TW200825576A - Inorganic non-hydrogen DLC alignment film and preparing method thereof, liquid crystal display device with the alignment film and fabricating method thereof - Google Patents

Inorganic non-hydrogen DLC alignment film and preparing method thereof, liquid crystal display device with the alignment film and fabricating method thereof Download PDF

Info

Publication number
TW200825576A
TW200825576A TW95145369A TW95145369A TW200825576A TW 200825576 A TW200825576 A TW 200825576A TW 95145369 A TW95145369 A TW 95145369A TW 95145369 A TW95145369 A TW 95145369A TW 200825576 A TW200825576 A TW 200825576A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
free
alignment film
hydrogen
film
Prior art date
Application number
TW95145369A
Other languages
Chinese (zh)
Other versions
TWI358584B (en
Inventor
Jin-Bao Wu
Ding-Jen Chen
Ming-Sheng Leu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW95145369A priority Critical patent/TWI358584B/en
Publication of TW200825576A publication Critical patent/TW200825576A/en
Application granted granted Critical
Publication of TWI358584B publication Critical patent/TWI358584B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Crystal (AREA)

Abstract

A inorganic non-hydrogen diamond-like carbon (DLC) alignment film is provided for liquid crystal display. The inorganic non-hydrogen DLC alignment film is a tetrahedral amorphous carbon (ta-C) and characterized that sp3 (C-C) bonding ratio is more than 40%. The inorganic non-hydrogen DLC alignment film is formed by laser pulsed high current arc (LPHCA) deposition in room temperature.

Description

200825576 P54950001TW 21400twf.doc/006 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種配向薄膜(alignment film)及其製 作方法’且特別是有關於一種無機無氫(non-hydrogen)類鑽 (diamond4ike carbon,DLC)配向薄膜、其製備方法及具此 配向薄膜的液晶顯示元件(liquid crystal display device)及 其製作方法。 【先前技術】 面對未來大尺寸液晶顯示器之需求,傳統的液晶配向 技術是以接觸式之毛絨布磨擦配向層,其所帶來的種種影 響可能嚴重影響大尺寸面板之製程良率。因此,利用簡單 的乾式製程取代傳統聚醯亞胺(polyimide,pi)的濕式製 程’不僅可以降低生產成本,還可解決接觸式配向所產生 的諸多問題。 在目前非接觸式(non-contact)配向方式所選用的材料 中,以非晶質含氫類鑽碳(amorphous hydrogenated diamond-like carbon,又稱a_C:H)表現出來的效果與聚醯亞 胺(pi)最相似;主要是因為類鑽膜擁有與聚醯亞胺相同的 sp鍵結(C=C)’此sp2結構與液晶分子的排列有極大的關 係’因此經過離子束(i〇nbeam)處理後,類鑽膜表面與聚醯 亞胺表面會有極相似的表現。 要製作透明無機類鑽配向薄膜,目前常被使用的技術 疋電槳輔助化學氣相沉積(plasma enhanced chemical vapor deposition ’ PECVD) ’然而這個技術通常需對基板材料加 5 200825576 P54950001TW 21400twf.doc/006 溫至100°c左右,以使形成的薄膜具有高穿透率與配向 性。但隨耆可撓性基材的大量應用,如何在低溫得到品質 佳且透明之無機配向薄膜也變成使用電漿化學氣相沉積的 項限制。另外’以電聚輔助化學氣相沉積的方式沉積類 鑽(a-C ·· H)薄膜時,需以碳為前驅物混入氫氣(h2)或氬氣(Ar) 之鈍性氣體’但是含氫量的多寡會對透光性有顯著的影 響,而且氫含量不足會使類鑽(a-C:H)薄膜有斷裂的現象發 _ 生,此外氫含量亦會影響到表面粗糙度。 ® 【發明内容】 本發明的目的就是在提供一種無機無氫類鑽配向薄 膜’可應用於液晶顯示器之配向薄膜。 本發明的再一目的是提供一種製備無機無氫類鑽配向 薄膜的方法,可在室溫下形成sp3(c—c)鍵結比例大於40〇/〇 之無機無氫類鑽配向薄膜。 本發明的另一目的是提供一種液晶顯示元件,具有 sp3(C-C)鍵結比例大於40%之無機無氫類鑽配向薄膜。 • 本發明的又一目的是提供一種液晶顯示元件的製作方 法’能夠在形成無機無氫類鑽配向薄膜時不必通入含碳前 驅物與氫氣,也不需對基材加熱,即可直接產生四面體非 晶破(ta_C)配向薄膜。 本發明提出一種無機無氫類鑽配向薄膜,適用於液晶 顯示器’其特徵在於此種無機無氫類鑽配向薄膜具四面體 非晶碳(ta-C),其sp3(c-C)鍵結比例大於40%。 依照本發明的一實施例所述之無機無氫類鑽配向薄 6 200825576 P54950001TW 21400twf.doc/006 膜’其厚度為2 nm〜50 nm。 依知本發明的一實施例所述之無機無氫類鑽配向薄 膜,其在波長550 nm的穿透率>8〇%。 、本發明再提出一種製備無機無氫類鑽配向薄膜的方 :匕括先進#道Μ射脈衝*電流電弧(laser pulsed high。 。 。 。 。 。 。 。 A diamond-like carbon (DLC) alignment film, a preparation method thereof, and a liquid crystal display device having the alignment film and a method for fabricating the same. [Prior Art] In the face of the demand for large-size liquid crystal displays in the future, the conventional liquid crystal alignment technology uses a contact type plush cloth to rub the alignment layer, and the various effects thereof may seriously affect the process yield of the large-sized panel. Therefore, the use of a simple dry process to replace the traditional polyimide (pi) wet process can not only reduce production costs, but also solve many problems caused by contact alignment. Among the materials selected for the current non-contact alignment method, amorphous hydrogenated diamond-like carbon (also known as a_C:H) exhibits an effect with polyimine. (pi) is most similar; mainly because the diamond-like film possesses the same sp bond (C=C) as the polyimine. This sp2 structure has a great relationship with the arrangement of liquid crystal molecules. Therefore, the ion beam (i〇nbeam) After treatment, the surface of the diamond-like film will have a very similar performance to the surface of the polyimide. To make a transparent inorganic diamond alignment film, the technique currently used is plasma enhanced chemical vapor deposition (PECVD). However, this technique usually needs to add 5 to the substrate material. 200825576 P54950001TW 21400twf.doc/006 The temperature is about 100 ° C to make the formed film have high transmittance and alignment. However, with the large-scale application of flexible substrates, how to obtain a good quality and transparent inorganic alignment film at low temperatures has also become a limitation using plasma chemical vapor deposition. In addition, when depositing a diamond-like (aC ··H) film by electropolymerization-assisted chemical vapor deposition, it is necessary to use carbon as a precursor to mix hydrogen (h2) or argon (Ar) as a passive gas, but the hydrogen content The amount of the film has a significant effect on the light transmission, and the insufficient hydrogen content causes the diamond-like (aC:H) film to break, and the hydrogen content also affects the surface roughness. SUMMARY OF THE INVENTION [The present invention] It is an object of the present invention to provide an inorganic hydrogen-free diamond-like alignment film which can be applied to an alignment film of a liquid crystal display. It is still another object of the present invention to provide a method for preparing an inorganic hydrogen-free diamond-oriented alignment film which can form an inorganic hydrogen-free diamond alignment film having a sp3 (c-c) bonding ratio of more than 40 Å/〇 at room temperature. Another object of the present invention is to provide a liquid crystal display element having an inorganic hydrogen-free diamond-like alignment film having a sp3 (C-C) bonding ratio of more than 40%. A further object of the present invention is to provide a method for fabricating a liquid crystal display device, which can directly generate a carbon-free precursor and hydrogen without forming a carbon-free precursor and hydrogen when forming an inorganic hydrogen-free diamond alignment film. A tetrahedral amorphous (ta_C) alignment film. The invention provides an inorganic hydrogen-free drill alignment film suitable for liquid crystal displays, characterized in that the inorganic hydrogen-free diamond alignment film has tetrahedral amorphous carbon (ta-C), and the sp3 (cC) bonding ratio thereof is greater than 40%. The inorganic hydrogen-free diamond-matching thin film according to an embodiment of the present invention has a thickness of 2 nm to 50 nm. According to an embodiment of the present invention, the inorganic hydrogen-free diamond-matching alignment film has a transmittance at a wavelength of 550 nm > 8 %. The invention further proposes a method for preparing an inorganic hydrogen-free drill alignment film: 匕 先进Advanced #道Μ射脉冲* current arc (laser pulsed high

Tr=arc ’ LPHCA)&gt;;L積,於—個透明導電基板上形成一 層無機錢_薄膜,射錢錢_薄狀-鍵結 比例大於40%。 向驾明的再—實施例所述之製備無機無氫類鑽配 其巾進行雷射脈衝高電流錄沉積期間還 〇括通入一種鈍性氣體,如He、Ne、Ar、Kr或Xe。 依照本發明的再一實施例所述之製盔 向薄膜的方法,1中杂射rr俺古币…機““虱類鑽配 射糸絲τ/、中田射脈衝间·電弧沉積所採用的雷 射糸、、先匕括KrF準分子雷射或ArF準分子雷射。 向薄實施例所述之製備無田機無氫類鑽配 ^ ^ ^ ^ Nd.YAG 1 ^ ^ ^ ^ t 向薄雷====_ 衝電流為1G()A〜5_a。 —、儿積簡用的脈 向薄明=:Γ_述之製備無機無氫類鑽配 程脈衝高電流電弧沉積所採用的製 依照本發明的再-實施例所述之製備無機錢類鑽配 200825576 P54950001TW 21400twf.doc/006 向薄膜的方法,其巾雷射脈衝高電流電弧沉積所採用 壓為 0V〜-500 v。 本發明另提出-種液晶顯示元件,包括兩個透明導電 基板、液晶層、兩層無機無氫類鑽配向薄膜及一組偏光板。 其中,液晶層是充填於透明導電基板之間,而無機無氫類 鑽=向薄膜則分別位於各透明導電基板與液晶層之間,其 中箣述無機無虱類鑽配向薄膜之印3鍵結比例大於奶% 6 而偏光板則分別位於各個透明導電基板之外侧。 依照本發明的另一實施例所述之液晶顯示元件,其中 無機無氫類鑽配向薄膜的厚度為2nm〜50nm。 依照本發明的另一實施例所述之液晶顯示元件,其中 無機無氫類鑽配向薄膜在波長550 nm的穿透率&gt;8〇 %二 本發明又提出一種液晶顯示元件的製作方法,包括先 提供兩個透明導電基板,再於上述透明導電基板上分別形 成一層無機無氫類鑽配向薄膜。接著,進行一道配向處理 步驟,以使各層無機無氫類鑽配向薄膜具有異向性,再組 合這兩片透明導電基板,之後在透明導電基板之間注入液 晶並封口,以形成一個液晶盒。然後,將一纟且偏光板分別 貼附於液晶盒的上表面及下表面。 依照本發明的又^一實施例之液晶顯示元件的製作方 法,所述無機無氫類鑽配向薄膜之s p3鍵結比例大於4 〇 %。。 依照本發明的又一實施例之液晶顯示元件的製作方 法,所述無機無氫類鑽配向薄膜的厚度為2腿〜50 nm。 依照本發明的又一實施例之液晶顯示元件的製作方 200825576 P549500Q1TW 21400twf.doc/006 法,所述配向處理的方式是利驗子束或電漿束撞擊。 本發月口為在形成無機無氫類鑽配向薄膜時採用以雷 射光在固態石墨乾材表面產生許多之微小電漿區,再配合 高功率脈衝輯的方式,來產生高能離子電漿沉積薄 膜。因此,當雷射絲焦在陰極鞋材上時,此時的陽極會 誘發陰極表面產生小的電漿區塊。藉由電容器之充放電機 制,在放電過程中產生上千安培樣衝電流。而在真空腔 體内產能量之,藉由此高能量之電漿可使雜材 產生更T%游離化之離子與更高之電子溫度。因此高能之碳 电水,子其本身即可結合成具高成分比例之叩3結構之無 機無氫類鑽配向薄膜。而且,利用此高能量電漿之優點, 將使上述薄膜的成長卿克服低能量之島狀成長機制 (island growth),因而降低表面粗糙度。此外,在室溫即可 ’儿積彳于到本發明之高穿透率、高附著性與低粗糙度的無機 無氫類鑽配向薄膜,因此對可撓性的基材不會產生破^, 且應用此技術,對於在室溫沉積大面積之透明無機配向薄 膜疋非常有利的。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 本發明之概念是利用一種無機無氫類鑽薄膜作為液晶 顯示器之配向薄膜,其特徵在於此種無機無氫類鑽配向薄 膜具四面體非晶碳(ta-C),其sp3(C-C)鍵結比例大於4〇%。 200825576 P54950001TW 2l400twf.doc/006 而且,於本發明的一實例中,前述無機無氫類鑽配向薄膜 =厚度例如在2nm〜50nm之間,而其在波長55〇nm的 穿透率例如是&gt;8G %。町將舉數個實麵來詳細描述本 發明之製備方法及其應用。 -圖1為依照本發明之一實施例的一種無機無氫類鑽配 向薄膜的製備示意圖。 請參照圖1,在這個實施例中是利用雷射脈衝高電流 電弧(laser pulsed high current arc,LPHCA)設備 1〇〇 來進行 一迢雷射脈衝高電流電弧沉積,以於一個透明導電基板1〇 上形成一層sp3鍵結比例大於40%的無機無氫類鑽薄膜 U,其中透明導電基板1〇例如是由一個透明絕緣基材14 和層銦錫氧化物(ITO)薄膜16所構成。而上述雷射脈衝 馬電流電弧沉積之步驟譬如是在一個真空腔體1〇2中,利 用雷射光104為引弧器,在一個石墨靶材106表面引發陰 極電弧和電漿流,使脈衝電流能達到10⑽A以上,因而增 加了電漿能量使石墨粗材106解離並藉此大幅減少透明導 電基板10表面所產生之微粒(micr〇dr0plets),並可選擇在 透明導電基板10上施加一個負偏壓,將由石墨靶材ι〇6 解離的離子引向前述透明導電基板10,藉此形成所需之無 機無氫類鑽配向薄膜12。其中,石墨靶材106的形狀可為 圖中所示的柱狀靶材;或者長方體靶材或圓形靶材。 請繼續參照圖1,在進行雷射脈衝高電流電弧沉積期 間還可選擇通入一種純性氣體,如He、Ne、Ar、Kr或Xe。 此外,雷射脈衝高電流電弧沉積所採用的雷射系統例如包 200825576 P54950001TW 21400twf.doc/006 括KrF或ArF的準分子雷射或是用·_yag的固態雷射。 而這個實施例之雷射脈衝高電流電弧沉積所採用的其它製 程參數例如:脈衝電流約為1〇〇 A〜5000 A之間、製程壓力 約為1x10 4 Pa〜2 Pa之間、偏壓約為〇V〜-500 V之間。 然後’可利用現有的離子束(i〇nbeam)轟擊技術,打斷 前述無機無氫類鑽薄膜12的sp3鍵結,而在其表面上產生 結構異向性,以完成一層無機無氫類鑽配向薄膜。 圖2是在透明導電基板中添加不同偏壓下(5〇ν,ιοον 響 和i50V)的無機無氫類鑽配向薄膜所測得的拉曼吸收光譜 圖,此光譜圖的掃描範圍在1100〜19〇〇cm-i中。在拉曼光 瑨圖中,一般而言,在 l3〇〇cm-i(Dband^ bOOcm—〗(G band)處若無明顯吸收峰出現表示其量測材質為四面體非 晶碳(tetrahedral amorphous carbon,又稱 ta_C)。 將實驗所得的無氳類鑽配向薄膜經拉曼光譜量測之點 狀實驗數據其作波峰之進行解析,發現此此薄膜的拉曼光 u曰疋以155〇cm和1360 cm 1兩種變寬(br〇a(jen)的波形 • 所組成。經此解析後,可確知此薄膜為四面體非晶碳結構 所組成。 更詳細的說,在不同偏壓下其拉曼光譜解析之位置如 表一所不·其D ban(j與Gband之比例範圍為(id/Ig) 0·35〜0.43之間。而當Id/Ig比值較小時,其&amp;之比例是較 大的。 π 200825576 P54950001TW 21400twf.doc/006 表一 偏壓 拉曼光譜圖波峰位置 (Raman peak position) D_peak(cm-1) G-peakCcm'1) WlG 50 1359 1550 0.43 100 1371 1553 037^ 150 1358 1547 035Tr=arc ’ LPHCA)&gt;; L product forms a layer of inorganic money film on a transparent conductive substrate, and the ratio of the money-thin-bonding is greater than 40%. In the case of the preparation of the inorganic hydrogen-free diamond-like impregnation described in the examples, it is also necessary to pass a passive gas such as He, Ne, Ar, Kr or Xe during the laser pulse high current recording deposition. According to still another embodiment of the present invention, a method for making a helmet to a film, 1 for a ray 俺 俺 俺 机 机 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Lasers, including KrF excimer lasers or ArF excimer lasers. The preparation of the non-hydrogen-type drill with the method described in the thin example is ^ ^ ^ ^ Nd.YAG 1 ^ ^ ^ ^ t to the thin mine ====_ The current is 1G()A~5_a. - The pulse direction for the use of the product is simplified =: Γ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 200825576 P54950001TW 21400twf.doc/006 To the film method, the pressure of the towel laser high current arc deposition is 0V~-500 v. The invention further provides a liquid crystal display element comprising two transparent conductive substrates, a liquid crystal layer, two inorganic hydrogen-free diamond-like alignment films and a set of polarizing plates. Wherein, the liquid crystal layer is filled between the transparent conductive substrates, and the inorganic hydrogen-free drill = the direct film is located between each of the transparent conductive substrates and the liquid crystal layer, wherein the inorganic bondless diamond-like alignment film is bonded. The ratio is greater than the milk % 6 and the polarizing plates are located on the outer sides of the respective transparent conductive substrates. A liquid crystal display element according to another embodiment of the present invention, wherein the inorganic hydrogen-free diamond-like alignment film has a thickness of 2 nm to 50 nm. According to another embodiment of the present invention, the liquid crystal display element of the present invention, wherein the inorganic hydrogen-free diamond-like alignment film has a transmittance at a wavelength of 550 nm > 8 〇 %, the present invention further provides a method for fabricating a liquid crystal display element, including First, two transparent conductive substrates are provided, and then an inorganic hydrogen-free diamond-like alignment film is formed on the transparent conductive substrate. Next, an alignment treatment step is performed to make the inorganic hydrogen-free diamond alignment film of each layer have an anisotropy, and the two transparent conductive substrates are combined, and then liquid crystal is injected between the transparent conductive substrates and sealed to form a liquid crystal cell. Then, a pair of polarizing plates are attached to the upper surface and the lower surface of the liquid crystal cell, respectively. According to still another embodiment of the present invention, in the method of fabricating a liquid crystal display device, the inorganic hydrogen-free diamond-like alignment film has a s p3 bonding ratio of more than 4 〇 %. . According to still another embodiment of the present invention, in the method of fabricating a liquid crystal display element, the inorganic hydrogen-free diamond-like alignment film has a thickness of from 2 legs to 50 nm. According to still another embodiment of the present invention, a liquid crystal display element is manufactured by the method of 200825576 P549500Q1TW 21400 twf.doc/006, and the alignment treatment is performed by a beam or a plasma beam. The hairmoon mouth of the present invention uses a laser to produce a plurality of tiny plasma regions on the surface of the solid graphite dry material in the formation of the inorganic hydrogen-free drill alignment film, and then combines with a high-power pulse to generate a high-energy ion plasma deposition film. . Therefore, when the laser is focused on the cathode shoe, the anode at this time induces a small plasma block on the surface of the cathode. Through the charge and discharge mechanism of the capacitor, thousands of ampere-like currents are generated during the discharge process. By generating energy in the vacuum chamber, the high energy plasma can cause the dopant to produce more T% free ions and higher electron temperatures. Therefore, the high-energy carbon-electric water can be combined into a non-hydrogen-free diamond alignment film having a high proportion of 叩3 structure. Moreover, utilizing the advantages of this high energy plasma will allow the growth of the above-mentioned film to overcome the low energy island growth, thereby reducing the surface roughness. In addition, at room temperature, the inorganic hydrogen-free diamond alignment film having high penetration, high adhesion and low roughness can be accumulated in the present invention, so that the flexible substrate is not broken. And the application of this technique is very advantageous for depositing a large area of transparent inorganic alignment film 室温 at room temperature. The above and other objects, features and advantages of the present invention will become more <RTIgt; [Embodiment] The concept of the present invention is to utilize an inorganic hydrogen-free diamond-like diamond film as an alignment film for a liquid crystal display, characterized in that the inorganic hydrogen-free diamond alignment film has a tetrahedral amorphous carbon (ta-C), and its sp3 The (CC) bonding ratio is greater than 4%. 200825576 P54950001TW 2l400twf.doc/006 Moreover, in an example of the present invention, the inorganic hydrogen-free diamond-like alignment film = thickness is, for example, between 2 nm and 50 nm, and its transmittance at a wavelength of 55 〇 nm is, for example, &gt; 8G %. The town will describe several aspects of the preparation method and application thereof in detail. - Figure 1 is a schematic illustration of the preparation of an inorganic hydrogen-free diamond-like alignment film in accordance with one embodiment of the present invention. Referring to FIG. 1, in this embodiment, a laser pulsed high current arc (LPHCA) device is used to perform a laser pulse high current arc deposition for a transparent conductive substrate 1 An inorganic hydrogen-free diamond-like film U having a sp3 bonding ratio of more than 40% is formed on the crucible, wherein the transparent conductive substrate 1 is composed of, for example, a transparent insulating substrate 14 and a layer of indium tin oxide (ITO) film 16. The above-mentioned laser pulse current arc deposition step is, for example, in a vacuum chamber 1〇2, using the laser light 104 as an arc starter to induce a cathodic arc and a plasma flow on the surface of a graphite target 106 to generate a pulse current. It can reach 10 (10) A or more, thereby increasing the plasma energy to dissociate the graphite crude material 106 and thereby greatly reducing the particles generated on the surface of the transparent conductive substrate 10, and optionally applying a negative bias on the transparent conductive substrate 10. By pressing, the ions dissociated from the graphite target ι 6 are guided to the transparent conductive substrate 10, thereby forming the desired inorganic hydrogen-free diamond-like alignment film 12. Here, the shape of the graphite target 106 may be a columnar target as shown in the drawing; or a rectangular parallelepiped target or a circular target. With continued reference to Figure 1, a pure gas such as He, Ne, Ar, Kr or Xe may be selectively introduced during laser high current arc deposition. In addition, laser systems for laser pulsed high current arc deposition include, for example, the excimer laser of KrF or ArF or the solid state laser with ·_yag. The other process parameters used in the laser pulse high current arc deposition of this embodiment are, for example, a pulse current of between about 1 A and 5000 A, a process pressure of between about 1 x 10 4 Pa and 2 Pa, and a bias voltage of about For 〇V~-500 V between. Then, the existing ion beam (i〇nbeam) bombardment technique can be used to interrupt the sp3 bond of the aforementioned inorganic hydrogen-free diamond-like film 12, and structural anisotropy is generated on the surface to complete an inorganic hydrogen-free drill. Alignment film. 2 is a Raman absorption spectrum measured by adding an inorganic hydrogen-free drill alignment film under different bias voltages (5〇ν, ιοον 声 and i50V) in a transparent conductive substrate, and the scanning range of the spectrum is 1100~ 19〇〇cm-i. In the Raman pupil map, in general, if there is no obvious absorption peak at l3〇〇cm-i (Dband^bOOcm-〗 (G band), the measurement material is tetrahedral amorphous carbon (tetrahedral amorphous). Carbon, also known as ta_C). The experimental results of the flawless diamond-like alignment film were analyzed by Raman spectroscopy, and the Raman light of the film was found to be 155 〇cm. It is composed of two widening (1⁄2 cm) waveforms of br〇a (jen). After this analysis, it is confirmed that the film is composed of a tetrahedral amorphous carbon structure. More specifically, under different bias voltages The position of Raman spectrum analysis is as shown in Table 1. The ratio of j to Gband is (id/Ig) 0·35~0.43. When the ratio of Id/Ig is small, it &amp; The ratio is larger. π 200825576 P54950001TW 21400twf.doc/006 Table 1 Bias Raman peak position Raman peak position D_peak(cm-1) G-peakCcm'1) WlG 50 1359 1550 0.43 100 1371 1553 037^ 150 1358 1547 035

為更進一步證實本發明之上述實施例所製備的無機無 氫類鑽配向薄膜之sp3鍵結比例大於40%,請參考圖3,^ 為無機無氳類鑽配向薄膜的x-ray電子能譜圖。圖3是备 基材偏壓為-50 V日^之x-ray電子能譜圖。表二是圖3之 x-ray電子能譜圖波峰解析,其中此薄膜具C_〇、邛3與叩2 之鍵結其束缚能之位置分別為286.4、284.9和284.2 eV。 其中薄膜的sp3鍵結比例高達50.2%。 表二 偏壓C-V) 解析物種 束缚能位置(eV) 面積 sp3鍵結 比例(%) 50 c_o 286.4 833 sp3 284.9 9871 50.2 sp2 284.2 8925 尸圖4則為施加在透明導電基板不同的負偏壓下,無機 無氫類鑽配向,膜的光穿透率之分析的曲線圖。如圖所 不’在不同偏壓下’本發明之無機無氫類鑽配向薄膜在波 長550 nm的穿透率&gt;80 %,甚至高達9〇%以上。 12 200825576 P54950001TW 21400twf.doc/006 此外,圖5是當透明導電基板偏壓為一50 v時,以原 子力顯微鏡(atomic force microscope,AFM)觀測本發明之 薄膜的表面型態圖。從圖示可知,此無機無氫類鑽配向薄 膜的表面並無固體微粒,且薄膜之粗糙度(Ra)為0.21 nm。 而將本發明之無機無氫類鑽配向薄膜應用於液晶顯示 元件的實施例則如圖6所示,其為依照本發明之另一實施 例的一種液晶顯示元件的剖面示意圖。 請參照圖6,這個實施例之液晶顯示元件2〇〇包括兩 個透明導電基板202、液晶層204、兩層無機無氫類鑽配向 薄膜206及一組偏光板208。其中,上述透明導電基板2〇2 譬如是由一個如玻璃或塑膠的透明絕緣基材212以及一層 位於透明絕緣基材212上的錮錫氧化物(ιτο)薄膜214所構 成。而液晶層204則是充填於透明導電基板2〇2之間,而 無機無氫類鑽配向薄膜206則分別位於各透明導電基板 202與液晶層204之間,其中前述無機無氫類鑽配向薄膜 206之sp3鍵結比例大於40%。此外,上述無機無氫類鑽配 向薄膜206的厚度例如在2 nm〜50 nm之間,而在波長550 nm的穿透率例如&gt;80 %。而偏光板208則分別位於各個透 明導電基板202之外側。再者,於透明導電基板202之間 還可具有多個間隙子(spacer)210、而在透明導電基板202 邊緣通常會用膠框216將液晶層204封在透明導電基板 202之間。 圖7則是依照本發明之又一實施例的一種液晶顯示元 件的製造流程步驟圖。 13 200825576 P54950001TW 21400twf.doc/006 請參照圖7,於步驟300中,提供兩個透明導带 再進行步驟310,於透明導電基板上分別形成―層^^’ 氫類鑽配向薄膜,其中無機無氫類鑽配向薄膜 二 比例大於40%,而且其厚度約為2nm〜5〇nm。P鍵、、、口In order to further confirm that the sp3 bonding ratio of the inorganic hydrogen-free diamond alignment film prepared by the above embodiments of the present invention is greater than 40%, please refer to FIG. 3, which is an x-ray electron spectrum of the inorganic ruthenium-free diamond alignment film. Figure. Figure 3 is an x-ray electron spectroscopy of the substrate biased at -50 V. Table 2 is the peak analysis of the x-ray electron spectroscopy of Fig. 3, in which the bonding energy of the film with C_〇, 邛3 and 叩2 is 286.4, 284.9 and 284.2 eV, respectively. The sp3 bonding ratio of the film is as high as 50.2%. Table 2 Bias CV) Analytical species binding energy position (eV) Area sp3 bonding ratio (%) 50 c_o 286.4 833 sp3 284.9 9871 50.2 sp2 284.2 8925 The corpse 4 is applied under a different negative bias of the transparent conductive substrate. A graph of the analysis of the optical transmittance of a film with an inorganic hydrogen-free drill alignment. As shown in the figure, the inorganic hydrogen-free diamond-oriented alignment film of the present invention has a transmittance at a wavelength of 550 nm &gt; 80%, or even as high as 9% or more. 12 200825576 P54950001TW 21400twf.doc/006 In addition, FIG. 5 is a surface pattern diagram of the film of the present invention observed by an atomic force microscope (AFM) when the transparent conductive substrate is biased to 50 v. As can be seen from the figure, the inorganic hydrogen-free drill has no solid particles on the surface of the film, and the roughness (Ra) of the film is 0.21 nm. An embodiment in which the inorganic hydrogen-free diamond alignment film of the present invention is applied to a liquid crystal display element is shown in Fig. 6, which is a schematic cross-sectional view of a liquid crystal display element according to another embodiment of the present invention. Referring to FIG. 6, the liquid crystal display element 2 of this embodiment includes two transparent conductive substrates 202, a liquid crystal layer 204, two inorganic hydrogen-free diamond-like alignment films 206, and a set of polarizing plates 208. The transparent conductive substrate 2〇2 is composed of, for example, a transparent insulating substrate 212 such as glass or plastic, and a tantalum oxide film 214 on the transparent insulating substrate 212. The liquid crystal layer 204 is filled between the transparent conductive substrates 2〇2, and the inorganic hydrogen-free drill alignment film 206 is respectively located between the transparent conductive substrates 202 and the liquid crystal layer 204, wherein the inorganic hydrogen-free diamond alignment film The sp3 bonding ratio of 206 is greater than 40%. Further, the thickness of the above inorganic hydrogen-free diamond-like alignment film 206 is, for example, between 2 nm and 50 nm, and the transmittance at a wavelength of 550 nm is, for example, &gt; 80%. The polarizing plates 208 are respectively located on the outer sides of the respective transparent conductive substrates 202. Furthermore, a plurality of spacers 210 may be disposed between the transparent conductive substrates 202, and the liquid crystal layer 204 is usually sealed between the transparent conductive substrates 202 by the plastic frame 216 at the edges of the transparent conductive substrate 202. Figure 7 is a flow chart showing the manufacturing process of a liquid crystal display element in accordance with still another embodiment of the present invention. 13 200825576 P54950001TW 21400twf.doc/006 Referring to FIG. 7, in step 300, two transparent conduction strips are provided, and then step 310 is performed to form a layer-by-layer hydrogen-dyed alignment film on the transparent conductive substrate, wherein the inorganic-free film The hydrogen-based drill alignment film has a ratio of more than 40% and a thickness of about 2 nm to 5 〇 nm. P key, ,, port

Pic後,於步驟320中,進行一道配向處理的步驟,以 使各層無機無氫類鑽配向薄膜具有異向性,其中配向處理 的方式例如是利用離子束或電漿束撞擊。 地 接著,於步驟330中,組合上述兩個透明導電基板, 之後於步驟340中,在透明導電基板之間注入液晶並封 口’以形成一個液晶盒。 、 、然後,於步驟350中,將一組偏光板分別貼附於上述 液晶盒的上表面及下表面,即可完成一個液晶顯示元件。 圖8是利用本無機無氫類鑽配向薄膜經過如圖7之 製作方式所形成的液晶顯示元件,可由圖8清楚看到本發 明所使用的無機無氫類鑽配向薄膜具良好的配向性,在相 對於偏光片之偏光軸的不同角度下,可清楚的辨別其明態和 暗態的狀況。 ^ 士綜上所述,本發明因為在形成無機無氫類鑽配向薄膜 時利用雷射脈衝高電流電弧(LPHCA)沉積技術,所以可在 室溫下得到無氫具sp3(C-C)結構之DLC(ta-C)無機透明配 向薄膜,且無需如以電漿輔助化學氣相沉積或以濺鍍法成 長類鑽薄膜時,需要加入氫氣和碳源反應形成非晶質含氫 類鑽碳(amorphous hydrogenated diamond-like carbon,又稱 a-C:H)薄膜。而且,利用雷射脈衝高電流電弧沉積之優點, 14 200825576 P54950001TW 21400twfdoc/006 將使薄膜的成長機制克服低能量之島狀成長機制你福 growth),因而降低薄膜表面之粗糙度。另外,由於在室溫 即可沉積到焉穿透率、高附著性與低粗糙度的無機無氮類 鑽(ta-C)配向薄膜,因此不會對可撓性的基材造成破 句㈣,本發可應驗在室溫沉積大面積之透機 配向薄膜。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何所屬技術領域中具有通常知識者,在不 脫離本發明之精神和範圍内,當可作些許之更動與潤飾, 因此本發明之保護範圍當視後附之申請專利範圍所界定者 為準。 【圖式簡單說明】 圖1為依照本發明之一實施例的一種無機無氫類鑽配 向薄膜的製備示意圖。 圖2為施加在透明導電基板不同的負偏壓下無機無氫 類鑽配向薄膜的拉曼光譜圖。 • 圖3為依照本發明之實施例的無機無氫類鑽配向薄膜 的x-ray電子能譜圖。 圖4為施加在透明導電基板不同的負偏壓下光穿透率 之分析的曲線圖。 圖5疋當透明導電基板偏壓為-50 V時以AFM觀測本 發明之'/專膜的表面型態圖。 圖6是依照本發明之另一實施例的一種液晶顯示元件 的剖面示意圖。 15 200825576 Ρ5495ϋϋϋ 1TW 21400twf.doc/006 圖7是依照本發明之又一實施例的一種液晶顯示元件 的製造流程步驟圖。 圖8是使用DLC(ta-C)薄膜製作出的液晶顯示元件 所展現之配向性。 【主要元件符號說明】 10、202 :透明導電基板 12 :無機無氫類鑽薄膜 14、212 :透明絕緣基材 16、214 :銦錫氧化物(ITO)薄膜 100 :雷射脈衝高電流電弧設備 102 :真空腔體 104 :雷射光 106 :石墨乾材 200 :液晶顯示元件 204 ·液晶 206 :無機無氫類鑽配向薄膜 208 :偏光板 210 :間隙子 216 :膠框 300〜350 :步驟 16After Pic, in step 320, a step of alignment treatment is performed to impart anisotropy to each layer of the inorganic hydrogen-free diamond alignment film, wherein the alignment treatment is performed by, for example, ion beam or plasma beam impingement. Next, in step 330, the two transparent conductive substrates are combined, and then in step 340, liquid crystal is injected between the transparent conductive substrates and sealed to form a liquid crystal cell. Then, in step 350, a set of polarizing plates are respectively attached to the upper surface and the lower surface of the liquid crystal cell to complete a liquid crystal display element. 8 is a liquid crystal display element formed by the inorganic hydrogen-free diamond-like alignment film through the manufacturing method of FIG. 7, and it can be clearly seen from FIG. 8 that the inorganic hydrogen-free diamond alignment film used in the present invention has good alignment property. Under different angles with respect to the polarization axis of the polarizer, the state of the bright state and the dark state can be clearly discerned. ^ In summary, the present invention utilizes a laser pulse high current arc (LPHCA) deposition technique in forming an inorganic hydrogen-free drill alignment film, so that a DLC having a hydrogen-free sp3 (CC) structure can be obtained at room temperature. (ta-C) inorganic transparent alignment film, and it is not necessary to add hydrogen and carbon source to form amorphous hydrogen-containing diamond-like carbon when growing diamond-like film by plasma-assisted chemical vapor deposition or sputtering. Hydrogenated diamond-like carbon, also known as aC:H) film. Moreover, using the advantages of laser pulse high current arc deposition, 14 200825576 P54950001TW 21400twfdoc/006 will make the growth mechanism of the film overcome the low energy island growth mechanism, thus reducing the roughness of the film surface. In addition, since it can be deposited at room temperature to an inorganic nitrogen-free diamond (ta-C) alignment film having a high penetration rate, high adhesion and low roughness, it does not cause a break in the flexible substrate (4) The present invention can be used to deposit a large area of the through-machine alignment film at room temperature. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the preparation of an inorganic hydrogen-free diamond-like alignment film according to an embodiment of the present invention. Figure 2 is a Raman spectrum of an inorganic hydrogen-free diamond-like alignment film applied to different negative bias voltages of a transparent conductive substrate. • Figure 3 is an x-ray electron spectroscopy of an inorganic hydrogen-free diamond-like alignment film in accordance with an embodiment of the present invention. Figure 4 is a graph showing the analysis of light transmittance applied to different negative bias voltages of a transparent conductive substrate. Fig. 5 is a view showing the surface pattern of the '/film of the present invention by AFM when the bias of the transparent conductive substrate is -50 V. Figure 6 is a cross-sectional view showing a liquid crystal display element in accordance with another embodiment of the present invention. 15 200825576 Ρ5495ϋϋϋ 1TW 21400twf.doc/006 FIG. 7 is a flow chart showing the manufacturing process of a liquid crystal display element according to still another embodiment of the present invention. Fig. 8 is an alignment exhibited by a liquid crystal display element produced using a DLC (ta-C) film. [Main component symbol description] 10, 202: transparent conductive substrate 12: inorganic hydrogen-free diamond-like film 14, 212: transparent insulating substrate 16, 214: indium tin oxide (ITO) film 100: laser pulse high current arc device 102: vacuum chamber 104: laser light 106: graphite dry material 200: liquid crystal display element 204. liquid crystal 206: inorganic hydrogen-free diamond-like alignment film 208: polarizing plate 210: spacer 216: plastic frame 300 to 350: step 16

Claims (1)

200825576 ^^υυυΙΎψ 21400twf.doc/006 十、申請專利範圍: L一種無機無氫類鑽配向薄膜,適用於液晶顯示器, 其特徵在於該無機無氫類鑽配向薄膜具四面體非晶碳 (ta-C) ’其sp3(c_c)鍵結比例大於4〇0/〇。 膜 2·如申請專利範圍第1項所述之無機無氫類鑽配向薄 其厚度為 2 nm 〜50 nm 〇 膜 3·如申請專利範圍第1項所述之無機無氫類鑽配向薄 其在波長550 nm的穿透率&gt;80 %。 4·一種製備無機無氫類鑽配向薄膜的方法,包括: 订—雷射脈衝高1流電弧沉積,於—翻導電基板 上形成一無機無氫類鑽薄膜,其中 柳-〇鍵結關大於4G%。 “識糾_溥膜之 向薄5膜tit專3圍第4項所述之製備無機無氫類鑽配 包進行該雷射脈衝高電流電弧沉積期間 向薄6膜專:範圍第5項所述之製備無機無氫類鑽配 2膜的方法’其中該純性氣體包括He、Ne、Ar、Kr或 向薄專郷圍第4項所述之製備錢無氫類鑽配 雷射系她沉積所採用的 早刀子雷射或ArF準分子雷射。 向薄膜無機無氫_配 雷射系統紐脉錢赋賴採用的 17200825576 ^^υυυΙΎψ 21400twf.doc/006 X. Patent application scope: L An inorganic hydrogen-free drill alignment film suitable for liquid crystal displays, characterized in that the inorganic hydrogen-free drill alignment film has tetrahedral amorphous carbon (ta- C) 'The sp3 (c_c) bond ratio is greater than 4〇0/〇. Membrane 2·Inorganic hydrogen-free diamond-like alignment as described in claim 1 of the invention, having a thickness of 2 nm to 50 nm, and a film of the inorganic hydrogen-free diamond as described in claim 1 Transmittance at a wavelength of 550 nm &gt; 80%. 4. A method for preparing an inorganic hydrogen-free drill alignment film, comprising: a laser-deposited high-current arc deposition, forming an inorganic hydrogen-free diamond-like film on the conductive substrate, wherein the Liu-〇 bond junction is greater than 4G %. "Identification and correction _ 溥 film to thin 5 film tit special 3 surrounding the preparation of the inorganic hydrogen-free drill package according to the fourth item of the laser pulse high current arc deposition to thin 6 film special: the fifth item The method for preparing an inorganic hydrogen-free drill with a membrane 2 wherein the pure gas comprises He, Ne, Ar, Kr or a preparation of a money-free hydrogen-free laser with a laser system as described in item 4 of the thin section Early knife laser or ArF excimer laser used for deposition. To the inorganic non-hydrogen _ distribution laser system 9·如申請專利範圍第4項所述之製備無機無氫類鑽配 向薄膜的方法,其中該雷射脈衝高電流電弧沉積所採用的 脈衝電流為100 Α〜5000 Α。 10.如申請專利範圍第4項所述之製備無機無氫類鑽 配向薄膜的方法,其中該雷射脈衝高電流電〗瓜沉積所採用 的製程壓力為1Χ1〇4 Pa〜2Pa。 ^1·如申請專利範圍第4項所述之製備無機無氳類鑽 配向薄膜的方法,其中該雷射脈衝高電流電弧沉積所採用 的偏壓為0V〜-500 V。 12· —種液晶顯示元件,包括: 兩個透明導電基板; 一液晶層,充填於該些透明導電基板之間; 基3板與該液晶層之間’其巾該些無機無氫類鑽配向薄膜之 兩層無機無虱類鑽配向薄膜,分別位於各該透明導電 SP鍵結比例大於40%;以及 一組偏光板,分別位於各該透明導電基板之外侧。 中該些無機無氫類鑽配向薄膜的厚度為2 13.如申請專利範圍第12項所述之液晶顯示元件,其 14.如申請專利範圍第12項所述之液 中該些無機無氫類鑽配向薄膜在波長55〇 %。 \ nm 〜50 nm 〇 •晶顯示元件,其 nm的穿透率&gt;80 15· —種液晶顯示元件的製作方法,包括 提供兩個透明導電基板; 於該些透料電基板上分_成-錢贼類鑽配向 λ. \J\J\J 1TW 21400twf.doc/006 薄膜; 進行一配向處理步驟,以使各該無機無氫類鑽配向薄 膜具有異向性; 組合該些透明導電基板; 在該些透明導電基板之間注入液晶並封口,以形成一 液晶盒;以及 將一組偏光板分別貼附於該液晶盒的上表面及下表 面。 • 16·如申請專利範圍第15項所述之液晶顯示元件的製 作方法,其中該無機無氫類鑽配向薄膜之sp3鍵結比例大 於 40%。 、口 17·如申請專利範圍第15項所述之液晶顯示元件的製 作方法,其中該無機無氫類鑽配向薄膜的厚度為2 nm〜50 nm。 18.如申請專利範圍第15項所述之液晶顯示元件的製 作方法,其中該配向處理的方式是利用離子束或電漿束^ 鏖擊。 7 里 199. The method of preparing an inorganic hydrogen-free diamond-oriented alignment film according to claim 4, wherein the laser pulse high current arc deposition uses a pulse current of 100 Α to 5000 Α. 10. The method of preparing an inorganic hydrogen-free diamond-oriented alignment film according to claim 4, wherein the laser pulse high current electro-deposition is performed at a process pressure of 1 Χ 1 〇 4 Pa 〜 2 Pa. The method of preparing an inorganic ruthenium-free drill alignment film according to the fourth aspect of the invention, wherein the laser pulse high current arc deposition uses a bias voltage of 0 V to -500 V. 12· a liquid crystal display element comprising: two transparent conductive substrates; a liquid crystal layer filled between the transparent conductive substrates; between the base plate 3 and the liquid crystal layer, the inorganic hydrogen-free diamond alignment The two layers of the inorganic ruthenium-free diamond alignment film are respectively located at each of the transparent conductive SP bonding ratios greater than 40%; and a plurality of polarizing plates are respectively located on the outer sides of the transparent conductive substrates. The liquid crystal display element according to claim 12, wherein the inorganic hydrogen-free element in the liquid according to claim 12 of the patent application scope The drill-like alignment film has a wavelength of 55〇%. \ nm 〜50 nm 〇•crystalline display element, transmittance of nm&gt; 80 15· a method for fabricating a liquid crystal display element, comprising providing two transparent conductive substrates; and dividing the dielectric substrates - a money thief drill alignment λ. \J\J\J 1TW 21400twf.doc / 006 film; performing an alignment treatment step to make each of the inorganic hydrogen-free diamond alignment films have an anisotropy; combining the transparent conductive substrates Injecting liquid crystal between the transparent conductive substrates and sealing to form a liquid crystal cell; and attaching a set of polarizing plates to the upper surface and the lower surface of the liquid crystal cell, respectively. The method of producing a liquid crystal display device according to claim 15, wherein the inorganic hydrogen-free diamond-like alignment film has a sp3 bonding ratio of more than 40%. The method for producing a liquid crystal display device according to claim 15, wherein the inorganic hydrogen-free diamond alignment film has a thickness of 2 nm to 50 nm. 18. The method of fabricating a liquid crystal display device according to claim 15, wherein the alignment treatment is performed by means of an ion beam or a plasma beam. 7 miles 19
TW95145369A 2006-12-06 2006-12-06 Liquid crystal display device with inorganic non-h TWI358584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95145369A TWI358584B (en) 2006-12-06 2006-12-06 Liquid crystal display device with inorganic non-h

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95145369A TWI358584B (en) 2006-12-06 2006-12-06 Liquid crystal display device with inorganic non-h

Publications (2)

Publication Number Publication Date
TW200825576A true TW200825576A (en) 2008-06-16
TWI358584B TWI358584B (en) 2012-02-21

Family

ID=44771996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145369A TWI358584B (en) 2006-12-06 2006-12-06 Liquid crystal display device with inorganic non-h

Country Status (1)

Country Link
TW (1) TWI358584B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267007A (en) * 2011-10-31 2019-01-25 Ihi豪泽尔涂层技术有限公司 Device and method for depositing hydrogen-free tetrahedral amorphous carbon-coating on workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267007A (en) * 2011-10-31 2019-01-25 Ihi豪泽尔涂层技术有限公司 Device and method for depositing hydrogen-free tetrahedral amorphous carbon-coating on workpiece
CN109267007B (en) * 2011-10-31 2023-04-14 Ihi豪泽尔涂层技术有限公司 Apparatus and method for depositing a hydrogen-free tetrahedral amorphous carbon layer on a workpiece

Also Published As

Publication number Publication date
TWI358584B (en) 2012-02-21

Similar Documents

Publication Publication Date Title
JP3229281B2 (en) Dry manufacturing method of liquid crystal display using particle beam alignment
US6061114A (en) Alignment of liquid crystal layers
CN103382549B (en) A kind of preparation method of multilayered structure high-isolation film
KR101446411B1 (en) Method for manufacturing corrosion resistant and conductive nano carbon coating and fuel cell bipolar plate thereby
US20070228369A1 (en) Substratum with conductive film and process for producing the same
KR20070106365A (en) Method for manufacturing diamond-like carbon film
Shen et al. Selectivity of threefold symmetry in epitaxial alignment of liquid crystal molecules on macroscale single‐crystal graphene
WO2013061398A1 (en) Cxnyhz film, film forming method, magnetic recording medium, and method for producing same
EP1360549B1 (en) Liquid crystal device and manufacturing method
TW200825576A (en) Inorganic non-hydrogen DLC alignment film and preparing method thereof, liquid crystal display device with the alignment film and fabricating method thereof
TWI356953B (en)
TW201113843A (en) Method of fabricating flexible display device
KR100680181B1 (en) Transparent conductive thin films and thereof manufacturing method
CN109375411A (en) Liquid crystal display panel and preparation method thereof
JP2007140470A (en) Method for manufacturing vertical alignment layer and liquid crystal display device
CN108554745A (en) A kind of surface treatment method of DLC film layer
WO1998059355A3 (en) Cold cathode and methods for producing the same
JPH09166782A (en) Liquid crystal display with back light of field-emission type display device
KR20020013635A (en) Crystallization method of amorphous silicon using metal and electric field
JPH06131968A (en) Field emission type electron source and array substrate
KR20080006812A (en) Bi-layer ito film deposition method and bi-layer ito film prepared by the same
TW525228B (en) Method of depositing amorphous silicon based films having controlled conductivity
CN114005734A (en) Substrate cleaning process based on pulse type single ion beam
KR101091887B1 (en) Transparent diamodnd like carbon coating with high conductivity and fabrication method thereof
JPH06175117A (en) Sin film forming plastic substrate and mim element formed by using the substrate