TW200827554A - The micropump system using comb drive - Google Patents

The micropump system using comb drive Download PDF

Info

Publication number
TW200827554A
TW200827554A TW095148110A TW95148110A TW200827554A TW 200827554 A TW200827554 A TW 200827554A TW 095148110 A TW095148110 A TW 095148110A TW 95148110 A TW95148110 A TW 95148110A TW 200827554 A TW200827554 A TW 200827554A
Authority
TW
Taiwan
Prior art keywords
fluid
micro
cavity
piston
voltage
Prior art date
Application number
TW095148110A
Other languages
Chinese (zh)
Other versions
TWI321190B (en
Inventor
Yaw-Jen Chang
Ming-Cheng Shiu
Original Assignee
Univ Chung Yuan Christian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chung Yuan Christian filed Critical Univ Chung Yuan Christian
Priority to TW095148110A priority Critical patent/TW200827554A/en
Publication of TW200827554A publication Critical patent/TW200827554A/en
Application granted granted Critical
Publication of TWI321190B publication Critical patent/TWI321190B/zh

Links

Abstract

A micropump system with a comb drive has a piston, a comb shape actuator, and a real-time monitoring and detecting device. Receiving a voltage the comb shape actuator induces a static electric power to move the piston with the first displacement for the fluid flowing into a chamber. The fluid volume flowing into the chamber is determined by the voltage level. When the voltage gradually decreases, the static electric force also decreases and the piston is driven by a spring to have a second displacement at the direction opposite to the first displacement to output the fluid in the chamber. The real-time monitoring and detecting device can provide real-time information for the comb shape actuator.

Description

200827554 九、發明說明: 【發明所屬之技術領域】 本創作係關於一種幫浦技術,特別是關於一種微幫浦。 【先前技術】 目刖微幫浦最常見的為無閥門式微幫浦,主要用一致動 器使薄膜產生震動再使腔體的容積產生變化,在進出口設 計成擴散及喷嘴型式利用其型狀來控制流體流入流出的壓 力。但目别之無閥門幫浦只能控其平均的流量,無法控制 其每一次輸出的量。在生醫檢測上,無法達到供給定量檢 體的功能。 近年來常有研究改變其致動源材料、改變腔體設計或閥 門型式等等。在微幫浦系統上,揚聲震等人,在中華民國 專利公告號005_81 “可_電容式浦,,專射,提供 ,扁矩形微流道腔室’腔室之上下兩面(或僅上面):、 覆盖-層鑛有多個條形(栅狀)金屬電極之彈性薄膜,利用 栅狀電極與腔室底部電極發生 回復力的效應,施加每一柵狀電:二== -方二== 式軸流體’而使微幫_平順且有 ㈣ΐ中華民國專利公告號⑼324948“電磁致動式 微幫浦專利中,提供-種電磁致動式微幫浦,以微加j 5 200827554 術製成,可齡微量精確m制電磁致動方式配合 無閥式進出口構成往復式的微幫浦。由平面線圈,配合二 磁鐵或永久磁鐵在同-垂直面上產生磁力作用。1構造 將線圈沉積於薄膜上構成動件,磁鐵為蚊件,祕圈為 固定件磁鐵為動件等,或利用兩組線圈產生往復式的動 作。進出Π的設計則採用擴散式/喷嘴式(Diff嫩/N〇油) 兀件,取代傳統的逆止閥。此種組合構成的微幫浦具有反 應快速、輸人電壓小、進出口製程容易及可靠度高等優點。 然而,上述微幫浦系統,皆以無閥n為主,其缺點就是 無法做定量輸出。以常見壓電無閥門微幫浦而言,採用壓 電片做為致動源,利用壓電片振動原理,使薄膜振動驅使 腔體内體積變化,使流體經由擴散/噴嘴進入/輸出腔體。此 與上述设什原理大同小異,係採用腔體容積變化的方式來 使流體輸出,此種方式必需配合擴散及喷嘴的設計來控制 流體輸出,但無法精確控制流體輸出量。 【發明内容】 本發明之目的之一,係設計一電梳驅動微幫浦系統,能 夠異於傳統僅能做連續輸出而無法定量輸出的微幫浦,達 到使流體能定量出,可廣泛應用於生化反應、檢體混合、 實驗室晶片以及各類微流體運動之相關應用。 為此,本發明提供一種電梳驅動微幫浦系統,其至少包 含一活塞、一梳狀致動器以及一即時監視檢測裝置。梳狀 致動器可在接受一電壓之後,產生一靜電力,用以帶動活 塞’使活塞發生一第一位移,致一流體進入一腔體内,其 6 200827554 中電壓具有一電壓值,其可決定進入腔體内之流體體積, 且其中在電壓值逐漸降低之後,靜電力會減弱,使活塞逐 漸受一彈簧之驅動而發生與第一位移方向相反的一第二位 移,以輸出腔體内之流體。上述即時監視檢測骏置,用以 提供梳狀致動器即時資訊。 透過上述電梳驅動微幫浦系統,可讓微流體之輪出,達 到檢則所需之固定液量。流體在腔體内,受活塞推擠使流 體輸出,可達到定量的目的。 【實施方式】 懂,為讓本發明之上述或其他目的、特徵和優點能更明顯易 下文特舉本發明之較佳實施例,並配合所附圖式,作 砰細說明如下: ㈣作 第 面鈐力_圖繪不根據本發明第一較佳實施例,一種微幫浦剖 1〇7不意圖。請參照第—圖,此微幫浦至少包含一活塞 雷、、二,—梳狀致動器20。此梳狀致動1120可在接受來自 塞98:0第六圖)之-電壓之後,產生-靜電力,: 體3〇(第1、Γ使活塞10發生一第一位移12,致—流 試劑1 )進入一腔體40内。此流體30例如是樣品或 體3〇H電壓具有—電壓值,其可決歧人腔體40内之流 弱,蚀^ 述電壓之電壓值逐漸降低之後,靜電力會減 12方向HU逐Ml彈簧Μ之驅動而發生與第—位移 之流體^ 第二位移14(第三圖),以輸出腔體40内 _ 。此種輸出方式可精確控制流體30輸出量。 7 200827554 本發明第一較佳實施例之微幫浦,可更包括一電壓控 制裝置80(例如一繼電器),其可用於逐漸降低電壓值。此 電壓控制裝置80亦可用於改變電壓值,以改變進入腔體内 之流體的體積。藉由電壓控制裝置80,本發明之微幫浦可 控制其每一次輸出的量。在生醫檢測上,本發明之微幫浦 可達到供給定量檢體的功能。 本發明第一較佳實施例之腔體40可以是無閥門腔 體。至於上述流體30,可以透過一導入口 32進入腔體40。 此外,腔體40内之流體30,可以透過一輸出口 %從腔體 40輸出。 上述導入口 32之入口方向,與輸出口 34之出口方向, 兩者可夾一特定角度,以控制流體30的流動方向。這個特 疋角度,例如疋約九十度。上述輸出口 34之出口方向,也 就是活塞10之第二位移14方向。上述微幫浦可更包括一 流體供應及控制裝置,連接一導入接頭。此流體供應及控 制裝置可提供一固定壓力,以驅動微幫浦迴路中之流體, 使其往一特定方向運動。此廻路係指微幫浦内之流體流動 之流道。 第六圖繪示一種電梳驅動微幫浦系統示意圖。請參照第 六圖,上述梳狀致動器20可連接一即時監視檢測裝置92, 以進行外部控制之即時監控。此即時監視檢測裝置92,可 直接檢測微幫浦避路中之流體’以提供梳狀致動器2〇即時 資。詳言之,上述即時監視檢測裝置,是透過類比/數位 轉換器94(AD/DA-converter)以及電腦96提供即時資訊。 8 200827554 根據此項即時資訊,電壓控制裝置8〇可以決定電壓值,進 而決定進入腔體4〇(第一圖)内之流體體積。 請參照第四圖以及第五圖,本發明第一較佳實施例之微 幫浦採電壓驅動’即利用電壓與靜電力之關係,控制電梳 位移。流體直接由外部驅動導入無閥門腔體内,再由電壓 變化控制電梳的位移行程,驅使活塞10將腔體4〇内的流 體30輸出。此微幫浦可改善無閥門微幫浦無法定量輸出之 缺點。由於此微幫浦的輸出為完全輸出,故可改善液滴現 象。 上述微幫浦之設計可讓微流體透過微幫浦之輸出,達到 檢測所需之固定液量。微幫浦之設計利用擴散及喷嘴的原 理,再施以一驅動源,做活塞式的往復作動,使流體30在 活塞10腔體40内,受活塞1〇推擠使流體30輸出,達到 定量的目的。 根據第一較佳實施例,本發明可廣泛應用於生化反應、 檢體混合、實驗室晶片、生物晶片定量檢測、以及各類微 流體運動之相關應用。此外,本發明利用外加之電壓及壓 力控制裝置及即時監測裝置,可即時監測反應情況、控制 電壓大小以及輸出量控制,排除傳統晶片僅能連續輸出的 缺點,並以簡單的無閥門腔體設計減少控制困難度降低製 程成本。 第一圖至第二圖繪示根據本發明第二較佳實施例,一種 微幫浦之作動方法流程示意圖。請參照第一圖,第一個步 9 200827554 驟是流體30由一個外部控制的固定驅動壓力經導入接頭 導入,進入暫儲槽90使流體30填滿暫儲槽90。 第四圖繪示根據本發明第二較佳實施例之第二圖,一種 微幫浦結構的下視示意圖。請參照第四圖以及第二圖,第 二個步驟,係施加一電壓於一梳狀致動器20,以產生一靜 電力,用以帶動一活塞10,使活塞10發生一第一位移12, 致一流體30進入一腔體40内,其中電壓具有一電壓值, 其可決定進入腔體40内之流體30體積。 請參照第四圖以及第二圖,上述電壓值越大,產生靜電 力越大,而活塞10的位移量也隨之越大。活塞之第一位移 12,例如是由腔體40底部向上移動(第四圖;第二圖則為 向右移動)。此時,腔體40内因此產生壓力變化。當活塞 10前端移動至導入口 32時,因腔體40壓力變化的關係, 流體30會迅速充滿於腔體40之内,如第二圖所示。 第五圖繪示根據本發明第二較佳實施例之第三圖,一種 微幫浦結構的下視示意圖。請參照第五圖以及第三圖,於 第三步驟,逐漸降低上述電壓值,以減弱靜電力,使活塞 10逐漸受一彈簧70之驅動而發生與第一位移12方向相反 的一第二位移14,以輸出腔體40内之流體30。 施於梳狀致動器20上之驅動電壓緩慢下降,梳狀致動 器20也因靜電力的減弱,而受上述彈簧力的影響,驅使活 塞發生第二位移14,例如是向下移動(第五圖;第三圖則為 向左移動)。當活塞10下行時,將充滿於腔體40内的流體 200827554 30向外輸出。 根據本發明第二較佳實闕, 改變步驟。該步驟可改變電壓值,以改變進^更^之 流體30的體積。 w八腔體40内之 至於mi—:佳實施例之腔體4〇可以是無閥門腔體。 、 ;,L ’請參照第二圖,可以透過一導入口 32 進入腔體4〇 °此外’腔體40内之流體30,可以透過-輸 出口 34從腔體4〇輪出。 上述導入口 32之入口方向,與輸出口 34之出口方向, 兩者可夾一特定角度,以控制流體的流動方向。這個特定 角度,例如是約九十度。上述輸出 口 34之出口方向,也就 疋活塞10之第二位移14方向。 根據第二較佳實施例,本發明可廣泛應用於生化反應、 檢體混合、實驗室晶片、生物晶片定量檢測、以及各類微 流體運動之相關應用。此外,本發明利用外加之電壓及壓 力控制裝置及即時監測裝置,可即時監測反應情況、控制 電壓大小以及輸出量控制,排除傳統晶片僅能連續輸出的 缺點,並以簡單的無閥門腔體設計減少控制困難度降低製 程成本。 雖然本發明已利用上述較佳實施例揭示,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内,當可作各種更動與修改,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 11 200827554 【圖式簡單說明】 第一圖繪示根據本發明第一較佳實施例,一種微幫浦剖 面結構示意圖; 第一圖至第三圖繪示根據本發明第二較佳實施例,一種 微幫浦之作動方法流程不意圖, 第四圖繪示根據本發明第二較佳實施例之第二圖,一種 微幫浦結構的下視示意圖; 第五圖繪示根據本發明第二較佳實施例之第三圖,一種 微幫浦結構的下視示意圖;以及 第六圖繪示一種電梳驅動微幫浦系統示意圖。 【主要元件符號說明】 10活塞 32導入口 40腔體 90暫儲槽 14第二位移 70彈簧 94類比/數位轉換 98電源供應器 20梳狀致動器 34輸出口 80電壓控制裝置 12第一位移 30流體 92即時監視檢測裝置 96電腦 12200827554 IX. Description of the invention: [Technical field to which the invention pertains] This creation relates to a pumping technique, in particular to a micro-pull. [Prior Art] The most common type of micro-pull is the valveless micro-pump. The actuator is mainly used to make the film vibrate and then change the volume of the cavity. The inlet and outlet are designed to diffuse and the nozzle type uses its shape. To control the pressure of the fluid flowing in and out. However, the valveless pump can only control its average flow rate and cannot control the amount of each output. In the biomedical test, the function of supplying a quantitative test cannot be achieved. In recent years, research has often changed the source material, changing the cavity design or the valve type. On the micro-pull system, Yang Shengzheng et al., in the Republic of China Patent Bulletin No. 005_81 "can be _capacitative, special shot, provide, flat rectangular micro-channel chamber" above and below the chamber (or only above ):, the cover-layer ore has a plurality of strip-shaped (grid-like) metal electrode elastic films, and each grid-like electricity is applied by the effect of the restoring force of the grid electrode and the bottom electrode of the chamber: two == - square two == Axial fluid 'and the micro-help _ smooth and have (4) ΐ Republic of China Patent Bulletin No. (9) 324948 "Electromagnetically actuated micro-pull patent, providing - an electromagnetically actuated micro-pull, made with micro-plus j 5 200827554 The age-adjustable micro-precision m-electromagnetic actuation mode cooperates with the valveless inlet and outlet to form a reciprocating micro-pump. The planar coil, with two magnets or permanent magnets, exerts a magnetic force on the same-vertical surface. 1 Construction The coil is deposited on the film to form a moving member, the magnet is a mosquito, the secret ring is a fixed magnet, or the like, or a reciprocating action is generated by using two sets of coils. The design of the inlet and outlet sills uses a diffuser/nozzle (Diff/N 〇 oil) element instead of a conventional check valve. The micro-pull composed of such a combination has the advantages of rapid response, small input voltage, easy import and export process, and high reliability. However, the above-mentioned micro-pull system is mainly based on valveless n, and its disadvantage is that quantitative output cannot be performed. In the case of a common piezoelectric valveless micro-pump, a piezoelectric piece is used as an actuating source, and the vibration principle of the piezoelectric piece is used to drive the film vibration to change the volume of the cavity, so that the fluid enters/outputs the cavity through the diffusion/nozzle. . This is similar to the above-mentioned principle of setting. The volume of the cavity is changed to output the fluid. This method must be combined with the design of the diffusion and nozzle to control the fluid output, but the fluid output cannot be precisely controlled. SUMMARY OF THE INVENTION One object of the present invention is to design an electric comb-driven micro-pull system, which can be different from the conventional micro-pull which can only perform continuous output and cannot be quantitatively outputted, so that the fluid can be quantitatively and can be widely applied. For biochemical reactions, sample mixing, laboratory wafers, and various microfluidic applications. To this end, the present invention provides an electric comb driven micro-pull system comprising at least a piston, a comb actuator and an instant monitoring and detecting device. The comb actuator can generate an electrostatic force after receiving a voltage to drive the piston to cause a first displacement of the piston, causing a fluid to enter a cavity, and the voltage of 6 200827554 has a voltage value. The volume of the fluid entering the cavity can be determined, and after the voltage value is gradually decreased, the electrostatic force is weakened, so that the piston is gradually driven by a spring to generate a second displacement opposite to the first displacement direction to output the cavity The fluid inside. The above-mentioned instant monitoring detection is used to provide instant information of the comb actuator. By driving the micro-pull system through the above comb, the microfluids can be rotated to achieve the fixed amount of liquid required for inspection. The fluid is in the cavity and is pushed by the piston to output the fluid, which can achieve the purpose of quantification. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will be apparent from the description of the preferred embodiments of the invention. The surface force _ drawing is not according to the first preferred embodiment of the present invention, and a micro-pumping section 1 is not intended. Referring to the first figure, the micro pump includes at least one piston, two, and two comb actuators 20. The comb actuating 1120 can generate an electrostatic force after receiving the voltage from the plug of the 98:0 (Fig. 98:0), body 3〇 (the first one causes the piston 10 to have a first displacement 12, resulting in a flow Reagent 1) enters a cavity 40. The fluid 30 is, for example, a sample or a body having a voltage value of -3, which can be determined to be weak in the flow in the human cavity 40. After the voltage value of the voltage is gradually decreased, the electrostatic force is reduced by 12 in the direction of the HU by the Ml spring. The second displacement 14 (third diagram) of the first displacement is generated by the driving of the crucible to output the inside of the cavity 40. This output mode precisely controls the output of the fluid 30. 7 200827554 The micro-push of the first preferred embodiment of the present invention may further include a voltage control device 80 (e.g., a relay) that can be used to gradually reduce the voltage value. This voltage control device 80 can also be used to vary the voltage value to vary the volume of fluid entering the chamber. With the voltage control device 80, the micro-push of the present invention can control the amount of each output thereof. In the biomedical test, the micro pump of the present invention can achieve the function of supplying a quantitative sample. The cavity 40 of the first preferred embodiment of the present invention may be a valveless cavity. As for the fluid 30, it can enter the cavity 40 through an introduction port 32. In addition, the fluid 30 in the cavity 40 can be output from the cavity 40 through an output port %. The inlet direction of the inlet port 32 and the outlet direction of the outlet port 34 can be sandwiched by a specific angle to control the flow direction of the fluid 30. This special angle, for example, is about ninety degrees. The exit direction of the output port 34 is the second displacement 14 of the piston 10. The micro-pull may further include a fluid supply and control device connected to an inlet connector. The fluid supply and control device provides a fixed pressure to drive the fluid in the micro-pump circuit for movement in a particular direction. This circuit refers to the flow path of fluid flow in the micro-pull. The sixth figure shows a schematic diagram of an electric comb driven micro-pull system. Referring to Fig. 6, the comb actuator 20 can be connected to an instant monitoring and detecting device 92 for real-time monitoring of external control. The instant monitoring and detecting device 92 can directly detect the fluid in the micro-pull escape to provide a comb actuator. In detail, the above-mentioned real-time monitoring and detecting device provides instant information through an analog/digital converter 94 (AD/DA-converter) and a computer 96. 8 200827554 According to this instant information, the voltage control device 8 can determine the voltage value and thereby determine the volume of fluid entering the chamber 4 (first map). Referring to the fourth and fifth figures, the micro-pushing voltage driving of the first preferred embodiment of the present invention controls the electric comb displacement by utilizing the relationship between voltage and electrostatic force. The fluid is directly driven into the valveless chamber by external drive, and the displacement of the comb is controlled by the voltage change to drive the piston 10 to output the fluid 30 in the chamber 4. This micro-pump can improve the shortcomings of the valveless micro-pump that cannot be quantified. Since the output of this micro pump is a full output, the droplet phenomenon can be improved. The micro-pull design allows microfluidics to pass through the output of the micro-pump to achieve the amount of fixed liquid required for detection. The design of the micro-pump uses the principle of diffusion and nozzle, and then applies a driving source to make a piston-type reciprocating action, so that the fluid 30 is pushed in the cavity 10 of the piston 10, and is pushed by the piston 1 to output the fluid 30 to be quantified. the goal of. According to the first preferred embodiment, the present invention is widely applicable to biochemical reactions, sample mixing, laboratory wafers, biochip quantitative detection, and related applications of various types of microfluidic motion. In addition, the present invention utilizes an external voltage and pressure control device and an instant monitoring device to instantly monitor the reaction situation, control voltage and output control, eliminate the disadvantage that the conventional wafer can only be continuously output, and design a simple valveless cavity. Reduce control difficulties and reduce process costs. 1 to 2 are schematic diagrams showing the flow of a micro-pull operation method according to a second preferred embodiment of the present invention. Referring to the first figure, the first step 9 200827554 is that the fluid 30 is introduced by an externally controlled fixed drive pressure through the introduction joint into the temporary storage tank 90 to fill the temporary storage tank 90 with the fluid 30. The fourth figure shows a second diagram of a second embodiment of the present invention, a schematic view of a micro-pull structure. Referring to the fourth figure and the second figure, in the second step, a voltage is applied to a comb actuator 20 to generate an electrostatic force for driving a piston 10 to cause a first displacement of the piston 10. A fluid 30 is introduced into a cavity 40, wherein the voltage has a voltage value that determines the volume of fluid 30 entering the cavity 40. Referring to the fourth and second figures, the larger the voltage value is, the larger the electrostatic force is generated, and the displacement amount of the piston 10 is also increased. The first displacement 12 of the piston, for example, is moved upward from the bottom of the cavity 40 (fourth figure; the second figure is rightward movement). At this time, a pressure change is thus generated in the cavity 40. When the front end of the piston 10 is moved to the introduction port 32, the fluid 30 will quickly fill the cavity 40 due to the pressure change of the cavity 40, as shown in the second figure. FIG. 5 is a bottom view of a micro-push structure according to a third embodiment of the second preferred embodiment of the present invention. Referring to the fifth figure and the third figure, in the third step, the voltage value is gradually decreased to weaken the electrostatic force, so that the piston 10 is gradually driven by a spring 70 to generate a second displacement opposite to the direction of the first displacement 12. 14. The fluid 30 in the output cavity 40 is output. The driving voltage applied to the comb actuator 20 is slowly lowered, and the comb actuator 20 is also affected by the above-described spring force due to the weakening of the electrostatic force, thereby causing the piston to generate a second displacement 14, for example, moving downward ( The fifth picture; the third picture is to move to the left). When the piston 10 descends, the fluid 200827554 30 filled in the cavity 40 is output outward. According to a second preferred embodiment of the invention, the steps are changed. This step changes the voltage value to change the volume of the fluid 30. w Within the eight-cavity 40 As for the mi-: the cavity 4 of the preferred embodiment may be a valveless cavity. Please refer to the second figure. The fluid 30 entering the cavity 4 through the inlet port 32 can be rotated through the inlet and outlet 34 from the cavity 4. The inlet direction of the inlet port 32 and the outlet direction of the outlet port 34 can be sandwiched by a specific angle to control the flow direction of the fluid. This particular angle is, for example, about ninety degrees. The exit direction of the output port 34 is also the direction of the second displacement 14 of the piston 10. According to the second preferred embodiment, the present invention is widely applicable to biochemical reactions, sample mixing, laboratory wafers, biochip quantitative detection, and related applications of various types of microfluidic motion. In addition, the present invention utilizes an external voltage and pressure control device and an instant monitoring device to instantly monitor the reaction situation, control voltage and output control, eliminate the disadvantage that the conventional wafer can only be continuously output, and design a simple valveless cavity. Reduce control difficulties and reduce process costs. While the present invention has been described in connection with the preferred embodiments of the present invention, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application attached. 11 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 A flow chart of a micro-pushing method is not intended, and a fourth drawing is a second view of a second preferred embodiment of the present invention, a schematic view of a micro-push structure; and a fifth view showing a second embodiment according to the present invention. A third embodiment of the preferred embodiment, a schematic view of a micro-pull structure; and a sixth diagram showing a schematic diagram of an electric comb-driven micro-pull system. [Main component symbol description] 10 piston 32 inlet port 40 cavity 90 temporary storage tank 14 second displacement 70 spring 94 analog/digital conversion 98 power supply 20 comb actuator 34 output port 80 voltage control device 12 first displacement 30 fluid 92 real-time monitoring and detecting device 96 computer 12

Claims (1)

200827554 十、申請專利範圍: 1.一種電梳驅動微幫浦系統,包括: 一活塞; 一梳狀致動器,其可在接受一電壓之後,產生一靜電力, 用以帶動一活塞,使該活塞發生一第一位移,致一流體進 入一腔體内,其中該電壓具有一電壓值,其可決定進入該 腔體内之該流體體積,且其中在該電壓值逐漸降低之後, 該靜電力會減弱,使該活塞逐漸受一彈簧之驅動而發生與 該第一位移方向相反的一第二位移,以輸出該腔體内之該 流體;以及 一即時監視檢測裝置,用以提供該梳狀致動器即時資訊。 2·如申請專利範圍第1項所述之電梳驅動微幫浦系統,更 包括一電壓控制裝置,可用於逐漸降低該電壓值。 3.—種微幫浦,包括: 一活塞;以及 一梳狀致動器,其可在接受一電壓之後,產生一靜電力, 用以帶動該活塞,使該活塞發生一第一位移,致一流體進 入一腔體内,其中該電壓具有一電壓值,其可決定進入該 腔體内之該流體體積,且其中在該電壓值逐漸降低之後, 該靜電力會減弱,使該活塞逐漸受一彈簧之驅動而發生與 該第一位移方向相反的一第二位移,以輸出該腔體内之該 13 200827554 流體。 4·如申請專利範圍第3項所述之微幫浦,更包括一電壓控 制裝置,用於改變該電壓值,以改變進入該腔體内之該流 體的該體積。 5·如申請專利範圍第3項所述之微幫浦,其中該腔體係無 閥門腔體。 6·如申請專利範圍第3項所述之微幫浦,其中該流體是透 過一導入口進入該腔體。 7·如申請專利範圍第6項所述之微幫浦,其中該流體是透 過一輸出口從該腔體輸出。 8·如申請專利範圍第7項所述之微幫浦,其中該導入口之 入口方向,與該輸出口之出口方向,兩者夾一特定角度, 以控制該流體的流動方向。 9·一種微幫浦之作動方法,包括: 施加一電壓於一梳狀致動器,以產生一靜電力,用以帶 動一活塞,使該活塞發生一第一位移,致一流體進入一腔 14 200827554 體内,其中該電壓具有一電壓值,其可決定進入該腔體内 之該流體體積;以及 逐漸降低該電壓值,以減弱該靜電力,使該活塞逐漸受 一彈簧之驅動而發生與該第一位移方向相反的一第二位 移,以輸出該腔體内之該流體。 10·如申請專利範圍第9項所述之微幫浦之作動方法,更包 括改變該電壓值,以改變進入該腔體内之該流體的該體積。 11·如申請專利範圍第9項所述之微幫浦之作動方法,其中 該腔體係無閥門腔體。 12·如申請專利範圍第9項所述之微幫浦之作動方法,其中 該流體是透過一導入口進入該腔體。 13.如申請專利範圍第12項所述之微幫浦之作動方法,其 中該流體是透過一輸出口輸出。 14·如申請專利範圍第13項所述之微幫浦之作動方法,其 中該導入口之導入方向,與該輸出口之輸出方向,兩者夾 一特定角度,以控制該流體的流動方向。 15200827554 X. Patent application scope: 1. An electric comb-driven micro-pull system comprising: a piston; a comb actuator capable of generating an electrostatic force after receiving a voltage to drive a piston A first displacement of the piston causes a fluid to enter a cavity, wherein the voltage has a voltage value that determines a volume of the fluid entering the cavity, and wherein the electrostatic value is gradually decreased after the voltage value is gradually decreased The force is weakened such that the piston is gradually driven by a spring to generate a second displacement opposite to the first displacement direction to output the fluid in the chamber; and an instant monitoring and detecting device for providing the comb Actuator instant information. 2. The electric comb-driven micro-pull system of claim 1, further comprising a voltage control device for gradually reducing the voltage value. 3. A micro-pump comprising: a piston; and a comb actuator capable of generating an electrostatic force after receiving a voltage to drive the piston to cause a first displacement of the piston a fluid enters a cavity, wherein the voltage has a voltage value that determines a volume of the fluid entering the cavity, and wherein after the voltage value is gradually decreased, the electrostatic force is weakened, causing the piston to be gradually affected A second displacement opposite the first displacement direction occurs by actuation of a spring to output the 13 200827554 fluid within the chamber. 4. The micro-pull of claim 3, further comprising a voltage control device for varying the voltage value to vary the volume of the fluid entering the chamber. 5. The micro-pull as described in claim 3, wherein the cavity system has no valve cavity. 6. The micro-pump of claim 3, wherein the fluid enters the cavity through an inlet. 7. The micro-pump of claim 6, wherein the fluid is output from the cavity through an output port. 8. The micro-pump according to claim 7, wherein the inlet direction of the inlet and the outlet direction of the outlet are at a specific angle to control the flow direction of the fluid. 9. A micro-pull actuation method comprising: applying a voltage to a comb actuator to generate an electrostatic force for driving a piston to cause a first displacement of the piston to cause a fluid to enter a cavity 14 200827554 In vivo, wherein the voltage has a voltage value that determines a volume of the fluid entering the cavity; and gradually decreasing the voltage value to attenuate the electrostatic force such that the piston is gradually driven by a spring a second displacement opposite the first displacement direction to output the fluid within the chamber. 10. The method of actuating a micro-push as described in claim 9, further comprising varying the voltage value to vary the volume of the fluid entering the chamber. 11. The method of actuating a micro-push as described in claim 9 wherein the cavity system has no valve cavity. 12. The micro-pull actuation method of claim 9, wherein the fluid enters the cavity through an inlet. 13. The micro-pull actuation method of claim 12, wherein the fluid is output through an output port. 14. The micro-pull actuation method according to claim 13, wherein the introduction direction of the introduction port and the output direction of the output port are both at a specific angle to control the flow direction of the fluid. 15
TW095148110A 2006-12-21 2006-12-21 The micropump system using comb drive TW200827554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095148110A TW200827554A (en) 2006-12-21 2006-12-21 The micropump system using comb drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095148110A TW200827554A (en) 2006-12-21 2006-12-21 The micropump system using comb drive

Publications (2)

Publication Number Publication Date
TW200827554A true TW200827554A (en) 2008-07-01
TWI321190B TWI321190B (en) 2010-03-01

Family

ID=44817291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095148110A TW200827554A (en) 2006-12-21 2006-12-21 The micropump system using comb drive

Country Status (1)

Country Link
TW (1) TW200827554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073196A (en) * 2017-12-11 2019-07-30 霍尼韦尔国际公司 Micro-optical particulate matter sensors module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110073196A (en) * 2017-12-11 2019-07-30 霍尼韦尔国际公司 Micro-optical particulate matter sensors module

Also Published As

Publication number Publication date
TWI321190B (en) 2010-03-01

Similar Documents

Publication Publication Date Title
Woias Micropumps—past, progress and future prospects
Linnemann et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases
Huang et al. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics
Abhari et al. A comprehensive study of micropumps technologies
Woias Micropumps: summarizing the first two decades
Yamahata et al. Plastic micropump with ferrofluidic actuation
Amirouche et al. Current micropump technologies and their biomedical applications
Forouzandeh et al. A review of peristaltic micropumps
Al-Halhouli et al. Development of a novel electromagnetic pump for biomedical applications
Wang et al. A compact and high flow-rate piezoelectric micropump with a folded vibrator
Tseng et al. Membrane-activated microfluidic rotary devices for pumping and mixing
Lee et al. Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance
Dhananchezhiyan et al. Optimization of multiple micro pumps to maximize the flow rate and minimize the flow pulsation
Johari et al. Piezoelectric micropump with nanoliter per minute flow for drug delivery systems
Oh et al. A microfluidic chaotic mixer using ferrofluid
CN103939317A (en) Micropump based on ultra-magnetostriction thin film actuator
Liu et al. An electromagnetic microvalve for pneumatic control of microfluidic systems
Oh et al. Miniaturization of pinch-type valves and pumps for practical micro total analysis system integration
Lemke et al. Fabrication of normally-closed bidirectional micropumps in silicon–polymer technology featuring photopatternable silicone valve lips
Geipel et al. A novel two-stage backpressure-independent micropump: modeling and characterization
Chappel et al. Micropumps for drug delivery
Kumar et al. Development of a solenoid actuated planar valveless micropump with single and multiple inlet–outlet arrangements
CN108180135A (en) A kind of piezoelectric stack Micropump based on two level symmetrical expression flexible hinge enlarger
Sedky et al. High efficiency 3D printed electromagnetic micropump with a synchronous active valve
TW200827554A (en) The micropump system using comb drive

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees