TWI422999B - Holographic display device, manufacturing method thereof and method of generating holographic reconstruction - Google Patents
Holographic display device, manufacturing method thereof and method of generating holographic reconstruction Download PDFInfo
- Publication number
- TWI422999B TWI422999B TW96140511A TW96140511A TWI422999B TW I422999 B TWI422999 B TW I422999B TW 96140511 A TW96140511 A TW 96140511A TW 96140511 A TW96140511 A TW 96140511A TW I422999 B TWI422999 B TW I422999B
- Authority
- TW
- Taiwan
- Prior art keywords
- spatial light
- display device
- hologram
- magneto
- light modulator
- Prior art date
Links
Landscapes
- Holo Graphy (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Description
本案為一種全像顯示裝置,在其上電腦產生的影像全像圖會進行編碼,此裝置包含至少一個磁光空間光調變器(Magneto-optical Spatial Light Modulators)。此裝置會產生三維全像重建。 The present invention is a holographic display device in which an image hologram generated by a computer is encoded, and the device includes at least one Magneto-optical Spatial Light Modulator. This device produces a three-dimensional holographic reconstruction.
電腦產生的影像全像圖(Computer-generated video holograms,CGHs)是由一個或更多個空間光調變器(Spatial Light Modulators,SLMs)所編碼而成;空間光調變器包括可控制的元件。這些元件根據影像全像圖來對全像圖值進行編碼,藉此達到調變光的振幅及相位之目的。電腦產生的影像全像圖是可以被計算出來的,例如通過同調光線追蹤、通過模擬受到場景反射的光以及參考波之間的干擾,或者通過傅立葉(Fourier)或菲涅耳(Fresnel)轉換。一個理想的空間光調變器是能表現任意複數的數值,即分別控制進入光波的相位及振幅。然而,典型的空間光調變器只能控制振幅或相位其中一種特性,並且帶有影響另一種特性的不良效應。目前具有幾種不同的方式來調變光的振幅及相位,例如利用電子式定址液晶空間光調變器、光學式定址液晶空間光調變器、微鏡裝置或者聲光調變器。光的調變可為空間上連續的或由個別可定址元件所構成,可為一維或二維排列、二進制、多階層或連續。磁光空間光調變器(MOSLM)是其中一種已知的空間光調變器類型。在磁光空間光調變器中,顯示器上線圈內的電流會控制磁場,藉此依次影響傳播通過顯示器像素的偏化光的偏化狀態。因此,磁光空間光調變器也是屬於電子式定址空間光調變器的一種。 Computer-generated video holograms (CGHs) are encoded by one or more Spatial Light Modulators (SLMs); spatial light modulators include controllable components. . These components encode the hologram values based on the image hologram to achieve the purpose of modulating the amplitude and phase of the light. The computer-generated image hologram can be calculated, for example, by coherent ray tracing, by simulating interference between the reflected light and the reference wave, or by Fourier or Fresnel conversion. An ideal spatial light modulator is a value that can represent any complex number, that is, the phase and amplitude of the incoming light wave are separately controlled. However, a typical spatial light modulator can only control one of the amplitudes or phases, with adverse effects that affect the other. There are currently several different ways to modulate the amplitude and phase of light, such as with an electronically addressed liquid crystal spatial light modulator, an optically addressed liquid crystal spatial light modulator, a micromirror device, or an acousto-optic modulator. The modulation of light can be spatially contiguous or composed of individual addressable elements, which can be one or two dimensional, binary, multi-level or continuous. Magneto-optical spatial light modulators (MOSLM) are one of the known types of spatial light modulators. In a magneto-optical spatial light modulator, the current in the coil on the display controls the magnetic field, which in turn affects the biased state of the polarized light propagating through the display pixels. Therefore, the magneto-optical spatial light modulator is also a kind of electronic address space light modulator.
在本發明中,專有名詞"編碼"意指提供空間光調變器控制值來對全像圖編碼,使得三維場景可以透過空間光調變器來進行重建。關於“空間光調變器編碼全像圖”的意思是指全像圖是在空間光調變器上編碼。 In the present invention, the proper noun "encoding" means providing a spatial light modulator control value to encode the hologram such that the three-dimensional scene can be reconstructed by the spatial light modulator. The term "space light modulator coded hologram" means that the hologram is encoded on a spatial light modulator.
相較於純自動式立體顯示板,觀察者透過影像全像圖可觀察到三維場景光波波前的光學重建。三維場景是在延伸於觀察者的眼睛及空間光調變器之間或者甚至空間光調變器之後的空間進行重建。空間光調變器也能利用影像全像圖進行編碼,使得觀察者能在空間光調變器之前觀察到重建的三維場景物件,而在空間光調變器上或其後方觀察到其他物件。 Compared with the pure automatic stereo display panel, the observer can observe the optical reconstruction of the wavefront of the three-dimensional scene through the image hologram. The three-dimensional scene is reconstructed in a space that extends between the observer's eye and the spatial light modulator or even after the spatial light modulator. The spatial light modulator can also be encoded using an image hologram such that the observer can observe the reconstructed three-dimensional scene object before the spatial light modulator, while other objects are observed on or behind the spatial light modulator.
空間光調變器的元件是光傳輸性較佳的元件,其射線至少可在一定義的位置產生干擾,並且具有超過幾毫米或更多的同調性長度。這將允許全像重建至少在一個維度上具有足夠的解析度。這類型的光將稱為"充份同調光"。 The elements of the spatial light modulator are those that are more optically transmissive, the radiation of which at least can cause interference at a defined location and have a coherence length of more than a few millimeters or more. This will allow holographic reconstruction to have sufficient resolution in at least one dimension. This type of light will be referred to as "full dimming".
為了保證足夠的時間同調性,由光源發射的光譜必需限制於一個適當狹窄的波長範圍內,也就是必需接近單色。高亮度發光二極體(LEDs)的光譜頻寬是足夠狹窄的,以確保全像重建的時間同調性。在空間光調變器上的繞射角度是與波長成比例,意指只有一個單色光源將產生目標點的明顯重建。寬闊的光譜則會導致寬闊的目標點以及模糊的目標重建。雷射源的光譜可以被當作為單色的。單一顏色發光二極體(LED)的光譜線寬是充份狹窄的,能幫助較佳的重建。 In order to ensure sufficient time homology, the spectrum emitted by the source must be limited to a suitably narrow wavelength range, ie it must be close to a single color. The spectral bandwidth of high-brightness light-emitting diodes (LEDs) is sufficiently narrow to ensure temporal homology of holographic reconstruction. The diffraction angle on the spatial light modulator is proportional to the wavelength, meaning that only one monochromatic source will produce a significant reconstruction of the target point. A wide spectrum will result in a wide target point and a fuzzy target reconstruction. The spectrum of the laser source can be treated as a single color. The spectral linewidth of a single color light-emitting diode (LED) is sufficiently narrow to aid in better reconstruction.
空間同調性與光源的橫向寬度有關。習用的光源,像是發光二極體(LEDs)或者冷陰極發光燈(CCFLs),如果它們的發射光是通過充份狹窄的縫隙,則也可以滿足這些需求。雷射光源的光可 視為從繞射限制的點光源所發射,根據形式的純度,將產生目標的明顯重建,即每一個目標點被重建為繞射限制的點。 Spatial coherence is related to the lateral width of the light source. Conventional light sources, such as light-emitting diodes (LEDs) or cold cathode light-emitting lamps (CCFLs), can also meet these needs if their emitted light passes through a narrow gap. Laser light source Considered as being emitted from a diffraction-limited point source, depending on the purity of the form, a significant reconstruction of the target will be produced, ie each target point is reconstructed as a point of diffraction limitation.
從空間非同調光源所產生的光是橫向延伸,並且會造成重建目標模糊。模糊的情況是由重建在既定位置的目標點的寬闊大小所決定。為了在全像圖重建上使用空間非同調光源,必須在亮度和利用孔徑限制光源橫向寬度之間找到一個折衷點。較小的光源,會得到比較好的空間同調性。 The light produced by the spatially non-coherent light source extends laterally and causes the reconstruction target to be blurred. The ambiguity is determined by the broad size of the target point reconstructed at a given location. In order to use a spatially non-coherent light source for hologram reconstruction, a compromise must be found between brightness and the use of aperture to limit the lateral width of the source. Smaller sources will give better spatial coherence.
如果從垂直於縱向延展的觀點來觀察,直線光源可被視為點光源。因此,光波就能在那個方向進行同調傳播,並且非同調於全部其他方向。 A linear light source can be regarded as a point source if viewed from a viewpoint perpendicular to the longitudinal extension. Therefore, the light wave can propagate in the same direction in the same direction, and it is not the same in all other directions.
一般而言,全像圖是藉由波在水平和垂直方向的同調超重疊來全像地重建場景。上述的影像全像圖稱為全視差全像圖。重建的物件可視為在水平和垂直方向的移動視差,如同真實物件。然而,較大的可視角度是需要在空間光調變器的水平和垂直方向具有高的解析度。 In general, a hologram is a holographic reconstruction of the scene by coherent super-overlap of the waves in the horizontal and vertical directions. The above image hologram is called a full parallax hologram. The reconstructed object can be thought of as a moving parallax in the horizontal and vertical directions, just like a real object. However, a larger viewing angle is required to have a high resolution in the horizontal and vertical directions of the spatial light modulator.
通常,空間光調變器的需求會因為限制於僅具水平視差(Horizontal-Parallax-Only,HPO)的全像圖而減少。全像重建僅發生在水平方向,在垂直方向並沒有全像重建。這將導致具有水平移動視差的重建物件。在垂直移動上的透視圖並不會改變。僅具水平視差的全像圖需要空間光調變器在垂直方向的解析度會少於全視差的全像圖。也可以採用僅具垂直視差(Vertical-Parallax-Only,VPO)的全像圖,但是較為罕見。全像重建只發生在垂直方向,會產生具有垂直移動視差的重建物件。而在水平方向不會有移動視差。對於左眼和右眼,必須分別地產生不同的透視圖。 In general, the demand for spatial light modulators is reduced by being limited to holograms with only horizontal parallax (Horizontal-Parallax-Only, HPO). The holographic reconstruction only occurs in the horizontal direction, and there is no holographic reconstruction in the vertical direction. This will result in a reconstructed object with horizontally moving parallax. The perspective on the vertical movement does not change. An hologram with only horizontal parallax requires that the spatial light modulator will have a lower resolution in the vertical direction than the full parallax hologram. It is also possible to use a hologram with only Vertical-Parallax-Only (VPO), but it is rare. A holographic reconstruction occurs only in the vertical direction, producing a reconstructed object with a vertical moving parallax. There is no moving parallax in the horizontal direction. For the left and right eyes, different perspectives must be produced separately.
以WO 2004/044659(US2006/0055994)作為參考,描述了一個 藉由充份同調光的繞射來重建三維場景的裝置;裝置包括點光源或直線光源、用於對焦光線的透鏡以及空間光調變器。相較於習用的全像顯示,空間光調變器於傳輸模式至少在一個"虛擬觀察者視窗"中重建三維場景(關於虛擬觀察者視窗的描述及相關的技術請參考附件一及二)。每一個虛擬觀察者視窗是設置在靠近觀察者的眼睛的位置,並且大小上受到限制,所以虛擬觀察者視窗是於單一的繞射階級,因此每一個眼睛可以看見三維場景在圓錐狀重建空間的完整重建,圓錐狀的重建空間是延展於空間光調變器表面及虛擬觀察者視窗之間。為了讓全像重建沒有干擾,虛擬觀察者視窗的大小必需不超過重建的一個繞射階級週期性間隔。然而,這必需至少足夠大,能讓觀察者經由視窗看見三維場景的完整重建。另一個眼睛能經由相同的虛擬觀察者視窗,或是由第二個光源所產生的第二個虛擬觀察者視窗來進行觀察。此時,典型上較大的可見區域會限制於局部設置的虛擬觀察者視窗。習用的解決方法是以微小化方式重建因習用空間光調變器表面的高解度所產生的大區域,使其大小能減低符合至虛擬觀察者視窗的尺寸大小。這將促使因幾何上原因而較小的繞射角度以及目前空間光調變器的解析度即足夠透過一般消費者層級的計算設備來實現即時全像重建的效果。 A reference is made to WO 2004/044659 (US2006/0055994) for reference. A device for reconstructing a three-dimensional scene by diffracting with sufficient dimming; the device includes a point source or a linear source, a lens for focusing light, and a spatial light modulator. Compared to the conventional holographic display, the spatial light modulator reconstructs the three-dimensional scene in at least one "virtual observer window" in the transmission mode (for the description of the virtual observer window and related techniques, please refer to Annexes 1 and 2). Each virtual observer window is placed close to the observer's eyes and is limited in size, so the virtual observer window is in a single diffraction class, so each eye can see the three-dimensional scene in the conical reconstruction space. Complete reconstruction, conical reconstruction space is extended between the surface of the spatial light modulator and the virtual observer window. In order for the hologram reconstruction to be undisturbed, the size of the virtual observer window must not exceed the periodic interval of the reconstructed diffraction stage. However, this must be at least large enough to allow the observer to see a complete reconstruction of the 3D scene via the window. The other eye can be viewed through the same virtual observer window or a second virtual observer window generated by the second source. At this point, the typically larger visible area is limited to the locally placed virtual observer window. The conventional solution is to refine the large area created by the high resolution of the surface of the conventional spatial light modulator in a miniaturized manner, so that the size can be reduced to match the size of the virtual observer window. This will result in a smaller diffraction angle for geometric reasons and the resolution of the current spatial light modulator that is sufficient to achieve instant holographic reconstruction through a general consumer level computing device.
然而,這會遭遇到全像顯示產生的框速率(frame rate)的困難,尤其是在多個顯示觀看者的情況下。在WO 2004/044659(US2006/0055994)所描述的全像產生方法中,採用了多個虛擬觀察者視窗的方式。如果虛擬觀察者視窗是位在觀察者的眼睛位置時,重建目標將可看見。每個觀察者的每個眼睛皆需要一個虛擬觀察者視窗。如果虛擬觀察者視窗以及顏色紅色(R)、綠色(G)及藍 色(B)是依序產生的話,則需要高的框速率。“依序”意指紅色、綠色及藍色的光是以依序的方式開啟與關閉,因此對於空間光調變器上的一像素可使用相同的元件依序編碼紅色、綠色及藍色的光。為了避免閃爍的感覺,對於每個眼睛的框速率至少需要為30Hz。舉一個例子,例如對於3個觀察者,需要30Hz * 2個眼睛* 3個觀察者* 3個顏色=540Hz的框速率。這會比以液晶為基礎的空間光調變器的框速度要來的快許多。甚至對於單一觀察者,180Hz的框速度可能即為現行液晶空間光調變器技術可以達到的極限-一些迅速變換影像的顯示製品將出現。已知的快速微電機系統(MEMS)-空間光調變器並不提供高解析度的相位調變。關於這些技術,特性切換時間對於液晶約為10ms,對於微電機系統約為10μs。因此習用的裝置在以全複數全像編碼顯示全像影像至多個觀察者上是具有非常大的困難,特別是當影像為彩色時。關於單一觀察者的實例,比使用液晶技術可得到的更快框速率將會具有好處,例如應用在具有快速移動的活動,像是影像遊戲、觀看運動活動或是動作電影,或是在軍事中的應用。 However, this can suffer from the frame rate produced by the hologram display, especially in the case of multiple display viewers. In the omni-image generating method described in WO 2004/044659 (US2006/0055994), a plurality of virtual observer windows are employed. If the virtual observer window is in the observer's eye position, the reconstruction target will be visible. A virtual observer window is required for each eye of each observer. If virtual observer window and color red (R), green (G) and blue If color (B) is generated sequentially, a high frame rate is required. “Sequence” means that red, green and blue light is turned on and off in a sequential manner, so for a pixel on a spatial light modulator, the same components can be used to encode red, green and blue in sequence. Light. In order to avoid the feeling of flicker, the frame rate for each eye needs to be at least 30 Hz. As an example, for example for 3 observers, a frame rate of 30 Hz * 2 eyes * 3 observers * 3 colors = 540 Hz is required. This is much faster than the frame speed of a liquid crystal based spatial light modulator. Even for a single observer, a frame tempo of 180 Hz may be the limit that current liquid crystal spatial light modulator technology can achieve - some display products that rapidly transform images will appear. Known fast micro-electromechanical systems (MEMS)-space optical modulators do not provide high resolution phase modulation. With regard to these techniques, the characteristic switching time is about 10 ms for liquid crystal and about 10 μs for a micro-motor system. Therefore, the conventional device has a great difficulty in displaying a holographic image to a plurality of observers in full-complex hologram coding, especially when the image is colored. With regard to a single observer example, there would be benefits to faster frame rates than would be possible with liquid crystal technology, such as applications with fast moving activities such as video games, watching sports or action movies, or in the military. Applications.
允許振幅及相位個別調變的空間光調變器(包括串聯成對的空間光調變器的情況)將更適合應用在全像顯示中。複數值的全像圖比純粹振幅或純粹相位的全像圖具有較好的重建品質與較高的亮度。習用的法拉第效應磁光空間光調變器(MOSLMs)是已知的,但是它們僅調變傳送光的振幅,並且不是用於產生全像圖。這樣的空間光調變器已由Panorama Labs of Rockefeller Center,1230 Avenue of the Americas,7th Floor,New York,NY 10020 USA(www.panoramalabs.com)所發表,例如以WO2005/076714A2為參考,而其它這類型的磁光空間光調變器也是已知的。 Space light modulators that allow for individual amplitude and phase modulation (including the case of series paired spatial light modulators) will be more suitable for use in holographic displays. The complex-valued hologram has better reconstruction quality and higher brightness than the pure amplitude or pure phase hologram. Conventional Faraday effect magneto-optical spatial light modulators (MOSLMs) are known, but they only modulate the amplitude of the transmitted light and are not used to generate a hologram. Such spatial light modulators have been published by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www.panoramalabs.com), for example with reference to WO2005/076714A2, while others Magneto-optical spatial light modulators of this type are also known.
因此,對於全像顯示裝置,以及對於全像顯示裝置中的空間光調變器,將會需要能夠提供高的框速率,且最好能夠獨立的編碼相位及振幅資料。 Thus, for holographic display devices, as well as for spatial light modulators in holographic display devices, it would be desirable to be able to provide high frame rates, and preferably to independently encode phase and amplitude data.
在第一方面,提供了一個全像顯示裝置,此全像顯示裝置至少包含一個磁光空間光調變器。 In a first aspect, a hologram display device is provided, the hologram display device comprising at least one magneto-optical spatial light modulator.
此全像顯示裝置可包含第一磁光空間光調變器與第二磁光空間光調變器,第一與第二磁光空間光調變器會編碼全像圖,且裝置可產生全像重建。此全像顯示裝置可讓第一磁光空間光調變器與第二磁光空間光調變器以控制且獨立的方式調變全像影像素陣列的振幅及相位。此全像顯示裝置可包含第一磁光空間光調變器與第二磁光空間光調變器的緊密組合,可使用來依序且緊密的調變光的振幅及相位,使得由振幅與相位所構成的複數值,可以逐一像素的方式在傳送光中進行編碼。 The holographic display device may include a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator, and the first and second magneto-optical spatial light modulators may encode an hologram, and the device may generate the full image Like reconstruction. The hologram display device allows the first magneto-optical spatial light modulator and the second magneto-optical spatial light modulator to modulate the amplitude and phase of the hologram pixel array in a controlled and independent manner. The holographic display device can comprise a tight combination of the first magneto-optical spatial light modulator and the second magneto-optical spatial light modulator, which can be used for sequentially and closely modulating the amplitude and phase of the light such that the amplitude is The complex value formed by the phase can be encoded in the transmitted light one by one.
此全像顯示裝置可包含磁光空間光調變器與充份同調性緊密型光源的緊密組合,這樣的組合能夠在適當照明情況下產生三維影像。 The holographic display device can include a close combination of a magneto-optical spatial light modulator and a fully coherent compact light source, such a combination capable of producing a three-dimensional image with appropriate illumination.
此全像顯示裝置可包含構成要素包含一個或二個磁光空間光調變器的緊密組合,且具有目標全像重建的大倍率三維影像顯示裝置。 The hologram display device may include a large-magnification three-dimensional image display device having a close combination of one or two magneto-optical spatial light modulators and having a target holographic reconstruction.
此全像顯示裝置可包含一個或兩個磁光空間光調變器的緊密組合,其也可作為投影機使用。 The hologram display device can comprise a tight combination of one or two magneto-optical spatial light modulators, which can also be used as a projector.
此全像顯示裝置可具有至少一個空間光調變器來編碼全像圖,且裝置會產生全像重建。 The hologram display device can have at least one spatial light modulator to encode the hologram and the device will produce a holographic reconstruction.
此全像顯示裝置可為一種使用法拉第效應(Faraday effect)來調變光的裝置。此全像顯示裝置可為一種利用磁性光子晶體(magneto-photonic crystal)來實現法拉第效應的裝置。此全像顯示裝置可為一種透過摻雜玻璃纖維(doped glass fibres)來實現法拉第效應的裝置。此全像顯示裝置可為一種使用磁光薄膜(magneto-optical film)來實現法拉第效應的裝置。 The hologram display device can be a device that modulates light using a Faraday effect. The hologram display device can be a device that utilizes a magneto-photonic crystal to achieve a Faraday effect. The holographic display device can be a device that achieves a Faraday effect by doped glass fibers. The hologram display device can be a device that uses a magneto-optical film to achieve the Faraday effect.
此全像顯示裝置可為一種在其經由虛擬觀察者視窗可觀察到全像重建的裝置。 The holographic display device can be a device that can observe holographic reconstruction through its virtual viewer window.
此全像顯示裝置可為一種在其中虛擬觀察者視窗可利用空間或時間上多工來進行舖置(tiled)的裝置。 The holographic display device can be a device in which a virtual viewer window can be tiled with space or time multiplex.
此全像顯示裝置可為一種裝置,在其中顯示是可操作的,以對於觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。 The holographic display device can be a device in which the display is operable to temporally re-encode the hologram on the medium containing the hologram for the observer's left eye followed by the right eye.
此全像顯示裝置可為一種裝置,在其中顯示是可操作的,以對於兩個或多個觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。 The holographic display device can be a device in which the display is operable to re-encode all of the temporally sequential media on the medium containing the hologram for the left and right eyes of two or more viewers. Like a picture.
此全像顯示裝置可為一種裝置,在其中顯示器具有光束操控或光束分光鏡元件。 The hologram display device can be a device in which the display has a beam steering or beam splitter element.
此全像顯示裝置可為一種裝置,在其中顯示器具有顯示器中的電腦層。 The hologram display device can be a device in which the display has a computer layer in the display.
此全像顯示裝置可為一種裝置,在其中顯示器具有眼睛追蹤。 The hologram display device can be a device in which the display has eye tracking.
此全像顯示裝置可為一種裝置,在其中顯示器是利用背光及微透鏡陣列進行照射。微透鏡陣列可在顯示器的小區域上提供局部同調性,此區域為顯示器的唯一部份,用來編碼使用在重建物 件之給定點的資訊。此顯示器可包含反射式偏光片。此顯示器可包含稜鏡光學膜。 The hologram display device can be a device in which the display is illuminated with a backlight and a microlens array. The microlens array provides local homology over a small area of the display, which is the only part of the display that is used to encode the reconstructed object Information about a given point. This display can include a reflective polarizer. This display can include a 稜鏡 optical film.
此全像顯示裝置可以發光二極體作為它的光源。 The hologram display device can have a light emitting diode as its light source.
此全像顯示裝置可為電視。此全像顯示裝置可為螢幕。此全像顯示裝置可為可攜式的。 This hologram display device can be a television. This hologram display device can be a screen. The hologram display device can be portable.
在另一方面,提供了一個製造顯示裝置的方法,包括取得玻璃基板以及在基板上連續地印刷或是以其它方式產生磁光空間光調變器層的步驟。 In another aspect, a method of making a display device is provided, comprising the steps of obtaining a glass substrate and continuously printing on the substrate or otherwise producing a magneto-optical spatial light modulator layer.
在另一方面,提出了一個產生全像重建的方法,包含使用上述顯示裝置的步驟。 In another aspect, a method of generating holographic reconstruction is presented, including the steps of using the display device described above.
在另一方面,提出了一個包含磁光空間光調變器的全像顯示裝置,此空間光調變器編碼全像圖,並且裝置會產生全像重建。此全像顯示裝置可為電視。此全像顯示裝置可為螢幕。此全像顯示裝置可為筆記型電腦。此全像顯示裝置可為行動電話。此全像顯示裝置可為個人數位助理。此全像顯示裝置可為數位隨身聽。 此全像顯示裝置可使用法拉第效應來調變光。此全像顯示裝置可使用法拉第效應調變光,法拉第效應可透過磁性光子晶體來實現。此全像顯示裝置可使用法拉第效應來調變光,法拉第效應可透過摻雜玻璃纖維來實現。此全像顯示裝置可使用法拉第效應來調變光,法拉第效應可透過磁光薄膜來實現。此全像顯示裝置可利用背光及微透鏡陣列進行照射。此全像顯示裝置的背光可包括至少一個反射式偏光片,以提供光的直線偏化狀態。此全像顯示裝置的背光可包括至少一個反射式偏光片,以提供光的圓形偏化狀態。此全像顯示裝置的微透陣列可在顯示器的小區域上提供局部同調性,此區域為顯示器的唯一部份,用來編碼使用在重建物 件之給定點的資訊。此全像顯示裝置的空間光調變器可提供相位編碼。此全像顯示裝置的空間光調變器可提供振幅編碼。此全像顯示裝置的全像重建可經由虛擬觀察者視窗進行觀察。此全像顯示裝置的虛擬觀察者視窗可利用空間或時間上多工來進行舖置。此全像顯示裝置可為可操控的,以使得只有當觀察者的眼睛是接近光源的影像平面位置時,才能正確觀察到全像重建。此全像顯示裝置可讓重建三維場景的大小為具全像圖媒介的大小的函數,重建三維場景可位於由具全像圖的媒介以及可觀看到重建三維場景的虛擬觀察者視窗所定義出的體積內之任何地方。此全像顯示裝置可編碼全像圖,此全像圖可包含具有重建三維場景單一點所需資訊的區域,此點可從已定義的觀看位置所看見;此區域(a)編碼關於在重建場景中單一點的資訊,(b)且為全像圖中唯一編碼那點資訊的區域,以及(c)尺寸大小是受到限制,以形成整體全像圖的一部分,尺寸大小需讓由較高繞射階層對於那點所產生的多重重建能不被已定義的觀看位置所觀看到。此全像顯示裝置可為可操作的,以對於觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。此全像顯示裝置可為可操作的,以對於二個或更多個觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。此全像顯示裝置可讓全像重建為全像圖的菲涅耳轉換(Fresnel transform),而不是全像圖的傅立葉轉換(Fourier transform)。此全像顯示裝置可編碼全像圖,此全像圖可透過決定在接近觀察者眼睛位置的波前而產生,此波前可由重建物件的真實版本所產生。此全像顯示裝置可具有稜鏡元件,以提供光束操控。此全像顯示裝置可具有顯示器中的電腦層。此全像顯示裝置可具有眼睛追蹤。 In another aspect, a holographic display device comprising a magneto-optical spatial light modulator is provided, the spatial light modulator encoding a hologram and the device producing a holographic reconstruction. This hologram display device can be a television. This hologram display device can be a screen. The hologram display device can be a notebook computer. This hologram display device can be a mobile phone. This holographic display device can be a personal digital assistant. This holographic display device can be a digital walkman. This holographic display device allows the Faraday effect to modulate light. The holographic display device enables the Faraday effect to modulate light, and the Faraday effect can be achieved by a magnetic photonic crystal. This holographic display device allows the Faraday effect to modulate light, and the Faraday effect can be achieved by doping glass fibers. The holographic display device allows the Faraday effect to modulate light, and the Faraday effect can be achieved by a magneto-optical film. The hologram display device can be illuminated using a backlight and a microlens array. The backlight of the hologram display device may include at least one reflective polarizer to provide a linearly polarized state of light. The backlight of the hologram display device can include at least one reflective polarizer to provide a circularly polarized state of light. The micro-transparent array of the hologram display device provides local coherence on a small area of the display, which is the only part of the display that is used to encode the reconstructed object Information about a given point. The spatial light modulator of this hologram display device provides phase encoding. The spatial light modulator of this hologram display device provides amplitude encoding. The holographic reconstruction of this holographic display device can be viewed via a virtual observer window. The virtual observer window of the hologram display device can be laid out using space or time multiplex. The hologram display device can be steerable such that omni-directional reconstruction can be correctly observed only when the observer's eye is close to the image plane position of the light source. The holographic display device allows the size of the reconstructed three-dimensional scene to be a function of the size of the hologram medium, which can be defined by the medium with the hologram and the virtual observer window that can be viewed to reconstruct the three-dimensional scene. Anywhere within the volume. The hologram display device can encode an hologram that can include an area having information needed to reconstruct a single point of the three-dimensional scene, which can be seen from a defined viewing position; this area (a) coded about reconstruction The information of a single point in the scene, (b) is the only area in the hologram that encodes the information, and (c) the size is limited to form part of the overall hologram, the size needs to be higher The multiple reconstructions produced by the diffraction level for that point are not visible by the defined viewing position. The holographic display device can be operable to temporally re-encode the hologram in time for the viewer's left eye followed by the right eye on the medium containing the hologram. The holographic display device can be operable to re-encode the hologram in time on the medium containing the hologram for the left eye followed by the right eye of two or more viewers. This holographic display device allows the hologram to be reconstructed into a Fresnel transform of the hologram, rather than a Fourier transform of the hologram. The hologram display device can encode a hologram that can be generated by determining a wavefront that is close to the observer's eye position, which can be generated by the real version of the reconstructed object. The hologram display device can have a 稜鏡 element to provide beam steering. This hologram display device can have a computer layer in the display. This hologram display device can have eye tracking.
在另一方面,提出了一個產生全像重建的方法,包含使用上述顯示裝置的步驟。 In another aspect, a method of generating holographic reconstruction is presented, including the steps of using the display device described above.
在另一方面,提供了一個包含第一磁光空間光調變器與第二磁光空間光調變器的全像顯示裝置,第一與第二磁光空間光調變器會編碼全像圖,且裝置會產生全像重建。此全像顯示裝置可為一種裝置,在其中第一與第二磁光空間光調變器是以控制且獨立的方式來調變全像圖像素陣列的振幅及相位。此全像顯示裝置可為一種裝置,在其中一個磁光空間光調變器調變全像圖像素陣列的振幅,另一個磁光空間光調變器調變全像圖像素陣列的相位。此全像顯示裝置可為一種裝置,在其中一個磁光空間光調變器調變全像圖像素陣列的振幅及相位的第一組合,另一個磁光空間光調變器調變全像圖像素陣列的振幅及相位的第二不同的組合。此全像顯示裝置可為一種裝置,在其中傳播透過裝置的光會先編碼它的相位,接著編碼它的振幅。此全像顯示裝置可為電視。此全像顯示裝置可為螢幕。此全像顯示裝置可為筆記型電腦。此全像顯示裝置可為行動電話。此全像顯示裝置可為個人數位助理。此全像顯示裝置可為數位隨身聽。此全像顯示裝置可為一種裝置,在其中每個磁光空間光調變器是使用法拉第效應來調變光。此全像顯示裝置可為一種裝置,在其中裝置是使用法拉第效應來調變光,且至少在一個磁光空間光調變器中,法拉第效應是使用磁性光子晶體來實現。此全像顯示裝置可為一種裝置,在其中裝置是使用法拉第效應來調變光,且至少在一個磁光空間光調變器中,法拉第效應是使用摻雜玻璃纖維來實現。此全像顯示裝置可為一種裝置,在其中裝置是使用法拉第效應來調變光,且至少在一個磁光空間光調變器中,法拉第效應是使用磁光薄腊來實現。此全 像顯示裝置可為一種裝置,在其中磁光空間光調變器之間是透過分隔層來進行分隔。此全像顯示裝置可為一種裝置,在其中分隔層是足夠薄的,以避免一個磁光空間光調變器的電磁場對另一個磁光空間光調變器的效能產生不良的影響。此全像顯示裝置可為一種裝置,在其中分隔層也對於至少一個磁光空間光調變器提供機構支援。此全像顯示裝置可為一種裝置,在其中分隔層是低於或等於10微米到100微米的等級。此全像顯示裝置可為一種裝置,在其中顯示裝置編碼全像圖,且能夠產生全像重建。此全像顯示裝置可為一種裝置,在其中顯示器是利用背光及微透鏡陣列進行照射。此全像顯示裝置可為一種裝置,在其中背光包括至少一個反射式偏光片,以提供光的直線偏化狀態。此全像顯示裝置可為一種裝置,在其中背光包括至少一個反射式偏光片,以提供光的圓形偏化狀態。此全像顯示裝置可為一種裝置,在其中微透鏡陣列在顯示器的小區域上提供局部同調性,此區域為顯示器的唯一部份,用來編碼使用在重建物件之給定點的資訊。此全像顯示裝置可為一種裝置,在其中全像重建可經由虛擬觀察者視窗觀察到。此全像顯示裝置可為一種裝置,在其中虛擬觀察者視窗可利用空間或時間上多工進行舖置。此全像顯示裝置可為一種裝置,在其中只有當觀察者的眼睛是接近光源的影像平面位置時,才能正確觀察到全像重建。此全像顯示裝置可為一種裝置,在其中重建三維場景的大小是為具全像圖媒介大小的函數,重建的三維場景可位於由具全像圖的媒介以及可觀看到重建三維場景的虛擬觀察者視窗所定義出的體積內之任何地方。此全像顯示裝置可為一種裝置,在其中顯示器會編碼全像圖,此全像圖包含具有重建三維場景單一點所需資訊的區域,此點可從已定義的觀看位置 所看見;此區域(a)編碼關於在重建場景中單一點的資訊,(b)且為全像圖中唯一編碼那點資訊的區域,以及(c)尺寸大小是受到限制,以形成整體全像圖的一部分,尺寸大小需讓由較高繞射階層對於那點所產生的多重重建能不被已定義的觀看位置所觀看到。此全像顯示裝置可為一種裝置,在其中顯示器是可操作的,以對於觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。此全像顯示裝置可為一種裝置,在其中顯示器是可操作的,以對於兩個或更多個觀察者的左眼接著右眼,在包含全像的媒介上進行時間上依序地重新編碼全像圖。此全像顯示裝置可為一種裝置,在其中顯示器是可操作的,使得全像重建為全像圖的菲涅耳轉換,而不是全像圖的傅立葉轉換。此全像顯示裝置可為一種裝置,在其中顯示器會編碼全像圖,此全像圖可透過決定在接近觀察者眼睛位置的波前而產生,此波前可由重建物件的真實版本所產生。此全像顯示裝置可為一種裝置,在其中具有稜鏡元件,以提供光束操控。此全像顯示裝置可為一種裝置,在其中具有一個顯示器中的電腦層。此全像顯示裝置可為一種具有眼睛追蹤的裝置。 In another aspect, a holographic display device including a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator is provided, the first and second magneto-optical spatial light modulators encoding the hologram Figure, and the device will produce a holographic reconstruction. The hologram display device can be a device in which the first and second magneto-optical spatial light modulators modulate the amplitude and phase of the hologram pixel array in a controlled and independent manner. The hologram display device can be a device in which one magneto-optical spatial light modulator modulates the amplitude of the full image pixel array and the other magneto-optical spatial light modulator modulates the phase of the full image pixel array. The holographic display device can be a device in which a magneto-optical spatial light modulator modulates a first combination of amplitude and phase of a full-image pixel array, and another magneto-optical spatial light modulator modulates an hologram A second different combination of amplitude and phase of the pixel array. The hologram display device can be a device in which light propagating through the device first encodes its phase and then encodes its amplitude. This hologram display device can be a television. This hologram display device can be a screen. The hologram display device can be a notebook computer. This hologram display device can be a mobile phone. This holographic display device can be a personal digital assistant. This holographic display device can be a digital walkman. The hologram display device can be a device in which each magneto-optical spatial light modulator uses a Faraday effect to modulate light. The hologram display device can be a device in which the device uses the Faraday effect to modulate light, and in at least one magneto-optical spatial light modulator, the Faraday effect is achieved using a magnetic photonic crystal. The holographic display device can be a device in which the device uses the Faraday effect to modulate light, and in at least one magneto-optical spatial light modulator, the Faraday effect is achieved using doped glass fibers. The hologram display device can be a device in which the device uses the Faraday effect to modulate light, and in at least one magneto-optical spatial light modulator, the Faraday effect is achieved using magneto-optical wax. This whole The image display device can be a device in which the magneto-optical spatial light modulators are separated by a separation layer. The holographic display device can be a device in which the spacer layer is sufficiently thin to avoid adverse effects of the electromagnetic field of one magneto-optical spatial light modulator on the performance of another magneto-optical spatial light modulator. The holographic display device can be a device in which the spacer layer also provides mechanical support for at least one magneto-optical spatial light modulator. The hologram display device can be a device in which the spacer layer is of a rating lower than or equal to 10 microns to 100 microns. The hologram display device can be a device in which the display device encodes an hologram and is capable of producing a hologram reconstruction. The hologram display device can be a device in which the display is illuminated with a backlight and a microlens array. The hologram display device can be a device in which the backlight includes at least one reflective polarizer to provide a linearly polarized state of light. The hologram display device can be a device in which the backlight includes at least one reflective polarizer to provide a circularly polarized state of light. The holographic display device can be a device in which the microlens array provides local homology over a small area of the display, which is the only portion of the display that encodes information used at a given point of the reconstructed object. The holographic display device can be a device in which holographic reconstruction can be observed via a virtual viewer window. The hologram display device can be a device in which the virtual viewer window can be laid out in a space or time multiplex. The hologram display device can be a device in which omni-directional reconstruction can be correctly observed only when the observer's eyes are close to the image plane position of the light source. The holographic display device can be a device in which the size of the reconstructed three-dimensional scene is a function of the size of the hologram medium, and the reconstructed three-dimensional scene can be located in the medium of the hologram and the virtual view of the reconstructed three-dimensional scene. Anywhere within the volume defined by the observer window. The hologram display device can be a device in which the display encodes a hologram that contains an area having information needed to reconstruct a single point of the three-dimensional scene from a defined viewing position. Seen; this area (a) encodes information about a single point in the reconstructed scene, (b) is the only area in the hologram that encodes that information, and (c) the size is limited to form a whole As part of the diagram, the size is such that the multiple reconstructions produced by the higher diffraction level for that point are not viewed by the defined viewing position. The holographic display device can be a device in which the display is operable to temporally re-encode the hologram in time for the viewer's left eye followed by the right eye on the medium containing the hologram. The holographic display device can be a device in which the display is operable to temporally re-encode sequentially on the medium containing the hologram for the left and right eyes of two or more viewers Full picture. The hologram display device can be a device in which the display is operable such that the hologram is reconstructed into a Fresnel transform of the hologram, rather than a Fourier transform of the hologram. The holographic display device can be a device in which the display encodes a hologram that can be generated by determining a wavefront near the observer's eye position, which can be generated by the actual version of the reconstructed object. The hologram display device can be a device having a haptic element therein to provide beam steering. The hologram display device can be a device having a computer layer in one of the displays. The hologram display device can be a device with eye tracking.
在另一方面,提供了一個製造全像顯示裝置的方法,包括取得玻璃基板,以及在基板上連續地印刷或是以其它方式產生第一磁光空間光調變器與第二磁光空間光調變器層的步驟。 In another aspect, a method of fabricating a hologram display device is provided, comprising: obtaining a glass substrate, and continuously printing on the substrate or otherwise generating a first magneto-optical spatial light modulator and a second magneto-optical spatial light The steps of the modulator layer.
在另一方面,提出了一個產生全像重建的方法,包含使用上述顯示裝置的步驟。 In another aspect, a method of generating holographic reconstruction is presented, including the steps of using the display device described above.
在另一方面,提供了一個磁光空間光調變器與充份同調性的緊密型光源的緊密組合,此組合能夠在適當的照明情況下產生三維影像。此緊密的組合可為一種裝置,在其中不需要具備成像光 學。此緊密的組合可為一種裝置,在其中裝置元件的全部厚度是少於3cm。此緊密的組合可為一種裝置,在其中具有柔軟孔徑提供緊密組合的像素。 In another aspect, a close combination of a magneto-optical spatial light modulator and a coherent compact light source is provided that is capable of producing a three-dimensional image under appropriate illumination conditions. This compact combination can be a device in which imaging light is not required learn. This tight combination can be a device in which the total thickness of the device components is less than 3 cm. This tight combination can be a device in which a soft aperture provides a tightly coupled pixel.
在另一方面,提供了兩個磁光空間光調變器的緊密組合,可使用來依序且緊密的調變光的振幅及相位,使得由振幅與相位所構成的複數值,可以逐一像素的方式在傳送光中進行編碼。此緊密的組合可為一種裝置,在其中不需要具備有成像光學。此緊密的組合可為一種裝置,在其中裝置元件的全部厚度是少於3cm。此緊密的組合可為一種裝置,在其中具有柔軟孔徑提供裝置的像素。此緊密的組合可為一種裝置,在其中兩個磁光空間光調變器是利用排列像素直接連接或是黏合在一起。此緊密的組合可為一種裝置,在其中兩個磁光空間光調變器的間隔是低於或等於10微米到100微米的等級。此緊密的組合可為一種裝置,在其中從一個磁光空間光調變器通過另一個磁光空間光調變器的光的繞射是採用制夫朗和斐繞射(Fresnel diffraction)方式,而不是採用遠場繞射(far-field diffraction)方式。此緊密的組合可為一種裝置,在其中於兩個磁光空間光調變器之間具有透鏡陣列,以使得每個透鏡成像第一空間光調變器的像素至第二空間光調變器的對應像素上。此緊密的組合可為一種裝置,在其中第一磁光空間光調變器像素的孔徑寬是使得像素串音能夠獲得最小化。此緊密的組合可為一種裝置,在其中第一磁光空間光調變器像素的孔徑寬是使得它能讓到第二磁光空間光調變器像素的像素串音,以夫朗和斐繞射方式獲得最小化。此緊密的組合可為一種裝置,在其中是使用光纖面板來成像第一磁光空間光調變器的像素至第二磁光空間光調變器的像素上。 On the other hand, a close combination of two magneto-optical spatial light modulators is provided, which can be used to sequentially and closely modulate the amplitude and phase of the modulated light so that the complex values formed by the amplitude and the phase can be pixel by pixel. The way to encode in the transmitted light. This tight combination can be a device in which imaging optics need not be provided. This tight combination can be a device in which the total thickness of the device components is less than 3 cm. This tight combination can be a device in which there are pixels of a flexible aperture providing device. This tight combination can be a device in which two magneto-optical spatial light modulators are directly connected or bonded together by arranging pixels. This tight combination can be a device in which the spacing of the two magneto-optical spatial light modulators is on the order of less than or equal to 10 microns to 100 microns. This tight combination can be a device in which the diffraction of light from one magneto-optical spatial light modulator through another magneto-optical spatial light modulator is in the form of a Fresnel diffraction method. Rather than using far-field diffraction. This compact combination can be a device in which there is a lens array between two magneto-optical spatial light modulators such that each lens images the pixels of the first spatial light modulator to the second spatial light modulator On the corresponding pixel. This tight combination can be a device in which the aperture width of the first magneto-optical spatial light modulator pixel is such that pixel crosstalk can be minimized. This tight combination can be a device in which the first magneto-optical spatial light modulator pixel has a wide aperture such that it can pass the pixel crosstalk to the second magneto-optical spatial light modulator pixel, with Fu Lang and Fei The diffraction method is minimized. This tight combination can be a device in which a fiber optic panel is used to image the pixels of the first magneto-optical spatial light modulator onto the pixels of the second magneto-optical spatial light modulator.
在另一方面,提供了一個大倍率的三維影像顯示裝置元件,包含一個或二個磁光空間光調變器的緊密組合,且具有目標的全像重建。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合,以使得這樣的組合能產生三維影像。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合,在其中光源會經由透鏡陣列擴大10至60倍。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合,在其中至少一個磁光空間光調變器是設置在光源的30mm範圍之內。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合,以使得這樣的組合能產生可經由虛擬觀察者視窗觀察到的三維影像。此顯示裝置元件可為一種元件,在其中虛擬觀察者視窗是限制在空間光調變器中所編碼的資訊的傅立葉頻譜的一個繞射階級。所顯示的虛擬觀察者視窗可為可追蹤式或是不可追蹤式。所顯示的虛擬觀察者視窗可利用空間或時間上多工,將數個虛擬觀察者視窗拼湊成擴大的虛擬觀察者視窗。此顯示裝置元件可包含一個或二個磁光空間光調變器與充份同調性緊密型光源的緊密組合,且在其中光源陣列中的光源僅具有部分的空間同調性。此顯示裝置元件可包含在個人數位助理中。此顯示裝置元件可包含在行動電話中。在空間光調變器上編碼的全像圖的計算可由外部的編碼單位執行,接著再將顯示資料傳送至裝置元件中,以顯示全像產生的三維影像。 In another aspect, a large magnification 3D image display device component is provided that includes a close combination of one or two magneto-optical spatial light modulators and has a holographic reconstruction of the target. The display device component can comprise a close combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source. The display device component can include a close combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact source to enable such a combination to produce a three-dimensional image. The display device component can comprise a tight combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source in which the light source is magnified 10 to 60 times via the lens array. The display device component can comprise a compact combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source, wherein at least one of the magneto-optical spatial light modulators is disposed within 30 mm of the light source. The display device component can include a tight combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source such that such a combination produces a three-dimensional image that can be viewed through a virtual viewer window. The display device component can be an element in which the virtual viewer window is a diffractive class that limits the Fourier spectrum of information encoded in the spatial light modulator. The displayed virtual observer window can be either traceable or untrackable. The displayed virtual observer window can be multiplexed in space or time to piece together a number of virtual observer windows into an enlarged virtual observer window. The display device component can comprise a tight combination of one or two magneto-optical spatial light modulators and a sufficiently homogenous compact light source, and wherein the light source in the array of light sources has only partial spatial homology. This display device component can be included in a personal digital assistant. This display device component can be included in a mobile phone. The calculation of the hologram image encoded on the spatial light modulator can be performed by an external coding unit, and then the display data is transmitted to the device component to display the three-dimensional image generated by the hologram.
在另一方面,提供了一個製造全像顯示裝置的方法,包括取得玻璃基板以及在基板上連續地印刷或是以其它方式產生一個或 二個磁光空間光調變器層的步驟,此裝置包含一個大倍率的三維影像顯示裝置元件,此大倍率的三維影像顯示裝置元件是由一個或二個磁光空間光調變器的緊密組合所構成,並具有目標的全像重建。 In another aspect, a method of making a hologram display device is provided, comprising taking a glass substrate and continuously printing on the substrate or otherwise generating one or a step of two magneto-optical spatial light modulator layers, the device comprising a large-magnification three-dimensional image display device component, the large-magnification three-dimensional image display device component being tight by one or two magneto-optical spatial light modulators The combination is composed and has a holographic reconstruction of the target.
在另一方面,提出了一個產生全像重建的方法,包含使用上述顯示裝置元件的步驟。 In another aspect, a method of generating holographic reconstruction is presented that includes the steps of using the display device components described above.
關於“空間光調變器編碼全像圖”是指全像圖是在空間光調變器上進行編碼。 The "space light modulator coded hologram" means that the hologram is encoded on the spatial light modulator.
這個實施例提供了一種具有磁光空間光調變器的全像顯示裝置,這樣的組合能夠在適當的照明情況下產生三維影像。此顯示可由多光源或單一光源所照亮。此全像顯示裝置可使用在電視、螢幕、筆記型電腦、行動電話、個人數位助理、數位隨身聽或是任何其它具有顯示器的裝置。 This embodiment provides a holographic display device having a magneto-optical spatial light modulator that is capable of producing a three-dimensional image under appropriate illumination conditions. This display can be illuminated by multiple sources or a single source. The holographic display device can be used on televisions, screens, notebook computers, mobile phones, personal digital assistants, digital walkmans, or any other device having a display.
這個實施例與用於光的調變的空間光調變器有關,例如:振幅、相位或是振幅及相位組合的調變。尤其,這是關於以利用法拉第效應進行光調變為基礎的空間光調變器。此空間光調變器可使用在全像顯示中。 This embodiment relates to a spatial light modulator for modulation of light, such as amplitude, phase or modulation of amplitude and phase combinations. In particular, this is about a spatial light modulator that is based on the use of the Faraday effect. This spatial light modulator can be used in a hologram display.
根據磁場在光傳播方向的應用,法拉第效應能將其本身展現為媒介中線性偏光的旋轉。它是由此方程式量化描述α=V L H (1) 其中,α是極化旋轉的角度,V是費爾德(Verdet)常數,L是媒介的長度及H是磁場強度。法拉第效應是透過磁場引入的非均質性(anisotropy)所產生。磁場為一種軸向量(axial vector),也就是對於旋轉慣用手(handedness of rotation)的敏感度(sensitivity)。因此,左與右圓偏光不再是為衰退狀態,它們在媒介中會經歷不同的折射率以及經歷不同的相位位移。因為線性偏光是由慣用左手及慣用右手的圓形偏光所構成,若這些構成要素具有不同的相位位移,當這些圓形構成要素要再組合成線性偏光時,將會導致線性偏化角度的旋轉。 According to the application of the magnetic field in the direction of light propagation, the Faraday effect can manifest itself as the rotation of linear polarization in the medium. It is the quantitative description of this equation α=V L H (1) Where α is the angle of polarization rotation, V is the Verdet constant, L is the length of the medium, and H is the magnetic field strength. The Faraday effect is produced by the anisotropy introduced by the magnetic field. The magnetic field is an axial vector, that is, sensitivity to the handedness of rotation. Therefore, the left and right circular polarizations are no longer in a degraded state, they experience different refractive indices in the medium and experience different phase shifts. Because linear polarization is composed of left-handed and right-handed circular polarization, if these components have different phase shifts, when these circular components are combined into linear polarization, it will lead to linear polarization angle rotation. .
通常,費爾德常數V是很小的,因此顯著的旋轉角α是需要長的長度L或者高的磁場H。法拉第效應在包含磁光層堆疊的磁性光子晶體(magneto-photonic crystal)中會顯著的增加。對於空間光調變器,這幫助了法拉第效應在具小磁場的薄結構中的使用。這是描述在,例如,從網際網路中所獲得的“A Presentation for Investors”by Panorama Labs of Rockefeller Center,1230 Avenue of the Americas,7th Floor,New York,NY 10020 USA(www.panoramalabs.com)(此文件在此列為參考)。此文件可從web.archive.org網站中獲得。 Generally, the Feld constant V is small, so a significant rotation angle α is a magnetic field H that requires a long length L or a high. The Faraday effect is significantly increased in a magneto-photonic crystal comprising a magneto-optical layer stack. For spatial light modulators, this helps the use of the Faraday effect in thin structures with small magnetic fields. This is described, for example, from the Internet "A Presentation for Investors" by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www.panoramalabs.com) (This file is listed here as a reference). This file is available on the web.archive.org website.
如圖三所示,Panorama Labs已經發表了使用法拉第效應的空間光調變器。它包含磁性光子晶體、輸入和輸出偏光片,以及線圈陣列。對於具有16μm像素間距的空間光調變器的每個像素,都有一個對應的線圈。磁性光子晶體是由多個磁光層的堆疊所構成,多個磁光層相較於單一層可增強法拉第效應。關於電流的應用,線圈會在每一個像素中產生局部磁場,使得通過此像素的光的線性偏化引發旋轉。輸出偏光片只傳送特定的偏化角度。因此, 每一個像素的透射比(transmittance)能藉由線圈中的電流進行調變。圖三顯示了包含偏光片301、磁性光子晶體(MPC)、線圈303及分析器302的空間光調變器的一個像素。常數輸入強度p0會被調變,以給定時間(t)相依輸出強度函數p(t)。 As shown in Figure 3, Panorama Labs has published a spatial light modulator using the Faraday effect. It contains magnetic photonic crystals, input and output polarizers, and coil arrays. For each pixel of a spatial light modulator with a pixel pitch of 16 μm, there is a corresponding coil. The magnetic photonic crystal is composed of a stack of a plurality of magneto-optical layers, and the plurality of magneto-optical layers can enhance the Faraday effect compared to a single layer. Regarding the application of current, the coil generates a local magnetic field in each pixel, causing the linearization of the light passing through the pixel to initiate rotation. The output polarizer only transmits a specific polarization angle. therefore, The transmittance of each pixel can be modulated by the current in the coil. FIG. 3 shows one pixel of a spatial light modulator including a polarizer 301, a magnetic photonic crystal (MPC), a coil 303, and an analyzer 302. The constant input intensity p0 is modulated to depend on the output intensity function p(t) for a given time (t).
相較於液晶或是微電機系統-空間光調變器,法拉第效應空間光調變器的優勢是具有快速的回應時間。Panorama Labs發表了20ns回應時間的法拉第效應空間光調變器,這比液晶(大約10ms)或是微電機系統(大約10μs)空間光調變器是要快上許多的。磁光空間光調變器可用於電子式全像顯示。在全像顯示的一個方法中,會產生虛擬觀察者視窗(VOW)。如果虛擬觀察者視窗是位在觀察者的眼睛位置時,重建的目標將可被看見。每個觀察者的每個眼睛都需要一個虛擬觀察者視窗。如果虛擬觀察實視窗與顏色紅色(R)、綠色(G)及藍色(B)是依序產生時,則需要較高的框速率。為了避免閃爍,對於每個眼睛的框速率至少需要為30Hz。舉一個例子,例如對於3個觀察者,需要30Hz * 2個眼睛* 3個觀察者* 3個顏色=540Hz的框速率。這會比液晶-空間光調變器的框速度要來的快許多。已知的快速微電機系統-空間光調變器並沒有提供高解析度的相位調變。調變振幅及相位的空間光調變器是更適合應用在電子式全像顯示中。複數值的全像圖比純粹振幅或純粹相位的全像圖具有較好的重建品質與較高的亮度。在圖三中,習用由Panorama Labs所發表的法拉第效應空間光調變器的唯一顯著影響,是它對於傳送光振幅的調變。除此之外,圖三中習用由Panorama Labs所發表的法拉第效應空間光調變器,並沒有照射充份同調性的光,以促使三維影像的產生。 Compared to liquid crystal or micro-motor system-space light modulators, the Faraday effect space light modulator has the advantage of fast response time. Panorama Labs has published a Faraday effect space modulator with a 20ns response time, which is much faster than a liquid crystal (approximately 10ms) or a micro-motor system (approximately 10μs) spatial light modulator. The magneto-optical spatial light modulator can be used for electronic holographic display. In one method of holographic display, a virtual observer window (VOW) is generated. If the virtual observer window is in the observer's eye position, the reconstructed target will be visible. A virtual observer window is required for each eye of each observer. If the virtual viewing real window and the color red (R), green (G), and blue (B) are sequentially generated, a higher frame rate is required. To avoid flicker, the frame rate for each eye needs to be at least 30 Hz. As an example, for example for 3 observers, a frame rate of 30 Hz * 2 eyes * 3 observers * 3 colors = 540 Hz is required. This will be much faster than the frame speed of the LCD-space light modulator. Known fast micro-motor systems - spatial light modulators do not provide high resolution phase modulation. A spatial light modulator that modulates amplitude and phase is more suitable for use in electronic holographic displays. The complex-valued hologram has better reconstruction quality and higher brightness than the pure amplitude or pure phase hologram. In Figure 3, the only significant effect of the Faraday Effect Space Modulator published by Panorama Labs is its modulation of transmitted light amplitude. In addition, the Faraday effect space light modulator published by Panorama Labs in Figure 3 does not illuminate the coherent light to promote the generation of three-dimensional images.
圖一為一個實施例。10是照明裝置,用於提供平面區域的照 明,其中照明是具有充份的同調性,以便能夠產生三維影像。在US 2006/250671中提出了一個用於大區域影像全像圖的例子,在此作為參考,並且於圖四顯示了其中一個例子。如同10的裝置可採用白色光源陣列的形式,例如冷陰極螢光燈(cold cathode fluorescent lamps)或是發出的光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於10的光源可由紅色、綠色及藍色雷射所組成,或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組成。然而,相較於雷射光源,具有充份空間同調性的非雷射光源(例如:發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例如會在全像重建上造成雷射斑點(laser speckle)、相對上較為昂貴以及可能會傷害全像顯示觀看者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 Figure 1 is an embodiment. 10 is a lighting device for providing a photo of a flat area It is clear that the illumination is sufficiently homogenous to be able to produce a three-dimensional image. An example for a large-area image hologram is presented in US 2006/250671, which is incorporated herein by reference in its entirety in its entirety. A device like 10 may take the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that is incident on a focusing system, wherein the focusing system can be tight, Such as a lenticular array or a microlens array. Alternatively, the light source for 10 may be composed of red, green, and blue lasers, or may be composed of red, green, and blue light emitting diodes that emit sufficient tonal light. However, compared to laser sources, non-laser sources (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are preferred. Laser sources have some disadvantages, such as laser speckles on holographic reconstruction, relatively expensive, and may damage the eyes of a holographic display viewer or a holographic display assembly. Security issue.
元件10可包含一個或兩個稜鏡光學膜,用以增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。 The element 10 may comprise one or two xenon optical films for increasing the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551.
全像圖產生器15的大小可具有一定範圍,像是從應用在行動電話次螢幕中一公分的螢幕尺寸(或更小),直至用於室內大型顯示的一公尺螢幕寸尺大小(或更大)。因此,元件10-14全部的厚度可從一公釐,或甚至更小,一直到數十公分,或甚至更多(例如應用在室內大型顯示的情況)。元件11是偏光元件,或是一組偏光元件。其中一個例子是線性偏光片。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓 形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件12可由色彩過濾器陣列所構成,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件13,儘管如果使用彩色光源時,並不需要色彩過濾器。元件13是磁光空間光調變器。在最簡單的形式中,元件13是為傳導材料線圈所形成的陣列,每個皆用來獨立控制顯示器中經歷光橫越它所對應的像素的磁場。這樣的控制可由光通過具有顯著費爾德常數V的媒介來獲得幫助,使得線性偏光可在其通過媒介時,獲得顯著的旋轉α,如同方程式(1)中所描述的。此媒介可為摻雜玻璃纖維圓柱的形式,或是類似的形狀,如在US2005/0201705中所描述的內容。此媒介也可為磁光薄膜的形式,如在WO2005/122479A2中所描述的內容,或是為磁性光子晶體層的形式。離開媒介的光會接著通過光偏化層14,例如線性偏光片。 The hologram generator 15 can be sized to range from a screen size (or smaller) that is applied to a mobile phone secondary screen to a one meter screen size for large indoor displays (or Bigger). Thus, the thickness of all of elements 10-14 can range from one millimeter, or even less, up to tens of centimeters, or even more (e.g., in the case of large indoor displays). Element 11 is a polarizing element or a set of polarizing elements. An example of this is a linear polarizer. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects orthogonal circles. Shape-biased state - such sheets are known, for example as described in US 6,181,395. Element 12 may be constructed of a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 13, although a color filter is not required if a colored light source is used. Element 13 is a magneto-optical spatial light modulator. In its simplest form, element 13 is an array of conductive material coils, each used to independently control the magnetic field in the display that experiences light traversing its corresponding pixel. Such control can be assisted by light passing through a medium having a significant Feld constant V such that linear polarization can achieve significant rotation a as it passes through the medium, as described in equation (1). This medium can be in the form of a doped fiberglass cylinder, or a similar shape, as described in US 2005/0201705. This medium can also be in the form of a magneto-optical film, as described in WO 2005/122479 A2, or in the form of a layer of magnetic photonic crystals. Light exiting the medium will then pass through the photo-biasing layer 14, such as a linear polarizer.
如果元件11是用於光的圓形偏化狀態的反射式偏光片,則圓形偏化光會從元件11傳送至元件12,而正交偏化光會反射回元件10,以提供可能的回收,且在此期間它的偏化可能會改變為由元件11所傳送的狀態。在這個例子中,元件13之後的偏光片14是由四分之一波片(quarter wave plate)所組成,用以將圓形偏化光轉換成線性偏化,接著之後為線性偏化薄片。四分之一波片的作用可能會超過可見光譜,例如在US 7,054,049中所描述的內容;也具有其它已知作用超過可見光譜的四分之一波片。線性偏化片14可設定在方位旋轉角度,使得在沒有電流流過陣列線圈的時候,H為零且遍及像素的陣列,因此對於陣列的全部像素而言,偏化狀態並沒有改變,並且顯示器是為暗的狀態。其它的設定,可從習用技術中獲得。在陣列線圈中的電流可以逐一像素的方式改變偏 化狀態,由此使得影像(例如彩色影像)可被顯示。其中,至磁光空間光調變器的光輸入偏化狀態是單純圓形偏化狀態,在線圈內的電流會使得相位能夠在圓形偏化狀態上編碼,如同在本案其它地方所描述的內容。這樣的相位編碼可讓具相位資訊的全像圖編碼於其上。 If the element 11 is a reflective polarizer for a circularly polarized state of light, circularly polarized light will be transmitted from the element 11 to the element 12, and the orthogonally polarized light will be reflected back to the element 10 to provide a possible Recycling, and during this time its biasing may change to the state transmitted by element 11. In this example, the polarizer 14 after the element 13 is composed of a quarter wave plate for converting the circularly polarized light into a linear bias, followed by a linearly polarized sheet. The effect of a quarter wave plate may exceed the visible spectrum, such as that described in US 7,054,049; it also has other quarter wave plates whose known effects exceed the visible spectrum. The linearly polarized sheet 14 can be set at an azimuthal rotation angle such that when no current flows through the array coil, H is zero and extends throughout the array of pixels, so the polarization state does not change for all pixels of the array, and the display It is a dark state. Other settings can be obtained from conventional techniques. The current in the array coil can be changed pixel by pixel The state, thereby enabling images (eg, color images) to be displayed. Wherein, the optical input polarization state to the magneto-optical spatial light modulator is a simple circular polarization state, and the current in the coil enables the phase to be encoded in a circularly polarized state, as described elsewhere in this case. content. Such phase encoding allows a hologram with phase information to be encoded thereon.
如果元件11是用於光的線性偏化狀態的反射式偏光片,則線性偏化光會從元件11傳送至元件12,而正交偏化光會反射回元件10,以提供可能的回收,且在此期間它的偏化可能會改變為由元件11所傳送的狀態。在這個例子中,在元件13之後的偏光片14是線性偏化片。線性偏化片14可設定在方位旋轉角度,使得在沒有電流流過陣列線圈的時候,H為零且遍及像素的陣列,因此對於陣列的全部像素而言,偏化狀態並沒有改變,並且顯示器是為暗的狀態。其它的設定,可從習用技術中獲得。在陣列線圈中的電流可以逐一像素的方式改變偏化狀態,由此使得影像(例如彩色影像)可被顯示。其中,至磁光空間光調變器的光輸入偏化狀態是單純線性偏化狀態,在線圈內的電流會使得振幅能夠在偏化狀態上編碼,如同在本案其它地方所描述的內容。這樣的振幅編碼可讓具振幅資訊的全像圖編碼於其上。 If the element 11 is a reflective polarizer for the linearly polarized state of light, the linearly polarized light will be transmitted from the element 11 to the element 12, and the orthogonally polarized light will be reflected back to the element 10 to provide a possible recovery, And during this time its biasing may change to the state transmitted by the component 11. In this example, the polarizer 14 after the element 13 is a linearly polarized sheet. The linearly polarized sheet 14 can be set at an azimuthal rotation angle such that when no current flows through the array coil, H is zero and extends throughout the array of pixels, so the polarization state does not change for all pixels of the array, and the display It is a dark state. Other settings can be obtained from conventional techniques. The current in the array coil can change the polarization state one pixel by pixel, thereby allowing images (eg, color images) to be displayed. Among them, the optical input polarization state to the magneto-optical spatial light modulator is a purely linearly biased state, and the current in the coil enables the amplitude to be encoded in the biased state, as described elsewhere in this case. Such amplitude coding allows an hologram with amplitude information to be encoded thereon.
在圖一中,位於點16離包含全像圖產生器15的裝置一些距離的觀看者,可從15的方向觀看到三維影像。元件10、11、12、13及14可配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體連接可限制在小區域中,以確保正確的相互排列關係,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏 接來實現,例如藉由使用光學傳送膠黏劑的方式,以形成緊密的全像圖產生器15,或是藉由任何其它的方式(參考概要製造程序部份)。然而,如果元件15並不是特別要求緊密時,則元件10、11、12、13及14中,部份或全部的元件是可被分離的。 In Fig. 1, a viewer located at a distance 16 from the apparatus including the hologram generator 15 can view the three-dimensional image from the direction of 15. The elements 10, 11, 12, 13 and 14 can be configured to be physically connected (realally connected), each forming a layer of the structure such that the entirety is a single, uniform object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, a film covering between adjacent layers is formed. Physical connections can be limited to small areas to ensure proper inter-arrangement, or can extend to larger areas, even the entire surface of the layer. Physical connections can be glued by layers This is accomplished, for example, by using optically transmissive adhesives to form a compact hologram generator 15, or by any other means (see the Summary Manufacturing Procedures section). However, if the element 15 is not particularly required to be tight, some or all of the elements 10, 11, 12, 13 and 14 can be separated.
圖四是習用技術側視圖,顯示出垂直聚焦系統1104的三個聚焦元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦元件1102至觀察者平面OP為例子。根據圖四,許多的線光源LS1,LS2,LS3是一個個上下排列。每一個光源發射的光,在垂直方向是具有充份同調性的,在水平方向是為非同調性的。這個光會通過光調變器SLM的傳輸元件。這個光藉由編碼全像圖的光調變器SLM的元件,僅在垂直方向產生繞射。聚焦元件1102在觀察者平面OP以數個繞射階級(只有一個是有用的)成像光源LS2。由光源LS2所發射的光束是用來作為只通過聚焦系統1104的聚焦元件1102的例子。在圖四中,三個光束呈現了第一繞射階級1105、第零階級1106及負一階級1107。與單一點光源相比,線光源可允許非常高的光強度產生。使用多個已增加效率且針對重建三維場景的每一個部分皆指派一個線光源的全像區域可提升有效的光強度。另一個不採用雷射的優點是多個例如設置在可為遮光器一部份的槽光圈(slot diaphragm)之後的傳統光源可產生充份的同調光。其中包含了眼睛1108。 Figure 4 is a side view of a conventional technique showing three focusing elements 1101, 1102, 1103 of a vertical focusing system 1104 in the form of cylindrical lenses arranged horizontally in the array. The beam that is nearly collimated with the horizontal line source LS2 passes through the focusing unit 1102 of the illumination unit to the observer plane OP as an example. According to Figure 4, many of the line sources LS1, LS2, LS3 are arranged one above the other. The light emitted by each light source is sufficiently coherent in the vertical direction and non-coherent in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. This light is diffracted only in the vertical direction by the elements of the optical modulator SLM that encodes the hologram. The focusing element 1102 images the light source LS2 at the viewer plane OP with a number of diffraction stages (only one is useful). The light beam emitted by the light source LS2 is used as an example of the focusing element 1102 that passes only through the focusing system 1104. In Figure 4, the three beams present a first diffractive class 1105, a zeroth class 1106, and a negative one class 1107. A line source allows very high light intensity generation compared to a single point source. The use of multiple holographic regions that have increased efficiency and assigned a line source for each portion of the reconstructed three-dimensional scene enhances the effective light intensity. Another advantage of not using a laser is that a plurality of conventional light sources, such as those disposed behind a slot diaphragm that can be part of the shutter, can produce sufficient dimming. It includes an eye 1108.
雖然關於全像編碼申請人的較佳方法(透過使用虛擬觀察者視窗)是描述在如由申請人所提出的WO 2004/044659(US2006/0055994)中,在其中描述了一種利用充份同調光的繞射重建三維場景的裝置,但是需要釐清的是,在此所描述的全像顯示 並不是侷限在使用這樣的方法,而是包含全部已知可與磁光空間光調變器一起使用的全像顯示類型,像是習用已知的技術。 Although a preferred method for holographic coding applicants (by using a virtual observer window) is described in WO 2004/044659 (US 2006/0055994), the entire disclosure of which is incorporated herein by reference. The means of reconstructing a three-dimensional scene, but it is necessary to clarify that the holographic display described here Rather than limiting the use of such methods, it encompasses all holographic display types known to be usable with magneto-optical spatial light modulators, as is known in the art.
這個實施例是關於提供光的複雜調變的空間光調變器(SLM),即振幅及相位的獨立調變。尤其,這是關於以利用法拉第效應進行光調變為基礎的空間光調變器。此空間光調變器可使用在全像顯示中。此全像顯示可使用在電視、螢幕、筆記型電腦、行動電話、個人數位助理、數位隨身聽或是任何其它具有顯示器的裝置。 This embodiment relates to a spatially modulated modulator (SLM) that provides complex modulation of light, i.e., independent modulation of amplitude and phase. In particular, this is about a spatial light modulator that is based on the use of the Faraday effect. This spatial light modulator can be used in a hologram display. This holographic display can be used on televisions, screens, laptops, mobile phones, personal digital assistants, digital walkmans, or any other device with a display.
這個實施例提供了一種具有兩個串聯的磁光空間光調變器的全像顯示裝置,這樣的組合能夠在適當的照明情況下產生三維影像。此顯示器可由多個光源或單一光源所照射。 This embodiment provides a holographic display device having two magneto-optical spatial light modulators in series, such a combination being capable of producing a three-dimensional image under appropriate illumination conditions. This display can be illuminated by multiple light sources or a single light source.
這個實施例是關於二個用於光的調變的磁光空間光調變器,其中,每一個磁光空間光調變器調變振幅、相位或是振幅與相位的組合。尤其,每一個磁光空間光調變器是使用法拉第效應來調變光。此兩個形成組合的磁光空間光調變器可使用在全像顯示中。因此,由振幅與相位組成的複數可以逐一像素的方式在傳送光中編譯。 This embodiment relates to two magneto-optical spatial light modulators for modulation of light, wherein each magneto-optical spatial light modulator modulates amplitude, phase or a combination of amplitude and phase. In particular, each magneto-optical spatial light modulator uses a Faraday effect to modulate light. The two combined magneto-optical spatial light modulators can be used in a hologram display. Therefore, a complex number consisting of amplitude and phase can be compiled in transmitted light one by one.
包含一個或多個光源以及二個串聯的磁光空間光調變器的全像顯示裝置可用來依序調變光的振幅及相位,並且如果需要的話,可採用緊密的方式。這個實施例的例子包含第一磁光空間光調變器與第二磁光空間光調變器。第一磁光空間光調變器調變傳送光的振幅,第二磁光空間光調變器調變傳送光的相位。或者,也可以是第一磁光空間光調變器調變傳送光的相位,第二磁光空 間光調變器調變傳送光的振幅。或者,也可以是每個磁光空間光調變器調變振幅與相位的組合,使得兩個磁光空間光調變器的組合能幫助全複雜調變。每一個磁光空間光調變器可如同上述A部份所描述的內容。全部的裝配可如同在A部份所描述的內容,除了在此是使用兩個磁光空間光調變器。 A holographic display device comprising one or more light sources and two magneto-optical spatial light modulators in series can be used to sequentially modulate the amplitude and phase of the light and, if desired, in a compact manner. Examples of this embodiment include a first magneto-optical spatial light modulator and a second magneto-optical spatial light modulator. The first magneto-optical spatial light modulator modulates the amplitude of the transmitted light, and the second magneto-optical spatial light modulator modulates the phase of the transmitted light. Alternatively, the first magneto-optical spatial light modulator may modulate the phase of the transmitted light, and the second magneto-optical space The inter-optical modulator modulates the amplitude of the transmitted light. Alternatively, it may be a combination of amplitude and phase of each magneto-optical spatial light modulator such that the combination of two magneto-optical spatial light modulators can assist in full complexity modulation. Each magneto-optical spatial light modulator can be as described in Section A above. All assembly can be as described in Part A, except that two magneto-optical spatial light modulators are used here.
在第一個步驟中,用於相位調變的圖樣是在第一磁光空間光調變器中寫入。在第二個步驟中,用於振幅調變的圖樣是在第二磁光空間光調變器中寫入。從第二磁光空間光調變器所傳送的光,在振幅及相位上已完成調變,因此,當觀察者觀察這二個磁光空間光調變器的裝置所發射的光時,可觀察到三維影像。 In the first step, the pattern for phase modulation is written in the first magneto-optical spatial light modulator. In the second step, the pattern for amplitude modulation is written in the second magneto-optical spatial light modulator. The light transmitted from the second magneto-optical spatial light modulator has been modulated in amplitude and phase. Therefore, when the observer observes the light emitted by the devices of the two magneto-optical spatial light modulators, A three-dimensional image was observed.
由於習用技術的發展,相位與振幅的調變技術促進了複數數值的表現。因此,這個實施例可應用於產生全像影像,使得觀看者可看到三維影像。 Due to the development of conventional techniques, phase and amplitude modulation techniques promote the performance of complex values. Thus, this embodiment can be applied to produce a holographic image so that the viewer can see the three-dimensional image.
圖二描述了這個實施的例子。20是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性,以便能夠產生三維影像。在US 2006/250671中提出了一個用於大區域影像全像圖的例子。如同20的裝置可採用白色光源陣列的形式,例如冷陰極螢光燈(cold cathode fluorescent lamps)或是發出的光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於20的光源可由紅色、綠色及藍色雷射所組成,或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組成。然而,相較於雷射光源,具有充份空間同調性的非雷射光源(例如:發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例如會在全像重建上造成雷射斑點、相對上較為昂貴以及可能會傷害全像顯示觀看者或是進 行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 Figure 2 depicts an example of this implementation. 20 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example for a large area image hologram is presented in US 2006/250671. A device like 20 may take the form of a white light source array, such as a cold cathode fluorescent lamp or a white light emitting diode that is incident on a focusing system, wherein the focusing system can be tight, Such as a lenticular array or a microlens array. Alternatively, the light source for 20 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient coherent light. However, compared to laser sources, non-laser sources (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are preferred. Laser sources have some drawbacks, such as causing laser spots on holographic reconstruction, relatively expensive, and possibly damaging the holographic display viewer or Safety issues such as the eyes of workers who assemble the omni-directional display device.
元件20可包含一個或兩個稜鏡光學膜,用以增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。 The element 20 may comprise one or two bismuth optical films for increasing the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551.
全像圖產生器25的大小可具有一定範圍,像是從應用在行動電話次螢幕中一公分的螢幕尺寸(或更小),直至用於室內大型顯示的一公尺螢幕寸尺大小(或更大)。因此,元件20-23、26-28全部的厚度可從一公釐,或甚至更小,一直到數十公分,或甚至更多(例如應用在室內大型顯示的情況)。元件21是偏光元件,或是一組偏光元件。其中一個例子是線性偏光片。另外一個例子是反射式偏光片,可傳送一個線性偏化狀態,並且反射正交線性偏化狀態-這樣的薄片是已知的,例如在US 5,828,488中所描述的內容。另一個例子是反射式偏光片,可傳送一個圓形偏化狀態,並且反射正交圓形偏化狀態-這樣的薄片是已知的,例如在US 6,181,395中所描述的內容。元件22可由色彩過濾器陣列所構成,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件23,儘管如果使用彩色光源時,並不需要色彩過濾器。元件23是磁光空間光調變器。在最簡單的形式中,元件23是為傳導材料線圈所形成的陣列,每個皆用來獨立控制顯示器中經歷光橫越它所對應的像素的磁場。這樣的控制可由光通過具有顯著費爾德常數V的媒介來獲得幫助,使得線性偏光可在其通過媒介時,獲得顯著的旋轉α,如同方程式(1)中所描述的。此媒介可為摻雜玻璃纖維圓柱的形式,或是類似的形狀,如在US2005/0201705中所描述的內容。媒介也可為磁光薄膜的形式,如在WO2005/122479A2中所描述的內容,或是為磁性光子晶體。 The hologram generator 25 can be sized to range from a screen size (or smaller) that is applied to a mobile phone secondary screen to a one meter screen size for indoor large displays (or Bigger). Thus, the thickness of all of elements 20-23, 26-28 can range from one millimeter, or even less, up to tens of centimeters, or even more (e.g., in the case of large indoor displays). Element 21 is a polarizing element or a set of polarizing elements. An example of this is a linear polarizer. Another example is a reflective polarizer that transmits a linearly biased state and reflects an orthogonal linearly biased state - such a sheet is known, for example, as described in US 5,828,488. Another example is a reflective polarizer that transmits a circularly polarized state and reflects an orthogonal circularly biased state - such a sheet is known, for example, as described in US 6,181,395. Element 22 may be constructed of a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 23, although a color filter is not required if a colored light source is used. Element 23 is a magneto-optical spatial light modulator. In its simplest form, element 23 is an array of conductive material coils, each used to independently control the magnetic field in the display that experiences light traversing its corresponding pixel. Such control can be assisted by light passing through a medium having a significant Feld constant V such that linear polarization can achieve significant rotation a as it passes through the medium, as described in equation (1). This medium can be in the form of a doped fiberglass cylinder, or a similar shape, as described in US 2005/0201705. The medium can also be in the form of a magneto-optical film, as described in WO2005/122479A2, or as a magnetic photonic crystal.
元件26是偏光元件,或是一組偏光元件。元件27是磁光空間光調變器,例如上述關於元件23所描述的內容。離開磁光空間光調變器的光會接著通過光偏化層28,例如線性偏光片。關於傳送光,元件23調變振幅,元件27調變相位。也可以是元件27調變振幅,元件23調變相位-對於振幅為最大值時,希望能更精確的調變相位的情況(即具有較少的雜訊),這樣是被認為較好的。將磁光空間光調變器23及27靠近能夠減少光學耗損及因光束分歧而產生的像素串音問題:當磁光空間光調變器23及27是非常靠近時,可實現通過磁光空間光調變器的彩色光光束的非重疊傳播的較佳近似值。 Element 26 is a polarizing element or a set of polarizing elements. Element 27 is a magneto-optical spatial light modulator, such as described above with respect to element 23. Light exiting the magneto-optical spatial light modulator will then pass through a photo-biasing layer 28, such as a linear polarizer. With respect to transmitting light, element 23 is modulated in amplitude and element 27 is modulated in phase. It is also possible that component 27 modulates the amplitude and component 23 modulates the phase - in the case where the amplitude is at a maximum, it is desirable to be able to modulate the phase more accurately (i.e., with less noise), which is considered to be better. The magneto-optical spatial light modulators 23 and 27 are close to the pixel crosstalk problem which can reduce optical loss and light beam divergence: when the magneto-optical spatial light modulators 23 and 27 are very close, the magneto-optical space can be realized. A preferred approximation of the non-overlapping propagation of the colored light beam of the light modulator.
位於點24離包括緊密全像圖產生器25的裝置一些距離的觀看者,可從25的方向觀看到三維影像。元件20、21、22、23、26、27及28可以配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體連接可限制在小區域中,以確保正確的相互排列關係,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以形成緊密的全像圖產生器25,或是藉由任何其它的方式(參考概要製造程序部份)。然而,如果並不是特別要求緊密時,則元件20、21、22、23、26、27及28中,部份或全部的元件是可被分離的。 A viewer located at a distance 24 from the device including the compact hologram generator 25 can view the three-dimensional image from the direction of 25. Elements 20, 21, 22, 23, 26, 27, and 28 can be configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, a film covering between adjacent layers is formed. Physical connections can be limited to small areas to ensure proper inter-arrangement, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 25, or by any other means (refer to the outline manufacturing procedure section). ). However, some or all of the elements 20, 21, 22, 23, 26, 27 and 28 may be separated if not particularly required.
我們在這裡給定編碼空間光調變器的兩個串聯磁光空間光調變器的簡單數學處理,對每個像素而言,為兩個線圈中的電流的函式。更精確的處理是有可能的。對於這些計算,調變相位的第一法拉第旋轉器、第一線性偏光片、調變振幅的第二法拉第旋轉 器以及第二線性偏光片會按照此順序被考慮進來。 Here we give a simple mathematical treatment of two series magneto-optical spatial light modulators for a spatially modulated optical modulator, for each pixel, a function of the current in the two coils. More precise processing is possible. For these calculations, the first Faraday rotator of the modulated phase, the first linear polarizer, and the second Faraday rotation of the modulated amplitude The second linear polarizer and the second linear polarizer are taken into consideration in this order.
第一線圈的長為L1,電流為I1,匝數為N1。沿著本身軸線而產生的磁場因此而為H1=N1 I1/L1。第二線圈的長為L2,電流為I2,匝數為N2。沿著本身軸線而產生的磁場因此而為H2=N2 I2/L2。這些方程式是從“Electromagnetic Fields and Waves”Second Edition by P.Lorrain and D.Corson(W.H.Freeman and Co,San Francisco,USA,1970)第315-318頁中所獲得的。 The length of the first coil is L 1 , the current is I 1 , and the number of turns is N 1 . The magnetic field generated along its own axis is thus H 1 =N 1 I 1 /L 1 . The second coil has a length L 2 , a current of I 2 , and a number of turns of N 2 . The magnetic field generated along its own axis is thus H 2 =N 2 I 2 /L 2 . These equations are obtained from "Electromagnetic Fields and Waves" Second Edition by P. Lorrain and D. Corson (WH Freeman and Co, San Francisco, USA, 1970) at pages 315-318.
輸入光具有圓形偏化,且圓形偏化的複雜振幅可根據瓊斯運算法則(Jones calculus)表示為:
在第一旋轉器的法拉第效應會位移這個圓形偏化成份的相位:α1=V1 L1 H1=V1 N1 I1如同方程式(1)所描述的。在法拉第旋轉器之後的振幅為
因此,線圈電流I1及I2可用來控制每一個像素相位α1及振幅因子| cos(α2)|,因為這些量是分別等於V1 N1 I1與| cos(V2 N2 I2)|。 Therefore, the coil currents I 1 and I 2 can be used to control each pixel phase α 1 and the amplitude factor | cos(α 2 )| because these quantities are equal to V 1 N 1 I 1 and | cos(V 2 N 2 I, respectively). 2 )|.
現在,我們給定實施的具體例子。兩個磁光空間光調變器是以串聯的方式組合在一起。每一層包含由線圈控制且獨立定址的調變像素。層會進行排列,因此在第一層像素中調變的光會接著由第二層對應的像素調變。每一層的調變特性是要使得兩個串聯的層能幫助光的複雜調變,即振幅及相位。此空間光調變器可包含可控制式稜鏡元件的陣列以幫助光束操控,但此為非必要的。此空間光調變器可包含整合式電腦,但此為非必要的。 Now, we give specific examples of implementation. The two magneto-optical spatial light modulators are combined in series. Each layer contains modulated pixels that are controlled by the coil and are independently addressed. The layers are arranged so that the light modulated in the first layer of pixels is then modulated by the corresponding pixels of the second layer. The modulation characteristics of each layer are such that two layers in series can help the complex modulation of light, ie amplitude and phase. This spatial light modulator can include an array of controllable 稜鏡 elements to aid beam steering, but this is not necessary. This spatial light modulator can include an integrated computer, but this is not necessary.
圖五顯示了剖面圖,其中此空間光調變器包含: Figure 5 shows a cross-sectional view where this spatial light modulator contains:
.磁光空間光調變器的兩個層53、54、56、57 . Two layers of magneto-optical spatial light modulators 53, 54, 56, 57
.用於光束操控的稜鏡元件59 .稜鏡 element 59 for beam steering
.整合在空間光調變器中的電腦,提供全像圖的計算及控制調變器與稜鏡元件。這可稱為顯示器中的電腦(computer in a display,CIAD)52。對於這樣的電腦的電路可在玻璃基板上發展,如由申請人提出的專利申請號GB 0709376.8及GB 0709379.2中所描述的內容。在圖五中顯示了三個像素,真正的裝置應具有更多的像素, 例如真正的裝置可具有1000x1000的像素陣列,這包含百萬個像素。 . A computer integrated in a spatial light modulator that provides hologram calculation and control of modulators and components. This can be referred to as a computer in a display (CIAD) 52. The circuit for such a computer can be developed on a glass substrate, as described in the applicant's patent application No. GB 0709376.8 and GB 0709379.2. Three pixels are shown in Figure 5. The real device should have more pixels. For example, a real device can have a 1000x1000 pixel array, which contains millions of pixels.
圖五所顯示的裝置包含三個像素511、512及513與一個稜鏡元件59。當然,實施方式並不會限制在這些數目以及3:1這樣的比率。 The device shown in Figure 5 includes three pixels 511, 512 and 513 and a weir element 59. Of course, the implementation is not limited to these numbers and ratios of 3:1.
圖五所顯示的空間光調變器包含幾個層具有 The spatial light modulator shown in Figure 5 contains several layers with
.底部玻璃基板51 . Bottom glass substrate 51
.顯示器中的電腦52 . Computer in the display 52
.第一具有線圈的層53,在此顯示了三個線圈的剖面圖 . The first layer 53 with coils, here showing a cross-sectional view of three coils
.第一磁性光子晶體層54 . First magnetic photonic crystal layer 54
.第一偏光片55 . First polarizer 55
.第二磁性光子晶體層56 . Second magnetic photonic crystal layer 56
.第二具有線圈的層57,在此顯示了三個線圈的剖面圖 . a second layer 57 having a coil, here showing a cross-sectional view of three coils
.第二偏光片58 . Second polarizer 58
.用於光束操控的稜鏡元件59 .稜鏡 element 59 for beam steering
.頂部的玻璃基板510 . Top glass substrate 510
在圖五中顯示了三個像素511、512及513。每一個像素堆疊是從線圈的第一層53延伸至第二偏光片58,如虛線所示。有關像素511的空間光調變器將會說明。光傳播的方向是從底部玻璃基板51至頂部玻璃基板510。 Three pixels 511, 512, and 513 are shown in FIG. Each pixel stack extends from the first layer 53 of the coil to the second polarizer 58, as indicated by the dashed lines. A spatial light modulator for pixel 511 will be described. The direction of light propagation is from the bottom glass substrate 51 to the top glass substrate 510.
在第一磁性光子晶體層(MPC)54中,線圈514產生磁場,並且控制光的調變。光會通過第一偏光片55,接著由第二線圈516所控制的第二磁性光子晶體層56進行調變。第二偏光片58是在 像素511的輸出位置。每一個磁性光子晶體層是由磁光層的多層結構所組成,可大量提高費爾德常數。在“A Presentation for Investors”by Panorama Labs of Rockefeller Center,1230 Avenue of the Americas,7th Floor,New York,NY 10020 USA(www.panoramalabs.com)中描述了一些關於磁性光子晶體層的多層結構,可從網際網路上獲得。 In the first magnetic photonic crystal layer (MPC) 54, the coil 514 generates a magnetic field and controls the modulation of the light. Light is modulated by a first polarizer 55 followed by a second magnetic photonic crystal layer 56 controlled by a second coil 516. The second polarizer 58 is at The output position of the pixel 511. Each of the magnetic photonic crystal layers is composed of a multilayer structure of a magneto-optical layer, which can greatly increase the Feld constant. Some of the multilayer structures for magnetic photonic crystal layers are described in "A Presentation for Investors" by Panorama Labs of Rockefeller Center, 1230 Avenue of the Americas, 7th Floor, New York, NY 10020 USA (www.panoramalabs.com). Obtained from the Internet.
這兩個磁性光子晶體層54、56是用於調變通過每個像素的光的相位及振幅。舉例而言,進入像素511的光是在左邊的圓形偏化狀態。光在通過磁性光子晶體層54之後仍是為左邊圓形偏化,並且具有與線圈514所產生的磁場有關的相位位移φ1。偏化片55會將左邊圓形偏化轉換成具有常數振幅及相位位移φ1的線性偏化。這個光接著會在磁性光子晶體層56中調變。之後,偏化仍為線性,但是偏化的方向會旋轉α角度,此角度會與線圈516所產生的磁場有關。在第二線性偏光片58之後,光會具有固定的偏化方向及與旋轉角度α有關的振幅。 The two magnetic photonic crystal layers 54, 56 are used to modulate the phase and amplitude of light passing through each pixel. For example, the light entering the pixel 511 is a circularly polarized state on the left side. The light is still circularly polarized to the left after passing through the magnetic photonic crystal layer 54, and has a phase shift φ1 associated with the magnetic field generated by the coil 514. The polarization sheet 55 converts the left circular polarization into a linear polarization with a constant amplitude and a phase shift φ1. This light is then modulated in the magnetic photonic crystal layer 56. Thereafter, the biasing is still linear, but the direction of the polarization will rotate the alpha angle, which is related to the magnetic field generated by the coil 516. After the second linear polarizer 58, the light will have a fixed polarization direction and an amplitude associated with the rotation angle a.
以上是如何利用兩個磁性光子晶體在像素中調變光的相位及振幅的一個例子。當然,其它調變特性、輸入和輸出偏化及偏化片方向的組合都是可能的,如在習用技術可觀察到的方式。在每一個磁性光子晶體中,可具有振幅及相位的混合調變。對於全複雜調變,在本質上磁性光子晶體54及磁性光子晶體56中的組合調變會幫助從零到最大振幅值的振幅可控制複雜調變及從0到2π弧度的相位可控制複雜調變。 The above is an example of how to use two magnetic photonic crystals to modulate the phase and amplitude of light in a pixel. Of course, other modulation characteristics, input and output biasing, and combination of biasing sheet orientations are possible, as can be observed in conventional techniques. In each of the magnetic photonic crystals, there may be a mixed modulation of amplitude and phase. For fully complex modulation, in combination the combined modulation in the magnetic photonic crystal 54 and the magnetic photonic crystal 56 will help the amplitude from zero to the maximum amplitude value control the complex modulation and the phase controllable complexity from 0 to 2π radians change.
具有稜鏡元件59的光學層包含電極517、518及填滿兩個分離液體519、520的凹洞。每一個液體填滿凹洞的稜形部分。舉一個例子,液體可以是油或水。在液體519、520之間介面的斜率是 依據施加在電極517、518的電壓所決定。如果液體具有不同的折射率,光束將會遭受偏向,偏向是由施加在電極517、518的電壓所決定。因此,稜鏡元件59的作用如同可控制的光束操控元件。這對於申請人的方法應用在需要追蹤虛擬觀察者視窗至觀察者眼睛的電子式全像技術是一個重要的特性。由申請人所提出的專利申請號DE 102007024237.0及DE 102007024236.2描述了以稜鏡元件進行虛擬觀察者視窗至觀察者眼睛的追蹤。 The optical layer with germanium element 59 comprises electrodes 517, 518 and a cavity filled with two separate liquids 519, 520. Each liquid fills the prismatic portion of the cavity. As an example, the liquid can be oil or water. The slope of the interface between the liquids 519, 520 is It is determined by the voltage applied to the electrodes 517, 518. If the liquids have different refractive indices, the beams will be biased, the bias being determined by the voltage applied to the electrodes 517, 518. Thus, the jaw element 59 acts like a controllable beam steering element. This is an important feature for the applicant's method to be applied to electronic holographic techniques that require tracking of the virtual observer window to the viewer's eyes. Patent application Nos. DE 102007024237.0 and DE 102007024236.2, filed by the applicant, describe the tracking of the virtual observer window to the observer's eye with a sputum element.
非必要的顯示器中的電腦52是用以計算全像圖與控制像素的線圈中的電流,以及控制稜鏡元件。由申請人所提出的專利申請號GB 0709376.8及GB 0709379.2中描述了用於全像顯示的顯示器中的電腦實施方式。 The computer 52 in the non-essential display is used to calculate the current in the coil of the hologram and control pixels, and to control the 稜鏡 element. A computer implementation in a display for holographic display is described in the patent application nos. GB 0709376.8 and GB 0709379.2.
在圖五中,顯示器中的電腦52是直接連接底部玻璃基板,且是利用薄膜電晶體科技所製成。線圈與稜鏡元件的控制信號是經由圖五中符號515所顯示的饋入裝置或傳導接點所轉換。這即為一個例子。其它位置的顯示器中的電腦也是可能的,例如: In Figure 5, the computer 52 in the display is directly connected to the bottom glass substrate and is fabricated using thin film transistor technology. The control signals for the coil and turns elements are converted via feedthroughs or conductive contacts as shown by symbol 515 in FIG. This is an example. Computers in displays in other locations are also possible, for example:
.兩個顯示器中的電腦,一個在底部而另一個在頂部基板,同步可經由饋入裝置(feedthroughs)或是經由兩個顯示器中的電腦的外部同步操作來達成。 . The computers in the two displays, one at the bottom and the other at the top substrate, can be synchronized via feedthroughs or via external synchronization of the computers in the two displays.
.兩個顯示器中的電腦,位於偏光片55的每一邊。這能確保至線圈的距離是很短的。 . The computers in the two displays are located on each side of the polarizer 55. This ensures that the distance to the coil is very short.
.一個或二個顯示器中的電腦,位於一個彈性薄片的一邊或兩邊上,此彈性薄片是裝設在玻璃基板、磁性光子晶體、線圈或偏光片上。 當然,實作方式並不是侷制在這裡所列的顯示器中的電腦的位置。 . The computer in one or two displays is located on one or both sides of an elastic sheet which is mounted on a glass substrate, a magnetic photonic crystal, a coil or a polarizer. Of course, the implementation is not the location of the computer in the display listed here.
對於饋入裝置或是介於顯示器中的電腦、線圈與稜鏡元件的電極之間或是介於數個顯示器中的電腦之間的接點,具有數種可能性,例如: There are several possibilities for the feedthrough or the junction between the computer in the display, the electrodes of the coil and the 稜鏡 element, or the computer in several displays, for example:
.洞的蝕刻或鑽孔,或是洞及填滿傳導物質的光石版印刷製造。 . Etching or drilling of holes, or holes and lithographic printing filled with conductive materials.
.一個層的接點區域與另一層具有傳導膠黏劑的接點區域的黏合 . Adhesion of the contact area of one layer to the contact area of another layer with conductive adhesive
.製造一個複合多層片,可包含一個或數個顯示器中的電腦、偏光片或線圈。 當然,實作方式並不是侷制在這裡所列的可能性。 . A composite multilayer sheet can be made that can contain a computer, polarizer or coil in one or several displays. Of course, the way of doing things is not the possibility listed here.
必須小心避免或補償磁場之間的串音。 Care must be taken to avoid or compensate for crosstalk between the magnetic fields.
.在第一線圈514及第二線圈516(雜散磁場)的磁場之間會導致光調變錯誤的串音可被計算且進行補償。計算與補償可即時進行或是使用查表法。 . Crosstalk that causes optical modulation errors between the magnetic fields of the first coil 514 and the second coil 516 (stray magnetic field) can be calculated and compensated. Calculations and compensation can be performed on-the-fly or using a look-up table.
.在鄰近像素之間的串音典型上是可以忽略的,因為離開線圈軸的雜散磁場是很小的。否則,串音是可利用即時或是查表法計算或補償。 . Crosstalk between adjacent pixels is typically negligible because the stray magnetic field exiting the coil axis is small. Otherwise, crosstalk can be calculated or compensated using instant or look-up tables.
.顯示器中的電腦至磁性光子晶體(反之亦然)的雜散磁場的串音可經由小心的佈線設計獲得最小化。舉例而言,具有相同但相反方向電流的電路路徑可設置在一起,使得遠場磁場抵銷至一個好的近似值。 . The crosstalk of the stray magnetic field from the computer to the magnetic photonic crystal in the display (and vice versa) can be minimized through careful wiring design. For example, circuit paths with the same but opposite direction currents can be placed together such that the far field magnetic field is offset to a good approximation.
光從一個像素到鄰近像素的串音可藉由像素內從53到58的短光學路徑(即在圖五中,在垂直於51且朝向510的方向)來避免之。這可將繞射光到鄰近像素的數量減低至可忽略的數值。 Crosstalk of light from one pixel to adjacent pixels can be avoided by a short optical path from 53 to 58 within the pixel (i.e., in Figure 5, in a direction perpendicular to 51 and toward 510). This reduces the amount of diffracted light to adjacent pixels to a negligible value.
偏光片55、58也應該為薄層。例子包括: The polarizers 55, 58 should also be thin layers. Examples include:
.聚合物薄片偏光片(Polymer sheet polarizer) . Polymer sheet polarizer (Polymer sheet polarizer)
.具有篏入式小金屬微粒的層,可吸收一個偏化方向。 . A layer with intrusive small metal particles that absorbs a direction of polarization.
.金屬線網格偏光片,由平行奈米金屬線的陣列所組成,能傳送一個偏化方向的光,並且反射另一個偏化方向(例如由Moxtek Inc.of 452 West 1260 North,Orem,UT 84057,USA所生產的產品)。 . A metal wire grid polarizer consisting of an array of parallel nanowires that transmits a polarization direction of light and reflects another polarization direction (eg, by Moxtek Inc. of 452 West 1260 North, Orem, UT 84057 , products produced by USA).
整個空間光調變器可為具有幾公分螢幕尺寸大小的小型空間光調變器,例如可作為行動電話的次螢幕,或者具有一公分或更小的螢幕尺寸,例如應用於投影顯示器中的空間光調變器,在其中會光學放大空間光調變器。或者,它可為具有大至一公尺或甚至更大螢幕尺寸(用於直視顯示中,在其中多個觀察者可看到空間光調變器的實際大小)的大型空間光調變器。螢幕尺寸大小介於大型與小型之間的空間光調變器也是可能應用在各種不同的應用。 The entire spatial light modulator can be a small spatial light modulator with a screen size of a few centimeters, such as a secondary screen for a mobile phone, or a screen size of one centimeter or less, such as space used in a projection display. A light modulator in which a spatial light modulator is optically magnified. Alternatively, it can be a large spatial light modulator having a screen size of up to one meter or even larger (in a direct view display where multiple viewers can see the actual size of the spatial light modulator). Space light modulators with screen sizes between large and small are also possible for a variety of different applications.
在上述例子中所描述的空間光調變器具有下列特性 The spatial light modulator described in the above example has the following characteristics
.兩個磁性光子晶體,用於獨立調變振幅與相位 . Two magnetic photonic crystals for independent modulation of amplitude and phase
.用於光束操控的稜鏡元件 .稜鏡 element for beam steering
.顯示器中的電腦,用於全像圖計算及線圈與稜鏡元件的控制。 . A computer in the display for hologram calculation and control of coil and cymbal components.
也可以製造一個較不複雜的空間光調變器: It is also possible to create a less complex spatial light modulator:
.不具稜鏡元件的空間光調變器可與外部光束操控元件結合使用,例如光源追蹤、掃描反射鏡(scanning mirrors)或外部的稜鏡元件。 . Space light modulators without 稜鏡 components can be used in conjunction with external beam steering elements, such as light source tracking, scanning mirrors or external 稜鏡 components.
.不具顯示器中的電腦的空間光調變器可與用於全像圖計算及線圈與稜鏡元件控制的外部電腦結合使用。 . A spatial light modulator that does not have a computer in the display can be used in conjunction with an external computer for hologram calculation and coil and 稜鏡 component control.
.不具眼睛追蹤的空間光調變器可在手持式裝置中使用,在其中使用者會手動旋轉裝置,以便將虛擬觀察者視窗設置在他的眼睛位置。 . A spatial light modulator without eye tracking can be used in a handheld device in which the user manually rotates the device to position the virtual viewer window in his eye position.
所揭露的空間光調變器是較適合用於全像顯示中,其為投影全像顯示或是直視全像顯示。具有用於光束操控的整合型稜鏡元件的空間光調變器是較適合用於全像顯示中,基於申請人的方法應用於使用虛擬觀察者視窗追蹤的全像顯示。 The disclosed spatial light modulator is more suitable for use in holographic display, which is a projection holographic display or a direct-view holographic display. Spatial light modulators with integrated germanium elements for beam steering are more suitable for use in holographic displays, and are based on Applicant's method for holographic display using virtual observer window tracking.
然而,對於全像編碼,申請人透過使用虛擬觀察者視窗的方法,是描述在例如由申請人所提出的WO 2004/044659(US2006/0055994)的內容中,在其中描述了一種關於利用充份同調光的繞射的方法重建三維場景的裝置,必須知道這個實施例的全像顯示並不是侷限在這樣的方法,而是包含所有已知的全像顯示類型,可與一對磁光空間光調變器結合使用,以產生複雜的全像編碼,如同在習用技術中可見的。 However, for holographic coding, the applicant's method of using a virtual observer window is described in the content of WO 2004/044659 (US 2006/0055994), for example, by the applicant, in which a With the method of dimming the diffracting method for reconstructing the three-dimensional scene, it is necessary to know that the holographic display of this embodiment is not limited to such a method, but includes all known holographic display types, and can be combined with a pair of magneto-optical spatial light. Modulators are used in combination to produce complex holographic encoding as seen in conventional techniques.
這個實施例提供了一種磁光空間光調變器與充份同調性的緊密型光源的緊密組合,這樣的組合能夠在適當的照明情況下產生三維影像。 This embodiment provides a close combination of a magneto-optical spatial light modulator and a coherent compact light source that produces a three-dimensional image with proper illumination.
在這個實施例中,描述了一個不需要成像光學的磁光空間光調變器與緊密型光源的緊密組合。這個實施例提供了一個光源或多個光源、聚焦工具、磁光空間光調變器及非必要的光束分光鏡元件的緊密組合,此組合能夠在適當的照明情況下產生三維影像。由於"不需要成像光學",這意謂著沒有聚焦工具,除了用於聚焦光源或來源的方法之外,舉例而這,這樣的方法典型為微透鏡陣列。 In this embodiment, a close combination of a magneto-optical spatial light modulator that does not require imaging optics and a compact source is described. This embodiment provides a close combination of a light source or multiple sources, a focusing tool, a magneto-optical spatial light modulator, and an optional beam splitter element that produces a three-dimensional image with appropriate illumination. Since "no imaging optics is required", this means that there is no focusing tool, except for the method for focusing the light source or source, for example, such a method is typically a microlens array.
圖十一描述了一種實施的例子。110是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性,以便能夠產生三 維影像。在US 2006/250671中提出了一個用於大區域影像全像圖的照明裝置的例子,圖四顯示了其中一個例子。如同110的裝置可採用白色光源陣列的形式,例如冷陰極螢光燈或是發出的光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於110的光源可由紅色、綠色及藍色雷射所組成,或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組成。紅色、綠色及藍色發光二極體可為有機發光二極體(OLEDs)。然而,相較於雷射光源,具有充份空間同調性的非雷射光源(例如:發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例如會在全像重建上造成雷射斑點(laser speckle)、相對上較為昂貴以及可能會傷害全像顯示觀看者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 Figure 11 depicts an example of an implementation. 110 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of three Dimensional image. An example of a lighting device for a large area image hologram is presented in US 2006/250671, and an example is shown in FIG. A device such as 110 may take the form of a white light source array, such as a cold cathode fluorescent lamp or emit light as a white light emitting diode incident on a focusing system, wherein the focusing system may be compact, such as a lenticular array or micro. Lens array. Alternatively, the light source for 110 may be comprised of red, green, and blue lasers, or red, green, and blue light emitting diodes that emit sufficient coherent light. The red, green, and blue light emitting diodes can be organic light emitting diodes (OLEDs). However, compared to laser sources, non-laser sources (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are preferred. Laser sources have some disadvantages, such as laser speckles on holographic reconstruction, relatively expensive, and may damage the eyes of a holographic display viewer or a holographic display assembly. Security issue.
元件110可包含一個或兩個稜鏡光學膜,用以增加顯示器的亮度:這樣的膜是已知的,例如在US 5,056,892與US 5,919,551中所描述的內容。 The element 110 may comprise one or two bismuth optical films for increasing the brightness of the display: such a film is known, for example, as described in US 5,056,892 and US 5,919,551.
元件110的厚度可約為數公分,或是更低。在較佳的實施例中,元件110-113,116全部的厚度會低於3cm,以便提供充份同調性的緊密光源。元件111可由色彩過濾器陣列所構成,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件112,儘管如果使用彩色光源時,並不需要色彩過濾器。元件112是偏化元件,或是一組的偏化元件。元件113是磁光空間光調變器。元件116是偏化元件,或是一組的偏化元件。元件116之後可為光學光束分光鏡元件。位於點114離包含緊密全像圖產生器115的裝置一些距離的觀看者,可從115的方向觀看到三維影像。 Element 110 may have a thickness of about a few centimeters or less. In the preferred embodiment, the elements 110-113, 116 may all be less than 3 cm thick to provide a closely spaced, compact source. Element 111 may be constructed of a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 112, although a color filter is not required if a colored light source is used. Element 112 is a biasing element or a set of biasing elements. Element 113 is a magneto-optical spatial light modulator. Element 116 is a biasing element or a set of biasing elements. Element 116 can be followed by an optical beam splitter element. A viewer located at point 114 some distance from the device containing the compact hologram generator 115 can view the three-dimensional image from the direction of 115.
在A部分所描述的光學構成要素可包含在緊密的全像圖產生器115中,如同在習用技術中可見的。 The optical constituents described in Section A can be included in the compact hologram generator 115 as can be seen in the prior art.
磁光空間光調變器是空間光調變器的一種,在其中元件陣列中的每一個元件可利用電子式進行定址,以利用法拉第效應調變偏化光的偏化狀態。每個元件對入射的光會進行一些作用,例如調變它所傳送的光的振幅,或者調變它所傳送的光的相位,或者調變它所傳送的光的振幅及相位的組合。在WO2005/076714A2中提供了一個磁光空間光調變器的例子,其它關於這類型的空間光調變器也是已知的。 A magneto-optical spatial light modulator is a type of spatial light modulator in which each element in the array of elements can be addressed electronically to modulate the biased state of the polarized light using the Faraday effect. Each element performs some effect on the incident light, such as modulating the amplitude of the light it transmits, or modulating the phase of the light it transmits, or modulating the combination of the amplitude and phase of the light it transmits. An example of a magneto-optical spatial light modulator is provided in WO2005/076714A2, and other spatial light modulators of this type are also known.
元件110、111、112、113及116可配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體連接可限制在小區域中,以確保正確的相互排列關係,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以形成緊密的全像圖產生器115,或是藉由任何其它的方式(參考概要製造程序部份)。 Elements 110, 111, 112, 113, and 116 can be configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, a film covering between adjacent layers is formed. Physical connections can be limited to small areas to ensure proper inter-arrangement, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 115, or by any other means (refer to the outline manufacturing procedure section). ).
圖四是習用技術側視圖,顯示出垂直聚焦系統1104的三個聚焦元件1101、1102、1103,採用圓柱形透鏡水平排列於陣列中的形式。並以水平線光源LS2幾近準直的光束通過照明單位的聚焦元件1102至觀察者平面OP為例子。根據圖四,許多的線光源LS1,LS2,LS3是一個個上下排列。每一個光源發射的光,在垂直方向是具有充份同調性的,在水平方向是為非同調性的。這個光會通過光調變器SLM的傳輸元件。這個光藉由編碼全像圖的光調變器SLM的元件,僅在垂直方向產生繞射。聚焦元件1102在觀察者平 面OP以數個繞射階級(只有一個是有用的)成像光源LS2。由光源LS2所發射的光束是用來作為只通過聚焦系統1104的聚焦元件1102的例子。在圖四中,三個光束呈現了第一繞射階級1105、第零階級1106及負一階級1107。與單一點光源相比,線光源可允許非常高的光強度產生。使用多個已增加效率且針對重建三維場景的每一個部分皆指派一個線光源的全像區域可提升有效的光強度。另一個不採用雷射的優點是多個例如設置在可為遮光器一部份的槽光圈之後的傳統光源可產生充份的同調光。 Figure 4 is a side view of a conventional technique showing three focusing elements 1101, 1102, 1103 of a vertical focusing system 1104 in the form of cylindrical lenses arranged horizontally in the array. The beam that is nearly collimated with the horizontal line source LS2 passes through the focusing unit 1102 of the illumination unit to the observer plane OP as an example. According to Figure 4, many of the line sources LS1, LS2, LS3 are arranged one above the other. The light emitted by each light source is sufficiently coherent in the vertical direction and non-coherent in the horizontal direction. This light passes through the transmission element of the optical modulator SLM. This light is diffracted only in the vertical direction by the elements of the optical modulator SLM that encodes the hologram. Focusing element 1102 is flat at the viewer The face OP is an imaging source LS2 with a number of diffraction stages (only one is useful). The light beam emitted by the light source LS2 is used as an example of the focusing element 1102 that passes only through the focusing system 1104. In Figure 4, the three beams present a first diffractive class 1105, a zeroth class 1106, and a negative one class 1107. A line source allows very high light intensity generation compared to a single point source. The use of multiple holographic regions that have increased efficiency and assigned a line source for each portion of the reconstructed three-dimensional scene enhances the effective light intensity. Another advantage of not using a laser is that a plurality of conventional light sources, such as those disposed behind a slot aperture that can be part of the shutter, can produce sufficient dimming.
一般而言,全像顯示是用來在虛擬觀察者視窗中重建波前。波前是一個實際物體會產生的東西,如果它存在的話。當觀察者的眼睛是位於虛擬觀察者視窗的位置時,他會看見重建的物件,其中虛擬觀察者視窗可能為多個虛擬觀察者視窗(VOWs)中的一個虛擬觀察者視窗。如圖六A所示,全像顯示是由下列構成要素所組成:光源601、透鏡602、空間光調變器SLM、非必要的光束分光鏡603及觀察者視窗604。 In general, the hologram display is used to reconstruct the wavefront in the virtual observer window. A wavefront is something that an actual object will produce if it exists. When the observer's eye is in the virtual observer window, he will see the reconstructed object, where the virtual observer window may be a virtual observer window in multiple virtual observer windows (VOWs). As shown in FIG. 6A, the hologram display is composed of the following constituent elements: a light source 601, a lens 602, a spatial light modulator SLM, an unnecessary beam splitter 603, and an observer window 604.
為了幫助空間光調變器與可顯示全像影像的緊密型光源的緊密組合產生,圖六A中的單一光源及單一透鏡可分別由光源陣列605及透鏡陣列606或透鏡狀陣列取代,如圖六B所示。在圖六B中,光源照射空間光調變器,並且透鏡成像光源至觀察者平面。而空間光調變器編碼全像影像,且調變進入的波前,使得需求的波前可重建在虛擬觀察者視窗中。非必要的光束分光鏡元件可使用來產生數個虛擬觀察者視窗,例如一個用於左眼的虛擬觀察者視窗與一個用於右眼的虛擬觀察者視窗。 In order to facilitate the close combination of the spatial light modulator and the compact light source that can display the holographic image, the single light source and the single lens in FIG. 6A can be replaced by the light source array 605 and the lens array 606 or the lenticular array, respectively. Shown in six B. In Figure 6B, the light source illuminates the spatial light modulator and the lens images the light source to the viewer plane. The spatial light modulator encodes the holographic image and modulates the incoming wavefront so that the wavefront of the demand can be reconstructed in the virtual observer window. An optional beam splitter element can be used to create a number of virtual observer windows, such as a virtual viewer window for the left eye and a virtual observer window for the right eye.
假設是使用光源陣列與透鏡陣列或是透鏡狀陣列時,則必須設置陣列中的光源,使得通過透鏡陣列或是透鏡狀陣列全部透鏡 的光會同時至虛擬觀察者視窗。 Assuming that the source array and the lens array or the lenticular array are used, the light source in the array must be set so that all lenses pass through the lens array or the lenticular array. The light will go to the virtual observer window at the same time.
圖六B的裝置適合採用可應用於緊密全像顯示的緊密設計。這樣的全像顯示可適用於行動應用,例如在行動電話或個人數位助理中。典型地,這樣的全像顯示將具有一英吋或數英吋大小的螢幕尺吋。適合的構成元件將在下面作詳細描述。 The device of Figure 6B is suitable for a compact design that can be applied to a compact hologram display. Such a holographic display can be applied to mobile applications, such as in a mobile phone or a personal digital assistant. Typically, such a hologram display will have a screen size of one inch or several inches. Suitable constituent elements will be described in detail below.
在簡易的情況下,可使用固定的單一光源。如果觀察者移動,則可追蹤觀察者,並且調整顯示器,使得在新位置的觀察者可觀察到產生的影像。此時,若不是沒有虛擬觀察者視窗的追蹤,就是藉由空間光調器之後的光束操控元件來執行追蹤。 In a simple case, a fixed single source can be used. If the observer moves, the viewer can be tracked and the display adjusted so that the viewer at the new location can observe the resulting image. At this time, if there is no tracking of the virtual observer window, the tracking is performed by the beam steering element after the spatial light modulator.
可設定的光源陣列可藉由另一個以背光照射的磁光空間光調變器來實現。為了產生點或線光源的陣列,只有適當的像素會切換到傳送狀態。這類型陣列的最大切換速度將會比其它空間光調變器中的切換速度快上許多,例如使用液晶或微電機系統技術的空間光調變器。這些光源的孔徑必須是足夠的小,以保證能提供充份空間同調性給予目標的全像重建。點光源的陣列可與二維排列的透鏡陣列一起使用。線光源的陣列是較推薦與由平行排列的圓柱形透鏡所組成的透鏡狀陣列一起使用。 The configurable array of light sources can be implemented by another magneto-optical spatial light modulator that is illuminated by the backlight. In order to generate an array of point or line sources, only the appropriate pixels will switch to the transfer state. The maximum switching speed of this type of array will be much faster than the switching speed in other spatial light modulators, such as spatial light modulators using liquid crystal or micro-motor system technology. The aperture of these sources must be small enough to ensure full spatial coherence to the holographic reconstruction of the target. An array of point sources can be used with a two-dimensional array of lenses. An array of line sources is preferably used with a lenticular array of cylindrical lenses arranged in parallel.
較好的是將有機發光二極體顯示器作為光源陣列。當以有機發光二極體顯示器作為光源陣列時,只有在其上有切換的像素必須用來在眼睛的位置產生虛擬觀察者視窗。有機發光二極體顯示器可具有二維排列的像素或是一維排列的線光源。每一個點光源的發光區域或是每一個線光源的寬度都必須是足夠的小,以保證提供充份空間同調性給予目標的全像重建。同樣的,點光源的陣 列是較適合與二維排列的透鏡陣列一起使用。線光源的陣列是較推薦與由平行排列的圓柱形透鏡所組成的透鏡狀陣列一起使用。 It is preferred to use an organic light emitting diode display as the light source array. When an organic light emitting diode display is used as the light source array, only the pixels on which switching is made must be used to create a virtual viewer window at the position of the eye. The organic light emitting diode display may have a two-dimensional array of pixels or a one-dimensional array of line sources. The illuminating area of each point source or the width of each line source must be sufficiently small to ensure that full spatial coherence is provided to the holographic reconstruction of the target. Similarly, the array of point sources Columns are more suitable for use with a two-dimensional array of lens arrays. An array of line sources is preferably used with a lenticular array of cylindrical lenses arranged in parallel.
聚焦工具會成像一個光源或是多個光源至觀察者平面。當空間光調變器是非常靠近聚焦工具時,在空間光調變器中編碼的資訊的傅立葉轉換會在觀察者平面中。聚焦工具包含一個或數個聚焦元件。空間光調變器與聚焦工具的位置是可以交換的。 The focusing tool images a light source or multiple sources to the viewer plane. When the spatial light modulator is very close to the focusing tool, the Fourier transform of the information encoded in the spatial light modulator will be in the observer plane. The focusing tool contains one or several focusing elements. The position of the spatial light modulator and the focusing tool is interchangeable.
對於磁光空間光調變器與充份同調性的緊密型光源的緊密組合,薄的聚焦工具是必要的:習用具有凸面的折射透鏡是過厚的。取而代之的是使用繞射或全像透鏡。此繞射或全像透鏡可具有單一透鏡、透鏡陣列或透鏡狀陣列的功能。這樣的材料是存在的,如由Physical Optics Corporation,Torrance,CA,USA所提供的表面起伏全像產品。或者,可使用透鏡陣列。透鏡陣列包含二維排列的透鏡,且每一個透鏡是分配至光源陣列的一個光源。另一個選擇是使用透鏡狀陣列。透鏡狀陣列包含一維排列的圓柱形透鏡,且每一個透鏡在光源陣列中具有一個對應的光源。如上所述,如果使用光源陣列與透鏡陣列或是透鏡狀陣列,則必須設置陣列中的光源,使得通過透鏡陣列或是透鏡狀陣列的全部透鏡的光能同時至虛擬觀察者視窗。 For the close combination of a magneto-optical spatial light modulator and a well-consistent compact light source, a thin focusing tool is necessary: conventionally used refractive lenses are too thick. Instead, a diffractive or holographic lens is used. This diffractive or holographic lens can have the function of a single lens, a lens array or a lenticular array. Such materials are present, such as surface relief holographic products provided by Physical Optics Corporation, Torrance, CA, USA. Alternatively, a lens array can be used. The lens array comprises two-dimensionally arranged lenses, and each lens is a light source that is assigned to an array of light sources. Another option is to use a lenticular array. The lenticular array comprises a one-dimensional array of cylindrical lenses, and each lens has a corresponding light source in the array of light sources. As described above, if a light source array and a lens array or a lenticular array are used, the light sources in the array must be arranged such that the light energy of all the lenses passing through the lens array or the lenticular array simultaneously reaches the virtual viewer window.
通過透鏡陣列或是透鏡狀陣列的透鏡的光對於任何其它的透鏡是非同調的。因此,在空間光調變器上編碼的全像圖是由次全像圖所組成,每一個次全像圖對應至一個透鏡。每一個透鏡的孔徑必須是足夠大的,以保證重建物件的解析度充足。也可以使用孔徑與全像圖編碼區域典型尺寸幾乎一樣大的透鏡,如在 US2006/0055994中所描述。也就是說每一個透鏡的孔徑應為一或數毫米的等級。 Light passing through a lens array or a lens of a lenticular array is non-coherent to any other lens. Therefore, the hologram image encoded on the spatial light modulator is composed of a sub-hologram, and each sub-image corresponds to one lens. The aperture of each lens must be large enough to ensure adequate resolution of the reconstructed object. It is also possible to use a lens whose aperture is almost as large as the typical size of the hologram coding region, as in It is described in US2006/0055994. That is to say, the aperture of each lens should be of the order of one or several millimeters.
全像圖是在空間光調變器上編碼。通常,對於全像圖的編碼是由二維的複數陣列所組成。因此,理想上空間光調變器應能調變通過空間光調變器的每一個像素的局部光束的振幅及相位。然而,典型的空間光調變器只能調變振幅或是相位,而不能獨立調變振幅與相位。 The hologram is encoded on the spatial light modulator. Typically, the encoding of an hologram is composed of a two-dimensional complex array. Therefore, ideally the spatial light modulator should be able to modulate the amplitude and phase of the local beam passing through each pixel of the spatial light modulator. However, a typical spatial light modulator can only modulate amplitude or phase, and cannot independently modulate amplitude and phase.
振幅調變空間光調變器可與軌跡相位編碼組合使用,例如布克哈特(Burckhardt)編碼。它的缺點是需要三個像素來編碼一個複數,並且重建物件的亮度會較低。 Amplitude modulated spatial light modulators can be used in combination with track phase encoding, such as Burckhardt encoding. Its disadvantage is that it requires three pixels to encode a complex number, and the brightness of the reconstructed object will be lower.
相位調變空間光調變器可產生較高亮度的重建。舉例而言,可使用所謂的2相位編碼,利用兩個像素來編碼一個複數。 The phase modulation spatial light modulator produces a higher brightness reconstruction. For example, so-called 2-phase encoding can be used, using two pixels to encode a complex number.
儘管磁光空間光調變器具有明顯邊緣的特性,會在它們的繞射圖樣中產生不希望的較高繞射階級,但這個問題可藉由使用軟孔徑來獲得改善或避免。軟孔徑是不具尖銳傳送截止(sharp transmission cut off)的孔徑。軟孔徑傳送方法的一個例子是具有高斯圖形(Gaussian profile)。高斯圖形是已知對於繞射系統具有幫助。原因是高斯函數的傅立葉轉換即為高斯函數本身的數學結果。因此,相較於利用在本身傳送圖形中具有尖銳截止的孔徑進行傳送,除了橫向比例參數之外,繞射不會改變光束強度波形函數。可提供高斯傳送圖形的薄片陣列。當這些被提供且與磁光空間光調變器的孔徑排列在一起時,與在光束傳送圖形中具有尖銳截止的系統相比,將會得到無較高繞射階級或是大量減低較高繞 射階級的系統。 Although magneto-optical spatial light modulators have significant edge characteristics that create undesirable higher diffraction levels in their diffraction patterns, this problem can be improved or avoided by using soft apertures. The soft aperture is an aperture that does not have a sharp transmission cut off. An example of a soft aperture transmission method is to have a Gaussian profile. Gaussian graphics are known to be helpful for diffraction systems. The reason is that the Fourier transform of the Gaussian function is the mathematical result of the Gaussian function itself. Therefore, the diffraction does not change the beam intensity waveform function except for the lateral scale parameter, as compared to the aperture with a sharp cutoff in the transfer pattern itself. An array of sheets of Gaussian transfer patterns can be provided. When these are provided and aligned with the aperture of the magneto-optical spatial light modulator, there will be no higher diffraction stages or a higher reduction of higher windings than systems with sharp cut-offs in the beam delivery pattern. The system of the class.
虛擬觀察者視窗會限制在空間光調變器所編碼的資訊的傅立葉轉換的一個週期性區間內。使用現有最大解析度的空間光調變器,虛擬觀察者視窗的大小為10毫米的層級。在一些情況下,對於應用在沒有追蹤的全像顯示中時,這可能會是太小的。關於這個問題的一個解決方法是利用多個虛擬觀察者視窗的空間多工:產生多個虛擬觀察者視窗。在空間多工的情況下,虛擬觀察者視窗會在空間光調變器上不同的位置同時產生。這可藉由光束分光鏡實現。舉例而言,空間光調變器上的一組像素利用虛擬觀察者視窗1的資訊編碼,另一組像素會利用虛擬觀察者視窗2的資訊編碼。光束分光鏡會將這二組的光區分,使得虛擬觀察者視窗1與虛擬觀察者視窗2會並列在觀察者平面。較大的虛擬觀察者視窗可利用無接縫配置虛擬觀察者視窗1與虛擬觀察者視窗2來產生。多工也可以用來產生對於左眼及右眼的虛擬觀察者視窗。在這樣的情況下,並不需要無接縫並置,且在對於左眼的一個或數個虛擬觀察者視窗與對於右眼的一個或數個虛擬觀察者視窗之間可能會具有間隙。必需小心不要讓虛擬觀察者視窗的較高繞射階級與其它的虛擬觀察者視窗重疊。 The virtual observer window is limited to a periodic interval of the Fourier transform of the information encoded by the spatial light modulator. Using the existing maximum resolution spatial light modulator, the virtual observer window is 10 millimeters in size. In some cases, this may be too small for an application to be in a holographic display without tracking. One solution to this problem is to exploit the spatial multiplexing of multiple virtual observer windows: creating multiple virtual observer windows. In the case of spatial multiplexing, the virtual observer window is generated simultaneously at different locations on the spatial light modulator. This can be achieved by a beam splitter. For example, one set of pixels on the spatial light modulator is encoded using the information of the virtual observer window 1 and the other set of pixels is encoded using the information of the virtual observer window 2. The beam splitter will distinguish the two sets of light so that the virtual observer window 1 and the virtual observer window 2 are juxtaposed in the observer plane. A larger virtual viewer window can be created using the seamlessly configuring virtual viewer window 1 and virtual viewer window 2. Multiplexing can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required, and there may be a gap between one or several virtual viewer windows for the left eye and one or several virtual observer windows for the right eye. Care must be taken not to overlap the higher diffraction level of the virtual observer window with other virtual observer windows.
光束分光鏡元件的一個簡易例子是由黑色條紋所組成的視差屏障,其中黑色條紋之間具有透明區域,如在US2004/223049中所描述的內容。另一個例子是雙凸透鏡狀薄片,如在US2004/223049中所描述的內容。光束分光鏡元件的其它例子為透鏡陣列及稜鏡遮罩。在緊密的全像顯示中,典型地可能會期望具 有光束分光鏡元件,因為典型10毫米大小的虛擬觀察者視窗僅足夠提供一眼,這並不符合一般觀看者具有兩個眼睛,並且相隔約為10公分。然而,可以使用時間多工來作為空間多工以外的另一個選擇。時間多工可藉由使用磁光空間光調變器來實現,因為磁光空間光調變器具有非常快的切換能力,如上所述。在缺少空間多工的情況下,將不需要再使用分光鏡元件。 A simple example of a beam splitter element is a parallax barrier consisting of black stripes with a transparent area between the black stripes, as described in US 2004/223049. Another example is a lenticular sheet, as described in US 2004/223049. Other examples of beam splitter elements are lens arrays and germanium masks. In a tight hologram display, it may typically be desirable to have There is a beam splitter element because a typical 10 mm sized virtual observer window is only enough to provide one eye, which is not consistent with a typical viewer having two eyes and is about 10 cm apart. However, time multiplexing can be used as an alternative to spatial multiplexing. Time multiplexing can be achieved by using a magneto-optical spatial light modulator because the magneto-optical spatial light modulator has very fast switching capabilities, as described above. In the absence of space multiplex, it will not be necessary to use the beam splitter element.
空間多工也可使用在彩色全像重建的產生。對於空間色彩多工,像素會針對紅色,綠色及藍色色彩元素進行分群。這些群在空間光調變器上是空間分隔,並且同時照射紅色,綠色及藍色光。每一群會利用針對目標的對應色彩元素所計算的全像圖進行編碼。每一群會重建全像目標重建中它的色彩元素。 Spatial multiplexing can also be used in the generation of color hologram reconstruction. For spatial color multiplex, pixels are grouped for red, green, and blue color elements. These groups are spatially separated on the spatial light modulator and simultaneously illuminate red, green and blue light. Each group will be encoded using a hologram calculated for the corresponding color element of the target. Each group will reconstruct its color elements in the hologram reconstruction.
在時間多工的情況下,虛擬觀察者視窗會在空間光調變器上相同的位置相繼產生。這可藉由交替光源的位置與同步重編碼空間光調變器來實現。光源位置的交替必須使得觀察者平面中的虛擬觀察者視窗是無接縫並置的。如果時間多工是足夠快的,即完整週期大於25Hz,眼睛將會看見連續擴展的虛擬觀察者視窗。 In the case of time multiplex, the virtual observer windows are successively generated at the same position on the spatial light modulator. This can be achieved by alternating the position of the light source with the synchronous re-encoding spatial light modulator. The alternation of the position of the light sources must be such that the virtual observer windows in the viewer plane are seamlessly juxtaposed. If the time multiplex is fast enough, that is, the full period is greater than 25 Hz, the eye will see a continuously expanding virtual observer window.
多工也可以用來產生左眼及右眼的虛擬觀察者視窗。在這樣的情況下,並不需要無接縫並置,且在對於左眼的一個或數個虛擬觀察者視窗與對於右眼的一個或數個虛擬觀察者視窗之間可具有間隙。這樣的多工可為空間或時間多工。 Multiplex can also be used to create virtual observer windows for the left and right eyes. In such cases, no seam juxtaposition is required, and there may be a gap between one or several virtual viewer windows for the left eye and one or several virtual viewer windows for the right eye. Such multiplexing can be space or time multiplex.
空間與時間的多工也可以組合使用。舉一個例子,三個虛擬觀察者視窗是為空間多工,用以產生對於一個眼睛的擴大虛擬觀察者視窗。這個擴大的虛擬觀察者視窗是時間多工,以產生對於 左眼的擴大虛擬觀察者視窗以及對於右眼的擴大虛擬觀察者視窗。 Space and time multiplexing can also be combined. As an example, three virtual observer windows are spatially multiplexed to create an expanded virtual observer window for one eye. This expanded virtual observer window is time multiplexed to produce The expanded virtual observer window for the left eye and the expanded virtual observer window for the right eye.
必需小心不要讓一個虛擬觀察者視窗的較高繞射階級與另一個虛擬觀察者視窗重疊。 Care must be taken not to overlap the higher diffraction level of one virtual observer window with another virtual observer window.
對於擴大虛擬觀察者視窗的多工是較建議與空間光調變器的重編碼一起使用,因為對於觀察者移動,它提供了具連續視差變化的擴大虛擬觀察者視窗。簡單而言,不具重編碼的多工會在擴大的虛擬觀察者視窗的不同部份,提供重覆的內容。 The multiplexing of the expanded virtual observer window is more recommended than the re-encoding of the spatial light modulator, because for observer movement, it provides an expanded virtual observer window with continuous parallax changes. In simple terms, multiple unions that are not re-encoded provide repetitive content in different parts of the expanded virtual observer window.
時間多工也可使用在彩色全像重建的產生。對於時間多工,三個色彩元素的全像圖會依序在空間光調變器上編碼。這三個光源會與空間光調變器上的重編碼同步切換。如果完整週期的重覆是足夠快的,即大於25Hz,眼睛會看見連續的色彩重建。 Time multiplexing can also be used in the generation of color hologram reconstruction. For time multiplexing, the hologram of the three color elements is encoded sequentially on the spatial light modulator. These three sources are switched synchronously with the re-encoding on the spatial light modulator. If the repetition of the full cycle is fast enough, ie greater than 25 Hz, the eye will see a continuous color reconstruction.
時間多工可藉由使用磁光空間光調變器來實現,因為磁光空間光調變器具有非常快的切換能力,如上所述。 Time multiplexing can be achieved by using a magneto-optical spatial light modulator because the magneto-optical spatial light modulator has very fast switching capabilities, as described above.
在具有眼睛追蹤的磁光空間光調變器與充份同調性的緊密型光源的緊密組合中,眼睛位置偵測器可偵測到觀察者的眼睛位置。所以,一個或數個虛擬觀察者視窗可自動地設置在眼睛的位置,使得觀察者可透過虛擬觀察者視窗看到重建的物件。 In a close combination of a magneto-optical spatial light modulator with eye tracking and a well-constrained compact light source, the eye position detector can detect the observer's eye position. Therefore, one or several virtual observer windows can be automatically positioned at the eye so that the viewer can see the reconstructed object through the virtual observer window.
然而,因為額外的裝置需求與對於效能的電力需求限制,追蹤並不是都能被實踐的,尤其是對於可攜式裝置。如果沒有追蹤,觀察者必須自行調整顯示的位置。這是很容易可以做到的,因為在較佳的實施例中,緊密型顯示器是為手持式顯示器,可包含在個人數位助理或行動電話中。個人數位助理或行動電話的使用 者,通常會垂直地觀看顯示器,對於調整虛擬觀察者視窗來對應使用者眼睛的位置,並不會有太大的困難。大家都知道,手持式裝置的使用者會傾向自己調整手上裝置的方向,以獲得最理想的觀看狀態,如同在WO01/96941中所描述的內容。因此,在這樣的裝置中,並不需要使用者眼睛追蹤的功能以及複雜且不緊密如包含掃描鏡的追蹤光學。但是眼睛追蹤可以應用在其它的裝置中,如果對於這些裝置而言,額外的設備與電源需求並不會造成過度的負擔。 However, tracking is not always practiced because of additional device requirements and power demand constraints for performance, especially for portable devices. If there is no tracking, the observer must adjust the displayed position. This is easily achievable because in the preferred embodiment, the compact display is a handheld display that can be included in a personal digital assistant or mobile phone. Use of personal digital assistants or mobile phones The display is usually viewed vertically, and it is not too difficult to adjust the virtual viewer window to correspond to the position of the user's eyes. It is well known that users of handheld devices tend to adjust the orientation of the device in their hand to obtain the most desirable viewing state, as described in WO 01/96941. Therefore, in such a device, the function of the user's eye tracking is not required as well as the tracking optics that are not as compact as the scanning mirror. However, eye tracking can be applied to other devices, and for these devices, additional equipment and power requirements do not create an excessive burden.
在沒有追蹤的情況下,為了簡化顯示器的調整,磁光空間光調變器與充份同調性緊密型光源的緊密組合需要足夠大的虛擬觀察者視窗。較好的虛擬觀察者視窗大小應該是眼睛瞳孔大小的數倍。這可由使用小間距空間光調變器所產生的單一較大虛擬觀察者視窗來完成,或是由使用大間距空間光調變器所產生的數個較小虛擬觀察者視窗拼湊而成。 In the absence of tracking, in order to simplify the adjustment of the display, the close combination of the magneto-optical spatial light modulator and the fully coherent compact light source requires a sufficiently large virtual observer window. A better virtual observer window size should be several times the size of the pupil of the eye. This can be done by using a single large virtual observer window created by a small pitch spatial light modulator or by a number of smaller virtual observer windows generated using a large pitch spatial light modulator.
虛擬觀察者視窗的位置是由光源陣列中的光源位置所決定。眼睛位置偵測器會偵測眼睛的位置,並且設定光源的位置,以使得虛擬觀察者視窗能適合眼睛的位置。在US2006/055994與US2006/250671中描述了這類型的追蹤。 The position of the virtual observer window is determined by the position of the light source in the array of light sources. The eye position detector detects the position of the eye and sets the position of the light source so that the virtual observer window fits the position of the eye. This type of tracking is described in US 2006/055994 and US 2006/250671.
另一種方式,當光源是位在固定的位置時,虛擬觀察者視窗可被移動。光源追蹤需要對於光源的光的入射角變化相對較不敏感的空間光調變器。如果光源是為了移動虛擬觀察者視窗位置而移動,由於在緊密組合中可能會有異常光傳播的情況,這樣的設定將可能很難透過緊密型光源與空間光調變器的緊密組合所實現。在這樣的情況中,在顯示器中具有固定的光學路徑及作為顯示器中最後光學元件的光束操控元件將會有所幫助。 Alternatively, the virtual viewer window can be moved when the light source is in a fixed position. The light source tracks a spatial light modulator that is relatively insensitive to changes in the angle of incidence of the light of the light source. If the light source is moved to move the virtual observer window position, such settings may be difficult to achieve through the close combination of the compact light source and the spatial light modulator due to the possibility of abnormal light propagation in tight combinations. In such cases, it would be helpful to have a fixed optical path in the display and a beam steering element that is the last optical component in the display.
接著將描述一個磁光空間光調變器與充份同調性緊密型光源的緊密組合的例子,這樣的組合能夠在適當的照明情況下產生三維影像,並且可結合在個人數位助理或行動電話中。磁光空間光調變器與充份同調性緊密型光源的緊密組合包含作為光源陣列的有機發光二極體顯示器、磁光空間光調變器與透鏡陣列,如圖十二所示。在圖十二中,虛擬觀察者視窗是標示為OW。 An example of a close combination of a magneto-optical spatial light modulator and a coherent compact light source will now be described. Such a combination can produce a three-dimensional image with appropriate illumination and can be incorporated into a personal digital assistant or mobile phone. . The close combination of the magneto-optical spatial light modulator and the fully coherent compact light source includes an organic light emitting diode display, a magneto-optical spatial light modulator and a lens array as an array of light sources, as shown in FIG. In Figure 12, the virtual observer window is labeled OW.
根據虛擬觀察者視窗的需求位置,會在有機發光二極體顯示器中激活特定的像素。這些像素會照射磁光空間光調變器MOSLM,並且會藉由透鏡陣列1201成像至觀察者平面OW。在有機發光二極體顯示器OLED中,透鏡陣列的每個透鏡至少會有一個像素被激活。在繪圖給定的尺寸大小中,如果像素間距為20μm(12d1),則可追蹤具有400μm(12d2)橫向增量的虛擬觀察者視窗。這樣的追蹤是準連續的(quasi-continuous)。 Depending on the desired location of the virtual viewer window, a particular pixel is activated in the organic light emitting diode display. These pixels illuminate the magneto-optical spatial light modulator MOSLM and are imaged by the lens array 1201 to the viewer plane OW. In an organic light emitting diode display OLED, at least one pixel of each lens of the lens array is activated. In drawing a given size, if the pixel pitch is 20 μm (12d1), a virtual observer window with a lateral increment of 400 μm (12d2) can be tracked. Such tracking is quasi-continuous.
有機發光二極體像素為僅具有部份空間同調性的光源。部分的同調性會產生目標點的模糊重建。在繪圖給定的尺寸大小中,如果像素寬度為20μm,則在距離顯示器100mm的目標點會產生具有100μm橫向模糊的重建。這對於人類視覺系統的解析度而言是足夠的。 The organic light emitting diode pixel is a light source having only partial spatial homology. Partial homology will produce a fuzzy reconstruction of the target point. In drawing a given size, if the pixel width is 20 μm, a reconstruction with a lateral blur of 100 μm is generated at a target point of 100 mm from the display. This is sufficient for the resolution of the human visual system.
通過透鏡陣列中不同透鏡的光,並沒有顯著的相互同調性。同調性的需求是限制在透鏡陣列中的每一個單一透鏡。因此,重建目標點的解析度是由透鏡陣列的間距所決定。所以,對於人類的視覺系統而言,典型的透鏡間距將為1mm的層級,以確保充份的解析度。如果有機發光二極體的間距為20μm,則這表示透鏡間距與有機發光二極體間距的比值為50:1。如果每一個透鏡僅有單 一個有機發光二極體被照射,則這表示每50^2=2,500個有機發光二極體中,僅有一個有機發光二極體將被照射。因此,此顯示器將為低功率顯示器。在實施例的全像顯示與習用有機發光二極體顯示器之間的差異是前者集中光於觀看者的眼睛,反之後者發射光至2π球面度。習用的有機發光二極體顯示器可達到約1,000cd/m^2的發光度,(發明者於此實施方式中計算),而在實務應用上,照射型有機發光二極體應能達到1,000cd/m^2發光度的數倍。 Light passing through different lenses in the lens array does not have significant mutual homology. The need for coherence is limited to each single lens in the lens array. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. Therefore, for the human visual system, the typical lens pitch will be 1 mm to ensure sufficient resolution. If the pitch of the organic light-emitting diodes is 20 μm, this means that the ratio of the lens pitch to the organic light-emitting diode pitch is 50:1. If each lens has only one When an organic light-emitting diode is irradiated, this means that of every 50^2 = 2,500 organic light-emitting diodes, only one organic light-emitting diode will be irradiated. Therefore, this display will be a low power display. The difference between the holographic display of the embodiment and the conventional organic light-emitting diode display is that the former concentrates on the viewer's eyes, whereas the latter emits light to 2π steradian. Conventional organic light-emitting diode displays can achieve luminosity of about 1,000 cd/m^2 (calculated by the inventors in this embodiment), and in practical applications, the illuminating organic light-emitting diode should be able to reach 1,000 cd. /m^2 Several times the luminosity.
虛擬觀察者視窗是限制在空間光調變器中所編碼的資訊的傅立葉頻譜的一個繞射階級。如果磁光空間光調變器的像素間距為20μm,在500nm的波長,虛擬觀察者視窗會具有10mm的寬度。虛擬觀察者視窗可利用空間或時間多工,將數個虛擬觀察者視窗拼湊成擴大的虛擬觀察者視窗。在空間多工的情況下會需要額外的光學元件,如光束分光鏡。 The virtual observer window is a diffractive class that limits the Fourier spectrum of the information encoded in the spatial light modulator. If the pixel spacing of the magneto-optical spatial light modulator is 20 μm, the virtual viewer window will have a width of 10 mm at a wavelength of 500 nm. The virtual observer window can utilize space or time multiplexing to piece together several virtual observer windows into an expanded virtual observer window. In the case of spatial multiplexing, additional optical components such as beam splitters are required.
彩色全像重建可由時間多工來實現。彩色有機發光二極體顯示器的紅色、綠色及藍色像素是依序利用空間光調變器的同步重編碼進行激活,此空間光調變器具有針對紅色、綠色及藍色光學波長進行計算的全像圖。 Color hologram reconstruction can be achieved by time multiplexing. The red, green, and blue pixels of the color organic light-emitting diode display are sequentially activated by synchronous re-encoding of the spatial light modulator, which has calculations for red, green, and blue optical wavelengths. Full picture.
顯示器可包含眼睛位置偵測器,用以偵測觀察者眼睛的位置。眼睛位置偵測器連接控制單位,此控制單位是用來控制有機發光二極體顯示器像素的激活。 The display can include an eye position detector to detect the position of the observer's eyes. The eye position detector is connected to a control unit that is used to control the activation of the pixels of the organic light emitting diode display.
在空間光調變器上編碼的全像圖的計算最好是由外部的編碼單元執行,因為它需要較高的計算能力。顯示資料會接著傳送至個人數位助理或行動電話,以顯示全像產生的三維影像。 The calculation of the hologram image encoded on the spatial light modulator is preferably performed by an external coding unit because it requires a higher computational power. The display data is then transmitted to a personal digital assistant or mobile phone to display a three-dimensional image of the hologram.
在另一個實施例中,可使用二個磁光空間光調變器的組合,並以緊密的方式依序調變光的振幅及相位。所以,由振幅及相位所構成的複數可以逐一像素的方式在傳送光中編碼。 In another embodiment, a combination of two magneto-optical spatial light modulators can be used and the amplitude and phase of the light can be sequentially modulated in a compact manner. Therefore, the complex number composed of the amplitude and the phase can be encoded in the transmitted light one by one.
這個實施例包含二個磁光空間光調變器的緊密組合。第一磁光空間光調變器調變傳送光的振幅,第二磁光空間光調變器調變傳送光的相位。或者,也可以是第一磁光空間光調變器調變傳送光的相位,第二磁光空間光調變器調變傳送光的振幅-對於振幅為最大值時,期望能更精確調變相位的情況(即具有較少的雜訊),這樣是被認為較好的。每一個磁光空間光調變器都可如同C部份所描述的一樣。除了採用二個磁光空間光調變器之外,整體的配置可如同C部份所描述的一樣。任何相當於是幫助振幅及相位的獨立調變的其它種二個磁光空間光調變器調變特性的組合都是可能的。 This embodiment includes a close combination of two magneto-optical spatial light modulators. The first magneto-optical spatial light modulator modulates the amplitude of the transmitted light, and the second magneto-optical spatial light modulator modulates the phase of the transmitted light. Alternatively, the first magneto-optical spatial light modulator may modulate the phase of the transmitted light, and the second magneto-optical spatial light modulator modulates the amplitude of the transmitted light - when the amplitude is at a maximum, it is desirable to more accurately modulate the phase The bit situation (ie has less noise) is considered better. Each magneto-optical spatial light modulator can be as described in Section C. In addition to using two magneto-optical spatial light modulators, the overall configuration can be as described in Section C. Any combination of other kinds of magneto-optical spatial modulator modulation characteristics that are equivalent to independent modulation of amplitude and phase is possible.
在第一步驟中,第一磁光空間光調變器利用圖樣編碼,以進行振幅調變。在第二步驟中,第二磁光空間光調變器利用圖樣編碼,以進行相位調變。從第二磁光空間光調變器所傳送的光,在振幅及相位上已完成調變,因此,當觀察者觀察這二個磁光空間光調變器的裝置所發射的光時,可觀察到三維影像。 In a first step, the first magneto-optical spatial light modulator is encoded using a pattern for amplitude modulation. In a second step, the second magneto-optical spatial light modulator is encoded using a pattern for phase modulation. The light transmitted from the second magneto-optical spatial light modulator has been modulated in amplitude and phase. Therefore, when the observer observes the light emitted by the devices of the two magneto-optical spatial light modulators, A three-dimensional image was observed.
由於習用技術的發展,相位與振幅的調變技術促進了複數數值的表現。除此之外,磁光空間光調變器可具有高解析度。因此,這個實施例可應用於產生全像影像,使得觀看者可看到三維影像。 Due to the development of conventional techniques, phase and amplitude modulation techniques promote the performance of complex values. In addition to this, magneto-optical spatial light modulators can have high resolution. Thus, this embodiment can be applied to produce a holographic image so that the viewer can see the three-dimensional image.
圖十三描述了一個實施的例子。130是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性,以便能夠產生三維影像。在US 2006/250671中提出了一個用於大區域影像全像圖的例子,圖四顯示了其中一個例子。如同130的裝置可採用白色 光源陣列的形式,例如冷陰極螢光燈或是發出的光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列。或者,用於130的光源可由紅色、綠色及藍色雷射所組成,或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組成。紅色、綠色及藍色發光二極體可為有機發光二極體(OLEDs)。然而,相較於雷射光源,具有充份空間同調性的非雷射光源(例如:發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例如會在全像重建上造成雷射斑點、相對上較為昂貴以及可能會傷害全像顯示觀看者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 Figure 13 depicts an example of an implementation. 130 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example for a large-area image hologram is presented in US 2006/250671, and an example is shown in Figure 4. Like the 130 device can be white The form of the array of light sources, such as a cold cathode fluorescent lamp or emitted light, is a white light emitting diode incident on the focusing system, wherein the focusing system can be compact, such as a lenticular array or a microlens array. Alternatively, the light source for 130 may be comprised of red, green, and blue lasers, or may be comprised of red, green, and blue light emitting diodes that emit sufficient tonal light. The red, green, and blue light emitting diodes can be organic light emitting diodes (OLEDs). However, compared to laser sources, non-laser sources (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are preferred. Laser light sources have some disadvantages, such as laser spots that can cause laser spots on holographic reconstruction, are relatively expensive, and can damage the omnidirectional display of the viewer or the eyes of the omni-directional display device.
元件130的厚度可約為數公分,或是更低。在較佳的實施例中,元件130-135全部的厚度會低於3cm,以便提供充份同調性的緊密光源。元件131可由色彩過濾器陣列所構成,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件132,儘管如果使用彩色光源時,並不需要色彩過濾器。元件132是偏化元件,或是一組的偏化元件。元件133是磁光空間光調變器。元件134是磁光空間光調變器。元件133及134每一個都包含偏化元件或是一組的偏化元件。元件135是非必要的光束分光鏡元件。對於傳送光,元件133調變振幅,而元件134調變相位。或者,由元件134調變振幅,而元件133調變相位。將磁光空間光調變器134及133靠近能夠減少光學耗損及因光束分歧而產生的像素串音問題:當磁光空間光調變器134及133是非常靠近時,可實現通過磁光空間光調變器的彩色光光束的非重疊傳播的較佳近似值。位於點137離包括緊密全像圖產生器136的裝置一些距離的觀看者,可從136的方向觀看到三維影像。 Element 130 can have a thickness of about a few centimeters or less. In the preferred embodiment, elements 130-135 may all be less than 3 cm thick to provide a closely spaced, compact source. Element 131 may be constructed of a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 132, although a color filter is not required if a colored light source is used. Element 132 is a biasing element or a set of biasing elements. Element 133 is a magneto-optical spatial light modulator. Element 134 is a magneto-optical spatial light modulator. Each of elements 133 and 134 includes a biasing element or a set of biasing elements. Element 135 is an unnecessary beam splitter element. For transmitting light, element 133 is modulated in amplitude and element 134 is modulated in phase. Alternatively, the amplitude is modulated by element 134 and the phase of element 133 is modulated. The magneto-optical spatial light modulators 134 and 133 are close to the problem of reducing pixel loss and pixel crosstalk caused by beam divergence: when the magneto-optical spatial light modulators 134 and 133 are in close proximity, the magneto-optical space can be realized. A preferred approximation of the non-overlapping propagation of the colored light beam of the light modulator. A viewer located at point 137 some distance from the device including the compact hologram generator 136 can view the three-dimensional image from the direction of 136.
元件130、131、132、133、134及135是配置成實體連接(真實上連接),每一個形成結構的一層,使得整體為單一、統一的物件。實體連接可為直接的。或是間接的,如果有薄的中間層,形成覆蓋在相鄰層之間的膜。實體連接可限制在小區域中,以確保正確的相互排列關係,或是可延伸至較大的區域,甚至層的整個表面。實體連接可由層與層的黏接來實現,例如藉由使用光學傳送膠黏劑的方式,以形成緊密的全像圖產生器136,或是藉由任何其它的方式(參考概要製造程序部份)。 Elements 130, 131, 132, 133, 134, and 135 are configured to be physically connected (realally connected), each forming a layer of structure such that the entirety is a single, unified object. Physical connections can be direct. Or indirect, if there is a thin intermediate layer, a film covering between adjacent layers is formed. Physical connections can be limited to small areas to ensure proper inter-arrangement, or can extend to larger areas, even the entire surface of the layer. The physical connection can be achieved by layer-to-layer bonding, for example by using an optical transfer adhesive to form a compact hologram generator 136, or by any other means (refer to the outline manufacturing procedure section). ).
在磁光空間光調變器執行振幅調變處,典型的設定中,入射的光學光束將會藉由將光束通過線性偏光片來達到線性偏化。振幅調變是由沿著光傳播方向施加的磁場中的線性偏化狀態的旋轉所控制,施加的磁場是利用法拉第效應影響光的偏化狀態。在這樣的裝置中,離開磁光空間光調變器的光會通過另一個線性偏光片,可讓光的偏化狀態發生任何的旋轉而致使強度減弱,如同它通過磁光空間光調變器時一樣。 Where the magneto-optical spatial light modulator performs amplitude modulation, in a typical setup, the incident optical beam will be linearly biased by passing the beam through a linear polarizer. The amplitude modulation is controlled by the rotation of the linearly biased state in the magnetic field applied along the direction of propagation of the light, and the applied magnetic field is a state of polarization that affects the light by the Faraday effect. In such a device, the light exiting the magneto-optical spatial light modulator passes through another linear polarizer, allowing any rotation of the polarization state of the light to cause the intensity to be weakened, as it passes through the magneto-optical spatial light modulator. Same time.
在磁光空間光調變器執行相位調變處,典型的設定中,入射的讀取光學光束將會藉由將光束通過線性偏光片及四分之一的波片來達到線性偏化。相位調變是由沿著光傳播方向施加的磁場所控制,磁場會透過法拉第效應影響光的相位狀態。應用磁場是由流過線圈的電流所產生。在相位調變中,對於每個像素,輸出光束與輸入光束會具有相位差,且為流過對應每個像素的線圈的電流的函數。 Where the magneto-optical spatial light modulator performs phase modulation, in a typical setup, the incident read optical beam will be linearly polarized by passing the beam through a linear polarizer and a quarter wave plate. Phase modulation is controlled by a magnetic field applied along the direction of light propagation that affects the phase state of the light through the Faraday effect. The applied magnetic field is generated by the current flowing through the coil. In phase modulation, for each pixel, the output beam and the input beam will have a phase difference and be a function of the current flowing through the coil corresponding to each pixel.
一種用於緊密全像顯示的緊密組合,包含兩個以小的分隔或最小分隔方式結合的磁光空間光調變器。在較佳的實施例中,兩個空間光調變器是具有相同數量的像素。因為兩個磁光空間光調 變器對於觀察者而言,並不是等距離的,所以兩個磁光空間光調變器的像素間距可能需要稍稍的不同,用以補償不同距離對於觀察者所造成的影響。已通過第一空間光調變器的像素的光,會通過第二空間光調變器對應的像素。因此,兩個空間光調變器會調變光,並且振幅與相位的複雜調變可獨立實現。舉一個例子,第一空間光調變器為振幅調變,而第二空間光調變器為相位調變。同樣地,任何相當於是幫助振幅及相位的獨立調變的其它種二個空間光調變器的調變特性的組合都是可能的。 A compact combination for compact holographic display that includes two magneto-optical spatial light modulators combined in a small or minimal separation. In a preferred embodiment, the two spatial light modulators have the same number of pixels. Because of the two magneto-optical spatial tones The transformer is not equidistant to the observer, so the pixel spacing of the two magneto-optical spatial light modulators may need to be slightly different to compensate for the effects of different distances on the viewer. The light that has passed through the pixels of the first spatial light modulator passes through the pixels corresponding to the second spatial light modulator. Therefore, the two spatial light modulators modulate the light, and the complex modulation of amplitude and phase can be achieved independently. As an example, the first spatial light modulator is amplitude modulated and the second spatial light modulator is phase modulated. Similarly, any combination of modulation characteristics of the other two spatial light modulators that are equivalent to independent modulation of amplitude and phase is possible.
必須小心的是通過第一空間光調變器的像素的光,只能通過第二空間光調變器對應的像素。如果通過第一空間光調變器的像素的光,通過了第二空間光調變器鄰近非對應的像素時,將會產生串音現象。這個串音可能會致使影像品質降低。在此提供四種最小化像素間串音問題的可能方法。由習用的技術可顯而易見,這些方法是同樣可以應用在B部份的實施例。 Care must be taken that the light passing through the pixels of the first spatial light modulator can only pass through the pixels corresponding to the second spatial light modulator. If the light passing through the pixels of the first spatial light modulator passes through the second spatial light modulator adjacent to the non-corresponding pixels, a crosstalk phenomenon will occur. This crosstalk may result in reduced image quality. Four possible ways to minimize crosstalk between pixels are provided here. It will be apparent from the conventional techniques that these methods are equally applicable to the embodiment of Part B.
(1)第一且最簡單的方法是直接將已調整排列像素過後的兩個空間光調變器連結或黏接在一起。在第一空間光調變器的像素上將會具有繞射現象,致使光發生偏離傳播。空間光調變器之間的分隔必須要能使得第二空間光調變器鄰近像素之間的串音到達可接受的程度。舉一個例子,具有10μm像素間距的兩個磁光空間光調變器的間隔,必須小於或等於10-100μm的層級。這在習用製造的空間光調變器中是幾乎不可能實現的,因為玻璃蓋的厚度即為1mm的層級。當然,能使空間光調變器之間僅具有薄的分隔層的"三明治"製造方式,可列入至其中一個製造的程序當中。可應用概要製造程序部份所描述的製造方法,來製作包含兩個間隔距離很小或最小的磁光空間光調變器的裝置。 (1) The first and simplest method is to directly connect or bond together two spatial light modulators after the aligned pixels have been adjusted. There will be a diffraction phenomenon on the pixels of the first spatial light modulator, causing the light to deviate from propagation. The separation between the spatial light modulators must be such that the crosstalk between adjacent pixels of the second spatial light modulator reaches an acceptable level. As an example, the spacing of two magneto-optical spatial light modulators having a pixel pitch of 10 μm must be less than or equal to the level of 10-100 μm. This is almost impossible to achieve in a conventionally manufactured spatial light modulator because the thickness of the glass cover is 1 mm. Of course, a "sandwich" manufacturing method that enables only a thin separation layer between spatial light modulators can be included in one of the manufacturing processes. The fabrication method described in the Summary Manufacturing Procedure section can be applied to fabricate a device comprising two magneto-optical spatial light modulators with a small or minimal separation distance.
圖十四顯示了菲涅耳繞射數據圖表,且是針對由10μm寬狹縫所產生的繞射所計算而得,在二維模型中變化離狹縫的距離,其中縱軸為slit(z),橫軸為slit(x)。均勻照射的狹縫是位在x軸上-5μm到+5μm之間的位置,並且z為零微米。採用的光傳送媒介是要能有1.5的折射率,這可能是用於緊密裝置的典型媒介。選定的光為具有633nm真空波長的紅光。綠色與藍色的波長是小於紅色光,因此對於紅色光的計算,在三個顏色紅色、綠色及藍色當中,表現出最強的繞射影響。可以使用Parametric Technology Corp.,Needham,MA,USA.的產品MathCad(RTM)軟體來執行計算。圖十五顯示一小部份的強度留在狹縫中心上10μm寬範圍內,為離狹縫距離的函數。在距離狹縫20μm的地方,圖十五顯示大於90%的強度仍然位於狹縫的10μm寬的範圍內。因此,在這個二維模型中,小於5%的像素強度將會入射在每一個鄰近的像素上。這是在像素之間為零邊界寬的限制情況下所計算的結果。像素之間實際的邊界寬是大於零的,因此串音問題在真實系統中會低於這此所計算的結果。在圖十四中,菲涅耳繞射圖接近狹縫,例如距離狹縫50μm,並且有點近似位於狹縫的高帽型強度函數(top-hat intensity function)。因此,在狹縫附近沒有寬的繞射特徵。寬的繞射特徵是高帽型函數的遠場繞射函數的特性,此為習用已知的sinc squared函數。圖十四中所顯示的寬的繞射特徵是作為距離狹縫300μm的例子。這說明了將兩個磁光空間光調變器設置的足夠接近可用來控制繞射效應,而且將兩個磁光空間光調變器設置的非常靠近的優點是繞射數據圖表的函數型式,會由遠場特性改變至在包含接近垂直於狹縫的軸的光時會較有效率的函數型式。這個優點是與習用全像技術的想法相違背的,習用的技術會傾向認為 在光通過空間光調變器的小孔徑時,會引起強的、大的及不可避免的繞射效應。因此,習用的技術不會有將兩個空間光調變器靠近在一起的動機,會預期這樣的方式會因為繞射效應引起必然發生且嚴重的像素串音問題。 Figure 14 shows the Fresnel diffraction data plot, calculated for the diffraction produced by a 10 μm wide slit, varying the distance from the slit in a two-dimensional model, where the vertical axis is slit (z ), the horizontal axis is slit(x). The uniformly illuminated slit is located between -5 μm and +5 μm on the x-axis, and z is zero micrometers. The optical transmission medium used is to have a refractive index of 1.5, which may be a typical medium for compact devices. The selected light is red light having a vacuum wavelength of 633 nm. The green and blue wavelengths are smaller than the red light, so for the calculation of red light, among the three colors red, green and blue, the strongest diffraction effect is exhibited. Calculations can be performed using the product MathCad (RTM) software from Parametric Technology Corp., Needham, MA, USA. Figure 15 shows that a small portion of the intensity remains in the 10 μm wide range at the center of the slit as a function of the distance from the slit. At a distance of 20 μm from the slit, Fig. 15 shows that the intensity greater than 90% is still in the range of 10 μm wide of the slit. Therefore, in this two-dimensional model, less than 5% of the pixel intensity will be incident on each adjacent pixel. This is the result of a calculation with a zero boundary width between pixels. The actual boundary width between pixels is greater than zero, so the crosstalk problem will be lower than this calculated result in real systems. In Figure 14, the Fresnel diffraction pattern approaches the slit, for example 50 μm from the slit, and is somewhat approximate to the top-hat intensity function of the slit. Therefore, there is no wide diffraction characteristic near the slit. The wide diffraction characteristic is a characteristic of the far-field diffraction function of the high-hat type function, which is a conventionally known sinc squared function. The wide diffraction pattern shown in Fig. 14 is an example of a distance of 300 μm from the slit. This illustrates the advantage of placing two magneto-optical spatial light modulators close enough to control the diffraction effect, and the very close proximity of the two magneto-optical spatial light modulators is the functional version of the diffracted data graph, The far field characteristic will change to a more efficient functional version when it contains light that is close to the axis perpendicular to the slit. This advantage is contrary to the idea of using holographic technology, and the techniques used will tend to think When the light passes through the small aperture of the spatial light modulator, it will cause strong, large and unavoidable diffraction effects. Therefore, the conventional technique does not have the motivation to bring the two spatial light modulators together, and it is expected that such a way will cause an inevitable and serious pixel crosstalk problem due to the diffraction effect.
圖十六顯示強度分佈的等高線圖,為離狹縫距離的函數。等高線的標繪是在對數尺度上,而不是線性尺度。使用了十條等高線,全部含括100強度因數範圍。對於10μm的狹縫寬度,強度分配大程度的邊界在距離狹縫大約50μm的範圍內是清楚的。 Figure 16 shows a contour plot of the intensity distribution as a function of distance from the slit. The plot of the contour is on a logarithmic scale, not a linear scale. Ten contour lines were used, all including a range of 100 intensity factors. For a slit width of 10 μm, a large degree of intensity distribution boundary is clear in the range of about 50 μm from the slit.
在另一個實施例中,可利用減少第一磁光空間光調變器的像素孔徑區域來減輕在第二磁光空間光調變器的串音問題。 In another embodiment, the problem of crosstalk in the second magneto-optical spatial light modulator can be mitigated by reducing the pixel aperture area of the first magneto-optical spatial light modulator.
(2)第二個方法是在兩個空間光調變器之間使用透鏡陣列,如圖十七所示。較好的方法是讓透鏡的數量等同於每一個空間光調變器中的像素數量。兩個空間光調變器的間距以及透鏡陣列的間距可以輕微的不同,以補償與觀察者的距離差異。每一個透鏡成像第一空間光調變器的像素至第二空間光調變器對應的像素上,如圖十七中光束171所示。同樣的,會有光通過鄰近的透鏡,因而可能引發串音現象,如光束172所示。如果它的強度是足夠的低,或是它的方向是充份的不同,使其無法到達虛擬觀察者視窗時,這將可以忽略。 (2) The second method is to use a lens array between the two spatial light modulators, as shown in Figure 17. A better approach is to have the number of lenses equal to the number of pixels in each spatial light modulator. The spacing of the two spatial light modulators and the spacing of the lens arrays can be slightly different to compensate for the difference in distance from the observer. Each lens images the pixels of the first spatial light modulator to the pixels corresponding to the second spatial light modulator, as shown by beam 171 in FIG. Similarly, there will be light passing through adjacent lenses, which may cause crosstalk, as shown by beam 172. This can be ignored if its intensity is low enough, or if its direction is sufficiently different to make it impossible to reach the virtual observer window.
每個透鏡的數值孔徑(Numerical Aperture,NA)必須是足夠大的,以成像具充份解析度的像素。舉一個例子,對於5μm的解析度,需要約為0.2的數值孔徑。這也表示如果假定為幾合光學,且如果空間光調變器與透鏡陣列的間距為10μm,則透鏡陣列1704與每一空間光調變器1702,1703之間的最大距離大約為25μm。其中包含入射光1701。 The numerical aperture (NA) of each lens must be large enough to image a pixel with sufficient resolution. As an example, for a resolution of 5 μm, a numerical aperture of about 0.2 is required. This also means that if polyhedron is assumed, and if the spatial light modulator is spaced from the lens array by 10 [mu]m, the maximum distance between lens array 1704 and each spatial light modulator 1702, 1703 is approximately 25 [mu]m. It contains incident light 1701.
也可能將每個空間光調變器的數個像素指派給透鏡陣列中的一個透鏡。舉一個例子,以第一空間光調變器的四個像素為一群,可藉由透鏡陣列中的一個透鏡成像到一個在第二空間光調變器中由四個像素所組成的群。這樣的透鏡陣列的透鏡數量會為每一個空間光調變器中的像素數量的四分之一。如此可以允許使用較高數值孔徑的透鏡,因此可獲得較高解析度的成像像素。 It is also possible to assign several pixels of each spatial light modulator to one of the lenses in the lens array. As an example, a group of four pixels of the first spatial light modulator can be imaged by a lens in the lens array to a group of four pixels in the second spatial light modulator. The number of lenses of such a lens array will be one quarter of the number of pixels in each spatial light modulator. This allows for the use of lenses with higher numerical apertures, thus enabling higher resolution imaging pixels.
(3)第三個方法是盡可能的減少第一磁光空間光調變器1802的像素孔徑。從繞射的觀點來,在第二空間光調變器中,由第一空間光調變器的一個像素所照射的區域,是由第一磁光空間光調變器1802的像素孔徑寬度D及繞射角度所決定,如圖十八所示。在圖十八中,d為兩個磁光空間光調變器(MOSLM)1801,1802之間的距離,而w是兩個第一階級繞射最小值(發生於第零階級最大值的任一邊)之間的距離。這是假定為夫朗和斐(Fraunhofer)繞射,或是合理的夫朗和斐繞射近似。其中包含入射光(Incident Light)1801。 (3) The third method is to reduce the pixel aperture of the first magneto-optical spatial light modulator 1802 as much as possible. From the viewpoint of diffraction, in the second spatial light modulator, the area illuminated by one pixel of the first spatial light modulator is the pixel aperture width D of the first magneto-optical spatial light modulator 1802. And the diffraction angle is determined, as shown in Figure 18. In Fig. 18, d is the distance between two magneto-optical spatial light modulators (MOSLM) 1801, 1802, and w is the minimum of two first-order diffractions (occurring at the zeroth class maximum) The distance between one side). This is assumed to be a diffraction of Fraunhofer, or a reasonable approximation of the Fraunhofer diffraction. It contains Incident Light 1801.
減少孔徑寬度D一方面可減少照射區域中心部分的直接投射範圍,如圖十八中虛線所示。而另一方面,依照繞射角度正比於夫朗和斐繞射中的1/D,繞射角度會增加。這增加了在第二磁光空間光調變器上的照射區域的寬度w.照射區域的全部寬度為w。在夫朗和斐繞射方法中,D可決定來使得它能在給定分隔d的情況,利用方程式w=D+2dλ/D來最小化w,此方程式是從夫朗和斐繞射中的兩個第一階最小值之間的距離推得。 Reducing the aperture width D on the one hand reduces the direct projection range of the central portion of the illumination area, as indicated by the dashed line in FIG. On the other hand, the diffraction angle increases as the diffraction angle is proportional to 1/D in the Fraunhofer diffraction. This increases the width of the illumination area on the second magneto-optical spatial light modulator. w. The full width of the illumination area is w. In the Fraun and Fiji diffraction methods, D can be determined such that it can minimize w by the equation w=D+2dλ/D given the separation d, which is from the Fraunhofer diffraction The distance between the two first-order minimums is derived.
例如,如果λ是0.5μm,d是100μm及w是20μm,可得到D為10μm的最小值。然而在這個例子中,夫朗和斐方法可能不會是一個好的近似,這個例子說明了使用磁光空間光調變器之間的 距離來控制夫朗和斐繞射方式的繞射過程的準則。 For example, if λ is 0.5 μm, d is 100 μm, and w is 20 μm, a minimum value of D of 10 μm can be obtained. However, in this example, the Frang and Fiji methods may not be a good approximation. This example illustrates the use of a magneto-optical spatial light modulator. The distance is used to control the diffraction process of the Fraun and Fier diffraction methods.
(4)第四個方法使用了光纖面板來成像第一空間光調變器的像素至第二空間光調變器的像素上。光纖面板是由二維排列的平行光纖所構成。光纖的長度並且面板的厚度典型為數毫米,面板表面的對角線長度是長至數英吋。舉一個例子,光纖的間距可為6μm。Edmund Optics Inc.of Barrington,New Jersey,USA有銷售具有如此光纖間距的光纖面板。每一條光纖會將光從它的其中一端引導至另一端。因此,在面板一端的影像會被傳送至另一端,並且具有高解析度且不需要聚焦元件。這樣的面板可作為兩個空間光調變器之間的分隔層。多模光纖會比單模光纖較為合適,因為多模光纖的耦合效率比單模光纖好。當光纖核心的折射率與液晶的折射率為相配時,會得到最佳的耦合效率,因為這可最小化菲涅耳背向反射損失(Fresnel back reflection losses)。 (4) The fourth method uses a fiber optic panel to image the pixels of the first spatial light modulator to the pixels of the second spatial light modulator. The fiber optic panel is composed of two-dimensionally arranged parallel fibers. The length of the fiber and the thickness of the panel are typically a few millimeters, and the diagonal length of the panel surface is as long as several inches. As an example, the spacing of the fibers can be 6 μm. Edmund Optics Inc. of Barrington, New Jersey, USA has sold fiber optic panels with such fiber spacing. Each fiber directs light from one end of it to the other. Therefore, the image at one end of the panel is transmitted to the other end, and has high resolution and does not require a focusing element. Such a panel acts as a separation layer between the two spatial light modulators. Multimode fiber is more suitable than single mode fiber because multimode fiber has better coupling efficiency than single mode fiber. When the refractive index of the fiber core matches the refractive index of the liquid crystal, the best coupling efficiency is obtained because it minimizes Fresnel back reflection losses.
在兩個空間光調變器之間並沒有額外的覆蓋玻璃。通過第一磁光空間光調變器像素的光會被引導至第二磁光空間光調變器對應的像素。這會最小化鄰近像素的串音。面板會將第一空間光調變器輸出端的光分佈傳送至第二空間光調變器的輸入端。平均而言,每個像素應至少一個光纖。如果平均而言每個像素是少於一個光纖的話,空間光調變器的解析度將會損失,造成顯示於全像顯示應用中的影像品質降低。 There is no additional cover glass between the two spatial light modulators. Light passing through the first magneto-optical spatial light modulator pixel is directed to a pixel corresponding to the second magneto-optical spatial light modulator. This minimizes crosstalk from neighboring pixels. The panel transmits the light distribution at the output of the first spatial light modulator to the input of the second spatial light modulator. On average, each pixel should have at least one fiber. If, on average, each pixel is less than one fiber, the resolution of the spatial light modulator will be lost, resulting in reduced image quality for display in holographic display applications.
圖十顯示了用於編碼全像圖振幅與相位資訊的緊密排列的例子。104是照明裝置,用於提供平面區域的照明,其中照明是具有充份的同調性,以便能夠產生三維影像。在US 2006/250671中提出了一個用於大區域影像全像圖的照射裝置的例子。如同104的 裝置可採用白色光源陣列的形式,例如冷陰極螢光燈或是發出的光線為入射在聚焦系統上的白光發光二極體,其中聚焦系統可為緊密的,如透鏡狀陣列或微透鏡陣列100。或者,用於104的光源可由紅色、綠色及藍色雷射所組成,或是由發出充份同調性光的紅色、綠色及藍色發光二極體所組成。然而,相較於雷射光源,具有充份空間同調性的非雷射光源(例如:發光二極體、有機發光二極體、冷陰極螢光燈)是更佳的。雷射光源具有一些缺點,例如會在全像重建上造成雷射斑點、相對上較為昂貴以及可能會傷害全像顯示觀看者或是進行全像顯示裝置組裝之工作人員的眼睛等安全性問題。 Figure 10 shows an example of a tight alignment of the amplitude and phase information used to encode the hologram. 104 is a lighting device for providing illumination of a planar area, wherein the illumination is sufficiently homogenous to enable generation of a three-dimensional image. An example of an illumination device for a large area image hologram is presented in US 2006/250671. Like 104 The device may take the form of an array of white light sources, such as a cold cathode fluorescent lamp or emitted light as a white light emitting diode incident on the focusing system, wherein the focusing system may be compact, such as a lenticular array or microlens array 100. . Alternatively, the light source for 104 may be comprised of red, green, and blue lasers, or may be comprised of red, green, and blue light emitting diodes that emit sufficient tonal light. However, compared to laser sources, non-laser sources (eg, light-emitting diodes, organic light-emitting diodes, cold cathode fluorescent lamps) having sufficient spatial coherence are preferred. Laser light sources have some disadvantages, such as laser spots that can cause laser spots on holographic reconstruction, are relatively expensive, and can damage the omnidirectional display of the viewer or the eyes of the omni-directional display device.
元件104、100-103及109的全部厚度可約為數公分,或是更低。元件101可包含色彩過濾器陣列,使得彩色光線(例如紅色、綠色及藍色光)的像素是射向元件102,儘管如果使用彩色光源,色彩過濾器是不需要的。元件102是光偏化元件,或是一組的光偏化元件。元件103是編碼相位資訊的磁光空間光調變器。元件109是編碼振幅資訊的磁光空間光調變器。元件103及109每一個包含光偏化元件或是一組的光偏化元件。元件103的每一個元件(在此以107表示)會與元件109中對應的元件排列(在此以108表示)。然而,儘管元件103與109中的元件具有相同的橫向間隔或間距,元件103中的元件大小會小於或等於元件109中的元件,因為離開元件107的光在進入元件109的元件108之前,典型地會經歷一些繞射。振幅與相位的編碼次序可與圖十中所示的相反。 The total thickness of elements 104, 100-103, and 109 can be on the order of a few centimeters or less. Element 101 may comprise a color filter array such that pixels of colored light (e.g., red, green, and blue light) are directed toward element 102, although a color filter is not required if a colored light source is used. Element 102 is a photo-biasing element or a set of photo-biasing elements. Element 103 is a magneto-optical spatial light modulator that encodes phase information. Element 109 is a magneto-optical spatial light modulator that encodes amplitude information. Elements 103 and 109 each comprise a photo-biasing element or a set of photo-biasing elements. Each element of component 103 (represented herein as 107) will be aligned with the corresponding component of component 109 (here indicated at 108). However, although the elements 103 and 109 have the same lateral spacing or spacing, the element size in element 103 will be less than or equal to the element in element 109, as the light exiting element 107 precedes element 108 of element 109, typically The ground will experience some diffraction. The encoding order of amplitude and phase can be reversed as shown in FIG.
位於點106離包含緊密型全像圖產生器105的裝置一些距離的觀看者,可從105的方向觀看到三維影像。排列元件104、100、101、102、103與109,使其能形成如之前所描述的實體連接,以 便能形成緊密的全像圖產生器105。在B部份所描述的光學構成要素可包含在緊密的全像圖產生器105中,如同在習用技術中可見的。 A viewer located at a distance 106 from the device containing the compact hologram generator 105 can view the three-dimensional image from the direction of 105. Arranging elements 104, 100, 101, 102, 103 and 109 to form a physical connection as previously described, A compact hologram generator 105 can be formed. The optical components described in Section B can be included in the compact hologram generator 105 as can be seen in the prior art.
圖十九顯示了一個構成要素包含一個或二個磁光空間光調變器的緊密組合,且具有目標全像重建的大倍率三維影像顯示裝置。這個裝置的構成要素包括磁光空間光調變器與充份同調性的緊密型光源的緊密組合,這樣的組合能夠在適當的照明情況下,產生三維影像,並可在虛擬觀察者視窗(在圖十九標示為OW)中觀察到,且這個裝置元件可整合在例如個人數位助理或行動電話中。如圖十九所示,空間光調變器與充份同調性的緊密型光源的緊密組合包含光源陣列1901、空間光調變器MOSLM及透鏡陣列1902。在圖十九中的空間光調變器包含一個或兩個磁光空間光調變器的緊密組合。 Fig. 19 shows a large-magnification three-dimensional image display device in which a constituent element includes a close combination of one or two magneto-optical spatial light modulators and has a target holographic reconstruction. The components of this device include a close combination of a magneto-optical spatial light modulator and a coherent compact light source. This combination produces a three-dimensional image under appropriate illumination and can be viewed in a virtual observer window. Figure 19 is labeled as observed in OW) and this device component can be integrated, for example, in a personal digital assistant or mobile phone. As shown in FIG. 19, the close combination of the spatial light modulator and the well-toned compact light source includes a light source array 1901, a spatial light modulator MOSLM, and a lens array 1902. The spatial light modulator in Figure 19 contains a close combination of one or two magneto-optical spatial light modulators.
在一個簡單的例子中,光源陣列可由下列方式形成。單一光源,例如單色的發光二極體,放置在鄰近孔徑陣列的位置,使其能照射孔徑。如果孔徑是一維陣列的狹縫,由狹縫傳送的光會形成一維陣列的光源。如果孔徑是二維陣列的圓,圓的照射集合即形成二維陣列的光源。典型的孔徑寬約為20μm。這樣的光源陣列適合用於產生對於一眼的觀察者視窗。 In a simple example, the array of light sources can be formed in the following manner. A single source, such as a monochromatic light-emitting diode, is placed adjacent to the array of apertures to illuminate the aperture. If the aperture is a slit of a one-dimensional array, the light transmitted by the slit will form a one-dimensional array of light sources. If the aperture is a circle of a two-dimensional array, the illuminated set of circles forms a two-dimensional array of light sources. A typical aperture width is about 20 μm. Such an array of light sources is suitable for producing an observer window for one eye.
在圖十九中,光源陣列是設置在距離透鏡陣列u距離長度的位置。光源陣列可為圖一中元件10的光源,並且可選擇性的包含圖一中的元件12。確切的說,光源陣列中的每一個光源是設置在 距離透鏡陣列中它所對應的透鏡u距離長度的位置。在較佳的實施例中,光源陣列與透鏡陣列的平面是呈平行狀的。空間光調變器可位在透鏡陣列的任一邊。虛擬觀察者視窗與透鏡陣列的距離為v。透鏡陣列中的透鏡是聚光鏡,且聚焦長度f是由f=1/[1/u+1/v]所給定。在較佳的實施例中,v的值是在300mm到600mm的範圍內。在更佳的實施例中,v大約為400mm。在較佳的實施例中,u的值是在10mm到30mm的範圍內。在更佳的實施例中,u的值大約為20mm。放大因數M是由v/u所決定。M是經由空間光調變器調變過後的光源,在虛擬觀察者視窗被放大的因素。在較佳的實施例中,M的值是在10到60的範圍內。在更佳的實施例中,M大約為20。為了實現這樣的放大因數,以獲得好的全像影像品質,需要準確排列光源陣列與透鏡陣列。為了維持精確的排列,以及維持光源陣列與透鏡陣列之間的距離,直到超過元件的使用壽命為止,裝置元件需要具有非常好的機械穩定度。 In Fig. 19, the light source array is disposed at a distance from the lens array u. The array of light sources can be the light source of element 10 in Figure 1, and can optionally include element 12 of Figure 1. Specifically, each light source in the array of light sources is placed The distance from the lens u corresponding to its length in the lens array. In a preferred embodiment, the array of light sources is parallel to the plane of the lens array. The spatial light modulator can be located on either side of the lens array. The distance between the virtual observer window and the lens array is v. The lens in the lens array is a condensing mirror, and the focal length f is given by f = 1 / [1/u + 1 / v]. In a preferred embodiment, the value of v is in the range of 300 mm to 600 mm. In a more preferred embodiment, v is approximately 400 mm. In a preferred embodiment, the value of u is in the range of 10 mm to 30 mm. In a more preferred embodiment, the value of u is approximately 20 mm. The amplification factor M is determined by v/u. M is a factor that is modulated by the spatial light modulator and is magnified in the virtual observer window. In a preferred embodiment, the value of M is in the range of 10 to 60. In a more preferred embodiment, M is about 20. In order to achieve such an amplification factor to achieve good holographic image quality, it is necessary to accurately align the light source array with the lens array. In order to maintain a precise alignment and maintain the distance between the array of light sources and the array of lenses, the device components need to have very good mechanical stability until the lifetime of the components is exceeded.
虛擬觀察者視窗可為可追蹤式或是不可追蹤式。如果虛擬觀察者視窗是可追蹤式的,則根據所需的虛擬觀察者視窗位置,會啟動光源陣列中特定的光源。啟動的光源會照射空間光調變器,並且藉由透鏡陣列成像至觀察者平面。對於透鏡陣列中的每一個透鏡,至少啟動一個光源陣列中的光源。這樣的追蹤是為準連續的。如果u為20mm且v為400mm,假若像素間距為20μm,則可追蹤具有400μm橫向增量的虛擬觀察者視窗。這樣的追蹤是準連續的。如果u為20mm且v為400mm,則f大概為19mm。 The virtual observer window can be either traceable or untrackable. If the virtual observer window is traceable, a particular light source in the array of light sources is activated depending on the desired virtual observer window position. The activated light source illuminates the spatial light modulator and is imaged by the lens array to the viewer plane. For each lens in the lens array, at least one light source in the array of light sources is activated. Such tracking is quasi-continuous. If u is 20 mm and v is 400 mm, if the pixel pitch is 20 μm, a virtual observer window having a lateral increment of 400 μm can be tracked. Such tracking is quasi-continuous. If u is 20 mm and v is 400 mm, then f is approximately 19 mm.
在光源陣列中的光源可能僅具有部分的空間同調性。部分的同調性會導致模糊的目標點重建。如果u為20mm且v為400mm,假若光源的寬度為20μm,則距離顯示器100mm的目標點的重建 會具有100μm的橫向模糊。這對於人類視覺系統的解析度而言是足夠的。 The light source in the array of light sources may only have partial spatial homology. Partial homology can lead to fuzzy target point reconstruction. If u is 20mm and v is 400mm, if the width of the light source is 20μm, reconstruction of the target point from the display 100mm Will have a lateral blur of 100μm. This is sufficient for the resolution of the human visual system.
在通過透鏡陣列中不同透鏡的光之間,並不需要具有任何明顯的相互同調性。同調性的需求是限制在透鏡陣列中的每一個單一透鏡。因此,重建目標點的解析度是由透鏡陣列的間距來決定。對於人類的視覺系統而言,典型的透鏡間距將為1mm的層級,以確保充份的解析度。 It is not necessary to have any significant mutual homology between the light passing through the different lenses in the lens array. The need for coherence is limited to each single lens in the lens array. Therefore, the resolution of the reconstruction target point is determined by the pitch of the lens array. For the human visual system, the typical lens spacing will be 1 mm to ensure adequate resolution.
虛擬觀察者視窗是限制在空間光調變器中所編碼的資訊的傅立葉頻譜的一個繞射階級。如果空間光調變器的像素間距為20μm,在500nm的波長,虛擬觀察者視窗會具有10mm寬的寬度。虛擬觀察者視窗可利用空間或時間上多工,將數個虛擬觀察者視窗拼湊成擴大的虛擬觀察者視窗。在空間多工的情況下,會需要額外的光學元件,如光束分光鏡。 The virtual observer window is a diffractive class that limits the Fourier spectrum of the information encoded in the spatial light modulator. If the spatial light modulator has a pixel pitch of 20 μm, the virtual viewer window will have a width of 10 mm wide at a wavelength of 500 nm. The virtual observer window can utilize space or time multiplex to piece together several virtual observer windows into an expanded virtual observer window. In the case of spatial multiplexing, additional optical components such as beam splitters may be required.
彩色全像重建可由時間多工來實現。彩色有機發光二極體顯示器的紅色、綠色及藍色像素是依序利用空間光調變器的同步重編碼進行激活,此空間光調變器具有針對紅色、綠色及藍色光學波長進行計算的全像圖。 Color hologram reconstruction can be achieved by time multiplexing. The red, green, and blue pixels of the color organic light-emitting diode display are sequentially activated by synchronous re-encoding of the spatial light modulator, which has calculations for red, green, and blue optical wavelengths. Full picture.
形成顯示器的裝置元件中可包含眼睛位置偵測器,用以偵測觀察者眼睛的位置。眼睛位置偵測器連接控制單位,此控制單位是用來控制光源陣列中的光源的激活。 An eye position detector may be included in the device component forming the display for detecting the position of the observer's eyes. The eye position detector is connected to a control unit that is used to control the activation of the light source in the array of light sources.
在空間光調變器上編碼的全像圖的計算最好是由外部的編碼單元執行,因為它需要較高的計算能力。顯示資料會接著傳送至個人數位助理或行動電話,以顯示全像產生的三維影像。 The calculation of the hologram image encoded on the spatial light modulator is preferably performed by an external coding unit because it requires a higher computational power. The display data is then transmitted to a personal digital assistant or mobile phone to display a three-dimensional image of the hologram.
除了將光投射至數個虛擬觀察者視窗之外,從全像顯示裝置發射的光也可以投射到螢幕或牆上或是一些其它的表面上。因此,在行動電話或個人數位助理中的三維顯示裝置也能像是以口袋型投影機的方式來使用。任何其它包含一對或兩對磁光空間光調變器的緊密組合的三維顯示裝置也能如同以投影機的方式來使用。 In addition to projecting light into several virtual viewer windows, light emitted from the holographic display can also be projected onto a screen or wall or some other surface. Therefore, the three-dimensional display device in a mobile phone or a personal digital assistant can also be used as a pocket projector. Any other three-dimensional display device comprising a close combination of one or two pairs of magneto-optical spatial light modulators can also be used as a projector.
可藉由使用空間光調變器調變入射光的振幅及相位來提升全像投影的品質。因此,複數值的全像圖可在空間光調變器上編碼,讓重建在螢幕或牆上的影像具有較好品質。 The quality of the holographic projection can be improved by using a spatial light modulator to modulate the amplitude and phase of the incident light. Therefore, a complex-valued hologram can be encoded on a spatial light modulator, allowing for better quality of reconstructed images on the screen or wall.
一對或兩對磁光空間光調變器的緊密組合,可作為投影器中的空間光調變器。由於此組合的大小為緊密的,投影機也將會是緊密的。投影機甚至可以是和行動電話或是個人數位助理一樣的裝置:可在"三維顯示器"與"投影器”模式間切換。 A close combination of one or two pairs of magneto-optical spatial light modulators can be used as a spatial light modulator in a projector. Since the size of this combination is tight, the projector will also be tight. The projector can even be the same device as a mobile phone or a personal digital assistant: it can be switched between "3D display" and "projector" modes.
相較於習用的二維投影機,全像式二維投影機具有不需要投影透鏡以及投射的影像可在光學遠場中全部的距離聚焦的優點。習用的全像式二維投影機,例如在WO2005/059881中所描述的內容,使用單一空間光調變器,因此無法進行複雜的調變。在此所描述的全像式二維投影機將能進行複雜的調變,因此能具有非常佳的影像品質。 Compared to conventional 2D projectors, holographic 2D projectors have the advantage of not requiring a projection lens and the projected image can be focused at all distances in the optical far field. Conventional holographic two-dimensional projectors, such as those described in WO2005/059881, use a single spatial light modulator, so that complex modulation cannot be performed. The holographic two-dimensional projector described herein will be able to perform complex modulations and thus have excellent image quality.
這個實施例是關於全像顯示器的虛擬觀察者視窗(VOWs)的空間多工,並結合二維編碼的使用。除此之外,全像顯示器可如 同在A、B、C或D部份中所描述的內容,或是如同任何習用的全像顯示器。 This embodiment relates to the spatial multiplexing of virtual observer windows (VOWs) for holographic displays, combined with the use of two-dimensional encoding. In addition, the holographic display can be like Same as described in Sections A, B, C or D, or as any conventional holographic display.
數個處擬觀察者視窗(例如一個用於左眼的虛擬觀察者視窗與一個用於右眼的虛擬觀察者視窗)可利用空間或時間多工的方式產生是已知的。關於空間多工,兩個虛擬觀察者視窗是在同一個時間點產生,並且經由光束分光鏡來區分,相似於自動立體顯示器,如在WO 2006/027228中所描述的內容。而關於時間多工,虛擬觀察者視窗是時間上依序產生的。 It is known that several observer windows (e.g., a virtual observer window for the left eye and a virtual observer window for the right eye) can be generated using spatial or temporal multiplexing. With regard to spatial multiplexing, two virtual observer windows are generated at the same point in time and are distinguished by a beam splitter, similar to an autostereoscopic display, as described in WO 2006/027228. With regard to time multiplex, the virtual observer window is generated sequentially in time.
然而,習用的全像顯示系統具有一些缺點。對於空間多工而言,使用的照明系統在水平方向是空間非同調性的,並且是以水平線光源與透鏡狀陣列為基礎,如圖四所示由習用技術WO 2006/027228所獲得的內容。這具有可利用已知的自動立體顯示器技術的優點。然而,它的缺點是不可能在水平方向上產生全像重建。取而代之的是使用所謂的1維編碼,可使得全像重建與移動視差僅在垂直方向產生。因此,垂直焦點是在重建物件的平面中,而水平焦點是在空間光調變器的平面中。這些散光會減少空間視覺的品質,意即它降低了觀看者接收到的全像重建的品質。同樣地,時間多工系統也具有缺點,它們需要快速的空間光調變器,而在所有顯示器的尺寸中尚未有如此快速的空間光調變器,即使可找到也是過分的昂貴。 However, conventional hologram display systems have some drawbacks. For spatial multiplexing, the illumination system used is spatially non-coherent in the horizontal direction and is based on a horizontal line source and a lenticular array, as shown in Figure 4 from the prior art WO 2006/027228. This has the advantage of utilizing known autostereoscopic display technology. However, its disadvantage is that it is impossible to produce a holographic reconstruction in the horizontal direction. Instead, so-called 1D encoding is used, which allows hologram reconstruction and moving parallax to be generated only in the vertical direction. Thus, the vertical focus is in the plane of the reconstructed object and the horizontal focus is in the plane of the spatial light modulator. These astigmatisms reduce the quality of spatial vision, meaning that it reduces the quality of holographic reconstruction received by the viewer. Similarly, time multiplex systems have the disadvantage that they require fast spatial light modulators, and there are no such fast spatial light modulators in all of the display sizes, even if they are found to be excessively expensive.
只有二維編碼能在水平與垂直方向同時提供全像重建,因此二維編碼不會產生散光,散光會減少空間視覺的品質,意即降低觀看者接收到的全像重建的品質。因此,這個實施例的目的是結合二維編碼以實現虛擬觀察者視窗的空間多工。 Only two-dimensional coding can provide holographic reconstruction in both horizontal and vertical directions, so two-dimensional coding will not produce astigmatism, and astigmatism will reduce the quality of spatial vision, which means reducing the quality of holographic reconstruction received by the viewer. Therefore, the purpose of this embodiment is to combine two-dimensional coding to achieve spatial multiplexing of virtual observer windows.
在這個實施例中,具有水平與垂直局部空間同調性的照明會與光束分光鏡結合,光束分光鏡會將光束區分為對於左眼虛擬觀察者視窗的光束及對於右眼虛擬觀察者視窗的光束。因此,必須考慮在光束分光鏡上的繞射。光束分光鏡可為稜鏡陣列、第二透鏡陣列(例如靜態陣列或是變量陣列,如圖二十中所示)或是障礙遮蔽物。圖二十包含:入射光2001、填滿液晶的凹洞2002、液晶排列整齊的凹洞2003、主體材料2004及電場2005,2006。 In this embodiment, illumination with horizontal and vertical local spatial coherence is combined with a beam splitter that separates the beam into a beam for the left-eye virtual observer window and a beam for the right-eye virtual observer window. . Therefore, diffraction on the beam splitter must be considered. The beam splitter can be a tantalum array, a second lens array (eg, a static array or a variable array, as shown in FIG. 20), or a barrier mask. Figure 20 includes incident light 2001, a pit filled with liquid crystal 2002, a well-aligned liquid crystal 2003, a host material 2004, and an electric field 2005, 2006.
圖二十二顯示了這個實施方式的一個例子。圖二十二為包含二維光源陣列的光源、二維透鏡陣列的透鏡、空間光調變器與光束分光鏡的全像顯示器示意圖。光束分光鏡會將離開空間光調變器的光線,分離成二束光線,分別照射用於左眼的虛擬觀察者視窗(VOWL)與用於右眼的虛擬觀察者視窗(VOWR)。在這個例子中,光源的數量為一個或多個;透鏡的數量與光源的數量是相同的。 An example of this embodiment is shown in Figure 22. Figure 22 is a schematic diagram of a holographic display comprising a light source of a two-dimensional array of light sources, a lens of a two-dimensional lens array, a spatial light modulator, and a beam splitter. The beam splitter splits the light exiting the spatial light modulator into two beams that illuminate the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye. In this example, the number of light sources is one or more; the number of lenses is the same as the number of light sources.
在這個例子中,光束分光鏡是在空間光調變器之後。光束分光鏡與空間光調變器的位置也可相互交換。 In this example, the beam splitter is after the spatial light modulator. The positions of the beam splitter and the spatial light modulator can also be interchanged.
圖二十三顯示了這個實施例的平面圖,在其中是使用稜鏡陣列作為光束分光鏡。照明裝置包含n個元件的二維光源陣列(LS1,LS2,...LSn)及n個元件的二維透鏡陣列(L1,L2,...Ln),在圖二十三中只顯示了兩個光源與兩個透鏡。每一個光源是利用它所對應的透鏡成像至觀察者平面。光源陣列的間距與透鏡陣列的間距是要使得全部光源的影像能同時出現在觀察者平面,即包含兩個虛擬觀察者視窗的平面。在圖二十三中,並沒有顯示左眼虛擬觀察者視窗(VOWL)與右眼虛擬觀察者視窗(VOWR),因為它們是在 超出圖外的位置,且是在圖的右側。可增加額外的視野透鏡(field lens)。為了提供充份的空間同調性,透鏡陣列的間距是相似於次全像圖的典型大小,即一至數毫米的層級。當光源是很小的或為點光源,且當使用二維透鏡陣列時,照明在每一個透鏡中是水平且垂直空間同調性的。透鏡陣列可為折射、繞射或全像式的。其中包含光束分光鏡2301。 Figure 23 shows a plan view of this embodiment in which a 稜鏡 array is used as a beam splitter. The illumination device comprises a two-dimensional array of two elements (LS1, LS2, ... LSn) and a two-dimensional lens array (L1, L2, ... Ln) of n elements, which are only shown in Figure 23. Two light sources and two lenses. Each light source is imaged to the viewer plane using its corresponding lens. The spacing of the array of light sources and the spacing of the lens arrays are such that images of all of the light sources can simultaneously appear in the viewer plane, ie, the plane containing the two virtual viewer windows. In Figure 23, the left-eye virtual observer window (VOWL) and the right-eye virtual observer window (VOWR) are not displayed because they are in It is beyond the position of the figure and is on the right side of the figure. Additional field lenses can be added. In order to provide sufficient spatial coherence, the pitch of the lens array is similar to the typical size of a sub-image, i.e., one to several millimeters. When the light source is small or a point source, and when a two-dimensional lens array is used, the illumination is horizontal and vertical spatially tonal in each lens. The lens array can be refractive, diffractive or holographic. The beam splitter 2301 is included therein.
在這個例子中,光束分光鏡是一維的垂直稜鏡陣列。入射在稜鏡的一個斜面的光,會偏斜至左眼虛擬觀察者視窗(to VOWL),入射在稜鏡的另一個斜面的光,會偏斜至右眼虛擬觀察者視窗(to VOWR)。從相同LS與相同透鏡所產生的光線,在通過光束分光鏡之後,也為相互同調。因此,具有垂直與水平聚焦及垂直與水平移動視差的二維編碼是可能的。 In this example, the beam splitter is a one-dimensional array of vertical turns. Light incident on one slope of the 稜鏡 is deflected to the left eye virtual observer window (to VOWL), and light incident on the other slope of the 稜鏡 is deflected to the right eye virtual observer window (to VOWR) . Light rays generated from the same LS and the same lens are also homologous to each other after passing through the beam splitter. Therefore, two-dimensional encoding with vertical and horizontal focusing and vertical and horizontal moving parallax is possible.
全像圖是利用二維編碼在空間光調變器上進行編碼。對於左眼及右眼的全像圖是一行行交錯,意即隔行編碼對於左眼與右眼的全像資訊。更好地是在每一個稜鏡下,具有包含左眼全像資訊的行及包含右眼全像資訊的行。另一個方法,也可以是在稜鏡的每一個斜面下具有兩個或更多個全像圖的行,例如三行對於左眼虛擬觀察者視窗,並且接著為三行對於右眼虛擬觀察者視窗。光束分光鏡的間距可與空間光調變器的間距相同,或為整數(例如二或三)倍數,或者,為了能容許透視縮短(perspective shortening),光束分光鏡的間距可比空間光調變器的間距稍微小一點,或是比它的整數(例如兩或三)倍數稍微小一點。 The hologram is encoded on a spatial light modulator using two-dimensional coding. The holograms for the left and right eyes are line-by-line interlaced, meaning interlaced coding for holographic information for the left and right eyes. It is better to have a line containing the left eye hologram information and a line containing the right eye hologram information under each armpit. Another method may also be a row with two or more holograms under each bevel of the cymbal, for example three rows for the left eye virtual observer window, and then three rows for the right eye virtual observer Windows. The beam splitter may have the same pitch as the spatial light modulator, or an integer (eg, two or three) multiples, or, in order to allow for perspective shortening, the beam splitter may be spaced apart by a spatial light modulator The spacing is slightly smaller, or slightly smaller than its integer (for example, two or three) multiples.
從具左眼全像的行發出的光會重建對於左眼的目標,並且照射左眼虛擬觀察者視窗(VOWL);從具右眼全像的行發出的光會重 建對於右眼的目標,並且照射右眼虛擬觀察者視窗(VOWR)。因此,每一個眼睛會接收到適當的重建。如果稜鏡陣列的間距是充分小時,則眼睛不能解析稜鏡結構,且稜鏡結構不會妨礙全像圖的重建。每一個眼睛會看見具有全聚焦與全移動視差的重建,並且沒有散光現象。 Light emitted from a line with a full image of the left eye reconstructs the target for the left eye and illuminates the left eye virtual observer window (VOWL); the light emitted from the line with the right eye hologram is heavy Construct a target for the right eye and illuminate the right eye virtual observer window (VOWR). Therefore, each eye will receive an appropriate reconstruction. If the spacing of the 稜鏡 array is sufficiently small, the eye cannot resolve the 稜鏡 structure and the 稜鏡 structure does not interfere with the reconstruction of the hologram. Each eye will see a reconstruction with full focus and full motion parallax, and no astigmatism.
當同調光照射光束分光鏡時,在光束分光鏡上將會有繞射。光束分光鏡可視為產生多重繞射階級的繞射光柵(diffraction grating)。斜的稜鏡斜面具有閃耀式光柵(blazed grating)的效果。對於閃耀式光柵,最大強度是導向特定的繞射階級。對於稜鏡陣列,一個最大強度會從稜鏡的一個斜面導向位於左眼虛擬觀察者視窗位置的一個繞射階級,另一個最大強度會從稜鏡的另一個斜面導向位於右眼虛擬觀察者視窗位置的另一個繞射階級。更精確來說,封裝式(enveloping)sinc-squared函數的強度最大值是位移至這些位置,而繞射階級是位在固定的位置。稜鏡陣列會在左眼虛擬觀察者視窗的位置產生一個強度封裝sinc-squared函數的最大值,在右眼虛擬觀察者視窗的位置產生另一個強度封裝sinc-squared函數的最大值。其它繞射階級的強度將會很小(意即sinc squared強度函數的最大值是狹窄的),並且將不會產生干擾串音,因為稜鏡陣列的填充因子(fill factor)是大的,例如接近100%。 When the dimming beam illuminates the beam splitter, there will be diffraction on the beam splitter. The beam splitter can be viewed as a diffraction grating that produces multiple diffraction levels. The oblique bevel has the effect of a blazed grating. For blazed gratings, the maximum intensity is directed to a particular diffraction class. For a tantalum array, a maximum intensity will be directed from one slope of the jaw to a diffractive stage at the virtual observer window of the left eye, and the other maximum intensity will be directed from the other slope of the pupil to the virtual observer window in the right eye. Another diffractive class of position. More precisely, the maximum intensity of the enveloping sinc-squared function is shifted to these positions, while the diffractive class is in a fixed position. The 稜鏡 array produces a maximum value of the intensity-encapsulated sinc-squared function at the position of the left-eye virtual observer window, and produces the maximum value of another intensity-packed sinc-squared function at the position of the right-eye virtual observer window. The intensity of the other diffraction classes will be small (meaning that the maximum value of the sinc squared intensity function is narrow) and will not cause interference crosstalk because the fill factor of the 稜鏡 array is large, for example Close to 100%.
如同在習用技術中可見的,為了提供虛擬觀察者視窗給予二個或更多個觀察者,可藉由使用更複雜的稜鏡陣列(例如兩種類型的稜鏡,具有相同的頂角(apex angles),但是不同程度的非對稱性,依序相鄰配置)來產生多個虛擬觀察者視窗。然而,使用靜態的稜鏡陣列是不能夠個別地追蹤觀察者。 As can be seen in the prior art, in order to provide a virtual observer window to two or more observers, by using a more complex array of cymbals (eg, two types of cymbals, having the same apex angle (apex) Angles), but varying degrees of asymmetry, sequentially adjacent to each other to produce multiple virtual observer windows. However, using a static 稜鏡 array is not able to track the observer individually.
在另一個例子中,每個透鏡可使用多於一個光源。每個透鏡多出來的光源可利用來產生額外的虛擬觀察者視窗,提供給予其它的觀察者。這是在WO 2004/044659(US2006/0055994)中所描述的內容,對於m個觀察者採用一個透鏡與m個光源的例子。關於此的另一個例子,是利用每個透鏡m個光源與雙倍的空間多工來產生m個左眼虛擬觀察者視窗及m個右眼虛擬觀察者視窗,提供給m個觀察者。每個透鏡m個光源是以m對1的對應方式,其中m是一個整數。 In another example, more than one light source can be used per lens. The additional light source for each lens can be utilized to create additional virtual observer windows that are provided to other viewers. This is an example described in WO 2004/044659 (US 2006/0055994), which uses an example of a lens and m light sources for m observers. Another example of this is to use m light sources per lens and double spatial multiplexing to generate m left-eye virtual observer windows and m right-eye virtual observer windows for m observers. The m light sources per lens are in a corresponding manner of m to 1, where m is an integer.
接著是這個實施方式的例子。使用20英吋的螢幕尺寸,並具有下列的參數值:觀察者的距離為2m,像素間距在垂直上為69μm,在水平上為207μm,使用布克哈特(Burckhardt)編碼,以及光學波長為633nm。布克哈特編碼是在垂直方向,具有69μm的次像素間距與6mm高的虛擬觀察者視窗(垂直期間)。忽略透視縮短,垂直稜鏡陣列的間距為414μm,也就是在每個全稜鏡下具有兩個空間光調變器的行。因此,觀察者平面中的水平期間為3mm。這也同樣為虛擬觀察者視窗的寬度。這個寬度在直徑上是小於理想大約4mm的眼睛瞳孔大小。在另一個相似的例子中,如果空間光調變器具有50μm較小的間距,虛擬觀察者視窗將會具有25mm的寬度。 This is followed by an example of this embodiment. Use a 20-inch screen size with the following parameter values: observer distance 2m, pixel pitch 69μm vertical, 207μm horizontal, using Burckhardt encoding, and optical wavelength 633nm. The Bookhart code is in the vertical direction with a sub-pixel pitch of 69 μm and a virtual observer window of 6 mm height (vertical period). Ignoring the perspective shortening, the vertical 稜鏡 array has a spacing of 414 μm, which is the line with two spatial light modulators under each full 稜鏡. Therefore, the horizontal period in the observer plane is 3 mm. This is also the width of the virtual observer window. This width is less than the ideal pupil size of the eye of about 4 mm in diameter. In another similar example, if the spatial light modulator has a 50 μm smaller pitch, the virtual viewer window will have a width of 25 mm.
如果成年人眼睛的分隔為65mm(這是典型的),稜鏡必須偏斜光±32.5mm,使得光與包含虛擬觀察者視窗的平面相交。更精確來說,強度封裝sinc-squared函數的最大值需要偏斜±32.5mm。這對於2m的觀察者距離相當於是±0.93°的角度。對於折射率n=1.5的稜鏡,適當的稜鏡角度為±1.86°。稜鏡角度是定義為基底與稜鏡斜邊之間的角度。 If the adult eye is separated by 65 mm (which is typical), the 稜鏡 must deflect the light by ±32.5 mm so that the light intersects the plane containing the virtual observer window. More precisely, the maximum value of the intensity package sinc-squared function needs to be skewed by ±32.5 mm. This corresponds to an angle of ±0.93° for an observer distance of 2 m. For enthalpy with a refractive index n = 1.5, a suitable 稜鏡 angle is ± 1.86 °. The 稜鏡 angle is defined as the angle between the base and the skewed edge.
對於在3mm的觀察者平面中的水平期間,另一個眼睛的位置是在大約21繞射階級的距離(意即65mm除以3mm)。因此,由另一個虛擬觀察者視窗的較高繞射階級所導致在左眼虛擬觀察者視窗與在右眼虛擬觀察者視窗之中的串音是可以忽略的。 For the level in the 3 mm observer plane, the position of the other eye is at a distance of approximately 21 diffraction stages (ie 65 mm divided by 3 mm). Thus, the crosstalk between the left eye virtual viewer window and the right eye virtual viewer window caused by the higher diffractive class of another virtual observer window is negligible.
為了實作追蹤,光源追蹤為一個簡單的追蹤方法,意即調整光源的位置。如果空間光調變器與稜鏡陣列不是在相同的平面上,在空間光調變器像素與稜鏡之間將會具有由視差所導致相關於橫向偏移的擾亂。這將可能會導致擾亂串音。上述20英吋螢幕尺寸例子中的像素,在垂直於每個稜鏡尖端所形成的軸的方向,可能具有70%的填充因子,也就是在每個邊上,像素的大小為145μm的作用區域及31μm的無作用的區域。如果稜鏡陣列的建構區域是朝向空間光調變器,在稜鏡陣列與空間光調變器之間的分隔可能大約為1mm。無串音的水平追蹤範圍將會是±31μm/1mm * 2m=±62mm。如果小的串音是可容許的話,那麼追蹤的範圍將會更大。這個追蹤範圍並不是很大,但是對於一些追蹤是充夠的,減少對於觀看者的限制,像是限制他/她的眼睛的位置。 In order to implement tracking, the source tracking is a simple tracking method, which means to adjust the position of the light source. If the spatial light modulator is not on the same plane as the 稜鏡 array, there will be a disturbance between the spatial light modulator pixels and 稜鏡 caused by the parallax associated with the lateral offset. This will probably cause disturbing crosstalk. The pixels in the above 20-inch screen size example may have a fill factor of 70% in the direction perpendicular to the axis formed by each of the tips of the crucible, that is, the area of the pixel having a size of 145 μm on each side. And an inactive area of 31 μm. If the construction area of the 稜鏡 array is toward a spatial light modulator, the separation between the 稜鏡 array and the spatial light modulator may be approximately 1 mm. The horizontal tracking range without crosstalk will be ±31μm/1mm * 2m=±62mm. If small crosstalk is tolerable, the range of tracking will be even larger. This tracking range is not very large, but it is sufficient for some tracking, reducing the restrictions on the viewer, such as limiting the position of his/her eyes.
空間光調變器與稜鏡陣列之間的視差是可以避免的,較好的方法是利用將稜鏡陣列整合或是直接整合在空間光調變器中(像是折射、繞射或是全像式稜鏡陣列)。這對於產品而言將為特殊構成要素(specialized component)。另一種選擇是橫向機械式移動稜鏡陣列,雖然這是較不建議的,因為移動機械結構會使得裝置變得更為複雜。 The parallax between the spatial light modulator and the 稜鏡 array can be avoided. The better way is to integrate the 稜鏡 array or integrate it directly into the spatial light modulator (such as refraction, diffraction or full Image 稜鏡 array). This will be a special component for the product. Another option is to move the 稜鏡 array laterally mechanically, although this is less recommended because moving the mechanical structure can make the device more complicated.
另一個關鍵性的問題是由稜鏡角度所決定的虛擬觀察者視窗之間的固定分隔。這對於眼睛分隔不是標準的觀察者或是z-追蹤 可能會造成困擾。其中一個解決方法,是可使用包含封裝液晶區域(encapsulated liquid-crystal domains)的組件,如圖二十一所示,其中包含入射光2101、液晶排列整齊凹洞2102、填滿液晶的凹洞2103、最大扭轉的光束操控2104、主體材料2105及透明電極2106,2107。接著,電場可控制折射率,以及偏斜角度。這個解決方法可與稜鏡陣列合併,以便分別連續地提供變量偏斜與固定偏斜。在另一種解決方法中,可用液晶層覆蓋稜鏡陣列的結構邊。接著,電場可控制折射率,以及偏斜角度。如果虛擬觀察者視窗具有足夠容許不同眼睛分隔的觀察者與z-追蹤如此大的寬度時,則將不需要變量偏斜組件。 Another key issue is the fixed separation between the virtual observer windows as determined by the 稜鏡 angle. This is not a standard observer for eye separation or z-tracking May cause trouble. One of the solutions is to use an assembly comprising encapsulated liquid-crystal domains, as shown in FIG. 21, which includes incident light 2101, liquid crystal alignment holes 2102, and liquid crystal filled holes 2103. The maximum twisted beam manipulation 2104, the body material 2105, and the transparent electrodes 2106, 2107. Then, the electric field can control the refractive index, as well as the skew angle. This solution can be combined with the 稜鏡 array to provide variable skew and fixed skew continuously, respectively. In another solution, the liquid crystal layer can be used to cover the structural edges of the tantalum array. Then, the electric field can control the refractive index, as well as the skew angle. If the virtual observer window has enough observers to allow different eye separations and z-track such a large width, then the variable skew component will not be needed.
一個較複雜的解決方法是使用可控制式稜鏡陣列,例如e-wetting稜鏡陣列(如圖二十四所示)或是填滿液晶的稜鏡(如圖二十一所示)。在圖二十四中,具有稜鏡元件的層159包含電極1517、1518、填滿兩個分離的液體1519、1520的凹洞及光傳播的方向2401。每一個液體是填滿一個凹洞的稜形部分。舉一個例子,液體可以是油或水。在液體1519、1520之間介面的斜率是由施加在電極1517、1518的電壓所決定。如果液體具有不同的折射率時,光束將會遭受偏向,偏向是由施加在電極1517、1518的電壓所決定。因此,稜鏡元件159相當於可控制式光束操控元件。這對於申請人的方法應用在需要追蹤虛擬觀察者視窗至觀察者眼睛的電子式全像技術是一個重要的特性。由申請人所提出的專利申請號DE 102007024237.0及DE 102007024236.2描述了以稜鏡元件進行虛擬觀察者視窗至觀察者眼睛的追蹤。 A more complicated solution is to use a controllable array of enthalpy, such as an e-wetting array (as shown in Figure 24) or a liquid filled 稜鏡 (as shown in Figure 21). In Fig. 24, layer 159 having germanium elements includes electrodes 1517, 1518, pits filled with two separate liquids 1519, 1520, and direction 2401 of light propagation. Each liquid is a prismatic portion that fills a cavity. As an example, the liquid can be oil or water. The slope of the interface between the liquids 1519, 1520 is determined by the voltage applied to the electrodes 1517, 1518. If the liquids have different refractive indices, the beams will be biased, which is determined by the voltage applied to the electrodes 1517, 1518. Therefore, the 稜鏡 element 159 is equivalent to a controllable beam steering element. This is an important feature for the applicant's method to be applied to electronic holographic techniques that require tracking of the virtual observer window to the viewer's eyes. Patent application Nos. DE 102007024237.0 and DE 102007024236.2, filed by the applicant, describe the tracking of the virtual observer window to the observer's eye with a sputum element.
這是一個用於緊密型手持式顯示器的實施例。Seiko(RTM)Epson(RTM)Corporation of Japan已發表了單色電子式定址空間光 調變器,例如D4:L3D13U 1.3英吋螢幕尺寸面板。描述一個使用D4:L3D13U液晶顯示器面板作為空間光調變器的例子。它具有HDTV的解析度(1920 x 1080像素)、15μm的像素間距與28.8mm x 16.2mm的面板區域。這個面板通常是用於二維影像投影顯示器。 This is an embodiment for a compact handheld display. Seiko (RTM) Epson (RTM) Corporation of Japan has published a monochrome electronic address space light Modulators, such as the D4: L3D13U 1.3 inch screen size panel. Describe an example of using a D4:L3D13U LCD panel as a spatial light modulator. It has HDTV resolution (1920 x 1080 pixels), 15μm pixel pitch and 28.8mm x 16.2mm panel area. This panel is typically used for 2D image projection displays.
這個例子是關於663nm的波長與50cm的觀察者距離的計算。在這個振幅調變空間光調變器中是使用軌跡相位(Detour-phase)編碼(布克哈特編碼):需要三個像素來編碼一個複數。這三個關聯像素是呈垂直排列。如果稜鏡陣列光束分光鏡是整合在空間光調變器中,則稜鏡陣列的間距為30μm。如果空間光調變器與稜鏡陣列之間具有分隔,稜鏡陣列的間距會稍微不同,以應付透視縮短。 This example is for the calculation of the wavelength of 663 nm and the observer distance of 50 cm. In this amplitude-modulated spatial optical modulator, Detour-phase coding (Buckerhard coding) is used: three pixels are required to encode a complex number. The three associated pixels are arranged vertically. If the 稜鏡 array beam splitter is integrated into the spatial light modulator, the 稜鏡 array spacing is 30 μm. If there is a separation between the spatial light modulator and the 稜鏡 array, the spacing of the 稜鏡 array will be slightly different to cope with the perspective shortening.
虛擬觀察者視窗的高度是由用於編碼一個複數3 * 15μm=45μm的間距所決定,且為7.0mm。虛擬觀察者視窗的寬度是由稜鏡陣列的30μm間距所決定,且為10.6mm。兩個數值都大於眼睛的瞳孔。因此,如果虛擬觀察者視窗是在眼睛的位置時,每個眼睛都可以看見全像重建。全像重建是從二維編碼的全像圖而來,因此並沒有上面所述一維編碼中本身存在的散光問題。這確保了高的空間視覺品質與高的深度印象(depth impression)品質。 The height of the virtual observer window is determined by the spacing used to encode a complex number of 3 * 15 μm = 45 μm and is 7.0 mm. The width of the virtual observer window is determined by the 30 μm pitch of the 稜鏡 array and is 10.6 mm. Both values are greater than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The holographic reconstruction is derived from a two-dimensionally encoded hologram, and therefore does not have the astigmatism problem inherent in the one-dimensional encoding described above. This ensures high spatial visual quality and high depth impression quality.
當眼睛的分隔為65mm時,稜鏡必須偏斜光±32.5mm。更精確來說,封裝sinc-squared強度函數的強度最大值需要偏斜±32.5mm。這對於0.5m的觀察者距離,相當於是±3.72°的角度。對於折射率n=1.5,適當的稜鏡角度為±7.44°。稜鏡角度是定義為基底與稜鏡斜邊之間的角度。 When the separation of the eyes is 65 mm, the 稜鏡 must be deflected by ±32.5 mm. More precisely, the maximum intensity of the package sinc-squared intensity function needs to be skewed by ±32.5 mm. This is equivalent to an angle of ±3.72° for an observer distance of 0.5 m. For a refractive index n = 1.5, a suitable 稜鏡 angle is ± 7.44 °. The 稜鏡 angle is defined as the angle between the base and the skewed edge.
對於在10.6mm的觀察者平面中的水平期間,另一個眼睛的位置是在大約6繞射階級的距離(意即65mm除以10.6mm)。因此, 由較高繞射階級所導致的串音是可以忽略的,因為稜鏡陣列具有高的填充因子,意即接近於100%。 For the level in the 10.6 mm observer plane, the position of the other eye is at a distance of about 6 diffraction stages (ie 65 mm divided by 10.6 mm). therefore, The crosstalk caused by the higher diffraction class is negligible because the 稜鏡 array has a high fill factor, meaning close to 100%.
這是一個用於大顯示器的實施例。全像顯示器可設計成使用具有50μm像素間距及20英吋螢幕尺寸的相位調變空間光調變器。對於如電視的應用,螢幕尺寸可能相當接近40英吋。關於這個設計的觀察者距離是2m,且波長是633nm。 This is an embodiment for a large display. The holographic display can be designed to use a phase modulated spatial light modulator with a 50 [mu]m pixel pitch and a 20 inch screen size. For applications such as television, the screen size can be quite close to 40 inches. The observer distance for this design is 2 m and the wavelength is 633 nm.
利用空間光調變器的兩個相位調變像素來編碼一個複數。這兩個關聯的像素是呈垂直排列,並且對應的垂直間距為2 * 50μm=100μm。稜鏡陣列是整合在空間光調變器中,稜鏡陣列的水平間距也為2 * 50μm=100μm,因為每個稜鏡包含兩個斜面,且每個斜面是用於空間光調變器的一個行。這會產生12.7mm寬度與高度的虛擬觀察者視窗,且比眼睛的瞳孔還來的大。因此,如果虛擬觀察者視窗是在眼睛的位置時,每個眼睛都可以看見全像重建。全像重建是從二維編碼的全像圖而來,因此並沒有一維編碼中本身存在的散光問題。這確保了高的空間視覺品質與高的深度印象品質。 A complex number is encoded using two phase modulated pixels of the spatial light modulator. The two associated pixels are arranged vertically and the corresponding vertical spacing is 2 * 50 μm = 100 μm. The 稜鏡 array is integrated in the spatial light modulator, and the horizontal spacing of the 稜鏡 array is also 2 * 50μm = 100μm, because each 稜鏡 contains two slopes, and each slope is used for the spatial light modulator One line. This produces a virtual observer window of 12.7 mm width and height, and is larger than the pupil of the eye. Therefore, if the virtual observer window is in the position of the eye, the hologram reconstruction can be seen in each eye. The holographic reconstruction is derived from the two-dimensional coded hologram, so there is no astigmatism problem in the one-dimensional coding itself. This ensures high spatial visual quality and high depth impression quality.
當眼睛的分隔為65mm時,稜鏡必須偏斜光±32.5mm。更精確來說,強度封裝sinc-squared函數的最大值需要偏斜±32.5mm。這對於2m的觀察者距離,相當於是±0.93°的角度。對於折射率n=1.5,適當的稜鏡角度為±1.86°。稜鏡角度是定義為基底與稜鏡斜邊之間的角度。 When the separation of the eyes is 65 mm, the 稜鏡 must be deflected by ±32.5 mm. More precisely, the maximum value of the intensity package sinc-squared function needs to be skewed by ±32.5 mm. This is equivalent to an angle of ±0.93° for an observer distance of 2 m. For a refractive index n = 1.5, a suitable 稜鏡 angle is ± 1.86 °. The 稜鏡 angle is defined as the angle between the base and the skewed edge.
上述是關於觀察者離空間光調變器的距離為50cm與2m的例子。概括來說,這個實施例可應用至觀察者離空間光調變器為20cm至4m之間的距離。螢幕尺寸可介於1cm(例如用於行動電話 次螢幕)至50英吋(例如用於大尺寸電視)之間。 The above is an example in which the distance between the observer and the spatial light modulator is 50 cm and 2 m. In summary, this embodiment can be applied to a distance of between 20 cm and 4 m from the observer to the spatial light modulator. Screen size can be between 1cm (eg for mobile phones) The second screen is between 50 inches (for example for large size TVs).
對於緊密的全像顯示器,RGB固態雷射光源可為適合的光源,例如以砷化銦鎵(GaInAs)或氮砷化銦鎵(GaInAsN)材料為基礎,因為它們是緊密的,且具有高度的光定向性(light directionality)。這樣的光源包括由Novalux(RTM)Inc.,CA,USA所製造的RGB垂直凹面發射雷射(Vertical Cavity Surface Emitting Lasers,VCSEL)。這樣的光源可提供為單一雷射或雷射陣列,儘管每個光源可利用繞射光學元件來產生多個光束。光束可在多模光纖中傳輸,因為如果同調性對於使用在緊密的全像顯示器中為過高時,這可降低同調性的等級,並且不會導致不需要的加工品產生,例如雷射班點圖樣。雷射光源陣列可為一維或二維的。 For compact holographic displays, RGB solid-state laser sources can be suitable sources, such as indium gallium arsenide (GaInAs) or indium gallium arsenide (GaInAsN) materials, because they are compact and highly Light directionality. Such light sources include RGB Vertical Cavity Surface Emitting Lasers (VCSELs) manufactured by Novalux (RTM) Inc., CA, USA. Such a light source can be provided as a single laser or laser array, although each light source can utilize a diffractive optical element to produce multiple beams. The beam can be transmitted in a multimode fiber because if the homology is too high for use in a compact hologram display, this can reduce the level of coherence and does not result in unwanted artifacts, such as laser classes. Dot pattern. The array of laser sources can be one or two dimensional.
接下來描述圖二裝置的製造程序概要,不過在習用技術中將可以看到許多關於這個程序的變化。 Next, a summary of the manufacturing process of the apparatus of Fig. 2 will be described, but many variations on this procedure will be seen in the prior art.
在一個圖二裝置的製造程序中,使用了透明基板。這樣的基板可為硬式的基板,例如大約200μm厚的硼矽玻璃片,或是它可為軟式基板,例如聚合物基板(polymer substrate),例如聚碳酸酯(polycarbonate)、丙烯酸(acrylic)、聚丙烯(polypropylene)、聚氨酯(polyurethane)、聚苯乙烯(polystyrene)、聚氯孔烯(polyvinyl chloride)或是類似的基板。顯示器中的電腦層是在玻璃上製作,如同由申請人所提出的專利申請號GB 0709376.8、GB 0709379.2中所描述的內容,在此列為參考。這樣的計算電路可設置在顯示器的像素 之間。這個電路接著由透明絕緣膜所覆蓋,像是(SiO2)。磁光膜是設置在透明絕緣膜上。設置了微線圈陣列,相對應於顯示器的像素。在WO2005/122479A2中描述了類似的程序。線圈材料可為傳導材料,像是銅(Cu)或鋁(Al)。線圈陣列可製造來使其具有低的阻值及較大的匝數量。如圖七所示,相當於磁光膜72深度的圓柱凹糟71,會侵蝕到磁光膜內。所示,傳導材料會設置在圓柱凹槽71內,以實現微線圈81。值得注意的是凹糟可由雷射蝕刻(laser etching)所實現。具有兆分之一或千萬億分之一秒脈衝期間以及高峰值功率的極短脈衝雷射(Ultra-short pulsed laser)可限制熱的影響區域,並且使得材料移除過程由熔損(ablation)所控制,因此實現非常好的磁光膜精確性。接著製造一個或一組中間偏化層。在之後為另一個磁光膜,在其上製造了另一個如上所述的微線圈陣列。接著為另一個或是一套的偏化層。這完成了兩個鄰接的磁光空間光調變器裝置的結構。在之後為非必要的光束操控元件及玻璃蓋層。 In the manufacturing process of a device of Fig. 2, a transparent substrate is used. Such a substrate may be a rigid substrate, such as a boron germanium glass sheet of about 200 μm thick, or it may be a flexible substrate such as a polymer substrate such as polycarbonate, acrylic, poly. Polypropylene, polyurethane, polystyrene, polyvinyl chloride or the like. The computer layer in the display is made on glass, as described in the applicant's patent application No. GB 0709376.8, GB 0709379.2, which is incorporated herein by reference. Such a calculation circuit can be placed between the pixels of the display. This circuit is then covered by a transparent insulating film like (SiO 2 ). The magneto-optical film is disposed on the transparent insulating film. A micro coil array is provided, corresponding to the pixels of the display. A similar procedure is described in WO2005/122479A2. The coil material can be a conductive material such as copper (Cu) or aluminum (Al). The coil array can be fabricated to have a low resistance and a large number of turns. As shown in Fig. 7, a cylindrical recess 71 corresponding to the depth of the magneto-optical film 72 is eroded into the magneto-optical film. As shown, a conductive material is disposed within the cylindrical recess 71 to implement the microcoil 81. It is worth noting that the recess can be realized by laser etching. An ultra-short pulsed laser with a period of one-quarter or one-billionth of a second pulse and high peak power limits the area of heat affected and causes the material removal process to be melted (ablation) Controlled, thus achieving very good magneto-optical film accuracy. One or a set of intermediate biasing layers are then produced. This is followed by another magneto-optical film on which another micro-coil array as described above is fabricated. Then another or a set of polarization layers. This completes the structure of two adjacent magneto-optical spatial light modulator devices. This is followed by an unnecessary beam steering element and a glass cover.
對於在兩個磁光空間光調變器裝置之間具有足夠厚度的層是必要的,以便保證在一個磁光空間光調變器中的磁場不會影響另一個磁光空間光調變器的效能。一個或一組足夠厚度的中間偏化層可用來達成這個目標。然而,如果這一個或一組中間偏化層是不夠厚時,則可以增加層的厚度,例如使用光學膠將磁光空間光調變器裝置與足夠厚度的玻璃結合,或是設置另一個光學透明層,例如無機層或聚合物層。上述另一個光學透明層可為無機絕緣層,例如二氧化矽(silicon dioxide)、氮化矽(silicon nitride)或碳化矽(silicon carbide),或是可為聚合型層(polymerizable layer),例如環氧樹脂(epoxy)。配置可利用濺鍍(sputtering)完成,或是利用化學 氣相沉積(chemical vapour deposition)完成(對於無機絕緣層),或是藉由印刷或塗層來完成(對於聚合型層)。無論如何,磁光空間光調變器裝置必須不能相隔太遠,以減少光學繞射效應導致有害的像素串音。例如,如果像素寬度為10微米,磁光空間光調變器層最好應相隔小於100微米。一個磁光空間光調變器的設定是至少執行振幅調變;另一個磁光空間光調變器的設定是至少執行相位調變。 It is necessary for a layer having a sufficient thickness between the two magneto-optical spatial light modulator devices to ensure that the magnetic field in one magneto-optical spatial light modulator does not affect the other magneto-optical spatial light modulator efficacy. One or a set of intermediate biasing layers of sufficient thickness can be used to achieve this goal. However, if the one or a set of intermediate biasing layers are not thick enough, the thickness of the layer can be increased, for example using optical glue to combine the magneto-optical spatial light modulator device with a glass of sufficient thickness, or to provide another optical A transparent layer, such as an inorganic layer or a polymer layer. The other optically transparent layer may be an inorganic insulating layer such as silicon dioxide, silicon nitride or silicon carbide, or may be a polymerizable layer such as a ring. Oxygen resin (epoxy). Configuration can be done by sputtering or by chemistry The chemical vapour deposition is done (for inorganic insulating layers) or by printing or coating (for polymeric layers). In any event, magneto-optical spatial light modulator devices must not be too far apart to reduce unwanted optical crosstalk resulting in unwanted pixel crosstalk. For example, if the pixel width is 10 microns, the magneto-optical spatial light modulator layers should preferably be less than 100 microns apart. A magneto-optical spatial light modulator is configured to perform at least amplitude modulation; another magneto-optical spatial light modulator is configured to perform at least phase modulation.
裝置的第二磁光空間光調變器部份可製作成單一元件,接著結合到裝置的第一磁光空間光調變器部份上,利用例如一個用以確保磁光空間光調變器層之間具有充分分隔的玻璃層,使得每一個磁光空間光調變器層的磁場不會影響另一個磁光空間光調變器層的作用。在其中,裝置的第二磁光空間光調變器部份的製備是利用配置另外的材料在裝置的第一磁光空間光調變器部分上,這具有幫助第二磁光空間光調變器的像素與第一磁光空間光調變器的像素之間的精確排列的優點。 The second magneto-optical spatial modulator portion of the device can be fabricated as a single component and then bonded to the first magneto-optical spatial modulator portion of the device, for example, to ensure a magneto-optical spatial light modulator There is a sufficiently separate layer of glass between the layers such that the magnetic field of each of the magneto-optical spatial light modulator layers does not affect the function of the other magneto-optical spatial light modulator layer. In which the second magneto-optical spatial modulator portion of the device is prepared by arranging additional material on the first magneto-optical spatial light modulator portion of the device, which aids in the second magneto-optical spatial light modulation The advantage of precise alignment between the pixels of the device and the pixels of the first magneto-optical spatial light modulator.
圖九顯示了一個裝置結構的例子,它可由上述程序或類似的程序進行製造。在使用的時候,表面909照射充分同調偏化可見的光至圖九中的裝置結構910,使得在點911位置的觀看者(距離裝置一些距離,與裝置的尺度有關)可看到三維影像。裝置中的層,從90直到901的尺度彼此並不相關。層90是基底層,例如玻璃層。層91是顯示器中的電腦層,在一些實施例中是可以省略的。層92是絕緣層。層93是磁光膜層。層94是微線圈陣列層。層95是一個或一組偏化層。層96是非必要的層,用以分離兩個微線圈陣列至需求標準。層97是另一個磁光膜層。層98是另一個微線圈陣列層。層99是另一個或另一組偏化層。層900是光束操控元 件陣列層。層901是遮蓋材料的平面,例如玻璃。在製造的過程中,裝置910的製造可由基底層90開始,依次配置每一層,直到加入最後一層901為止。上述程序的優點,是能夠幫助結構的層的排列更為精確。或者,層的製造可以分成兩個或多個部分,再經由充份程度的排列結合在一起。 Fig. 9 shows an example of a device structure which can be manufactured by the above program or the like. In use, surface 909 illuminates light that is sufficiently concentrically visible to device structure 910 in Figure 9, such that a viewer at point 911 (some distance from the device, depending on the dimensions of the device) can see the three-dimensional image. The layers in the device, from 90 to 901, are not related to each other. Layer 90 is a base layer, such as a glass layer. Layer 91 is a computer layer in the display that may be omitted in some embodiments. Layer 92 is an insulating layer. Layer 93 is a magneto-optical film layer. Layer 94 is a micro coil array layer. Layer 95 is one or a set of biasing layers. Layer 96 is an optional layer to separate the two microcoil arrays to the required standard. Layer 97 is another magneto-optical film layer. Layer 98 is another micro-coil array layer. Layer 99 is another or another set of biasing layers. Layer 900 is a beam steering element Array layer. Layer 901 is a plane that covers the material, such as glass. During fabrication, the fabrication of device 910 can begin with substrate layer 90, with each layer being disposed in sequence until the last layer 901 is added. The advantage of the above procedure is that it can help the alignment of the layers of the structure to be more precise. Alternatively, the layer can be fabricated into two or more sections that are joined together by a sufficient degree of alignment.
根據實施例對於裝置的製造,將不想要的雙折射維持在最小值是非常重要的,例如不想要的應力引起雙折射(stress-induced birefringence)。應力引起雙折射會導致光的線性或圓形偏化狀態改變至光的橢圓偏化狀態。在具有光的理想線性或圓形偏化狀態的裝置中,光的橢圓偏化狀態的存在會減少對比及色彩保真度(colour fidelity),也因此會降低裝置的效能。 According to embodiments, it is very important to maintain the minimum birefringence at a minimum for the manufacture of the device, such as unwanted stress-induced birefringence. Stress induced birefringence causes a linear or circularly polarized state of light to change to an elliptically polarized state of light. In devices with ideal linear or circularly polarized states of light, the presence of ellipsometric state of light reduces contrast and color fidelity, and thus reduces device performance.
然而,在此所描述的實施例是強調在磁光空間光調變器中的振幅與相位的連續編碼,由於習用技術的發展,任何二個不相等的振幅與相位組合的連續權重編碼,原則上都可使用來編碼全像像素,其中兩個組合是無關於任何實數倍數上相等,但是不包含複數(實數除外)。這個理由是像素可能的全像編碼的向量空間,會藉由任何兩個不相等的振幅與相位組合,在向量空間感知中延伸,其中兩個組合是無關於任何實數倍數上相等,但是不包含複數(實數除外)。 However, the embodiments described herein emphasize the continuous encoding of amplitude and phase in a magneto-optical spatial light modulator, due to the development of conventional techniques, the continuous weight coding of any two unequal amplitude and phase combinations, principles Both can be used to encode holographic pixels, where the two combinations are not equal to any real multiple, but do not contain complex numbers (except real numbers). This reason is that the vector space of the possible holographic coding of the pixel will be extended in the vector space perception by any two unequal amplitude and phase combinations, where the two combinations are equal to any real multiple, but not included. Plural (except real numbers).
在此所顯示的圖示,相關的尺寸是不需要按照比例的。 In the illustrations shown herein, the relevant dimensions are not necessarily to scale.
本案所揭露之技術,得由熟習本技術人士據以實施,而其前所未有之作法亦具備專利性,爰依法提出專利之申請。惟上述之實施例尚不足以涵蓋本案所欲保護之專利範圍,因此,提出申請專利範圍如附。 The technology disclosed in this case can be implemented by a person familiar with the technology, and its unprecedented practice is also patentable, and the application for patent is filed according to law. However, the above embodiments are not sufficient to cover the scope of patents to be protected in this case. Therefore, the scope of the patent application is attached.
以下部份是提供一些實作上述實施例的系統中會用到的數個重要技術的入門。 The following sections provide an introduction to several important techniques that will be used in the systems implementing the above embodiments.
在習用的全像技術中,觀察者可看見目標的全像重建(這可為改變的場景);他與全像圖之間的距離並不是一定相關。在一個典型光學排列中,重建是位於或接近照射全像圖的光源的成像平面上,所以是在全像圖的傅立葉平面上。因此,重建具有與被重建的真實物件相同的遠場光分配。 In the conventional holographic technique, the observer can see the holographic reconstruction of the target (this can be a changing scene); the distance between him and the hologram is not necessarily related. In a typical optical arrangement, the reconstruction is on or near the imaging plane of the source that illuminates the hologram, so it is on the Fourier plane of the hologram. Thus, the reconstruction has the same far-field light distribution as the reconstructed real object.
一個早期的系統(在WO 2004/044659及US 2006/0055994中所描述的內容)定義了一個非常不同的排列方式,重建物件完全不是位於或接近全像圖的傅立葉平面。反而,虛擬觀察者視窗的區域是在全像圖的傅立葉平面;只有在觀察者將他的眼睛置於這個位置時,才能看見正確的重建。全像圖是在液晶顯示器(或是其它類型的空間光調變器)上編碼,並且被照射,使得虛擬觀察者視窗成為全像圖的傅立葉轉換(因此,它是直接成像在眼睛上的傅立葉轉換);接著,重建物件會為全像圖的菲涅耳轉換,因為它並不是在透鏡的聚焦平面中。它是改由近場光分配(near-field light distribution)所定義(使用球面波前為模型,與遠場分配的平面波前不同)。這個重建可出現在虛擬觀察者視窗(這是如上所述的,在全像圖的傅立葉平面中)與液晶顯示器之間的任何地方,或是甚至在液晶顯示器之後作為虛擬的目標。 An earlier system (described in WO 2004/044659 and US 2006/0055994) defines a very different arrangement in which the reconstructed object is not at all or near the Fourier plane of the hologram. Instead, the area of the virtual observer window is in the Fourier plane of the hologram; the correct reconstruction can only be seen when the observer places his eyes in this position. The hologram is encoded on a liquid crystal display (or other type of spatial light modulator) and illuminated so that the virtual observer window becomes a Fourier transform of the hologram (hence, it is a Fourier directly imaged on the eye) Convert); then, the reconstructed object will be a Fresnel transform of the hologram because it is not in the focal plane of the lens. It is defined by the near-field light distribution (using a spherical wavefront as a model, which is different from the plane wavefront assigned by the far field). This reconstruction can occur anywhere in the virtual viewer window (as described above, in the Fourier plane of the hologram) and the liquid crystal display, or even as a virtual target behind the liquid crystal display.
這樣的方法會產生數個結果。第一,全像影像系統的設計者會面臨到的基本限制是液晶顯示器(或其它類型的光調變器)的像素間距問題。設計者的目標是使用像素間距為商業上可得且價格合理的液晶顯示器,來產生大的全像重建。但是在過去這是不可 能的,因為下面的理由。傅立葉平面中鄰近繞射階級間的週期性間隔是由λD/p所決定,λ是照射光的波長,D是全像圖到傅立葉平面的距離,p是液晶顯示器的像素間距。但是在習用的全像顯示器中,重建物件是在傅立葉平面。因此,重建物件必須維持小於週期性間隔;如果它是較大時,則它的邊將從鄰近的繞射階級模糊至重建中。這將導致非常小的重建物件-典型只有數cm寬,即使是具有昂貴且專業的小間距顯示器。但是利用現在的方法,虛擬觀察者視窗(這是如上所述的,設置在全像圖的傅立葉平面中)只需要和眼睛瞳孔一樣大即可。因此,即使是僅具有中等間距大小的液晶顯示器,也是可以使用的。並且因為重建物件可在虛擬觀察者視窗與全像圖之間完全填滿平截頭體(frustum),它的確是可以非常的大,也就是可以比週期性間隔大很多。 Such an approach produces several results. First, the basic limitation that designers of holographic imaging systems face is the pixel pitch problem of liquid crystal displays (or other types of light modulators). The designer's goal is to create a large hologram reconstruction using a liquid crystal display with pixel pitch that is commercially available and reasonably priced. But in the past this was impossible because of the following reasons. The periodic spacing between adjacent diffraction orders in the Fourier plane is determined by λ D / p , λ is the wavelength of the illumination light, D is the distance from the hologram to the Fourier plane, and p is the pixel pitch of the liquid crystal display. But in conventional holographic displays, the reconstructed object is in the Fourier plane. Therefore, the reconstructed object must remain less than the periodic interval; if it is large, its edges will be blurred from the adjacent diffraction class to the reconstruction. This will result in very small reconstructed objects - typically only a few cm wide, even with expensive and professional small pitch displays. But with the current method, the virtual observer window (which is set in the Fourier plane of the hologram as described above) only needs to be as large as the pupil of the eye. Therefore, even a liquid crystal display having only a medium pitch size can be used. And because the reconstructed object can completely fill the frustum between the virtual observer window and the hologram, it can be very large, that is, it can be much larger than the periodic interval.
還有另一個的優點。當計算全像圖時,以對重建物件的了解為開始-例如你可能會有賽車的三維影像檔案。那個檔案將會描述應該如何從數個不同的觀看位置看見物件。在習用的全像技術中,產生賽車重建所需的全像圖是直接從計算密集程序中的三維影像檔案中獲得。但是虛擬觀察者視窗的方法將能採用一個不同且更具計算效率的技術。以重建物件的一個平面為開始,我們可以計算虛擬觀察者視窗,因為這是目標的菲涅耳轉換。接著,我們對全部目標平面執行此,並總計結果來產生累計的菲涅耳轉換;這定義了橫越虛擬觀察者視窗的波場(wave field)。我們接著計算全像圖,作為這個虛擬觀察者視窗的傅立葉轉換。雖然虛擬觀察者視窗包含物件的全部資訊,但是只有單一平面的虛擬觀察者視窗必須被轉換至全像圖,而不是多平面的物件。如果從虛擬觀察者視窗到全像圖的轉換並非是單一步驟,而是反覆的轉換, 像是遞迴式傅立葉轉換演算法(Iterative Fourier Transformation Algorithm),這會是特別有利的。每一個反覆步驟只包含單一個虛擬觀察者視窗的傅立葉轉換,而不是對於整個物件平面都有一個,可大量的減低計算量。 There is another advantage. When calculating the hologram, start with an understanding of the reconstructed object - for example you might have a 3D image of the car. That file will describe how objects should be seen from several different viewing positions. In the conventional holographic technique, the holograms required to generate the car's reconstruction are obtained directly from the 3D image archives in the computationally intensive program. But the virtual observer window approach will be able to adopt a different and more computationally efficient technique. Starting with a plane that reconstructs the object, we can calculate the virtual observer window because this is the Fresnel transformation of the target. Next, we perform this on all target planes and sum the results to produce a cumulative Fresnel transition; this defines the wave field that traverses the virtual observer window. We then calculate the hologram as the Fourier transform of this virtual observer window. Although the virtual observer window contains all the information about the object, only a single planar virtual observer window must be converted to an hologram, rather than a multi-plane object. If the conversion from the virtual observer window to the hologram is not a single step, but a repeated conversion, This is particularly advantageous, such as the Iterative Fourier Transformation Algorithm. Each of the repeated steps only includes a Fourier transform of a single virtual observer window, rather than one for the entire object plane, which can greatly reduce the amount of computation.
虛擬觀察者視窗方法的另一個引人注目的結果是需要用來重建給定目標點的全部資訊是包含在全像圖相當小的區域內;相較之下,在習用全像技術中,重建給定目標點的資訊是分佈在整個全像圖。因為我們需要將資訊編碼到全像圖中非常小的區域,所以這說明了我們需要處理與編碼的資訊量是遠低於習用的全像技術。這同時也說明了即使是對於即時影像全像技術,依然可以使用習用的計算裝置,例如價格與效能都合乎大眾市場的習用數位信號處理器(digital signal processor,DSP)。 Another striking result of the virtual observer window approach is that all the information needed to reconstruct a given target point is contained in a relatively small area of the hologram; in contrast, in the conventional holographic technique, reconstruction The information for a given target point is distributed throughout the hologram. Because we need to encode the information into a very small area of the hologram, this shows that the amount of information we need to process and encode is much lower than the conventional holographic technique. This also shows that even for the instant image holography technology, it is still possible to use a conventional computing device, such as a digital signal processor (DSP) whose price and performance are in line with the mass market.
然而,仍具有一些低於期望的結果。第一,觀看全像圖的距離是很重要的-利用這樣的方法編碼及照射全像圖,只有當眼睛是位於全像圖的傅立葉平面時,才會看見正確的重建;而在一般的全像圖中,觀看距離並不是很重要。不過,有各式各樣的方法能用來減少這個Z敏感度或是關於此的設計。 However, there are still some lower than expected results. First, it is important to view the distance of the hologram - using this method to encode and illuminate the hologram, only when the eye is in the Fourier plane of the hologram, will the correct reconstruction be seen; As shown in the figure, viewing distance is not very important. However, there are a variety of methods that can be used to reduce this Z-sensitivity or design.
同樣地,由於利用這樣的方法編碼及照射全像圖,正確的全像重建只能從一個精確而且很小的觀看位置(意即精確地定義Z,如上所述,並且X與Y座標)才能觀察到,因此可能會需要眼睛追蹤。和Z敏感度相同,有各式各樣的方法能夠用來減少X及Y敏感度,或是關於此的設計,例如,隨著像素間距減少(因為它會跟隨液晶顯示器的製造進步),虛擬觀察者視窗的大小將會增加。此外,更有效率的編碼技術,像是基諾形式編碼(Kinoform encoding),能促進使用較大部分的週期性間隔作為虛擬觀察者視 窗,增大虛擬觀察者視窗。 Similarly, since such a method is used to encode and illuminate the hologram, the correct hologram reconstruction can only be achieved from a precise and small viewing position (ie, accurately defining Z, as described above, and X and Y coordinates). Observed, so eye tracking may be required. Same as Z sensitivity, there are a variety of methods that can be used to reduce X and Y sensitivity, or designs related to this, for example, as pixel pitch is reduced (because it will follow the manufacturing progress of liquid crystal displays), virtual The size of the viewer window will increase. In addition, more efficient coding techniques, such as Kinoform encoding, facilitate the use of a larger portion of the periodic interval as a virtual observer. Window to increase the virtual observer window.
以上的描述是假設我們在處理傅立葉全像圖。虛擬觀察者視窗是在全像圖的傅立葉平面中,意即在光源的成像平面。其中一個優點,非繞射光會聚焦在所謂的直流點(DC-spot)中。這個方法也可使用在虛擬觀察者視窗不是在光源的成像平面的菲涅耳全像圖。然而,必須小心非繞射光不是像干擾背景為可見的。另一點需要注意的是轉換這個詞,應該解釋為包括任何數學上或計算上的方法,相等或近似於描述光傳播的轉換。轉換只是去近似實體的程序,更精準地是由馬克斯威爾(Maxwellian)波傳播方程式所定義;菲涅耳與傅立葉轉換是二階近似法,但是具有下列優點(i)因為相對於微分它們是代數,它們可用計算上較有效率的方式進行處理,而且(ii)可精確的實作在光學系統上。 The above description assumes that we are dealing with a Fourier hologram. The virtual observer window is in the Fourier plane of the hologram, meaning the imaging plane of the light source. One of the advantages is that non-diffracted light is focused in a so-called DC-spot. This method can also be used in a virtual observer window that is not a Fresnel hologram of the imaging plane of the light source. However, care must be taken that non-diffracted light is not visible as the interference background. Another point to note is that the word conversion should be interpreted to include any mathematical or computational method that is equal or similar to the transformation describing light propagation. Conversion is just a procedure to approximate the entity, more precisely defined by the Maxwellian wave propagation equation; Fresnel and Fourier transform are second-order approximations, but have the following advantages (i) because they are algebraic relative to the differentiation They can be processed in a computationally efficient manner and (ii) can be accurately implemented on an optical system.
其它的細節是描述在US patent application 2006-0138711、US 2006-0139710與US 2006-0250671的內容中,這些內容是列為參考。 Further details are described in the contents of US patent application 2006-0138711, US 2006-0139710 and US 2006-0250671, the disclosures of each of which are incorporated herein by reference.
根據實作,電腦產生的影像全像圖(CGH)是由場景計算而得的全像圖。電腦產生的影像全像圖可包含複數數值,用來代表重建場景所需的光波的振幅與相位。電腦產生的影像全像圖是可以利用例如同調光線追蹤、模擬場景與參考波之間的干擾或是傅立葉或菲涅耳轉換來計算。 According to the implementation, the computer generated image hologram (CGH) is a hologram calculated from the scene. The computer-generated image hologram can contain complex values that represent the amplitude and phase of the light waves needed to reconstruct the scene. Computer-generated image holograms can be calculated using, for example, coherent ray tracing, interference between simulated scenes and reference waves, or Fourier or Fresnel conversion.
編碼是一種程序,在其中會提供空間光調變器(例如它的構成元件)影像全像圖的控制值。一般而言,全像圖包含代表振幅與相位的複數數值。 Encoding is a program in which the control values of the image hologram of a spatial light modulator (eg, its constituent elements) are provided. In general, holograms contain complex values that represent amplitude and phase.
編碼區域典型為影像全像圖空間上的有限區域,在其中會編碼單一場景點的全像圖資料。空間上的限制,不是利用陡峭截斷就是利用平滑轉換來實現,平滑轉換是透過虛擬觀察者視窗至影像全像圖的傅立葉轉換來達成。 The coding region is typically a finite region on the image hologram space in which hologram data for a single scene point is encoded. The spatial limitation is achieved by using steep truncation or by smooth transformation, which is achieved by Fourier transform from the virtual observer window to the image hologram.
傅立葉轉換是用來計算在空間光調變器的遠場中的光的傳播。波前是利用平面波描述。 Fourier transform is used to calculate the propagation of light in the far field of a spatial light modulator. Wavefronts are described using plane waves.
傅立葉平面包含在空間光調變器上的光分佈的傅立葉轉換。不需要任何的聚焦透鏡,傅立葉平面即為無窮大的。如果在接近空間光調變器的光路徑上具有聚焦透鏡時,則傅立葉平面會等同於包含光源的成像的平面。 The Fourier plane contains the Fourier transform of the light distribution on the spatial light modulator. Without any focusing lens, the Fourier plane is infinite. If there is a focusing lens on the light path close to the spatial light modulator, then the Fourier plane will be equivalent to the imaged plane containing the light source.
菲涅耳轉換是用來計算在空間光調變器的近場中的光的傳播。波前是描述成球面波。光波的相位因素包含一個受橫向座標二次地影響的項。 Fresnel conversion is used to calculate the propagation of light in the near field of a spatial light modulator. The wavefront is described as a spherical wave. The phase factor of the light wave contains an item that is affected twice by the lateral coordinate.
虛擬平截頭體是建構在虛擬觀察者視窗與空間光調變器之間,並且延伸至空間光調變器之後。場景是在這個平截頭體中重建。重建場景的大小會受到這個平截頭體限制,而不受空間光調變器的週期性間隔所限制。 The virtual frustum is constructed between the virtual viewer window and the spatial light modulator and extends beyond the spatial light modulator. The scene is reconstructed in this frustum. The size of the reconstructed scene is limited by this frustum and is not limited by the periodic spacing of the spatial light modulator.
成像光學是一個或多個光學元件,例如透鏡、透鏡狀陣列或是微透鏡陣列,用來形成一個或多個光源的成像。在此所提及的不具成像光學是指在建構全像重建的時候,不會使用成像光學來在傅立葉平面與一個或兩個空間光調變器之間的平面,形成一個或二個空間光調變器的成像,如文中所述。 Imaging optics are one or more optical elements, such as lenses, lenticular arrays, or microlens arrays, used to form an image of one or more light sources. As used herein, non-imaging optics means that when constructing a holographic reconstruction, imaging optics are not used to form a plane between the Fourier plane and one or two spatial light modulators to form one or two spatial light. The imaging of the modulator, as described in the text.
光系統可包括同調性光源,像是雷射,或是部分同調性光源,像是發光二極體。部份同調性光源的時間及空間同調性必須是充份的,以促進良好場景重建的產生,也就是放射表面的光譜線寬及橫向延展必須是充份小的。 The light system can include a coherent light source, such as a laser, or a partially coherent light source, such as a light emitting diode. The temporal and spatial coherence of some homogenous light sources must be sufficient to promote good scene reconstruction, that is, the spectral linewidth and lateral extension of the radiating surface must be sufficiently small.
微透鏡陣列可在顯示器的一個小區域上提供局部同調性,此區域為顯示器的唯一部份,用來編碼用於重建物件之給定點的資訊。局部同調性典型是在陣列的一個微透鏡中。次全像圖(也就是 編碼區域)可能會比單一個微透鏡還大。接著,重建點將為數個來自不同微透鏡的重建的非同調超重疊(incoherent superposition)。典型的,次全像圖(也就是編碼區域)會在一個或二個微透鏡延伸。 The microlens array provides local homology over a small area of the display, which is the only part of the display that encodes information for reconstructing a given point of the object. Local homology is typically found in one microlens of the array. Secondary hologram (ie The coding area) may be larger than a single microlens. Next, the reconstruction point will be a number of reconstructed incoherent superpositions from different microlenses. Typically, the sub-image (ie, the coding region) will extend in one or two microlenses.
虛擬觀察者視窗是在觀察者平面中的虛擬視窗,可藉由它可看到重建的三維物件。虛擬觀察者視窗是全像圖的傅立葉轉換,並且是設置在一個周期性間隔中,以避免觀察到多個物件重建。虛擬觀察者視窗的大小必須至少是眼睛瞳孔的大小。如果具有眼睛追蹤的系統,且至少有一個虛擬觀察者視窗是設置在觀察者的眼睛位置時,則虛擬觀察者視窗可遠小於觀察者的橫向移動範圍。這促進了中等解析度及小週期性間隔的空間光調變器的使用。可以將虛擬觀察者視窗想像成是鑰匙孔,藉由它可看到重建的三維物件,可以是每個眼睛一個虛擬觀察者視窗,或是二個眼睛一起共用一個虛擬觀察者視窗。 The virtual observer window is a virtual window in the viewer's plane, from which the reconstructed three-dimensional object can be seen. The virtual observer window is a Fourier transform of the hologram and is placed in a periodic interval to avoid observing multiple object reconstructions. The size of the virtual observer window must be at least the size of the pupil of the eye. If there is a system for eye tracking and at least one virtual observer window is placed at the observer's eye position, the virtual observer window can be much smaller than the observer's lateral movement range. This promotes the use of spatial resolutions with medium resolution and small periodic spacing. The virtual observer window can be thought of as a keyhole through which a reconstructed three-dimensional object can be seen, either a virtual viewer window for each eye, or a virtual observer window shared by two eyes.
如果電腦產生的影像全像圖是顯示在包含可個別定址式元件的空間光調變器上,則會取樣電腦產生的影像全像圖。這個取樣會產生繞射圖樣的週期性重複。週期性間隔為λD/p,其中λ為波長,D是全像圖至傅立葉平面的距離,p是空間光調變器元件的間距。 If the computer-generated image hologram is displayed on a spatial light modulator that contains individually addressable components, the computer-generated image hologram will be sampled. This sampling produces a periodic repetition of the diffractive pattern. The periodic interval is λD/p, where λ is the wavelength, D is the distance from the hologram to the Fourier plane, and p is the pitch of the spatial light modulator elements.
編碼全像圖且被照射的空間光調變器會重建原始的光分佈。這個光分佈是用來計算全像圖。理想上,觀察者是沒有辦法區別原始的光分佈與重建的光分佈。在大多數的全像顯示器中,會重 建場景的光分佈。在我們的顯示器中,反而是會重建虛擬觀察者視窗中的光分佈。 The spatial light modulator that encodes the full image and is illuminated reconstructs the original light distribution. This light distribution is used to calculate the hologram. Ideally, the observer has no way to distinguish the original light distribution from the reconstructed light distribution. In most hologram displays, it will be heavy The light distribution of the scene is built. In our display, the light distribution in the virtual observer window is reconstructed instead.
被重建的場景是真實或為電腦產生的三維光分佈。在特殊的例子中,它也可以是二維的光分佈。場景可以構成排列在空間中的各種固定或移動的物件。 The reconstructed scene is a three-dimensional light distribution that is real or computer generated. In a special case, it can also be a two-dimensional light distribution. The scene can constitute a variety of fixed or moving objects arranged in space.
空間光調變器是用來調變進入光的波前。理想的空間光調變器應具有表示任何複數數值的能力,也就是分別控制光波的振幅與相位。然而,典型習用的空間光調變器僅能控制其中一種特性,不是振幅就是相位,並且具有影響另一特性的不良作用。 A spatial light modulator is used to modulate the wavefront of incoming light. An ideal spatial light modulator should have the ability to represent any complex value, that is, to control the amplitude and phase of the light wave, respectively. However, a typical conventional spatial light modulator can only control one of the characteristics, not amplitude or phase, and has an adverse effect on the other characteristic.
10‧‧‧照明裝置 10‧‧‧Lighting device
11‧‧‧偏光元件 11‧‧‧Polarized components
12‧‧‧色彩過濾器陣列 12‧‧‧Color Filter Array
13‧‧‧磁光空間光調變器 13‧‧‧Magnetic space light modulator
14‧‧‧偏化片 14‧‧‧Partialized film
15‧‧‧全像圖產生器 15‧‧‧Full image generator
16‧‧‧點 16‧‧‧ points
20‧‧‧照明裝置 20‧‧‧Lighting device
21‧‧‧偏光元件 21‧‧‧Polarized components
22‧‧‧色彩過濾器陣列 22‧‧‧Color Filter Array
23‧‧‧磁光空間光調變器 23‧‧‧Magnetic space light modulator
24‧‧‧點 24‧‧‧ points
25‧‧‧全像圖產生器 25‧‧‧Full image generator
26‧‧‧偏光元件 26‧‧‧Polarized components
27‧‧‧磁光空間光調變器 27‧‧‧Magnetic space light modulator
28‧‧‧光偏化層 28‧‧‧Photo-biased layer
1101‧‧‧聚焦元件 1101‧‧‧ Focusing components
1102‧‧‧聚焦元件 1102‧‧‧ Focusing components
1103‧‧‧聚焦元件 1103‧‧‧ Focusing components
1104‧‧‧聚焦系統 1104‧‧‧ Focus System
1105‧‧‧第一階級 1105‧‧‧First class
1106‧‧‧第零階級 1106‧‧‧The zero class
1107‧‧‧負一階級 1107‧‧‧negative class
51‧‧‧底部玻璃基板 51‧‧‧Bottom glass substrate
52‧‧‧顯示器中的電腦 52‧‧‧Computer in the display
53‧‧‧具有線圈的層 53‧‧‧layer with coil
54‧‧‧磁性光子晶體層 54‧‧‧Magnetic photonic crystal layer
55‧‧‧偏光片 55‧‧‧ polarizer
56‧‧‧磁性光子晶體層 56‧‧‧Magnetic photonic crystal layer
57‧‧‧具有線圈的層 57‧‧‧layer with coil
58‧‧‧偏光片 58‧‧‧ polarizer
59‧‧‧稜鏡元件 59‧‧‧稜鏡 Components
510‧‧‧玻璃基板 510‧‧‧ glass substrate
511‧‧‧像素 511‧‧ ‧ pixels
512‧‧‧像素 512 ‧ ‧ pixels
513‧‧‧像素 513‧‧ ‧ pixels
514‧‧‧線圈 514‧‧‧ coil
515‧‧‧饋入裝置 515‧‧‧Feeding device
516‧‧‧線圈 516‧‧‧ coil
517‧‧‧電極 517‧‧‧electrode
518‧‧‧電極 518‧‧‧electrode
519‧‧‧液體 519‧‧‧Liquid
520‧‧‧液體 520‧‧‧Liquid
71‧‧‧圓柱凹糟 71‧‧‧ cylindrical recess
72‧‧‧磁光膜 72‧‧‧Magnetic film
81‧‧‧微線圈 81‧‧‧micro coil
90‧‧‧基底層 90‧‧‧ basal layer
91‧‧‧顯示器中的電腦層 91‧‧‧ computer layer in the display
92‧‧‧絕緣層 92‧‧‧Insulation
93‧‧‧磁光膜層 93‧‧‧Magnetic film layer
94‧‧‧微線圈陣列層 94‧‧‧Micro coil array layer
95‧‧‧偏化層 95‧‧‧Priderized layer
96‧‧‧分隔層 96‧‧‧Separation layer
97‧‧‧磁光膜層 97‧‧‧Magnetic film layer
98‧‧‧微線圈陣列層 98‧‧‧Micro coil array layer
99‧‧‧偏化層 99‧‧‧Primary layer
900‧‧‧光束操控元件陣列層 900‧‧‧beam steering element array layer
901‧‧‧遮蓋材料的平面 901‧‧‧Face of the covering material
909‧‧‧表面 909‧‧‧ surface
910‧‧‧裝置 910‧‧‧ device
911‧‧‧點 911‧‧ points
100‧‧‧透鏡狀陣列或微透鏡陣列 100‧‧‧Lent Array or Microlens Array
101‧‧‧色彩過濾器陣列 101‧‧‧Color Filter Array
102‧‧‧光偏化元件 102‧‧‧Lighting elements
103‧‧‧磁光空間光調變器 103‧‧‧Magnetic space light modulator
104‧‧‧照明裝置 104‧‧‧Lighting device
105‧‧‧全像圖產生器 105‧‧‧Full image generator
106‧‧‧點 106‧‧‧ points
107‧‧‧元件 107‧‧‧ components
108‧‧‧元件 108‧‧‧ components
109‧‧‧磁光空間光調變器 109‧‧‧Magnetic space light modulator
110‧‧‧照明裝置 110‧‧‧Lighting device
111‧‧‧色彩過濾器陣列 111‧‧‧Color Filter Array
112‧‧‧偏化元件 112‧‧‧Partialized components
113‧‧‧磁光空間光調變器 113‧‧‧Magnetic space light modulator
114‧‧‧點 114‧‧‧ points
115‧‧‧緊密全像圖產生器 115‧‧‧Compact hologram generator
116‧‧‧偏化元件 116‧‧‧Positioning components
130‧‧‧照明裝置 130‧‧‧Lighting device
131‧‧‧色彩過濾器陣列 131‧‧‧Color Filter Array
132‧‧‧偏化元件 132‧‧‧Positioning components
133‧‧‧磁光空間光調變器 133‧‧‧Magnetic space light modulator
134‧‧‧磁光空間光調變器 134‧‧‧Magnetic space light modulator
135‧‧‧光束分光鏡元件 135‧‧‧beam beam splitter element
136‧‧‧緊密全像圖產生器 136‧‧‧Complete hologram generator
137‧‧‧點 137‧‧ points
171‧‧‧光束 171‧‧‧ Beam
172‧‧‧光束 172‧‧‧ Beam
159‧‧‧具稜鏡元件的層 159‧‧‧layers with components
1517‧‧‧電極 1517‧‧‧electrode
1518‧‧‧電極 1518‧‧‧electrode
1519‧‧‧液體 1519‧‧‧Liquid
1520‧‧‧液體 1520‧‧‧Liquid
圖一為包含單一磁光空間光調變器的全像顯示裝置示意圖;圖二為包含一對元件的全像顯示裝置示意圖,每一個元件包含單一磁光空間光調變器;圖三為習用的磁光空間光調變器像素元素的部分示意圖;圖四為習用的全像顯示示意圖;圖五為包含成對元件的全像顯示裝置的一個實施例的三個像素剖面示意圖,其中每一個元件包含單一磁光空間光調變器;圖六A為全像顯示示意圖;圖六B為適合用於實現緊密的全像顯示示意圖;圖七為習用一個用於製造微線圈陣列的製造步驟示意圖;圖八為習用一個用於製造微線圈陣列的製造步驟示意圖;圖九為全像顯示裝置示意圖;圖十為全像顯示裝置示意圖,包含兩個磁光空間光調變器,用以連續編碼振幅及相位;圖十一為包括單一磁光空間光調變器的全像顯示裝置示意圖;圖十二為全像顯示的一個特定實施例示意圖;圖十三為全像顯示裝置示意圖,包含兩個磁光空間光調變器,用以連續編碼振幅及相位;圖十四為使用MathCad(RTM)所獲得的繞射模擬結果;圖十五為使用MathCad(RTM)所獲得的繞射模擬結果;圖十六為使用MathCad(RTM)所獲得的繞射模擬結果; 圖十七為兩個磁光空間光調變器之間具有透鏡層的排列示意圖;圖十八為當光從一個磁光空間光調變器行進至第二個磁光空間光調變器時,可能會發生的繞射程序示意圖;圖十九為全像顯示元件的一個實施例示意圖;圖二十為光束操控元件示意圖;圖二十一為光束操控元件示意圖;圖二十二為全像顯示的示意圖,包含二維光源陣列形式的光源2201、二維透鏡陣列形式的透鏡2202、空間光調變器(SLM)2203與光束分光鏡2204。光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射用於左眼的虛擬觀察者視窗(VOWL)2205及用於右眼的虛擬觀察者視窗(VOWR)2206;圖二十三為全像顯示的示意圖,包含光源陣列中的二個光源LS1,LS2、透鏡陣列中的二個透鏡L1,L2、空間光調變器SLM與光束分光鏡2301。光束分光鏡會將離開空間光調變器的光線分成兩束光,分別照射用於左眼的虛擬觀察者視窗(VOWL)及用於右眼的虛擬觀察者視窗(VOWR);圖二十四為稜鏡光束操控元件的剖面示意圖。 Figure 1 is a schematic diagram of a holographic display device comprising a single magneto-optical spatial light modulator; Figure 2 is a schematic diagram of a holographic display device comprising a pair of components, each component comprising a single magneto-optical spatial light modulator; Figure 3 is a conventional use Schematic diagram of a portion of a pixel of a magneto-optical spatial light modulator; FIG. 4 is a schematic diagram of a conventional holographic display; FIG. 5 is a schematic diagram of three pixel cross-sections of one embodiment of a holographic display device including a pair of components, each of which The component comprises a single magneto-optical spatial light modulator; Figure 6A is a schematic diagram of the holographic display; Figure 6B is a schematic diagram suitable for achieving a compact holographic display; and Figure 7 is a schematic diagram of a manufacturing process for fabricating a micro-coil array. Figure 8 is a schematic diagram of a manufacturing process for manufacturing a micro-coil array; Figure 9 is a schematic diagram of a holographic display device; Figure 10 is a schematic diagram of a holographic display device, including two magneto-optical spatial light modulators for continuous encoding Amplitude and phase; Figure 11 is a schematic diagram of a holographic display device including a single magneto-optical spatial light modulator; Figure 12 is a specific embodiment of a holographic display Figure 13 is a schematic diagram of a holographic display device, comprising two magneto-optical spatial light modulators for continuously encoding amplitude and phase; Figure 14 is a diffraction simulation result obtained using MathCad (RTM); The fifth is the diffraction simulation result obtained by using MathCad (RTM); the figure 16 is the diffraction simulation result obtained by using MathCad (RTM); Figure 17 is a schematic view showing the arrangement of lens layers between two magneto-optical spatial light modulators; Figure 18 is a view of when light travels from a magneto-optical spatial light modulator to a second magneto-optical spatial light modulator FIG. 19 is a schematic diagram of an embodiment of a holographic display element; FIG. 20 is a schematic diagram of a beam steering element; FIG. 21 is a schematic diagram of a beam steering element; The schematic diagram of the display includes a light source 2201 in the form of a two-dimensional array of light sources, a lens 2202 in the form of a two-dimensional lens array, a spatial light modulator (SLM) 2203, and a beam splitter 2204. The beam splitter splits the light exiting the spatial light modulator into two beams, respectively illuminating a virtual observer window (VOWL) 2205 for the left eye and a virtual observer window (VOWR) 2206 for the right eye; Thirteen is a schematic diagram of the holographic display, comprising two light sources LS1, LS2 in the array of light sources, two lenses L1, L2, a spatial light modulator SLM and a beam splitter 2301 in the lens array. The beam splitter splits the light leaving the spatial light modulator into two beams, respectively illuminating the virtual observer window (VOWL) for the left eye and the virtual observer window (VOWR) for the right eye; It is a schematic cross-sectional view of the beam steering element.
90‧‧‧基底層 90‧‧‧ basal layer
91‧‧‧顯示器中的電腦層 91‧‧‧ computer layer in the display
92‧‧‧絕緣層 92‧‧‧Insulation
93‧‧‧磁光膜層 93‧‧‧Magnetic film layer
94‧‧‧微線圈陣列層 94‧‧‧Micro coil array layer
95‧‧‧偏化層 95‧‧‧Priderized layer
96‧‧‧非必要的層 96‧‧‧Non-essential layers
97‧‧‧磁光膜層 97‧‧‧Magnetic film layer
98‧‧‧微線圈陣列層 98‧‧‧Micro coil array layer
99‧‧‧偏化層 99‧‧‧Primary layer
900‧‧‧光束操控元件陣列層 900‧‧‧beam steering element array layer
901‧‧‧遮蓋材料的平面 901‧‧‧Face of the covering material
909‧‧‧表面 909‧‧‧ surface
910‧‧‧裝置結構 910‧‧‧Device structure
911‧‧‧點 911‧‧ points
Claims (23)
Applications Claiming Priority (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0621360.7A GB0621360D0 (en) | 2006-10-26 | 2006-10-26 | Compact three dimensional image display device |
GBGB0625838.8A GB0625838D0 (en) | 2006-10-26 | 2006-12-22 | Compact three dimensional image display device |
GBGB0705405.9A GB0705405D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GBGB0705411.7A GB0705411D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705398A GB0705398D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705406A GB0705406D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705408A GB0705408D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705403A GB0705403D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705410A GB0705410D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GBGB0705402.6A GB0705402D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GBGB0705404.2A GB0705404D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705401A GB0705401D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705407A GB0705407D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705412A GB0705412D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705409A GB0705409D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0705399A GB0705399D0 (en) | 2006-10-26 | 2007-03-21 | Compact three dimensional image display device |
GB0709379A GB0709379D0 (en) | 2007-05-16 | 2007-05-16 | Smart display extended |
GB0709376A GB0709376D0 (en) | 2007-05-16 | 2007-05-16 | Smart display |
DE102007024236A DE102007024236A1 (en) | 2007-05-21 | 2007-05-21 | Holographic reconstruction system with an array of controllable microprisms |
DE102007024237A DE102007024237B4 (en) | 2007-05-21 | 2007-05-21 | Holographic reconstruction system with optical waveguide tracking |
GB0714272A GB0714272D0 (en) | 2006-10-26 | 2007-07-23 | Image display spatial light modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200839468A TW200839468A (en) | 2008-10-01 |
TWI422999B true TWI422999B (en) | 2014-01-11 |
Family
ID=44817469
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96140511A TWI422999B (en) | 2006-10-26 | 2007-10-26 | Holographic display device, manufacturing method thereof and method of generating holographic reconstruction |
TW96140512A TWI403868B (en) | 2006-10-26 | 2007-10-26 | Holographic display device and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW96140512A TWI403868B (en) | 2006-10-26 | 2007-10-26 | Holographic display device and method |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI422999B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI719588B (en) * | 2019-08-16 | 2021-02-21 | 國立中山大學 | Method of two-dimensional fringe-encoded pattern projection for instantaneous profile measurements |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5338228B2 (en) * | 2008-09-29 | 2013-11-13 | カシオ計算機株式会社 | Image generating apparatus and program |
TWI407148B (en) * | 2009-12-29 | 2013-09-01 | Au Optronics Corp | Stereoscopic display device and stereoscopic image displaying method |
TWI459037B (en) * | 2012-09-11 | 2014-11-01 | Delta Electronics Inc | System and method for time-multiplexed autostereoscopic display |
KR101977250B1 (en) * | 2012-11-30 | 2019-08-28 | 엘지디스플레이 주식회사 | Stereoscopic Image Display Device and Manufacturing Method the same |
CN110533780B (en) | 2019-08-28 | 2023-02-24 | 深圳市商汤科技有限公司 | Image processing method and device, equipment and storage medium thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW594069B (en) * | 1999-06-09 | 2004-06-21 | Holographic Imaging Llc | Holographic display |
JP2006047690A (en) * | 2004-08-04 | 2006-02-16 | Ts Photon:Kk | Projection type ip system three-dimensional display system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2350963A (en) * | 1999-06-09 | 2000-12-13 | Secr Defence | Holographic Displays |
CN101349889B (en) * | 2002-11-13 | 2012-04-25 | 希瑞尔技术有限公司 | Video hologram and device for reconstructing video holograms |
DE102004063838A1 (en) * | 2004-12-23 | 2006-07-06 | Seereal Technologies Gmbh | Method and apparatus for calculating computer generated video holograms |
-
2007
- 2007-10-26 TW TW96140511A patent/TWI422999B/en active
- 2007-10-26 TW TW96140512A patent/TWI403868B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW594069B (en) * | 1999-06-09 | 2004-06-21 | Holographic Imaging Llc | Holographic display |
JP2006047690A (en) * | 2004-08-04 | 2006-02-16 | Ts Photon:Kk | Projection type ip system three-dimensional display system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI719588B (en) * | 2019-08-16 | 2021-02-21 | 國立中山大學 | Method of two-dimensional fringe-encoded pattern projection for instantaneous profile measurements |
Also Published As
Publication number | Publication date |
---|---|
TW200827953A (en) | 2008-07-01 |
TW200839468A (en) | 2008-10-01 |
TWI403868B (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5191491B2 (en) | Small holographic display device | |
US20110149018A1 (en) | Holographic display device comprising magneto-optical spatial light modulator | |
JP5222300B2 (en) | Small holographic display device | |
Jang et al. | Recent progress in see-through three-dimensional displays using holographic optical elements | |
TWI442763B (en) | 3d content generation system | |
JP2010507826A (en) | Holographic display device including magneto-optical spatial light modulator | |
Häussler et al. | Large real-time holographic 3D displays: enabling components and results | |
JP6320451B2 (en) | Display device | |
US9720375B2 (en) | Spatial light modulating panel using transmittive liquid crystal display panel and 3D display device using the same | |
Geng | Three-dimensional display technologies | |
Benzie et al. | A survey of 3DTV displays: techniques and technologies | |
CN101568889B (en) | Holographic display device | |
CN101568888B (en) | Mobile tlephony system comprising holographic display | |
US8416479B2 (en) | Compact holographic display device | |
JP2010507822A (en) | Content generation system | |
TWI422999B (en) | Holographic display device, manufacturing method thereof and method of generating holographic reconstruction | |
TWI499875B (en) | Apparatus for displaying a hologram | |
KR20190127333A (en) | Hologram display device | |
Liu et al. | Research Progress of Large Viewing‐Area 3D Holographic Near‐Eye Display | |
JPH02205816A (en) | Method for displaying dynamic three-dimensional image |