TW200821989A - Image enhancement in the mosaic domain - Google Patents

Image enhancement in the mosaic domain Download PDF

Info

Publication number
TW200821989A
TW200821989A TW096108965A TW96108965A TW200821989A TW 200821989 A TW200821989 A TW 200821989A TW 096108965 A TW096108965 A TW 096108965A TW 96108965 A TW96108965 A TW 96108965A TW 200821989 A TW200821989 A TW 200821989A
Authority
TW
Taiwan
Prior art keywords
sub
input
images
image
pixel values
Prior art date
Application number
TW096108965A
Other languages
Chinese (zh)
Other versions
TWI419079B (en
Inventor
Anatoly Litvinov
Alex Alon
Irina Alon
Einat Kidron
Uri Kinrot
Original Assignee
Blur Technologies Ltd D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IL2006/001284 external-priority patent/WO2007054931A2/en
Application filed by Blur Technologies Ltd D filed Critical Blur Technologies Ltd D
Publication of TW200821989A publication Critical patent/TW200821989A/en
Application granted granted Critical
Publication of TWI419079B publication Critical patent/TWI419079B/en

Links

Landscapes

  • Image Processing (AREA)

Abstract

Imaging apparatus includes a mosaic image sensor (24), which is configured to generate a stream of input pixel values belonging to a plurality of input sub-images, each sub-image responsive to light of a different, respective color that is incident on the mosaic image sensor. An image restoration circuit (26) is coupled to receive and digitally filter the input pixel values in each of the input sub-images so as to generate a corresponding plurality of enhanced output sub-images. An image signal processor (ISP) (28) is coupled to receive and combine the plurality of the output sub-images in order to generate a color video output image.

Description

200821989 九、發明說明: 【發明所屬之技術領域】 本發明-般而言係關於數位成像,且明確而言係關於用 於在數位攝影機中加強影像品質之方法及器件。 【先前技術】 受到大小、成本、孔徑大小及攝影機製造者所強加之其 他因素的限制,在數位攝影機中所使用的物鏡光學元件一 般係設計以便最小化光學點散布函數(PSF)與最大化調變 f 轉移函數(MTF)。所得光學系統之PSF可能仍由於聚舞變 =及像差而不同於理想。已知許多方法在此項技術中用'於 猎由數位影像處理來補償此類pSF偏差。例如,美國專利 案6’154’574說明-種用於在—影像處理系統内數位聚舞— 離焦影像之方法’其揭示内容係以引用方式併入本文。一 平均步階響應係藉由將一散焦影像分成子影像並在各子影 像中相對於邊緣方向計算步階響應來獲得。該平均步階^ ϋ係用於計算PSF係數,隨之將該psF係數應用於決定— 影像還原轉移函數。一聚焦影像係藉由在頻域(―〜 domain)内將此函數乘以離焦影像來獲得。 pct國際公告案w〇 2〇〇4/〇63989 A2,說明一種電子成 象攝ρ機其包含一影像感測陣列與一影像處理器,其應 去模糊功忐(一般採用一解摺積濾波器(dcf)之形式) 至該陣列所輸出之信號,以便產生一具有減小模糊之輸出 $像、’其揭示内容係以引用方式併人本文。此模糊減小使 设計並使用具有一較差固有PSF之攝影機光學元件成為可 119049.doc 200821989 能,同時還原該感測陣列所產生之電子影像以提供一可接 受的輸出影像。 低成本彩色視訊攝影機一般使用一具有多色彩馬賽克濾 波器覆蓋之單-固態影像感測器。—馬赛克濾波器係一微 型彩色濾波器元件之遮罩,其中一濾波器元件係定位於影 像感測器之各偵測器元件前面。例如,美國專利案 4,697,208說明一種彩色影像拾取器件,其具有一固態影像 感測元件與一互補色彩型馬賽克濾波器。任何種類的具有 彩色馬賽克渡波器之影像感測器(不論馬赛克中的色彩 配置及選擇)在下文中均稱為一”馬賽克影像感測器,,。 在馬赛克遽波器中的遽波器元件一般在主要RGB色彩之 間或在互補色彩青色、深紅色及黃色之間交替。一普遍彩 色馬赛克濾波器類型係稱為一”貝爾感測器”或"貝爾馬赛 克M,其具有下列一般形式(其中字母表示色彩:R表示紅 色、G表示綠色及B表示藍色200821989 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates generally to digital imaging and, more specifically, to methods and devices for enhancing image quality in digital cameras. [Prior Art] Due to size, cost, aperture size, and other factors imposed by the camera manufacturer, the objective optical components used in digital cameras are generally designed to minimize optical point spread function (PSF) and maximize tuning. Change the f transfer function (MTF). The PSF of the resulting optical system may still differ from the ideal due to the poly dance = and aberrations. A number of methods are known in the art to compensate for such pSF bias by digital image processing. For example, U.S. Patent No. 6' 154' 574 describes a method for digitally dancing in a video processing system - a method of defocusing images, the disclosure of which is incorporated herein by reference. An average step response is obtained by dividing a defocused image into sub-images and calculating the step response in each sub-image relative to the edge direction. The average step is used to calculate the PSF coefficient, which is then applied to the decision-image reduction transfer function. A focused image is obtained by multiplying this function by an out-of-focus image in the frequency domain (~~ domain). Ppt International Bulletin w〇2〇〇4/〇63989 A2, which illustrates an electronic imaging camera that includes an image sensing array and an image processor that should be defuzzified (usually using a deconvolution filter) The form of the device (dcf) to the output of the array to produce an output with reduced blurring, such as the disclosure of which is incorporated herein by reference. This blur reduction enables the design and use of camera optics having a poor inherent PSF to restore the electronic image produced by the sensing array to provide an acceptable output image. Low cost color video cameras typically use a single-solid image sensor with a multi-color mosaic filter overlay. The mosaic filter is a mask of a micro color filter component, wherein a filter component is positioned in front of each detector component of the image sensor. For example, U.S. Patent No. 4,697,208 describes a color image pickup device having a solid-state image sensing element and a complementary color mosaic filter. Any type of image sensor with a color mosaic waver (regardless of the color configuration and selection in the mosaic) is hereinafter referred to as a "mosaic image sensor". The chopper element in a mosaic chopper is generally Between main RGB colors or between complementary colors cyan, magenta, and yellow. A common color mosaic filter type is called a "Bell Sensor" or "Belle Mosaic M, which has the following general form ( The letters indicate color: R for red, G for green, and B for blue

R G R G R G G B G B G B R G R G R G G B G B G B R G R G R G G B G B G B 該等不同彩色濾波器具有個別可能重疊的通帶。貝爾馬賽 克係說明於美國專利案3,971,G65,其揭示内容以引用方式 119049.doc 200821989 併入本文。 處理-馬賽克影像感測器所產生之影像一般涉及藉由從 感測1§輸出中擷取三色彩信號(紅色、 全部彩色影像。-影像信號處理器⑽)處理 出,以便針對輸出影像之各像素來計算亮度(γ)及色度(c) 值。該ISP然後以-標準視訊格式來輸出該些值(或對應的 R、G及B色值)。 【發明内容】 本發明t具體實施例提供用以處理並加強電子影像(尤 其係-馬#克影像感冑器所i生之影像)之方法及器件。 該感測器輸出屬於複數個輸入子影像的一像素值流,各子 影像係由於入射在該馬賽克影像感測器上的一不同、個別 色彩之光而引起。-影像還原電路㈣該等輸人子影像之 各輸入子影像中的該等像素值,以便產生具有加強品質 (例如減小模糊)的對應輸出子影像。一影像信號處理器 (ISP)然後組合該等輸出子影像,以便產生—彩色視訊輸出 影像。 比較其中該等馬賽克子影像係在去模糊之前先組合以重 建彩色輸出影像之傳統方法時,經發現此配置提供出眾 的結果。此外,在一些具體實施例中,該影像還原電路所 產生之該等輸出子影像係袼式上與該馬赛克影像感測器所 產生之該等輸入子影像才目同,&得該影像還原電路可在該 感測$與該ISP之間整合一财感測器/ISP組合而很少或不 改變該感測器或18?設計。 119049.doc 200821989 依據本發明之一具體實施例,因此提供成像裝置,其包 括: ’、 一馬賽克影像感測器,其經組態用以產生屬於複數個輪 入子影像的一輸入像素值流,各子影像回應入射在該馬賽 克影像感測器上的一不同、個別色彩之光。 一影像還原電路,其係耦合以接收並數位過濾在該等輸 入子影像之各輸入子影像内的該等輸入像素值,以便產生 對應的複數個加強輸出子影像;以及 一影像信號處理器(ISP),其係耦合以接收並組合該複數 個輸出子影像,以便產生一彩色視訊輸出影像。 在-揭示的具體實施财,料輸人子影像及該等輸出 子影像具有相同袼式,以便該ISP可耦合以接收並組合該 等輸出子影像或該等輸人子影像。—般而言,在該複數個 輸入子影像巾的料輸人像素值係在該馬賽克影像感測器 所輸出之-單一輸入像素流中採用一預定交錯圖案而交 =,且該等輸出子影像包括輸出像素值,其係依據該預定 交錯圖案在一輸出像素流巾由該影像還原電路來交錯。 在-些具體實施例中,各子影像具有—輸人模糊,而該 等輸出子影像在經該影像還原電路料之後具有一輸出模 糊,其係小於該輸人模糊。在—具體實施例巾,該裝置包 括物鏡光學元件,其具有一引起該輸入模糊之點散布函數 (SF)而I#像還原電路包括_解摺積渡波器(dcf),其 :、有依據3PSF決定的渡波核心'。該聊可在該影像感 、J器之平面上纟交化,且該影像還原電路可配置成用以回 119049.doc 200821989 應該影像感測器之平面上的_ PSF變化,應用不同的濾波 核心至來自該影像感測器之不同區域的該等輸入像素值。 此外或替代性地,該影像還原電路可配置成用以根據該等 輸入子影像之一特徵來應用不同的濾波核心至該等輸入像 素值。 在一些具體實施例中,該馬賽克影像感測器包括一採用 一貝爾馬賽克圖案配置的濾波器陣列。在一具體實施例 中,該等輸入像素值包括第一列交替綠色及藍色像素與第 二列交替綠色及紅色像素,且該影像還原電路包括一綠平 衡單元,其係耦合以補償在該等第一及第二列之間的綠色 像素之一敏感度變化。該敏感度變化可能在該影像感測器 之一區域上不均勻,且該綠平衡單元可配置成用以回應不 均勻的敏感度變化來應用一不均勻的補償。 在一揭示的具體實施例中,該裝置包括物鏡光學元件, 其經組態用以在一預定模糊下將光聚焦在該馬賽克影像感 測器上,且该景》像還原電路包括一散斑(Spike)移除單元, 其在該等輸入子影像之各輸入子影像内識別具有輸入像素 值比相鄰像素之輸入像素值差多於一最大差異的缺陷像 素’邊最大差異係依據該模糊來決定,並校正該等缺陷像 素之輸入像素值。 在一些具體實施例中,該影像還原電路包括一雜訊濾波 器,其係配置成用以數位過濾各輸入子影像,以便減小該 等子景〉像内的雜訊。在一具體實施例中,該雜訊濾波器係 配置成用以在該等輸入子影像内決定局部梯度之方向及量 119049.doc -10- 200821989 值’並回應該等方向及該等量值選擇濾波核心用以減小雜 訊。 此外或者替代性地,該影像還原電路包括一解摺積濾波 态(DCF) ’其係配置成用以在該雜訊濾波器減小雜訊之後 過慮4等輸人子影像。在—具體實施例中,該影像還原電 路匕括邊緣偵測器,其係配置成用以識別該等輸入影像 内的邊緣區域,並㈣該⑽之一輸人,以便該⑽接收 在該等邊緣區$内未經雜訊過濾的輸人像素值並從該雜訊 濾波器接收在該等邊緣區域外部的經雜訊減小之輸入像素 值。該邊緣偵測器可配置成用以偵測邊緣像素,且該影像 還原電路可包括一加寬單元,其係配置成用以藉由添加像 素至該等邊緣像素周圍的邊緣區域來加寬該等邊緣區域。 一般而言,該加寬單元係配置成用以從該邊緣偵測器接收 在該等子影像之一第一子影像中的一邊緣像素之一識別, 並在該等子影像之至少一第二子影像中向該邊緣區域添加 與該邊緣像素相鄰的該等像素。 在一揭示的具體實施例中,該影像還原電路包括一數位 濾、波器’其係配置成用以使用一給定大小的核心來摺積該 等輸入子影像、及一定框延伸單元,其係配置成用以在該 等輸入子影像周圍添加一像素值邊界,該邊界具有一回應 該濾波核心大小而選擇的寬度。 在一些具體實施例中,在該複數個輸入子影像中的該等 輸入像素值係在一由該馬賽克影像感測器所輸出之單一輸 入像素流中採用一預定交錯圖案而交錯,且該影像還原電 119049.doc -11 - 200821989 路包括-數位遽波a,其係置成用以回應該交錯圖案, 使用-受到陰影的個別核心來摺積該等輸人子影像之各輪 入子影像,⑽將料子料之各子料與其他子影像分 離地過濾。 依據本發明之-具體實施例,還提供—種成像方法,复 包括: 〃 從一馬賽克影像感測ϋ接收屬於複數個輸人子影像的— 輸入像素值流,各子影像回應人射在該馬赛克㈣感測器 上的一不同、個別色彩之光; 在該等輸人子影像之各輸人子影㈣數位㈣、該等輸入 像素值則更產生對應的複數個加強冑出子影像;以及 在一影像信號處理H(ISP)内組合該等輸出子影像,以便 產生一彩色視訊輸出影像。 【實施方式】R G R G R G G B G B G B R G R G R G G B G B G B R G R G R G G G G G G G These different color filters have individual pass bands that may overlap. The Belmars is described in U.S. Patent No. 3,971, G, the disclosure of which is incorporated herein by reference. Processing - The image produced by the mosaic image sensor generally involves processing three color signals (red, all color images - image signal processor (10)) from the sensing 1 § output for processing The pixels are used to calculate the luminance (γ) and chrominance (c) values. The ISP then outputs the values (or corresponding R, G, and B color values) in a standard video format. SUMMARY OF THE INVENTION The present invention provides a method and apparatus for processing and enhancing an electronic image (especially an image produced by a video sensor). The sensor outputs a stream of pixel values belonging to a plurality of input sub-images, each sub-image being caused by a different, individual color of light incident on the mosaic image sensor. - Image restoration circuit (4) The pixel values in the input sub-images of the input sub-images to produce corresponding output sub-images having enhanced quality (e.g., reduced blur). An image signal processor (ISP) then combines the output sub-images to produce a color video output image. This configuration provides superior results when comparing the conventional methods in which the mosaic sub-images were combined to reconstruct the color output image prior to deblurring. In addition, in some embodiments, the output sub-images generated by the image restoration circuit are identical to the input sub-images generated by the mosaic image sensor, and the image is restored. The circuit can integrate a sensor/ISP combination between the sensing $ and the ISP with little or no change to the sensor or 18? design. 119049.doc 200821989 In accordance with an embodiment of the present invention, there is thus provided an imaging apparatus comprising: ', a mosaic image sensor configured to generate an input pixel value stream belonging to a plurality of rounded sub-images Each sub-image responds to a different, individual color of light incident on the mosaic image sensor. An image restoration circuit coupled to receive and digitally filter the input pixel values in each of the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images; and an image signal processor ( ISP) is coupled to receive and combine the plurality of output sub-images to produce a color video output image. In the specific implementation of the disclosure, the input sub-image and the output sub-images have the same pattern so that the ISP can be coupled to receive and combine the output sub-images or the input sub-images. Generally, the input pixel values of the plurality of input sub-image towels are in a single input pixel stream output by the mosaic image sensor, and a predetermined interlaced pattern is used, and the output is The image includes output pixel values that are interleaved by the image restoration circuit in accordance with the predetermined interlaced pattern in an output pixel stream. In some embodiments, each sub-image has an input blur, and the output sub-images have an output blur after the image reduction circuit material, which is less than the input blur. In a specific embodiment, the apparatus includes an objective optical element having a point spread function (SF) that causes the input blur, and an I# like restore circuit includes a _dissolved wave generator (dcf), which has: 3PSF decided to wave the core '. The chat can be intertwined on the plane of the image and the J device, and the image restoration circuit can be configured to return 119049.doc 200821989 _ PSF change on the plane of the image sensor, applying different filter cores The input pixel values from different regions of the image sensor. Additionally or alternatively, the image restoration circuit can be configured to apply different filter cores to the input pixel values based on one of the characteristics of the input sub-images. In some embodiments, the mosaic image sensor includes a filter array configured with a Bell mosaic pattern. In one embodiment, the input pixel values include a first column of alternating green and blue pixels and a second column of alternating green and red pixels, and the image restoration circuit includes a green balance unit coupled to compensate One of the green pixels between the first and second columns changes in sensitivity. The sensitivity change may be uneven over an area of the image sensor, and the green balance unit may be configured to apply a non-uniform compensation in response to non-uniform sensitivity changes. In a disclosed embodiment, the apparatus includes an objective optical component configured to focus light onto the mosaic image sensor under a predetermined blur, and the image restoration circuit includes a speckle a (Spike) removal unit that identifies, within each input sub-image of the input sub-images, a defective pixel having a larger input pixel value than an input pixel value of the adjacent pixel, and a maximum difference is based on the blur To determine and correct the input pixel values of the defective pixels. In some embodiments, the image restoration circuit includes a noise filter configured to digitally filter each of the input sub-images to reduce noise within the sub-views. In a specific embodiment, the noise filter is configured to determine a direction and amount of a local gradient in the input sub-images, and to return the equal value and the magnitude of the value 119049.doc -10- 200821989 The filter core is selected to reduce noise. Additionally or alternatively, the image restoration circuit includes a deconvolution filter state (DCF)' configured to pass 4 input sub-images after the noise filter reduces noise. In a specific embodiment, the image restoration circuit includes an edge detector configured to identify an edge region within the input image, and (4) one of the (10) inputs, such that the (10) reception is at the The input pixel values in the edge region $ without noise filtering and receiving noise reduced input pixel values outside the edge regions from the noise filter. The edge detector can be configured to detect edge pixels, and the image restoration circuit can include a widening unit configured to widen the pixel by adding pixels to edge regions around the edge pixels Equal edge area. In general, the widening unit is configured to receive, from the edge detector, one of the edge pixels in the first sub-image of the sub-images, and at least one of the sub-images The pixels adjacent to the edge pixel are added to the edge region in the two sub-images. In a disclosed embodiment, the image restoration circuit includes a digital filter, the filter is configured to use the core of a given size to fold the input sub-images, and a certain frame extension unit. The system is configured to add a pixel value boundary around the input sub-images, the boundary having a width selected for filtering the core size. In some embodiments, the input pixel values in the plurality of input sub-images are interlaced by a predetermined interlaced pattern in a single input pixel stream output by the mosaic image sensor, and the image is interlaced. 119049.doc -11 - 200821989 The road includes a digital c-wave a, which is arranged to echo the interlaced pattern, using the individual cores of the shadow to fold the sub-images of the input sub-images (10) Separating the respective sub-materials of the material from the other sub-images. According to a specific embodiment of the present invention, an imaging method is further provided, comprising: ϋ receiving, from a mosaic image sensing device, a plurality of input sub-images - input pixel value streams, each sub-image responding person shooting Mosaic (4) a different, individual color of light on the sensor; in each of the input sub-images, the input sub-image (four) digits (four), the input pixel values are more corresponding to the plurality of enhanced sub-images; And combining the output sub-images in an image signal processing H (ISP) to generate a color video output image. [Embodiment]

G 康本&月之具體實施例,圖1係示意性說明一電子 成像攝影機2〇之^ , "之彳塊圖。本文中,此特定、簡化攝影機 设汁係以範例方式顯示,以便闡明並具體化本發明之原 理…、、而,该些原理不限於此設計,而可以應用於在其他 類型的成像系統中減小影像模糊,其中-感測器產生多個 不同色彩的子影像,然後將其組合以產生一加強彩色輸出 影像。 在攝影機2G中,物鏡光學元件22將來自—場景之光聚隹 在一馬賽克影像感測器24上。在該攝影機中,可使用任何 119049.doc -12· 200821989 適當的影像感測器類型,例如一 CCD或CMOS影像感測 器。在此範例中以及在隨後說明中,該感測器係假定具有 一貝爾型馬賽克慮波器,使得在該感測器所輸出之影像信 號内的各像素32係回應紅、綠或藍光。因而,該馬賽克感 測器輸出可視為包含紅、綠及藍色子影像,由對應感測器 凡件之像素值所組成。屬於該等不同子影像之該等像素值 係一般依據在該馬賽克濾波器中該等色彩元件的次序以在 輸出信號中交錯,即該感測器採用交替線輸出一列 RGRGRG···(交替紅色及綠色滤波器),隨後輸出—後繼列 GBGBGB···(交替綠色及藍色)以及等等。或者,下列所說 明之該等方法及電路(已作必要的修正)可配合其他類型的 馬赛克感測器圖案來使用。 影像感測器24所輸出之像素值流係由一數位還原電路% 來接收並處理。此電路係參考附圖來詳細說明。該等像素 值係在經電路26處理之前由一類比/數位轉換器(圖式中未 顯示)來數位化,該類比/數位轉換器可整合感測器Μ或電 路26或可以係一分離組件。在任一情況下,電路%處理感 測夯24所產生的該等紅色、綠色及藍色輸入子影像,以便 減小影像模糊,如下所述。電路26然後輸出具有減小模糊 之紅色、綠色及藍色子影像。 般而s,電路26採用與其從感測器24接收子影像所採 用的相同袼式來輸出該等子影像。例如,電路26可在該等 =出子影像中交錯該等像素值,以產生一單一輸出流°,盆 该專像素值具有與來自感測器24之輸入像素值相同的交 119049.doc •13- 200821989 錯。或者,電路26可配置成用以解多工並輸出各子影像作 為一分離資料區塊或資料流。A specific embodiment of G Kangben & Month, Fig. 1 is a block diagram schematically illustrating an electronic imaging camera. In this context, this particular, simplified camera set is shown by way of example in order to clarify and embody the principles of the present invention, and the principles are not limited to this design, but can be applied to other types of imaging systems. The small image is blurred, wherein the sensor generates a plurality of sub-images of different colors and then combines them to produce a enhanced color output image. In camera 2G, objective optical element 22 concentrates the light from the scene onto a mosaic image sensor 24. In this camera, any suitable image sensor type, such as a CCD or CMOS image sensor, can be used as 119049.doc -12 200821989. In this example and in the following description, the sensor assumes a Bell-type mosaic filter such that each pixel 32 within the image signal output by the sensor responds to red, green or blue light. Thus, the mosaic sensor output can be viewed as containing red, green, and blue sub-images, consisting of the pixel values of the corresponding sensor. The pixel values belonging to the different sub-images are generally interleaved in the output signal according to the order of the color elements in the mosaic filter, that is, the sensor outputs a column of RGRGRG·. And green filter), then output - subsequent columns GBGBGB · (. alternating green and blue) and so on. Alternatively, the methods and circuits described below (with the necessary modifications) can be used with other types of mosaic sensor patterns. The pixel value stream output by the image sensor 24 is received and processed by a digital restore circuit %. This circuit is described in detail with reference to the drawings. The pixel values are digitized by an analog/digital converter (not shown) prior to processing by circuit 26, which may integrate sensor or circuit 26 or may be a separate component . In either case, circuit % processes the red, green, and blue input sub-images produced by sense 24 to reduce image blur, as described below. Circuit 26 then outputs red, green, and blue sub-images with reduced blur. Typically, circuit 26 outputs the sub-images in the same manner as it did when receiving sub-images from sensor 24. For example, circuitry 26 may interleave the pixel values in the sub-images to produce a single output stream having the same number of inputs as the input pixel values from sensor 24 119049.doc. 13- 200821989 Wrong. Alternatively, circuit 26 can be configured to demultiplex and output each sub-image as a separate data block or data stream.

UP 28從還原電路26接收該等去模糊的紅色、綠色及 -色輪出子影像並組合該等子影像以採用—標準視訊格式 來產生-彩色視訊輸出影像(或影像序列)。此輸出影像可 顯示在一視訊螢幕30上以及通過一通信鏈路來發送及/或 儲存在5己fe、體内。在電路26採用與其從感測器24接收該 等子影像相同的格式來輸出該等子影像之具體實施例中, ISP 28可互換地用於處理電路%之輸出或直接處理感測器 24之輸出。此外’此還原電路%之特徵較為有利,因為且 允許:還原電路配合一現有感測器及阶使用而不修改該 感測為或4 ISP 〇其還允許僅藉由在該感測器與該ISP之間 $或&用旁通鏈路(未顯示)來開啟及關閉電路之還 ISP古28所產生之彩色視訊輪出影像包含用於影像中各像 2冗度及色彩資訊。此資訊可根據亮度及色度(例如Y/C U色彩座標)或根據個別色值(例如刪)來編碼。相比 ==二6處理並輸出的該等子影像係單色影 僅包含將出現::: =定二彩包含亮度資訊。各子影像 隹… 衫色視訊輸出影像中的該等像素之-子 素,而G子影像將包含剩餘的:::各包含四分之一的像 119049.doc -14- 200821989 一般而言,還原電路26及ISP 28係嵌入一或多個積體電 路晶片内,該等積體電路晶片可包含自訂或半自訂組件。 儘管在圖1中還原電路26及181>28係顯示為分離功能組塊, 但該還原電路及該ISP之該等功能可採用一單一積體電路 組件來實施。視需要地,影像感測器24可在一系統上晶片 (S〇C)或攝影機上晶片設計中在相同半導體基板上組合電 路26並還可組合up 28。或者,還原電路26及isp 28之一 些或全部功能可在一可程式化處理器(例如一數位信號處 理器)上採用軟體來實施。此軟體可採用電子形式下載至 該處理器或其可替代性地提供在有形媒體上,例如光學、 磁性或電子記憶媒體。 圖2係依據本發明之一具體實施例示意性顯示還原電路 26之功此組件之一方塊圖。一般而言,該些功能組件係一 起嵌入一單一自訂或半自訂積體電路器件内。或者,圖2 所不之該等功能可在許多組件之中劃分,該等組件可採用 硬體或軟體來實施該等功能。在圖2所示之範例性具體實 施例中電路26藉由解摺積濾波來執行影像還原以在iSP 28將該等子影像併人_單—色彩輸丨影像之前減小該等子 影像之模糊。電路26在該等子影像上所執行的其他影像還 原功能包括散斑移除及雜訊過濾。替代性地或此外,電路 26可配置成用以僅實施該些還原功能之一或兩個功能或在 該等馬賽克子影像之空間内實施額外的數位過遽功能。 一綠平衡單元40平衡該等綠紅(Gr)及綠藍(Gb)像素值用 於可能的振幅變化。(^及Gb係分別指在RGRGRG• •列與 119049.doc -15- 200821989The UP 28 receives the deblurred red, green, and color wheel sub-images from the restoration circuit 26 and combines the sub-images to produce a color video output image (or image sequence) using a standard video format. The output image can be displayed on a video screen 30 and transmitted and/or stored in a body via a communication link. In a specific embodiment in which circuit 26 outputs the sub-images in the same format as receiving the sub-images from sensor 24, ISP 28 is used interchangeably for processing the output of circuit % or directly processing sensor 24 Output. In addition, the feature of this reduction circuit is advantageous because it allows: the restoration circuit cooperates with an existing sensor and the stage without modifying the sense to or 4 ISP, which also allows only by the sensor and the The ISP's $ or & bypass link (not shown) is used to turn the circuit on and off. The color video image generated by ISP Gu 28 contains image 2 redundancy and color information for the image. This information can be encoded based on brightness and chrominance (such as Y/C U color coordinates) or on individual color values (such as deletion). The sub-images processed and outputted compared to == 2 are monochromatic. Only the inclusion of ::: = fixed color contains brightness information. Each sub-image 隹... The color video outputs the pixels of the pixels in the image, and the G sub-images will contain the remaining ::: each containing a quarter of the image 119049.doc -14- 200821989 In general, The reduction circuit 26 and the ISP 28 are embedded in one or more integrated circuit wafers, which may include custom or semi-custom components. Although the reduction circuits 26 and 181 > 28 are shown as separate functional blocks in Figure 1, the functions of the reduction circuit and the ISP can be implemented using a single integrated circuit component. Optionally, image sensor 24 can combine circuit 26 on the same semiconductor substrate in a system-on-chip (S〇C) or on-camera wafer design and can also combine up 28. Alternatively, some or all of the functions of restore circuit 26 and isp 28 may be implemented in software on a programmable processor (e.g., a digital signal processor). The software can be downloaded to the processor in electronic form or alternatively provided on a tangible medium, such as an optical, magnetic or electronic memory medium. 2 is a block diagram schematically showing the components of the reduction circuit 26 in accordance with an embodiment of the present invention. In general, the functional components are embedded together in a single custom or semi-custom integrated circuit device. Alternatively, the functions described in Figure 2 may be divided among a number of components that may be implemented in hardware or software. In the exemplary embodiment shown in FIG. 2, circuit 26 performs image restoration by deconvolution filtering to reduce the sub-images before iPS 28 merges the sub-images into a single-color image. blurry. Other image restoration functions performed by circuit 26 on the sub-images include speckle removal and noise filtering. Alternatively or in addition, circuitry 26 may be configured to perform only one or both of the restore functions or to implement additional digital over-the-counter functions within the space of the mosaic sub-images. A green balance unit 40 balances the green (Gr) and green (Gb) pixel values for possible amplitude variations. (^ and Gb are respectively referred to in RGRGRG•• column and 119049.doc -15- 200821989

GBGBGB···列中 Ψ 相 Μ M A 出現的綠色像素。下面在標題為,,綠平衡,, 之節中說明單元40之操作細節。 、彔平衡#像身料係保持在輸入模糊貞爾(ibb)緩衝器π 内 疋框延伸單元44向該緩衝器添加虛擬像素列及行, 、、確保在實際衫像邊界處正確地處理像素。緩衝器仏之、组 、哉及内谷與單元44之操作係參考圖]在下文說明。 一散斑移除單元46識別並修改該等缺陷像素值,以便防 止雜Λ彳文該些像素傳播進入該處理影像内。下文參考圖4 來說明散斑移除操作。 一邊緣偵測單元48基於適應性臨界值5〇來決定在各子影 像内邊緣像素的位置。_加寬單^ 52然後應用_形態操作 以產生一包含該等邊緣區域之輸出邊緣遮罩⑴ΕΜ)。例 如,该遮罩可在該等邊緣區域内的像素處具有值”1”並在 別處具有。電路26制止向該些邊緣區域應用雜訊抑 制,以便避免邊緣資訊之損失。下文參考圖5來說明該些 邊緣識別功能。 一假動態雜訊濾波器54係應用以減小各子影像内的雜 訊,因而產生ΙΒΒ修改(ΙΒΒΜ)的像素值。下文參考圖6來 說明濾波器54之操作。一選擇器56然後基於單元52所提供 之對應OEM值來選擇各像素之適當值以傳遞給一解摺積濾 波器60。該選擇器在該等邊緣區域内選擇非邊緣像素之該 等IBBM值與直接從IBB緩衝器42取得的該等未修改的IBB 初始(IBBO)像素值。該等IBBO值係藉由一延遲線58來延 遲,以便維持該等IBBO及IBBM像素流之適當同步。 119049.doc -16- 200821989 解摺積濾波器(DCF)60個別地在該等子影像之各子影像 上執行一去模糊操作。濾波器6〇一般使用對光學元件U之 點散布函數(PSF)大致反向的一核心,以便”消除"該光學元 件之像差效應。此類計算解摺積核心方法係說明於(例如) 上面提及的WO 2004/063989 A2以及2006年3月31日申請的 美國專利申請案11/278,255中,其係讓渡給本專利申請案 之受讓人且其揭示内容係以引用方式併入本文。或者,濾 波器60可使用其他種類的濾波核心,用於去模糊或用於此 項技術中習知的其他影像處理功能。該等核心典型經遮 罩,使得該等子影像之各子影像係獨立於其他子影像來過 濾,雖然在該輸入像素流中的該等子影像交錯。範例性遮 罩圖案係如圖8 A及8 B所示。 在許多攝影機中,光學元件之PSF係在攝影機之整個視 場上不均勻。因而,例如在攝影機20中,不同的影像感測 器24區域可能會受到不同pSF輪廓的影響。因而,對於最 佳去模糊’一DCF選擇器62應用不同的濾波核心至不同影 像部分内的像素。下文參考圖7說明此類濾波核心之一範 例性配置。在經濾波器6〇處理之後,該等去模糊子影像係 然後輸出至ISP 28。 綠平衡 此節將進一步詳細地說明綠平衡單元4〇之操作。理論 上’對應於Gr及Gb型綠色像素的該等感測器元件之光敏感 度應相同,但實際上該等敏感度可能由於設計及製造容限 而不同。無法校正敏感度差異可能會在輸出影像中導致固 119049.doc -17- 200821989 定圖案的假影。因此,電路26將該等Gr或Gb像素值(或二 者)乘以一校正因數。 為了決定該校正因數,假定在綠色子影像之連續列中的 該等像素值之平均值(以及因此的和)應相等。該等和係分 別由電路26來計算並表示為sumGreenRed與 sumGreenBlue。該等和之商給出校正因數f :GBGBGB··· Columns Ψ Phase Μ M A Green pixels appear. The details of the operation of unit 40 are described below in the section entitled, Green Balance,.彔 # # 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 像 输入 输入 输入 ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib ib . The operation of the buffers, groups, ports, and valleys and units 44 is described below with reference to the drawings. A speckle removal unit 46 identifies and modifies the defective pixel values to prevent the pixels from propagating into the processed image. The speckle removal operation will be described below with reference to FIG. An edge detection unit 48 determines the position of the edge pixels within each sub-image based on the adaptive threshold value 〇. _ widening the single ^ 52 and then applying the _ morph operation to produce an output edge mask (1) 包含 containing the edge regions. For example, the mask may have a value of "1" at the pixels within the edge regions and have elsewhere. Circuit 26 prevents the application of noise suppression to the edge regions to avoid loss of edge information. These edge recognition functions are explained below with reference to FIG. A false dynamic noise filter 54 is applied to reduce the noise within each sub-image, thereby producing a modified (ΙΒΒΜ) pixel value. The operation of the filter 54 will be described below with reference to FIG. A selector 56 then selects the appropriate value for each pixel based on the corresponding OEM value provided by unit 52 for transmission to a deconvolution filter 60. The selector selects the IBBM values of the non-edge pixels and the unmodified IBB initial (IBBO) pixel values taken directly from the IBB buffer 42 in the edge regions. The IBBO values are delayed by a delay line 58 to maintain proper synchronization of the IBBO and IBBM pixel streams. 119049.doc -16- 200821989 Deconvolution Filter (DCF) 60 individually performs a deblurring operation on each sub-image of the sub-images. The filter 6 〇 generally uses a core that is substantially opposite to the point spread function (PSF) of the optical element U in order to "eliminate" the aberration effect of the optical element. Such a computational deconvolution core method is described (for example) The above-mentioned WO 2004/063989 A2 and the U.S. Patent Application Serial No. 11/278,255, filed on Mar. Alternatively, filter 60 may use other types of filtering cores for deblurring or other image processing functions as are known in the art. The cores are typically masked such that each of the sub-images The sub-images are filtered independently of the other sub-images, although the sub-images in the input pixel stream are interlaced. The exemplary mask patterns are shown in Figures 8A and 8B. In many cameras, the PSF of the optical components It is uneven over the entire field of view of the camera. Thus, for example, in camera 20, different image sensor 24 regions may be affected by different pSF profiles. Thus, for optimal deblurring 'a DCF selection 62 Applying different filter cores to pixels within different image portions. An exemplary configuration of such a filter core is described below with reference to Figure 7. After being processed by filter 6〇, the deblurred sub-image systems are then output to ISP 28 Green Balance This section will explain the operation of the green balance unit 4 in further detail. Theoretically, the light sensitivity of the sensor elements corresponding to the Gr and Gb type green pixels should be the same, but in fact the sensitivity may be Due to design and manufacturing tolerances, the inability to correct for sensitivity differences may cause artifacts in the output image to be fixed. Therefore, circuit 26 will have these Gr or Gb pixel values (or two). Multiply by a correction factor. To determine the correction factor, it is assumed that the average (and therefore the sum) of the pixel values in consecutive columns of green sub-images should be equal. The sums are calculated by circuit 26, respectively. And expressed as sumGreenRed and sumGreenBlue. The quotient of the sum gives the correction factor f:

sumGreenKcd Λ -= 1 + ε sumGreenBluesumGreenKcd Λ -= 1 + ε sumGreenBlue

sumGreenKed - sumGreenBlue ε-- (2) sumGreenBlue 為了避免在低光條件下(其中涉及值接近零)產生假影,電 路26僅在sumGreenRed與sumGreenBlue超過某個最小臨界 值時計算/。此外,ε係限制於一特定期望的綠不平衡範 圍,例如-。該等Gb像素之值係藉由將其乘以/來 校正:sumGreenKed - sumGreenBlue ε-- (2) sumGreenBlue In order to avoid artifacts in low light conditions (where values are close to zero), circuit 26 only calculates / when sumGreenRed and sumGreenBlue exceed a certain minimum threshold. Furthermore, the ε system is limited to a particular desired green imbalance range, such as -. The values of these Gb pixels are corrected by multiplying them by /:

Gb_output =Gb^f (3) 該些校正值在隨後計算中替代該等初始Gb像素值。或者, 可計算該校正因數並替代地應用至該等GH象素值或分別用 於校正Gb及Gr二者。 該等Gr及Gb像素之敏感度變化可能在感測器24之區域 上不均勻。在此情況下,電路26可回應不均勻敏感度變化 在該影像區域上應用一變數值f。 定框及緩衝 在綠平衡之後,該等像素值係插入一輸入模糊貝爾 119049.doc -18 - 200821989 (IBB)緩衝器42内。假定電路26 "即時,,操作處理,則該等 像素值係由感测器24來輸出,且濾波器6〇使用一包含L列 值(例如L=15)的核心,緩衝器42可設計成用以保持l完成 列的輸入像素值。隨著各新列係讀入該緩衝器,該最舊列 係從該緩衝器放棄。額外虛擬像素列及行係添加至實際影 像圖框上下左右,以避免在該影像邊界附近產生由於過濾 所引起的假影。 圖3係依據本發明之一具體實施例在感測器以所捕捉之 一影像之上部邊界附近緩衝器42之内容之一部分70之一詳 細不意圖,說明一種用於定框影像之方法。在該緩衝器内 的列72採用交替列GBGB…及RGRG•…而包含實際像素 值。該等下標1、2、3、4、…、指示列數目,從在輸入影 像之上邊緣處的列i開始。七個額外列的一定框邊界乃係 添加在該輸入影像内的第一列上方。該些額外列反映該實 際輸入圖框之首兩列内的像素值。&映該#兩個邊界列或 行的相當邊界係添加在該輸入影像下方及其左右。 疋框延伸單元44添加邊界76,以便確保DCF 60不將假資 料引入傳達給ISP 28之輸出像素值内。該定框邊界之範圍 為此目的需要 取決於DCF核心之大小。因而,對於5 七個疋框列及行,如圖3所示。或者,可使用不同大小的 核心及定框邊界。邊緣偵測單元48可在定框邊界%之列内 找到假邊緣,而濾波器6〇可使用前一圖框之下定框邊界内 的像素來摺積該定框邊界之内容,但在列72内的實際像素 貝料將不文該些操作影響。(必要時可根據邊緣偵測單元 119049.doc -19- 200821989 48及加寬單元52所使用的核心來使用額外的定框列及/或 行,以便避免在OEM内的假邊緣從該等定框邊界傳播進入 實際像素資料之圖框内。) 在該定框邊界之該等列及行内的像素值係僅在電路26内 部使用。該些像素值係在濾波器60已完成其操作之後丟棄 且不傳遞給ISP 28。 散斑移除 在電路26之一些應用中,光學元件22係相對較低品質並 在影像感測器24上產生一模糊影像,如上面提及的w〇 2004/063989 A2及美國專利申請案11/278,255所解釋的。 換言之,光學元件之PSF在許多相鄰像素上延伸,且光學 70件用作-種低通空間濾、波器。由此,在影像感測器糊 的各偵測器元件感測從一影像場景區域所收集之光,該影 像%景區域與相鄰偵測器元件之感測區域重疊。因此,在 輸入影像中的邊緣及其他局部變化係平滑,使得實體上無 法使-給定像素值與相同色彩之相鄰像素值相差太遠。光 學元件之PSF可用於蚊-臨界值,使得大於該臨界值的 介於-像素之值與相同色彩之該等相鄰像素之值之間的差 異必須係由於一影像感測器十雜訊或一缺陷所引起。 圖4係依據本發明之-具體實施例散斑移除單元46用以 識別並校正缺陷像素所使用之一遮罩9〇之-示意圖。對於 像素P(i,j),該散斑移除單元考量相同色彩之相鄰像素%, 即目前像素上面或下面兩列及左邊或右邊兩行的像素,如 圖所不。(因而’典型分開考量〜及Gb像素,但出於散斑 119049.doc •20- 200821989 移除目的’可替代性地組合該兩種綠色像素類型。如上所 述’對於在影像圖框邊界處的像素,該散斑移除單元可僅 考篁落入遮罩90内的實際像素值且不考量在邊界76内的鏡 像值。)對於各輸入像素值p(ij),該散斑移除單元按如下 決定一輪出像素值: P(hj) = ^ ^ \p{U JX [max(p(i + Δ/5 j + Δ/*))δ/ ^_2 〇 2; [maxjp(/5 [min(^(/ + Δ/? j + Λ-threshold^ | 一 threshold—\Gb_output = Gb^f (3) These correction values replace these initial Gb pixel values in subsequent calculations. Alternatively, the correction factor can be calculated and applied to the GH pixel values instead or to both Gb and Gr, respectively. The sensitivity changes of the Gr and Gb pixels may be uneven over the area of the sensor 24. In this case, circuit 26 can apply a variable value f to the image area in response to a change in non-uniform sensitivity. Boxing and Buffering After the green balance, the pixel values are inserted into an input fuzzy bell 119049.doc -18 - 200821989 (IBB) buffer 42. Assuming circuit 26 "instant, operational processing, then the pixel values are output by sensor 24, and filter 6 〇 uses a core containing L column values (eg, L = 15), buffer 42 can be designed The input pixel value used to maintain the completion column. As each new column is read into the buffer, the oldest column is discarded from the buffer. Additional virtual pixel columns and rows are added to the top and bottom of the actual image frame to avoid artifacts caused by filtering near the image boundary. 3 illustrates a method for framing an image in a portion of a portion 70 of the buffer 42 near the upper boundary of the captured image, in accordance with an embodiment of the present invention. Column 72 in the buffer contains the actual pixel values in alternating columns GBGB... and RGRG.... The subscripts 1, 2, 3, 4, ... indicate the number of columns starting from column i at the upper edge of the input image. The bounding box boundaries of the seven additional columns are added above the first column in the input image. These extra columns reflect the pixel values in the first two columns of the actual input frame. & The corresponding boundary of the two boundary columns or rows is added below and below the input image. The frame extension unit 44 adds a boundary 76 to ensure that the DCF 60 does not introduce false data into the output pixel values communicated to the ISP 28. The extent of the framing boundary depends on the size of the DCF core for this purpose. Thus, for the five seven frame columns and rows, as shown in Figure 3. Alternatively, different sizes of core and framing boundaries can be used. The edge detection unit 48 can find the false edge in the column of the frame boundary %, and the filter 6 can use the pixels in the frame boundary below the previous frame to fold the content of the frame boundary, but in column 72 The actual pixel material inside will not be affected by these operations. (If necessary, additional framed columns and/or rows may be used according to the core used by edge detection unit 119049.doc -19-200821989 48 and widening unit 52, in order to avoid false edges within the OEM from such The frame boundaries are propagated into the frame of the actual pixel data.) The pixel values in the columns and rows of the bounding box boundary are used only within circuit 26. The pixel values are discarded after the filter 60 has completed its operation and are not passed to the ISP 28. Speckle Removal In some applications of circuit 26, optical component 22 is relatively low quality and produces a blurred image on image sensor 24, such as w〇2004/063989 A2 and U.S. Patent Application Serial No. 11 /278,255 explained. In other words, the PSF of the optical element extends over a number of adjacent pixels, and the optical 70 is used as a low pass spatial filter, waver. Thus, each of the detector elements of the image sensor paste senses light collected from an image scene region that overlaps the sensing regions of adjacent detector elements. Therefore, the edges and other local variations in the input image are smooth, so that it is physically impossible to make the given pixel value too far from the adjacent pixel values of the same color. The PSF of the optical component can be used for the mosquito-threshold value such that the difference between the value of the -pixel value greater than the threshold value and the value of the adjacent pixels of the same color must be due to an image sensor ten noise or Caused by a defect. Figure 4 is a schematic illustration of a mask used by the speckle removal unit 46 to identify and correct defective pixels in accordance with an embodiment of the present invention. For the pixel P(i,j), the speckle removal unit considers the adjacent pixel % of the same color, that is, the pixels above or below the current pixel and the left or right rows of pixels, as shown in the figure. (Thus 'typically separate considerations ~ and Gb pixels, but for the purpose of speckle 119049.doc • 20-200821989 removal purpose' can be combined to combine the two green pixel types. As described above, for at the border of the image frame The pixels, the speckle removal unit may only consider the actual pixel values falling within the mask 90 and do not consider the mirror values within the boundary 76.) For each input pixel value p(ij), the speckle removal The unit determines the round pixel value as follows: P(hj) = ^ ^ \p{U JX [max(p(i + Δ/5 j + Δ/*))δ/ ^_2 〇2; [maxjp(/5 [min(^(/ + Δ/? j + Λ-threshold^ | a threshold-\

等式(4) 換言之,若p(i,j)之值係比相同色彩之其相鄰者(如遮罩 90所提供的)之最大值大多於—+,貝"亥值係藉由該 些相鄰者之最大值加上thresh〇ld+來取代。同樣地,若 p(i,j)之值係比相同色彩之其相鄰者之最小值小多於 thRshoicL,則該值係藉由該些相鄰者之最小值減去 threshold—來取代。該些臨界值可基於攝影機之光學特徵 及/或影像類型(指示是否期望像素值高度局部偏差),或其 可依據其他標準試探地設定。由於單元46之操作,在比其 相鄰的其他像素明亮得多或暗得多的像素係全部平滑,2 免對其相鄰者之偏差達高於所允許的偏差。 邊緣偵測及加寬 邊緣偵測單元48可使用任-適當核心、來偵測輸入影像中 的邊緣位置。本發明者經發現,為了簡化計算,較為有利 的係在邊緣計算巾在邊緣制核心巾僅包括與目前像素相 同行或列的像素。或者,該核心還可包括對角元件。下文 說明-些範例性心及邊緣_程序。在折衷邊緣銳度與 119049.doc -21 - 200821989 可能保留在OEM之邊緣區域内的殘餘雜訊中,最佳核心選 擇取決於影像内容與使用者偏好。或者,單元48可採用此 項技術中習知的其他邊緣偵測方法。Equation (4) In other words, if the value of p(i,j) is greater than the maximum of its neighbors of the same color (as provided by mask 90), the value is mostly greater than -+, and the value of "Bei" is used by The maximum of these neighbors is replaced by thresh〇ld+. Similarly, if the value of p(i,j) is smaller than the minimum of the neighbors of the same color by more than thRshoicL, then the value is replaced by the minimum of the neighbors minus the threshold. The thresholds may be based on the optical characteristics of the camera and/or the type of image (indicating whether a pixel value is highly localized) or may be tentatively set according to other criteria. Due to the operation of unit 46, the pixels that are much brighter or darker than the other pixels adjacent thereto are all smooth, and the deviation from their neighbors is higher than the allowed deviation. Edge Detection and Widening Edge Detection Unit 48 can use any suitable core to detect edge locations in the input image. The inventors have found that, in order to simplify the calculation, it is advantageous that the edge-calculated towel core includes only pixels that are adjacent to or in the column of the current pixel. Alternatively, the core may also include diagonal elements. The following describes some example heart and edge _ procedures. In compromise margins and 119049.doc -21 - 200821989 residual gamma that may remain in the edge area of the OEM, the optimal core choice depends on the image content and user preferences. Alternatively, unit 48 may employ other edge detection methods known in the art.

如上所述,單元48所應用的該等邊緣偵測方法使用一適 應性臨界值50,其在隨後說明中稱為Edge_thres^id_ value。此臨界值一般基於處理中影像的光條件來計算。該 些條件可基於該等平均像素值在電路26内部測量。曳者, 該臨界值可基於由ISP 28自動計算並輸出的色彩增益參數 來計算。例如,該臨界值可計算作為一色彩增或 其他免度參數。該等加權係數可選擇以提供邊緣銳度對殘 餘雜訊的所需折衷。 & 模式1 -簡單梯度邊緣偵測器 此邊緣㈣器在像素P ( i,j )附近高解析度地谓測一邊緣。 在下列公式内的該等像素係依據圖4所示之方案來編索 引’且該專梯度值係計算如下: , ,、 (5) ^x-i = \p(^ J) ~ Pi} - 2,71)| dx+x=\p(}J)-p{i^2j)\ dy^=\p{Uj)-p{Uj-2)\ dy+l=\p(hj)-p(hj^2)\ 119049.doc -22- 1 一 4糊山王刀口見早兀52之邊緣值 v(i,j)係1,否則為0,使得在該等梯度值之任一者係大、 臨界值之情況下(即在下列不等式之任一者評估為= 情況下)e(i,j)=l。 (6) 200821989 dx^x > Edge _ threshold _ value dx+l > Edge _ threshold _ value dy_x > Edge _ threshold _ value dy+l > Edge _ threshold _ value 模式2-複雜梯度邊緣偵測器 此邊緣偵測器係高解析度與具有最小錯誤偵測之^彳圭# 階偵測之間的一妥協。在此情況下,該等梯度值係由以下 給出: dX~\ = SXA z =冰一4,力——2,y) h = p{i + 2J)-p{iJ) Sx+l = d^i = p(hj-2)-p(Uj) g 少-1 = = P(UH、-P(Uj - 2) dy+l = p(hj + 2)-p(i,j) Sy+l = =p(Uj + ^)-p(Uj + 2) ⑺ 在下列不等式之任一者評估為TRUE之情況下,邊緣值e(L j)係設定為1 :As described above, the edge detection methods applied by unit 48 use an adaptive threshold 50, which is referred to as Edge_thres^id_value in the description that follows. This threshold is typically calculated based on the light conditions of the image being processed. These conditions can be measured within circuit 26 based on the average pixel values. The drag value can be calculated based on the color gain parameter automatically calculated and output by the ISP 28. For example, the threshold can be calculated as a color increase or other exemption parameter. These weighting coefficients can be selected to provide the desired tradeoff of edge sharpness to residual noise. & Mode 1 - Simple Gradient Edge Detector This edge (four) is a high resolution near the pixel P ( i, j ). The pixels in the following formula are indexed according to the scheme shown in Fig. 4 and the specific gradient values are calculated as follows: , , (5) ^xi = \p(^ J) ~ Pi} - 2, 71)| dx+x=\p(}J)-p{i^2j)\ dy^=\p{Uj)-p{Uj-2)\ dy+l=\p(hj)-p(hj ^2)\ 119049.doc -22- 1 A 4 paste mountain king knife edge sees the edge value of early morning 52 v (i, j) is 1, otherwise 0, so that any of the gradient values is large, critical In the case of a value (that is, in the case where any of the following inequalities is evaluated as =) e(i, j) = l. (6) 200821989 dx^x > Edge _ threshold _ value dx+l > Edge _ threshold _ value dy_x > Edge _ threshold _ value dy+l > Edge _ threshold _ value Mode 2 - Complex gradient edge detection This edge detector is a compromise between high resolution and detection with minimal error detection. In this case, the gradient values are given by: dX~\ = SXA z = ice-4, force-2, y) h = p{i + 2J)-p{iJ) Sx+l = d^i = p(hj-2)-p(Uj) g less-1 = = P(UH, -P(Uj - 2) dy+l = p(hj + 2)-p(i,j) Sy +l = =p(Uj + ^)-p(Uj + 2) (7) In the case where any of the following inequalities is evaluated as TRUE, the edge value e(L j) is set to 1:

d d d d ίν /IV /V 1 1 少一1 少+1 > Edge — threshold — value)及 > Edge _ threshold _ value)及 > Edge 一 threshold 一 value)及 > Edge _ threshold ___ value)及 K-l > S x-\ (^x+l > S x+\ (七一 1 > gy-l (^y+\ > Sy+\ 或或或或 dx-\'gx-l <〇 dx+l,gx+l /ox(8) dy^rSy+i <〇 式3-步階邊緣偵測器 此邊緣偵測方法偵測步階邊緣 模式3-步階邊緣偵測器 此邊緣偵測方法偵測步階邊緣。其使用一邊緣步階參數 edge-step,其係一般設定為值2。該方法進行如下: •計算办/to 一 min w*sl — λ: = |p(,· 一 3 * edge 一对e;?,力 - - edge —对印,y )| •計算 delta—null_x = \p(i-edge」tep,j)一 p(i + edge—step,jj •計算办/to _ ;?/⑽ 1 一 λ: = |p(z· + 3 * Mge —你p,力- + edge 一他;?, •計鼻制加—min wsl 一 ;; = |/7(z’,j· - 3 * Mge 一对ep) - ;?(,·,)- —对叩】 • ef delta_null _y = \p(i9 j - edge_step)- p{i, j + edge_step)^ • ^ delta_plus\_y = |/?(/?y + 3* edge _step)- p(i, j H- edge_stepi 119049.doc -23- 200821989 在下列條件之任一者係滿足之情況下,邊緣值e(i,D係設定 為1 : 制如一祕一3;-max(·^minWtyl —%祕a—p/Wtyl—少)> £咖-麻 或者 a一祕一X-臟(_a—minw(x,^a—咖> 五咖-·—以心。 應注意在此情況下,e(i,j)之值不取決於像素p(i,j)之實 際強度。 邊緣加寬 圖5係依據本發明之一具體實施例加寬單元52所使用之 一遮罩100之一示意圖。邊緣偵測單元48輸出一邊緣地圖 E(x,y),其包含針對各像素決定的該等邊緣值e(iJ)。該加 寬單元使用遮罩1 00應用形態膨脹至該邊緣地圖,其係稱 為w(x,y)。此加寬步驟之輸出係該OEM : 0EM(x,y)=E(x,y)㊉ W(x,y) ⑼ 此OEM係作為切換輸入而應用至選擇器56,如上所解釋。 應用至該等邊緣之加寬程度取決於遮罩參數界丨。在圖5 所示之範例中,W1 =3。換言之,若在遮罩1〇〇之中心處的 一給定像素102係由邊緣偵測單元48識別為一邊緣位置 (e(i,j)=l) ’則在該遮罩區域内該像素及周圍像素ι〇4在該 OEM内接收值”丨”。發現較為有利的係,在不同色彩之像 素(即屬於不同子影像)上延伸此邊緣加寬(不同於在電路26 中實施的色彩特定的其他數位過濾程序)。W1之值可根據 要保護不受低通雜訊過濾影響的該等邊緣區域之所需寬 119049.doc -24- 200821989 度’依據應用需要及使用者偏好來選擇。 雜訊濾波器 雜訊濾波器54使用一核心,其使用相同色彩之相鄰像素 (例如圖4中的像素92)之值來平均目前像素值。該遽波器按 如下決定輸出像素值:Dddd ίν /IV /V 1 1 Less 1 Less +1 > Edge — threshold — value) > Edge _ threshold _ value) > Edge a threshold value and > Edge _ threshold ___ value) Kl > S x-\ (^x+l > S x+\ (七一1 > gy-l (^y+\ > Sy+\ or or dx-\'gx-l <〇dx+ l,gx+l /ox(8) dy^rSy+i <〇3-step edge detector This edge detection method detects step edge mode 3-step edge detector This edge detection The method detects the step edge, which uses an edge step parameter edge-step, which is generally set to a value of 2. The method proceeds as follows: • Calculate/to a min w*sl — λ: = |p(,· A 3 * edge pair of e;?, force - - edge - print, y)| • Calculate delta-null_x = \p(i-edge"tep,j)-p(i + edge_step,jj •calculate Do /to _ ;?/(10) 1 λ: = |p(z· + 3 * Mge - you p, force - + edge one he;?, • count the nose plus - min wsl one;; = |/7 (z',j· - 3 * Mge a pair of ep) - ;?(,·,)- —对叩】 • ef delta_null _y = \p(i9 j - edge_step)- p{i, j + edge_step)^ • ^ Delta_plus\_y = |/?(/?y + 3* edge _step)- p(i, j H-edge_stepi 119049.doc -23- 200821989 In the case where either of the following conditions is satisfied, the edge value e( i, D is set to 1: system such as a secret one 3; -max (·^minWtyl -% secret a-p / Wtyl - less) > £ coffee - hemp or a secret one X-dirty (_a-minw ( x, ^a - coffee > five coffee - · - heart. It should be noted that in this case, the value of e (i, j) does not depend on the actual strength of the pixel p (i, j). A schematic diagram of one of the masks 100 used by the widening unit 52 in accordance with an embodiment of the present invention. The edge detection unit 48 outputs an edge map E(x, y) containing the edges determined for each pixel. The value e(iJ). The widening unit is expanded to the edge map using a mask 100 application form, which is referred to as w(x, y). The output of this widening step is the OEM: 0EM(x, y) = E(x, y) ten W(x, y) (9) This OEM is applied to the selector 56 as a switching input, as explained above. The extent to which the edges are applied to these edges depends on the mask parameter boundary. In the example shown in Figure 5, W1 = 3. In other words, if a given pixel 102 at the center of the mask 1 is recognized by the edge detecting unit 48 as an edge position (e(i, j) = 1) ', the pixel is in the mask region. And the surrounding pixel ι〇4 receives the value "丨" within the OEM. It has been found to be advantageous to extend this edge broadening on pixels of different colors (i.e., belonging to different sub-images) (unlike the color-specific other digital filtering procedures implemented in circuit 26). The value of W1 can be selected according to the application needs and user preferences according to the desired width of the edge regions to be protected from low-pass noise filtering. Noise Filter The noise filter 54 uses a core that uses the values of neighboring pixels of the same color (e.g., pixel 92 in Figure 4) to average the current pixel value. The chopper determines the output pixel value as follows:

α=-2,0,2έ=—2,〇,2 V 此處v(i,j)係(iJ)濾波核心係數之值,而p(iJ)係輸入像素 f、 值。在隨後說明中,濾波核心V(i,j)之中心元件係表示為α=-2,0,2έ=—2,〇, 2 V where v(i,j) is the value of the (iJ) filter core coefficient, and p(iJ) is the input pixel f, value. In the following description, the central component of the filter core V(i,j) is expressed as

Vc ;渡波器v(i±2,j)及v(i,j±2)之周邊元件係表示為〜;而 濾波器v(i±2, j±2)之角落元件係表示為Vf。 圖6係依據本發明之一具體實施例示意性說明一種渡波 器54所應用之假動態雜訊過濾方法之一流程圖。此方法之 目的在於避免該濾波器在像素值中存在變化梯度之影像區 域上無差別地操作時所導致之影像解析度及對比度劣化。 出於此目的,在一差分計算步驟110,濾波器54計算在各 I 像素處的局部方向差分。該等差分可按如下計算為·· Δν = \p(h 7-2)- p(i, j + 2)| △办=|ρ〇· - 2,力- ρ〇· + 2,力| = \p{i - 25 y - 2) - p(i + 25; + 2)| ( 11) △d2 = |p(z· - 2, j· + 2) - ;?〇· + 2,)— 2)| (垂直差分術語Δν不應與核心係數v(i,j)相混淆。) 在一核心選擇步驟112,濾波器54然後基於方向差分量 值來選擇適當的核心。出於此目的,該等計算值Δν、心係 比較一垂直/水平臨界值thvh,而該等值係比較一 119049.doc -25- 200821989 對角臨界值thd: •若Δν>ί1ιν1ι,則v(i,j±2)不參與雜訊移除,且對應、值為 0 〇 •若Ah>thvh,則v(i±2,j)不參與雜訊移除,且對應Vp值為 0 〇 •若△dpthd ’則v(i+2, j+2)與v(i-2, j_2)不參與雜訊移除, 且對應vf值為〇。 •若Ad2>thd ’則v(i_2, j+2)與v(i+2, j-2)不參與雜訊移除, ( 且對應Vf值為0。 據波器54選擇滿足上述條件的一核心以在各像素處使 用。可用於此目的的一含九個濾波核心之範例性集合係列 於下面附錄A内。習知此項技術者者應明白,可同樣地使 用其他雜訊移除濾波核心(動態或靜態)。 在一過濾步驟114,濾波器54鄰近各像素應用選定核心 至該等輸入像素值,以便為各像素產生輸出像素值。 (^ 解摺積濾波 圖7係依據本發明之一具體實施例應用至由選擇器兄輸 入至DCF 60之像素值的一含若干DCF核心122之集合120之 一示意圖。在此範例中,假定16〇〇xl2〇〇像素的一輸入影 像係分成各100XI00像素的192個片段。DCF 60根據在影像 中對應位置處的局部PSF應用一不同核心122(識別為K0、 Κ1、···、Κ3 2)至各片段。因為光學元件22之電路對稱性, 還假定該等PSF變化係在影像平面上對稱,使得於此組態 需要儲存並使用僅三十三個不同核心。中心區域丨24全部 119049.doc -26 - 200821989 十一個核心,而周邊區域126使用另一 。或者,可出於核心指派目的將影像區 的片^又,或可應用一單一 dc:f核心至整 或者替代!·生地,DCF選擇器62可根據攝影機20所捕 捉之影像之特徵(及因此的輸入子影像)即時改變集含之濾 波核心。例如’該DCF選擇器可根據影像照明位準、影像 内容類型或其他因素來選擇不同的濾波核心。Vc; the peripheral elements of the waver v(i±2,j) and v(i,j±2) are denoted by 〜; and the corner elements of the filter v(i±2, j±2) are denoted by Vf. FIG. 6 is a flow chart schematically illustrating a method of filtering a false dynamic noise applied to a waver 54 in accordance with an embodiment of the present invention. The purpose of this method is to avoid image resolution and contrast degradation caused by the filter operating in the image region with varying gradients in pixel values. For this purpose, at a difference calculation step 110, the filter 54 calculates the local directional difference at each I pixel. These differences can be calculated as follows: Δν = \p(h 7-2)- p(i, j + 2)| △ do =|ρ〇· - 2, force - ρ〇· + 2, force | = \p{i - 25 y - 2) - p(i + 25; + 2)| ( 11) △d2 = |p(z· - 2, j· + 2) - ;?〇· + 2,) — 2)| (The vertical difference term Δν should not be confused with the core coefficient v(i,j).) At a core selection step 112, the filter 54 then selects the appropriate core based on the direction difference magnitude. For this purpose, the calculated values Δν, the heart is compared to a vertical/horizontal threshold value thvh, and the equivalent is compared to a 119049.doc -25-200821989 diagonal threshold thd: • if Δν> ί1ιν1ι, then v (i, j±2) does not participate in noise removal, and the corresponding value is 0 〇 • If Ah> tvh, v(i±2, j) does not participate in noise removal, and the corresponding Vp value is 0 〇 • If Δdpthd ' then v(i+2, j+2) and v(i-2, j_2) do not participate in noise removal, and the corresponding vf value is 〇. • If Ad2 >thd ' then v(i_2, j+2) and v(i+2, j-2) do not participate in noise removal, (and the corresponding Vf value is 0. The waver 54 selects the above conditions. A core is used at each pixel. An exemplary set of nine filter cores that can be used for this purpose is listed in Appendix A below. It will be understood by those skilled in the art that other noise removal can be used similarly. Filtering core (dynamic or static). In a filtering step 114, the filter 54 applies selected cores to the respective pixel values adjacent to each pixel to generate output pixel values for each pixel. (^ Deconvolution filtering Figure 7 is based on this One embodiment of the invention applies to a schematic diagram of a set 120 of a plurality of DCF cores 122 input by a selector brother to a pixel value of DCF 60. In this example, an input image of 16 〇〇 xl 2 〇〇 pixels is assumed It is divided into 192 segments of 100XI00 pixels. The DCF 60 applies a different core 122 (identified as K0, Κ1, . . . , Κ3 2) to each segment according to the local PSF at the corresponding position in the image. Because the optical component 22 Circuit symmetry, also assuming that the PSF changes are in the image Symmetrical in the plane, this configuration requires storage and use of only thirty-three different cores. The central area 丨24 all 119049.doc -26 - 200821989 eleven cores, while the peripheral area 126 uses another. Or, can be For the purpose of core assignment, the image area may be applied, or a single dc:f core may be applied to the whole or replace the ground. The DCF selector 62 may be based on the characteristics of the image captured by the camera 20 (and thus the input sub-image). Instantly change the filter core of the set. For example, the DCF selector can select different filter cores depending on image illumination level, image content type or other factors.

使用相同集合的二 集合的十二個核心 域分成更大或更小 個影像。 圖8八及犯係顯示依據本發明之—具體實施例之dcf 6〇 所應用之核〜遮罩丨3〇及丨4G之個別佈局之示意圖。各遮罩 指示-個別色彩之像素,即在15xl5像素遮罩區域内屬於 一特定子影像之像素。遮罩13G適詩該等綠色像素,而 遮罩140適用於§亥等紅色及藍色像素。因而,當遮罩所 覆蓋的一中心像素132係綠色時,陰影像素134指示在該中 心像素周圍相鄰15χ15像素的其他綠色像素。當遮罩14〇所 覆蓋的中心像素132係紅色或藍色時,陰影像素丨34指示相 鄰的其他紅色或藍色像素。 對於輸入影像之各像素,DCF 60為該像素所處之區域 120選擇適當的15 XI 5核心,然後根據目前像素色彩使用遮 罩130或140來遮罩該核心。在各情況下僅適當遮罩之陰影 像素134參與DCF操作。無陰影像素之係數係設定為零。 因此,係僅使用屬於相同子影像之像素值(即相同色彩之 像素)來摺積各像素值。如上所述,該等要摺積的像素值 係由選擇器56來選擇’該選擇器56選擇延遲線58所輸出的 119049.doc -27- 200821989 在邊緣區域内之該等IBB0值及在非邊緣區域内之經雜訊 減小IBBM值。 如先前所述,可回應光學元件22之有缺陷psF來選擇 DCF 60所應用之核心係數,以對輪出影像錢糊。該等核 心可根據在影像平面内的目前像素位置與其他因素(例如 影像距離)而變化。可選擇光學元件及DCF核心,以提供特 定影像加強功能,例如攝影機20之有效場深度增加。或 者,以交替應用不同過濾操作至不同色彩子影像的方式, 使用DCF 60之配置以在馬赛克色彩空間内實施各種其他影 像加強功能。 因此應瞭解,上述具體實施例係以範例方式引用,且本 發明不限於上文已特定顯示並說明的内容。相反,本發明 之範疇包括上文所述各種特徵之組合與子組合二者,以及 習知此項技術者在讀完上述說明後所進行且先前技術中未 曾揭示之變更及修改。 附錄A_雜訊移除濾波核心 下表顯示不同邊緣條件下的範例性雜訊濾波器係數值。 在各濾波器内的全部係數和為丨,以便在過濾後平均像素 值不會變化。在下面範例中,明確寫出在濾波器54中用於 可能核心的全部係數值。或者,僅可明確給出該等係數之 一些係數,而其餘部分係由和為丨之條件來推斷。出於簡 化,可假定中心係數vc等於丨減去用於一特定核心之所有 其他係數之和。 119049.doc -28 - 200821989 中心濾 波器值 Vc 非零周邊 vp濾波 器值 非零角落vf 濾波器值 條件 1 0.375 0.125 0.03125 △vSthvh 且 Ah^thVh 且 Adi^tha 且 Ad2<tha 2 0.375 0.1875 0.0625 [(Av>thVh 且 AhSthVh)或(AvSthvh 且 △h>thVh)]且 AdiShd 且 Ad〗幺 thd 3 0.625 0.09375 (Av>thVh 且 Ah>thVh)且 AdiSthd 且 Ad2<thd 4 0.375 0.125 0.0625 (AvSthVh 且 AhSthvh)且[(Adi>thd 且 △d2<thd)或 AdiSthd 且 AdaXlid)] 5 0.5 0.185 0.0625 [(△v>thVh 且 AhSthVh)或(△vSthvh 且 △h>thvh)]且[(Μ^ΐΐΐίΐ 且 Δ(ΐ22ΐι<〇 或 (Adi<thd J.Ad2>thd)] 6 0.75 * 0.125 (Av>thVh 且 Ah>thVh)且[(Adi>thd 且 △d2Sthd)或(Mi^thd 且 ^2^1¾)] 7 0.5 0.125 △vSthVh 且 Δΐ^ΐΐΐνΐ!且 Adi>thd 且 △d2>thd 8 0.5 0.25 [(Av>thvh 且 Ah^thvh)或(△vSthvh 且 △h>thVh)]且 Adi>thd 且 Ad2>thd 9 1.0 - - 其他 【圖式簡單說明】 結合附圖,根據本發明之具體實施例之上述詳細說明已 更全面地明白本發明,其中: 圖1係依據本發明之一具體實施例示意性說明一電子成 像攝影機之一方塊圖; 圖2係依據本發明之一具體實施例示意性顯示一影像還 原電路之細節之一方塊圖; 圖3係依據本發明之一具體實施例一輸入緩衝器之一部 分之内容之一詳細示意圖,其說明在一影像還原電路中使 用的一影像定框技術; 圖4係依據本發明之一具體實施例在一影像還原電路中 一用於散斑移除之遮罩之一示意圖; 119049.doc -29- 200821989 圖5係依據本發明之一具體實施例在一影像 一用於邊緣加強之遮罩之-示意圖; 原電路中 圖6係依據本發明之一具體實施例示意性說明一種用於 雜訊過濾之方法之一流程圖; 、 圖7係依據本發明之一具體實施例的一集合之解摺積濾 波器之一示意圖,彼等解摺積濾波器係應用至一還原中影 像之不同部分;以及 ~ 圖8A及8B係依據本發明之一具體實施例應用至一馬赛 克影像感測器所輸出之子影像之解摺積核心遮罩之示音 圖 【主要元件符號說明】 119049.doc 20 電子成像攝影機 22 物鏡光學元件 24 馬賽克影像感測器 26 影像還原電路/數位還原電路 28 影像信號處理器(ISP) 30 視訊螢幕 32 像素 40 綠平衡單元 42 輸入模糊貝爾(IBB)緩衝器 44 定框延伸單元 46 散斑移除單元 48 邊緣偵測單元 50 適應性臨界值 -30 - 200821989 52 加寬單元 54 假動態雜訊濾波器 56 選擇器 58 延遲線 60 解摺積濾波器(DCF) 62 DCF選擇器 70 緩衝器42之内容之一部分 72 列 76 定框邊界 90 遮罩 92 像素 100 遮罩 102 像素 104 像素 120 DCF核心集合/遮罩 122 DCF核心 124 中心區域 126 周邊區域 130 核心遮罩 132 中心像素 134 陰影像素 140 核心遮罩 119049.doc -31 -The twelve core fields of the second set using the same set are divided into larger or smaller images. Fig. 8 is a schematic diagram showing the individual layouts of the cores ~ masks 〇3〇 and 丨4G applied in accordance with the present invention, dcf 6〇. Each mask indicates - a pixel of an individual color, that is, a pixel belonging to a particular sub-image within a 15x15 pixel mask area. The mask 13G is suitable for the green pixels, and the mask 140 is suitable for red and blue pixels such as § Hai. Thus, when a central pixel 132 covered by the mask is green, the shaded pixel 134 indicates other green pixels adjacent 15 pixels of 15 pixels around the central pixel. When the central pixel 132 covered by the mask 14 is red or blue, the shaded pixel 丨 34 indicates other red or blue pixels that are adjacent. For each pixel of the input image, DCF 60 selects the appropriate 15 XI 5 core for region 120 in which the pixel is located, and then masks the core using mask 130 or 140 based on the current pixel color. In each case only the appropriately shaded shadow pixels 134 participate in the DCF operation. The coefficient of the unshaded pixel is set to zero. Therefore, only pixel values belonging to the same sub-image (i.e., pixels of the same color) are used to fold each pixel value. As described above, the pixel values to be decomposed are selected by the selector 56. The selector 56 selects the 119049.doc -27-200821989 output from the delay line 58 and the IBB0 values in the edge region. The noise in the edge region reduces the IBBM value. As previously described, the core coefficients applied by the DCF 60 can be selected in response to the defective psF of the optical component 22 to effect the image. These cores may vary depending on the current pixel location in the image plane and other factors, such as image distance. Optical components and DCF cores can be selected to provide specific image enhancement functions, such as an increased effective field depth of camera 20. Alternatively, the DCF 60 configuration can be used to implement various other image enhancement functions in the mosaic color space in a manner that alternately applies different filtering operations to different color sub-images. Therefore, it is to be understood that the above specific embodiments are cited by way of example, and the invention is not limited to what has been specifically shown and described. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described above, as well as variations and modifications which have been made by those skilled in the art and which are not described in the prior art. Appendix A_ Noise Removal Filter Core The following table shows sample noise filter coefficient values for different edge conditions. The sum of the coefficients in each filter is 丨 so that the average pixel value does not change after filtering. In the example below, all coefficient values for the possible cores in filter 54 are explicitly written. Alternatively, only some of the coefficients of the coefficients can be explicitly given, and the rest are inferred from the conditions of the sum. For simplicity, it can be assumed that the center coefficient vc is equal to 丨 minus the sum of all other coefficients for a particular core. 119049.doc -28 - 200821989 Center filter value Vc non-zero peripheral vp filter value non-zero corner vf filter value condition 1 0.375 0.125 0.03125 ΔvSthvh and Ah^thVh and Adi^tha and Ad2<tha 2 0.375 0.1875 0.0625 [ (Av>thVh and AhSthVh) or (AvSthvh and Δh>thVh)] and AdiShd and Ad〗 幺thd 3 0.625 0.09375 (Av>thVh and Ah>thVh) and AdiSthd and Ad2<thd 4 0.375 0.125 0.0625 (AvSthVh and AhSthvh And [(Adi>thd and Δd2<thd) or AdiSthd and AdaXlid)] 5 0.5 0.185 0.0625 [(Δv>thVh and AhSthVh) or (ΔvSthvh and Δh>thvh)] and [(Μ^ΐΐΐίΐ and Δ(ΐ22ΐι<〇 or (Adi<thd J.Ad2>thd)] 6 0.75 * 0.125 (Av>thVh and Ah>thVh) and [(Adi>thd and Δd2Sthd) or (Mi^thd and ^2^13⁄4 )] 7 0.5 0.125 ΔvSthVh and Δΐ^ΐΐΐνΐ! and Adi>thd and Δd2>thd 8 0.5 0.25 [(Av>thvh and Ah^thvh) or (ΔvSthvh and Δh>thVh)] and Adi>thd and Ad2>thd 9 1.0 - - Others [Simplified description of the drawings] The above detailed description of the specific embodiments of the present invention with reference to the accompanying drawings BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram schematically illustrating an electronic imaging camera in accordance with an embodiment of the present invention; FIG. 2 is a schematic representation of an image in accordance with an embodiment of the present invention. FIG. 3 is a detailed diagram of a portion of an input buffer in accordance with an embodiment of the present invention, illustrating an image framing technique used in an image restoration circuit; 4 is a schematic diagram of a mask for speckle removal in an image restoration circuit according to an embodiment of the present invention; 119049.doc -29- 200821989 FIG. 5 is a diagram of a specific embodiment of the present invention FIG. 6 is a flow chart schematically illustrating a method for noise filtering according to an embodiment of the present invention; FIG. 7 is a diagram of a method according to the present invention; A schematic diagram of a set of deconvolution filters of a specific embodiment, the deconvolution filters applied to different portions of a restored image; and ~ Figures 8A and 8B A schematic diagram of a deconvolution core mask applied to a sub-image output by a mosaic image sensor according to an embodiment of the present invention. [Main component symbol description] 119049.doc 20 Electronic imaging camera 22 Objective optical component 24 Mosaic Image sensor 26 Image restoration circuit / digital reproduction circuit 28 Image signal processor (ISP) 30 Video screen 32 pixels 40 Green balance unit 42 Input fuzzy Bell (IBB) buffer 44 Frame extension unit 46 Speckle removal unit 48 Edge Detection Unit 50 Adaptive Threshold -30 - 200821989 52 Widening Unit 54 False Dynamic Noise Filter 56 Selector 58 Delay Line 60 Deconvolution Filter (DCF) 62 DCF Selector 70 Content of Buffer 42 Part 72 Column 76 Boxing Boundary 90 Mask 92 Pixels 100 Mask 102 Pixels 104 Pixels 120 DCF Core Set / Mask 122 DCF Core 124 Center Area 126 Peripheral Area 130 Core Mask 132 Center Pixel 134 Shadow Pixel 140 Core Mask 119049 .doc -31 -

Claims (1)

200821989 十、申請專利範圍: 1 · 一種成像裝置,其包含: -馬賽克影像感測器’其經組態用以產生屬於複數個 輸入子影像的_輸人像素值流,各子影像回應人射在該 馬賽克影像感測器上的一不同、個別色彩之光; 一影像還原,其經耦合以接收並數位㈣在該等 輸入子影像之各輸入子影像内的該等輸入像素值,以便 產生對應的複數個加強輸出子影像;以及 一影像信號處理器(ISP),其係耦合以接收並組合該複 數個輸出子景“象’以便產生一彩色視訊輸出影像。 2. 2請求項i之裝置,其中該等輸入子影像及該等輸出子 ,像具有相同格式,以便可耦合該Isp以接收並組合該 等輸出子影像或該等輸入子影像。 3· ^請求項2之裝置,其中在該複數個輸入子影像中的該 3像素值係在该馬赛克影像感測器所輸出之一單一 輸入像素流中採用一預定交錯圖案而交錯,且其中該等 輸出子衫像包含輸出像素值,其係依據該預定交錯圖案 而在一輸出像素流中藉由該影像還原電路來交錯。 盆θ求項1之裝置,其中各子影像具有一輸入模糊,且 其中該等輸出子影像在經該影像還原電路過濾後具有一 輸出模糊,其係小於該輸入模糊。 5_如明求項4之裝置,其包含物鏡光學元件,該等物鏡光 學元4牛星右 ”有—引起該輸入模糊之點散布函數(PSF),且盆 中該旦;禮、 ’、 μ衫篆還原電路包含一解摺積濾波器(DCF),其具有 119049.doc 200821989 6 · -:據該PSF而決定的濾波核心。 月求項5之裝置,其中該PSF可在該影像感測器之一平 面上變化,日甘士 ^ 八中該影像還原電路係配置成用以回應在 Λ、象感測器之平面上的—pSF變化,應用不同的渡波 ^至來自该影像感測器之不同區域的該等輸入 值。 a求項5之裝置’其中該影像還原電路係配置成用以 乂康該等輸人子影像之—特徵來應用不同的濾波核心至 該等輸入像素值。 =n 7中任—項之裝置’其中該馬賽克影像感測 '匕含一採用-貝爾馬赛克圖案配置的濾波器陣列。 9·如凊求項8之裝置,其中該等輸入像素值包含第一列交 替綠色及藍色像素與第二列交替綠色及紅色像素,且A 中f影像還原電路包含-綠平衡單元,其係耗合以補償 在4等第-及第二列之間的綠色像素之—敏感度變化。 1〇·:請求項9之裝置,其中該敏感度變化係在該影像感測 不均勻’且其中該綠平衡單元係配置成用 以回應不均勾的敏感度變化來應用-不均勾的補償。 U·如請求項1至7中任一項之f詈入 J員之裝置,其包含物鏡光學元件, 5亥物鏡光學元件罐έ能 70件、,“且態用以在-預定模糊下將光聚焦 在该馬赛克影像感測器上,其中該影像還原電路包含一 散斑移除單元,苴螂如产# Μ k 輸入子影像之各輸入子影 象内之缺陷像素並校正該 ^^ . 阳1豕京之輸入像素值,該 專⑽像素之輪入像素值與相鄰像素之輸入像素值差多 119049.doc 200821989 於一最大差異,該最大差異係依據該模糊來決定。 12 ·如清求項1至7中任一項之裝置,其中該影像還原電路包 含一雜訊濾波器,其係配置成用以數位過濾各輸入子影 像,以便減小該等子影像内的雜訊。 13·如請求項12之裝置,其中該雜訊濾波器係配置成用以在 該等輸入子影像内決定局部梯度之方向及量值,並回應 該等方向及該等量值來選擇濾波核心以應用於減小雜 訊。 14·如請求項12之裝置,其中該影像還原電路包含一解摺積 渡波器(DCF),其係配置成用以在該雜訊濾波器減小雜 訊之後過濾該等輸入子影像。 15. 如請求項14之裝置,其中該影像還原電路包含一邊緣偵 測器’其係配置成用以識別該等輸入影像内的邊緣區 域,並控制該DCF之一輸入,以便接收在該等邊 緣區域内未經雜訊過濾之輸入像素值並從該雜訊濾波器 接收在該等邊緣區域外部的經雜訊減小之輸入像素值。 16. 如凊求項15之裝置,其中該邊緣偵測器係配置成用以偵 測邊緣像素,且其中該影像還原電路包含一加寬單元, 其係配置成用以藉由添加像素至該等邊緣像素周圍的邊 緣區域來加寬該等邊緣區域。 17. 如明求項16之裝置,其中該加寬單元係配置成用以從該 邊緣相H純在料子影像之彡像巾的一邊 緣像素之一識別,並在該等子影像之至少一第二子影像 内與該邊緣像素相鄰的該等像素添加至該邊緣區域。 119049.doc 200821989 18.如請求項1至7中任一項之裝置,其中該影像還原電路包 含·一數位滤波器’其係配置成用以使用一給定大小的 核心來摺積該等輸入子影像;及一定框延伸單元,其係 配置成用以在該等輸入子影像周圍添加一像素值邊界, 該邊界具有一回應該濾波核心大小而選擇的寬度。 19_如請求項丨至7中任一項之裝置,其中在該複數個輸入子 影像中的該等輸入像素值係在一由該馬賽克影像感測器 所輸出之單一輸入像素流中採用一預定交錯圖案而交 錯,且其中該影像還原電路包括一數位濾波器,其係配 置成用《回應該《錯圖案使用—受到料的個別核心來 摺積該等輸人子影像之各輸人子影像,以便將該等子影 像之各子影像與其他子影像分離地過濾。 20· —種成像方法,其包含: 從一馬賽克影像感測器接收屬於複數個輸入子影像的 、,冑素值μ ’各子影像回應人射在該馬賽克影像感 測器上的一不同、個別色彩之光; 以及 數位過慮在該等輸入子影像之各輸入子影像内的該等 輸^像素值,以便產生對應的複數個加強輸出子影像; ^影像信號處理器(ISP)内組合該#輪出子影像,以 便產生一彩色視訊輪出影像。 2 1 ·如請求項20之方法,皇中 习傻且h η 〃巾㈣輸人子影像及該等輸出子 〜像具有相同格式,以便 該## έίί + $ # + 〇〜ISP,以接收並組合 寺粉出子〜像或該等輸人子影像。 119049.doc 200821989 22•如請求項21之方法,其中在該複數個輸人 等輸入像素值係在該馬赛克影像感測器所輸出之=该 輸入像素流中採用-預定交錯圖案而交錯,且1中數位 過據該等輸二像素值包含依據該預定交錯圖案而在一輸 出像素流中交錯該等輸出子影像之輸出像素值。 23.如請求項20之方法,其中各子影像具有-輸入模糊,且 其中數位過濾料輸人像素值包含處理該等輸人子影像 f :各輸人子影像中的該等輸人像素值,以便該等輸出子 影像具有小於該輸入模糊的一輸出模糊。 24·如凊求項23之方法,其中該光係藉由物鏡光學元件而聚 焦在該馬賽克影像感測器上,該等物鏡光學元件具有一 引起該輸入模糊之點散布函數(pSF),且其中處理該等輸 入像素值包含應用一解摺積濾波器(DCF)至該等子影像 之各子影像中的該等輸入像素值,該DCF具有一依據該 PSF而決定的濾波核心。 25·如請求項24之方法,其中該PSF可在該影像感測器之一 平面上變化,且應用該DCF包含回應在該影像感測器之 平面上的一PSF變化,應用不同的濾波核心至來自該影 像感測器之不同區域的該等輸入像素值。 26·如請求項24之方法,其中應用該DCF包含根據該等輸入 子影像之一特徵來應用不同渡波核心至該等輸入像素 值。 27·如請求項20至26中任一項之方法,其中該馬賽克影像感 測器包含一採用一貝爾馬賽克圖案配置的濾波器陣列。 119049.doc 200821989 28·如請求項27之方法’其中該等輸人像素值包含第-列交 替綠色及藍色像素與第二列交替綠色及紅色像素,並包 含處理該等輸入像素值以在數位過滤該等輸入像素值之 前補償在該等第第二列之間的該等綠色像素之一敏 感度變化。 29. 如請求項27之方法,其中該敏感度變化係在該影像感測 裔之一區域上不均勻,且其中處理該等輸入像素值包含 應用一不均勻的補償以回應不均勻的敏感度變化。 f 30. 如請求項20至26中任一項之方法,其中該光係藉由具有 一預定模糊的物鏡光學元件而聚焦在該馬賽克影像感測 器上,且包含識別在該等輸入子影像之各輸入子影像内 之缺陷像素並校正該等缺陷像素之輸入像素值,該等缺 陷像素之輸入像素值與相鄰像素之輸入像素值差多於一 最大差異,該最大差異係依據該模糊來決定。 31. 如請求項20至26中任一項之方法,其中數位過濾該等輸 入像素值包含處理該等輸入子影像之各輸入子影像,以 便減小該等子影像内的雜訊。 32·如請求項31之方法,其中處理該等輸入子影像之各輸入 子影像包含決定在該等輸入子影像内的局部梯度之方向 及量值,並回應該等方向及該等量值來選擇濾波核心以 應用於減小雜訊。 33·如請求項31之方法,其中數位過濾該等輸入像素值包含 應用一解摺積濾波器(DCF)以在處理該等輸入子影像之 各輸入子影像以減小雜訊之後過濾該等輸入子影像。 119049.doc 200821989 34. 如請求項33之方法,其中應用該DCF包含識別在該等輪 入影像内的邊緣區域,並控制該DCF之一輸入,以便在 該等邊緣區域内,該DCF接收未經處理以減小雜訊的輸 入像素值,並在該等邊緣區域外部,該DCF接收經處理 以減小雜訊後的經雜訊減小之輸入像素。 35. 如請求項34之方法,其中識別該等邊緣區域包含偵測邊 緣像素,並藉由向該等邊緣像素周圍的邊緣區域添加像 素來加寬該等邊緣區域。200821989 X. Patent application scope: 1 · An imaging device comprising: - a mosaic image sensor configured to generate a stream of _ input pixel values belonging to a plurality of input sub-images, each sub-image responding to a human shot a different, individual color light on the mosaic image sensor; an image reduction coupled to receive and digitize (4) the input pixel values in each of the input sub-images of the input sub-images to generate Corresponding plurality of enhanced output sub-images; and an image signal processor (ISP) coupled to receive and combine the plurality of output sub-views "images" to generate a color video output image. 2. 2 request item i The device, wherein the input sub-images and the output sub-images have the same format so that the Isp can be coupled to receive and combine the output sub-images or the input sub-images. The 3 pixel values in the plurality of input sub-images are interlaced by a predetermined interlaced pattern in a single input pixel stream output by the mosaic image sensor. And wherein the output sub-shirt images comprise output pixel values, which are interleaved by the image restoration circuit in an output pixel stream according to the predetermined interlaced pattern. The device of the θθ item 1 wherein each sub-image has one Input blur, and wherein the output sub-images have an output blur after being filtered by the image restoration circuit, which is smaller than the input blur. 5_ The device of claim 4, comprising an objective optical element, the objective optical Yuan 4 Niu Xing right "has" - the point spread function (PSF) causing the input blur, and the pot in the pot; the ceremony, ', μ 篆 篆 reduction circuit contains a deconvolution filter (DCF), which has 119049. Doc 200821989 6 · -: Filter core determined according to the PSF. The device of claim 5, wherein the PSF is changeable on a plane of the image sensor, and the image restoration circuit is configured to respond to the plane of the image sensor - The pSF changes, applying different waves to the input values from different regions of the image sensor. A device of claim 5 wherein the image restoration circuit is configured to apply a different filter core to the input pixel values for the feature of the input sub-images. = n 7 - the device of the item 'where the mosaic image sensing '匕 contains a filter array configured with a Bell mosaic pattern. 9. The device of claim 8, wherein the input pixel values comprise alternating green and blue pixels of the first column and alternating green and red pixels of the second column, and the image restoration circuit of A comprises a green balance unit. The system is consumed to compensate for the change in sensitivity of the green pixels between the 4th and second columns. 1〇: The device of claim 9, wherein the sensitivity change is in the image sensing unevenness and wherein the green balance unit is configured to respond to the sensitivity change of the uneven hook to apply - unevenly make up. U. The device of any one of claims 1 to 7 is incorporated in the J member device, which comprises an objective optical element, and the immersion optical element can be 70 pieces, "the state is used to be under - predetermined blur The light is focused on the mosaic image sensor, wherein the image restoration circuit includes a speckle removal unit, such as a defective pixel in each input sub-image of the input sub-image, and corrects the ^^. The input pixel value of Yang 1豕京, the round-in pixel value of the special (10) pixel and the input pixel value difference of the adjacent pixel are more than 119049.doc 200821989. The maximum difference is determined according to the blur. The apparatus of any one of claims 1 to 7, wherein the image restoration circuit comprises a noise filter configured to digitally filter each of the input sub-images to reduce noise within the sub-images. 13. The device of claim 12, wherein the noise filter is configured to determine a direction and magnitude of a local gradient within the input sub-images, and to select an equal direction and the magnitude to select a filter core Used to reduce noise. 14. The device of claim 12, wherein the image restoration circuit comprises a de-folding wave transformer (DCF) configured to filter the input sub-images after the noise filter reduces noise. The device of claim 14, wherein the image restoration circuit includes an edge detector configured to identify an edge region within the input image and to control an input of the DCF to receive at the edge An input pixel value that is not filtered by noise in the region and receives noise-reduced input pixel values outside the edge regions from the noise filter. 16. For the device of claim 15, wherein the edge is detected The detector is configured to detect edge pixels, and wherein the image restoration circuit includes a widening unit configured to widen the edge regions by adding pixels to edge regions around the edge pixels 17. The apparatus of claim 16, wherein the widening unit is configured to identify from the edge phase H purely one of an edge pixel of the image of the image, and at least at least one of the sub-images a second child The apparatus of the present invention is the same as the apparatus of any one of claims 1 to 7, wherein the image restoration circuit comprises a digital filter Is configured to use the core of a given size to fold the input sub-images; and a frame extension unit configured to add a pixel value boundary around the input sub-images, the boundary having a The apparatus of the present invention, wherein the input pixel values in the plurality of input sub-images are in a mosaic image sensor The output of the single input pixel stream is interleaved using a predetermined interlaced pattern, and wherein the image restoration circuit includes a digital filter configured to be used to "reproduce the wrong core pattern - the individual core of the material is to be folded Each of the sub-images of the sub-images is input to separate the sub-images from the other sub-images. 20· an imaging method, comprising: receiving, from a mosaic image sensor, a plurality of input sub-images, a pixel value μ′ each sub-image responder shot on the mosaic image sensor The color of the individual colors; and the digits of the input pixel values in the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images; ^Image Signal Processor (ISP) combines the #轮出 sub-image to generate a color video wheeled image. 2 1 · As requested in item 20, the emperor is a silly and h η 〃 ( (4) input sub-image and the output sub-images have the same format, so that ## έ ίί + $ # + 〇 ISP to receive And combine the temple powder out ~ like or such a loser image. The method of claim 21, wherein the input pixel values of the plurality of input persons are interlaced by a predetermined interlaced pattern in the output pixel stream output by the mosaic image sensor, and The mid-digits include an output pixel value that interleaves the output sub-images in an output pixel stream in accordance with the predetermined interlace pattern. 23. The method of claim 20, wherein each sub-image has an -input blur, and wherein the digit filter input pixel value comprises processing the input sub-image f: the input pixel values in each input sub-image So that the output sub-images have an output blur that is less than the input blur. The method of claim 23, wherein the light is focused by the objective optical element on the mosaic image sensor, the objective optical element having a point spread function (pSF) that causes the input blur, and Processing the input pixel values includes applying a deconvolution filter (DCF) to the input pixel values in each of the sub-images of the sub-images, the DCF having a filter core determined according to the PSF. The method of claim 24, wherein the PSF is changeable on a plane of the image sensor, and applying the DCF comprises responding to a PSF change on a plane of the image sensor, applying a different filter core The input pixel values from different regions of the image sensor. The method of claim 24, wherein applying the DCF comprises applying different wave cores to the input pixel values based on one of the characteristics of the input sub-images. The method of any one of claims 20 to 26, wherein the mosaic image sensor comprises a filter array configured with a Bell mosaic pattern. The method of claim 27, wherein the input pixel values comprise a first column of alternating green and blue pixels and a second column alternating green and red pixels, and comprising processing the input pixel values to A sensitivity change of one of the green pixels between the second columns is compensated by digitally filtering the input pixel values. 29. The method of claim 27, wherein the sensitivity change is non-uniform in an area of the image sensing region, and wherein processing the input pixel values comprises applying an uneven compensation to respond to uneven sensitivity Variety. The method of any one of claims 20 to 26, wherein the light system is focused on the mosaic image sensor by an objective optical element having a predetermined blur and includes identifying the input sub-image Each of the defective pixels in the input sub-images and the input pixel values of the defective pixels are corrected, and the input pixel values of the defective pixels are different from the input pixel values of the adjacent pixels by more than a maximum difference, and the maximum difference is based on the blur To decide. The method of any one of claims 20 to 26, wherein the digitally filtering the input pixel values comprises processing the input sub-images of the input sub-images to reduce noise within the sub-images. 32. The method of claim 31, wherein processing each of the input sub-images of the input sub-images comprises determining a direction and magnitude of a local gradient within the input sub-images, and echoing the equal direction and the magnitudes The filter core is chosen to be used to reduce noise. 33. The method of claim 31, wherein digit filtering the input pixel values comprises applying a deconvolution filter (DCF) to filter the input sub-images of the input sub-images to reduce noise Enter a sub-image. The method of claim 33, wherein applying the DCF includes identifying an edge region within the wheeled image and controlling one of the DCF inputs such that the DCF receives no within the edge region The input pixel values are processed to reduce noise, and outside of the edge regions, the DCF receives input pixels that are processed to reduce noise reduction after noise. 35. The method of claim 34, wherein identifying the edge regions comprises detecting edge pixels and widening the edge regions by adding pixels to the edge regions surrounding the edge pixels. 36·如請求項35之方法,其中加寬該等邊緣區域包含在該等 子影像之一第一子影像中偵測一邊緣像素,並在該等子 影像之至少一第二子影像内與該邊緣像素相鄰的該等像 素添加至該邊緣區域。 37. 如請求項2〇至26中任—項之方法,其巾數㈣㈣等輸 入像素值包含使用一給定大小的核心來摺積該等輸入子 影像’並包含纟數位過遽該等冑入像素值之前圍繞該等 輸入子影像周圍添加一像素值邊界,該邊界具有一回應 ^亥遽、波核心之大小而選擇的寬度。 38. 如請求㈣至财任—項之方法,丨中在該複數個輸入 子影像中的該等輸人像素值係在—由該馬赛克影像感測 盜所輸出之單—輸人像素流中採用—衫交錯圖案而交 :’且其中數位過濾該等輸入像素值包含回應該交錯圖 案使用-受到遮罩的個別核心來摺積該等輸人子影像之 各輸入子影像,以便將該等子影像之 影像分離地過濾。 厚/、/、他于 119049.doc36. The method of claim 35, wherein widening the edge regions comprises detecting an edge pixel in a first sub-image of the sub-images and in at least a second sub-image of the sub-images The pixels adjacent to the edge pixel are added to the edge region. 37. The method of claim 2, wherein the input pixel value of the number of (4) (four), etc., comprises using a given size of the core to convolve the input sub-images and includes the number of digits. A pixel value boundary is added around the input sub-images before entering the pixel value, and the boundary has a width selected in response to the size of the wave core. 38. The method of requesting (4) to the financial-item, wherein the input pixel values in the plurality of input sub-images are in a single-input pixel stream outputted by the mosaic image sensing stolen Using a shirt-interlaced pattern and intersecting: and wherein the digits are filtered, the input pixel values are included in the interlaced pattern--the individual cores of the mask are used to fold the input sub-images of the input sub-images to The images of the sub-images are separated and filtered. Thick /, /, he at 119049.doc
TW096108965A 2006-11-07 2007-03-15 Image enhancement in the mosaic domain TWI419079B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2006/001284 WO2007054931A2 (en) 2005-11-10 2006-11-07 Image enhancement in the mosaic domain

Publications (2)

Publication Number Publication Date
TW200821989A true TW200821989A (en) 2008-05-16
TWI419079B TWI419079B (en) 2013-12-11

Family

ID=44802523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108965A TWI419079B (en) 2006-11-07 2007-03-15 Image enhancement in the mosaic domain

Country Status (1)

Country Link
TW (1) TWI419079B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454153B (en) * 2009-10-20 2014-09-21 Apple Inc System and method for demosaicing image data using weighted gradients

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236546B (en) * 2004-04-15 2005-07-21 Pixart Imaging Inc Image sensing device of improving image quality and reducing color shift effect
US7728844B2 (en) * 2004-07-09 2010-06-01 Nokia Corporation Restoration of color components in an image model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454153B (en) * 2009-10-20 2014-09-21 Apple Inc System and method for demosaicing image data using weighted gradients

Also Published As

Publication number Publication date
TWI419079B (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5155871B2 (en) Image enhancement in the mosaic domain
RU2496253C1 (en) Image processing device and image processing method for correcting chromatic aberration
TWI407800B (en) Improved processing of mosaic images
JP6352617B2 (en) Video processing apparatus and method
TWI458333B (en) Method and apparatus for image noise reduction using noise models
EP2529555B1 (en) Denoising cfa images using weighted pixel differences
JP5075795B2 (en) Solid-state imaging device
JP2011083033A (en) Technique for reducing color artifact in digital image
JP2002077645A (en) Image processor
JP2008289090A (en) Imaging signal processor
US8238685B2 (en) Image noise reduction method and image processing apparatus using the same
JP2010277464A (en) Filter circuit, image processing apparatus, imaging apparatus, image processing method, and program
JP3540758B2 (en) Horizontal contour signal generation circuit for single-chip color camera
JP2003032695A (en) Image signal processor
JP2010277267A (en) Image processing apparatus, imaging apparatus, and image processing method
CN101356830A (en) Image processing device
JP5291788B2 (en) Imaging device
JP5948167B2 (en) Imaging device
JP3633561B2 (en) Image processing apparatus, image processing method, and program
TW200821989A (en) Image enhancement in the mosaic domain
JP3617455B2 (en) Image processing apparatus, image processing method, and recording medium
IL191290A (en) Image enhancement in the mosaic domain
EP1522047B1 (en) Method and apparatus for signal processing, computer program product, computing system and camera
JP2005532003A (en) Signal processing method, signal processing apparatus, computer program product, computer system, and camera
JP3591257B2 (en) Video signal processing method and video signal processing device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees