KR100680181B1 - Transparent conductive thin films and thereof manufacturing method - Google Patents

Transparent conductive thin films and thereof manufacturing method Download PDF

Info

Publication number
KR100680181B1
KR100680181B1 KR1020050021078A KR20050021078A KR100680181B1 KR 100680181 B1 KR100680181 B1 KR 100680181B1 KR 1020050021078 A KR1020050021078 A KR 1020050021078A KR 20050021078 A KR20050021078 A KR 20050021078A KR 100680181 B1 KR100680181 B1 KR 100680181B1
Authority
KR
South Korea
Prior art keywords
thin film
transparent conductive
conductive thin
deposition
carbon
Prior art date
Application number
KR1020050021078A
Other languages
Korean (ko)
Other versions
KR20060099696A (en
Inventor
남기석
이건환
이성훈
이학준
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020050021078A priority Critical patent/KR100680181B1/en
Publication of KR20060099696A publication Critical patent/KR20060099696A/en
Application granted granted Critical
Publication of KR100680181B1 publication Critical patent/KR100680181B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/02Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused
    • H01J31/04Cathode ray tubes; Electron beam tubes having one or more output electrodes which may be impacted selectively by the ray or beam, and onto, from, or over which the ray or beam may be deflected or de-focused with only one or two output electrodes with only two electrically independant groups or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 투명전도성 박막 및 그 제조방법에 관한 것으로, 유리 혹은 플라스틱 소재의 기판상에 투명전도성 박막을 증착하는 과정과; 대전 가능한 두개의 전극을 구비하고, RF전원이 인가되어 공급된 방전가스 및 세정가스로 대기압에서 플라즈마를 발생시키고 그 플라즈마를 기판상에 증착된 박막에 조사하여 그 표면을 세정하는 과정과; 세정된 박막 표면에 스퍼터링, 이온증착, 플라즈마 화학증착중 어느 하나의 방식으로 탄소박막을 증착형성하는 과정을 포함하여 이루어진다.The present invention relates to a transparent conductive thin film and a method for manufacturing the same, comprising: depositing a transparent conductive thin film on a glass or plastic substrate; Generating a plasma at atmospheric pressure with a discharge gas and a cleaning gas supplied with an RF power source, and irradiating the thin film deposited on the substrate to clean the surface; And depositing a carbon thin film on the cleaned thin film by any one of sputtering, ion deposition, and plasma chemical vapor deposition.

본 발명에 따르면 투명전도성 박막의 표면에 탄소박막을 일정두께로 대기압 플라즈마를 이용하여 화학증착함으로써 매우 평탄한 표면조도를 가지면서 광투과도가 높고, 증착전후의 면저항 차이가 없으면서도 대기중에 방치하여도 불순물의 흡착에 따른 일함수값의 낮아짐이 없이 높게 유지되어 흑점발생, 발광효율 저하, 높은 구동전압 등의 문제를 일거에 해소시킬 수 있는 커다란 효과를 제공하게 된다.According to the present invention, the carbon thin film is deposited on the surface of the transparent conductive thin film by using atmospheric pressure plasma to chemically deposit impurities to have a very flat surface roughness, high light transmittance, and even without leaving a difference in sheet resistance before and after deposition. It is maintained high without lowering the work function value due to the adsorption of provides a great effect to solve the problems such as black spot generation, luminous efficiency, high driving voltage at a glance.

투명전도성 박막, ITO, 플라즈마, 탄소박막, 증착 Transparent conductive thin film, ITO, plasma, carbon thin film, deposition

Description

투명전도성 박막 및 그 제조방법{TRANSPARENT CONDUCTIVE THIN FILMS AND THEREOF MANUFACTURING METHOD}Transparent conductive thin film and its manufacturing method {TRANSPARENT CONDUCTIVE THIN FILMS AND THEREOF MANUFACTURING METHOD}

도 1은 본 발명에 따라 투명전도성 박막을 제조하기 위한 장치의 예시적인 구성도,1 is an exemplary configuration diagram of an apparatus for manufacturing a transparent conductive thin film according to the present invention;

도 2는 본 발명에 따른 탄소박막 증착 전후의 기판 단면 사진,Figure 2 is a cross-sectional photograph of the substrate before and after carbon thin film deposition according to the present invention,

도 3은 본 발명 실시예에 따른 탄소박막 증착 전후 및 증착 두께에 따른 표면형상 사진,Figure 3 is a surface shape photograph according to the deposition thickness and before and after the carbon thin film deposition according to an embodiment of the present invention,

도 4는 본 발명 실시예에 따른 탄소박막의 증착 두께에 따른 표면조도 변화를 보인 그래프,4 is a graph showing the surface roughness change according to the deposition thickness of the carbon thin film according to the embodiment of the present invention,

도 5는 본 발명 실시예에 따른 탄소박막의 증착 두께에 따른 탄소박막중 탄소의 농도 및 결합에너지 변화를 보인 그래프,5 is a graph showing changes in carbon concentration and binding energy in the carbon thin film according to the deposition thickness of the carbon thin film according to the embodiment of the present invention;

도 6은 본 발명 실시예에 따른 탄소박막의 증착 두께에 따른 광투과도를 보인 그래프,6 is a graph showing the light transmittance according to the deposition thickness of the carbon thin film according to the embodiment of the present invention,

도 7은 본 발명 실시예에 따른 탄소박막의 증착 두께에 따른 일함수값을 보인 그래프.7 is a graph showing a work function value according to the deposition thickness of the carbon thin film according to the embodiment of the present invention.

♧ 도면의 주요 부분에 대한 부호의 설명 ♧♧ description of the symbols for the main parts of the drawing ♧

100....상부전극 110....전극본체100 .... Upper electrode 110 .... Electrode body

120....챔버 122....가스공급구120 .... Chamber 122 .... Gas Supply

124....플라즈마 200....하부전극124 .... Plasma 200 .... Bottom electrode

300....이송롤 400....전원공급원300 .... feed roll 400 .... power supply

본 발명은 투명전도성 박막 및 그 제조방법에 관한 것으로, 보다 상세하게는 높은 광투과도와 우수한 전기적 성질이 요구되는 디스플레이 소자 및 태양전지의 전극재료 등에 적합하도록 개선된 투명전도성 박막 및 그 제조방법에 관한 것이다.The present invention relates to a transparent conductive thin film and a method of manufacturing the same, and more particularly, to a transparent conductive thin film improved to be suitable for the electrode device of a display device and a solar cell requiring high light transmittance and excellent electrical properties, and a manufacturing method thereof. will be.

최근 정보화의 고도화에 따라 시간과 장소에 구애받지 않고 문자, 음성, 화상 등의 정보를 실시간적으로 주고 받을 수 있는 정보표시장치들의 중요성이 가속화되고 있다.With the recent advance in informatization, the importance of information display devices that can exchange information such as text, voice, and images in real time is accelerating regardless of time and place.

이러한 현상은 CRT(Cathode Ray Tube)로 대변되는 표시장치의 주류에도 변화를 주어 인간공학적, 환경친화적, 고기능화에 부합할 수 있는 평판디스플레이인 FPD(Flat Panel Display)의 비중을 증가시키게 되었다.This phenomenon has also changed the mainstream of display devices represented by Cathode Ray Tubes (CRTs), which has increased the proportion of flat panel displays (FPDs), which are ergonomic, environmentally friendly, and highly functional.

대표적인 평판디스플레이로는 경량, 박형에 전력소모가 작은 장점을 갖는 LCD(Liquid Crystal Display)가 있으나 이는 자체 발광소자가 아니라 별도의 광원을 필요로 하는 수동소자이기 때문에 밝기, 콘트라스트, 시야각 그리고 대면적화 등에 많은 기술적 한계성을 드러내고 있다.Typical flat panel displays include liquid crystal display (LCD), which has the advantages of light weight and thinness, and low power consumption, but it is not a light emitting device but a passive device that requires a separate light source, so brightness, contrast, viewing angle, and large area are increased. Many technical limitations are revealed.

이와 같은 한계성을 극복할 수 있는 차세대 평판디스플레이 소자의 구성재료 로 투명전도성 박막이 대두되고 있다.Transparent conductive thin films are emerging as constituent materials of next-generation flat panel display devices that can overcome such limitations.

투명전도성 박막(Transprent Conductive Thin Films)은 가시광 영역(약 380∼780nm 파장)에서의 높은 투과성(80%이상) 때문에 비교적 넓은 밴드 갭 에너지(3.55∼4.39eV)를 갖는 축퇴된 n형 반도체들로서, 이를테면 In2O3, SnO2, ZnO, ITO 등을 들 수 있다.Transparent Conductive Thin Films are degenerate n-type semiconductors with relatively wide band gap energy (3.55-4.39 eV) because of their high transmission (> 80%) in the visible region (wavelength of about 380-780 nm). in 2 O 3, SnO may be mentioned 2, ZnO, ITO or the like.

이러한 투명전도성 박막은 상대적으로 낮은 전기비저항값(2×10-3Ω㎝)을 갖기 때문에 광전자 디바이스, 액정표시소자, 태양전지, 기타 박막소자 등에 광범위하게 이용되고 있으며, 이를 이용한 평판디스플레이 소자로는 LCD, PDP, OLED(Origanic electroLumine-Scence Display) 등이 있다.Since the transparent conductive thin film has a relatively low electrical resistivity value (2 × 10 −3 Ω㎝), it is widely used in optoelectronic devices, liquid crystal display devices, solar cells, and other thin film devices. LCD, PDP, OLED (Origanic electroLumine-Scence Display).

그러나, 이들 투명전도성 박막은 제품수명과 발광휘도의 개선이 요구되는 바, 이를 위해서는 더 낮은 증착온도에서의 박막공정 수행과 연마공정을 통한 표면 평탄화 및 불순물 세정이 필요하다.However, these transparent conductive thin films are required to improve the product life and the luminance of light emitted. To this end, it is necessary to perform the thin film process at a lower deposition temperature, the surface planarization and the impurity cleaning through the polishing process.

이는 투명전도성 박막은 제조시 국부적인 결정성장의 차이와 박막 표면 위의 잔류 유기물에 의해 표면형상이 뾰족하고, 조도가 거칠게 되며, 이와 같은 뾰족한 주상정(columnar) 구조는 국부적으로 전하의 쏠림현상을 초래하여 발광시 유기물을 손상시키고 이에 따라 흑점이 발생되게 되어 제품 불량을 야기하게 되기 때문이다.This is because the transparent conductive thin film has a sharp surface roughness and roughness due to the difference in local crystal growth and the remaining organic matter on the surface of the thin film. This is because it causes damage to the organic matter during light emission, thereby causing black spots to cause product defects.

특히, 투명전도성 박막은 일함수(work function)값이 클수록 양극과 유기물층 사이의 전하주입장벽이 낮아져 많은 수의 정공이 발광층으로 주입되어 발광 개시전압을 낮추게 되며 이에 따라 높은 일함수값이 요구된다. 그러나, 투명전도성 박막의 표면에 탄소계 불순물이 많이 흡착되는 경우에는 일함수값이 감소되며 이는 OLED 소자의 경우 작동과 성능에 중요한 역할을 하게 된다.In particular, the larger the work function value of the transparent conductive thin film, the lower the charge injection barrier between the anode and the organic material layer, so that a large number of holes are injected into the light emitting layer, thereby lowering the light emission start voltage. Accordingly, a high work function value is required. However, when a large amount of carbon-based impurities are adsorbed on the surface of the transparent conductive thin film, the work function is reduced, which plays an important role in the operation and performance of the OLED device.

결국, 투명전도성 박막 표면의 평탄화를 위한 연마 및 불순물의 세정공정은 제품의 수명 및 선능에 매우 중요한 인자인 것이다.As a result, polishing and impurity cleaning processes for planarizing the surface of the transparent conductive thin film are very important factors for product life and performance.

이를 위해, 종래에는 화학세정, 저압플라즈마, 자외선/오존 등을 이용하여 세정하였으나 이들 방법을 통해 투명전도성 박막이 세정된 후 대기중에 노출된 상태로 방치되는 도중에 불순물의 흡착되어 세정효과가 소실되는 단점이 야기되었다.To this end, conventional cleaning using chemical cleaning, low-pressure plasma, ultraviolet / ozone, etc., but the disadvantage that the cleaning effect is lost due to the adsorption of impurities while the transparent conductive thin film is cleaned and exposed to the air by these methods This was caused.

특히, 저압플라즈마를 이용하는 경우에는 가장 효과적인 세정을 달성해 낼 수는 있으나 고가의 진공장비가 별도로 요구되고, 진공챔버의 크기 때문에 세정할 수 있는 기판의 크기가 제한되는 문제 등이 있어 생산성이 급격히 감소되는 단점도 있었다.In particular, when low-pressure plasma is used, the most effective cleaning can be achieved, but expensive vacuum equipment is required separately, and the size of the substrate that can be cleaned is limited due to the size of the vacuum chamber. There were also disadvantages.

본 발명은 상술한 바와 같은 종래 기술이 갖는 제반 문제점을 감안하여 이를 해결하고자 창출한 것으로, ITO 박막을 비롯한 투명전도성 박막상에 탄소박막을 증착하여 표면조도와 광투과도가 우수하면서 대기중에 장시간 방치하는 경우 불순물 흡착에 따른 일함수값의 낮아짐이 없고 높게 유지되어 발광휘도가 높고 동작특성이 우수함은 물론 수명이 긴 특징을 가지는 투명전도성 박막과 그것을 제조할 수 있는 방법을 제공함에 그 주된 목적이 있다.The present invention was created in view of the above-described problems of the prior art, and is developed to solve this problem, and by depositing a carbon thin film on a transparent conductive thin film, including ITO thin film, which is excellent in surface roughness and light transmittance while being left in the air for a long time. In this case, the main purpose of the present invention is to provide a transparent conductive thin film having a high luminous luminance, excellent operating characteristics, and a long lifespan, and a method of manufacturing the same, which is maintained without increasing the work function value due to the adsorption of impurities.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 유리 혹은 플라스틱 소재 의 기판상에 투명전도성 박막을 증착하는 과정과; 대전 가능한 두개의 전극을 구비하고, RF전원이 인가되어 공급된 방전가스 및 세정가스로 대기압에서 플라즈마를 발생시키고 그 플라즈마를 기판상에 증착된 박막에 조사하여 그 표면을 세정하는 과정과; 세정된 박막 표면에 스퍼터링, 이온증착, 플라즈마 화학증착중 어느 하나의 방법으로 탄소박막을 증착 형성하는 과정을 포함하여 이루어지는 투명전도성 박막 및 그 제조방법을 제공함에 그 기술적 특징이 있다.The present invention is a process for depositing a transparent conductive thin film on a glass or plastic substrate to achieve the above technical problem; Generating a plasma at atmospheric pressure with a discharge gas and a cleaning gas supplied with an RF power source, and irradiating the thin film deposited on the substrate to clean the surface; The present invention provides a transparent conductive thin film comprising a process of depositing and forming a carbon thin film by any one of sputtering, ion deposition, and plasma chemical vapor deposition on the cleaned thin film surface, and a method of manufacturing the same.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예에 대해 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

도 1은 본 발명에 따라 투명전도성 박막을 제조하기 위한 장치의 예시적인 구성도이다.1 is an exemplary configuration diagram of an apparatus for manufacturing a transparent conductive thin film according to the present invention.

본 발명은 유리 또는 플라스틱 소재의 기판상에 요구 두께의 ITO 박막을 비롯한 투명전도성 박막을 증착하는 과정과, 투명전도성 박막의 표면에 그 특성을 개선하기 위한 일정두께의 탄소박막을 다시 한번 증착하는 과정으로 이루어진다.The present invention is a process for depositing a transparent conductive thin film including an ITO thin film of the required thickness on a glass or plastic substrate, and a process of depositing a carbon thin film of a certain thickness to improve its characteristics on the surface of the transparent conductive thin film once again. Is done.

이때, 상기 투명전도성 박막은 스퍼터링, 이온증착, 전기도금 및 화학증착 등의 방법으로 형성되며, 상기 탄소박막은 스퍼터링, 이온증착 및 플라즈마 화학증착 등의 방법으로 형성된다.At this time, the transparent conductive thin film is formed by a method such as sputtering, ion deposition, electroplating and chemical vapor deposition, the carbon thin film is formed by a method such as sputtering, ion deposition and plasma chemical vapor deposition.

이를 위해, 도 1의 예시와 같은 대기압 방전을 통한 플라즈마 발생장치가 사용될 수 있다.To this end, a plasma generating apparatus through atmospheric pressure discharge as shown in FIG. 1 may be used.

상기 대기압 플라즈마 발생장치는 상부전극(100)과 하부전극(200)으로 나뉘어지며, 기판(B)이 이송되는 이송라인상에 설치된다.The atmospheric pressure plasma generator is divided into an upper electrode 100 and a lower electrode 200, and is installed on a transfer line through which the substrate B is transferred.

이때, 상기 기판(B)은 이송롤(300)에 의해 이송되도록 배치되며, 기판(B)상에 증착된 전도성 박막이 상부전극(100)을 향하도록 배치됨이 바람직하다.In this case, the substrate B is disposed to be transferred by the transfer roll 300, and the conductive thin film deposited on the substrate B is disposed to face the upper electrode 100.

즉, 상기 기판(B)은 상부전극(100)과 하부전극(200) 사이의 공간을 따라 수평이동될 수 있도록 배치되게 되는 것이다.That is, the substrate B is disposed to be horizontally moved along the space between the upper electrode 100 and the lower electrode 200.

상기 상부전극(100)은 전극본체(110)에 내장되며, 유전체(102)로 절연된 상태로 마련된다.The upper electrode 100 is embedded in the electrode body 110 and is provided insulated from the dielectric 102.

그리고, 상기 전극본체(110)는 내부에 중공형 챔버(120)가 마련되고, 상기 챔버(120)의 상부에는 방전가스인 헬륨과 세정가스인 산소가 공급될 수 있도록 가스공급구(122)가 마련되어 방전가스공급라인(L1)과 세정가스공급라인(L3)이 연결배관되며, 또한 플라즈마 화학증착을 위해 처리가스로 메탄, 아세틸렌, 프로판 등의 탄화수소계 가스를 공급할 수 있도록 처리가스공급라인(L2)도 병설된다.In addition, the electrode main body 110 has a hollow chamber 120 provided therein, and a gas supply hole 122 is provided above the chamber 120 to supply helium, which is a discharge gas, and oxygen, which is a cleaning gas. The discharge gas supply line (L1) and the cleaning gas supply line (L3) is connected and piped, and also the processing gas supply line (L2) to supply hydrocarbon-based gas such as methane, acetylene, propane as the processing gas for plasma chemical vapor deposition ) Is also added.

아울러, 상기 챔버(120)을 통해 상기 상부전극(100)과 하부전극(200)간에 공급된 혼합가스에 전압을 인가하여 대기압 방전시켜 플라즈마(124)를 형성한다.In addition, the plasma 120 is formed by applying a voltage to the mixed gas supplied between the upper electrode 100 and the lower electrode 200 through the chamber 120 to discharge atmospheric pressure.

이때, 방전가스로는 헬륨에 국한되지 않으며 불활성가스를 사용할 수 있으며, 나아가 헬륨과 아르곤을 적정 비율로 혼합하여 사용함이 더욱 바람직하다.In this case, the discharge gas is not limited to helium, it is possible to use an inert gas, and more preferably, helium and argon are mixed at an appropriate ratio.

그리고, 상기 상부전극(100)과 하부전극(200)은 전원공급원(400)과 연결설치된다.The upper electrode 100 and the lower electrode 200 are connected to the power supply 400.

이러한 구성으로 이루어진 플라즈마 발생장치를 이용하여 본 발명에 따른 박막 제조과정을 설명하면 다음과 같다.Referring to the thin film manufacturing process according to the present invention using a plasma generating device having such a configuration as follows.

먼저 유리 또는 플라스틱 소재의 기판상에 투명전도성 박막을 스퍼터링, 이 온증착, 전기도금 혹은 화학증착 방식을 통해 요구 두께로 증착하는 과정을 거친다.First, a transparent conductive thin film is deposited on a glass or plastic substrate to a required thickness by sputtering, ion deposition, electroplating, or chemical vapor deposition.

이어, 투명전도성 박막이 증착된 기판을 플라즈마 발생장치로 이송시켜 적정 조건의 플라즈마 조사를 통해 투명전도성 박막 표면을 세정하는 과정을 거치게 된다.Subsequently, the substrate on which the transparent conductive thin film is deposited is transferred to a plasma generator, and the surface of the transparent conductive thin film is cleaned by plasma irradiation under appropriate conditions.

이때에는 방전가스를 전량 헬륨으로 할 수도 있으나 이 헬륨에 산소를 0.05∼5% 정도 첨가 혼합하여 사용함이 그 세정 효율면에서 매우 좋다.At this time, the total amount of discharge gas may be helium. However, it is very good in terms of the cleaning efficiency that oxygen is added and mixed with this helium by 0.05 to 5%.

이는 세정효과와 방전 플라즈마의 안정성을 고려하여 0.05∼5%의 범위로 첨가됨이 바람직하기 때문인데, 구체적으로 살펴보면 0.05% 이하로 첨가될 경우에는 세정효과가 거의 없고, 5% 이상으로 첨가될 경우에는 방전이 불가능하기 때문이다.This is because it is preferably added in the range of 0.05 to 5% in consideration of the cleaning effect and stability of the discharge plasma. Specifically, when added to 0.05% or less, the cleaning effect is almost insignificant. This is because discharge is impossible.

또한, 전원공급원(400)으로는 정현파 교류전원, 펄스직류전원 혹은 RF전원 등이 이용될 수 있는데, 이중 플라즈마 세정시 기판(패널)의 손상을 방지하면서 플라즈마 가열을 통한 세정효과를 극대화시킬 수 있는 RF전원이 가장 바람직하다.In addition, a sine wave AC power, pulsed DC power, or RF power may be used as the power supply source 400, which may maximize the cleaning effect through plasma heating while preventing damage to the substrate (panel) during dual plasma cleaning. RF power is most preferred.

이 경우, 만약 RF전원을 통해 전압을 인가할 경우에는 그 전력밀도를 5∼50 W/㎠로 유지함이 바람직한데, 이는 전력밀도가 5W/㎠ 이하인 경우에는 세정작용이 거의 나타나지 않고, 50W/㎠ 이상인 경우에는 마이크로 아크에 의해 기판이 손상될 우려가 높기 때문에 상기 범위값을 유지함이 바람직하다.In this case, if a voltage is applied through the RF power supply, it is desirable to maintain the power density at 5 to 50 W / cm 2, which is hardly exhibited when the power density is 5 W / cm 2 or less, and 50 W / cm 2. In the above case, it is preferable to maintain the above range value because there is a high possibility that the substrate is damaged by the micro arc.

나아가, 세정시간의 경우에는 그 처리효율을 고려하여 1∼10초로 한정함이 바람직하다. 이는 실험결과를 통해 적의 선택된 적정시간이다.Furthermore, in the case of the washing time, it is preferable to limit the processing efficiency to 1 to 10 seconds. This is the titration time chosen by the enemy through the experimental results.

이어, 세정이 완료됨과 동시에 스퍼터링, 이온증착 혹은 플라즈마 화학증착 방식을 통해 요구 두께의 탄소박막을 상기 투명전도성 박막 표면에 증착하는 과정을 거치게 된다.Subsequently, the cleaning is completed and at the same time, a carbon thin film having a required thickness is deposited on the surface of the transparent conductive thin film by sputtering, ion deposition, or plasma chemical vapor deposition.

이때, 상기 플라즈마 발생장치를 통해 세정과 증착을 하나의 설비에서 수행하도록 함이 더욱 바람직하다. 여기에서, 상기 탄소박막을 형성하기 위한 처리가스로는 탄화수소계 가스를 사용함이 바람직하며, 상술한 방전가스에 첨가되는 산소 함량의 한정이유와 동일한 사유에 의해 상기 탄화수소계 가스도 0.005∼5% 첨가 혼합됨이 바람직하다.At this time, it is more preferable to perform cleaning and deposition in one facility through the plasma generator. Here, it is preferable to use a hydrocarbon gas as the processing gas for forming the carbon thin film, and the hydrocarbon gas is also added by 0.005 to 5% by the same reason as the reason for limiting the oxygen content added to the above-described discharge gas. Is preferred.

특히, 상기 탄소박막은 통상적인 방식으로 제조되는 투명전도성 박막의 표면상에 C1s의 결합에너지가 284 이상에서 피크값을 가지며, 두께도 20nm 이상으로 증착됨이 바람직하다.In particular, the carbon thin film has a peak value at a binding energy of C1s of 284 or more on the surface of the transparent conductive thin film manufactured in a conventional manner, and is preferably deposited to a thickness of 20 nm or more.

그 이유는 C1s의 결합에너지가 284 eV 이상에서 피크값을 갖는 탄소박막을 20nm 이상의 두께로 증착하여야 일함수값이 높아지고, 또한 대기중에 방치하여도 그 값이 변하지 않기 때문이다.The reason for this is that a carbon thin film having a peak value of 284 eV or more with a binding energy of C1s must be deposited to a thickness of 20 nm or more to increase the work function value, and the value does not change even when left in the air.

[실시예]EXAMPLE

본 발명 실시예에서는 본발명에 따른 제조방법을 통해 형성된 탄소박막이 투명전도성 박막의 동작특성을 충분히 수행할 수 있는지를 측정하기 위하여, 탄소박막 증착후 그 표면형상, 표면조도, 탄소박막중 탄소의 농도 및 결합에너지의 변화, 광투과도, 면저항, 일함수값 등을 조사하였다.In the embodiment of the present invention in order to determine whether the carbon thin film formed through the manufacturing method according to the present invention can sufficiently perform the operating characteristics of the transparent conductive thin film, the surface shape, surface roughness, carbon of the carbon thin film after deposition Changes in concentration and binding energy, light transmittance, sheet resistance, and work function were investigated.

이를 위해 먼저, 유리기판에 10%의 SnO2를 함유하는 ITO 타겟을 이용하여 스 퍼터링 방식으로 150nm의 ITO 투명전도성 박막을 제조하였으며, 이어, 상기 ITO 투명전도성 박막이 증착된 유리기판을 이송롤(300)로 이송하면서 대기압에서 방전시켜 발생되는 플라즈마를 그 표면에 조사하여 세정하였다.To this end, first, a 150 nm ITO transparent conductive thin film was manufactured by sputtering using an ITO target containing 10% SnO 2 on a glass substrate. Then, the glass substrate on which the ITO transparent conductive thin film was deposited was transferred to a roll. The plasma generated by discharging at atmospheric pressure while being transferred to 300 was irradiated to the surface of the plasma and washed.

이때, 플라즈마 발생조건은 RF전원을 통해 전력밀도를 5∼50 W/㎠로 유지한 상태에서 헬륨+산소를 방전가스로 하였고, 발생된 방전 플라즈마를 ITO 투명전도성 박막의 표면에 2초간 조사하여 세정하였다.At this time, the plasma generation conditions were helium + oxygen as the discharge gas while maintaining a power density of 5 to 50 W / ㎠ through the RF power source, and the generated discharge plasma was irradiated on the surface of the ITO transparent conductive thin film for 2 seconds to clean it. It was.

이후, 1%의 메탄과 99%의 헬륨을 공급함과 동시에 전력밀도 25 W/㎠의 RF전원을 인가하여 상기 ITO 투명전도성 박막 표면에 6nm, 27nm, 49nm의 두께로 구분하여 탄소박막을 증착하였으며, 그 사진을 도 2에 나타내었는데 도 2의 (a)는 탄소박막이 증착되기 전인 ITO 투명전도성 박막만이 증착된 상태의 단면이고, (b)는 탄소박막을 49nm로 증착한 상태의 단면이며, 도 3은 그 표면형상을 대비하기 위하여 나타낸 사진으로 (a)는 ITO 투명전도성 박막, (b)는 6nm로 증착된 탄소박막, (c)는 27nm로 증착된 탄소박막, (d)는 49nm로 증착된 투명박막을 보여주고 있다.Subsequently, a carbon thin film was deposited on the surface of the ITO transparent conductive thin film by 6 nm, 27 nm, and 49 nm thicknesses by supplying 1% methane and 99% helium and applying RF power with a power density of 25 W / cm 2. The photo is shown in Fig. 2 (a) is a cross section of only the ITO transparent conductive thin film deposited before the carbon thin film is deposited, (b) is a cross section of the carbon thin film deposited at 49nm, Figure 3 is a photograph shown to contrast the surface shape (a) is an ITO transparent conductive thin film, (b) a carbon thin film deposited at 6nm, (c) a carbon thin film deposited at 27nm, (d) is 49nm The deposited transparent thin film is shown.

도 3에 나타난 사진의 예시와 같이, 탄소박막이 증착되지 않은 상태에서는 그 표면이 뾰족한 주상정 상태를 나타내나 탄소박막의 두께가 증가할 수록 표면이 평탄화됨을 확인할 수 있다.As shown in the photograph of FIG. 3, in the state where the carbon thin film is not deposited, the surface shows a sharp columnar state, but as the thickness of the carbon thin film increases, the surface is flattened.

나아가, 탄소박막의 두께에 따른 Rmax 표면조도 변화를 조사한 결과, 도 4의 도시와 같이 탄소박막의 두께가 증가할 수록 Rmax 표면조도값이 크게 낮아짐을 확인할 수 있었다.Furthermore, as a result of examining the change in the Rmax surface roughness according to the thickness of the carbon thin film, as shown in FIG. 4, it was confirmed that the Rmax surface roughness value was significantly lowered as the thickness of the carbon thin film was increased.

한편, 증착된 탄소박막중의 C1s 결합에너지의 변화를 확인한 결과, 도 5에서 와 같이 두께가 두꺼워질수록 C1s 결합에너지의 피크값이 커짐을 확인하였다.On the other hand, as a result of confirming the change in the C1s binding energy in the deposited carbon thin film, it was confirmed that as the thickness increases, the peak value of the C1s binding energy increases.

예컨대, 흑연상의 피크가 284.4eV에서, 그리고 다이아몬드상의 피크가 285.2eV에서 나타나는 것과 대비하여 볼 때 본 발명에서는 그 증착시간이 길어질수록 탄소박막중 C1s의 피크값 위치가 다이아몬드상 쪽으로 이동함을 알 수 있었다.For example, in contrast to the peak of graphite phase at 284.4 eV and the peak of diamond phase at 285.2 eV, in the present invention, as the deposition time increases, the peak position of C1s in the carbon thin film moves toward the diamond phase. there was.

즉, sp3/sp2의 분율이 큰 쪽으로 이동함을 확인하였다.That is, it was confirmed that the fraction of sp 3 / sp 2 moved to the larger side.

뿐만 아니라, 탄소박막의 두께에 따른 광투과도를 살펴본 결과, 도 6에서와 같이 탄소박막이 증착됨에 따라 400∼550nm의 파장영역에서 광투과도가 증가하고 있음을 알 수 있었으며, 특히 두께가 두꺼워질수록 광투과도가 더욱 더 증가됨을 확인하였다.In addition, as a result of examining the light transmittance according to the thickness of the carbon thin film, it can be seen that as the carbon thin film is deposited as shown in Fig. 6, the light transmittance is increased in the wavelength region of 400 ~ 550nm, especially as the thickness becomes thicker It was confirmed that the light transmittance was further increased.

예컨대, 410∼430nm 파장영역에서는 광투과도가 75%에서 91%로 대폭 증가되고 있음을 확인할 수 있다.For example, it can be seen that the light transmittance is significantly increased from 75% to 91% in the wavelength region of 410 ~ 430nm.

또한, 면저항 특성을 조사하였는데 하기한 표 1에서와 같이, ITO 투명전도성 박막만일 경우에는 면저항이 3.34 Ω/㎠이었으나 그 표면에 탄소박막이 여러 두께로 증착되었어도 표 1과 같이 ITO 투명전도성 박막일 경우와 동등 수준의 면저항이 나타남을 확인하였다.In addition, the surface resistance characteristics were investigated. As shown in Table 1 below, in the case of the ITO transparent conductive thin film only, the sheet resistance was 3.34 Ω / ㎠, but in the case of the ITO transparent conductive thin film as shown in Table 1 even though the carbon thin film was deposited at various thicknesses on the surface thereof. It was confirmed that the surface resistance of the equivalent level with.

투명전도성 박막          Transparent conductive thin film 면저항(Ω/㎠)                Sheet resistance (Ω / ㎠) 150nm ITO      150nm ITO 33.34                   33.34 150nm ITO + 6nm 탄소박막      150nm ITO + 6nm Carbon Thin Film 32.87                   32.87 150nm ITO + 27nm 탄소박막      150nm ITO + 27nm Carbon Thin Film 32.98                   32.98 150nm ITO + 49nm 탄소박막      150nm ITO + 49nm Carbon Thin Film 32.83                   32.83

마지막으로, 도 7에서와 같이 탄소박막 두께에 따른 일함수값을 조사한 결과, 탄소박막 증착전 ITO 투명전도성 박막의 일함수값은 4.65eV였으나 탄소박막의 증착시간이 증가될수록, 즉 두께가 두꺼워질수록 일함수값이 증가되었으며, 49nm 두께인 경우 5.29eV로 처리전에 비해 일함수값이 0.64eV 증가함을 알 수 있었다.Lastly, as shown in FIG. 7, the work function value of the carbon thin film was investigated, and the work function of the ITO transparent conductive thin film before the carbon thin film deposition was 4.65 eV, but as the deposition time of the carbon thin film was increased, that is, the thickness became thicker. As the work function was increased, it was found that the work function value increased by 0.64 eV to 5.29 eV at 49 nm thickness compared to before treatment.

그 탄소박막은 증착후 24시간 이상 대기중에 방치한 것이며 그럼에도 불구하고 높은 일함수값을 나타내었다.The carbon film was left in the air for more than 24 hours after deposition and nevertheless exhibited a high work function value.

이로써, ITO를 비롯한 투명전도성 박막상에 탄소박막을 증착함으로써 우수한 동작특성을 얻을 수 있음을 확인하였다.As a result, it was confirmed that excellent operating characteristics can be obtained by depositing a carbon thin film on a transparent conductive thin film including ITO.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 투명전도성 박막의 표면에 대기압 플라즈마를 이용하여 일정한 두께의 탄소박막을 화학증착함으로써 매우 평탄한 표면조도를 가지면서 광투과도가 높고, 또한 증착전후의 면저항 차이가 없으며, 대기중에 장시간 방치하여도 일함수값이 낮아짐이 없이 높게 유지되어 흑점발생, 발광효율 저하, 높은 구동전압 등의 문제를 동시에 해소시킬 수 있는 커다란 효과를 제공하게 된다.As described in detail above, according to the present invention, a carbon thin film having a constant thickness is chemically deposited on the surface of the transparent conductive thin film by using atmospheric pressure plasma to have a very flat surface roughness, high light transmittance, and a difference in sheet resistance before and after deposition. In addition, even if left in the air for a long time, the work function value is maintained high without lowering it provides a great effect that can simultaneously solve problems such as black spot generation, luminous efficiency, high driving voltage.

Claims (8)

유리 혹은 플라스틱 소재의 기판상에 스퍼터링, 이온증착, 전기도금 혹은 화학증착의 방법으로 일정 두께로 증착되어 광전자소자, 액정표시소자, 태양전지, 기타 박막소자에 광범위하게 이용되는 투명전도성 박막에 있어서;A transparent conductive thin film deposited on a glass or plastic substrate by sputtering, ion deposition, electroplating, or chemical vapor deposition to a certain thickness and widely used in optoelectronic devices, liquid crystal display devices, solar cells, and other thin film devices; 상기 투명전도성 박막의 표면에 일정두께로 탄소박막이 더 증착 형성된 것을 특징으로 하는 투명전도성 박막.A transparent conductive thin film, characterized in that the carbon thin film further formed on the surface of the transparent conductive thin film deposited. 청구항 1에 있어서,The method according to claim 1, 상기 탄소박막은 20~49nm의 두께로 증착되고, C1s의 결합에너지가 284~287eV 에서 피크값을 갖는 것을 특징으로 투명전도성 박막.The carbon thin film is deposited to a thickness of 20 ~ 49nm, a transparent conductive thin film, characterized in that the binding energy of C1s has a peak value at 284 ~ 287eV. 유리 혹은 플라스틱 소재의 기판상에 투명전도성 박막을 증착하는 과정과;Depositing a transparent conductive thin film on a glass or plastic substrate; 대전 가능한 두개의 전극을 구비하고, RF전원이 인가되어 공급된 방전가스 및 세정가스로 대기압에서 방전시켜 플라즈마를 발생시키고 그 플라즈마를 기판상에 증착된 박막에 조사하여 그 표면을 세정하는 과정과;A process of cleaning the surface by irradiating a thin film deposited on a substrate by discharging the discharge gas at atmospheric pressure with a discharge gas and a cleaning gas supplied with RF power and supplied with an RF power source; 세정된 박막 표면에 스퍼터링, 이온증착, 플라즈마 화학증착중 어느 하나의 방식으로 탄소박막을 증착 형성하는 과정을 포함하여 이루어지는 것을 특징으로 하는 투명전도성 박막 제조방법.Method of manufacturing a transparent conductive thin film comprising the step of depositing and forming a carbon thin film by any one of the method of sputtering, ion deposition, plasma chemical vapor deposition on the cleaned thin film surface. 청구항 3에 있어서,The method according to claim 3, 상기 세정과정은,The cleaning process, 방전가스로 헬륨을 사용하고, 세정가스로는 0.05∼5%의 산소를 혼합 사용하는 것을 특징으로 하는 투명전도성 박막 제조방법.A method for producing a transparent conductive thin film, characterized in that helium is used as the discharge gas and 0.05 to 5% oxygen is mixed as the cleaning gas. 청구항 3에 있어서,The method according to claim 3, 상기 세정과정은,The cleaning process, 방전가스로 아르곤 혹은 질소를 사용하는 것을 특징으로 하는 투명전도성 박막 제조방법.A method for manufacturing a transparent conductive thin film, wherein argon or nitrogen is used as the discharge gas. 청구항 3에 있어서,The method according to claim 3, 상기 세정과정은,The cleaning process, RF전원을 통해 5∼50 W/㎠의 전력밀도하에서 이루어지는 것을 특징으로 하는 투명전도성 박막 제조방법.Transparent conductive thin film manufacturing method characterized in that it is made at a power density of 5 to 50 W / ㎠ through an RF power source. 청구항 3에 있어서,The method according to claim 3, 상기 탄소박막 증착과정중 플라즈마 화학증착일 경우에는,In the case of plasma chemical vapor deposition during the carbon thin film deposition process, 탄소원 가스로 메탄, 아세틸렌, 프로판의 탄화수소계 가스중 어느 하나를 이용하는 것을 특징으로 하는 투명전도성 박막 제조방법.Method for producing a transparent conductive thin film, characterized in that any one of a hydrocarbon gas of methane, acetylene, propane as a carbon source gas. 청구항 7에 있어서,The method according to claim 7, 상기 탄화수소계 처리가스는 방전가스에 0.05∼5% 첨가 혼합되는 것을 특징으로 하는 투명전도성 박막 제조방법.The hydrocarbon-based processing gas is a transparent conductive thin film manufacturing method, characterized in that 0.05 to 5% addition to the discharge gas is mixed.
KR1020050021078A 2005-03-14 2005-03-14 Transparent conductive thin films and thereof manufacturing method KR100680181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050021078A KR100680181B1 (en) 2005-03-14 2005-03-14 Transparent conductive thin films and thereof manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050021078A KR100680181B1 (en) 2005-03-14 2005-03-14 Transparent conductive thin films and thereof manufacturing method

Publications (2)

Publication Number Publication Date
KR20060099696A KR20060099696A (en) 2006-09-20
KR100680181B1 true KR100680181B1 (en) 2007-02-08

Family

ID=37630812

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050021078A KR100680181B1 (en) 2005-03-14 2005-03-14 Transparent conductive thin films and thereof manufacturing method

Country Status (1)

Country Link
KR (1) KR100680181B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133250B1 (en) * 2009-09-29 2012-04-05 부산대학교 산학협력단 manufacturing mathod of transparency electrode using polymer substrate atmosphere plasma treated

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090162970A1 (en) * 2007-12-20 2009-06-25 Yang Michael X Material modification in solar cell fabrication with ion doping
CN117673335A (en) * 2024-01-31 2024-03-08 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method thereof and lithium ion battery
CN117832333B (en) * 2024-03-05 2024-05-31 龙焱能源科技(杭州)有限公司 Cadmium telluride thin film battery and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980050946A (en) * 1996-12-21 1998-09-15 양승택 Light emitting layer for field emission display and manufacturing method thereof
KR20040005023A (en) * 2002-07-08 2004-01-16 삼성에스디아이 주식회사 Method of manufacturing functional film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980050946A (en) * 1996-12-21 1998-09-15 양승택 Light emitting layer for field emission display and manufacturing method thereof
KR20040005023A (en) * 2002-07-08 2004-01-16 삼성에스디아이 주식회사 Method of manufacturing functional film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1019980050946
1020040005023

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133250B1 (en) * 2009-09-29 2012-04-05 부산대학교 산학협력단 manufacturing mathod of transparency electrode using polymer substrate atmosphere plasma treated

Also Published As

Publication number Publication date
KR20060099696A (en) 2006-09-20

Similar Documents

Publication Publication Date Title
KR101279914B1 (en) Improving water-barrier performance of an encapsulating film
TWI506162B (en) Method for depositing an encapsulating film
KR101025932B1 (en) Method for fabricating transparent conductive oxide electrode using electron beam post treatment
Lu et al. Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes
KR20120096084A (en) Improving water-barrier performance of an encapsulating film
WO1999010908A1 (en) Electron emitting device, field emission display, and method of producing the same
KR20040065703A (en) Method of forming indium tin oxide thin film including a seed layer and a bulk layer utilizing an optimized sequential sputter deposition
JPWO2006061964A1 (en) Substrate with conductive film and method for producing the same
CN107863451A (en) A kind of preparation method of OLED anodes and the preparation method of OLED display
KR100680181B1 (en) Transparent conductive thin films and thereof manufacturing method
Park et al. Enhanced performance of the OLED with plasma treated ITO and plasma polymerized thiophene buffer layer
JP4094804B2 (en) Manufacturing method of organic EL device
KR20070050143A (en) Methods for fabricating transparent conductive oxide electrode
KR100859148B1 (en) High flatness transparent conductive thin films and its manufacturing method
US7628669B2 (en) Organic light emitting devices with conductive layers having adjustable work function and fabrication methods thereof
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
KR20150047840A (en) Electrode element comprising control-layer of work function
KR20050073233A (en) Manufacturing method of indium tin oxide thin film
JP2011034717A (en) Organic el light emitting device, and method of manufacturing the same
JP2003086025A (en) Transparent conductive film forming substrate and method for manufacturing the same
KR20090077264A (en) Atmosphere plasma surface-treated azo thin film and its manufacturing method
JP4543691B2 (en) Organic electroluminescence device and method for producing the same
JP4493902B2 (en) Method for producing transparent conductive film
US8877548B2 (en) Planarized TCO-based anode for OLED devices, and/or methods of making the same
JP4114398B2 (en) Manufacturing method of substrate with ITO film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120202

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee