam splitter element is the lens array and the 稜鏡 shield. In a compact hologram display, it may typically be desirable to have a beam splitter element, whereas a typical 10 mil size virtual spectator window is only sufficient to provide one eye, which is not consistent with a typical viewer having two eyes and spaced apart It is 10 cm. However, time multiplexing can be used as an alternative to spatial multiplexing. In the absence of space multiplex, there is no need to use a beam splitter element. 44 200827953 Interwork can also be used in the reconstruction of color holograms. For spatial color multiplexing, pixels are grouped, with each group containing red, green, and blue color elements. These clusters are spatially separated in a spatial light modulator and simultaneously ride red, green and blue light. Each group will utilize a hologram encoding calculated for the color element corresponding to the target. Each group recreates the color elements of its holographic target reconstruction. 5) Time multiplex In the case of time multiplex, the virtual observer window will be generated at the same position on the spatial light modulator. This can be achieved by a position-time re-encoding spatial light modulator of alternating light sources. The alternate positions of the light sources must be such that the virtual observers in the observer plane are juxtaposed without seams. If inter- multiplex is fast enough, that is, the full period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window. Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required, and there may be a gap between one or more virtual observer windows for the left eye and one or several virtual observer windows for the right eye. Such multiplexing can be space or time multiplex. Space and time multiplexing can also be combined. As an example, three virtual observers see _ is a lot of space to generate an expanded virtual observer for an eye. 45 200827953, this expanded virtual observer window is time multiplexed to produce a virtual view for the left eye, κ The spectator window and the expanded virtual observer window for the right eye. Care must be taken to ensure that the virtual spectator window of the virtual observer window is superimposed. ..., • Expanding the multiplex of the virtual observer window is more recommended than the re-encoding of the spatial light modulator, because it provides an expanded virtual observer window with _ observers and continuous changes in parallax. In simple terms, there is no re-encoding multiplex, which will provide repeated content in the expanded virtual observer window. Time multiplexing can also be used in the generation of color hologram reconstruction. For time color multiplexing of three color elements, they are encoded sequentially on the spatial light modulator. These three light sources # will switch simultaneously with the re-encoding on the spatial light modulator. If the repeat of the full cycle is fast enough, ie greater than 25 inches, the eye will see a continuous color reconstruction. 6) Undesirable processing of the sleek class If the larger imaginary observer sees t is a higher ray of the 'virtual observer window' that is spliced by the smaller virtual observer window, it may be in other virtual views. T, the staff window towel is still θ ' unless there is a step to avoid the problem. Take a scorpion> Every bit of the virtual observer window is located in the space light modulator, Ma Ma 46 200827953, the first zero-throwing class towel of the Fourier transform, the imaginary-weaving (fourth-level) May overlap with the virtual weaver window of _. Such overlap may result in disturbing 'if the unwanted image intensity exceeds about 5% of the required image intensity' & cranes that may change. In such cases, it tends to compensate or suppress higher diffraction classes. If the angle of the optical modulation II is constant, a fixed angular filter 3 can be used. This is not the case where the hologram display does not have a tracking function or the beam splitter element (e.g., beam pointing element) is located behind the spatial light modulator. The fixed corner filter can be a Bragg filter or a Perot Etalon. In the spatial light modulation H, an geometrical light intensity distribution with an unwanted diffraction level can be used. The Bragg filter H-optical optics is used for the correction of the light intensity distribution, as described, for example, in US 5,153,670. The Bragg filter holographic light + component can result in a different light intensity distribution than when the component is not used. Figure 7 shows the function of the Bragg Filter & holographic optics. In Figure 7, 7() is a spatial light modulator and 71 is a holographic optical element Bragg filter containing a Bragg plane, such as a Bragg plane 74. A single element 73 on the spatial light modulator 70 provides a diffracted light intensity distribution as shown. Light 76, which is diffracted by spatial light modulator 70, undergoes scattering in holographic optical element 71 and is then transmitted in a direction different from the original propagation 47 200827953 between 70 and 71. If the direction in which the light rays 76 are transmitted is between the 70 and 71 unwanted unwanted first-order diffracted light, it can be easily seen that the Bragg filter 71 successfully changes the light to a different direction so that it does not cause unwanted and may hinder viewing. The optically processed product of a typical viewer will be located approximately perpendicular to the direction of 70. An adjustable method for suppressing the diffractive class is mentioned in the patent application No. DE 10 2006 030 503. Mentioned is a liquid crystal layer between two coplanar glass sheets coated with a partially reflective coating. For each reflection of the coated beam, the beam is partially reflected and part of the ship. The dryness of the conveyor wire and the phase difference between them will determine whether it is pre-transfer or a shipbreaker, as described in the Fabry _ _ _ _ _ _ _ _ _ _ _ _ _ _. Given—dip length, interference and transmission will change with the angle of incidence of the beam. Given a - the amount of light propagation, the interference is simply changed from the crystal to the given light. Depreciation (4) plus follow-up control. Therefore, among all the restrictions of the Fabri's marriage rules, (4) the delivery characteristics are == age and money ___ the best level of transmission and the first class. In all the two classes of the Fabry-Pei-Dong and the higher class, the delay can help to transfer the specific order, the roots, or the reflection. 48 200827953 Space filter ϋ can be used in the selection of the diffraction class. The spatial filter can be placed between the spatial light modulation and the virtual virtual observer view t and contains transparent and opaque areas. These spatializers can deliver the desired diffractive class and block unwanted diffracting classes. These space filters can be _ or configurable. For example, the electronic addressing between the spatial light modulator and the virtual observer window can be used as a settable space. 7) Eye tracking In the close combination of the electronic address space light modulator with eye tracking and the well-matched type 2 light source, the eye position _ can be side observers' eyes or so The virtual observer window can be automatically set to 'make a bribe to see the hard-to-build objects. T ’ s 縱 _ _ _ _ 因 因 因 因 因 因 因 因 因 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The assistant's implementation of the 'closed display' is likely to be included in the personal digital user =::: handheld _. The location of the personal digital assistant or the mobile phone's ::r eye does not help much. Everyone: (4) of the handheld device will tend to change the direction of the hand, Jane County Handle 49 200827953 The viewing state of the desire is as described in WO01/96941. Therefore, in such a device, the user's eye tracking is not required and the tracking optics that are complicated and not as tight as the scanning mirror are not required. However, eye tracking can be applied to other devices, as the device and power supply for additional requirements do not impose an excessive burden on the device. In the absence of tracking, the close combination of an electronic address space light modulator with a fully accommodating compact light source requires a large virtual observer window to simplify - display adjustment. A better virtual observer window size should be the size of the eye pupil size. This can be done by using a single-large virtual observer window using a small-pitch spatial light modulator, or by patching several smaller virtual observations of the spatially-spaced light. The position of the virtual observer window is determined by the position of the light source in the array of light sources. The eye position _ finder detects the position of the eye and the position of the mosquito light source to fit the virtual observer window to the position of the eye. This type of tracking is described in US 2 〇〇 18 Brain and US 2006/250671. . Another way, when the light source is in a fixed position, the virtual observer window: broken movement. The source tracking needs to be relatively insensitive to the change in the angle of the light source of the light source = the light modulator. If the light source is moved for the virtual observer window position, due to the possibility of abnormal light propagation in the tight combination, such a setting would be difficult for the stomach to be tightly combined with the spatial light modulator and the spatial light modulator. Such a solution = _ the last optical component of the nine bundles of 4 曰 to the component, will help. The beam lying component is shown in i/-Ten. This touch is directed to the _ end of the component. It can have optical properties for X and y tracking control and for z-tracking controllable lenses. For example, either or both of the beam directing elements of Figures 20 and _-10 can be applied to a single device. The beam pointing element is a (four) age component that can be used to ride a tree. The controllable refractive 7G member may comprise an array of recesses filled with liquid crystal, the liquid crystal being lost in an isotropic linear dipole susceptibility tensor matrix. Close the shape with a cymbal or lens. The electric field controls the effective folding of the liquid crystal. The electric radiation varies between components to produce a beam directing characteristic that varies between components. As shown in Fig. 20, electric φ : is applied between the transparent electrodes. The liquid crystal has a uniaxial refractive property, and can be selected such that its refractive index perpendicular to its optical axis is equivalent to the refractive index of the host material or matrix. The rest of the settings' are available from the conventional technology. The host material has an isotropic refractive index. If the optical axis of the liquid crystal is along the ζ direction of the lake, the appropriate electric field as shown in Fig. 20 applies a plane wave propagating along the Ζ direction, and when it passes through the beam to the element, there is no folding, because ϋ There is no refractive index change that is perpendicular to its Poynting vector. However, if an electric field is applied to the electrode so that the liquid crystal is tilted in the z-direction, the plane wave parallelized to the optical axis of 51 200827953 along the z-direction side, when it passes through the element, will encounter the most = paste_ The possible refractions:: degree? Between these two extreme examples, adjustment can be made by selecting the appropriate electric field applied to the host material. If the pit is braided and not mirrored, the __ tow is pointed. Lutu-Ten-display does not point to a suitable prism shape for the beam. If the optical axis of the liquid crystal is aligned in the ^ direction, as shown in Fig. 20, the plane wave 'propagating along the Z direction' does not cause refraction when it passes through the beam pointing element because it It does not encounter any refractive index changes in its direction of polarization. However, if the field of electronics is such that the liquid crystal axis of the traverse electrode is perpendicular to the z-direction, the plane wave propagates z is biased parallel to the most refraction of the light-stained experience because it beam 彳a to the component 'because it experiences The most probable refractive index secret provides its wavefront vector (P〇ymingvector). * If the encapsulation field is on the electrode 'the optical axis of the liquid crystal is perpendicular to the z direction, •'. The Z-direction side is biased to a plane wave parallel to the optical axis, and when it passes through the beam pointing element, it will encounter the most refraction because it experiences the most vertical (system can raise) wave B^ii^Poyntingveetw) The ride rate may vary. The degree of refraction will be adjusted between the two extreme examples of 14 by selecting the appropriate electric field applied to the host material. 52 200827953 8) Example material, silk = 4 electronically-positioned Lang Guang modulation is full of ambiguity. _ Combination example, this combination can produce - dimensional image in the appropriate situation - can be set in the personal number Or mobile phone towel. The close combination of the electronic address space optical modulation n and the sufficient _ series _ vehicle includes an organic light emitting diode display as an array of light sources, and an electronically addressed spatial light modulator disk lens array, as shown in FIG. Depending on the location requirements of the virtual observer window (represented by 〇w in Figure 12): a specific pixel in the _light-emitting diode display. These pixels illuminate the electronically addressed (four) _ variator, and the lens is imaged by the lens at the observer's planar lens I1 at least - the transilin is activated in the organic light emitting diode display. In Wei mosquitoes, the ulnar nucleus is small, and if it is like a prince, it can be thinned with a virtual touch window with lateral increments. This is quasi-continuous. The organic light-emitting diode image surface has a partial space-sex light source. Partial homology produces a modulo-reconstruction of the target point. At a given size, if the pixel width is 20 microns, a (10) micro-transverse mode _ reconstruction will be produced at a target point that is millimeters from the display. The resolution of the cake in the human sense is 53 200827953 ^ The lens of the lens is not mirrored, and there is no homology. The need for coherence is _ to each lens of the lens_. Therefore, the degree of riding of the reconstructed target point is determined by the lens_off distance. For the human visual system, the typical transmissive distance will be the silk class to ensure the resolution of the Newton. If the organic light-emitting diode _ distance is 2 〇 micrometers, this means that the ratio of the lens pitch to the organic light-emitting diode pitch is 50: If each lens has only a single organic light-emitting diode is illuminated, this wire is 5 〇 λ2 = 2, 5 () () money shines two bells, only one organic light-emitting diode will be bright. For this reason, this display is a low power display. The difference between the holographic display and the light-emitting diodes shown here is that the former concentrates on the light of the ducks, and reads the county to the % sphericity. The traditional organic light-emitting diode _ shows 1! Real _!, _ ed / mA2 hair, (inventor in the calculation), and in fact, in practice, the simple machine (four) two can achieve WOOOcd / ml light Several times the degree. The virtual observer window is a diffractive class that limits the Fourier spectrum of the encoded information in the spatial light modulator. If the pixel pitch of the spatial light modulator is, and two pixels are needed to encode a complex number, ie if the phase modulation is in the electronic address space, the code is on the surface of the virtual observer window. It has a width of 10mm wide. The virtual observer window can utilize space or time multiplexes to piece together several virtual observer windows into an expanded virtual observer window. In the case of multiplexing between * 54 200827953, additional optical components such as beam splitters are required. The reconstruction of the shirt color hologram can be realized by time multiplexing. The red, green and blue pixels of the color organic light emitting diode display are successively activated by synchronous re-encoding of a spatial light modulator having an hologram of the red, green and blue optical wavelengths. The display may include an eye position detector to detect the observer's eye position. The eye position detector is connected to a control unit that controls the pixel activity of the organic light emitting diode display. The calculation of the hologram encoded on the spatial light modulator is preferably performed by an external encoding earlier because it requires higher computational power. The display data is then sent to • Personal Digital Assistant or Mobile Phone to display a three-dimensional image of the full image. For the example of money service, a 2.6 inch screen ruler made by Sany0 (rtm) Epson (RTM) g g Devices Corporation of Japan can be used to call the XGA liquid crystal display electronically positioned spatial light modulator. The sub-pixel pitch is 17μπι. If this is used for the construction of the red, green and blue holographic display, the amplitude of the hologram is used, and the code is changed. In the distance from the electronically-spaced spatial modulator 〇.4m, the observation window is based on the leaf. The difference is wide. For the case of monochrome, the viewing window is 4mm wide according to the calculation 55 200827953. If the same setting is used, but the phase modulation of the 2 phase encoding is used instead, the viewing window is calculated to be 6 mm wide. If the same settings are used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm % °. In addition, there are other high-resolution electronic addressing spatial light modulators. 10 Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical modulator, such as a D4:L3D13U 1·3 inch screen size with a 15μm pixel panel. The company also published the same type of panel D5: L3DG9U_61GGG, with a 9-inch screen size and 1 () μηι pixel pitch. On the 12th of December, 2006, the company announced that the same type of panel I3D07U-81G00' has a 7.7 inch screen size and a pixel spacing of 8 inches. If the D4:L3D13U 1.3 inch panel is used to construct a monochrome holographic display and uses a full-rubbed Burckhardt amplitude modulation code, the distance from the electronically addressed spatial light modulator is 0.4m. The virtual observer window can be calculated as 5 6 job width ^ * D. The close combination of the paired electronic address space light modulators can be in a different and tight manner in another implementation, _ two electronic The combination of the address space and the fine Wei comes to the amplitude of Xiaguang and her. Therefore, the complex amplitude and phase can be encoded in the transmitted light one by one. ^ 56 200827953 This implementation contains two electronic framing FF s. The first electronic address (4) _ Wei machine transmits the Yang amplitude, and the second electronic address space optical modulator modulates the phase of the transmitted light. It is also possible to modulate the phase of the transmitted light by a first electronically addressed spatial light modulator, and the second electronically addressed spatial light modulator modulates the amplitude of the transmitted light. Each of the electronically addressed spatial light modulators can be as described in section c. In addition to the _ two electronic address space light modulators, • the overall configuration can be as described in section c. Any combination of any of the other two types of Xuan-style addressing _ Wei modulation characteristics of the amplitude and phase (four) age machine is possible. In the first step, the 'first-electronic address spatial light modulator uses pattern coding' to perform amplitude modulation. In the first step, the second electronically-spaced space light tone' and the fine-grained light have been applied to the axis, so that when the observer observes the two electronic addresses of the device, a three-dimensional image can be observed. image. The light emitted by the device is based on "she she __ 智 敏 敏 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Figure 13 is an embodiment. 130 is a lighting device for providing illumination of a planar area where it is sufficient to produce a three-dimensional image. As mentioned in US 2006/250671 - for large Examples of illumination and illumination devices for regional image holograms, an example of which is shown in Figure 4. The device as in (10) can be in the form of an array of white light sources, such as cold negative silk or light emitted by humans. White light - polar body 'where the focusing system can be tight, such as a lenticular array or micro lens (four). Or 'secret 13G light source can be composed of red, green lasers, - or send a full _ sexual lying Red, green and blue light-emitting diodes can be formed. Red, green and blue light-emitting diodes can be organic light-emitting diodes (OLEDs). However, non-laser light sources with sufficient space (eg, light-emitting diodes) Polar body, organic light-emitting i-pole, ^ cathode fluorescent lamp) is better. The lack of laser light source It may be a security problem such as causing a laser spot on a holographic reconstruction, being relatively expensive, and causing damage to the holographic display viewer or the eyes of a holographic display assembly worker. _ Component 130 may include One or two 稜鏡 optical films to increase the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551. Element 130 may comprise a polarizing element or a polarizing element. A set of linear polarizing sheets is one of them. Another example is the anti-transportable - linearly polarized state 'and the orthogonal orthogonally biased state - such a sheet is known', as described, for example, in US 5,828,488. Content. Another example is the reflective partial W, which can transmit a circularly polarized hearing, and the reflection orthogonal circle 58 200827953 shape-biased state - such a sheet is known ^ as described in the still ^ (8) 'milk The component 13G may comprise a poly-reduction system, which may be compact, such as a lenticular array or a microlens array. The component 13 may include other known in the art of backlight technology. The thickness of the element 130 can be on the order of a few centimeters or less. In a preferred implementation, the thickness of the element 130·134 is all less than 3 cm to provide a tightly compacted compact-dense source. Element m can be a color filter _ such that pixels of colored light (e.g., red, -, green, and blue light) are directed toward element 132, although a color filter is not required if a colored light source is used. Element 132 is Electronically-positioned spatial light modulator. 7L piece of electronically-spaced spatial light machine. Element 134 is an unnecessary beam splitter element. For transmitting light, element 132 is modulated in amplitude and element 133 is modulated in phase. The amplitude is modulated by element 133 and the phase of element 132 is modulated. The proximity of the electronic phantom space modulators 132 and 133 can reduce the optical loss and the pixel crosstalk caused by the beam ^: when the electronic address space light modulator says that 133 is very close A better approximation of the non-heavy $-touch of the colored light beam by the on-the-job addressing. A viewer located at a point (3) some distance from the farm including the hologram generator 136 can view a three-dimensional image from 136. ^Parts DO, 13 Bu 132, 133, and 134 S are configured to be physically connected (realally connected to 59 200827953). Each layer forms a structure, so that the whole is a single, unified object. The physical connection can be direct. Or indirect, if there is a thin intermediate layer, covering the adjacent layers. Physical connections can be made in areas that ensure proper alignment: or can extend to larger areas, even the entire surface of the layer. The physical connection can be realized by layer-to-layer connection, for example, by means of optical transmission of glue.

以便形成緊密的全像生器136,或是融其它任何的 考概要製造程序部份)。 U •在1子式纽變錄行練觀處,在典型的設定 中’入射的讀取光學光束將會藉由將光束通過線性偏光片來達到 線性偏化。振幅靖是由魏加電射液晶賊轉所控制,施加 電場會影響光的偏錄態。麵_裝置巾,_電子式定址空 間光調變n的光會通過另—個線性偏光片,可因光的偏化狀態改 鲁變而減少強度’如同它通過電子式定址空間光調變器時一樣。 .在^式定址郎光觀H執行她調魏,轉它們已處 於定義的線性偏化狀態’在典型的設定中,人射的讀取光學光束 將會藉由將光束通過線性偏光片來達到線性偏化。相位調變是由 電場的應崎_,電場會辟光_錄態。在她調變的一 们例子中使用向列型相位液晶’光轴方向是間關定的,但是 雙折射是施加賴的函數。在相位調變的—個例子中,使用鐵電 200827953 ϋ液曰a ’雙折射是固定的,但是絲的方向是由施加電壓所控制。 在相位翁實作中,制其中任—種方法,輸出光束與為施加電 壓函數的輸人光束會具有相位差。可執行相位調變的液晶元件的 其中一個例子為Freedericksz元件排列,在其中使用了具有正介電 貝/、方向〖生的向列型液晶的反平行排列區域,如同在Us 5,9乃,817 所描述的内容。 用於緊密全像顯示的緊密組合,包含兩個以小分隔或最小分 隔方式結合的電子式定㈣間光輕ϋ。較佳的實施方式是兩個 空間光調變器具有相同數量的像素。因為兩個電子式定址空間光 調變器對於觀察員來說並不是等距離的,兩個電子式定址空間光 調變器的像素間距可能需要稍稍的不同(但會仍舊大概相同),來補 員不Π距離對於觀祭貝所造成的影響。已通過第一空間光調變器 φ 的像素的光,會通過第二空間光調變器對應的像素。因此,光是 會經由兩個空間光調變器來調變,並且可獨立地實現複雜的振幅 與相位調變。舉一個例子,第一空間光調變器進行振幅調變,而 第一空間光調變器進行相位調變。同樣地,任何相當於是幫助振 幅及相位的獨立調變的其它種二個空間光調變器調變特性的任意 組合都是可能的。 必需注意,通過第一空間光調變器的像素的光,只能通過第 61 200827953 -:間光帽!I對應的像素。如果從第—空間光調變器像素射 :光’通過第二空間光調變器非對應、鄰近的像素時,串音將會 這些串音可能會導致圖像品質降低的問題。在此提供_ ’、間最小化串音問題的可能方法。由習用的技術可顯而易見 的,运些方法可同樣的應用於B部份實施例。 ❿㈣⑴M—個最簡單的方法是直接將調整像素後的兩個空間光調 k為連結或黏接在—起。在第—空間光調變器的像素,可能會有 引起糕離傳播的繞魏象。空間光輕器之間的分隔必須要足 夠的薄’麵第二空間細變器鄰近像素之間的串音到達可接受 的私度。舉-侧子,具有1〇卿像素間距的兩個電子式定址空 間光調變器的間隔,必須小於或等於1(Μ()()μιη的等級 製造的空間光職中是幾乎不可能實現的,因為玻璃蓋的厚度 鲁即為1mm的等級。當然’能使空間光調變器之間具有薄的分隔層 —的M三·”方式’是娜薦進行在-姉序當巾。可顧概要製造 '私序部份所描述的製造方法’來製作包含兩烟隔轉报小或最 小的電子式定址空間光調變器的裝置。 圖十四顯不由狹縫10μηι寬的繞射計算而得的菲涅耳繞射數 據圖表,在二維模型中變化離狹縫的距離,縱軸為slit(z),橫軸為 lit(x)均勻如明的狹縫是位在X軸上到之間,並且z 62 200827953 為零微米。光傳送媒介被用來獲得1.5的折射率,為用於緊密裝置 的典型媒介。選定的光為具有633腿真空波長的紅光。綠色與藍 色波長比紅色光小,因此對於紅色光的計算,在三個顏色紅、綠 及藍當巾’展現出最強的繞射影響。可以使用par_ric Technology (RTM) c〇rp., Needham, MA, USA.^^. MathCad (RTM)軟體純行計算。目十五齡麵的強料她缝中心上 ΙΟμιη寬範圍内,為離狹缝距離的函數。在距離狹縫2〇_的地方, 圖十五顯社於9G%_度滅在狹_ 1()_寬的範圍内。因 此’在這個二維模型中,小於州的像素強度會入射在每一個鄰近 的像素上。這是在像素間零邊界寬的_軌下的計算結果。實 際在像素_邊界寬是大於料,因此串音魄在真實系統^ 低於這裡所計算的結果。在圖十四中,菲科繞射圖接近狹縫, 例如離狹縫50帅,纽有點驗在魏的高帽麵度函數。因 此,沒有寬的繞射特徵接近狹縫。寬的繞射特徵是高帽型函數的 遠場繞射函數的特性,此為制已知的_ %職d函數。寬的结 射特徵可由圖十四中距離狹缝綱哗的例子觀察到。這指出了鱗 射效應可綱將_電子式定址空間光調料設置的足夠接近來 控制’而且將兩個電子式定址空間光調_設置的非常接近的一 ^優點是繞射數細表的函數型式,會由遠場雛改變至較有效 ^包含接近垂直於狹縫的軸__式。職優點是與習用 王像技術的想法相違背的,習用的技術會傾向認為在光通過空間 63 200827953 光凋雙器的小孔徑時,會引起強的、大的及不可避免的繞射效應。 因此,習用的技術不會有將兩個空間光調變器靠近在一起的動 機’會預期這樣的方式會導致必然發生且嚴重由繞射效應所引起 的像素串音問題。 圖十六顯示強度分佈的等高線圖,強度分佈為離狹缝距離的 Φ 函數。等高線的標繪是在對數尺度上,而不是線性尺度。使用了 " 十條等高線,全部含括100強度因數範圍。對於lOjiim的狹縫寬 度,強度分配大程度的邊界在距離狹縫大約5〇μιη的範圍内是清 楚的。 在進一步的實施例中,可減少第一電子式定址空間光調變器 的像素孔徑區域來減輕在第二電子式定址空間光調變器的串音問 題0 (2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如 圖十七所示。較好的方法是讓透鏡的數量和每一個空間光調變間 中的像素數量相等。兩個空間光調變器的間距以及透鏡陣列的間 距可以輕微的不同,來補償觀察員的距離差距。每一個透鏡成像 第一空間光調變器的像素至第二空間光調變器對應的像素上,如 圖十七中大量光束171所示。也可能光會通過鄰近的透鏡造成串 64 200827953 音問題,如大量光束172所示。如果它的強度是足夠的低,或是 它的方向是充份的不同,使其無法到達虛擬觀察員視窗時,將可 被忽視。 母個透鏡的數值孔徑(Numerical Aperture,NA)必須足夠的 大,以成像具充份解析度的像素。舉一個例子,對於5μιη的解析 度,需要約為0.2的數值孔徑(ΝΑ)。這也表示如果假定是幾合光 學,如果空間光調變器與透鏡陣列的間距為ΙΟμηι,透鏡陣列與每 一空間光調變器之間的最大距離大約為25μπι。 也可能指派每個空間光調變器的數個像素至透鏡陣列的一個 透鏡。舉-個例子,以第—空間光調變器的四個像素為—群,可 藉由透鏡陣列中的-個透鏡來成像到第二空間光調變器的一個由 #四個像素所組成的群。這樣的透鏡陣列的透鏡數量會為每一個办 間__巾的像素數量_分之—。如此可允許較高數= • 孔㈣透鏡,目此可獲雜高解析度的絲像素。 )弟二個方法是盡可能的減少第—電子故址空間光調變哭 的像素孔徑。從繞射的觀點來,第二空間光調變器由第—空财 調變器的-個像素所照射的區域 礅電子式定址空間光調 ^的像素孔徑寬度D及繞㈣所決定,如針續示。在圖十 65 200827953 八中’ d ’個電子式定址空間光調變器之間的距離,fffj W是兩個 第-P皆級繞射最小值之間的距離,發生於第零階級最大值的任一 故乂疋叙定為夫朗和斐(Fraunh〇fer)繞射,或是夫朗和斐繞射的 合理近似。 減少孔徑見度D —方面可減少照射區域中心部分的直接投射 • 的㈣’如圖十八中的虛線所示。在另一方面,依照繞射角正比 於夫朗和斐繞射中的1/0,繞射角會被增加。這增加了在第二電子 • 歧址空間光調_上照域的寬度w·照射區域的全部寬度為 w。在夫朗和斐繞射方法中,、給予分隔d,D可被決定,並利用方 程式w = D + 2_來最小化w,此方程式是從夫朗和斐繞射中的 兩個第一階最小值之間的距離推得。 • 例如,如果1是0·5叫1,d是ΙΟΟμηι及w是20|im,可得到D -為ΙΟμπι的最小值。然而在這個例子中,夫朗和斐方法可能不會 = 是-個好的近似,這個例子說明了使用電子式纽空間光調變^ 之間的距離來控制夫朗和斐繞射方式中的繞射過程的原則。 (4)第四個方法使用了光纖面板來成像第一空間光調變器的像 素至第二空間光調變H的像素上。光纖面板是由二維排列的平行 光纖所構成。光纖的長度與也因此面板的厚度典型為數公釐,面 66 200827953 板表面的對角線長度是長至數射。舉一個例子,光纖的間距可 為 _。Ed聰nd 0ptics Inc.of Barringt〇n,—知卿說 具有如歧纖間距的光纖面板。每—條光纖從它的其中一瑞引導 光至另-端。因此’在面板一端_像會被傳送至另—端,具有 高解析度且不崎;t元件。這樣的面板可作為兩個如光調變器 1的刀層如圖十九所不。多模光纖較佳於單模光纖,因為 多模光纖_合效率比單模光纖好。#域核_獅率與液晶 _斤射率是姆合時,會得職麵耦合鱗,㈣這可最小化 菲涅耳背向反射損失。 在兩個空間光調魏之·有額外的玻璃蓋。偏光片、電桎 與配向層是直接連接光纖面板。這些層每—個都是非常的薄,即 為1〇μΐη的等級。因此,液晶(LC)層LC1與LC2是在靠近面板In order to form a compact holographic 136, or to incorporate any of the other parts of the test procedure. U • At the 1st sub-change record, in a typical setting, the incident optical beam will be linearly polarized by passing the beam through a linear polarizer. The amplitude is controlled by the Weijia electric liquid crystal thief transfer, and the application of an electric field affects the biased state of the light. Face_device towel, _ electronic address space light modulation n light will pass through another linear polarizer, which can reduce the intensity due to the polarization of the light's biased state as it passes through the electronically addressed spatial light modulator Same time. In the case of Lang Guangguan H, she performs her tuning, and they are in a defined linearly biased state. In a typical setting, the human reading optical beam will be achieved by passing the beam through a linear polarizer. Linearly biased. The phase modulation is caused by the electric field's response, and the electric field will illuminate the _ recording state. In one example of her modulation, the use of nematic phase liquid crystal 'the optical axis direction is definite, but birefringence is a function of the applied lag. In the case of phase modulation, the use of ferroelectric 200827953 ϋ liquid 曰 a ' birefringence is fixed, but the direction of the wire is controlled by the applied voltage. In the implementation of the phase, in any of these methods, the output beam will have a phase difference with the input beam that is a function of the applied voltage. An example of a liquid crystal element that can perform phase modulation is a Freedericksz element arrangement in which an anti-parallel arrangement region having a positive dielectric//directional nematic liquid crystal is used, as in Us 5, 9 The content described in 817. A compact combination for compact hologram display, consisting of two electronic (4) light taps combined in a small or minimal separation. A preferred embodiment is that the two spatial light modulators have the same number of pixels. Because the two electronically addressed spatial light modulators are not equidistant to the observer, the pixel spacing of the two electronically addressed spatial light modulators may need to be slightly different (but will still be about the same) to replenish The impact of the distance on the observation of the sacrifice. The light that has passed through the pixels of the first spatial light modulator φ passes through the pixels corresponding to the second spatial light modulator. Therefore, light is modulated by two spatial light modulators and complex amplitude and phase modulation can be achieved independently. As an example, the first spatial light modulator performs amplitude modulation, and the first spatial light modulator performs phase modulation. Similarly, any combination of the other two spatial light modulator modulation characteristics that are equivalent to independent modulation of the amplitude and phase is possible. It must be noted that the light passing through the pixels of the first spatial light modulator can only pass through the 61 200827953 -: light cap! The pixel corresponding to I. If the light from the first-space light modulator pixel is emitted by the second spatial light modulator, the crosstalk may cause a problem of image quality degradation. Here, a possible method of minimizing crosstalk problems is provided. As will be apparent from the conventional techniques, these methods can be equally applied to the Part B embodiment. ❿ (4) (1) M - The easiest way is to directly adjust the two spatial light k after the adjustment of the pixel to connect or glue. In the pixels of the first-space light modulator, there may be a wrap-around that causes the spread of the cake. The separation between the spatial lighters must be sufficiently thin to achieve acceptable privacy for the crosstalk between adjacent pixels of the second spatial thinner. Lift-side, the spacing of two electronically addressed spatial light modulators with a pixel spacing of 1 〇, must be less than or equal to 1 (Μ()() μιη level of manufacturing space ray is almost impossible to achieve Because the thickness of the glass cover is 1mm. Of course, the 'M3" method that enables a thin separation layer between the spatial light modulators is recommended by Na Na. Gu outlines the manufacturing method described in the 'Private-Sequence' to produce a device that includes a small or minimal electronic address space light modulator with two smokers. Figure 14 shows the diffraction calculation of the slit 10μηι width. The resulting Fresnel diffraction data graph changes the distance from the slit in the two-dimensional model, the vertical axis is slit(z), and the horizontal axis is lit(x). The uniform slit is located on the X-axis. Between and, z 62 200827953 is zero micron. The optical transmission medium is used to obtain a refractive index of 1.5, which is a typical medium for compact devices. The selected light is red light with a 633 leg vacuum wavelength. Green and blue The wavelength is smaller than the red light, so for the calculation of red light, in three colors red, And the blue towel's show the strongest diffraction effect. You can use par_ric Technology (RTM) c〇rp., Needham, MA, USA.^^. MathCad (RTM) software pure line calculation. It is a function of the distance from the slit in the width of the slit ΙΟμιη on the center of the seam. In the distance from the slit 2〇_, the figure is shown in the range of 9G%_degree in the narrow _ 1()_ wide Therefore, in this two-dimensional model, less than the state's pixel intensity will be incident on each adjacent pixel. This is the result of the zero-width _ track between the pixels. Actually the pixel_boundary width is greater than the material. Therefore, the crosstalk is in the real system ^ lower than the result calculated here. In Figure 14, the Fico diffraction pattern is close to the slit, for example, the slit 50 is handsome, and the new one is tested in the high hat function of Wei. Therefore, there is no wide diffraction characteristic close to the slit. The wide diffraction characteristic is the characteristic of the far-field diffraction function of the high-hat function, which is a known function of _% job d. The wide junction feature can be Figure 14 shows an example of the distance slit class. This indicates that the scale effect can be _ electronically addressed. The inter-lighting setting is close enough to control 'and the two electronically-spaced spatial tones _ set a very close one advantage is the function of the diffraction table, which will change from far-field to more efficient ^ Close to the axis perpendicular to the slit __ style. The advantage is contrary to the idea of the application of the king image technology, the conventional technology will tend to think that when the light passes through the space 63 200827953 light small device, it will cause strong , large and inevitable diffraction effects. Therefore, the conventional technique does not have the motivation to bring the two spatial light modulators together. It is expected that such a way will inevitably occur and be severely caused by the diffraction effect. Pixel crosstalk problem. Figure 16 shows a contour plot of the intensity distribution with a Φ function of the distance from the slit. The plot of the contour is on a logarithmic scale, not a linear scale. The " ten contours are used, all including a range of 100 intensity factors. For the slit width of lOjiim, the boundary of the intensity distribution is clear in the range of about 5 〇 μηη from the slit. In a further embodiment, the pixel aperture region of the first electronically addressed spatial light modulator can be reduced to mitigate the crosstalk problem in the second electronically addressed spatial light modulator. 0 (2) The second method is A lens array is used between the two spatial light modulators, as shown in Figure 17. A better approach is to have the number of lenses equal to the number of pixels in each spatial light modulation. The spacing of the two spatial light modulators and the spacing of the lens arrays can be slightly different to compensate for the observer's distance difference. Each lens images the pixels of the first spatial light modulator to the corresponding pixels of the second spatial light modulator, as shown by the plurality of light beams 171 in FIG. It is also possible that light will cause a string of sounds through adjacent lenses, as shown by a large number of beams 172. If its intensity is low enough, or if its direction is sufficiently different to make it impossible to reach the virtual observer window, it can be ignored. The numerical aperture (NA) of the master lens must be large enough to image a pixel with sufficient resolution. As an example, for a resolution of 5 μm, a numerical aperture (ΝΑ) of about 0.2 is required. This also means that if it is assumed to be a few optical, if the distance between the spatial light modulator and the lens array is ΙΟμηι, the maximum distance between the lens array and each spatial light modulator is about 25 μm. It is also possible to assign several pixels of each spatial light modulator to one lens of the lens array. For example, the four pixels of the first-space optical modulator are grouped, and one of the lenses in the lens array can be imaged to the second spatial light modulator by one of four pixels. Group. The number of lenses of such a lens array will be the number of pixels per __ towel. This allows for higher numbers = • hole (four) lenses, which can be used to obtain high resolution silk pixels. The two methods of the younger brother are to reduce the pixel aperture of the first-electronic space to lightly change the crying. From the viewpoint of diffraction, the second spatial light modulator is determined by the pixel aperture width D and the winding (4) of the area illuminated by the pixels of the first-empty fuel conditioner, such as the pixel width of the electronic address space. The needle continues. In Fig. 10, 2008, 2008, the distance between the 'd' electronically-addressed spatial light modulators, fffj W is the distance between the two first-P-level diffraction minimums, which occurs at the zeroth class maximum. Any of the defamations is delineated as Fraunh〇fer, or a reasonable approximation of Fraun and Fiji. Reducing the aperture visibility D - in terms of reducing the direct projection of the central portion of the illumination area • (4)' is shown by the dashed line in Figure 18. On the other hand, the diffraction angle is increased in accordance with the diffraction angle being proportional to 1/0 of the Fraunhofer diffraction. This increases the width w of the illumination field in the second electron 歧 空间 space _ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 In the Fron and Fiji diffraction methods, giving the separation d, D can be determined, and using the equation w = D + 2_ to minimize w, which is the first of two from the Fraun and Fiji diffractions. The distance between the order minimums is derived. • For example, if 1 is 0·5 is 1, d is ΙΟΟμηι and w is 20|im, D_ is the minimum value of ΙΟμπι. However, in this example, the Fran and Fiji methods may not = yes - a good approximation, this example illustrates the use of the distance between the electronic neon space light modulation ^ to control the Flang and Fiji diffraction modes. The principle of the diffraction process. (4) The fourth method uses a fiber optic panel to image the pixels of the first spatial light modulator to the pixels of the second spatial light modulation H. The fiber optic panel is made up of two-dimensionally aligned parallel fibers. The length of the fiber and therefore the thickness of the panel is typically a few millimeters. The length of the surface of the surface of the board is as long as several shots. As an example, the spacing of the fibers can be _. Ed Cong nd 0ptics Inc. of Barringt〇n, - Zhiqing said that there are fiber optic panels such as fiber spacing. Each fiber optics directs light from one of its sources to the other end. Therefore, at the end of the panel, the image is transmitted to the other end, which has high resolution and is not satisfactorily; Such a panel can be used as two blade layers such as the light modulator 1 as shown in Fig. 19. Multimode fiber is preferred over single mode fiber because multimode fiber is better than single mode fiber. #域核_狮 ratio and liquid crystal _ 斤 射 是 是 是 是 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆 姆In two spaces, the light has an extra glass cover. The polarizer, the cymbal and the alignment layer are directly connected to the fiber optic panel. Each of these layers is very thin, which is a level of 1 〇 μΐη. Therefore, the liquid crystal (LC) layers LC1 and LC2 are in close proximity to the panel

上、也方通過第空間光調變器像素的光會被引導至第二空間光 調變器對應的像素。這可最小轉近像素的串音。面板傳送第一 空間朗變器輸出端的光分佈至第二空間光調變器的輸入端。平 :。每個像素應至少—個域。如果每娜素少於—個 的話,平均而f„卜上 纖 π 一 "二3先调變器將喪失解析度,造成顯示於全像 顯示中的應用的圖像品質減低。 在圖十九巾第光調變器調變振幅,第二空間光調變 67 200827953 心周艾相位。其它能促進完整複_變的兩個電子式定址空間光 調變器的調變特性組合都是可能的。 Ο 圖十4 7F 了對於全像圖中編碼振幅與她資訊的緊密排列的 例子。 104疋以雜置用於提供平面區域的_ ’其巾綱是具有充 Φ 77勺同概以便月匕夠產生二維圖像。在US 2006/250671提及-個 ^ 聽大區域影像全像_照日概子。如同ω4的裝置可為白 光光'原陣w的n例如冷陰極螢光燈或發出的光線人射在聚焦 系統上的白光發光二鋪’其中聚㈣統可騎密的,如透鏡狀 陣列或微透鏡_ 100。或者,用於顺的光源可由紅、綠及藍雷 射所組成’或是發出充份同調性光的紅、綠及藍發光二極體所組 成。然而’具有充份空間同調性的非雷射光源(例如:發光二極體, 鲁有機發光二極體,冷陰極榮光燈)是更佳的。雷射光源的缺點,像 •是在全像銳上造成f射賴、姆上較為昂私及财關於傷 #全細示觀看者或是進行全像齡裝置、喊JL作人貞的眼睛等 可能的安全問題。 元件104可包含一個或兩個稜鏡光學膜來增加顯示器的亮 度:這樣的膜是已知的,例如在仍从地親與仍5,919,551中 所描述的内容。元件104可包含偏光元件,或是偏光元件的集合。 68 200827953 線性偏光薄片是其中-個例子。另外_個例子是反射式偏光片, 可傳送-鎌性偏錄態’並且反射正交雜偏錄態·這樣的 薄片是已知的,例如在US 5,828,中所描述的内容。另—個例 子是反射式偏光片’可傳送-個_偏化狀態,並且反射正交圓 形偏化狀態·這樣的制是已知的’例如在US6,m,395中^ 述的内容。元件綱可包含其它在背光科技的領域中已知的光^ 元件。 元件刚,卿_·的厚度全部可約為數公分,或是更低。元件 可包含色彩過遽器陣列,使得彩色光線(例如紅色、綠色及誌 的像素是射向元件1()2,儘管如果使用彩色光源,色彩過^ 益疋不需要的。元件102是編碼相位資訊的電子式定址空間光調 變器,例如Freedericksz元件。元件1〇3是編碼振幅資訊的電子式 φ紐空間_魏,例如在—般前上的液晶顯示器裝置中。元 件102的每一個元件,在此以1〇7表示,會與元件他中對應的 轉排列’以108表示。然而,儘管元件1〇2與ι〇3中的元件具 有相同的橫向間隔或間距,元件1G2中的元件大小會小於或等於 元件103中的元件’因為離開元件1〇7的光在進入元件阳的元 件108之前’典型地會經歷—些繞射。振幅與相位的編碼次序可 與圖十中所示的相反。 69 200827953 位於點106離包括緊密全像圖產生器105的裝置-些距離的 觀看者,可從105的方向觀看到三維圖像。元件104、1〇〇、1(H、 1〇2與103是如之前所描述的配置成實體連接,以便能形成緊密的 全像圖產生器105。 E.構成要素包含-對或二對有機發光二極雜光學式定址空間光 调變器組合歧—個或兩個電子式定址空間光調變㈣緊密組 合’且具有目標全像重建的大倍率三維圖像顯示裳置The light that passes through the first spatial light modulator pixel is also directed to the pixel corresponding to the second spatial light modulator. This minimizes the crosstalk of the pixels. The panel transmits the light distribution at the output of the first spatial ramp to the input of the second spatial light modulator. Ping :. Each pixel should be at least one domain. If there is less than one per nucleus, the average and f 卜 纤 一 & 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二The nine-tone light modulator modulates the amplitude, and the second spatial light modulation is changed. 67200827953 Heart Zhou Ai phase. Other combinations of modulation characteristics of two electronic address space optical modulators that can promote complete complex _ change are possible Ο Figure 10 4 7F shows an example of the tight arrangement of the coded amplitude and her information in the hologram. 104疋 is used to provide a flat area _ 'the towel is filled with Φ 77 scoops for the month匕 产生 产生 US 。 。 US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US US Or the emitted light is shot on the focusing system by the white light emitting two shop 'where the poly (four) can ride the dense, such as a lenticular array or microlens _ 100. Or, the light source for the cis can be red, green and blue laser a red, green, and blue light-emitting diode that is composed of 'either fully coherent light Composition. However, 'a non-laser source with sufficient spatial coherence (eg, LED, Lu organic LED, cold cathode glory) is better. The shortcomings of laser source, like The full image sharply causes the f to shoot, the more expensive and the wealth on the murmur. The full security of the viewer or the full-aged device, the eyes of JL as a human eye, etc. The component 104 can contain a Or two xenon optical films to increase the brightness of the display: such films are known, for example, as still described in the context of still being used. The element 104 may comprise a polarizing element or a collection of polarizing elements. 68 200827953 Linear polarizing sheets are one of them. Another example is reflective polarizers, which can transmit - 偏 biased state 'and reflect orthogonal tortographic states. Such sheets are known, for example in US 5,828, the content described in the other example is a reflective polarizer 'transportable - one _ biased state, and the reflection of the orthogonal circular polarization state. Such a system is known 'for example, in US6, m , 395 in the content of the description. Components Other optical components known in the art of backlight technology may be included. The thickness of the component may be approximately several centimeters or less. The component may include an array of color filters such as red light (eg, red The pixels of green and ambiguous are directed to element 1() 2, although color is not required if a color source is used. Element 102 is an electronic address space optical modulator that encodes phase information, such as a Freedericksz component. The component 1〇3 is an electronic φ-newspace space for encoding amplitude information, for example, in a liquid crystal display device on the front side. Each component of the component 102 is represented by 1〇7, and corresponds to the component. The arranging 'is indicated by 108. However, although the elements 1〇2 and ι〇3 have the same lateral spacing or spacing, the element size in element 1G2 will be less than or equal to the element in element 103' because the light exiting element 1〇7 is entering the element The component 108 is typically 'experienced' to some diffraction. The order of encoding the amplitude and phase can be reversed as shown in Figure 10. 69 200827953 A viewer located at point 106 from the apparatus including the close hologram generator 105, which can view a three-dimensional image from the direction of 105. The elements 104, 1 〇〇, 1 (H, 1 〇 2 and 103 are configured to be physically connected as previously described so as to form a compact hologram generator 105. E. Components contain - pair or two pairs of organic Luminous two-pole optical-addressed spatial light modulator combined with one or two electronically-addressed spatial light modulation (four) tightly combined 'and large-magnification three-dimensional image display with target holographic reconstruction

圖二十四顯示了—個構成要素包含—對或二對有機發光二極 體與光學式定址郎光輕H組合或是—個或兩個電子式定址* 間光調魏的緊密組合,且具有目標全像重建的大倍率三維_ 顯不裳置。這健置的構成要素包括光霞軸充份同調性 的緊密型光源的緊密組合(例如在A、B、c與D部份所述 容)’這樣的組合能夠在適當的照明情況,於虛擬觀察胃視^在^ 二十四標示為OW)巾產生看得見的三賴像,這個妓元件可= 如整合在個人數位助理或行動電話中。如圖二十四所示, 調變器與充侧調性的緊_光源的緊密組合包含光源陣 間光調變II及透鏡陣列。在圖二十四中的空間光調變器,包人^ 對或二對有機發光二極體與光學式定址空間細變㈣人=一 個或兩個電子式定址空間光調變器的緊密組合,或是 200827953 光二極體及鮮式定址雜_魏敝合賴及—個電 址空間光調變器。 工疋 在-個簡單_子中,光源_可由下列方式形成。單一光 源如單色的發光二極體,放置在緊鄰孔徑陣列的位置,使其能昭 射孔徑。如果隸是-維_的狹縫,概縫傳送出去的光會形、 籲成-維陣列的光源。如果孔徑是二維陣列的圓,圓的照射集二即 • 形成二維陣列的光源。典型的孔徑寬將約為20卿。這樣的光源陣 - 列適合用於對於一眼的觀察員視窗的產生。 在圖二十四中,光源陣列是設置在距離透鏡陣列u的距離位 置。光源陣列可為圖一元件1〇的光源,並且可選擇性的包含圖一 中的元件11。確切的說,每-個在光源陣列中的光源是設置在距 •離透鏡陣列中它所對應的透鏡u距離的地方。在較佳的實施例中, - 絲陣列與透鏡陣列的平面是呈平行狀的。空間光調變器可位在 、透鏡陣觸任-邊。虛擬觀察員視窗與透鏡陣列的距離為u。透鏡 陣列中的透鏡是聚光鏡’聚焦長度f是由f=1/[1/u+ i/v]所給定。 在較仏的只加例中,V的值是在3〇〇mm到6〇〇mm的範圍内。更 好的實施例♦,V大約為400mm。在較佳的實施例中,u的值是在 l〇mm到3Gmm的範圍内。更好的實施例中,u大約為編瓜。放 大因數M是由v/u所決定。Μ是經由空間光調變器調變後的光源, 71 200827953 在虛擬觀察員視紐放大_素。在較佳的實施射,Μ的值是 在1〇到6〇的範圍内。更好的實施例中,Μ大约為20。為了實現 、匕的放大隨,並且具有好的全像圖像品質,需要準確排列的 光源陣列與透鏡陣列。為了維持精確的排列,以及在光源陣列盘 透鏡陣列之間維持相同的距離,直到超過元件的使用壽命為止,、 裝置元件需要具有強烈的機械穩定度。 Φ 6虛擬觀察員視窗可以是可追縱的或不可追縱的。如果虛擬觀 察員視S是可追蹤的,麻據虛擬觀察員視窗所需驗置,光源 陣列中特定的光源會被啟動。啟觸光源會·空間光調變器, 亚且藉由透鏡陣列成像至觀察貞平面。在光轉财,對於透鏡 陣列中的每-個透鏡至少啟動—個統。追縱是鱗連續的。如 果u是20mm且V是400mm,假若像素間距為2〇μπι,可追蹤到 • 有400μιη橫向增量的虛擬觀察員視窗。這樣的追蹤是準連續 的。如果u是20mm且ν是400mm,f大概是i9mm。 在光源陣列中的光源可能僅具有部分的空間同調性。部分的 同調性會導致目標點的模糊重建。如果u是20_且ν是4〇〇mm, 假若光源寬度為20μπι ’距離顯示器100mm的目標點的重建备有 ΙΟΟμπι的橫向模糊。這對於人類視覺系統的解析度是足夠的。 72 200827953 在通過透鏡陣列中獨透鏡的光之職不需要具有任何明顯 的相互同撒。同調性的需求是限制在透鏡陣列中的每一個單一 透鏡目此,重建目標點的解析度是由透鏡陣列的間距來決定。 典型的透鏡間距將為lmm的等級,以保證對於人類視覺系統的充 虛擬觀察·窗是關在空間光調賴中編碼資訊的傅立葉 頻《曰的-個繞射階級。如果變器的像素間距是1G师,並 且需要兩娜錄編碼—倾數,即如果在相_魏子式定址 ^光m使用2相位編碼,在·腿的波長,虛擬觀察員 視窗會有lGmm寬的寬度。虛擬觀察員視窗可_空間或時間多 工將數個虛擬觀察員視窗拼湊成擴大的虛擬觀察員視窗。在* ㈣工的情況下’需要額外的光學元件,如絲分錢。在部份: 4田述了好卫的方法,這些多卫的方法也可能應祕本案實作 …彩色全像重建可由時間多功實現。彩色有機發光二極體顯 不為的紅色,綠色及藍色像素是_具有雜色,綠色及餘色光 f波長計算的全像圖的空間光調變器的同步重編碼來^地啟 73 200827953 瓜置70件形成的顯示器可包含眼部位置偵測器,用以偵測觀 /、,、月位置。眼部位置搞測器連接控制光源陣列中光源的啟 動的控制單位。 在二間光凋變器上編碼的全像圖的計算最好是由外部的編碼 單兀來執行,因為它需要較高的計算能力。顯示資料會接著送至 φ 们人數位助理或行動電話,以顯示全像產生的三維圖像。 對於貝務上的例子,可使用由Sanyo (RTM) Epson (RTM)Figure 24 shows a close-knit combination of a component or a pair of two or two pairs of organic light-emitting diodes and an optically-positioned Langguang H combination or one or two electronic addresses*. Large magnification 3D with target holographic reconstruction. The components of this health include a close combination of the Guangxia axis's close-conformity compact light source (eg, as described in sections A, B, c, and D). Such a combination can be used in appropriate lighting conditions. Observing the stomach vision ^ in the ^ twenty-four marked OW) towel produces a visible triple image, this 妓 component can be integrated in a personal digital assistant or mobile phone. As shown in Fig. 24, the close combination of the modulator and the tight-to-close tight-source includes the light source inter-modulation II and the lens array. The spatial light modulator in Figure 24, the combination of the pair of two or two pairs of organic light-emitting diodes and the optically-addressed space fine (4) person = one or two electronically-positioned spatial light modulators , or 200827953 light diode and fresh-type address miscellaneous _ Wei Wei and Lai - an address space optical modulator. In a simple _ sub, the light source _ can be formed in the following manner. A single light source, such as a monochromatic light-emitting diode, is placed in close proximity to the aperture array to allow it to illuminate the aperture. If it is a slit of the dimension, the light transmitted by the general slit will be shaped into a light source of the array. If the aperture is a circle of a two-dimensional array, the illumination set of the circle is a light source that forms a two-dimensional array. A typical aperture width will be approximately 20 sec. Such an array of light sources is suitable for the generation of an observer window for one eye. In Fig. 24, the light source array is disposed at a distance from the lens array u. The array of light sources can be a light source of one element of Figure 1, and can optionally include element 11 of Figure 1. Specifically, each of the light sources in the array of light sources is located at a distance from the lens u corresponding to the lens array. In a preferred embodiment, the wire array is parallel to the plane of the lens array. The spatial light modulator can be located at the lens array. The distance between the virtual observer window and the lens array is u. The lens in the lens array is a concentrating mirror. The focusing length f is given by f = 1 / [1/u + i / v]. In the more limited addition, the value of V is in the range of 3 〇〇 mm to 6 〇〇 mm. A more preferred embodiment ♦, V is approximately 400 mm. In a preferred embodiment, the value of u is in the range of l 〇 mm to 3 Gmm. In a more preferred embodiment, u is approximately a melon. The amplification factor M is determined by v/u. Μ is the light source modulated by the spatial light modulator, 71 200827953 in the virtual observer _ magnified _ prime. In the preferred embodiment, the value of Μ is in the range of 1 〇 to 6 。. In a more preferred embodiment, Μ is approximately 20. In order to achieve the magnification of the 匕, and to have a good holographic image quality, an array of light sources and a lens array that are accurately aligned are required. In order to maintain accurate alignment and maintain the same distance between the arrays of light source array discs, the device components need to have strong mechanical stability until the component's useful life is exceeded. Φ 6 Virtual Observer windows can be traceable or untrackable. If the virtual observer sees S as traceable, the virtual light source window will be inspected and the specific light source in the light source array will be activated. The illuminating light source and the spatial light modulator are imaged by the lens array to observe the pupil plane. In the light transfer, at least one system is activated for each lens in the lens array. The memorial is continuous. If u is 20mm and V is 400mm, if the pixel pitch is 2〇μπι, it can be traced to • Virtual observer window with 400μιη lateral increment. Such tracking is quasi-continuous. If u is 20 mm and ν is 400 mm, f is approximately i9 mm. The light source in the array of light sources may only have partial spatial homology. Partial homology leads to fuzzy reconstruction of the target point. If u is 20_ and ν is 4〇〇mm, if the source width is 20μπι', the reconstruction of the target point of 100mm from the display is provided with a lateral blur of ΙΟΟμπι. This is sufficient for the resolution of the human visual system. 72 200827953 The position of light that passes through a single lens in a lens array does not need to have any significant mutual sprinkling. The need for coherence is limited to each single lens in the lens array. The resolution of the reconstructed target point is determined by the pitch of the lens array. A typical lens pitch will be a 1 mm level to ensure that the virtual viewing window for the human visual system is the Fourier frequency of the encoded information in the spatial light modulation. If the pixel spacing of the transformer is 1G division, and you need the two-code encoding—the number of tilts, that is, if the phase is _weizi-type address ^m is used, the virtual observer window will have a width of lGmm at the wavelength of the leg. The width. The virtual observer window can multiplex space or time to piece together several virtual observer windows into an expanded virtual observer window. In the case of * (4) work, additional optical components are required, such as silk penny. In the part: 4 Tian said a good way to defend, these multi-wei methods may also be implemented in the secret case... Color holographic reconstruction can be achieved by time and multi-function. The red, green and blue pixels of the color organic light-emitting diode are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The 70-piece display may include an eye position detector for detecting the position of the viewing/,, and month. The eye position detector is connected to a control unit that controls the activation of the light source in the array of light sources. The calculation of the hologram image encoded on the two optical faders is preferably performed by an external coding unit because it requires higher computational power. The display data will then be sent to the φ number of assistants or mobile phones to display the three-dimensional image produced by the hologram. For the example on Bay, you can use Sanyo (RTM) Epson (RTM)

Imaging Devices Corporation of Japan 所製造的 2·6 英吋螢幕尺口寸 XGA液晶顯示器電子式定址空間光調變器。次像素的間距為 17μιη。如果這是使用於紅綠藍全像顯示的建構,利用全像圖的振 幅調變編碼,在距離電子式定址空間光調變器〇4m的地方,觀察 φ 視窗根據計算為L3mm寬。對於單色的情況,觀察視窗根據計算 — 為4mm寬。如果使用相同的設定,但是改用2相位編碼的相位調 , 麦’觀察視_根據計异為6mm寬。如果使用相同的設定,但是改 用基諾形式(Kinoform)編碼的相位調變,觀察視窗根據計算為 12mm 寬。 仍具有其它種高解析度的電子式定址空間光調變器。Seiko (RTM) Epson (RTM) Corporation of Japan 已發表單色電子式定址 74 200827953 空間光調變n,例如D4:L3D13U 13射螢幕尺寸且像素間距為 15μιη的面板。此公司也發表了同類型的面板 DSUDOWWGoo ’具有〇 9英对螢幕尺寸及1〇_的像素間距。 於西το 2006年12 $ 12日’此公司公告發表同類型的面板 L3D07U-81⑽’具树射螢幕尺寸及8 5卿的像素間距。如 果D4:L3D13U 1.3英吋面板用於建構單色的全像顯示,並採用全 像的布克哈邮urckhardt)振幅_編碼,酿離f子式纽空間 光調變器0.4m的位置,虛擬觀察員視窗可計算出為5 6醜寬。 .對或1¾對有機發光二極體與光學式定址空間光調變器组 合或是-個或兩個電子式定址空間光調變器的緊密組合,且:有 目標全像重建的三維圖像顯示裝置 、 一對或兩對有機發光^體與光學式定址空間光調變^且人 或是一個或兩㈣子歧址如光機騎緊練合,是較推薦 ίΓΓΓ三維_裝置妓較从三_示裝置巾,因為這 樣的組s疋非常緊密的。這樣 星導航裝置、車用顯示器、電腦遊心;口广,、衛 电驷遊戲裝置、個人數位助理(PDA)、 ,記型電腦顯示器、桌上型電腦螢幕或是薄型電視顯示器中。这 ===器是較針對於單_使用者。使用者—般是位在垂直 、衣且位置’並且_置齡觀看效果的距 75 200827953 =r==:;r:r綱,—置的使用者2·6 inch screen size manufactured by Imaging Devices Corporation of Japan XGA LCD electronically positioned space light modulator. The pitch of the sub-pixels is 17 μm. If this is used for the construction of the red, green and blue hologram display, the amplitude modulation code of the hologram is used, and the φ window is calculated to be L3 mm wide at a distance of 4 m from the electronic address space modulator. In the case of monochrome, the viewing window is calculated according to - 4mm wide. If the same setting is used, but the phase modulation of the 2 phase encoding is used, the wheat viewing angle is 6 mm wide depending on the difference. If the same setting is used, but the phase modulation of the Kinoform encoding is used, the viewing window is calculated to be 12 mm wide. There are still other high resolution electronic address space light modulators. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address 74 200827953 Space light modulation n, such as D4: L3D13U 13 panel with a screen size of 15 μm. The company also published the same type of panel DSUDOWWGoo ’ with a 9-inch screen size and a pixel spacing of 1〇_. Yuxi το 2006 12 12 12 'The company announced the same type of panel L3D07U-81 (10)' with a tree screen size and a pixel pitch of 8 5 Qing. If the D4:L3D13U 1.3 inch panel is used to construct a monochrome hologram display, and use the hologram of Bukhha urckhardt) amplitude _ encoding, brewing away from the position of the sub-space light modulator 0.4m, virtual The observer window can be calculated to be 5 6 ugly wide. A close combination of a pair of 13⁄4 pairs of organic light-emitting diodes and an optically-spaced spatial light modulator or one or two electronically-spaced spatial light modulators: and a three-dimensional image with target holographic reconstruction The display device, one pair or two pairs of organic light-emitting bodies and the optically-addressed space light modulation ^ and one or two (four) sub-locations such as a light machine ride tightly, is more recommended ΓΓΓ ΓΓΓ three-dimensional _ device 妓Three_ shows the device towel, because such a group is very tight. Such a star navigation device, a car display, a computer game; a wide mouth, a security device, a personal digital assistant (PDA), a computer monitor, a desktop computer screen or a thin television display. This === device is more specific to single_users. The user is generally in the vertical, clothing and position 'and _ age-old viewing effect distance 75 200827953 = r ==:; r: r class, - set user

^wo〇1/9694I 不需細麵物㈣含m’並 學物輪㈣姆繼先 領外需求的設備與電源不會造成過度的負擔。、、吕’ 組^==,㈣___光調變器 /电子式定址空間光調變器的緊密組合,且具 駕^全像重铜衛星導航三棚賴種置具有如下的優I、 二Γ可找到路線資訊的三維圖像,例如在下-個路口要=的 :方ίΓΓ因為三_像資訊能更符合接近駕駛者駕駛時的 比二維圖像資訊來的更佳。其它顯示器上的資訊,例如勺 三維方I:維方式顯示。顯示器上部份或是全部的資訊皆可以 組合或是-伽有碰光二極雜絲式定砂間光調變器 有目enl兩個電子式纽郎光簡騎緊密組合,且具 置可車用三糊像顯示健具有如下的優點。此裳 月匕’以接地顯示三維資訊,例如在 通過比車輛稍會+ 3 卞」Ή矢次疋试圖 、或疋稍窄的地方,顯示汽車保險桿(防護板)與鄰近 76 200827953 一件(如‘壁)*近情況的三維圖像。在通道比車輛較狹窄的地方, 三維圖像顯示裝置可幫助料者了解車輛通不過此通道。三維圖 像:_裝設縣扯的錢騎提供随絲衫。其它的車 輛貝訊可以三維方式顯示在顯示器上,例如速度、溫度、每分鐘 丨f轉逮n細不於車輛中的資訊。衛星導航資訊可三維 地顯示在顯示H上。顯示器上部份歧全部的資訊皆可以三維方 輸$視S的大小是由傅立葉平面巾繞賴樣的賴性間隔所 限制如果有機發光二極體顯示器或是電子式定址空間光調變器 中⑽素間距是接近1()μιη ’那麼對赠長⑽的可見光,在 ,〇mm的地方,根據全像圖的空間光調變器所使用的編码, 虛擬觀察員視窗(V0W)的寬度約為1〇麵到25_。這對於—個 • '眼睛而言是足夠寬的。對於另外一眼的第二虛擬觀察員,可由對 r間細變|§_容進行空間或時間上的多工方式來建立。在缺 .少追縱的情況下,為了看見最佳的三維圖像,觀察員必須旋轉或 移動裝置及/或他自己本身的位置,讓他的眼睛能位在虛擬觀察員 視窗,並錄_裝置最制轉。 、 數们虛擬觀察員視窗拼湊而成的方式可讓調整顯示裝置位置 及方向的备序較為容易。兩個或三個虛擬觀察 員視窗可在χ-及v_ 77 200827953 方向並列’使得虛擬觀察員視窗可涵蓋較大的區域。拼湊的方式 可由空間或時間多工,或是空間及時間多工的組合來完成。 在時間多工中,光是時間上依序地投射至虛擬觀察員視窗中。如 果虛擬觀察員視窗具有不同_容’空間光調變器必須重編瑪。 在空間多工中’對於不同虛峨察員視窗的内容,是在相同的時 間於空間細變n中進行編碼’但是是在空間光調變器的不同區 域。光束分光鏡可將空間光調變器不域的光分至不同的虛擬 觀察員視窗。可使用空間及時間多工的組合。 典型用於行動電話或個人數位助理的手持式三維顯示裝置的 瑩幕尺寸大小是在從-射聰糾的細之間。全像次顯示可 具有螢幕尺寸小至一公分的螢幕。 三維圖像顯示裝置可切換顯示二維圖像,例如藉由顯 的圖像至觀看者的每—個眼睛的方式。 ”、、、’、同 圖三顯示了包含一對或兩對 間光調變驗合或是—個細個?==二極體與光學式定址空 組合的三維圖像顯喊置的實施例。=址f光調變器的緊密 3〇,在摘電話上,當配備相 ^中的裝置是行動電話 顯示在螢幕區域3i的時候,你田二罝的另外—方的三維影像圖像 、使用者可撥打電話。行動電話有裝配 78 200827953 天線% ’以進行行動通訊。在其它的實施方式中,天線可位於行 動電話3〇的主體中。行動電話裝配兩個攝影機33及34,分別 ^錄使用者魏及右眼_像。絲及右_®像包含立體^像 貧料。行動電話30配備數字及“*,,及“#”符號的按鍵%,以及其它 功能的按鍵36,例如在蕃墓μ认、阳抑士 Μ* 他在螢幕上如早巾移動,相或是啟動關閉 :、。邊上顯示的標示例如”〇N" ”〇FF”或是”2,,,可避免颠倒 了: ’可防止在進行三維影像電話通話的雙方,觀看對方時_ :有。在使用上’兩個觀看者的眼睛與兩個攝影機%及糾最好 是共面的,並且制者的臉是位在接㈣直於螢幕區域3!的位 置。這樣能確㈣爾频33及34在包含觀看者崎的平面中 記錄視差。觀看者的頭部對於顯示⑽最理織察位置是預先決 定的,使得兩個攝影機33及34能在這個位置獲得觀看者頭部最 理想的圖像品質。對於三維圖像電話通話中的另一方也是同樣如 1匕,使得雙方可處在最理想圖像品質的雙向三維圖像電話通話 。為了確保每一個觀看者精確地面向攝影機33及34,可能會較 希望確保對於每個眼睛的虛擬觀察員視窗不會比每個眼睛丄太 夕口為k樣可以限制觀看者的眼界對於觀看者攝影機方向在位 置及方向上的錯誤。藉由將裝置朝向拍照的目標,裝罝可對目標 進行三維拍照。或者’可藉域置聽上的小按_示來引較 用者使用,藉此完成裝詈的导田切 域衣置如理財向設置。裝置也可具備眼部 追縱功能。在此·述概式_法可使用於可全像地、自 79 200827953 動立體顯示地或利用其它任何方法產生三維圖像的聿置 使用通話期間’攝影機33及34分別記錄 使用者的右眼及左眼圖像。從這些圖像獲得 雜旦/你、斜’會用於在三 、、隹衫像通活中另一方對應的手持裝置上,以 如果三賴像是自動立體顯輯產生,從攝影機==== 可直接地使用在自動立體顯示器中產生兩個眼睛的= =是全像地產生’包含從攝影機33及如^^^ 進订處理’例域由使賤生全像_電腦 示器,全軸;她於自動立體顯 標==r赌辑,啦確崎產生全部目 像電述rf式三_示器的朗包含保持雙向三維影 場景的三_输嫩中㈣喝示目標或 否有損害。另-個相t貝之喊觀看產品,或是檢查物品是 獲得幫助。三維_可體身份的確認’可由三維顯示來 力,例如雙咖麵^Μ耻料树__行區別能 瑪衣的人。另一個應用是包括利用圖像來觀 200827953 Γ:二進二:步的連絡,例如在約會服務中,三維圖像 〇氰—、准_不勝於二維顯示。 有目標:像重建的三維顯示裝置會有― 使用者文化投射左眼與右眼的虛擬觀察員視窗之距離壁 單選項的選摆h,蚀田土〜 〇^4 觀疚員視s之門 ★下衣置上的按鍵來增加或是減少虛擬 間的刀隔。如果這是已設定好的,當觀看顯示器並 …喊看二維圖料,可選擇最佳的虛擬觀 隔距離,讓觀看者觀看可實現的最好三維圖像=間的刀 雜可儲存在使用者的偏好當中。如果有多個個體使用2= 使用者猶職在裝置#中。這實 置具有能力各職去追蹤觀看者的眼睛 用者所選擇希望的虛擬觀察員視窗之間的精確距離 口為使 的選擇來的更好-旦這樣的產生了,將可加快魏=體 因為在眼狀雜職 =要的精確位置決定會較低。關選擇兩個麵觀察員視窗: 曰 1更好的距離,也提供了超越自動立體顧示系統的優點 立體顯示系統中,左眼與右關像之_距離是傾向抑2動 硬體來固定。 、定用衣置 81 200827953 G.包含一對或兩對有機發光極體與光學式定址空間光調變器組 合或疋一個或兩個電子式定址空間光調變器的緊密組合的平面投 影機系統 從装置發射的光也可投射到螢幕或牆或是一些其它的表面 上,來取代如F部份所描述的投射光至數個虛擬觀察員視窗的方 式。因此,在摘電話或個人數位祕或是在其它裝置中的三維 顯示装置也能如同以口袋型投影機的方式來使用。 可猎由使用空間光調變賴變人射光的振幅及相位來提升全 技攝圖的印冑。因此’複數值的全像圖可在空間光調變器上編 碼’讓重建在螢幕或牆上的®像具有較好品質。 在先則部份所描述的一對或兩對有機發光二極體與光學式〜 =工間光機|§組合或—個或兩個電子式定址空間細變器的緊 在組合,可作為空縣爾!!·於投影機巾。*於此組合的大 小為緊密的,投職也將會是緊密的。投影機甚至可同為= 電話或是個人數㈣理或是—些其㈣裝置: 器”與,,投影機”模式來進行切換。 维如 82 200827953 200827953 具有非常佳的圖像品質 相較於習用的二維投影機,全像式二維投影機具有不 影透鏡以及投射賴像在光學遠射的全部轉都是聚:二 點。習用的全像式二維投影機,例如在w〇2〇〇5/〇柳幻、: 的内容’使用單-空間光調變器,因此無法進行複雜的調變3 此所描述的全像式二維投影機,將能夠進行複雜的調變,因此能 H.使用-個或兩個紅外線有機發光二極體顯示器與光 間光調變㈣緊密組合的自社體或全細稍置 工 紅外線有機發光二極體顯示器與光學式定址空間光 緊密組合(例如A部份所描軸容)也能使用立^ 剛中,概在彳爾顺獻触助吻自、齡 觀看者而言’觀看自動立體顯示器並 不象硯看王像如裝置—樣的舒適,雖 體顯示器比起全伽+㈣7 -祕卜自動立 提供_。自動 看區域顯示:唯場旦的鍉供數個觀看區域’藉由每個觀 觀看觀點。如果觀看者的眼睛是在不同的 差異7自動=到地_。自動立體顯示器與全像技術的 _旦中顯不减供兩個平面圖像,而全像技術更提供三 維%景中母一個目標點的z_資訊。 83 200827953 通常,自動立體顯示器是以顯示器上觀看區域的空間多工為 基礎,並且使用光素分光鏡元件,例如雙凸透鏡(lenticulars)、障礙 遮蔽物(barrier masks)或是稜鏡遮蔽物(prism masks)。障礙遮蔽物也 可稱之為”視差障礙"。自動立體顯示器的缺點是每—個觀看區域 的解析度會典魏反比讀輕域峨量。但是缺點可由如 上所描述的自動立體顯示器的優點來補償。 紅外線有機發光二極體顯示器與振幅調變光學式定址空間光 調變器的緊密組合(例如在A部份所描述的内容)可使用來成為具 有高解析度的振幅調變顯示器。如果紅外線有機發光二極體顯: 器與幅調變光學式定址空間_魏的緊密組合是與光束分光 鏡元件結合的話,則可建構出具高解析度的自動立軸示器:緊 鲁密組合的高解析度可補償因為空間多工而損失的解析度。' 對於而要個或多個額外的光學式定址空間光調變器的自動 立體顯示器,使用-個或多個有機發光二極體陣列與—個 光學式定址空間光調變器的緊合(例如:在A與b部份所描成 的内频J優點是__的光學式定址空間光調魏。^ 顯示器包含光束分光鏡與有機發光二極體陣列,可能會由揭 式的有機發光二極體而具有加工品,例如:在光束分光鏡_與 84 200827953 有機發光二滅朗巧的疊峨應(Μ()ίΓέ峨⑽。相較之下, 在緊密組合的光學式定址空間細_上的f訊是連續的:僅有 光束分光鏡期間,不會出現週期性的加工品。 自動立體顯示器的光源可為—個或多個光源,例如發光二極 體,雷射,有機發光二極體或冷陰極螢光燈。光源不需為同調性 馨的。如果使时機發光二極體且自動立體顯示_示色彩圖像, 則會在光源與光發射顯示!I及振幅調變光學式定址空間光調變器 的緊检組合之間需要色彩過濾II層,例如紅色,綠色及藍色過豫 器。 13 /思 、’、工外線有機發光二極體顯示器與光學式定址空間光調變器的 緊密組合(例如在A部份所贿_容)也可以使縣全像顯示, 特別是在行動電話或個人數位助理中的手持式顯示器。全像顯示 • 裝置是以顯示器上觀看區域的空間多工為基礎,並且使用光素分 、'見元件例如雙凸透鏡GenUculars)、障礙遮蔽物(ba订h masks) 、或疋稜鏡遮蔽物(prismmasks)。障礙遮蔽物也可稱之為”視差障礙 。紅外線有機發光二極體顯示器與光學式定址空間光調變器的緊 饴組合(例如在A部份所描述的内容)可使用來成為具有高解析度 的全像顯示装置。如果紅外線有機發光二極體顯示器與振幅調變 光學式定址空間光調變器的緊密組合是與光束分光鏡元件結合的 送,則可建構出具高解析度的全像顯示裝置。緊密組合的高解析 85 200827953 度可補U為空間多卫而損失的解析度。在另—個實施例中,兩 對有機發光二極體陣列與光學式定址空間光調變器的緊密組合的 組合可以依序錄密的方式使絲調縣祕幅與她,如B部 伤所“述_谷。因此,由振缺她域的複數,可利用逐一 像^的方式在傳运光中編碼。如果兩對紅外線有機發光二極體顯 Μ與振光學式定址空間光調魏的緊密組合是與光束分 光鏡疋件結合’财高解域的全細 鏡讀的全賴示敍可提錄顺輕域 顯示三維場景的不_。如 _^域 域,他伽w蝴觀看區 I· 維傳輸中需要的資料處理系統。^wo〇1/9694I No need for fine flour (4) with m’ and learning wheel (4) M Jixian The equipment and power supply for external demand will not cause excessive burden. , Lu' group ^==, (four) ___ optical modulator / electronically-addressed spatial light modulator close combination, and has a driving ^ full-image heavy copper satellite navigation three sheds with the following excellent I, two You can find a three-dimensional image of the route information, for example, at the next intersection: Fang ΓΓ ΓΓ because the _ image information is more in line with the driver's driving than the 2D image information. Information on other displays, such as the scoop 3D square I: dimension display. Some or all of the information on the display can be combined or - glazed with two-pole miscellaneous wire type sand-to-sand light modulator with enl two electronic-style New Lang light simple riding combination, and has a car for three The paste image shows the following advantages. This singer 匕 'shows three-dimensional information by grounding, for example, by a little more than 3 卞 比 比 Ή 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 显示 显示 显示 显示 显示 显示 显示 显示(eg 'wall' * 3D image of the near case. Where the passage is narrower than the vehicle, the three-dimensional image display device can help the material learner that the vehicle does not pass through the passage. Three-dimensional image: _ install the county to pull the money to provide with the silk sweater. Other cars can be displayed on the display in three dimensions, such as speed, temperature, and minute-by-minute information. Satellite navigation information can be displayed in three dimensions on display H. All the information on the display can be divided into three dimensions. The size of S is limited by the dependence interval of the Fourier plane towel. If the organic light emitting diode display or the electronic address space light modulator is used, (10) The prime spacing is close to 1 () μιη ' then to the visible (10) visible light, at 〇mm, according to the encoding used by the hologram spatial light modulator, the width of the virtual observer window (V0W) is approximately It is 1 to 25_. This is wide enough for a 'eye'. For the other second virtual observer, it can be established by spatial or temporal multiplexing in the inter-ratio. In the absence of less tracking, in order to see the best three-dimensional image, the observer must rotate or move the device and / or his own position, so that his eyes can be in the virtual observer window, and record the most System transfer. The way in which the virtual observer windows are patched together makes it easier to adjust the position and orientation of the display device. Two or three virtual observer windows can be juxtaposed in the χ- and v_ 77 200827953 directions so that the virtual observer window can cover a larger area. The way to piece together can be done by space or time multiplexing, or a combination of space and time multiplexing. In time multiplex, light is projected onto the virtual observer window in time. If the virtual observer window has a different space, the optical modulator must be reprogrammed. In spatial multiplexing, the content of the different virtual observer windows is encoded in the spatial fineness n at the same time 'but in different areas of the spatial light modulator. The beam splitter splits the light from the spatial modulator into different virtual observer windows. A combination of space and time multiplexing can be used. The size of the screen of a hand-held three-dimensional display device typically used for mobile phones or personal digital assistants is between the fineness of the slave and the camera. The full-image display can have a screen size as small as one centimeter. The three-dimensional image display device can switch to display a two-dimensional image, for example, by displaying an image to each of the viewer's eyes. ",,,", and Figure 3 show the implementation of a three-dimensional image display that includes one or two pairs of intermodulation or a thin one? == diode and optical address space combination For example, if the device equipped with the device is a mobile phone displayed on the screen area 3i, another 3D image of your field is displayed on the phone. The user can make a call. The mobile phone has an assembly 78 200827953 antenna % ' for mobile communication. In other embodiments, the antenna can be located in the main body of the mobile phone. The mobile phone is equipped with two cameras 33 and 34, respectively ^ Record user Wei and right eye _ image. Silk and right _® image contains stereoscopic image. Mobile phone 30 is equipped with digital and "*,, and "#" symbol button %, and other function buttons 36, For example, in the tomb of the tomb, the yang yang 他 * he moved on the screen as an early towel, phase or start to close:,. The indications displayed on the side such as "〇N" "〇FF" or "2,, can be reversed:" to prevent both parties from making a 3D video call, when watching the other party _: Yes. In use, the eyes of the two viewers are preferably coplanar with the two cameras and the corrections, and the face of the maker is in the position of (4) straight to the screen area 3!. This makes it possible to confirm the (four) frequency 33 and 34 to record the parallax in the plane containing the viewer. The viewer's head is pre-determined for displaying (10) the most reasonable weaving position so that the two cameras 33 and 34 can obtain the most desirable image quality of the viewer's head at this location. The same is true for the other party in a three-dimensional image telephone call, so that both parties can be in a two-way three-dimensional image telephone call with the best image quality. In order to ensure that each viewer is accurately facing the cameras 33 and 34, it may be desirable to ensure that the virtual observer window for each eye is not k-like for each eye, and can limit the viewer's horizon to the viewer camera. The direction is wrong in position and direction. By mounting the device toward the target of the photograph, the mount can take a three-dimensional photograph of the target. Or, you can use the small button on the domain to indicate the user's use, so as to complete the installation of the guide field, such as the financial direction setting. The device can also have an eye tracking function. Here, the general formula can be used to omnipotently display the three-dimensional image from 79 200827953 or use any other method to generate a three-dimensional image. The cameras 33 and 34 respectively record the user's right eye. And left eye images. From these images, the hybrid/you, oblique' will be used on the handheld device corresponding to the other party in the third, and the other one will be generated from the camera if the three images are automatically stereoscopically displayed. = Can be used directly in the autostereoscopic display to generate two eyes = = is holographically generated 'contains from camera 33 and as ^^^ order processing' example field by making twin holographic _ computer display, full Axis; she is in autostereoscopic display ==r gambling, and it is true that the image is generated by the rf type. The lang of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ damage. Another one-of-a-kind shouting to watch the product, or to check the item is to get help. The confirmation of the three-dimensional _ identifiable identity can be made by three-dimensional display, for example, a double-faced Μ Μ Μ 树 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Another application includes the use of images to view 200827953 Γ: two-in-two: step contact, for example in the dating service, three-dimensional image cyanogen--, quasi- _ no more than two-dimensional display. There are targets: like the reconstructed 3D display device will have a user culture project to project the left eye and the right eye of the virtual observer window, the choice of the distance wall h option, Eclipse field ~ 〇 ^ 4 view of the 视 视 ★ ★ Buttons on the clothes to increase or decrease the gap between the virtual rooms. If this is already set, when viewing the display and ... shouting at the 2D image, you can choose the best virtual viewing distance so that the viewer can see the best 3D image that can be achieved. Among the user's preferences. If there are multiple individuals using 2= users are still in the device #. This implementation has the ability to track the precise distance between the viewer's eyes and the virtual observer window that the user chooses. The choice is better - once this happens, it will speed up the Wei = body because In the eye-like miscellaneous = the precise position of the decision will be lower. Off Select two face observer windows: 曰 1 Better distance, also provides the advantage of surpassing the autostereoscopic system. In the stereo display system, the distance between the left eye and the right image is the tendency to fix the hardware. , fixed clothing 81 200827953 G. Plane projector comprising one or two pairs of organic light-emitting body and optical address space light modulator combination or one or two electronic address space light modulator The light emitted by the system from the device can also be projected onto a screen or wall or some other surface instead of the way the projected light is directed to several virtual observer windows as described in Section F. Therefore, a three-dimensional display device that picks up a telephone or a personal digital device or in another device can also be used as a pocket type projector. Hunting can be improved by using the spatial light to change the amplitude and phase of the human light to enhance the footprint of the full-featured photo. Therefore, a complex-valued hologram can be coded on a spatial light modulator to make the reconstructed image on the screen or wall of a better quality. The combination of one or two pairs of organic light-emitting diodes described in the first part and the optical type ~=work optical machine|§ combination or one or two electronically-positioned space finers can be used as Empty county!!·In the projector towel. * The size of this portfolio is tight and the job will be tight. The projector can even be switched between = phone or personal number (four) or some (four) devices: "and", projector mode. Weiru 82 200827953 200827953 With very good image quality Compared with the conventional 2D projector, the holographic 2D projector has a non-shadow lens and the projection image is all in the optical long-range. . A conventional omni-directional 2D projector, for example in the content of w〇2〇〇5/〇柳幻,: uses a single-space optical modulator, so complex modulation cannot be performed 3 Two-dimensional projector, which will be able to perform complex modulation, so it can use H- or two-infrared organic light-emitting diode display and light-to-light modulation (4). The combination of the organic light-emitting diode display and the optically-addressed space light (for example, the shaft capacity described in Part A) can also be used in the vertical, which is in the eyes of the viewers. The autostereoscopic display is not as comfortable as a device like a device, although the body display is provided automatically compared to the full gamma + (four) 7 - secret. Automatic view area display: Only the field of view is available for several viewing areas' view view from each view. If the viewer's eyes are in a different difference 7 automatically = to the ground _. The auto-stereoscopic display and holographic technology provide two flat images, while the holographic technology provides z_information for a target point in the three-dimensional % view. 83 200827953 Typically, autostereoscopic displays are based on spatial multiplexing of the viewing area on the display and use photon spectroscopy elements such as lenticulars, barrier masks or sputum (prism) Masks). Obstacle obscuration can also be called "parallax barrier". The disadvantage of the autostereoscopic display is that the resolution of each viewing area will be inversely proportional to the reading of the light domain. However, the disadvantages can be obtained by the advantages of the autostereoscopic display as described above. To compensate. The close combination of an infrared organic light-emitting diode display and an amplitude-modulated optically-addressed spatial light modulator (such as described in Section A) can be used to make a high-resolution amplitude-modulated display. If the infrared organic light-emitting diode display device and the amplitude-modulated optical address space _Wei's close combination is combined with the beam splitter element, a high-resolution automatic vertical axis display can be constructed: tightly combined High resolution compensates for loss of resolution due to spatial multiplex. 'For autostereoscopic displays that require one or more additional optically addressed spatial light modulators, use one or more organic light-emitting diode arrays The tightness of the optical modulator with an optical address space (for example, the internal frequency J described in sections A and b has the advantage that the optical address space of the __ is optically tuned. ^ The display comprises a beam splitter and an organic light-emitting diode array, which may have processed products by a luminescent organic light-emitting diode, for example: in a beam splitter _ and 84 200827953 organic light-emitting diodes (Μ()ίΓέ峨(10). In contrast, the f-signal in the tightly combined optical address space is continuous: during the beam splitter only, periodic artifacts do not occur. Autostereoscopic display The light source can be one or more light sources, such as a light emitting diode, a laser, an organic light emitting diode or a cold cathode fluorescent lamp. The light source does not need to be homogenous. If the timing is to emit the diode and Autostereoscopic display _ shows the color image, which will require color filtering layer II, such as red, green and blue, between the light source and the light emission display! I and the amplitude modulation optical address space optical modulator. Over-the-speaker. 13 / think, ', the external combination of the organic light-emitting diode display and the optically-addressed spatial light modulator (for example, the bribe in Part A) can also make the county full image display, especially Is in the number of mobile phones or individuals Hand-held display in the assistant. Full-image display • The device is based on spatial multiplexing of the viewing area on the display, and uses photonics, 'see elements such as lenticular GenUculars', obstacle masks (h masks) Or pr 疋稜鏡 pr pr pr pr 。 。 。 。 。 。 。 。 pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr pr The description can be used to make a holographic display device with high resolution. If the infrared OLED display is closely combined with the amplitude modulation optical address space optical modulator, it is combined with the beam splitter element. , can construct a high-resolution holographic display device. The tightly combined high-resolution 85 200827953 can complement U's resolution for loss of space. In another embodiment, the combination of the close combination of the two pairs of organic light-emitting diode arrays and the optically-addressed spatial light modulator can be used to record the secrets of the line with her, such as B-injury. "The _ valley. Therefore, by the plural of the vibration of her domain, it can be coded in the transport light one by one. If two pairs of infrared organic light-emitting diodes are visible and vibrating, the optical space is fixed. The close combination is combined with the beam splitter element. The full-length mirror reading of the Cai Gao solution domain can be used to display the three-dimensional scene without the _ ^ domain, such as _ ^ domain The data processing system required in the area I·dimensional transmission.

-中圖3二_ 了三轉針需要料财理_。在圖二十 —中’其中一方22〇與 太 S 像的拍攝資料可_ :中的二維傳輸中。用於建立圖 類似功能辟找進倾1=1電对置3G^—些具有 其中-方挪的裝置中執;,f置;;7顯示的資料處理可在 置,或是可在另-方22丨的裝置中了執t讀辟30或是等效的裝 個行動電話之間的傳輪網路上=二好是能在位於兩 包含第-連線222,中間季统224芬Γ 行。傳輸網路 先24及弟二連線從。222及223兩 86 200827953 ==__連線。中間系_可_計 干01被于―棚像’例如電職生的全像®❹動立體顯 :::?!-。在兩個行動電話之間的傳輸網路使用電腦來執 :代::用x子的’因為計算將不耗費行動電話的電池電力,但取 電源。可使用位於傳輪網路的電腦來對大量的 話通話的圖像同時進行處理,這可允許更有效率地利 =二㈣由帆使編爾魏力缝量。如果 而。‘力減少’則行動電話或其它類似裝置的重量將會降 :在:Τ少的電腦電路與記憶體’因為計算需求將會藉由 :=罔路上的電腦來執行計算。最後,執行計算的軟體將僅 ’彻恤彳爾話或1 :裝置:。這將減少行動電話的記憶體需求以及_ 的範圍,亚且會增加程式碼中任何的企業機密的保護。雖然大多 數三維圖像顯示需要的計算可由中間系統224來執行,不過也可 能-些圖轉__胁瓣w進行。例如,如 果兩個拍翻像是转她的,若兩侧像麵送成第— Γ圖像之間差異的差異圖像,則因為差異圖像非常易於進行可 幫助貧料傳送_壓馳術,_可促輪杨傳送。同樣 維睛顯稀置可執行—些圖料算,例如解除壓縮的圖 像Μ料。 87 200827953 在圖二十二的祕的—個例子中,第-圖像與第二圖像形成 -對立體顯示圖像,並且由使用者挪的裝置經由連線垃傳送 至中間衣置22心第一傳达圖像可為兩個立體顯示圖像之間的差里 圖像’因為差異圖像典型地將比完整圖像需要較少的資料。如果 -、准以又狄疋在進打中’則第—圖像可為現在圖像與前一個時 間點的圖像之間的差異。同樣的,第二圖像可為現在圖像與前一 =點簡_嶋,,她繼細對應深度 二=Γ24可利用習用對於二維與三維(3D)圖像之間轉換 〜私序來對二維(2D)圖像進行計算。對於彩色的圖像,需要 :=士三個主要顏色中的三個元素’並且連同它們的對應深 又回# ’關於一維圖像與深度圖的資料會經由連線奶 的裝置。使用者221的裝置會在它的緊密型三維顯 :中’根據接_的二維圖像與深賴編碼全像圖。為 軸P用傳送頻寬,在這個系統中傳輸的資料可進行習用的壓 ίί料=2收:Γ執行對應的解壓縮動作。使用最有效 會平衡行較少資料壓縮_寬需求花費, 、動衣置的電池執行資料壓縮與解壓縮的電力。 其中言取包含已知三維形狀集合的函式庫,並在 已知二維圖三雜料的配對,或者它可存取包含 σ Ms的函式庫,並在其中試圖找到穩合進入的二維 88 200827953 圖像資料的配對。如果在已知形狀 計算程序的速度,因為二維或三維圖像二==卜14可加快 形狀。三維形狀的函式庫可提供如―植動二面^已知的 狀,例如主要的網球運鮮 叙動月生的面孔或身體形 ㈣狄球運動員,以及全部或部分主要 =動場地,例如著名的_場地妓著錢足球場地。例如 人臉的三維圖像可表示為一個中間 上臉部表情變化,例如微笑或_上已存取過的資料,加 ❿*在資料儲存後頭髮可能留長或^。=頭髮長度的變化,因 生,中間M W Ph、 果—組持續性的差異發 門上人二音,f過的記錄明顯比資料過時,例如在長時 ,人的頭髮長度已經明顯的改變,則這個在中間裝置224已 料可由中間裝置224進行更新。如果中職置似遇 在匕已存取觸記錄當中沒有發現好 時’它將增加新的形朗記錄的集合當中。㈣—私二維圖像 » J.幫助二維圖像内容至三維圖像内容的系統 採用的三維顯示技術中的一個困難是她^ :、桃式產生,並且現在大部份_容仍持續以 事實。部分上是因為現在所使用 。式 錄二維圖像,並卿输可::===置娜續記 在很少有機會能讓觀看者要求三維的内料是==。此外^ 生的三維内容。 ㈣内谷次疋獲得從二維内容產 89 200827953 這非常明顯需要-個支援從二維内容產生三維内容的系統。 在=二十三中給定一個系統。在圖二十三中,即使在觀看者_ 的家中具有三維顯示裝置,電視傳播公司23〇〇持續播放二維電視 圖像2綱。在這個祕中,具有中職統細,可將二維内=轉 換到三維内容23〇5。這制雛轉可她看麵蚊援,或是 可由其它方來付費支援,例如廣告客戶2303。在圖二十二中:者 廣告客戶23G3的廣告由電視公司2來播放,廣告客戶細= 支付費用2306給中間系統㈣,並藉由已知的二維内容轉換成二 _容的轉換程序將二維内容轉換成三維内容。廣告客戶的利益 是以三^的電視廣告呈現給觀看者23()2,這將比二維電視廣告更 引主思。或者’觀看者雇可支付費用給中職統咖來轉 ==:=部電視播放的三維格式。中間系統會•維 步的格式’例如假使二維圖像有提供它的 合兩個讀集合會明步方式提供,即三維顯示裝置 。三_示裝置可為全_轉置、自社體顯示裝置 文=】的三_裝置。提供三軸示裝_料應適合 放的類型。相似於上述的系統也可翻於非電視播 柏域者所提供的内容,例如電影或錄影帶供應商等。 200827953 在另—種純巾,觀看者可支付_提供二_容給中 統’亚且收到提供的二維内容的三維形式回覆。提供的二維内容 可例如為家庭電影的MP3 _,献其錄影帶喊 或圖片的圖像。 月 中職統可包含電腦來執行計算,使得三_像賴示,例 如電腦產生全像圖妓自動立體圖像。最好是_在二維内容提 ―者1、希讀看二_像内容峨看者之間傳輸網路的電腦來執 仃計算,因為這會比起在觀看者端執行域的程序更有效率。位 於傳輸網路上的電腦可使用來同時進行大量的二維到三維㈣ 換的圖像處理’這可允許更有效軸細計算·,例如藉由減 ^未使用的,十异處理能力的數量。如果需要的計算能力減少,則 t者的—軸不裝置的成本將會降低,因為它將需要較少的電 “ I路…己L體’且计异需求將會藉由位在傳輸、網路上的電腦來 執仃冲异。讀’執行計算的軟體將僅需要安裝在位於傳輸網路 上的4 ’不需要安裝在觀看者的三賴示裝置巾。這將減少觀 看者的—軸不裝置的聰體需相及軟體盜版的範圍,並且會 :力私式碼中任何的企業機密的保護。雖然大多數三維圖像顯示 二要的拉可由巾H絲執行,不過也可能—些圖像計算是在 觀看者的二軸不裝置巾執行。三賴像顯示裝置可執行一些圖 像計算,例如解壓縮已壓_圖像㈣,或是從二關像與它的 91 200827953 對應深度圖來產生空間光調變器的全像編碼。 在-個例子巾,㈣祕可细f用二維與三維圖像之間轉 換的計算料,計算接收刺二_像的對應深度圖。對於彩色 的圖像’需要二維圖像在三個主要顏色中的三個元素,並且連同 它們的對應深度圖。接著,關於二維圖像與深度圖的資料會傳送 鲁錢看者的三維顯示裝置。觀看者的三維顯示器裝置會在它的空 間光調變器中’根據接收到的二維圖像與深度圖編碼全像圖。為 了有效率的使用傳送頻寬,在這轉統中傳輸的資料可進行習用 的壓餘2 ’並且在接收裝置中執行對應的解壓縮動作。使用最 有放率的貝料壓縮數量,相較於使驗少資料壓縮的頻寬需求花 費’會平衡提供資料解壓縮功能至三維顯示裝置的花費。 Ο 可存取6知三轉鱗合的資料,並在射試圖找 =它計算的三維資料的配對,或者它可存取已知二維圖形的 並在其中試圖找到穩合進人的二維圖像龍的配對。如果 在==中可找到好的配對,這可加快計算程序的速度,因為 :可^如 可表示為對應已知的形狀。三維雜的函式 :組運動明星的面孔或身體形狀,例如主要的網球運 的網==員,以及全部或部分主要的_地,例如著名 劳《疋者名的足球場地。例如,人臉的三維圖像可表示 92 200827953- In the middle of Figure 3 two _ three needles need to be _. In the picture of Fig. 20 - in which one of the 22 〇 and the S S images can be captured in the two-dimensional transmission. Used to create a similar function of the map. Look for the tilt 1 = 1 to the opposite of the 3G ^ - some of the devices with the - square move; f set;; 7 display data processing can be set, or can be in the other side In the 22-inch device, the transfer network between the 30 or the equivalent mobile phone is installed. The second is the second line 222. Transmission network First 24 and the second line from the connection. 222 and 223 two 86 200827953 ==__ connection. The middle system _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The transmission network between the two mobile phones uses the computer to perform: Generation:: Use the x sub-' because the calculation will not consume the battery power of the mobile phone, but take the power. A computer located on the transmission network can be used to simultaneously process images of a large number of calls, which allows for more efficient profitability = two (four) by the sails. If so. ‘force reduction’ will reduce the weight of mobile phones or other similar devices: in: less computer circuits and memory' because computing needs will be calculated by := computers on the road. Finally, the software that performs the calculations will only be 'received verbs' or 1: device:. This will reduce the memory requirements of the mobile phone and the range of _, and will increase the protection of any corporate secrets in the code. While most of the three-dimensional image display calculations may be performed by the intermediate system 224, it is also possible that some of the maps are performed. For example, if two flip images are turned to her, if the image planes on both sides are sent to the difference image between the first and second images, the difference image is very easy to perform and can help the poor material transfer. , _ can promote the transmission of Yang. The same can be done with a few images, such as uncompressed image data. 87 200827953 In the secret example of FIG. 22, the first image and the second image are formed - the stereoscopic image is displayed, and is transmitted by the user's device to the center of the intermediate garment 22 via the wire. The first conveyance image may be a difference image between two stereoscopic display images 'because the difference image will typically require less material than the full image. If -, and then Dick is in progress, then the image can be the difference between the current image and the image of the previous time point. Similarly, the second image can be the current image with the previous = point _ _ 嶋,, she follows the fine corresponding depth 2 = Γ 24 can be used to convert between two-dimensional and three-dimensional (3D) images ~ private order Calculate a two-dimensional (2D) image. For a color image, it is necessary to: = three of the three main colors 'and together with their corresponding depths back to # ' The information about the one-dimensional image and the depth map will be via the device for connecting the milk. The device of the user 221 will be in its compact three-dimensional display: the two-dimensional image according to the connection and the full-image image. For the axis P, the transmission bandwidth is used. The data transmitted in this system can be used for the conventional compression = 2: Γ The corresponding decompression action is performed. The most efficient use will balance the line with less data compression _ wide demand cost, and the battery of the mobile device performs data compression and decompression of the power. Wherein a library containing a collection of known three-dimensional shapes is known, and a pairing of two-dimensional maps is known, or it can access a library containing σ Ms and attempt to find a stable entry维88 200827953 Pairing of image data. If the speed of the program is known in the shape of the shape, because the 2D or 3D image II == Bu 14 can speed up the shape. The three-dimensional shape library can provide a known shape such as "planting two sides", such as the main tennis player's face or body shape (four) ball player, and all or part of the main = field, for example The famous _ venue is holding a money football pitch. For example, a three-dimensional image of a human face can be expressed as a change in the facial expression on the middle, such as a smile or a previously accessed material, plus ❿* the hair may be long or ^ after the data is stored. = change in hair length, due to the difference between the middle MW Ph and the fruit group, the difference between the persistence of the MW Ph and the fruit group is significantly worse than that of the data. For example, in the long term, the length of the human hair has changed significantly. This intermediate device 224 is then expected to be updated by the intermediate device 224. If the mid-level job seems to be in the middle of the access record, it will add a new set of records. (4) - Private 2D Image » J. One of the difficulties in the 3D display technology used in the system to help 2D image content to 3D image content is that she ^:, peach type, and now most of the _ continues Take the facts. Partly because it is used now. Record a two-dimensional image, and you can lose::===定娜续记 There are very few opportunities for the viewer to ask for a three-dimensional internal material ==. In addition, the raw 3D content. (4) Neiguchi 疋 疋 疋 疋 89 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 Give a system in = twenty-three. In Fig. 23, even if the viewer has a three-dimensional display device in the home, the television communication company 23 continues to play the two-dimensional television image. In this secret, with the secondary vocational system, you can convert 2D inside to 3D content 23〇5. This system can be used to support mosquito support, or it can be paid for by other parties, such as advertiser 2303. In Figure 22: the advertisement of the advertiser 23G3 is played by the TV company 2, the advertiser fine = payment fee 2306 to the intermediate system (4), and the conversion process of converting the known two-dimensional content into a binary capacity will be Convert 2D content into 3D content. The advertiser's benefit is to present the viewer 23()2 with a TV advertisement of 3^, which will be more intriguing than the 2D TV advertisement. Or 'the viewer hired to pay the fee to the secondary vocational school to turn the ==:= part of the TV broadcast in 3D format. The intermediate system will • the format of the step. For example, if the two-dimensional image has its two sets of readings provided in a step-by-step manner, that is, a three-dimensional display device. The three_display device can be a full_transfer, a self-contained display device text =] three_device. Provide a three-axis display type that should be suitable for the type of discharge. Systems similar to those described above can also be adapted to content provided by non-TV broadcasters, such as movie or video tape providers. 200827953 In another type of pure towel, the viewer can pay for the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The 2D content provided can be, for example, an MP3 _ for a home movie, an image of a video call or a picture. The mid-level job system can include a computer to perform calculations, such that the three-dimensional image, such as a computer, produces a full-image image of an autostereoscopic image. It is best to _ in the two-dimensional content of the person 1, read the second _ like the computer between the content viewers to transfer the network to perform the calculation, because this will be more efficient than the domain-based program on the viewer side . A computer located on the transmission network can be used to perform a large number of two-dimensional to three-dimensional (four)-changing image processing at the same time. This allows for more efficient axis fine calculations, for example, by reducing the number of unused, non-using processing capabilities. If the required computing power is reduced, then the cost of the t-axis will not be reduced, because it will require less electricity "I-channel...the L-body" and the different demand will be transmitted in the network. The computer on the road is very different. Reading the software that performs the calculation will only need to be installed on the transmission network 4 'Do not need to be installed in the viewer's three device wipes. This will reduce the viewer's - axis device The scope of the savvy needs to be related to software piracy, and will: protect any corporate secrets in the private code. Although most of the three-dimensional images show that the two pulls can be performed by the towel H, but it is possible - some images The calculation is performed on the viewer's two-axis device. The three-image display device can perform some image calculations, such as decompressing the pressed image (four), or from the two-point image with its 91 200827953 corresponding depth map. The holographic coding of the spatial light modulator is generated. In the case of an example towel, (4) the secret material can be calculated by using a calculation material converted between the two-dimensional image and the three-dimensional image, and the corresponding depth map of the received thorn image is calculated. Image 'requires 2D image in three Three elements in the main color, together with their corresponding depth maps. Next, the data about the two-dimensional image and the depth map will convey the three-dimensional display device of the Lu Qian viewer. The viewer's three-dimensional display device will be in its space. In the optical modulator, 'according to the received two-dimensional image and depth map, the full-image image is encoded. In order to use the transmission bandwidth efficiently, the data transmitted in this system can be used for the conventional pressure 2' and is received. The corresponding decompression action is performed in the device. The use of the most scalable bead compression amount takes the cost of the data decompression function to the three-dimensional display device to be balanced compared to the bandwidth requirement for compressing the reduced data. Accessing 6 pairs of squashed data and attempting to find a pair of 3D data calculated by it, or it can access a known 2D graphic and attempt to find a stable 2D image in it Pairing of dragons. If a good pairing can be found in ==, this speeds up the calculation process, because: can be expressed as a corresponding known shape. Three-dimensional hybrid function: the face of a group of sports stars or Body shape, such as a football field tennis major transport network == members, as well as all or part of _ the main, workers such as the famous "Piece Goods owner name. For example, a three-dimensional image of a human face can be expressed 92200827953

為一個中間裝詈P 、^ G伟取過的資料,加上臉部表情變化,例如微笑 f等加上碩髮長度的變化,因為在資料儲存後頭髮可能留 _ 果組持續性的差異發生,中間裝置已存取過的記 錄:顯比^料過時’例如在長時間上,人的頭髮長度已經明顯的 改义⑴這個在巾間裝置已存取過的資料可由中間裝置 224進行 更新_如果中崎置制在它已存取過的記錄當中沒有發現好配 對的摘—維圖像時,它將增加新計算的三_狀到記錄 合當中。 ^ K·觀察員視窗的空間多工與二維編碼 *這個實施例是關於全像顯示裝置的虛擬觀察員視窗(vows) 的空間多工,並結合二維編碼的使用。除此之外,全像顯示裝置 可如同在A ’ B ’ c或D部份中所描述的内容,或是任何習用的全 像顯示裝置。 數個處擬麟貞視窗,例如—細於左眼的虛擬觀察員視窗 與一個用於右眼的虛擬觀察員視窗,可由空間或時間多工來產2 是已知的。關於空間多工,兩個虛擬觀察員視窗是在同一個時間 點產生的,並且經由光束分光鏡來區分,相似於自動立體顯示哭, 如在WO 2006/027228中所描述的内容。而關於時間多工,''卢擬站 察貝視窗是時間上依序產生的。 93 200827953 然而,習用的全像顯示系統具有一些缺點。對於空間多工而 言,使用的照㈣統在水平方向是空間翻調性的,並且是以水 平線光源與透鏡狀陣列為基礎,如圖四由習用技術w〇 20_28所獲得的内容。這具有可利用自動立體顯示器已知技 術的優點。然而,它的缺點是在水平方向上的全像重权不可能。 取而代之的是使用所謂的1維編碼,僅在垂直方向產生全像重建 與移動視差。因此’垂直焦點是在重建物件的平面上,而水平焦 點是在空間光調變器的平面上。這些散光會減少空間視覺的品 質’意即它減少了觀看者接收到的全像重建的品f ,。同樣地,時 間多工系統也具有缺點,糊需要尚不能在全部顯示器尺寸中獲 得的快速空間光調變H,即時可取得也是過分的昂貴。 入 只、有二維編碼在水平與垂直方向同時提供全像重建,而因此 -、准編碼不會產生散光,散光會減少空間視覺的品質,意即減少 了觀看者接_的全像重咖品質。目此,這個實施例的目的是 結合二維編碼來實現虛擬觀察員視窗的空間多工。 在這個實施例中,具有水平與垂直局部空間同調性的照明會 與光束分光鏡結合,光束分光鏡會將光分為對於左眼虛擬觀察員 視窗的光及對於右眼虛擬觀察員視窗的光。因此,必須考慮位於 94 200827953 光束分光鏡的繞射。光束分光鏡可為棱鏡陣列,第二透鏡陣列(例 如靜態陣列或是變量陣列,如圖二十中所示)或是障礙遮蔽物。 圖二十五顯示了這個實施例的例子。圖二十五為包含二維光 源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光 鏡的全像顯示裝置示意圖。光束分光鏡會將離開空間光調變器的 馨 光線,分離成二束光線,分別照射用於左眼的虛擬觀察員視窗 (VOWL)與用於右眼的虛擬觀祭貝視窗(v〇wr)。在這個例子中, 光源的數量是一個或多個;透鏡的數量與光源的數量是相同的。 y 在這個例子中,光束分光鏡是在空間光調變器之後。光束分 光鏡與空間光調變11的位置也可相互交換。w二十六顯示了這個 實施例的例子,在平面圖中是使用棱鏡陣列作為光束分光鏡。照 •日月裝置包含n元件的二維光源陣列(LSI, LS2, ... LSn )及η元件的 -維透鏡陣列(L1,L2, ... Ln) ’在圖二十六中只顯示兩個光源與兩 .個透鏡。每-個光源是利用它所關聯的透鏡來成像至觀察員平 面。光源陣間距與透鏡_關距是要使得全部光源圖像能 同時出現在觀察員平面’即包含兩個虛擬觀察員視窗的平面。在 圖二十六中,並沒有顯示左眼虛擬觀察員視窗(v〇WL)與右眼虛擬 觀察員視窗(VOWR),因為它們是在圖的外面,且為圖的右邊。可 增加額外的視野透鏡。為了提供充份的空間同雛,透鏡陣列的 95 200827953 間距是相似於次全賴的翻大小,即—絲讀轉級。照明 在每-個透朗是水平且垂直郎_性的,是小的或 為點光源’且_使用二維透鏡_。透鏡_可為折射、繞射 或全像式的。 在這個例子中,光束分光鏡是—維的垂直棱鏡陣列。入射在 棱鏡-個斜面的光,會偏斜至左眼虛擬觀察窗(tQ v〇wl),入 射在棱鏡另-個斜面的光,會偏斜至右眼虛擬觀察員視窗(t〇 v瞻)。從_ LS與_透鏡纽的光線,在通過光束分光鏡 之後’也勒互_。目此,具餘直與水平聚錢且垂直與水 平移動視差的二維編碼是可能的。 全像圖是在具有二維編碼的空間光調變器上進行編碼。對於 籲左眼及右眼的全像圖是一個攔位一個攔位的交錯,意即搁位會交 錯編碼對於左眼與右眼的全像資訊。更好地是在每-個棱鏡下具 有一個對於左眼全像資訊的攔位及一個對於右眼全像資訊的棚 位。另-個方法,在每-個棱鏡的斜面下也可有兩個或更多個全 1 象圖的攔位,例如二個對於左眼虛擬觀察員視窗的攔位,並且接 著為们對於右眼虛擬觀察員視窗的攔位。光束分光鏡的間距可 與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者, 為了能容許透視縮短(perspective sh〇rtening),光束分光鏡的間距可 96 200827953 比空間光調變器的間距稍微小—點,或是比它的整數(例如兩或三) 倍數稍微小一點。 從具左眼全像的欄位發出的光會重建對於左眼的目標,並且 照射左眼虛擬觀察員視窗(V0WL);從具右眼全像的搁錄出的光 會重建對於右眼的目標,並且照射右眼虛擬觀察M視窗(v〇職)。 •目此,每-個眼睛會看到適當的重建。如果棱鏡陣列的間距是充 分的小,則眼睛不能解析棱鏡結構,且棱鏡結構不會妨礙全像圖 ’ 的线。每-觀睛會看見具有全聚焦與全移純差的重建,並 且沒有散光。 在光束分光鏡上將會有繞射,因為同調光會照射光束分光 鏡。光束分光鏡可視為產生多重繞射階級的繞射光栅。斜的棱鏡 • 斜面具有閃耀式光栅的效果。對於閃耀式光柵,最大強度是導向 . 特疋的繞射階級。對於棱鏡陣列,一個最大強度會從棱鏡的一個 , 斜面導向位於左眼虛擬觀察員視窗位置的繞射階級,另一個最大 強度會從棱鏡的另一個斜面導向位於右眼虛擬觀察員視窗位置的 另一個繞射階級。更精確來說,封裝式(enveloping) sinc>Squared函 數的強度最大值是移至這些位置,而繞射階級是位在固定的位 置。棱鏡陣列會在左眼虛擬觀察員視窗的位置產生一個強度封裝 sinosquared函數最大值,在右眼虛擬觀察員視窗的位置產生另一 97 200827953 個強度封裝sinc_squared函數最大值。其它繞射階級的強度將會是 很小的(意βρ sinc squared強度函數最大值是狹窄的),並且將不會 產生干擾串曰,因為棱鏡陣列的填充因子是大的,例如接近1⑻%。 如同在習用技術中可見的,為了提供虛擬觀察員視窗給二個 或多個觀察員,可藉由使用更複雜的棱鏡陣列(例如兩種類型的棱 • 鏡,具有相同的頂角,但是不同的非對稱程度,連續地相鄰配置), 產生夕個虛擬觀察員視窗。然而,使用靜態的棱鏡陣列是不能夠 個別地追蹤觀察員。 在另-個例子巾,每個透鏡可使用多於—個光源。每個透鏡 頜外的光源可利用來產生額外的虛擬觀察員視窗,提供給額外的 觀察員。這是描述在W0 2004/044659 (US2006/0055994)中,對於 _ m個觀察員提供—個透個光源的例子。在這個更進一步的 .例子巾,_每個透鏡m個統與雙倍啦間乡功產生則固左 ' ^虛擬觀察員視窗及m個右邊虛織察員視窗,提供給m個觀察 員。每個透鏡m個光源是以㈣—的對應方式,其中瓜是一個整 數。 接著是這個實施例的例子。使用2〇英吋螢幕尺寸,並具有下 列的參數值:觀察員距離2m,像素間距在垂直上為卿瓜,在水 98 200827953 平上為207μηι,使用布克哈特(Burckhardt)編碼,以及光學波長為 633^。布克哈特(Burckhardt)編碼是在垂直方向,具有69μηι的次 像素間距與6mm高的虛擬觀察員視窗(垂直期間)。忽略透視縮 短’垂直棱鏡陣列的間距為414μπι,也就是在每個全棱鏡下具有 兩個空間光调變斋的攔位。因此,觀察員平面中的水平期間為 3mm。這也同樣為虛擬觀察員視窗的寬度。這個寬度在直徑上是 小於理想大約4mm的眼睛瞳孔。在另一個相似的例子中,如果空 間光調變器具有50μιη的較小間距,虛擬觀察員視窗將會有25mm 的寬度。 如果成年人眼睛的分隔為65mm(這是典型的),棱鏡必須偏斜 光土 32.5mm,在那個位置光會與包含虛擬觀察員視窗的平面相 父。更精確來說,強度封裝sinc_Squared函數最大值需要偏斜士 32.5mm。這對於2m的觀察員距離相當於是士 〇 93。的角度。對於 棱鏡折射率n=1·5,適當的棱鏡角度為士 1.86。。棱鏡角度是定義 為基底與棱鏡斜邊之間的角度。 對於在3mm的觀察員平面中的水平期間,另一眼的位置是在 大約21繞射階級的距離(意即65麵除3mm)。由另一個虛擬觀客 員視窗的較高繞射階級所導致在左眼虛擬觀察員視窗與在右眼声 擬觀察員視窗之中的串音因而是可以忽略的。 99 200827953 為了實作追蹤,光源追蹤為一個簡單的追蹤方法,意即適應 光源的位置。如果空間光調變器與棱鏡陣列不是在相同的平面 上’在空間光調變器像素與棱鏡之間,將會具有由視差所導致的 擾亂相關橫向偏移。這將可能會導致擾亂串音。上述的例子,2〇 英吋螢幕尺寸的像素,在垂直於每個棱鏡尖端所形成的軸的方 向,可能具有70%的填充因子,也就是在每個邊上,像素大小為 145μπι作用區域及31μιη無作用的區域。如果棱鏡陣列的建構區 域是指向空間光調變器,在棱鏡陣列與空間光調變器之間的分隔 可能大約為1mm。無串音的水平追蹤範圍將會是士 2 m = ± 62 mm。如果小的串音是可容許的,那麼追蹤的範圍將會 較大。這個追蹤範圍並不是很大,但它是足夠允許一些追蹤進行, 使得觀看者將會有較少的限制,像是限制他/她的眼睛的放置彳立置。 空間光調變器與棱鏡陣列之間的視差是可以避免的,較好的 方法是利用將棱鏡陣列整合或是直接整合在空間光調變器中(像是 折射、繞射或是全像式棱鏡陣列)。這對於產品而言將為專業構成 要素(specialized component)。另一種選擇是棱鏡陣列的橫向機械移 動,雖然這疋較不建議的,因為移動機械部分會使得裝置 為複雜。 ^ 100 200827953 另-個關鍵性的問題是由棱鏡角度所決㈣固定虛擬觀察員 視窗分隔。這可能會對非標準眼睛分_觀察M或是追縱迭成 困擾。其中-個解決方法,是可制包含封裝液^域 (encapsulated liquid-crystal domains)的組合,如图-丄一 夺 m—十一所示。接 著,電場可控糖料,以及偏斜缝。這_財法可與棱鏡 陣列合併,以便連續地個別提供變量偏斜與固定偏斜。在另一 Φ 解决方法中’可用液晶層覆蓋棱鏡陣列的結構邊。接著,電場可 ,控制折射率,以及偏斜角度。如果虛擬觀察員視窗具有足夠容許 • 獨眼睛分隔峨察験ζ·追縱如此大的寬度,則偏斜組合 是不需要的。 一個較複雜的解決方法是使用可控制的棱鏡陣列,例如 e-wetting觀陣列(如圖二十七所示)或是填滿液晶的棱鏡(如圖二 鲁十所示)在圖一十七中’具有棱鏡元件159的層包含電極1517、 ,1518及填滿兩個分離液體1519、1520的凹洞。每一個液體填滿凹 •〆同的稜形部分。舉一個例子,液體可以是油或水。在液體1519、 1520之間介面的斜率是依據施加在電極1517、1518的電壓所決 定。如果液體具有不同的折射率,光束將會遭受偏向,偏向是由 施加在電極1517、1518的電壓所決定。因此,棱鏡元件159扮 冷可控制的光束指向元件。對於需要追蹤虛擬觀察員視窗至觀察 貝眼睛的實作,提供電子式全像技術,這對於申請人的方法而言 101 200827953 是一個重要的特性。由申請人提出的專利申請號DE 議07024237.0、DE麵7024236.2 ’描述了具有棱鏡元件虛擬 觀察貝視窗至觀祭員眼睛的追縱。For the information of a middle decoration P, ^ G Wei, plus facial expression changes, such as smile f, etc. plus the length of the hair, because the hair may remain after the data storage _ fruit group persistence difference occurs The record that the intermediate device has accessed: the display material is out of date', for example, over a long period of time, the length of the person's hair has been significantly modified (1) the material that has been accessed by the towel unit can be updated by the intermediate device 224. If Nakasaki does not find a good paired-dimensional image in the records it has accessed, it will add a new calculated three-form to the record. ^ K·Operator Window Spatial Multiplexing and Two-Dimensional Encoding * This embodiment is about the spatial multiplexing of virtual observer windows (vows) for holographic display devices, combined with the use of two-dimensional encoding. In addition, the hologram display device can be as described in the section A' B ' c or D, or any conventional hologram display device. A number of pseudo-view windows, such as a virtual observer window that is thinner than the left eye and a virtual observer window for the right eye, are known to be space or time multiplexed. With regard to spatial multiplexing, two virtual observer windows are generated at the same point in time and are distinguished by a beam splitter, similar to autostereoscopic display crying, as described in WO 2006/027228. As for time multiplex, ''Luzhan Station's Chabei window is produced in time. 93 200827953 However, conventional holographic display systems have some drawbacks. For space multiplex, the photo (4) used is spatially tuned in the horizontal direction, and is based on a horizontal line source and a lenticular array, as shown in Fig. 4 by the conventional technique w〇 20_28. This has the advantage of utilizing the known techniques of autostereoscopic displays. However, its disadvantage is that holographic weighting in the horizontal direction is impossible. Instead, so-called 1D coding is used, which produces holographic reconstruction and moving parallax only in the vertical direction. Thus the 'vertical focus is on the plane of the reconstructed object and the horizontal focus is on the plane of the spatial light modulator. These astigmatisms reduce the quality of spatial vision', meaning that it reduces the amount of holographic reconstruction that the viewer receives. Similarly, time multiplex systems also have the disadvantage that the paste requires a fast spatial light modulation H that is not yet available in all display sizes, and is immediately too expensive to obtain. Into, only two-dimensional code provides holographic reconstruction in both horizontal and vertical directions, so - quasi-encoding will not produce astigmatism, astigmatism will reduce the quality of spatial vision, which means reducing the viewer's holographic image quality. Accordingly, the purpose of this embodiment is to achieve spatial multiplexing of virtual observer windows in conjunction with two-dimensional encoding. In this embodiment, illumination with horizontal and vertical local spatial coherence will be combined with a beam splitter that splits the light into light for the left eye virtual observer window and for the right eye virtual observer window. Therefore, the diffraction of the beam splitter at 94 200827953 must be considered. The beam splitter can be a prism array, a second lens array (e.g., a static array or a variable array, as shown in Figure 20) or a barrier mask. An example of this embodiment is shown in Figure twenty-fifth. Figure 25 is a schematic diagram of a holographic display device including a light source of a two-dimensional light source array, a lens of a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the radiant light leaving the spatial light modulator into two beams, illuminating the virtual observer window (VOWL) for the left eye and the virtual observation window for the right eye (v〇wr) . In this example, the number of light sources is one or more; the number of lenses is the same as the number of light sources. y In this example, the beam splitter is behind the spatial light modulator. The positions of the beam splitter and the spatial light modulation 11 can also be exchanged. An example of this embodiment is shown in w twenty-six, in which a prism array is used as a beam splitter. Photo/Sun and Moon devices Two-dimensional light source arrays (LSI, LS2, ... LSn) containing n elements and -dimensional lens arrays (L1, L2, ... Ln) of 'n elements' are only shown in Figure 26 Two light sources and two lenses. Each light source is imaged to the observer plane using its associated lens. The source array spacing and lens spacing are such that all source images can appear simultaneously in the observer plane, i.e., the plane containing the two virtual observer windows. In Figure 26, the left-eye virtual observer window (v〇WL) and the right-eye virtual observer window (VOWR) are not shown because they are outside the figure and are on the right side of the figure. Additional field of view lenses can be added. In order to provide sufficient space for the same, the lens array's 95 200827953 spacing is similar to the sub-size of the second, that is, the silk read conversion. Illumination is horizontal and vertical in each of the translucent, is small or a point source 'and _ uses a two-dimensional lens _. The lens _ can be refractive, diffractive or holographic. In this example, the beam splitter is a dimensional vertical prism array. The light incident on the prism-bevel will be deflected to the left eye virtual observation window (tQ v〇wl), and the light incident on the other slope of the prism will be skewed to the right eye virtual observer window (t〇v) . The light from the _ LS and _ lens ray is also _ after passing through the beam splitter. For this reason, a two-dimensional code with a straight and horizontal money and a vertical and horizontal moving parallax is possible. The hologram is encoded on a spatial light modulator with two-dimensional code. The hologram for the left and right eyes is an interlacing of a block, meaning that the position will misinterpret the holographic information for the left and right eyes. More preferably, there is a stop for the left eye hologram information and a shed for the right eye hologram information under each prism. Another method, there may be two or more all-image block stops under the slope of each prism, for example two stops for the left-eye virtual observer window, and then for the right eye The virtual observer window is blocked. The spacing of the beam splitters may be the same as the spacing of the spatial light modulators, or an integer (eg two or three) multiples, or, in order to allow for perspective sh缩短rtening, the beam splitter spacing may be 96 200827953 The spacing of the spatial light modulator is slightly smaller—points, or slightly smaller than its integer (for example, two or three) multiples. Light emitted from a field with a full-eye image of the left eye reconstructs the target for the left eye and illuminates the left-eye virtual observer window (V0WL); the recorded light from the full-eye image of the right eye reconstructs the target for the right eye , and the right eye virtual observation M window (v 〇 job). • For this reason, every eye will see an appropriate reconstruction. If the pitch of the prism array is sufficiently small, the eye cannot resolve the prism structure and the prism structure does not interfere with the line of the hologram. Every - eye-catching will see a reconstruction with full focus and full shift purity, and no astigmatism. There will be diffraction on the beam splitter because the same dimming will illuminate the beam splitter. The beam splitter can be viewed as a diffraction grating that produces multiple diffraction classes. Oblique prism • The bevel has the effect of a blazed grating. For blazed gratings, the maximum intensity is the guide. The characteristic diffraction class. For a prism array, one maximum intensity will be directed from one of the prisms to the diffractive level at the virtual observer window of the left eye, and the other maximum intensity will be directed from the other slope of the prism to another winding at the virtual observer window position of the right eye. Shooting class. More precisely, the maximum intensity of the enveloping sinc>Squared function is moved to these positions, while the diffractive class is in a fixed position. The prism array produces a maximum intensity of the sinosquared function at the position of the left-eye virtual observer window, and another 97 200827953 intensity-encapsulated sinc_squared function maximum at the position of the right-eye virtual observer window. The intensity of the other diffraction classes will be small (the maximum value of the βρ sinc squared intensity function is narrow) and will not cause interference crosstalk because the fill factor of the prism array is large, for example close to 1 (8)%. As can be seen in the prior art, in order to provide a virtual observer window to two or more observers, by using a more complex prism array (for example, two types of prisms, having the same apex angle, but different non- The degree of symmetry, continuously adjacent to each other), creates a virtual observer window. However, the use of static prism arrays does not allow individual observers to be tracked. In another example, more than one light source can be used per lens. A light source outside each lens can be utilized to create additional virtual observer windows for additional observers. This is an example of a light source provided for _m observers in WO 2004/044659 (US2006/0055994). In this further example, the example towel, _ each lens m system and double laps between the hometown production is solid left ' ^ virtual observer window and m right virtual weaver window, provided to m observers. The m light sources of each lens are in a corresponding manner of (4), where the melon is an integer. This is followed by an example of this embodiment. Use a 2 inch inch screen size with the following parameter values: observer distance 2m, pixel pitch vertically for cucurbits, water 98 200827953 flat 207μηι, using Burckhardt encoding, and optical wavelength For 633^. The Burckhardt code is in the vertical direction with a sub-pixel pitch of 69 μm and a virtual observer window (vertical period) of 6 mm height. Ignoring the perspective shortening, the vertical prism array has a pitch of 414 μm, that is, a barrier with two spatial light modulations under each full prism. Therefore, the horizontal period in the observer plane is 3 mm. This is also the width of the virtual observer window. This width is smaller than the ideal pupil of the eye by about 4 mm in diameter. In another similar example, if the spatial light modulator has a smaller pitch of 50 μm, the virtual observer window will have a width of 25 mm. If the adult eye is separated by 65mm (this is typical), the prism must be deflected by 32.5mm of light, where the light will be the same as the plane containing the virtual observer window. More precisely, the maximum value of the strength package sinc_Squared function requires a skew of 32.5mm. This is equivalent to a 〇 93 for an observer distance of 2 m. Angle. For prism refractive index n = 1 · 5, the appropriate prism angle is ± 1.86. . The prism angle is defined as the angle between the base and the bevel of the prism. For the level in the 3 mm observer plane, the position of the other eye is at a distance of about 21 diffraction stages (ie, 65 faces divided by 3 mm). The crosstalk between the left-eye virtual observer window and the right-eye virtual observer window caused by the higher diffractive class of another virtual viewer window is thus negligible. 99 200827953 In order to implement tracking, the light source tracking is a simple tracking method, which means adapting the position of the light source. If the spatial light modulator is not on the same plane as the prism array, 'between the spatial light modulator pixels and the prism, there will be a disturbing related lateral offset caused by the parallax. This will probably cause disturbing crosstalk. In the above example, a pixel of 2 inches of screen size may have a fill factor of 70% in the direction perpendicular to the axis formed by the tip of each prism, that is, on each side, the pixel size is 145 μm. 31μιη inactive area. If the construction area of the prism array is directed to a spatial light modulator, the separation between the prism array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be ± 2 m = ± 62 mm. If small crosstalk is tolerable, the range of tracking will be larger. This tracking range is not very large, but it is enough to allow some tracking to take place, so that the viewer will have fewer restrictions, such as limiting the placement of his/her eyes. The parallax between the spatial light modulator and the prism array can be avoided. The better way is to integrate the prism array or directly integrate it into the spatial light modulator (such as refraction, diffraction or hologram). Prism array). This will be a specialized component for the product. Another option is the lateral mechanical movement of the prism array, although this is less recommended because moving the mechanical part can complicate the device. ^ 100 200827953 Another key issue is determined by the prism angle (4) fixed virtual observer window separation. This may be confusing for non-standard eye _ observation M or tracking. One of the solutions is to make a combination of encapsulated liquid-crystal domains, as shown in Figure 丄. Next, the electric field controls the sugar, as well as the skewed seam. This method can be combined with the prism array to continuously provide variable skew and fixed skew continuously. In another Φ solution, the liquid crystal layer can be used to cover the structural edges of the prism array. Then, the electric field can control the refractive index and the skew angle. Skew combinations are not needed if the virtual observer window is sufficiently permissible to allow for a single eye to separate and observe such a large width. A more complicated solution is to use a controllable prism array, such as an e-wetting array (as shown in Figure 27) or a prism filled with liquid crystals (as shown in Figure 2). The layer having the prism element 159 includes electrodes 1517, 1518 and a cavity filled with two separated liquids 1519, 1520. Each liquid fills the concave and the same prismatic portion. As an example, the liquid can be oil or water. The slope of the interface between the liquids 1519, 1520 is determined by the voltage applied to the electrodes 1517, 1518. If the liquids have different refractive indices, the beam will be biased, and the bias is determined by the voltage applied to the electrodes 1517, 1518. Thus, prism element 159 acts as a cool, controllable beam directing element. For the implementation of the need to track the virtual observer window to the observation of the eye, the electronic hologram technology is provided, which is an important feature for the applicant's method 101 200827953. Patent application No. 07024237.0, DE 702 423 6.2 6.2, filed by the applicant, describes the singularity of the prismatic element from the virtual observation window to the eyes of the spectator.

這是一個使用於緊密手持式顯示器的實施例。Sdk〇 (rtm) Epson (RTM) Corporation of Japan已發表單色電子式定址空間光調 籲變器,例如D4:L3D13U U英叶螢幕尺寸。一個描述的例子是使 ' 用D4:L3D13U液晶顯示器面板作為空間光調變器。它具有HDTV 的解析度(192〇 X 1〇8〇像素)、咖瓜的像素間距與28.8聰X 16.2mm的面板區域。這個面板通常使用在二維圖像投影顯示器。 這個例子是計算關於663nm的波長與5〇cm的觀察員距離。 對於這個振幅調變郎光觀肢使雜_位編碼(布克哈特編 參碼)·需要二個像素來編碼一個複數。這三個關聯像素是垂直排列 • 的如果棱鏡陣列光束分光鏡是整合在空間光調變器巾,棱鏡陣 •列的間距會是30师。如果空間光調變器與棱鏡陣列之間具有分 k棱鏡陣列的間距會稍微不同,以處理透視縮短。 虛擬觀察員視窗的高度是由3 * 15 μπι = 45 μιη的間距去編 個複數所決定’且為7。咖。虛擬觀察員視窗的寬度是由料於 陣列的30卿間距所決定,且為1〇 6刪。兩鑛值都大於眼目= 102 200827953 瞳孔。因此’如果虛擬觀察員視窗是在眼睛的位置,每個眼睛都 可以看見全像重建。全像4建是從二維編碼的全侧而來,因此 並沒有上面所述—維編碼巾本身存在_光問題。這個確保高的 空間視覺品質與高的深度印象(depthimp聰i〇n)品質。 當眼睛的分隔為Mmm時,棱鏡必須偏斜光士 32 5咖。更精 鲁確來說,縣sinc_squared㉟度函數的強度最大值需要偏斜士 32.5麵。對於〇.5 m的觀察員距離,這對應於土⑶。的角度。對 於折射率η-I.5,適當的棱鏡肖度為±7.44。。棱鏡角度是定義為 基底與棱鏡斜邊之間的角度。 對於在10.6mm的觀察員平面中的水平期間,另一眼的位置是 在大約6繞射階級的距離(意即65mm除1〇 6mm)。由較高繞射階 參級所導致的串音因而是可以忽略的,因為棱鏡陣列具有高的填充 因子,意即接近於100%。 這是一個使用於大顯示器的實施例。全像顯示裝置可設計使 用相位調變的空間光調變器,並具有50jLlm的像素間距及20英吋 的螢幕尺寸。對於如電視的應用,螢幕尺寸可能相當接近40英时。 對於這個設計的觀察員距離為2m,波長是633nm。 103 200827953 使用空間光調變器的兩個相位調變像素來編碼一個複數。這 兩個關聯的像素是垂直排列的,並且對應的垂直間距為2 * 5〇 =100 μιη。藉由整合棱鏡陣列至空間光調變器中,棱鏡陣列的水 平間距也為2*50 μπι= 100 μιη,因為每個棱鏡包含兩個斜面,且 每個斜面是用於空間光調變器的一個攔位。所產生12Jmm的虛擬 觀察員視窗的寬度與高度是比眼睛的瞳孔還來的大。因此,如果 虛擬觀祭員視窗是在眼睛的位置,每個眼睛都可以看見全像重 ' 建王像重建是從二維編碼的全像圖而來,因此並沒有一維編碼 •巾本轉在賴光問題。這個確保高的^間視覺品質與高的深度 印象品質。 ^ 當眼睛的分隔為65咖時,棱鏡必須偏斜光土 Μ.5酿。更精 確來說,強度封裝sinC-SqUared函數的最大值需要偏斜士幻5麵。This is an embodiment for a compact handheld display. Sdk〇 (rtm) Epson (RTM) Corporation of Japan has published a monochrome electronic address space optical tone appropriator, such as the D4:L3D13U U Yingye screen size. An example of a description is to use the D4:L3D13U LCD panel as a spatial light modulator. It has HDTV resolution (192〇 X 1〇8〇 pixels), papaya pixel pitch and 28.8 Cong X 16.2mm panel area. This panel is typically used in 2D image projection displays. This example is to calculate the observer distance for a wavelength of 663 nm and 5 〇 cm. For this amplitude modulation, Langguang's limbs are _bit-coded (Bukhart's code). Two pixels are required to encode a complex number. The three associated pixels are vertically aligned. • If the prism array beam splitter is integrated into the spatial light modulator, the prism array will have a pitch of 30 divisions. If the spacing between the spatial light modulator and the prism array has a sub-k prism array, the spacing will be slightly different to handle the perspective shortening. The height of the virtual observer window is determined by the complex spacing of 3 * 15 μπι = 45 μηη and is 7. coffee. The width of the virtual observer window is determined by the 30-inch spacing of the array and is 1 〇 6 deleted. Both mine values are greater than the eyesight = 102 200827953 Pupil. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The hologram 4 is built from the full side of the two-dimensional code, so there is no such thing as the above - the dimensional code towel itself has a _light problem. This ensures high spatial visual quality and high depth impression (depthimp). When the eye is separated by Mmm, the prism must be skewed by the light. More precisely, the maximum intensity of the county sinc_squared35 degree function requires a skewed 32.5 face. For an observer distance of 〇5 m, this corresponds to soil (3). Angle. For the refractive index η-I.5, the appropriate prism ostensibility is ±7.44. . The prism angle is defined as the angle between the base and the bevel of the prism. For the level in the 10.6 mm observer plane, the position of the other eye is at a distance of about 6 diffraction stages (ie 65 mm divided by 1 〇 6 mm). The crosstalk caused by the higher diffraction order is thus negligible because the prism array has a high fill factor, meaning close to 100%. This is an embodiment for use with large displays. The holographic display unit can be designed with a phase-modulated spatial light modulator with a pixel pitch of 50jLlm and a screen size of 20 inches. For applications such as television, the screen size can be quite close to 40 inches. The observer distance for this design is 2m and the wavelength is 633nm. 103 200827953 Encodes a complex number using two phase-modulated pixels of a spatial light modulator. The two associated pixels are vertically arranged and the corresponding vertical spacing is 2 * 5 〇 = 100 μιη. By integrating the prism array into the spatial light modulator, the horizontal spacing of the prism array is also 2*50 μπι = 100 μηη, since each prism contains two bevels, and each bevel is used for a spatial light modulator. A block. The width and height of the resulting 12Jmm virtual observer window is larger than the pupil of the eye. Therefore, if the virtual spectator window is in the position of the eye, each eye can see the hologram. The reconstruction of the king image is from the two-dimensional coded hologram, so there is no one-dimensional code. In the light of Lai. This ensures high visual quality and high depth impression quality. ^ When the separation of the eyes is 65 cafés, the prisms must be deflected by the light soil. More precisely, the maximum value of the strength-encapsulated sinC-SqUared function requires skewed 5 faces.

物m的觀察員距離,這對應於± 〇 93。的角度。對於折射率許 •5 ’適當的棱鏡角度為士 。棱 3 邊之間的肢。 道歧以㈣基底與棱鏡斜 50cm.輿 上面的例子是對於觀察員離空間光調變器的距離為 m。概括來說’這個實施例可應 5〇 一之間的距離。榮幕尺寸可為:間_變器為 螢幕)至50英叶(例如大尺寸電視)之間;。丨、咖列如行動電話次 104 200827953 雷射光源 RGB固態雷射光源,例如以砷化銦鎵(GalnAs)或氮砷化銦鎵 (GalnAsN)材料為基礎,對於緊密的全像顯示裝置可為適合的光 源,因為它們是緊密的,且具有高程度的光定向性。這樣的光源 包括由Novalux (RTM) Inc” CA,USA所製造的RGB垂直凹面發射 雷射(Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源 可提供為單一雷射或雷射陣列,儘管每個光源可利用繞射光學元 件來產生多個光束。光束可在多模光纖中傳輸,因為如果同調性 對於使用在緊密的全像顯示裝置中是太高的,這可能會降低同調 性階級,並且不會導致不需要的加工品產生,例如雷射班點圖樣。 雷射光源陣列可為一維或二維的。 有機發光二極體材料 紅外線有機發光二極體材料是已提出的。例如,Del Cafio et al. 在以 perylenediimide-doped tris(8-quinolinolato) aluminium 為基礎 的有機發光二極體材料中發表了電致發光(electroluminescence),如 在 Applied Physics Letters voL 88, 071117 (2006)中所描述的内容。 說明了波長805 nm的電致發光。Domercq et al.在J Phys Chem B vol· 108, 8647-8651 (2004)中發表了近似紅外線有機發光二極體 105 200827953 的材料。在透明基板上的有機發光二極體材料的製備是已★兒明 的。例如在US7,098,591中,有機發光二極體材料是在透明的氧化 銦錫電極(indium tin oxide electrodes)上製備。電極是製備在透明美 板上,透明基板可為硼矽玻璃作0«^此&16 8以83)。這些構成要素可 包含在具有透明基板的有機發光二極體裝置中。氧化銦錫層可利 用射頻磁濺鍍法(radio frequency magnetron sputtering tool)賤錄至Observer distance of object m, which corresponds to ± 〇 93. Angle. For a refractive index of ~5 ′, the appropriate prism angle is ±. The limb between the edges of the edge. The difference is (4) the base and the prism are inclined 50 cm. 上面 The above example is the distance m for the observer from the spatial light modulator. In summary, this embodiment can take a distance of between 5 and 1 . The size of the screen can be between: Between the screen and the screen (for example, the large size TV);丨, 咖列如行动电话次104 200827953 Laser source RGB solid-state laser source, for example based on indium gallium arsenide (GalnAs) or indium gallium arsenide (GalnAsN) materials, for compact holographic display devices Suitable light sources because they are compact and have a high degree of light directivity. Such light sources include RGB Vertical Cavity Surface Emitting Lasers (VCSELs) manufactured by Novalux (RTM) Inc" CA, USA. Such sources can be provided as a single laser or laser array, although each The light source can utilize a diffractive optical element to generate a plurality of light beams. The light beam can be transmitted in a multimode fiber because if the homology is too high for use in a compact holographic display device, this may reduce the homology class, and It does not lead to unwanted processed products, such as laser shift patterns. The array of laser light sources can be one-dimensional or two-dimensional. Organic light-emitting diode materials Infrared organic light-emitting diode materials have been proposed. For example, Del Cafio et al. published electroluminescence in organic light-emitting diode materials based on perylenediimide-doped tris (8-quinolinolato) aluminium, as in Applied Physics Letters voL 88, 071117 (2006). Described. Illustrates electroluminescence at a wavelength of 805 nm. Domercq et al. published near J Phys Chem B vol 108, 8647-8651 (2004) The material of the infrared organic light-emitting diode 105 200827953. The preparation of the organic light-emitting diode material on the transparent substrate is already known. For example, in US 7,098,591, the organic light-emitting diode material is in transparent indium oxide. Prepared on indium tin oxide electrodes. The electrodes are prepared on a transparent plate, and the transparent substrate can be made of borosilicate glass as 0. This is included in 83.) These components can be included in a transparent substrate. In the organic light-emitting diode device, the indium tin oxide layer can be recorded by using a radio frequency magnetron sputtering tool to

基底之上。氧化銦錫可利用包含氧化銦與氧化錫的目標來濺鑛。 氧化銦錫層可具有在可見範圍中大約85%的光學傳輸。氧化銦錫 可為平穩的,以避免局部增強電場的產生,局部增強電場可能备 降低有機發光二極體材料的效能。小於大約2]^的均方根粗糙产 是較好的。一個或數個實用的有機層可設置在圖樣電極表面 (patterned electrode surface)上。有機層的厚度典型介於2nm與 200nm之間。傳導層可依圖樣建構在有機層上,以便在有機層的 二侧形成陽極與陰極。裝置可由玻璃層密封,以保護主動層受到 環境的破壞。 概要製造程序 以下描述製造圖二裝置的程序概要,不過這個程序的許多變 化將可在習用技術中找到。 在製造圖二裝置的程序中,選擇使用透明基板。如此的基板 106 200827953 可為硬式的基板’例如大約200μιη厚的棚石夕玻璃片,或是它可為 軟式基板’例如聚合物基板(p〇lymer substrate),例如聚碳酸酉旨 (polycarbonate)、丙烯酸的(acrylic)、聚丙烯(p〇lypr〇pyiene)、聚氨-酯(polyurethane)、聚苯乙烯(p〇lyStyrene)、聚氯孔烯㈣㈣邮 chloride)或是類似的基板。如同前一部份所描述的,透明電極是製 備在玻璃上。如同前一部份所描述的内容,紅外線有機發光二極 體材料是配置在玻璃上,並且電性接點是裝設在透明電極的另一 邊上,使得像素化有機發光二極體紅外線光的放射是可能的。玻 璃基板可具有提供有機發光二極體像素材料的凹處。紅外線有機 發光二極體材料可印製、喷塗或溶製Muti〇n-processed)在透明基 板上。分封層,也為電性絕緣層,會接著配置在有機發光二極體 像素層上。如此的分封層可為無機絕緣層(ώ零^化油攸 layer) ’例如二氧化矽(silic〇ndi〇xide)、氮化石夕㈣ic_ 切㈣icon carbide)或是它可為聚合型層____丨_ , 如環。配置可利用濺鍍或是對於無機絕緣層利用化學氣 相沉積(chemical vapour deposition) ’或是對於聚合型層利用印製或 塗層*來執行。分封層,也為電性絕緣層,可具有數微米或是^於 、从米的厚度。接者,光學式定址空間光調變器的感光層會覆蓋 分封層。感觸騎紅外線是敏感的,可肤是透明的^ 2具有數微米的厚度。如此的光學特性可由吸收紅外線的染料 光學式定址空間光調變器接著是藉由配置覆蓋在兩個導 107 200827953 電層之間的液晶層來完成。液晶層可針對振幅調變或是相位調變 進行設定,並且典型的厚度為數微米。接著,在裝置上配置紅外 線過濾層。這可為具有紅外線吸收色素(infra red abswbing pigments)的聚合物薄層的形式,或者這可為無機層,例如具有紅 •外線吸收元件的濺鍍或化學氣相沉積長成的二氧化矽薄層。 在兩個光+式定址空間光調變器裝置之間的層,必需要是足 夠厚的,以確保在-個鱗式定址空縣調龍中的電場不會影 響另-個光學式定址空間糊變器的效能。紅外線過朗可為足 夠厚,以完現這個目標。然而,如果紅外線過滤歧不夠厚的時 候’可利關如藉由光學_將光學式定址空間光調變器裝置與 八充刀厚度的柄片結合’或是藉由配置另外的光學透明層,例 如上述的錢輕找合物絲增加層的厚度。無論如何,二個 光學式定址空間光調蠻哭駐w ^ 、置料能她太遠,使得光學繞射 效應減低像素串θ。例如’如果像素寬是職米,光 間光調變器層紐應相隔小 工 H㈣礎哭由ΛΑ 勤。在其中一個光學式定址 中的液晶層是設定去執行振 式定址空間光調變器中的A 個光學 /夜日日層是設定去執行相位調變。 裝置的其它部份可利 變裔及有機發光二極體層 用上述對於每-個絲式定址空間光調 的方法進行歸m置的其它部 108 200827953 份可製備成單-元件,接著 乂nm、" 、°口^衣置弟一部份上,利用例如一 個用以確保在光學式定址 適厣,栋俨― 之間具有充分分隔的玻 卜:母―個光學式定址空間細魏的電場不會影響另一 用固繼定吻伽t|§_。㈣__製備是利 ==_崎靖—粉,樹Above the substrate. Indium tin oxide can be sputtered using a target comprising indium oxide and tin oxide. The indium tin oxide layer can have an optical transmission of about 85% in the visible range. Indium tin oxide can be smooth to avoid localized electric field generation, and local enhanced electric field may reduce the effectiveness of the organic light-emitting diode material. A root mean square roughness of less than about 2] is preferred. One or several practical organic layers may be disposed on the patterned electrode surface. The thickness of the organic layer is typically between 2 nm and 200 nm. The conductive layer can be constructed on the organic layer in accordance with the pattern to form an anode and a cathode on both sides of the organic layer. The device may be sealed by a layer of glass to protect the active layer from environmental damage. Summary Manufacturing Procedures The following outlines the procedures for making the Figure 2 device, but many variations of this program will be found in the prior art. In the process of manufacturing the device of Fig. 2, a transparent substrate is selected for use. Such a substrate 106 200827953 may be a rigid substrate 'eg, about 200 μm thick shed glass sheets, or it may be a flexible substrate 'such as a p〇lymer substrate, such as polycarbonate, Acrylic, polypropylene (p〇lypr〇pyiene), polyurethane, polystyrene, polychloroprene (tetra), or similar substrates. As described in the previous section, the transparent electrode is fabricated on glass. As described in the previous section, the infrared organic light emitting diode material is disposed on the glass, and the electrical contacts are disposed on the other side of the transparent electrode, so that the pixelated organic light emitting diode infrared light is Radiation is possible. The glass substrate can have a recess that provides an organic light emitting diode pixel material. Infrared organic light-emitting diode materials can be printed, sprayed or dissolved on Muti〇n-processed) on a transparent substrate. The sub-sealing layer, which is also an electrically insulating layer, is then disposed on the organic light-emitting diode pixel layer. Such a sealing layer may be an inorganic insulating layer (such as cerium oxide layer), such as cerium oxide (silic 〇ndi〇xide), nitrite (four) ic_cut (four) icon carbide) or it may be a polymeric layer ____丨_ , such as the ring. The configuration can be performed by sputtering or by chemical vapour deposition for the inorganic insulating layer or by printing or coating* for the polymeric layer. The sub-sealing layer, which is also an electrically insulating layer, may have a thickness of a few micrometers or a thickness of m. In addition, the photosensitive layer of the optically addressed spatial light modulator covers the encapsulation layer. Sensing to ride the infrared is sensitive, the skin is transparent ^ 2 has a thickness of a few microns. Such optical properties can be accomplished by the infrared absorbing dye optically addressed spatial light modulator followed by the configuration of a liquid crystal layer overlying the two conductive layers 200827953. The liquid crystal layer can be set for amplitude modulation or phase modulation, and typically has a thickness of a few microns. Next, an infrared filter layer is placed on the device. This may be in the form of a thin layer of polymer having infra red absent pigments, or it may be an inorganic layer, such as a thin layer of cerium oxide grown by sputtering or chemical vapor deposition with red/external absorbing elements. Floor. The layer between the two optical +-addressed spatial modulator devices must be thick enough to ensure that the electric field in the scaly-addressed empty county does not affect another optically-addressed space paste. The performance of the transformer. The infrared ray is too thick enough to achieve this goal. However, if the infrared filter is not sufficiently thick, it can be combined with the optically-addressed spatial light modulator device and the eight-knife thickness handle or by configuring an additional optically transparent layer. For example, the above-mentioned money is lightly found to increase the thickness of the layer. In any case, the two optically positioned spatial tones are quite awkward, and the placement can make her too far, so that the optical diffraction effect reduces the pixel string θ. For example, if the pixel width is the job-meter, the light-to-light modulator layer should be separated from the small worker H (four). The liquid crystal layer in one of the optical addresses is set to perform the vibration-addressed spatial light modulator in the A/Ok day layer which is set to perform phase modulation. The other part of the device can be made into a single-element, and then 乂nm, using the above-mentioned other parts 108 for the light-modulation of each of the silk-addressed spaces. " , ° mouth ^ clothing on the part of the brother, the use of, for example, to ensure that the optical positioning is appropriate, the building is separated by a sufficient separation of the glass: the mother - an optical address space fine Wei electric field Will not affect another use of the solid-fixed kiss gamma t|§_. (4) __Preparation is profit ==_崎靖-powder, tree

光二極體層的像素盥箆一古她欢、μ WX ’、/、 有機杳光二極體層的像素的精確排列的 也可月b使用塗上傳導透明電極(conducting transparent electrodeX例如氧化銦錫)的薄分隔層,來替代使用具有充分厚度的 分隔層緊鄰光學式纽空間光調變器。這個電極扮演兩個液晶層 的同电極。再者,作為傳導電極它是一個等電位面 (eq_ential)。因此’它倾電場,纽防止從—個光學式定址 鲁空間光·關另-個光學式定址空間細_的電場漏損。 圖九顯示了—個裝置結構的例子,它可由上述程序或類似的 辛,序進行。在使用的過程中,表面照射充分同調可見的 光至圖九巾的奸結構_,使得離裝置—段麟(與裝置的尺度 有關)在點911的觀看者可看到三維圖像。裝置中的層,從9〇直到 _是不需要與相互的尺度有關。層9〇是基底層,例如玻璃層。 層91是有機發光二極體底板層,提供有機發光二極體電源,並且 109 200827953 y為王孩σ卩刀翻。層%是紅外線有機發光二極體_。層% 是用於至少部分紅外線細準的布拉格過㈣全像元件。在一些 實施例中’層93是可以省略的。層糾是電性絕緣層。層%是光 予式疋址工間光顯减光與電極層。層%是躲可見光束振幅 調變的液晶層。層97是分_,酬是薄的分隔層。層98是透 明電極層。層99是線性偏光層。層_是紅外線過滤層,可傳送 可見光’但是會阻擒從有機發光二極體陣列%與的紅外線 光層901疋用於可見光束相位調變的液晶層。層撤是分隔層, 特別是_分_。層9〇3是光學式定址空間光調變賊光與電 極層。層904是電性輯層。層9Q5是用於至少部分紅外線光瞒 準的布拉格過渡器全像元件。在—些實施例中,層撕是可以省 略的。層906是紅外線有機發光二極體陣列。| 9〇7是有機發光 二極體底板層’提财機發光二極體魏,並且可為全部或部分 透明。層是遮蓋材料的平面’例如玻璃。在製造的過程中, 震置_的製造可由基顧_始,依次配置每—層,直到最後 一層908增加完成。上述的程序會具有促進高精確的結構的層排 列的優點。或者,層的製造可以分成兩個或多個部分,並且具有 充份程度調整的結合在一起。 對於裝置的製造,將不想要的雙折射維持在最小值是非常重 要的’例如不想要的應力引起雙折射 110 200827953 birefringence)。應力引起雙折射會導致光的線性或圓形偏化狀態改 變至光的橢圓偏化狀態。具有光的理想線性或圓形偏化狀態的裝 置中,光的橢圓偏化狀態的存在會減少對比及色彩保真度,也因 此會降低裝置的效能。 實作 ⑩ 基於習用的技術,對於上述實施例中的光學式定址空間光調 麦裔,一個在可見光範圍為透明,但是會吸收紅外線的感光層是 ’ 需要的。在另一個實作中,感光層可為圖樣式的,以便能具有能 傳送可見光的透明間隔,例如紅色、綠色及藍色光束,以及會對 從有機發光二極體來的光敏感的非透明區域。在這個例子中,感 光材料對可見光不需要是透明的。另外,寫入光束不需要為紅外 線光。在-個實作中,寫人光束能由非主要顯示色彩來產生,例 φ 如藉由H色光有機發光二極體。在兩個光學式定址空間光調變器 • 之間的過濾H會因此需要在黃色巾,具有強大的光學吸收·,使其 ,能阻擋黃色光,但是為了達到產生有作用的光學顯示器的目的, 在其它的光學波長上健需要有充份的傳輸。在另—個實作中, 寫入光束能由紫外線有機發光二極體來產生。在兩個光學式定址 空間光調變ϋ之間的過濾器會因此需要在紫外線中,具有強大的 光予吸收’使其餘擋紫外線光,但是為了達到產生有作用的光 子,㈣在其它的光學波長上仍然需要有充份的傳輸。 111 200827953 备、外線有機發光二極體材料已由Qiu et al. Applied Physics Letters 79, 2276 (2001)及 Wong et al· Org· Lett· 7 (23),5131 (2005)發表。此 外’雖然強調了使用有機發光二極體材料,也是可以使用其它的 發光二極體材料或是其它的顯示技術,例如表面傳導電子發射顯 示态(Surface-conduction Electron-emitter Display,SED)技術。 雖然,在此所描述的實施例是強調振幅與相位在空間光調變 器中的連續編碼,基於習用的技術,振幅與相位的二個不相等組 合的任何連_魏·阿使絲編碼全像像素,兩她合與乘 上任何貝數會相等無關,但不是乘上任何複數(實數除外)。這個理 由是像素可能的全像_的向量雜,會藉由任何振幅與相位的 兩個不相等組合,在向量空間感知中延伸,任何兩個組合盘乘上 任何實數會縛錢,料上购複數(實數除外)。 在參考圖中’所顯示的相關尺寸是不需要按照比例的。 所未有,料翻本技術人蝴叫施,而其前 實施例尚性’爰依法提出專利之中請。惟上述之 專利範圍=本案所欲賴之專概圍,因此,提出申請 112 200827953 【圖式簡單說明】 圖為包含單-光學式定址空間光調變器及單一有機發光二 極體陣列的全像顯示裝置示意圖; 圖-為包含-對70件的全像輪裝置示意圖,每一個元件包 3單光予式纽二間光_器及單―有機發光二極體陣列; 圖三為移動式三維顯示裝置示意圖; 圖四為習用的全像顯示示意圖; 圖五為單-有機發光二極體_控制兩個光學式定址空 間光調變器的全像顯示示意圖; 圖/、A為全像喊不示意圖; 圖六B為適合用於實現緊密的全像顯示示意圖; 圖七為包3用以減少有關較高繞射階級問題的布拉格過濾、全 •像光學元件的全像顯示的一個構成元件示意圖; 目3 Μ提財機發光二極體陣騎發射的光的準直 、布拉慮王像絲%件的全像顯補—個構駐件示意圖; 圖九為全_示裝置示意圖; ^為3用來連續編碼振幅及相位的兩個電子式定址空間 光調變器的全像顯示裝置示意圖; 113 200827953 圖十一為包括單一電子式定址空間光調變器的全像顯示裝置 示意圖; 圖十二為根據實施例,全像顯示的一個特定具體化示意圖; 圖十二為包含用來連續編碼振幅及相位的兩個電子式定址空 間光調變器的全像顯示裝置示意圖; 圖十四為使用MathCad (RTM)所獲得的繞射模擬結果; _ 圖十五為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十六為使用MathCad (RTM)所獲得的繞射模擬結果; 圖十七為根據實施例,兩個電子式定址空間光調變器之間具 有透鏡層的排列示意圖; 圖十八為當光從-個電子式定址空間光調變器行進至第二個 電子式定址空間光調變器時所發生的繞射程序示意圖; • ’十九為兩個電子式定址空間光調變器的結構示意圖,在其 中兩個電子式定址空間細變器之間具有—個光_板;…、 圖二十為光束指向元件示意圖; 圖二十一為光束指向元件示意圖; 圖二十二為促使3維視覺溝通為可能的系統示意圖·, 圖-十二為將二維圖像内容轉換為三維圖像内容的方法示立 114 200827953 圖二十四為根據實施例,全像顯示元件的具體化示意圖; 圖一十五為包含二維光源陣列形式的光源、二維透鏡陣列形 式的透鏡、空間光調變II與光束分光鏡的全像顯示示意圖。光束 分光鏡會將離開空間光調的光線分成兩束光,分別照射用於 左眼的虛擬觀察員視窗⑽L)及用於右眼的虛擬觀察員視窗 (V0WR); 圖一十六為包含二維光源陣列中的二個光源、二維透鏡陣列 中的一個透鏡、空間光調變器與光束分光鏡的全像顯示示意圖。 光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射 用於左眼的虛擬觀察員視窗(V0WL)及用於右眼的虛擬觀察員視窗 (V0WR); 圖一十七為棱鏡光束指向元件的剖面示意圖。 _【主要元件符魏明】 照明裝置·.................10 色彩過濾器陣列········· ........ 紅外線有機發光二極體陣列·········· 12 光學式定址空間光調變器·· ........13 點·...........· # 緊密全像圖產生器......········ 15 照明裝置......············ 20 115 200827953 色彩過濾器陣列...............21 紅外線有機發光二極體陣列......... · 22 光學式定址空間光調變器...........23 黑占............. 24 緊密全像圖產生器· · ............25 紅外線過濾器· · · · · ...........26 光學式定址空間光調變器...........27 紅外線有機發光二極體陣列........ · · 28 行動電話......... ---30 螢幕區域............... · · · 31 天線.............. 32 攝影機........... 33 攝影機.................· · 34 按鍵.......... ..........35 按鍵....................36 聚焦元件· · · · · .............1101 聚焦元件...............---1102 聚焦元件..................1103 垂直聚焦系統................1104 第一繞射階級....... 1105 第零繞射階級................1106 116 200827953 負一繞射階級················ 1107 微透鏡陣列······· ..........50 色彩過濾器陣列··......······ ·51 紅外線有機發光二極體陣列......----52 光學式定址空間光調變器......... · · 53 光學式定址空間光調變器......... · 54 緊密的全像圖產生器·· ......· · · · · 55 點· 56 照明裝置.....············· 57 空間光調變器· · · · · ......· · · · · 70 全像光學元件布拉格過濾器.....· · · · · 71 單一元件······· .......----73 布拉格平面· · ...............74 繞射光強度分配...............75 光線.................... 76 有機發光二極體陣列·..... 80 全像光學元件布拉格過濾器...... · · · · 81 光學式定址空間光調變器· · · ........82 單一有機發光二極體············· 83 布拉格平面.......·········· 84 發射的紅外線的分佈........· · · · · 85 117 200827953 86 光射線 基底層.......·····,......90 有機發光二極體底板層············ 91 紅外線有機發光二極體陣列·········· 92 布拉格過濾器全像元件············ 93 電性絕緣層················· 94 光學式定址空間光調變器感光與電極層· · · · · 95The pixel of the photodiode layer may be precisely arranged by the pixels of the organic light-emitting diode layer, or may be thinned with a conductive transparent electrode (such as indium tin oxide). A spacer layer is used instead of a spacer layer having a sufficient thickness in close proximity to the optical neo-space light modulator. This electrode acts as the same electrode of the two liquid crystal layers. Furthermore, as a conductive electrode it is an equipotential surface (eq_ential). Therefore, it tilts the electric field, and the neon prevents the electric field leakage from being optically addressed to the optical space. Figure 9 shows an example of a device structure which can be performed by the above procedure or a similar symplectic sequence. During use, the surface illumination is sufficient to align the visible light to the smear structure of the Figure IX, so that the viewer at the point 911 can see the three-dimensional image from the device-section Lin (related to the dimensions of the device). The layers in the device, from 9〇 to _, do not need to be related to each other's dimensions. Layer 9 is a substrate layer, such as a glass layer. The layer 91 is an organic light-emitting diode bottom layer, which provides an organic light-emitting diode power supply, and 109 200827953 y is a Wang Zi 卩 卩 。. The layer % is an infrared organic light emitting diode_. Layer % is a Bragged (four) hologram element for at least part of the infrared fineness. In some embodiments the 'layer 93' can be omitted. The layer correction is an electrical insulation layer. Layer % is the optical dimming and electrode layer of the optical pre-site. The layer % is a liquid crystal layer that modulates the amplitude of the visible beam. Layer 97 is a sub-layer, and the remuneration is a thin separation layer. Layer 98 is a transparent electrode layer. Layer 99 is a linear polarizing layer. The layer_ is an infrared filter layer that transmits visible light' but blocks the liquid crystal layer from the organic light-emitting diode array % and the infrared light layer 901 for phase modulation of the visible light beam. Layer evasion is a separation layer, especially _ points _. Layer 9〇3 is an optically addressed spatial light-tuning thief light and electrode layer. Layer 904 is an electrical layer. Layer 9Q5 is a Bragg transitioner hologram element for at least partial infrared light alignment. In some embodiments, layer tearing can be omitted. Layer 906 is an array of infrared organic light emitting diodes. | 9〇7 is an organic light-emitting diode bottom layer. The light-emitting diode is a light-emitting diode and can be transparent to all or part of it. The layer is the plane of the covering material, such as glass. During the manufacturing process, the fabrication of the swells can be configured from the base, and each layer is sequentially configured until the last layer 908 is added. The above described procedure has the advantage of facilitating a highly accurate structure of the layer arrangement. Alternatively, the manufacture of the layer can be divided into two or more sections and bonded together with a sufficient degree of adjustment. For the manufacture of the device, it is important to maintain the unwanted birefringence at a minimum [e.g., unwanted stress causes birefringence 110 200827953 birefringence). Stress induced birefringence causes a linear or circularly polarized state of light to change to an elliptically polarized state of light. In devices with ideal linear or circularly polarized states of light, the presence of elliptically polarized states of light reduces contrast and color fidelity, and therefore reduces device performance. Implementation 10 Based on conventional techniques, for the optically addressed spatial light gamma of the above embodiments, a photosensitive layer that is transparent in the visible range but absorbs infrared light is required. In another implementation, the photosensitive layer can be patterned to provide transparent spacing that transmits visible light, such as red, green, and blue light beams, as well as non-transparent that is sensitive to light from organic light-emitting diodes. region. In this example, the photosensitive material need not be transparent to visible light. In addition, the write beam does not need to be infrared light. In one implementation, the write beam can be produced by a non-primary display color, for example φ by an H-color organic light-emitting diode. The filtering between the two optically addressed spatial light modulators • will therefore need to be in the yellow towel, with a strong optical absorption, so that it can block yellow light, but for the purpose of producing a functioning optical display At other optical wavelengths, it is necessary to have sufficient transmission. In another implementation, the write beam can be produced by an ultraviolet organic light emitting diode. The filter between the two optically-spaced spatially modulated enthalpy will therefore need to be in the ultraviolet light, with a strong light pre-absorption to make the rest of the UV-blocking light, but in order to achieve a productive photon, (iv) in other optics There is still a need for sufficient transmission at the wavelength. 111 200827953 Standby and external organic light-emitting diode materials have been published by Qiu et al. Applied Physics Letters 79, 2276 (2001) and Wong et al. Org· Lett 7 (23), 5131 (2005). In addition, although the use of organic light-emitting diode materials is emphasized, other light-emitting diode materials or other display technologies such as Surface-conduction Electron-emitter Display (SED) technology can be used. Although the embodiments described herein emphasize continuous encoding of amplitude and phase in a spatial light modulator, based on conventional techniques, any combination of two unequal combinations of amplitude and phase is fully encoded. Like a pixel, it doesn't matter if the two are combined with any number of shells, but not by any complex number (except for real numbers). The reason is that the vector hologram of the possible hologram of the pixel will be extended in the vector space perception by any two unequal combinations of amplitude and phase. Any two combination disks multiplied by any real number will be tied to the money. Plural (except real numbers). The relevant dimensions shown in the reference figures are not necessarily to scale. Unexpectedly, it is expected that the technical person will be called, and the former embodiment is still ‘ However, the scope of the above patents = the specific scope of the case, therefore, the application 112 200827953 [Simple description of the diagram] The picture shows the full-optical address space optical modulator and a single organic light-emitting diode array Schematic diagram of the display device; Fig. - is a schematic diagram of a full-image wheel device containing 70 pairs of components, each component consists of 3 single-light-preferred light-emitting devices and a single-organic light-emitting diode array; Schematic diagram of the three-dimensional display device; Figure 4 is a schematic diagram of the conventional holographic display; Figure 5 is a schematic diagram of the holographic display of the single-organic light-emitting diode _ control two optically-positioned spatial light modulators; Figure /, A is a hologram Figure 6B is a schematic diagram suitable for achieving a compact holographic display; Figure 7 is a composition of the package 3 to reduce the holographic display of the holographic filtering and all-image optical components for higher diffraction class problems. Schematic diagram of the components; 目3 准 Μ 机 发光 发光 发光 发光 发光 、 、 、 、 、 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准 准Used for 3 Schematic diagram of a holographic display device for two electronically addressed spatial optical modulators that encode amplitude and phase; 113 200827953 Figure 11 is a schematic diagram of a holographic display device including a single electronic addressed spatial light modulator; A specific embodiment of a holographic display according to an embodiment; FIG. 12 is a schematic diagram of a holographic display device including two electronically addressed spatial light modulators for continuously encoding amplitude and phase; FIG. The diffraction simulation results obtained by (RTM); _ Figure 15 shows the diffraction simulation results obtained using MathCad (RTM); Figure 16 shows the diffraction simulation results obtained using MathCad (RTM); According to an embodiment, a schematic diagram of a lens layer arrangement between two electronically addressed spatial light modulators is shown; FIG. 18 is a diagram of light traveling from an electronically addressed spatial light modulator to a second electronically addressed spatial light. Schematic diagram of the diffraction procedure that occurs when the modulator is used; • '19 is a schematic diagram of the structure of two electronically addressed spatial light modulators, in which two electronically addressed spatial finers Between the two has a light _ plate; ..., Figure 20 is a schematic diagram of the beam pointing component; Figure 21 is a schematic diagram of the beam pointing component; Figure 22 is a schematic diagram of the system that facilitates 3D visual communication. Method for converting two-dimensional image content into three-dimensional image content 114 200827953 FIG. 24 is a schematic diagram of a holographic display element according to an embodiment; FIG. 15 is a light source including a two-dimensional light source array form A schematic diagram of a full-image display of a lens in the form of a two-dimensional lens array, a spatial light modulation II, and a beam splitter. The beam splitter splits the light leaving the spatial light into two beams, respectively illuminating the virtual observer window (10)L for the left eye and the virtual observer window (V0WR) for the right eye; Figure 16 is a two-dimensional light source A schematic representation of the full image of two light sources in the array, one of the two-dimensional lens arrays, the spatial light modulator, and the beam splitter. The beam splitter splits the light leaving the spatial light modulator into two beams, respectively illuminating the virtual observer window (V0WL) for the left eye and the virtual observer window (V0WR) for the right eye; Figure 17 is a prism A schematic cross-sectional view of the beam pointing element. _[Main component code Wei Ming] Lighting device·...................10 Color filter array··········........ Infrared organic Light-emitting diode array··································································· Tight hologram generator...···································································· .............21 Infrared Organic Light Emitter Array......... 22 Optical Addressing Space Light Modulator.......... .23 黑占.................. 24 Close hologram generator · · ............25 Infrared filter · · · · · ... ........26 Optical Addressing Space Light Modulator.............27 Infrared Organic Light Emitter Array........ · · 28 Mobile Phone. ........ ---30 Screen area.................. · · 31 Antenna .............. 32 Camera ........... 33 Camera.................· 34 Buttons................ ....35 Buttons....................36 Focusing Components · · · · · .............1101 Focusing Components ...............---1102 Components..................1103 Vertical Focusing System................1104 First Diffraction Class..... .. 1105 The zeroth diffraction class................1106 116 200827953 Negative one-drilling class·································· Lens Array·········································································· ...----52 Optical Addressing Space Light Modulator......... · · 53 Optical Addressing Space Light Modulator......... · 54 Tight Full Image generator ···· · · · 55 points · 56 Lighting device .....············· 57 Space light modulator · · · · · · · · · · · 70 holographic optical elements Bragg filters..... · · · · 71 Single components ······· .......-- --73 Bragg plane · · ...............74 Diffraction light intensity distribution...............75 Light... .............. 76 Organic Light Emitting Array·..... 80 holographic optical element Bragg filter... · · · · 81 Optical address space Light Modulator · · · ........82 Single Organic Light II体·························································· · · · 85 117 200827953 86 Light ray base layer....................................90 Organic light-emitting diode bottom layer············· 91 Infrared organic light-emitting diode array······························································································ ········· 94 Optical Positioning Space Light Modulator Photosensitive and Electrode Layer · · · · · 95

液晶層· · · · ........······· 96 分隔層··..............---97 透明電極層......· · ......,· · 98 線性偏光層··...........----99 紅外線過濾層······ ..........900 液晶層· · · · ...............901 分隔層............. 902 光學式定址空間光調變器感光與電極層.....903 電性絕緣層· · · ..............904 布拉格過濾器全像元件............905 906 紅外線有機發光二極體陣列 有機發光二極體底板層........· · · · 907 遮蓋材料的平面............ · · · 098 909 表面 118 200827953 910 • · 911 • · 100 • · 101 • · 102 • · 103 • · 104 • · 105 • · 106 裝置結構 微透鏡陣列.......... 色彩過濾器陣列······· · 電子式定址空間光調變器···· 電子式定址空間光調變器···· 照明裝置...........Liquid crystal layer · · · · ........······· 96 Separation layer··..............---97 Transparent electrode layer... ...· · ......,· · 98 linear polarizing layer··..........----99 Infrared filter layer·······.. .....900 Liquid crystal layer · · · · ...............901 Separation layer.................. 902 Optical address space light tone Transducer Sensing and Electrode Layer.....903 Electrical Insulation Layer · · ·..............904 Bragg Filter Full Image Component.......... ..905 906 Infrared organic light-emitting diode array organic light-emitting diode bottom layer........ · · · 907 Covering the plane of the material............ · · 098 909 Surface 118 200827953 910 • · 911 • · 100 • · 101 • · 102 • · 103 • · 104 • · 105 • · 106 Device Structure Microlens Array.......... Color Filter Array· ······ · Electronic address space light modulator···· Electronic address space light modulator···· Lighting device...........

緊密全像圖產生器....... 元# · · · ........ 107 元件..... 108 照明裝置用........---------110 色彩過濾器陣列...............111 電子式定址空間光調變器· · · · · .....112 光束分光鏡元件.....·········· 113 點...........----------114 緊密全像圖產生器..............115 照明裝置·.............. · · · 130 色彩過濾器陣列··············· 131 電子式定址空間光調變器··········· 132 電子式定址空間光調變器· · · ........133 119 200827953 光束分光鏡元件··············· 134 點· · ...................135 緊密全像圖產生器· · · · · .........136 光束···················· 171 光束....................172 使用者······· ............ 220 使用者......· · · · ......... 221 連線....................222 連線······ ..............223 中間系統· · · · · .............224 電視傳播公司· · ·,............ 2300 中間系統· · · · .......······· 2301 觀看者...................2302 廣告客戶..... 2303 二維内容.....············· 2304 三維内容· · · · · ............. 2305 支付費用················· . 2306 棱鏡元件·················· 159 電極.................· · · · 1517 電極···················· 1518 凹洞············· .......1519 120 200827953Tight hologram generator....... yuan# · · · ........ 107 components..... 108 for lighting installations........----- ----110 Color Filter Array..................111 Electronic Addressing Space Light Modulator · · · · · .....112 Beam Beamsplitter Element.. ...·········· 113 points...........----------114 Tight hologram generator....... .......115 Lighting Fixture·.............. · · · 130 Color Filter Array················ 131 Space-addressed spatial light modulator··········· 132 Electronically-spaced spatial light modulator · · · ........133 119 200827953 Beam beam splitter component····· ···································································· ....136 Beams·············································者······· ............ 220 User...· · · · ......... 221 Connection ..... ...............222 Connections······ ...................223 Intermediate System · · · · · .... .........224 TV Communication Company · · ·,.. .......... 2300 Intermediate System · · · · ......................... 2301 Viewers................ ...2302 Advertisers..... 2303 Two-dimensional content.....·········································· .... 2305 Payment fee································································· ................................. 1517 Electrode········································································· ······· .......1519 120 200827953

Claims (1)

200827953 十、申請專利範圍: 1,種全軸示裝置,包括複數個絲,细彡成—二維光源陣列; 複數個透鏡’係形成一二維透鏡陣列;一空間光調變器與—光束 刀光鏡,在其中每個透鏡係對應m個光源,且該複數個光源是以① 對-的方式與該複數個透鏡對應;該光束分光鏡會將離開該空間 鲁^調魏的光分成兩束光,其巾—束照射對於m個左眼的虛擬觀 祭貝視窗,另一束照射對於m個右眼的虛擬觀察員視窗。 2.如申請專利細们項所述之全像顯示裝置,其巾每個透鏡係 對應-個光源’且該複數個光源係以—對―的方式與該複數個透 鏡對應’也就是m=l。 籲3·如任何上述申請專利範圍所述之全像顯示裝置,其中二維編碼 、係同時地在水平與垂直方向提供全像重建。 4·如申請專利範圍第3項所述之全像顯示裝置,其中該二維編碼 係不會產生散光(astigmatism)。 5·如申請專利細第3項或第4賴狀全軸稀置,其中具 122 200827953 的二維編碼係為可能 有垂直與水平聚焦及垂直與水平移動視差 的0 6·如任何上述申請專利範圍所述之全像顯示裝置,复"、 无鏡係為棱鏡陣列。200827953 X. Patent application scope: 1. A full-axis display device, including a plurality of wires, a fine-twisted-two-dimensional light source array; a plurality of lenses 'forming a two-dimensional lens array; a spatial light modulator and a light beam a lancet mirror, wherein each lens system corresponds to m light sources, and the plurality of light sources correspond to the plurality of lenses in a pairwise manner; the beam splitter splits the light leaving the space Two beams of light, the towel-beam illuminates the virtual view of the m left eye, and the other beam illuminates the virtual observer window of the m right eye. 2. The holographic display device of claim 2, wherein each lens corresponds to a light source' and the plurality of light sources correspond to the plurality of lenses in a "pair" manner, that is, m= l. 3. A holographic display device as claimed in any of the preceding claims, wherein the two-dimensional encoding simultaneously provides holographic reconstruction in horizontal and vertical directions. 4. The hologram display device of claim 3, wherein the two-dimensional code system does not generate astigmatism. 5. If the application for patent item 3 or the 4th is completely thin, the two-dimensional code with 122 200827953 is the possible vertical and horizontal focus and vertical and horizontal movement parallax. The holographic display device of the range, the complex ", and the mirrorless system is a prism array. 7·如申請專利範圍第6項所述之全像顯示裝置 鏡係為一個一維的垂直棱鏡陣列。 其中該光束分光 8.如申請專利細第6項所狀全像顯稀置, 鏡棱鏡陣列係整合至或直接在該空間光調變器上:、作^ 繞射或全像棱鏡陣列。 〜反射、7. The holographic display device as described in claim 6 is a one-dimensional vertical prism array. Wherein the beam splitting 8. The holographic image is thinned as in the sixth item of the patent application, and the mirror prism array is integrated or directly on the spatial light modulator: a diffractive or holographic prism array. ~reflection, 9·如任何上述申請專利範圍第1項至第$ 置,其中該光束分光鏡係為另一透鏡陣列。 項所述之全像顯示裝 其中該先攻分 何上述申請專利範圍所述之全像顯示裝置, 光鏡係在該帥細變器之後。 123 200827953 12·如任何上述申請專利範圍所述之全像顯示裝置,其中該光束分 光鏡係在該空間光調變器之前。 13·如任何上述申請專利範圍所述之全像顯示裝置,其中每個光源 _ 係藉由它的關聯透鏡成像至一觀察者平面。 11如任何上述申請專利範圍所述之全像顯示裝置,其中對於一給 定的觀察者,該光源陣列的間距與該透鏡陣列的間距係使得全部 光源同Β守成像在該觀察者平面,也就是包含兩個虛擬觀察員視窗 的平面。 t _ •如任何上述申請專利範圍所述之全像顯示裝置,其中更包含一 ,碩外的場透鏡。 如任何上述申請專利範圍所述之全像顯示裝置,其中為了提供 充份的空間同調性,該透鏡陣列的間距係相似於一個次全像圖的 典型大小。 1?·如任何上述申請專利範圍所述之全像顯示裝置,其中該複數個 124 200827953 光源係為小的或是複數個點光源。 18·如任何上述申請專利範圍所述之全像顯示裝置,其中該透鏡陣 列係為反射、繞射或全像的。 竹上述申凊專利範圍所述之全像顯示裝置,其中對於左眼 與右眼的全像圖係為一攔一欄地交錯。 20·如任何上述申請專利範圍所述之全像顯示裝置,其中該光束分 光鏡的間距是細或是絲倍數於該帥光觀H關距,或是 〆光束刀光鏡的_是猶微不同或是紐倍數上繼不同於該空 間光調變· _距,崎許透視驗(per事加shQrtening)。 、/★任何上奶請專纖贿述之全像顯示裝置,其巾該光束分 光鏡係為一繞射光學元件。 22. 、如任何上料請專利範圍所述之全像顯示裝置, 追縱的實作。 其係包含光源 =壬何上酬專利軸_第^項所述之全像顯示裳 該棱鏡陣列會在左眼虛擬觀察員視窗的位置產生一個強 125 200827953 ^裂sinc-squared函數最大值’在右眼虛擬觀察員視窗的位置 另一個強度封裝sine-squared函數最大值。 24·如任何上述申請專利範圍第6項至第8項及第u 傻顯千壯里 #丄 $所迷之全 〜/、衣置,其中一虛擬觀察員視窗的高度是較小於 在该空間糊變H的繞射的垂直週期性間隔,—麵綠。、關= 度是較小於或等於關於在該光束分光鏡的繞射的水平 範 1269. The range of any of the above-mentioned patent claims, wherein the beam splitter is another lens array. The holographic display device described in the above item is the omni-directional display device described in the above patent application scope, and the light mirror is disposed behind the handsome finder. 123. The holographic display device of any of the preceding claims, wherein the beam splitter is preceded by the spatial light modulator. 13. A holographic display device as claimed in any of the preceding claims, wherein each source _ is imaged by an associated lens to an observer plane. 11. The hologram display device of any of the preceding claims, wherein, for a given viewer, the spacing of the array of light sources and the spacing of the lens array are such that all of the light sources are imaged at the viewer plane, It is the plane that contains the two virtual observer windows. The holographic display device of any of the above-mentioned patent applications, further comprising a field lens. A hologram display device according to any of the preceding claims, wherein the spacing of the lens array is similar to the typical size of a sub-image in order to provide sufficient spatial coherence. 1 1. The holographic display device of any of the preceding claims, wherein the plurality of 124 200827953 light sources are small or a plurality of point sources. 18. The holographic display device of any of the preceding claims, wherein the lens array is reflective, diffractive or holographic. The holographic display device described in the above-mentioned Japanese patent application, wherein the holograms for the left and right eyes are staggered one by one. 20. The holographic display device of any of the above-mentioned patent applications, wherein the distance between the beam splitter is thin or the wire is multiplied by the distance of the handsome light, or the beam of the beam is mirrored. Different or new doublings are different from the spatial light modulation _ distance, and the oscillating perspective (per thing plus shQrtening). / / / Any milk, please specialize in the bribes of the holographic display device, the towel beam mirror is a diffractive optical component. 22. For any holographic display device as described in the patent scope, please follow the implementation. The system includes a light source = a patented patent axis _ the total image shown in the item ^ shows that the prism array will produce a strong 125 position in the left eye virtual observer window 200827953 ^ crack sinc-squared function maximum 'on the right The position of the virtual observer window is the other maximum strength of the sine-squared function. 24· As in any of the above-mentioned patent applications, items 6 to 8 and u are fascinating, and the clothing is placed in a space where the height of a virtual observer window is smaller than that in the space. The vertical periodic spacing of the diffraction of the paste H, - green. , off = degree is less than or equal to the level of diffraction about the beam splitter 126
TW96140512A 2006-10-26 2007-10-26 Holographic display device and method TWI403868B (en)

Applications Claiming Priority (21)

Application Number Priority Date Filing Date Title
GBGB0621360.7A GB0621360D0 (en) 2006-10-26 2006-10-26 Compact three dimensional image display device
GBGB0625838.8A GB0625838D0 (en) 2006-10-26 2006-12-22 Compact three dimensional image display device
GBGB0705405.9A GB0705405D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705411.7A GB0705411D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705398A GB0705398D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705406A GB0705406D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705408A GB0705408D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705403A GB0705403D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705410A GB0705410D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705402.6A GB0705402D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GBGB0705404.2A GB0705404D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705401A GB0705401D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705407A GB0705407D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705412A GB0705412D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705409A GB0705409D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0705399A GB0705399D0 (en) 2006-10-26 2007-03-21 Compact three dimensional image display device
GB0709379A GB0709379D0 (en) 2007-05-16 2007-05-16 Smart display extended
GB0709376A GB0709376D0 (en) 2007-05-16 2007-05-16 Smart display
DE102007024236A DE102007024236A1 (en) 2007-05-21 2007-05-21 Holographic reconstruction system with an array of controllable microprisms
DE102007024237A DE102007024237B4 (en) 2007-05-21 2007-05-21 Holographic reconstruction system with optical waveguide tracking
GB0714272A GB0714272D0 (en) 2006-10-26 2007-07-23 Image display spatial light modulator

Publications (2)

Publication Number Publication Date
TW200827953A true TW200827953A (en) 2008-07-01
TWI403868B TWI403868B (en) 2013-08-01

Family

ID=44817469

Family Applications (2)

Application Number Title Priority Date Filing Date
TW96140511A TWI422999B (en) 2006-10-26 2007-10-26 Holographic display device, manufacturing method thereof and method of generating holographic reconstruction
TW96140512A TWI403868B (en) 2006-10-26 2007-10-26 Holographic display device and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW96140511A TWI422999B (en) 2006-10-26 2007-10-26 Holographic display device, manufacturing method thereof and method of generating holographic reconstruction

Country Status (1)

Country Link
TW (2) TWI422999B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399972B (en) * 2008-09-29 2013-06-21 Casio Computer Co Ltd Image generating apparatus and program
TWI572187B (en) * 2012-11-30 2017-02-21 樂金顯示科技股份有限公司 Stereoscopic image display and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407148B (en) * 2009-12-29 2013-09-01 Au Optronics Corp Stereoscopic display device and stereoscopic image displaying method
TWI459037B (en) * 2012-09-11 2014-11-01 Delta Electronics Inc System and method for time-multiplexed autostereoscopic display
TWI719588B (en) * 2019-08-16 2021-02-21 國立中山大學 Method of two-dimensional fringe-encoded pattern projection for instantaneous profile measurements
CN110533780B (en) 2019-08-28 2023-02-24 深圳市商汤科技有限公司 Image processing method and device, equipment and storage medium thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350963A (en) * 1999-06-09 2000-12-13 Secr Defence Holographic Displays
GB2350962A (en) * 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
CN101349889B (en) * 2002-11-13 2012-04-25 希瑞尔技术有限公司 Video hologram and device for reconstructing video holograms
JP2006047690A (en) * 2004-08-04 2006-02-16 Ts Photon:Kk Projection type ip system three-dimensional display system
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399972B (en) * 2008-09-29 2013-06-21 Casio Computer Co Ltd Image generating apparatus and program
TWI572187B (en) * 2012-11-30 2017-02-21 樂金顯示科技股份有限公司 Stereoscopic image display and method for manufacturing the same
US10012842B2 (en) 2012-11-30 2018-07-03 Lg Display Co., Ltd. Stereoscopic image display and method for manufacturing the same

Also Published As

Publication number Publication date
TWI422999B (en) 2014-01-11
TW200839468A (en) 2008-10-01
TWI403868B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5191491B2 (en) Small holographic display device
JP5222300B2 (en) Small holographic display device
Zhan et al. Multifocal displays: review and prospect
CN101568889B (en) Holographic display device
Hainich et al. Displays: fundamentals & applications
CN101568888B (en) Mobile tlephony system comprising holographic display
TWI406115B (en) Holographic display device and method for generating holographic reconstruction of three dimensional scene
Geng Three-dimensional display technologies
JP2010507822A (en) Content generation system
JP2010507823A (en) Small holographic display device
Lee et al. Compact three-dimensional head-mounted display system with Savart plate
CN101432789B (en) Display, instrument panel, optical system and optical instrument
KR20090094078A (en) Holographic display device
CN104704821A (en) Scanning two-way light field camera and display
TW200827953A (en) Holographic display device
CN115547275A (en) Mixed photon VR/AR system
TW200949407A (en) Controllable light modulator
Deng et al. True-color restoration of reconstructed image in naked-eye 3D LED display based on eliminating optical dispersion
Brar Head Tracked Multi User Autostereoscopic 3D Display Investigations
CN114167621A (en) Naked eye 3D display device
Tan High-dynamic-range Foveated Near-eye Display System