TWI419079B - Image enhancement in the mosaic domain - Google Patents

Image enhancement in the mosaic domain Download PDF

Info

Publication number
TWI419079B
TWI419079B TW096108965A TW96108965A TWI419079B TW I419079 B TWI419079 B TW I419079B TW 096108965 A TW096108965 A TW 096108965A TW 96108965 A TW96108965 A TW 96108965A TW I419079 B TWI419079 B TW I419079B
Authority
TW
Taiwan
Prior art keywords
images
sub
input
image
filter
Prior art date
Application number
TW096108965A
Other languages
Chinese (zh)
Other versions
TW200821989A (en
Inventor
Anatoly Litvinov
Alex Alon
Irina Alon
Einat Kidron
Uri Kinrot
Original Assignee
Digitaloptics Corp Internat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/IL2006/001284 external-priority patent/WO2007054931A2/en
Application filed by Digitaloptics Corp Internat filed Critical Digitaloptics Corp Internat
Publication of TW200821989A publication Critical patent/TW200821989A/en
Application granted granted Critical
Publication of TWI419079B publication Critical patent/TWI419079B/en

Links

Description

於馬賽克域之影像加強Image enhancement in the mosaic domain

本發明一般而言係關於數位成像,且明確而言係關於用於在數位攝影機中加強影像品質之方法及器件。The present invention relates generally to digital imaging and, in particular, to methods and devices for enhancing image quality in digital cameras.

受到大小、成本、孔徑大小及攝影機製造者所強加之其他因素的限制,在數位攝影機中所使用的物鏡光學元件一般係設計以便最小化光學點散布函數(PSF)與最大化調變轉移函數(MTF)。所得光學系統之PSF可能仍由於聚焦變化及像差而不同於理想。已知許多方法在此項技術中用於藉由數位影像處理來補償此類PSF偏差。例如,美國專利案6,154,574說明一種用於在一影像處理系統內數位聚焦一離焦影像之方法,其揭示內容係以引用方式併入本文。一平均步階響應係藉由將一散焦影像分成子影像並在各子影像中相對於邊緣方向計算步階響應來獲得。該平均步階響應係用於計算PSF係數,隨之將該PSF係數應用於決定一影像還原轉移函數。一聚焦影像係藉由在頻域(frequency domain)內將此函數乘以離焦影像來獲得。Limited by size, cost, aperture size, and other factors imposed by the camera manufacturer, the objective optics used in digital cameras are typically designed to minimize the optical point spread function (PSF) and maximize the modulation transfer function ( MTF). The PSF of the resulting optical system may still differ from the ideal due to focus variations and aberrations. A number of methods are known in the art for compensating for such PSF bias by digital image processing. For example, U.S. Patent No. 6,154,574 describes a method for digitally focusing an out-of-focus image in an image processing system, the disclosure of which is incorporated herein by reference. An average step response is obtained by dividing a defocused image into sub-images and calculating step responses relative to the edge directions in each sub-image. The average step response is used to calculate the PSF coefficients, which are then applied to determine an image reduction transfer function. A focused image is obtained by multiplying this function by an out-of-focus image in the frequency domain.

PCT國際公告案WO 2004/063989 A2,說明一種電子成像攝影機,其包含一影像感測陣列與一影像處理器,其應用一去模糊功能(一般採用一解摺積濾波器(DCF)之形式)至該陣列所輸出之信號,以便產生一具有減小模糊之輸出影像,其揭示內容係以引用方式併入本文。此模糊減小使設計並使用具有一較差固有PSF之攝影機光學元件成為可能,同時還原該感測陣列所產生之電子影像以提供一可接受的輸出影像。PCT International Publication No. WO 2004/063989 A2, which describes an electronic imaging camera comprising an image sensing array and an image processor applying a deblurring function (generally in the form of a deconvolution filter (DCF)) The signals output to the array are used to produce an output image with reduced blur, the disclosure of which is incorporated herein by reference. This blur reduction makes it possible to design and use camera optics with a poor inherent PSF while restoring the electronic image produced by the sensing array to provide an acceptable output image.

低成本彩色視訊攝影機一般使用一具有多色彩馬賽克濾波器覆蓋之單一固態影像感測器。一馬賽克濾波器係一微型彩色濾波器元件之遮罩,其中一濾波器元件係定位於影像感測器之各偵測器元件前面。例如,美國專利案4,697,208說明一種彩色影像拾取器件,其具有一固態影像感測元件與一互補色彩型馬賽克濾波器。任何種類的具有一彩色馬賽克濾波器之影像感測器(不論馬賽克中的色彩配置及選擇)在下文中均稱為一"馬賽克影像感測器"。Low cost color video cameras typically use a single solid state image sensor with a multi-color mosaic filter overlay. A mosaic filter is a mask of a miniature color filter component, wherein a filter component is positioned in front of each detector component of the image sensor. For example, U.S. Patent No. 4,697,208 describes a color image pickup device having a solid-state image sensing element and a complementary color mosaic filter. Any type of image sensor with a color mosaic filter (regardless of color configuration and selection in the mosaic) is hereinafter referred to as a "mosaic image sensor."

在馬賽克濾波器中的濾波器元件一般在主要RGB色彩之間或在互補色彩青色、深紅色及黃色之間交替。一普遍彩色馬賽克濾波器類型係稱為一"貝爾感測器"或"貝爾馬賽克",其具有下列一般形式(其中字母表示色彩:R表示紅色、G表示綠色及B表示藍色): 該等不同彩色濾波器具有個別可能重疊的通帶。貝爾馬賽克係說明於美國專利案3,971,065,其揭示內容以引用方式併入本文。Filter elements in a mosaic filter typically alternate between major RGB colors or between complementary colors cyan, magenta, and yellow. A common color mosaic filter type is called a "Bell Sensor" or "Bell Mosaic", which has the following general form (where the letters indicate color: R for red, G for green, and B for blue): The different color filters have individual passbands that may overlap. The Bell Mosaics are described in U.S. Patent No. 3,971,065, the disclosure of which is incorporated herein by reference.

處理一馬賽克影像感測器所產生之影像一般涉及藉由從感測器輸出中擷取三色彩信號(紅色、綠色及藍色)來重建全部彩色影像。一影像信號處理器(ISP)處理影像感測器輸出,以便針對輸出影像之各像素來計算亮度(Y)及色度(C)值。該ISP然後以一標準視訊格式來輸出該些值(或對應的R、G及B色值)。Processing an image produced by a mosaic image sensor generally involves reconstructing all of the color image by extracting three color signals (red, green, and blue) from the sensor output. An image signal processor (ISP) processes the image sensor output to calculate luminance (Y) and chrominance (C) values for each pixel of the output image. The ISP then outputs the values (or corresponding R, G, and B color values) in a standard video format.

本發明之具體實施例提供用以處理並加強電子影像(尤其係一馬賽克影像感測器所產生之影像)之方法及器件。該感測器輸出屬於複數個輸入子影像的一像素值流,各子影像係由於入射在該馬賽克影像感測器上的一不同、個別色彩之光而引起。一影像還原電路過濾該等輸入子影像之各輸入子影像中的該等像素值,以便產生具有加強品質(例如減小模糊)的對應輸出子影像。一影像信號處理器(ISP)然後組合該等輸出子影像,以便產生一彩色視訊輸出影像。Embodiments of the present invention provide methods and devices for processing and enhancing electronic images, particularly images produced by a mosaic image sensor. The sensor outputs a stream of pixel values belonging to a plurality of input sub-images, each sub-image being caused by a different, individual color of light incident on the mosaic image sensor. An image restoration circuit filters the pixel values in each of the input sub-images of the input sub-images to produce a corresponding output sub-image having enhanced quality (eg, reduced blur). An image signal processor (ISP) then combines the output sub-images to produce a color video output image.

比較其中該等馬賽克子影像係在去模糊之前先組合以重建一彩色輸出影像之傳統方法時,經發現此配置提供出眾的結果。此外,在一些具體實施例中,該影像還原電路所產生之該等輸出子影像係格式上與該馬賽克影像感測器所產生之該等輸入子影像相同,使得該影像還原電路可在該感測器與該ISP之間整合一現有感測器/ISP組合而很少或不改變該感測器或ISP設計。This configuration provides superior results when comparing conventional methods in which the mosaic sub-images are combined to reconstruct a color output image prior to deblurring. In addition, in some embodiments, the output sub-images generated by the image restoration circuit are in the same format as the input sub-images generated by the mosaic image sensor, so that the image restoration circuit can be The existing sensor/ISP combination is integrated between the detector and the ISP with little or no change to the sensor or ISP design.

依據本發明之一具體實施例,因此提供成像裝置,其包括:一馬賽克影像感測器,其經組態用以產生屬於複數個輸入子影像的一輸入像素值流,各子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光。In accordance with an embodiment of the present invention, an imaging apparatus is provided, comprising: a mosaic image sensor configured to generate an input pixel value stream belonging to a plurality of input sub-images, each sub-image response being incident on A different, individual color of light on the mosaic image sensor.

一影像還原電路,其係耦合以接收並數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像;以及一影像信號處理器(ISP),其係耦合以接收並組合該複數個輸出子影像,以便產生一彩色視訊輸出影像。An image restoration circuit coupled to receive and digitally filter the input pixel values in each of the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images; and an image signal processor ( ISP) is coupled to receive and combine the plurality of output sub-images to produce a color video output image.

在一揭示的具體實施例中,該等輸入子影像及該等輸出子影像具有相同格式,以便該ISP可耦合以接收並組合該等輸出子影像或該等輸入子影像。一般而言,在該複數個輸入子影像中的該等輸入像素值係在該馬賽克影像感測器所輸出之一單一輸入像素流中採用一預定交錯圖案而交錯,且該等輸出子影像包括輸出像素值,其係依據該預定交錯圖案在一輸出像素流中由該影像還原電路來交錯。In a disclosed embodiment, the input sub-images and the output sub-images have the same format such that the ISP can be coupled to receive and combine the output sub-images or the input sub-images. Generally, the input pixel values in the plurality of input sub-images are interlaced by a predetermined interlaced pattern in a single input pixel stream output by the mosaic image sensor, and the output sub-images include Output pixel values are interleaved by the image restoration circuit in an output pixel stream in accordance with the predetermined interlaced pattern.

在一些具體實施例中,各子影像具有一輸入模糊,而該等輸出子影像在經該影像還原電路過濾之後具有一輸出模糊,其係小於該輸入模糊。在一具體實施例中,該裝置包括物鏡光學元件,其具有一引起該輸入模糊之點散布函數(PSF),而該影像還原電路包括一解摺積濾波器(DCF),其具有一依據該PSF決定的濾波核心。該PSF可在該影像感測器之一平面上變化,且該影像還原電路可配置成用以回應該影像感測器之平面上的一PSF變化,應用不同的濾波核心至來自該影像感測器之不同區域的該等輸入像素值。此外或替代性地,該影像還原電路可配置成用以根據該等輸入子影像之一特徵來應用不同的濾波核心至該等輸入像素值。In some embodiments, each sub-image has an input blur, and the output sub-images have an output blur after filtering by the image restoration circuit, which is less than the input blur. In a specific embodiment, the apparatus includes an objective optical element having a point spread function (PSF) that causes the input blur, and the image restoration circuit includes a deconvolution filter (DCF) having a basis The filtering core determined by the PSF. The PSF can be changed on a plane of the image sensor, and the image restoration circuit can be configured to respond to a PSF change on a plane of the image sensor, applying a different filter core to the image sensing The input pixel values of different regions of the device. Additionally or alternatively, the image restoration circuit can be configured to apply different filter cores to the input pixel values based on one of the characteristics of the input sub-images.

在一些具體實施例中,該馬賽克影像感測器包括一採用一貝爾馬賽克圖案配置的濾波器陣列。在一具體實施例中,該等輸入像素值包括第一列交替綠色及藍色像素與第二列交替綠色及紅色像素,且該影像還原電路包括一綠平衡單元,其係耦合以補償在該等第一及第二列之間的綠色像素之一敏感度變化。該敏感度變化可能在該影像感測器之一區域上不均勻,且該綠平衡單元可配置成用以回應不均勻的敏感度變化來應用一不均勻的補償。In some embodiments, the mosaic image sensor includes a filter array configured with a Bell mosaic pattern. In one embodiment, the input pixel values include a first column of alternating green and blue pixels and a second column of alternating green and red pixels, and the image restoration circuit includes a green balance unit coupled to compensate One of the green pixels between the first and second columns changes in sensitivity. The sensitivity change may be non-uniform over a region of the image sensor, and the green balance unit may be configured to apply a non-uniform compensation in response to uneven sensitivity changes.

在一揭示的具體實施例中,該裝置包括物鏡光學元件,其經組態用以在一預定模糊下將光聚焦在該馬賽克影像感測器上,且該影像還原電路包括一散斑(spike)移除單元,其在該等輸入子影像之各輸入子影像內識別具有輸入像素值比相鄰像素之輸入像素值差多於一最大差異的缺陷像素,該最大差異係依據該模糊來決定,並校正該等缺陷像素之輸入像素值。In a disclosed embodiment, the apparatus includes an objective optical component configured to focus light onto the mosaic image sensor under a predetermined blur, and the image restoration circuit includes a speckle a removing unit that identifies, within each input sub-image of the input sub-images, a defective pixel having an input pixel value that is more than a maximum difference from an input pixel value of an adjacent pixel, the maximum difference being determined according to the blur And correcting the input pixel values of the defective pixels.

在一些具體實施例中,該影像還原電路包括一雜訊濾波器,其係配置成用以數位過濾各輸入子影像,以便減小該等子影像內的雜訊。在一具體實施例中,該雜訊濾波器係配置成用以在該等輸入子影像內決定局部梯度之方向及量值,並回應該等方向及該等量值選擇濾波核心用以減小雜訊。In some embodiments, the image restoration circuit includes a noise filter configured to digitally filter each of the input sub-images to reduce noise within the sub-images. In a specific embodiment, the noise filter is configured to determine a direction and magnitude of a local gradient in the input sub-images, and to determine an equal direction and the magnitude selection filter core to reduce Noise.

此外或者替代性地,該影像還原電路包括一解摺積濾波器(DCF),其係配置成用以在該雜訊濾波器減小雜訊之後過濾該等輸入子影像。在一具體實施例中,該影像還原電路包括一邊緣偵測器,其係配置成用以識別該等輸入影像內的邊緣區域,並控制該DCF之一輸入,以便該DCF接收在該等邊緣區域內未經雜訊過濾的輸入像素值並從該雜訊濾波器接收在該等邊緣區域外部的經雜訊減小之輸入像素值。該邊緣偵測器可配置成用以偵測邊緣像素,且該影像還原電路可包括一加寬單元,其係配置成用以藉由添加像素至該等邊緣像素周圍的邊緣區域來加寬該等邊緣區域。一般而言,該加寬單元係配置成用以從該邊緣偵測器接收在該等子影像之一第一子影像中的一邊緣像素之一識別,並在該等子影像之至少一第二子影像中向該邊緣區域添加與該邊緣像素相鄰的該等像素。Additionally or alternatively, the image restoration circuit includes a deconvolution filter (DCF) configured to filter the input sub-images after the noise filter reduces noise. In an embodiment, the image restoration circuit includes an edge detector configured to identify an edge region within the input image and control one of the DCF inputs such that the DCF is received at the edge The input pixel values in the region that are not filtered by noise and from the noise filter receive noise reduced input pixel values outside of the edge regions. The edge detector can be configured to detect edge pixels, and the image restoration circuit can include a widening unit configured to widen the pixel by adding pixels to edge regions around the edge pixels Equal edge area. In general, the widening unit is configured to receive, from the edge detector, one of an edge pixel in a first sub-image of the sub-images, and at least one of the sub-images The pixels adjacent to the edge pixel are added to the edge region in the two sub-images.

在一揭示的具體實施例中,該影像還原電路包括一數位濾波器,其係配置成用以使用一給定大小的核心來摺積該等輸入子影像、及一定框延伸單元,其係配置成用以在該等輸入子影像周圍添加一像素值邊界,該邊界具有一回應該濾波核心大小而選擇的寬度。In a specific embodiment, the image restoration circuit includes a digital filter configured to use the core of a given size to convolve the input sub-images and the frame extension unit. The method is configured to add a pixel value boundary around the input sub-images, the boundary having a width selected by filtering the core size.

在一些具體實施例中,在該複數個輸入子影像中的該等輸入像素值係在一由該馬賽克影像感測器所輸出之單一輸入像素流中採用一預定交錯圖案而交錯,且該影像還原電路包括一數位濾波器,其係配置成用以回應該交錯圖案,使用一受到陰影的個別核心來摺積該等輸入子影像之各輸入子影像,以便將該等子影像之各子影像與其他子影像分離地過濾。In some embodiments, the input pixel values in the plurality of input sub-images are interlaced by a predetermined interlaced pattern in a single input pixel stream output by the mosaic image sensor, and the image is interlaced. The reduction circuit includes a digital filter configured to echo the interlaced pattern, using a shadowed individual core to fold the input sub-images of the input sub-images for sub-images of the sub-images Filter separately from other sub-images.

依據本發明之一具體實施例,還提供一種成像方法,其包括:從一馬賽克影像感測器接收屬於複數個輸入子影像的一輸入像素值流,各子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光;在該等輸入子影像之各輸入子影像內數位過濾該等輸入像素值,以便產生對應的複數個加強輸出子影像;以及在一影像信號處理器(ISP)內組合該等輸出子影像,以便產生一彩色視訊輸出影像。According to an embodiment of the present invention, an imaging method is further provided, comprising: receiving, from a mosaic image sensor, an input pixel value stream belonging to a plurality of input sub-images, each sub-image response being incident on the mosaic image sensing a different, individual color light on the device; digitally filtering the input pixel values in each of the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images; and an image signal processor ( The output sub-images are combined within the ISP) to produce a color video output image.

概述Overview

依據本發明之一具體實施例,圖1係示意性說明一電子成像攝影機20之一方塊圖。本文中,此特定、簡化攝影機設計係以範例方式顯示,以便闡明並具體化本發明之原理。然而,該些原理不限於此設計,而可以應用於在其他類型的成像系統中減小影像模糊,其中一感測器產生多個不同色彩的子影像,然後將其組合以產生一加強彩色輸出影像。1 is a block diagram schematically illustrating an electronic imaging camera 20, in accordance with an embodiment of the present invention. This particular, simplified camera design is shown by way of example in order to illustrate and detail the principles of the invention. However, the principles are not limited to this design, but can be applied to reduce image blur in other types of imaging systems, where a sensor produces a plurality of sub-images of different colors and then combines them to produce a enhanced color output. image.

在攝影機20中,物鏡光學元件22將來自一場景之光聚焦在一馬賽克影像感測器24上。在該攝影機中,可使用任何適當的影像感測器類型,例如一CCD或CMOS影像感測器。在此範例中以及在隨後說明中,該感測器係假定具有一貝爾型馬賽克濾波器,使得在該感測器所輸出之影像信號內的各像素32係回應紅、綠或藍光。因而,該馬賽克感測器輸出可視為包含紅、綠及藍色子影像,由對應感測器元件之像素值所組成。屬於該等不同子影像之該等像素值係一般依據在該馬賽克濾波器中該等色彩元件的次序以在輸出信號中交錯,即該感測器採用交替線輸出一列RGRGRG...(交替紅色及綠色濾波器),隨後輸出一後繼列GBGBGB...(交替綠色及藍色)以及等等。或者,下列所說明之該等方法及電路(已作必要的修正)可配合其他類型的馬賽克感測器圖案來使用。In camera 20, objective optical element 22 focuses light from a scene onto a mosaic image sensor 24. In the camera, any suitable image sensor type can be used, such as a CCD or CMOS image sensor. In this example and in the following description, the sensor is assumed to have a Bell-type mosaic filter such that each pixel 32 within the image signal output by the sensor responds to red, green or blue light. Thus, the mosaic sensor output can be viewed as containing red, green, and blue sub-images, consisting of pixel values of corresponding sensor elements. The pixel values belonging to the different sub-images are generally interleaved in the output signal according to the order of the color elements in the mosaic filter, that is, the sensor outputs a column of RGRGRG using alternating lines... (alternating red And the green filter), then output a successor column GBGBGB... (alternating green and blue) and so on. Alternatively, the methods and circuits described below (with the necessary modifications) can be used in conjunction with other types of mosaic sensor patterns.

影像感測器24所輸出之像素值流係由一數位還原電路26來接收並處理。此電路係參考附圖來詳細說明。該等像素值係在經電路26處理之前由一類比/數位轉換器(圖式中未顯示)來數位化,該類比/數位轉換器可整合感測器24或電路26或可以係一分離組件。在任一情況下,電路26處理感測器24所產生的該等紅色、綠色及藍色輸入子影像,以便減小影像模糊,如下所述。電路26然後輸出具有減小模糊之紅色、綠色及藍色子影像。The pixel value stream output by the image sensor 24 is received and processed by a digital reduction circuit 26. This circuit is described in detail with reference to the drawings. The pixel values are digitized by an analog/digital converter (not shown) prior to processing by circuit 26, which may integrate sensor 24 or circuit 26 or may be a separate component . In either case, circuit 26 processes the red, green, and blue input sub-images produced by sensor 24 to reduce image blur as described below. Circuit 26 then outputs red, green, and blue sub-images with reduced blur.

一般而言,電路26採用與其從感測器24接收子影像所採用的相同格式來輸出該等子影像。例如,電路26可在該等輸出子影像中交錯該等像素值,以產生一單一輸出流,其中該等像素值具有與來自感測器24之輸入像素值相同的交錯。或者,電路26可配置成用以解多工並輸出各子影像作為一分離資料區塊或資料流。In general, circuit 26 outputs the sub-images in the same format as they were used to receive sub-images from sensor 24. For example, circuitry 26 may interleave the pixel values in the output sub-images to produce a single output stream, wherein the pixel values have the same interlace as the input pixel values from sensor 24. Alternatively, circuit 26 can be configured to demultiplex and output each sub-image as a separate data block or data stream.

一ISP 28從還原電路26接收該等去模糊的紅色、綠色及藍色輸出子影像並組合該等子影像以採用一標準視訊格式來產生一彩色視訊輸出影像(或影像序列)。此輸出影像可顯示在一視訊螢幕30上以及通過一通信鏈路來發送及/或儲存在一記憶體內。在電路26採用與其從感測器24接收該等子影像相同的格式來輸出該等子影像之具體實施例中,ISP 28可互換地用於處理電路26之輸出或直接處理感測器24之輸出。此外,此還原電路26之特徵較為有利,因為其允許該還原電路配合一現有感測器及ISP使用而不修改該感測器或該ISP。其還允許僅藉由在該感測器與該ISP之間啟用或停用一旁通鏈路(未顯示)來開啟及關閉電路26之還原功能。An ISP 28 receives the deblurred red, green, and blue output sub-images from the restoration circuit 26 and combines the sub-images to produce a color video output image (or image sequence) using a standard video format. The output image can be displayed on a video screen 30 and transmitted and/or stored in a memory via a communication link. In a particular embodiment where circuit 26 outputs the sub-images in the same format as receiving the sub-images from sensor 24, ISP 28 is used interchangeably for processing the output of circuit 26 or directly processing sensor 24 Output. Moreover, the feature of the reduction circuit 26 is advantageous because it allows the restore circuit to be used with an existing sensor and ISP without modifying the sensor or the ISP. It also allows the restore function of circuit 26 to be turned on and off simply by enabling or disabling a bypass link (not shown) between the sensor and the ISP.

ISP 28所產生之彩色視訊輸出影像包含用於影像中各像素的亮度及色彩資訊。此資訊可根據亮度及色度(例如Y/C或其他色彩座標)或根據個別色值(例如RGB)來編碼。相比之下,經還原電路26處理並輸出的該等子影像係單色影像,僅相對於其表示的特定色彩包含亮度資訊。各子影像僅包含將出現在該彩色視訊輸出影像中的該等像素之一子集,即由覆蓋對應彩色濾波器之影像感測器之元件所產生之該等像素。換言之,在圖1所示之貝爾矩陣之範例中,該等R及B子影像將在該輸出影像中各包含四分之一的像素,而G子影像將包含剩餘的一半。The color video output image produced by ISP 28 contains brightness and color information for each pixel in the image. This information can be encoded based on brightness and chrominance (such as Y/C or other color coordinates) or on individual color values (such as RGB). In contrast, the sub-images processed and output by the restore circuit 26 are monochrome images that contain luminance information only with respect to the particular color they represent. Each sub-image contains only a subset of the pixels that will appear in the color video output image, i.e., the pixels produced by the elements of the image sensor that cover the corresponding color filter. In other words, in the example of the Bell Matrix shown in Figure 1, the R and B sub-images will each contain a quarter of the pixels in the output image, and the G sub-image will contain the remaining half.

一般而言,還原電路26及ISP 28係嵌入一或多個積體電路晶片內,該等積體電路晶片可包含自訂或半自訂組件。儘管在圖1中還原電路26及ISP 28係顯示為分離功能組塊,但該還原電路及該ISP之該等功能可採用一單一積體電路組件來實施。視需要地,影像感測器24可在一系統上晶片(SoC)或攝影機上晶片設計中在相同半導體基板上組合電路26並還可組合ISP 28。或者,還原電路26及ISP 28之一些或全部功能可在一可程式化處理器(例如一數位信號處理器)上採用軟體來實施。此軟體可採用電子形式下載至該處理器或其可替代性地提供在有形媒體上,例如光學、磁性或電子記憶媒體。In general, the reduction circuit 26 and the ISP 28 are embedded in one or more integrated circuit wafers, which may include custom or semi-custom components. Although the restore circuit 26 and the ISP 28 are shown as separate functional blocks in FIG. 1, the functions of the restore circuit and the ISP can be implemented using a single integrated circuit component. As desired, image sensor 24 can combine circuit 26 on the same semiconductor substrate in a system-on-a-chip (SoC) or on-camera wafer design and can also combine ISP 28. Alternatively, some or all of the functions of restore circuit 26 and ISP 28 may be implemented in software on a programmable processor (e.g., a digital signal processor). The software can be downloaded to the processor in electronic form or it can alternatively be provided on a tangible medium, such as an optical, magnetic or electronic memory medium.

圖2係依據本發明之一具體實施例示意性顯示還原電路26之功能組件之一方塊圖。一般而言,該些功能組件係一起嵌入一單一自訂或半自訂積體電路器件內。或者,圖2所示之該等功能可在許多組件之中劃分,該等組件可採用硬體或軟體來實施該等功能。在圖2所示之範例性具體實施例中,電路26藉由解摺積濾波來執行影像還原以在ISP 28將該等子影像併入一單一色彩輸出影像之前減小該等子影像之模糊。電路26在該等子影像上所執行的其他影像還原功能包括散斑移除及雜訊過濾。替代性地或此外,電路26可配置成用以僅實施該些還原功能之一或兩個功能或在該等馬賽克子影像之空間內實施額外的數位過濾功能。2 is a block diagram schematically showing the functional components of the reduction circuit 26 in accordance with an embodiment of the present invention. In general, the functional components are embedded together in a single custom or semi-custom integrated circuit device. Alternatively, the functions shown in Figure 2 can be divided among a number of components that can be implemented in hardware or software. In the exemplary embodiment illustrated in FIG. 2, circuit 26 performs image restoration by deconvolution filtering to reduce blurring of the sub-images before ISP 28 incorporates the sub-images into a single color output image. . Other image restoration functions performed by circuit 26 on the sub-images include speckle removal and noise filtering. Alternatively or in addition, circuitry 26 may be configured to implement only one or both of the restore functions or to implement additional digital filtering functions within the space of the mosaic sub-images.

一綠平衡單元40平衡該等綠紅(Gr)及綠藍(Gb)像素值用於可能的振幅變化。Gr及Gb係分別指在RGRGRG...列與GBGBGB...列中出現的綠色像素。下面在標題為"綠平衡"之節中說明單元40之操作細節。A green balance unit 40 balances the green (Gr) and green (Gb) pixel values for possible amplitude variations. Gr and Gb refer to the green pixels appearing in the RGRGRG... column and the GBGBGB... column, respectively. The details of the operation of unit 40 are described below in the section entitled "Green Balance."

綠平衡影像資料係保持在輸入模糊貝爾(IBB)緩衝器42內。一定框延伸單元44向該緩衝器添加虛擬像素列及行,以確保在實際影像邊界處正確地處理像素。緩衝器42之組織及內容與單元44之操作係參考圖3在下文說明。The green balance image data is maintained in the input fuzzy bell (IBB) buffer 42. The bounding frame extension unit 44 adds virtual pixel columns and rows to the buffer to ensure that the pixels are properly processed at the actual image boundaries. The organization and content of buffer 42 and the operation of unit 44 are described below with reference to FIG.

一散斑移除單元46識別並修改該等缺陷像素值,以便防止雜訊從該些像素傳播進入該處理影像內。下文參考圖4來說明散斑移除操作。A speckle removal unit 46 identifies and modifies the defective pixel values to prevent noise from propagating from the pixels into the processed image. The speckle removal operation is explained below with reference to FIG.

一邊緣偵測單元48基於適應性臨界值50來決定在各子影像內邊緣像素的位置。一加寬單元52然後應用一形態操作以產生一包含該等邊緣區域之輸出邊緣遮罩(OEM)。例如,該遮罩可在該等邊緣區域內的像素處具有值"1"並在別處具有"0"。電路26制止向該些邊緣區域應用雜訊抑制,以便避免邊緣資訊之損失。下文參考圖5來說明該些邊緣識別功能。An edge detection unit 48 determines the position of the edge pixels within each sub-image based on the adaptive threshold 50. A widening unit 52 then applies a morphing operation to produce an output edge mask (OEM) containing the edge regions. For example, the mask may have a value of "1" at pixels within the edge regions and "0" elsewhere. Circuit 26 prevents the application of noise suppression to the edge regions to avoid loss of edge information. These edge recognition functions are explained below with reference to FIG. 5.

一假動態雜訊濾波器54係應用以減小各子影像內的雜訊,因而產生IBB修改(IBBM)的像素值。下文參考圖6來說明濾波器54之操作。一選擇器56然後基於單元52所提供之對應OEM值來選擇各像素之適當值以傳遞給一解摺積濾波器(DCF)60。該選擇器在該等邊緣區域內選擇非邊緣像素之該等IBBM值與直接從IBB緩衝器42取得的該等未修改的IBB初始(IBBO)像素值。該等IBBO值係藉由一延遲線58來延遲,以便維持該等IBBO及IBBM像素流之適當同步。A false dynamic noise filter 54 is applied to reduce noise within each sub-image, thereby producing pixel values for IBB modification (IBBM). The operation of the filter 54 is explained below with reference to FIG. A selector 56 then selects the appropriate value for each pixel based on the corresponding OEM value provided by unit 52 for delivery to a deconvolution filter (DCF) 60. The selector selects the IBBM values of the non-edge pixels and the unmodified IBB initial (IBBO) pixel values taken directly from the IBB buffer 42 in the edge regions. The IBBO values are delayed by a delay line 58 to maintain proper synchronization of the IBBO and IBBM pixel streams.

解摺積濾波器(DCF)60個別地在該等子影像之各子影像上執行一去模糊操作。解摺積濾波器(DCF)60一般使用對光學元件22之點散布函數(PSF)大致反向的一核心,以便"消除"該光學元件之像差效應。此類計算解摺積核心方法係說明於(例如)上面提及的WO 2004/063989 A2以及2006年3月31日申請的美國專利申請案11/278,255中,其係讓渡給本專利申請案之受讓人且其揭示內容係以引用方式併入本文。或者,解摺積濾波器(DCF)60可使用其他種類的濾波核心,用於去模糊或用於此項技術中習知的其他影像處理功能。該等核心典型經遮罩,使得該等子影像之各子影像係獨立於其他子影像來過濾,雖然在該輸入像素流中的該等子影像交錯。範例性遮罩圖案係如圖8A及8B所示。A deconvolution filter (DCF) 60 individually performs a deblurring operation on each of the sub-images of the sub-images. Deconvolution filter (DCF) 60 typically uses a core that is substantially opposite to the point spread function (PSF) of optical element 22 in order to "eliminate" the aberration effects of the optical element. Such a method of calculating the deconvolution of the core is described, for example, in the above-mentioned WO 2004/063989 A2, and in the U.S. Patent Application Serial No. 11/278,255, filed on March 31, 2006, assigned to The assignee and the disclosure thereof are hereby incorporated by reference. Alternatively, the deconvolution filter (DCF) 60 may use other types of filtering cores for deblurring or for other image processing functions as is known in the art. The cores are typically masked such that each sub-image of the sub-images is filtered independently of the other sub-images, although the sub-images in the input pixel stream are interlaced. An exemplary mask pattern is shown in Figures 8A and 8B.

在許多攝影機中,光學元件之PSF係在攝影機之整個視場上不均勻。因而,例如在攝影機20中,不同的影像感測器24區域可能會受到不同PSF輪廓的影響。因而,對於最佳去模糊,一DCF選擇器62應用不同的濾波核心至不同影像部分內的像素。下文參考圖7說明此類濾波核心之一範例性配置。在經解摺積濾波器(DCF)60處理之後,該等去模糊子影像係然後輸出至ISP 28。In many cameras, the PSF of the optical component is not uniform across the field of view of the camera. Thus, for example, in camera 20, different image sensor 24 regions may be affected by different PSF profiles. Thus, for optimal deblurring, a DCF selector 62 applies different filtering cores to pixels within different image portions. One exemplary configuration of such a filtering core is described below with reference to FIG. After being processed by the deconvolution filter (DCF) 60, the deblurred sub-image systems are then output to the ISP 28.

綠平衡Green balance

此節將進一步詳細地說明綠平衡單元40之操作。理論上,對應於Gr及Gb型綠色像素的該等感測器元件之光敏感度應相同,但實際上該等敏感度可能由於設計及製造容限而不同。無法校正敏感度差異可能會在輸出影像中導致固定圖案的假影。因此,電路26將該等Gr或Gb像素值(或二者)乘以一校正因數。This section will explain the operation of the green balance unit 40 in further detail. In theory, the sensor sensitivities of the sensor elements corresponding to the Gr and Gb type green pixels should be the same, but in practice these sensitivities may differ due to design and manufacturing tolerances. Failure to correct for sensitivity differences may result in artifacts in the fixed image in the output image. Thus, circuit 26 multiplies the Gr or Gb pixel values (or both) by a correction factor.

為了決定該校正因數,假定在綠色子影像之連續列中的該等像素值之平均值(以及因此的和)應相等。該等和係分別由電路26來計算並表示為sumGreenRed與sumGreenBlue。該等和之商給出校正因數f: 為了避免在低光條件下(其中涉及值接近零)產生假影,電路26僅在sumGreenRed與sumGreenBlue超過某個最小臨界值時計算f 。此外,ε係限制於一特定期望的綠不平衡範圍,例如。該等Gb像素之值係藉由將其乘以f 來校正:G b _ output G b *f (3)該些校正值在隨後計算中替代該等初始Gb像素值。或者,可計算該校正因數並替代地應用至該等Gr像素值或分別用於校正Gb及Gr二者。In order to determine the correction factor, it is assumed that the average (and therefore the sum) of the pixel values in successive columns of the green sub-images should be equal. These sums are calculated by circuit 26 and represented as sumGreenRed and sumGreenBlue, respectively. The quotient of the sum gives the correction factor f: To avoid artifacts in low light conditions (where values are close to zero), circuit 26 calculates f only when sumGreenRed and sumGreenBlue exceed a certain minimum threshold. Furthermore, the ε system is limited to a specific desired green imbalance range, for example . The values of the Gb pixels are corrected by multiplying them by f : G b _ output = G b * f (3) The correction values replace the initial Gb pixel values in subsequent calculations. Alternatively, the correction factor can be calculated and applied to the Gr pixel values or used to correct both Gb and Gr, respectively.

該等Gr及Gb像素之敏感度變化可能在感測器24之區域上不均勻。在此情況下,電路26可回應不均勻敏感度變化在該影像區域上應用一變數值f。The sensitivity changes of the Gr and Gb pixels may be uneven over the area of the sensor 24. In this case, circuit 26 can apply a variable value f to the image area in response to a change in non-uniform sensitivity.

定框及緩衝Boxing and buffering

在綠平衡之後,該等像素值係插入一輸入模糊貝爾(IBB)緩衝器42內。假定電路26"即時"操作處理,則該等像素值係由感測器24來輸出,且解摺積濾波器(DCF)60使用一包含L列值(例如L=15)的核心,緩衝器42可設計成用以保持L完成列的輸入像素值。隨著各新列係讀入該緩衝器,該最舊列係從該緩衝器放棄。額外虛擬像素列及行係添加至實際影像圖框上下左右,以避免在該影像邊界附近產生由於過濾所引起的假影。After the green balance, the pixel values are inserted into an input fuzzy bell (IBB) buffer 42. Assuming that the circuit 26 is "on-the-fly" operationally processed, the pixel values are output by the sensor 24, and the deconvolution filter (DCF) 60 uses a core containing L column values (eg, L = 15), the buffer. 42 can be designed to maintain the input pixel values of the L completion column. As each new column is read into the buffer, the oldest column is discarded from the buffer. Additional virtual pixel columns and rows are added to the top and bottom of the actual image frame to avoid artifacts caused by filtering near the image boundary.

圖3係依據本發明之一具體實施例在感測器24所捕捉之一影像之上部邊界附近緩衝器42之內容之一部分70之一詳細示意圖,說明一種用於定框影像之方法。在該緩衝器內的列72採用交替列GBGB...及RGRG....而包含實際像素值。該等下標1、2、3、4、...、指示列數目,從在輸入影像之上邊緣處的列1開始。七個額外列的一定框邊界76係添加在該輸入影像內的第一列上方。該些額外列反映該實際輸入圖框之首兩列內的像素值。反映該等兩個邊界列或行的相當邊界係添加在該輸入影像下方及其左右。3 is a detailed schematic diagram of one portion 70 of the contents of the buffer 42 near the upper boundary of one of the images captured by the sensor 24 in accordance with an embodiment of the present invention, illustrating a method for framing an image. The column 72 in the buffer contains the actual pixel values in alternating columns GBGB... and RGRG.... The subscripts 1, 2, 3, 4, ..., indicate the number of columns, starting from column 1 at the upper edge of the input image. A bounding box boundary 76 of seven additional columns is added above the first column within the input image. These extra columns reflect the pixel values in the first two columns of the actual input frame. A comparable boundary that reflects the two boundary columns or rows is added below and to the left and right of the input image.

定框延伸單元44添加邊界76,以便確保解摺積濾波器(DCF)60不將假資料引入傳達給ISP 28之輸出像素值內。該定框邊界之範圍取決於DCF核心之大小。因而,對於L=15,為此目的需要七個定框列及行,如圖3所示。或者,可使用不同大小的核心及定框邊界。邊緣偵測單元48可在定框邊界76之列內找到假邊緣,而解摺積濾波器(DCF)60可使用前一圖框之下定框邊界內的像素來摺積該定框邊界之內容,但在列72內的實際像素資料將不受該些操作影響。(必要時可根據 邊緣偵測單元48及加寬單元52所使用的核心來使用額外的定框列及/或行,以便避免在OEM內的假邊緣從該等定框邊界傳播進入實際像素資料之圖框內。)The bounding extension unit 44 adds a boundary 76 to ensure that the deconvolution filter (DCF) 60 does not introduce false data into the output pixel values of the ISP 28. The extent of the bounding box boundary depends on the size of the DCF core. Thus, for L = 15, seven framing columns and rows are required for this purpose, as shown in Figure 3. Alternatively, different sized cores and framing boundaries can be used. Edge detection unit 48 may find a false edge within the column of bounding boundary 76, and deconvolution filter (DCF) 60 may use the pixels within the bounding box below the previous frame to decompose the content of the bounding boundary. However, the actual pixel data in column 72 will not be affected by these operations. (If necessary, according to The cores used by edge detection unit 48 and widening unit 52 use additional framing columns and/or rows to avoid false edges within the OEM from being propagated from the framing boundaries into the frame of actual pixel data. )

在該定框邊界之該等列及行內的像素值係僅在電路26內部使用。該些像素值係在解摺積濾波器(DCF)60已完成其操作之後丟棄且不傳遞給ISP 28。The pixel values in the columns and rows of the bounding box boundary are used only within circuit 26. The pixel values are discarded after the deconvolution filter (DCF) 60 has completed its operation and are not passed to the ISP 28.

散斑移除Speckle removal

在電路26之一些應用中,光學元件22係相對較低品質並在影像感測器24上產生一模糊影像,如上面提及的WO 2004/063989 A2及美國專利申請案11/278,255所解釋的。換言之,光學元件之PSF在許多相鄰像素上延伸,且光學元件用作一種低通空間濾波器。由此,在影像感測器24內的各偵測器元件感測從一影像場景區域所收集之光,該影像場景區域與相鄰偵測器元件之感測區域重疊。因此,在輸入影像中的邊緣及其他局部變化係平滑,使得實體上無法使一給定像素值與相同色彩之相鄰像素值相差太遠。光學元件之PSF可用於決定一臨界值,使得大於該臨界值的介於一像素之值與相同色彩之該等相鄰像素之值之間的差異必須係由於一影像感測器中雜訊或一缺陷所引起。In some applications of circuit 26, optical component 22 is relatively low quality and produces a blurred image on image sensor 24, as explained in the above-referenced WO 2004/063989 A2 and U.S. Patent Application Serial No. 11/278,255. . In other words, the PSF of the optical element extends over a number of adjacent pixels and the optical element acts as a low pass spatial filter. Thus, each detector element within image sensor 24 senses light collected from an image scene area that overlaps the sensing area of an adjacent detector element. Therefore, the edges and other local variations in the input image are smooth, such that it is physically impossible to make a given pixel value too far from the adjacent pixel values of the same color. The PSF of the optical component can be used to determine a threshold such that a difference between the value of one pixel greater than the threshold and the value of the adjacent pixels of the same color must be due to noise in an image sensor or Caused by a defect.

圖4係依據本發明之一具體實施例散斑移除單元46用以識別並校正缺陷像素所使用之一遮罩90之一示意圖。對於像素p(i,j),該散斑移除單元考量相同色彩之相鄰像素92,即目前像素上面或下面兩列及左邊或右邊兩行的像素,如圖所示。(因而,典型分開考量Gr及Gb像素,但出於散斑移除目的,可替代性地組合該兩種綠色像素類型。如上所述,對於在影像圖框邊界處的像素,該散斑移除單元可僅考量落入遮罩90內的實際像素值且不考量在邊界76內的鏡像值。)對於各輸入像素值p(i,j),該散斑移除單元按如下決定一輸出像素值: 4 is a schematic illustration of one of the masks 90 used by the speckle removal unit 46 to identify and correct defective pixels in accordance with an embodiment of the present invention. For pixel p(i,j), the speckle removal unit considers adjacent pixels 92 of the same color, ie, the pixels above or below the two columns and the left or right rows of pixels, as shown. (Thus, the Gr and Gb pixels are typically considered separately, but for the purpose of speckle removal, the two green pixel types can be combined in combination. As described above, for pixels at the border of the image frame, the speckle shift The dividing unit may only consider the actual pixel values falling within the mask 90 and not the mirrored values within the boundary 76.) For each input pixel value p(i,j), the speckle removal unit determines an output as follows. Pixel values:

換言之,若p(i,j)之值係比相同色彩之其相鄰者(如遮罩90所提供的)之最大值大多於threshold ,則該值係藉由該些相鄰者之最大值加上threshold 來取代。同樣地,若p(i,j)之值係比相同色彩之其相鄰者之最小值小多於threshold ,則該值係藉由該些相鄰者之最小值減去threshold 來取代。該些臨界值可基於攝影機之光學特徵及/或影像類型(指示是否期望像素值高度局部偏差),或其可依據其他標準試探地設定。由於單元46之操作,在比其相鄰的其他像素明亮得多或暗得多的像素係全部平滑,以免對其相鄰者之偏差達高於所允許的偏差。In other words, if the value of p(i,j) is greater than the maximum of its neighbors of the same color (as provided by mask 90) is greater than threshold + , then the value is the largest by the neighbors The value is replaced by threshold + . Similarly, if the value of p(i,j) is smaller than the minimum of its neighbors of the same color by more than threshold - , the value is replaced by the minimum of the neighbors minus threshold - . The thresholds may be based on the optical characteristics of the camera and/or the type of image (indicating whether the pixel values are highly localized), or may be tentatively set according to other criteria. Due to the operation of unit 46, the pixel systems that are much brighter or darker than other pixels adjacent thereto are all smoothed to avoid deviations from their neighbors above the allowed deviation.

邊緣偵測及加寬Edge detection and widening

邊緣偵測單元48可使用任一適當核心來偵測輸入影像中的邊緣位置。本發明者經發現,為了簡化計算,較為有利的係在邊緣計算中在邊緣偵測核心中僅包括與目前像素相同行或列的像素。或者,該核心還可包括對角元件。下文說明一些範例性核心及邊緣偵測程序。在折衷邊緣銳度與可能保留在OEM之邊緣區域內的殘餘雜訊中,最佳核心選擇取決於影像內容與使用者偏好。或者,單元48可採用此項技術中習知的其他邊緣偵測方法。Edge detection unit 48 can use any suitable core to detect edge locations in the input image. The inventors have found that, in order to simplify the calculation, it is advantageous in the edge calculation to include only pixels of the same row or column as the current pixel in the edge detection core. Alternatively, the core may also include diagonal elements. Some example core and edge detection procedures are described below. In compromised edge sharpness and residual noise that may remain in the edge area of the OEM, the optimal core choice depends on the image content and user preferences. Alternatively, unit 48 may employ other edge detection methods known in the art.

如上所述,單元48所應用的該等邊緣偵測方法使用一適應性臨界值50,其在隨後說明中稱為Edge_threshold_ value。此臨界值一般基於處理中影像的光條件來計算。該些條件可基於該等平均像素值在電路26內部測量。或者,該臨界值可基於由ISP 28自動計算並輸出的色彩增益參數來計算。例如,該臨界值可計算作為一色彩增益加權和或其他亮度參數。該等加權係數可選擇以提供邊緣銳度對殘餘雜訊的所需折衷。As described above, the edge detection methods applied by unit 48 use an adaptive threshold 50, which is referred to as Edge_threshold_value in the description that follows. This threshold is typically calculated based on the light conditions of the image being processed. These conditions can be measured within circuit 26 based on the average pixel values. Alternatively, the threshold can be calculated based on the color gain parameters automatically calculated and output by the ISP 28. For example, the threshold can be calculated as a color gain weighted sum or other brightness parameter. The weighting coefficients can be selected to provide the desired tradeoff of edge sharpness to residual noise.

模式1-簡單梯度邊緣偵測器Mode 1 - Simple Gradient Edge Detector

此邊緣偵測器在像素p(i,j)附近高解析度地偵測一邊緣。在下列公式內的該等像素係依據圖4所示之方案來編索引,且該等梯度值係計算如下:d x -1 =|p (i ,j )-p (i -2,j )|d x +1 =|p (i ,j )-p (i +2,j )|d y -1 =|p (i ,j )-p (i ,j -2)|d y +1 =|p (i ,j )-p (i ,j +2)| (5)當像素p(i,j)係在一邊緣上時輸出至加寬單元52之邊緣值e(i,j)係1,否則為0,使得在該等梯度值之任一者係大於該臨界值之情況下(即在下列不等式之任一者評估為TRUE之情況下)e(i,j)=1。The edge detector detects an edge with high resolution near the pixel p(i,j). The pixels in the following formula are indexed according to the scheme shown in Figure 4, and the gradient values are calculated as follows: d x -1 =| p ( i , j )- p ( i -2, j ) | d x +1 =| p ( i , j )- p ( i +2, j )| d y -1 =| p ( i , j )- p ( i , j -2)| d y +1 =| p ( i , j )- p ( i , j +2)| (5) when the pixel p(i, j) is on an edge, the edge value e(i, j) output to the widening unit 52 is 1, otherwise 0 such that e(i,j)=1 in the case where any of the gradient values is greater than the threshold (ie, in the case where any of the following inequalities is evaluated as TRUE).

模式2-複雜梯度邊緣偵測器Mode 2 - Complex Gradient Edge Detector

此邊緣偵測器係高解析度與具有最小錯誤偵測之較佳步階偵測之間的一妥協。在此情況下,該等梯度值係由以下給出:d x -1p (i -2,j )-p (i ,j )g x -1p (i -4,j )-p (i -2,j )d x +1p (i +2,j )-p (i ,j )g x +1p (i +4,j )-p (i +2,j )d y -1p (i ,j -2)-p (i ,j )g y -1p (i ,j -4)-p (i ,j -2)d y +1p (i ,j +2)-p (i ,j )g y +1p (i ,j +4)-p (i ,j +2) (7)在下列不等式之任一者評估為TRUE之情況下,邊緣值e(i,j)係設定為1: This edge detector is a compromise between high resolution and better step detection with minimal error detection. In this case, the gradient values are given by: d x -1 = p ( i -2, j )- p ( i , j ) g x -1 = p ( i -4, j )- p ( i -2, j ) d x +1 = p ( i +2, j )- p ( i , j ) g x +1 = p ( i +4, j )- p ( i +2, j ) d y -1 = p ( i , j -2) - p ( i , j ) g y -1 = p ( i , j -4) - p ( i , j -2) d y +1 = p ( i , j +2) - p ( i , j ) g y +1 = p ( i , j +4) - p ( i , j +2) (7) In the case where any of the following inequalities is evaluated as TRUE, the edge value e(i, j) is set Is 1:

模式3-步階邊緣偵測器Mode 3 - Step Edge Detector

此邊緣偵測方法偵測步階邊緣。其使用一邊緣步階參數edge_step,其係一般設定為值2。該方法進行如下:.計算delta _minus1_x =|p (i -3 *edge _step ,j )-p (iedge _step ,j )|.計算delta _null _x =|p (iedge _step ,j )-p (iedge _step ,j )|.計算delta _plus 1_x =|p (i +3 *edge _step ,j )-p (iedge _step ,j )|.計算delta _minus1_y =|p (i ,j -3 *edge _step )-p (i ,jedge _step )|.計算delta _null _y =|p (i ,jedge _step )-p (i ,jedge _step )|.計算delta _plus 1_y =|p (i ,j +3 *edge _step )-p (i ,jedge _step )|在下列條件之任一者係滿足之情況下,邊緣值e(i,j)係設定為1:delta _null _y -max(delta _ minus 1_y ,delta _plus 1_y )>Edge _Threshold _Value 或者delta _null _x -max(delta _minus 1_x ,delta _plus 1_x )>Edge _Threshold _ValueThis edge detection method detects the step edge. It uses an edge step parameter edge_step, which is typically set to a value of two. The method is as follows: Calculate delta _minus1_ x =| p ( i -3 * edge _ step , j )- p ( i - edge _ step , j )|. Calculate delta _ null _ x =| p ( i - edge _ step , j )- p ( i + edge _ step , j )|. Calculate delta _ plus 1_ x =| p ( i +3 * edge _ step , j )- p ( i + edge _ step , j )|. Calculate delta _minus1_ y =| p ( i , j -3 * edge _ step )- p ( i , j - edge _ step )|. Calculate delta _ null _ y =| p ( i , j - edge _ step )- p ( i , j + edge _ step )|. Calculate delta _ plus 1_ y =| p ( i , j +3 * edge _ step )- p ( i , j + edge _ step )|The edge value e(i, in the case where either of the following conditions is satisfied j) is set to 1: delta _ null _ y -max( delta _ min us 1_ y , delta _ plus 1_ y )> Edge _ Threshold _ Value or delta _ null _ x -max( delta _min us 1_ x , delta _ plus 1_ x )> Edge _ Threshold _ Value .

應注意在此情況下,e(i,j)之值不取決於像素p(i,j)之實際強度。It should be noted that in this case, the value of e(i,j) does not depend on the actual strength of the pixel p(i,j).

邊緣加寬Edge widening

圖5係依據本發明之一具體實施例加寬單元52所使用之一遮罩100之一示意圖。邊緣偵測單元48輸出一邊緣地圖E(x,y),其包含針對各像素決定的該等邊緣值e(i,j)。該加寬單元使用遮罩100應用形態膨脹至該邊緣地圖,其係稱為W(x,y)。此加寬步驟之輸出係該OEM:OEM(x,y)=E(x,y)⊕W(x,y) (9)此OEM係作為切換輸入而應用至選擇器56,如上所解釋。Figure 5 is a schematic illustration of one of the masks 100 used in the widening unit 52 in accordance with an embodiment of the present invention. The edge detection unit 48 outputs an edge map E(x, y) containing the edge values e(i, j) determined for each pixel. The widening unit is expanded to the edge map using the mask 100 application form, which is referred to as W(x, y). The output of this widening step is the OEM: OEM(x, y) = E(x, y) ⊕ W(x, y) (9) This OEM is applied to the selector 56 as a switching input, as explained above.

應用至該等邊緣之加寬程度取決於遮罩參數W1。在圖5所示之範例中,W1=3。換言之,若在遮罩100之中心處的一給定像素102係由邊緣偵測單元48識別為一邊緣位置(e(i,j)=1),則在該遮罩區域內該像素及周圍像素104在該OEM內接收值"1"。發現較為有利的係,在不同色彩之像素(即屬於不同子影像)上延伸此邊緣加寬(不同於在電路26中實施的色彩特定的其他數位過濾程序)。W1之值可根據要保護不受低通雜訊過濾影響的該等邊緣區域之所需寬度,依據應用需要及使用者偏好來選擇。The degree of widening applied to the edges depends on the mask parameter W1. In the example shown in FIG. 5, W1=3. In other words, if a given pixel 102 at the center of the mask 100 is recognized by the edge detection unit 48 as an edge position (e(i, j) = 1), the pixel and its surroundings are within the mask region. Pixel 104 receives a value of "1" within the OEM. It has been found to be advantageous to extend this edge widening on pixels of different colors (i.e., belonging to different sub-images) (unlike the color-specific other digital filtering procedures implemented in circuit 26). The value of W1 can be selected according to the application needs and user preferences according to the desired width of the edge regions to be protected from low-pass noise filtering.

雜訊濾波器Noise filter

雜訊濾波器54使用一核心,其使用相同色彩之相鄰像素(例如圖4中的像素92)之值來平均目前像素值。該濾波器按如下決定輸出像素值: 此處v(i,j)係(i,j)濾波核心係數之值,而p(i,j)係輸入像素值。在隨後說明中,濾波核心v(i,j)之中心元件係表示為vc ;濾波器v(i±2,j)及v(i,j±2)之周邊元件係表示為vp ;而濾波器v(i±2,j±2)之角落元件係表示為vfThe noise filter 54 uses a core that uses the values of neighboring pixels of the same color (e.g., pixel 92 in Figure 4) to average the current pixel values. The filter determines the output pixel values as follows: Here v(i,j) is the value of the (i,j) filter core coefficient, and p(i,j) is the input pixel value. In the following description, the central element of the filter core v(i,j) is denoted as v c ; the peripheral elements of the filters v(i±2,j) and v(i,j±2) are denoted as v p ; The corner elements of the filter v(i±2, j±2) are denoted as v f .

圖6係依據本發明之一具體實施例示意性說明一種濾波器54所應用之假動態雜訊過濾方法之一流程圖。此方法之目的在於避免該濾波器在像素值中存在變化梯度之影像區域上無差別地操作時所導致之影像解析度及對比度劣化。出於此目的,在一差分計算步驟110,濾波器54計算在各像素處的局部方向差分。該等差分可按如下計算為:△v =|p (i ,j -2)-p (i ,j +2)| △h =|p (i -2,j )-p (i +2,j )| △d 1 =|p (i -2,j -2)-p (i +2,j +2)| △d 2 =|p (i -2,j +2)-p (i +2,j -2)| (11)(垂直差分術語△v不應與核心係數v(i,j)相混淆。)FIG. 6 is a flow chart schematically illustrating a pseudo dynamic noise filtering method applied to a filter 54 according to an embodiment of the present invention. The purpose of this method is to avoid image resolution and contrast degradation caused by the filter operating in an image region with varying gradients in pixel values. For this purpose, at a difference calculation step 110, the filter 54 calculates the local directional difference at each pixel. The differences can be calculated as follows: Δ v =| p ( i , j -2) - p ( i , j +2)| Δ h =| p ( i -2, j )- p ( i +2, j ) △ d 1 =| p ( i -2, j -2)- p ( i +2, j +2)| Δ d 2 =| p ( i -2, j +2)- p ( i +2, j -2) (11) (The vertical difference term Δv should not be confused with the core coefficient v(i,j).)

在一核心選擇步驟112,濾波器54然後基於方向差分量值來選擇適當的核心。出於此目的,該等計算值△v、△h係比較一垂直/水平臨界值thvh ,而該等值△d1 、△d2 係比較一對角臨界值thdAt a core selection step 112, filter 54 then selects the appropriate core based on the direction difference magnitude. For this purpose, the calculated values Δv, Δh are compared to a vertical/horizontal threshold value th vh , and the equal values Δd 1 , Δd 2 are compared to a pair of angular thresholds th d :

‧若△v>thvh ,則v(i,j±2)不參與雜訊移除,且對應vp 值為0。 ‧If Δv>th vh , then v(i,j±2) does not participate in noise removal, and the corresponding v p value is 0.

‧若△h>thvh ,則v(i±2,j)不參與雜訊移除,且對應vp 值為0。 ‧If Δh>th vh , then v(i±2,j) does not participate in noise removal, and the corresponding v p value is 0.

‧若△d1 >thd ,則v(i+2,j+2)與v(i-2,j-2)不參與雜訊移除,且對應vf 值為0。‧If Δd 1 >th d , then v(i+2, j+2) and v(i-2, j-2) do not participate in noise removal, and the corresponding v f value is 0.

‧若△d2 >thd ,則v(i-2,j+2)與v(i+2,j-2)不參與雜訊移除,且對應vf 值為0。‧If Δd 2 >th d , then v(i-2,j+2) and v(i+2,j-2) do not participate in noise removal, and the corresponding v f value is 0.

濾波器54選擇滿足上述條件的一核心以在各像素處使用。可用於此目的的一含九個濾波核心之範例性集合係列於下面附錄A內。習知此項技術者者應明白,可同樣地使用其他雜訊移除濾波核心(動態或靜態)。Filter 54 selects a core that satisfies the above conditions for use at each pixel. An exemplary set of nine filter cores that can be used for this purpose is in Appendix A below. It will be understood by those skilled in the art that other noise removal filter cores (dynamic or static) can be used as such.

在一過濾步驟114,濾波器54鄰近各像素應用選定核心至該等輸入像素值,以便為各像素產生輸出像素值(i ,j )。In a filtering step 114, the filter 54 applies selected cores to the respective pixel values adjacent to each pixel to generate output pixel values for each pixel. ( i , j ).

解摺積濾波Deconvolution filter

圖7係依據本發明之一具體實施例應用至由選擇器56輸入至解摺積濾波器(DCF)60之像素值的一含若干DCF核心122之集合120之一示意圖。在此範例中,假定1600×1200像素的一輸入影像係分成各100×100像素的192個片段。解摺積濾波器(DCF)60根據在影像中對應位置處的局部PSF應用一不同核心122(識別為K0、K1、...、K32)至各片段。因為光學元件22之電路對稱性,還假定該等PSF變化係在影像平面上對稱,使得於此組態需要儲存並使用僅三十三個 不同核心。中心區域124全部使用相同集合的二十一個核心,而周邊區域126使用另一集合的十二個核心。或者,可出於核心指派目的將影像區域分成更大或更小的片段,或可應用一單一DCF核心至整個影像。7 is a schematic diagram of a set 120 of a plurality of DCF cores 122 applied to pixel values input to a deconvolution filter (DCF) 60 by a selector 56 in accordance with an embodiment of the present invention. In this example, it is assumed that an input image of 1600 x 1200 pixels is divided into 192 segments of 100 x 100 pixels each. A deconvolution filter (DCF) 60 applies a different core 122 (identified as K0, K1, ..., K32) to each segment based on the local PSF at the corresponding location in the image. Because of the circuit symmetry of optical component 22, it is also assumed that the PSF variations are symmetrical on the image plane, so that only three thirty-three of these configurations need to be stored and used. Different cores. The central area 124 all uses twenty-one cores of the same set, while the peripheral area 126 uses twelve sets of another set. Alternatively, the image area can be divided into larger or smaller segments for core assignment purposes, or a single DCF core can be applied to the entire image.

此外或者替代性地,DCF選擇器62可根據攝影機20所捕捉之影像之特徵(及因此的輸入子影像)即時改變集含之濾波核心。例如,該DCF選擇器可根據影像照明位準、影像內容類型或其他因素來選擇不同的濾波核心。Additionally or alternatively, the DCF selector 62 can instantly change the set of filtered cores based on the characteristics of the image captured by the camera 20 (and thus the input sub-image). For example, the DCF selector can select different filter cores depending on image illumination level, image content type, or other factors.

圖8A及8B係顯示依據本發明之一具體實施例之解摺積濾波器(DCF)60所應用之核心遮罩130及140之個別佈局之示意圖。各遮罩指示一個別色彩之像素,即在15×15像素遮罩區域內屬於一特定子影像之像素。遮罩130適用於該等綠色像素,而遮罩140適用於該等紅色及藍色像素。因而,當遮罩130所覆蓋的一中心像素132係綠色時,陰影像素134指示在該中心像素周圍相鄰15×15像素的其他綠色像素。當遮罩140所覆蓋的中心像素132係紅色或藍色時,陰影像素134指示相鄰的其他紅色或藍色像素。8A and 8B are diagrams showing individual layouts of core masks 130 and 140 to which a deconvolution filter (DCF) 60 is applied in accordance with an embodiment of the present invention. Each mask indicates a pixel of a different color, that is, a pixel belonging to a particular sub-image within a 15 x 15 pixel mask area. A mask 130 is applied to the green pixels, and a mask 140 is applied to the red and blue pixels. Thus, when a central pixel 132 covered by the mask 130 is green, the shaded pixel 134 indicates other green pixels adjacent 15 x 15 pixels around the central pixel. When the central pixel 132 covered by the mask 140 is red or blue, the shaded pixel 134 indicates an adjacent other red or blue pixel.

對於輸入影像之各像素,解摺積濾波器(DCF)60為該像素所處之區域120選擇適當的15×15核心,然後根據目前像素色彩使用遮罩130或140來遮罩該核心。在各情況下僅適當遮罩之陰影像素134參與DCF操作。無陰影像素之係數係設定為零。因此,係僅使用屬於相同子影像之像素值(即相同色彩之像素)來摺積各像素值。如上所述,該等要摺積的像素值係由選擇器56來選擇,該選擇器56選擇延遲 線58所輸出的在邊緣區域內之該等IBBO值及在非邊緣區域內之經雜訊減小IBBM值。For each pixel of the input image, a deconvolution filter (DCF) 60 selects the appropriate 15x15 core for the region 120 in which the pixel is located, and then masks the core using mask 130 or 140 based on the current pixel color. In each case only the appropriately shaded shadow pixels 134 participate in the DCF operation. The coefficient of the unshaded pixel is set to zero. Therefore, only pixel values belonging to the same sub-image (i.e., pixels of the same color) are used to fold each pixel value. As described above, the pixel values to be decomposed are selected by the selector 56, which selects the delay. The IBBO values in the edge region and the noise in the non-edge regions output by line 58 reduce the IBBM value.

如先前所述,可回應光學元件22之有缺陷PSF來選擇解摺積濾波器(DCF)60所應用之核心係數,以對輸出影像去模糊。該等核心可根據在影像平面內的目前像素位置與其他因素(例如影像距離)而變化。可選擇光學元件及DCF核心,以提供特定影像加強功能,例如攝影機20之有效場深度增加。或者,以交替應用不同過濾操作至不同色彩子影像的方式,使用解摺積濾波器(DCF)60之配置以在馬賽克色彩空間內實施各種其他影像加強功能。As previously described, the core coefficients applied by the deconvolution filter (DCF) 60 can be selected in response to the defective PSF of the optical component 22 to deblur the output image. The cores may vary depending on the current pixel location in the image plane and other factors, such as image distance. Optical components and DCF cores can be selected to provide specific image enhancement functions, such as an increased effective field depth of camera 20. Alternatively, a configuration of a deconvolution filter (DCF) 60 can be used to implement various other image enhancement functions within the mosaic color space in a manner that alternately applies different filtering operations to different color sub-images.

因此應瞭解,上述具體實施例係以範例方式引用,且本發明不限於上文已特定顯示並說明的內容。相反,本發明之範疇包括上文所述各種特徵之組合與子組合二者,以及習知此項技術者在讀完上述說明後所進行且先前技術中未曾揭示之變更及修改。Therefore, it is to be understood that the above specific embodiments are cited by way of example, and the invention is not limited to what has been specifically shown and described. Rather, the scope of the invention includes both combinations and sub-combinations of the various features described above, as well as variations and modifications which are apparent to those skilled in the art and are not disclosed in the prior art.

附錄A-雜訊移除濾波核心Appendix A - Noise Removal Filter Core

下表顯示不同邊緣條件下的範例性雜訊濾波器係數值。在各濾波器內的全部係數和為1,以便在過濾後平均像素值不會變化。在下面範例中,明確寫出在濾波器54中用於可能核心的全部係數值。或者,僅可明確給出該等係數之一些係數,而其餘部分係由和為1之條件來推斷。出於簡化,可假定中心係數vc 等於1減去用於一特定核心之所有其他係數之和。The table below shows exemplary noise filter coefficient values for different edge conditions. The sum of all the coefficients in each filter is 1, so that the average pixel value does not change after filtering. In the following examples, all coefficient values for the possible cores in filter 54 are explicitly written. Alternatively, only some of the coefficients of the coefficients may be explicitly given, and the remainder is inferred from the condition that the sum is 1. For simplicity, the center coefficient v c can be assumed to be equal to 1 minus the sum of all other coefficients for a particular core.

20...電子成像攝影機20. . . Electronic imaging camera

22...物鏡光學元件twenty two. . . Objective optical component

24...馬賽克影像感測器twenty four. . . Mosaic image sensor

26...影像還原電路/數位還原電路26. . . Image restoration circuit / digital reduction circuit

28...影像信號處理器(ISP)28. . . Image Signal Processor (ISP)

30...視訊螢幕30. . . Video screen

32...像素32. . . Pixel

40...綠平衡單元40. . . Green balance unit

42...輸入模糊貝爾(IBB)緩衝器42. . . Input Fuzzy Bell (IBB) Buffer

44...定框延伸單元44. . . Fixed frame extension unit

46...散斑移除單元46. . . Speckle removal unit

48...邊緣偵測單元48. . . Edge detection unit

50...適應性臨界值50. . . Adaptive threshold

52...加寬單元52. . . Widening unit

54...假動態雜訊濾波器54. . . False dynamic noise filter

56...選擇器56. . . Selector

58...延遲線58. . . Delay line

60...解摺積濾波器(DCF)60. . . Deconvolution filter (DCF)

62...DCF選擇器62. . . DCF selector

70...緩衝器42之內容之一部分70. . . Part of the contents of the buffer 42

72...列72. . . Column

76...定框邊界76. . . Fixed frame boundary

90...遮罩90. . . Mask

92...像素92. . . Pixel

100...遮罩100. . . Mask

102...像素102. . . Pixel

104...像素104. . . Pixel

120...DCF核心集合/遮罩120. . . DCF core collection / mask

122...DCF核心122. . . DCF core

124...中心區域124. . . Central region

126...周邊區域126. . . Surrounding area

130...核心遮罩130. . . Core mask

132...中心像素132. . . Center pixel

134...陰影像素134. . . Shadow pixel

140...核心遮罩140. . . Core mask

結合附圖,根據本發明之具體實施例之上述詳細說明已更全面地明白本發明,其中:圖1係依據本發明之一具體實施例示意性說明一電子成像攝影機之一方塊圖;圖2係依據本發明之一具體實施例示意性顯示一影像還原電路之細節之一方塊圖;圖3係依據本發明之一具體實施例一輸入緩衝器之一部分之內容之一詳細示意圖,其說明在一影像還原電路中使用的一影像定框技術;圖4係依據本發明之一具體實施例在一影像還原電路中一用於散斑移除之遮罩之一示意圖;圖5係依據本發明之一具體實施例在一影像還原電路中一用於邊緣加強之遮罩之一示意圖;圖6係依據本發明之一具體實施例示意性說明一種用於雜訊過濾之方法之一流程圖;圖7係依據本發明之一具體實施例的一集合之解摺積濾波器之一示意圖,彼等解摺積濾波器係應用至一還原中影像之不同部分;以及圖8A及8B係依據本發明之一具體實施例應用至一馬賽克影像感測器所輸出之子影像之解摺積核心遮罩之示意圖。BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be more fully understood from the following detailed description of the embodiments of the invention, wherein FIG. 1 is a block diagram of an electronic imaging camera in accordance with an embodiment of the invention; FIG. A block diagram of a detail of an image restoration circuit is schematically illustrated in accordance with an embodiment of the present invention; and FIG. 3 is a detailed schematic diagram of one of the contents of an input buffer in accordance with an embodiment of the present invention. An image framing technique used in an image restoration circuit; FIG. 4 is a schematic diagram of a mask for speckle removal in an image restoration circuit according to an embodiment of the present invention; FIG. 5 is in accordance with the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A schematic diagram of a mask for edge enhancement in an image restoration circuit; FIG. 6 is a flow chart schematically illustrating a method for noise filtering according to an embodiment of the present invention; 7 is a schematic diagram of a set of deconvolution filters according to an embodiment of the present invention, and their deconvolution filters are applied to different parts of a restored image. And Figures 8A and 8B are schematic diagrams of a de-folded core mask applied to a sub-image output by a mosaic image sensor in accordance with an embodiment of the present invention.

24...馬賽克影像感測器twenty four. . . Mosaic image sensor

26...影像還原電路/數位還原電路26. . . Image restoration circuit / digital reduction circuit

40...綠平衡單元40. . . Green balance unit

42...輸入模糊貝爾(IBB)緩衝器42. . . Input Fuzzy Bell (IBB) Buffer

44...定框延伸單元44. . . Fixed frame extension unit

46...散斑移除單元46. . . Speckle removal unit

48...邊緣偵測單元48. . . Edge detection unit

50...適應性臨界值50. . . Adaptive threshold

52...加寬單元52. . . Widening unit

54...假動態雜訊濾波器54. . . False dynamic noise filter

56...選擇器56. . . Selector

58...延遲線58. . . Delay line

60...解摺積濾波器(DCF)60. . . Deconvolution filter (DCF)

62...DCF選擇器62. . . DCF selector

Claims (30)

一種成像裝置,其包含:一馬賽克影像感測器,其經組態用以產生屬於複數個輸入子影像的一輸入像素值流(stream of input pixel values),其中在該複數個輸入子影像中的該等輸入像素值係在該輸入像素值流中採用一預定交錯圖案而交錯,各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光,其中該等輸入子影像具有由一組物鏡光學元件之一點散布函數(PSF)所造成之一輸入模糊;一影像還原電路,其經耦合以接收並數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像,該影像還原電路包含一解摺積濾波器(DCF),該DCF具有一依據該PSF而決定之濾波器核心,該DCF消除該PSF之多個效應以使得該等輸出子影像具有一小於該輸入模糊之輸出模糊,其中該DCF係配置成用以回應該交錯圖案而使用一受到遮罩的個別核心來摺積該等輸入子影像之各輸入子影像,以便將該等輸入子影像之各子影像與其他輸入子影像分離地過濾;及一影像信號處理器(ISP),其係耦合以接收並處理該複數個輸出子影像,以便產生一彩色輸出影像。 An imaging apparatus includes: a mosaic image sensor configured to generate a stream of input pixel values belonging to a plurality of input sub-images, wherein the plurality of input sub-images The input pixel values are interleaved in the input pixel value stream by using a predetermined interlaced pattern, and each input sub-image responds to a different, individual color light incident on the mosaic image sensor, wherein the input sub- The image has an input blur caused by a point spread function (PSF) of a set of objective optical elements; an image restoration circuit coupled to receive and digitally filter the input sub-images of the input sub-images Entering a pixel value to generate a corresponding plurality of enhanced output sub-images, the image restoration circuit comprising a deconvolution filter (DCF) having a filter core determined according to the PSF, the DCF eliminating the PSF a plurality of effects such that the output sub-images have an output blur that is less than the input blur, wherein the DCF is configured to respond to the interlaced pattern and use a Copying each input sub-image of the input sub-images to individual cores of the mask to separate the sub-images of the input sub-images from other input sub-images; and an image signal processor (ISP), It is coupled to receive and process the plurality of output sub-images to produce a color output image. 如請求項1之裝置,其中該等輸入子影像及該等輸出子影像具有相同格式,以便可耦合該ISP以接收並處理該等輸出子影像或該等輸入子影像。 The device of claim 1, wherein the input sub-images and the output sub-images have the same format so that the ISP can be coupled to receive and process the output sub-images or the input sub-images. 如請求項2之裝置,其中該等輸出子影像包含輸出像素值,其係依據該預定交錯圖案而在一輸出像素流中藉由該影像還原電路來交錯。 The device of claim 2, wherein the output sub-images comprise output pixel values that are interleaved by the image restoration circuit in an output pixel stream in accordance with the predetermined interlaced pattern. 如請求項1之裝置,其中該PSF可在該影像感測器之一平面上變化,且其中該影像還原電路係配置成用以回應在該影像感測器之平面上的一PSF變化,應用不同的濾波器核心至來自該影像感測器之不同區域的該等輸入像素值。 The device of claim 1, wherein the PSF is changeable on a plane of the image sensor, and wherein the image restoration circuit is configured to respond to a PSF change on a plane of the image sensor, the application Different filter cores to the input pixel values from different regions of the image sensor. 如請求項1之裝置,其中該影像還原電路係配置成用以根據該等輸入子影像之一特徵來應用不同的濾波器核心至該等輸入像素值。 The device of claim 1, wherein the image restoration circuit is configured to apply different filter cores to the input pixel values according to one of the characteristics of the input sub-images. 如請求項1至5中任一項之裝置,其中該馬賽克影像感測器包含一採用一貝爾馬賽克圖案配置的濾波器陣列。 The apparatus of any one of claims 1 to 5, wherein the mosaic image sensor comprises a filter array configured with a Bell mosaic pattern. 如請求項6之裝置,其中該等輸入像素值包含第一列交替綠色及藍色像素與第二列交替綠色及紅色像素,且其中該影像還原電路包含一綠平衡單元,其係耦合以補償在該等第一及第二列之間的綠色像素之一敏感度變化。 The device of claim 6, wherein the input pixel values comprise a first column of alternating green and blue pixels and a second column alternating green and red pixels, and wherein the image restoration circuit includes a green balance unit coupled to compensate One of the green pixels between the first and second columns varies in sensitivity. 如請求項7之裝置,其中該敏感度變化係在該影像感測器之一區域上不均勻,且其中該綠平衡單元係配置成用以回應不均勻的敏感度變化來應用一不均勻的補償。 The device of claim 7, wherein the sensitivity change is non-uniform in an area of the image sensor, and wherein the green balance unit is configured to apply an unevenness in response to uneven sensitivity changes. make up. 如請求項1至5中任一項之裝置,其進一步包含該等物鏡光學元件,該等物鏡光學元件經組態用以在一預定模糊下將光聚焦在該馬賽克影像感測器上,其中該影像還原電路包含一散斑移除單元,其識別在該等輸入子影像之 各輸入子影像內之缺陷像素並校正該等缺陷像素之輸入像素值,該等缺陷像素之輸入像素值與相鄰像素之輸入像素值差多於一最大差異,該最大差異係依據該預定模糊來決定。 The apparatus of any one of claims 1 to 5, further comprising the objective optical elements configured to focus light onto the mosaic image sensor under a predetermined blur, wherein The image restoration circuit includes a speckle removal unit that recognizes the input sub-images Determining the defective pixels in the sub-images and correcting the input pixel values of the defective pixels, wherein the input pixel values of the defective pixels are different from the input pixel values of the adjacent pixels by more than a maximum difference, and the maximum difference is based on the predetermined blur To decide. 如請求項1至5中任一項之裝置,其中該影像還原電路包含一雜訊濾波器,其係配置成用以數位過濾該等輸入子影像之各輸入子影像,以便減小該等輸入子影像內的雜訊。 The device of any one of claims 1 to 5, wherein the image restoration circuit includes a noise filter configured to digitally filter each of the input sub-images of the input sub-images to reduce the inputs Noise in the sub-image. 如請求項10之裝置,其中該雜訊濾波器係配置成用以在該等輸入子影像內決定局部梯度之方向及量值,並回應該等方向及該等量值來選擇濾波器核心以應用於減小雜訊。 The device of claim 10, wherein the noise filter is configured to determine a direction and magnitude of the local gradient within the input sub-images, and to select an equal direction and the magnitude to select the filter core Used to reduce noise. 一種成像裝置,其包含:一馬賽克影像感測器,其經組態用以產生屬於複數個輸入子影像的一輸入像素值流,各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光,其中該等輸入子影像具有由一組物鏡光學元件之一點散布函數(PSF)所造成之一輸入模糊;一影像還原電路,其經耦合以接收並數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像,該影像還原電路包含一解摺積濾波器(DCF),該DCF具有一依據該PSF而決定之濾波器核心,該DCF消除該PSF之多個效應以使得該等輸出子影像具有一小於該輸入模糊之輸出模糊,其 中該DCF係配置成用以使用一給定大小的濾波器核心來摺積該等輸入子影像;一定框延伸單元,其係配置成用以在該等輸入子影像周圍添加一像素值邊界,該邊界具有一回應該濾波器核心大小而選擇的寬度;及一影像信號處理器(ISP),其係耦合以接收並處理該複數個輸出子影像,以便產生一彩色輸出影像。 An imaging device includes: a mosaic image sensor configured to generate an input pixel value stream belonging to a plurality of input sub-images, each input sub-image responding to an incident incident on the mosaic image sensor Different, individual color light, wherein the input sub-images have one input blur caused by a point spread function (PSF) of a set of objective optical elements; an image restoration circuit coupled to receive and digitally filter at the Inputting the input pixel values in each input sub-image of the sub-image to generate a corresponding plurality of enhanced output sub-images, the image restoration circuit comprising a deconvolution filter (DCF) having a basis according to the PSF Determining a filter core, the DCF canceling multiple effects of the PSF such that the output sub-images have an output blur that is less than the input blur, The DCF is configured to use the filter core of a given size to convolve the input sub-images; the fixed frame extension unit is configured to add a pixel value boundary around the input sub-images, The boundary has a width selected for the filter core size; and an image signal processor (ISP) coupled to receive and process the plurality of output sub-images to produce a color output image. 一種成像裝置,其包含:一馬賽克影像感測器,其經組態用以產生屬於複數個輸入子影像的一輸入像素值流,各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光;一影像還原電路,其經耦合以接收並數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像,其中該影像還原電路包含一雜訊濾波器,其係配置成用以數位過濾各輸入子影像,以便減小該等輸入子影像內的雜訊;其中該影像還原電路包含一解摺積濾波器(DCF),其係配置成用以在該雜訊濾波器減小雜訊之後過濾該等輸入子影像,且其中該影像還原電路包含一邊緣偵測器,其係配置成用以識別該等輸入子影像內的邊緣區域,並控制該DCF之一輸入,以便該DCF接收在該等邊緣區域內未經雜訊過濾之輸入像素值並從該雜訊濾波器接收在該等邊緣區域外部的經雜訊減小之輸入像素值;及一影像信號處理器(ISP),其係耦合以接收並處理該複 數個輸出子影像,以便產生一彩色輸出影像。 An imaging device includes: a mosaic image sensor configured to generate an input pixel value stream belonging to a plurality of input sub-images, each input sub-image responding to an incident incident on the mosaic image sensor Different, individual color light; an image restoration circuit coupled to receive and digitally filter the input pixel values in each of the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images, The image restoration circuit includes a noise filter configured to digitally filter each input sub-image to reduce noise in the input sub-images; wherein the image restoration circuit includes a deconvolution filter (DCF), configured to filter the input sub-images after the noise filter reduces noise, and wherein the image restoration circuit includes an edge detector configured to identify the Inputting an edge region within the sub-image and controlling one of the inputs of the DCF so that the DCF receives input pixel values that are not noise filtered in the edge regions and from the noise filter Receiving input noise is reduced by such an edge region outside of the pixel value; and an image signal processor (ISP), which system is coupled to receive and process the complex Several output sub-images are produced to produce a color output image. 如請求項13之裝置,其中該邊緣偵測器係配置成用以偵測邊緣像素,且其中該影像還原電路包含一加寬單元,其係配置成用以藉由添加在該等邊緣像素周圍的多個像素至該等邊緣區域來加寬該等邊緣區域。 The device of claim 13, wherein the edge detector is configured to detect edge pixels, and wherein the image restoration circuit includes a widening unit configured to be added around the edge pixels A plurality of pixels to the edge regions to widen the edge regions. 如請求項14之裝置,其中該加寬單元係配置成用以從該邊緣偵測器接收在該等輸入子影像之一第一子影像中的一邊緣像素之一識別,並在該等輸入子影像之至少一第二子影像內與該邊緣像素相鄰的多個像素添加至該邊緣區域。 The device of claim 14, wherein the widening unit is configured to receive, from the edge detector, one of an edge pixel in a first sub-image of the input sub-images, and to input A plurality of pixels adjacent to the edge pixel in at least one second sub-image of the sub-image are added to the edge region. 一種成像方法,其包含:從一馬賽克影像感測器接收屬於複數個輸入子影像的一輸入像素值流,其中在該複數個輸入子影像中的該等輸入像素值係在該輸入像素值流中採用一預定交錯圖案而交錯,且各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光,其中該等輸入子影像具有由一組物鏡光學元件之一點散布函數(PSF)所造成之一輸入模糊;數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像,其中數位過濾包含應用一具有一依據該PSF而決定之濾波器核心之解摺積濾波器(DCF)至該等輸入子影像以消除該PSF之多個效應以使得該等輸出子影像具有一小於該輸入模糊之輸出模糊,其中應用一DCF包含將一受到 遮罩的個別核心應用至該等輸入子影像之各輸入子影像以回應該交錯圖案,以便將該等輸入子影像之各子影像與其他輸入子影像分離地過濾;及處理該等輸出子影像以產生一彩色輸出影像。 An imaging method includes: receiving, from a mosaic image sensor, an input pixel value stream belonging to a plurality of input sub-images, wherein the input pixel values in the plurality of input sub-images are in the input pixel value stream Interspersed with a predetermined interlaced pattern, and each input sub-image responds to a different, individual color of light incident on the mosaic image sensor, wherein the input sub-images have a point spread function by a set of objective optical elements (PSF) causing one of the input blurs; the digitally filtering the input pixel values in the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images, wherein the digital filter includes the application one having one Decoupling filter (DCF) of the filter core determined according to the PSF to the input sub-images to eliminate multiple effects of the PSF such that the output sub-images have an output blur smaller than the input blur, wherein Applying a DCF containing will be subject to The individual cores of the mask are applied to the input sub-images of the input sub-images to echo the interlaced pattern to separate the sub-images of the input sub-images from the other input sub-images; and process the output sub-images To produce a color output image. 如請求項16之方法,其中該等輸入子影像及該等輸出子影像具有相同格式。 The method of claim 16, wherein the input sub-images and the output sub-images have the same format. 如請求項17之方法,其中數位過濾該等輸入像素值包含依據該預定交錯圖案而在一輸出像素流中交錯該等輸出子影像之輸出像素值。 The method of claim 17, wherein the digit filtering the input pixel values comprises outputting pixel values of the output sub-images in an output pixel stream in accordance with the predetermined interlaced pattern. 如請求項16之方法,其中該PSF可在該影像感測器之一平面上變化,且其中應用該DCF包含回應在該影像感測器之平面上的一PSF變化,應用不同的濾波器核心至來自該影像感測器之不同區域的該等輸入像素值。 The method of claim 16, wherein the PSF is changeable on a plane of the image sensor, and wherein applying the DCF comprises responding to a PSF change on a plane of the image sensor, applying a different filter core The input pixel values from different regions of the image sensor. 如請求項16之方法,其中應用該DCF包含根據該等輸入子影像之一特徵來應用不同濾波器核心至該等輸入像素值。 The method of claim 16, wherein applying the DCF comprises applying different filter cores to the input pixel values based on one of the characteristics of the input sub-images. 如請求項16至20中任一項之方法,其中該馬賽克影像感測器包含一採用一貝爾馬賽克圖案配置的濾波器陣列。 The method of any one of claims 16 to 20, wherein the mosaic image sensor comprises a filter array configured with a Bell mosaic pattern. 如請求項21之方法,其中該等輸入像素值包含第一列交替綠色及藍色像素與第二列交替綠色及紅色像素,且其中該方法進一步包含處理該等輸入像素值以在數位過濾該等輸入像素值之前補償在該等第一及第二列之間的該等綠色像素之一敏感度變化。 The method of claim 21, wherein the input pixel values comprise a first column of alternating green and blue pixels and a second column alternating green and red pixels, and wherein the method further comprises processing the input pixel values to filter the digits A sensitivity change of one of the green pixels between the first and second columns is compensated prior to inputting the pixel value. 如請求項22之方法,其中該敏感度變化係在該影像感測 器之一區域上不均勻,且其中處理該等輸入像素值包含應用一不均勻的補償以回應不均勻的敏感度變化。 The method of claim 22, wherein the sensitivity change is in the image sensing One of the regions is not uniform, and processing the input pixel values includes applying a non-uniform compensation in response to uneven sensitivity changes. 如請求項16至20中任一項之方法,其中光係藉由具有一預定模糊的該等物鏡光學元件而聚焦在該馬賽克影像感測器上,且其中該方法進一步包含識別在該等輸入子影像之各輸入子影像內之缺陷像素並校正該等缺陷像素之輸入像素值,該等缺陷像素之輸入像素值與相鄰像素之輸入像素值差多於一最大差異,該最大差異係依據該預先定義之模糊來決定。 The method of any one of claims 16 to 20, wherein the light system is focused on the mosaic image sensor by the objective optical elements having a predetermined blur, and wherein the method further comprises identifying at the inputs Defective pixels in each of the input sub-images of the sub-image and correcting the input pixel values of the defective pixels, the input pixel values of the defective pixels and the input pixel values of the adjacent pixels are more than a maximum difference, the maximum difference is based on This pre-defined blur is determined. 如請求項16至20中任一項之方法,其中數位過濾該等輸入像素值進一步包含處理該等輸入子影像之各輸入子影像,以便減小該等輸入子影像內的雜訊。 The method of any one of claims 16 to 20, wherein the digitally filtering the input pixel values further comprises processing the input sub-images of the input sub-images to reduce noise within the input sub-images. 如請求項25之方法,其中處理該等輸入子影像之各輸入子影像包含決定在該等輸入子影像內的局部梯度之方向及量值,並回應該等方向及該等量值來選擇濾波器核心以應用於減小雜訊。 The method of claim 25, wherein processing the input sub-images of the input sub-images comprises determining a direction and a magnitude of a local gradient in the input sub-images, and responding to the equal direction and the magnitudes to select filtering The core is used to reduce noise. 一種成像方法,其包含:從一馬賽克影像感測器接收屬於複數個輸入子影像的一輸入像素值流,各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光,其中該等輸入子影像具有由一組物鏡光學元件之一點散布函數(PSF)所造成之一輸入模糊;數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像, 其中數位過濾包含應用一具有一依據該PSF而決定之濾波器核心之解摺積濾波器(DCF)至該等輸入子影像以消除該PSF之多個效應以使得該等輸出子影像具有一小於該輸入模糊之輸出模糊,其中應用一DCF包含應用具有一給定大小之一濾波器核心之一DCF,且在數位過濾該等輸入子影像之前,圍繞該等輸入子影像周圍添加一像素值邊界,該邊界具有一回應該濾波器核心之大小而選擇的寬度;及處理該等輸出子影像以產生一彩色輸出影像。 An imaging method includes: receiving, from a mosaic image sensor, an input pixel value stream belonging to a plurality of input sub-images, each input sub-image responding to a different, individual color light incident on the mosaic image sensor The input sub-images have one input blur caused by a point spread function (PSF) of a set of objective optical elements; the digitally filters the input pixel values in the input sub-images of the input sub-images so that Generating a corresponding plurality of enhanced output sub-images, Wherein the digital filtering comprises applying a deconvolution filter (DCF) having a filter core determined according to the PSF to the input sub-images to eliminate multiple effects of the PSF such that the output sub-images have a smaller The input blurred fuzzy output, wherein applying a DCF comprises applying a DCF of one of the filter cores having a given size, and adding a pixel value boundary around the input sub-images before the digitally filtering the input sub-images The boundary has a width selected for the size of the filter core; and the output sub-images are processed to produce a color output image. 一種成像方法,其包含:從一馬賽克影像感測器接收屬於複數個輸入子影像的一輸入像素值流,各輸入子影像回應入射在該馬賽克影像感測器上的一不同、個別色彩之光;數位過濾在該等輸入子影像之各輸入子影像內的該等輸入像素值,以便產生對應的複數個加強輸出子影像,其中數位過濾該等輸入像素值包含處理該各輸入子影像以減少在該等輸入子影像中之雜訊及應用一解摺積濾波器(DCF)以在處理該等輸入子影像之各輸入子影像之後過濾該等輸入子影像以減小雜訊,其中應用該DCF包含識別在該等輸入子影像內的邊緣區域,並控制該DCF之一輸入,以便在該等邊緣區域內,該DCF接收未經處理以減小雜訊的輸入像素值,並在該等邊緣區域外部,該DCF接收經處理以減小雜訊後的經雜訊減小之輸入像素;且 在一影像信號處理器(ISP)內處理該等輸出子影像,以便產生一彩色輸出影像。 An imaging method includes: receiving, from a mosaic image sensor, an input pixel value stream belonging to a plurality of input sub-images, each input sub-image responding to a different, individual color light incident on the mosaic image sensor Digitally filtering the input pixel values in each of the input sub-images of the input sub-images to generate a corresponding plurality of enhanced output sub-images, wherein digit filtering the input pixel values includes processing the input sub-images to reduce Noise in the input sub-images and applying a deconvolution filter (DCF) to filter the input sub-images after processing the input sub-images of the input sub-images to reduce noise, wherein the application is performed The DCF includes identifying edge regions within the input sub-images and controlling one of the DCF inputs such that in the edge regions, the DCF receives input pixel values that are unprocessed to reduce noise, and Outside the edge region, the DCF receives input pixels that are processed to reduce noise reduction after noise; The output sub-images are processed in an image signal processor (ISP) to produce a color output image. 如請求項28之方法,其中識別該等邊緣區域包含偵測邊緣像素,並藉由添加在該等邊緣像素周圍的多個像素至該等邊緣區域來加寬該等邊緣區域。 The method of claim 28, wherein identifying the edge regions comprises detecting edge pixels and widening the edge regions by adding a plurality of pixels around the edge pixels to the edge regions. 如請求項29之方法,其中加寬該等邊緣區域包含在該等輸入子影像之一第一子影像中偵測一邊緣像素,並在該等輸入子影像之至少一第二子影像內與該邊緣像素相鄰的多個像素添加至該邊緣區域。The method of claim 29, wherein widening the edge regions comprises detecting an edge pixel in a first sub-image of the input sub-images and in at least a second sub-image of the input sub-images A plurality of pixels adjacent to the edge pixel are added to the edge region.
TW096108965A 2006-11-07 2007-03-15 Image enhancement in the mosaic domain TWI419079B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IL2006/001284 WO2007054931A2 (en) 2005-11-10 2006-11-07 Image enhancement in the mosaic domain

Publications (2)

Publication Number Publication Date
TW200821989A TW200821989A (en) 2008-05-16
TWI419079B true TWI419079B (en) 2013-12-11

Family

ID=44802523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108965A TWI419079B (en) 2006-11-07 2007-03-15 Image enhancement in the mosaic domain

Country Status (1)

Country Link
TW (1) TWI419079B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8638342B2 (en) * 2009-10-20 2014-01-28 Apple Inc. System and method for demosaicing image data using weighted gradients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200533956A (en) * 2004-04-15 2005-10-16 Pixart Imaging Inc Image sensing device of improving image quality and reducing color shift effect
US20060013479A1 (en) * 2004-07-09 2006-01-19 Nokia Corporation Restoration of color components in an image model

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200533956A (en) * 2004-04-15 2005-10-16 Pixart Imaging Inc Image sensing device of improving image quality and reducing color shift effect
US20060013479A1 (en) * 2004-07-09 2006-01-19 Nokia Corporation Restoration of color components in an image model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Keigo Hirakawa and Thomas W. Parks, "Joint Demosaicing and Denoising", IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 8, pp. 2146-2157, AUGUST 2006 *
Shang Kai Chiu, Chih Yuan Lin, Meng Lin Lu, Chien Wen Chang and Dennis Hsiao, "Adaptive Edge-Preserving Filter for CMOS Image Sensor Cross-Talk Compensation", 12th Digital Signal Processing Workshop, 4th Signal Processing Education Workshop, pp. 580-584, Sept. 2006 *
Wanqing Li, Philip Ogunbona, Yu Shi and lgor Kharitonenko, "CMOS SENSOR CROSS-TALK COMPENSATION FOR DIGITAL CAMERAS", IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, pp. 292-297, MAY 2002 *

Also Published As

Publication number Publication date
TW200821989A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
JP5155871B2 (en) Image enhancement in the mosaic domain
TWI407800B (en) Improved processing of mosaic images
TWI458333B (en) Method and apparatus for image noise reduction using noise models
JP5188651B2 (en) Image processing apparatus and imaging apparatus using the same
EP2529555B1 (en) Denoising cfa images using weighted pixel differences
US8817141B2 (en) Image processing device and method, recording medium, and imaging device
JP2007259401A (en) Noise reduction apparatus, method and program for controlling same, image sensor and digital camera
JP2008289090A (en) Imaging signal processor
JP5169994B2 (en) Image processing apparatus, imaging apparatus, and image processing method
JP2013055623A (en) Image processing apparatus, image processing method, information recording medium, and program
US8922684B2 (en) Imaging device, control method for imaging device, and storage medium storing a control program for imaging device
JP3905708B2 (en) Image interpolation device
TWI419079B (en) Image enhancement in the mosaic domain
JP3633561B2 (en) Image processing apparatus, image processing method, and program
JP2008177724A (en) Image input device, signal processor, and signal processing method
JP2005532004A (en) Signal processing method, signal processing apparatus, computer program product, computer system, and camera
JP7183015B2 (en) Image processing device, image processing method, and program
US20240040268A1 (en) Rgb-ir pixel pattern conversion via conversion engine
IL191290A (en) Image enhancement in the mosaic domain
JP2013055622A (en) Image processing apparatus, image processing method, information recording medium, and program
EP1522047B1 (en) Method and apparatus for signal processing, computer program product, computing system and camera
TW202341718A (en) Method for processing image data of an image sensor and image processor unit and computer program
JP2005532003A (en) Signal processing method, signal processing apparatus, computer program product, computer system, and camera
JP4666786B2 (en) Image interpolation device
JP2003230025A (en) Image processing apparatus, solid-state image pickup apparatus, and image processing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees