TW200820428A - Nonvolatile memory with reduced coupling between floating gates - Google Patents

Nonvolatile memory with reduced coupling between floating gates Download PDF

Info

Publication number
TW200820428A
TW200820428A TW096132318A TW96132318A TW200820428A TW 200820428 A TW200820428 A TW 200820428A TW 096132318 A TW096132318 A TW 096132318A TW 96132318 A TW96132318 A TW 96132318A TW 200820428 A TW200820428 A TW 200820428A
Authority
TW
Taiwan
Prior art keywords
layer
conductive
floating gate
forming
portions
Prior art date
Application number
TW096132318A
Other languages
Chinese (zh)
Other versions
TWI359499B (en
Inventor
Henry Chien
George Matamis
Tuan Pham
Masaaki Higashitani
Hidetaka Horiuchi
Jeffrey W Lutze
Nima Mokhlesi
Yupin Kawing Fong
Original Assignee
Sandisk Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/534,135 external-priority patent/US7615445B2/en
Priority claimed from US11/534,139 external-priority patent/US20080074920A1/en
Application filed by Sandisk Corp filed Critical Sandisk Corp
Publication of TW200820428A publication Critical patent/TW200820428A/en
Application granted granted Critical
Publication of TWI359499B publication Critical patent/TWI359499B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42324Gate electrodes for transistors with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A nonvolatile memory array includes floating gates that have an inverted-T shape in cross section along a plane that is perpendicular to the direction along which floating cells are connected together to form a string. Adjacent strings are isolated by shallow trench isolation structures. An array having inverted-T shaped floating gates may be formed in a self-aligned manner.

Description

200820428 九、發明說明: 【發明所屬之技術領域】 本發明大體係關於非揮發性快閃記憶體系統,且 〜 言之,係關於記憶體單元之結構及記憶體 、疋 T〜< I竿列,且 專 係關於形成其之製程。本申請案中所引用的所有專利 利申請案及其他文獻以引用之方式全部併入本文中。 【先前技術】 ° f200820428 IX. Description of the Invention: [Technical Field of the Invention] The large system of the present invention relates to a non-volatile flash memory system, and, in other words, to the structure and memory of a memory cell, 疋T~< I竿Columns, and the specialties are about the process of forming them. All of the patent applications and other documents cited in this application are hereby incorporated by reference in their entirety. [Prior Art] ° f

存在許多商業上成功之現今正㈣之非揮發性記憶體產 品(特別係以小型化卡之形式),該等產品使用快閃電可擦 除可程式化唯讀記憶體(Electrically ErasaMe _There are many commercially successful non-volatile memory products (especially in the form of miniaturized cards) that use flash lightning to erase programmable read-only memory (Electrically ErasaMe _

Programmable Read Only Memory,EEPROM)單元之陣列。 在一種類型之架構(NAND陣列)中,一系列具有兩個以上 (諸如16或32個)記憶體單元之串與個別位元線與一參考電 位之間的一或多個選擇電晶體連接在一起以形成單元之 行。字線延伸跨過大量此等行中之單元。讀取一行中之個 別單元且藉由使该串中之其餘單元被過驅動driven) 而在程式化期間對該各別單元進行驗證,以使得流經一串 之電流視儲存於定址單元中之電荷之位準而定。作為記憶 體系統之一部分的NAND架構陣列之實例及其操作可見於 美國專利第6,046,935號中。 在具有一在源極與汲極擴散區之間的”分裂通道”之另一 類型陣列中’單元之浮動閘極位於該通道之一部分上且字 、線(亦稱為控制閘極)位於其他通道部分以及浮動閘極上。 此有效地形成一具有兩個串聯電晶體之單元,一電晶體 123977.doc 200820428 (記憶電晶體)具有控制可流經其部分通道的電流量的浮動 閘極上之電荷與字線上之電壓之量的組合,且另一者(選 擇電晶體)具有單獨充當其閘極之字線。字線在浮動閘極 之一列上延伸。在美國專利第5,070,032號、第5,095,344 號、第 5,315,541號、第 5,343,〇63 號、第 5,661,〇53 號及第 6,281,075號中給出此等單元之實例、其在記憶體系統中之 使用及其製造方法。 ^ 此分裂通道快閃EEPROM單元之修改添加一引導閘,該 1 弓I $閘在T直接控制通道之情況下提供—與浮動閘極的強 電容耦合。陣列之每一引導閘垂直於字線而在浮動閘之一 行上延伸。結果係使字線免於當讀取或程式化一選定單元 日守必須同吟執行兩個功能。彼等兩個功能為(丨)充當選擇電 晶體之一閘極,因此需要一適當電壓以接通及關閉選擇電 晶體,及(2)藉由一在字線與浮動閘極之間的電場(電容性) 耦合將浮動閘極之電壓驅動至一所要位準。通常難以以一 I 取佳方式使用單—電壓來執行此等功能。在添加引導閘的 情況下,字線僅需要執行功能⑴,同時所添加之引導鬧執 行功胃b (2)。對於源極側注入程式化,藉由僅將選擇閘極驅 動至大約其臨限電壓(例如,〇·5ν附近),而引導閘電壓將 自一程式化時脈逐漸遞增至下一時脈(在程式化時脈中間 執行驗證及鎖定操作)而獲得有效程式化。在(例如)美國專 利第5,313,421號及第6,222,762號中描述引導閘在快閃 EEPROM陣列中之使用。 在上文描述之任一類型的記憶體單元陣列中,單元之浮 123977.doc 200820428 :::係藉由將電子自基板注入至浮動閘極而程式化。此 m通道區域中的適當摻雜及向源極、汲極及其餘間 極細加適當電壓而完成。 用於自汙動閘極移除電荷以擦除記憶體單元之兩種技術 於上文所描述之三種類型的_ 己*體早凡陣列。-種技術 ’、、、”…、汲極及其他閘極施加適當電壓從 =浮動間極與基板之間的介電層之-部分而擦除至: 、、擦除技術為經由一位於浮動閘極與另一閘極之間 的随道介電層將電子自浮動閘極轉移至另-閘極。在上文 =之::種類型的單元卜為該目的而提供-第三擦 =。在上文所描述之第三種類型的單元(由於使用— 一 /,故早7°已具有三個閘極)中,浮動閘極經捧除至 無需一四閑極。儘管此後者技術添加:: 由子:執行的第二功能,但是此等功能係在不同時間執 :,因而避免了由於兩個衝突需求而必需進行㈣ 除技術時’將大量記憶體單元-起組成群“ 的纪情體二門中同時擦除。在一方法中’群組包括足夠 ==早^储存在—碟片扇區中所儲存的使 之亦即,512個位元組)加上某些附加項資料。在另^ 法中’每-⑼含有足夠的單元以保存數千位元喊用= m於ΛΓ片扇區之等量資料)。在美國專利第 腳驗=斗=多區㈣除'缺陷管理及其他快閃 如冋在多數積體電路應用中,快閃eeprom系統内亦存 123977.doc 200820428 Λ鉍某^體電路功能所需之使矽基板區域收縮之壓 力二持續,需要增加可儲存於一石夕基板之給定區域中之數 4、二料的里’以便增加—給^大小記憶體卡及其他類型之 封衣之儲存容量,或既增加容量又減少大小。一增加資料 之儲ί密度之方式為在每一記憶體單元中儲存一個以上位 _ '料此係藉由將一浮動閘極電荷位準電壓範圍之窗 :成兩個以上狀態來完成。四個此等狀態之使用允許每 7單元儲存兩個位元之資料,人個狀態允許每—單元儲存 個位元之貝料等。在美國專利第5,料3,94〇號及第 5,172,33 8號中描述多狀態快閃EEpR〇M結構及操作。 一增加資料密度亦可藉由減小記憶體單元及/或總陣列之 實體大小來達成。當處理技術隨時間而改良以准許實施較 小特徵大小時’通常對所有類型的電路皆可執行對積體電 路大小之縮小。但因為通常存在關於可被縮小至何程度而 受到限制的至少-特徵,因此限制總布局可被縮小的=, 所以通常對可以&彳式將給定電路布局、縮+ i何程度存在 限制。當此發生時,設計者將轉至正被實施的電路之一新 的或不同布局或架#,以減少執行其功能所需㈣區域之 量。上述快閃EEPRQM積體電路系、统(缩小可達到類似限 制。 t 另一快閃EEPROM架構使用一雙浮動閘極記憶體單元以 及每一浮動閘極上之多態儲存器。在此類型的單元中,兩 個浮動閘極包括於源極與汲極擴散區之間的其通道上(在 源極與沒極擴散區之間具有一選擇電晶體)。沿浮動問極 123977.doc 200820428 之每一行包括一引導閘,且沿浮動閘極之每一列於其上提 供一字線。當存取一給定浮動閘極以進行讀取或程式化 時,在含有所關心浮動閘極的單元之其他浮動閘極上之引 導閘上升高得足以接通在其他浮動閘極下之通道而不管何 電荷位準存在於其上。在讀取或程式化同一記憶體單元中 之所關心浮動閘極時’此將其他浮動閘極作為一因素而有 效消除。舉例而言,流經單元之電流量(其可用於讀取其 狀態)既而為所關心浮動閘極而非同一單元中之其他、、字動 閘極上之電荷量的函數。在美國專利第5,712,180號、第 M〇3,573號及第6,151,248號中描述此單元陣列架構及操作 技術之實例。 在此等及其他類型之非揮發性記憶體中,謹慎控制浮動 閘極與在浮動閘極上經過的控制間極之間的場耦合量。耦 合量確定與其浮動閘極耦合的控制閘極上所施與電壓之百 分比。H自包括與控亲J閘極之表面重疊的浮動閘極之表面 積的,之多個因素來確定搞合百分比。通常需要藉由最大 化重疊面積之量而最大化浮動閘極與控制閘極之間的輕合 百刀比Yuan等人在美國專利第5,343,〇63號中描述了增加 麵合面積之-方法。在該專利中描述之方法為使浮動間極 比通常的厚度厚以提供可與控制閘極麵合之大垂直表面。 Yuan在關專利第6,9()8,817號中描述了增加耦合—浮動 極與一控制閘極之區域的另一方法。 當增加相鄰浮動閘極與控制閘極之間的垂直耦合面積 、^而要以不增加由每一單元佔據的基板區域之方 123977.doc -10- 200820428 式來完成此增加。同樣,釦社 傈車又佳減少洋動閘極與浮動 辛禺合,以使得相鄰浮動士 〇 州子勤閘極不會嚴重影響彼此。 【發明内容】 -非揮發性記憶體陣列將電荷儲存於沿字線方 τ形橫截面之浮動閘極中。 1 r由於在位疋線方向中相對浮動 閉極刻面之減小的面積,所 听M此形狀減少在位元線方向中 相鄰浮動閘極之間的耦合。此淳 例口 此,予勁閘極之上部部分之尺寸An array of Programmable Read Only Memory (EEPROM) units. In one type of architecture (NAND array), a series of strings having more than two (such as 16 or 32) memory cells are connected to one or more select transistors between individual bit lines and a reference potential. Together to form a unit of the line. The word line extends across a large number of cells in these rows. Reading individual cells in a row and verifying the individual cells during stylization by causing the remaining cells in the string to be driven, such that current flowing through the string is stored in the addressing unit The level of charge depends on the level of charge. An example of a NAND architecture array as part of a memory system and its operation can be found in U.S. Patent No. 6,046,935. In another type of array having a "split channel" between the source and drain diffusion regions, the floating gate of the cell is located on one of the channels and the word, line (also known as the control gate) is located elsewhere. Channel section and floating gate. This effectively forms a cell having two series transistors, a transistor 123977.doc 200820428 (memory transistor) having a charge on the floating gate and a voltage on the word line that controls the amount of current that can flow through a portion of its channel. The combination of the other (selective transistor) has a word line that acts as its gate alone. The word line extends over one of the floating gates. Examples of such units are provided in the memory system in U.S. Patent Nos. 5,070,032, 5,095,344, 5,315,541, 5,343, 〇63, 5,661, 〇53, and 6,281,075. Use and its manufacturing methods. ^ Modification of this split-channel flash EEPROM cell adds a pilot gate that provides a strong capacitive coupling to the floating gate in the case of a T-direct control channel. Each of the lead gates of the array extends perpendicular to the word line and on one of the floating gates. The result is that the word line is free from reading or stylizing a selected unit. These two functions are (丨) acting as one of the gates of the selection transistor, thus requiring an appropriate voltage to turn the selection transistor on and off, and (2) an electric field between the word line and the floating gate. (Capacitive) Coupling drives the voltage of the floating gate to a desired level. It is often difficult to perform these functions using a single-voltage in a better way. In the case of adding a boot gate, the word line only needs to perform the function (1), and the added guidance is performed on the stomach b (2). For source-side injection programming, by driving only the select gate to approximately its threshold voltage (eg, near 〇·5ν), the pilot gate voltage will gradually increase from a stylized clock to the next clock (at Effective stylization is performed by performing verification and locking operations in the middle of the stylized clock. The use of a pilot gate in a flash EEPROM array is described in, for example, U.S. Patent Nos. 5,313,421 and 6,222,762. In any of the types of memory cell arrays described above, the cell float 123977.doc 200820428:: is programmed by injecting electrons from the substrate to the floating gate. This is done by appropriate doping in the m-channel region and by applying an appropriate voltage to the source, drain and other interpoles. Two techniques for removing charge from a dirty gate to erase a memory cell are the three types of arrays described above. - Techniques ',,,, ..., bungee and other gates apply appropriate voltages from the = part of the dielectric layer between the floating interpole and the substrate to erase:, the erase technique is via a floating The intervening dielectric layer between the gate and the other gate transfers the electrons from the floating gate to the other gate. In the above =:: the type of unit is provided for this purpose - the third erase = In the third type of unit described above (due to the use of -1, there are already three gates at 7°), the floating gate is removed to the point where it does not require one or four idle poles. Add:: by sub: the second function of execution, but these functions are performed at different times: thus avoiding the necessity of two conflicting requirements (4) In addition to the technology, 'a large number of memory cells are grouped together' Simultaneous erasure in the second door. In one method, the 'group includes enough == early ^ stored in the disc sector to be stored, i.e., 512 bytes) plus some additional items. In the other method, 'every-(9) contains enough units to hold thousands of bits of shouting = m for the same amount of data in the slice sector). In the US patent foot test = bucket = multi-zone (four) in addition to 'defect management and other flashes in the majority of integrated circuit applications, flash eeprom system also exists 123977.doc 200820428 Λ铋 a ^ body circuit function required The pressure of the shrinkage of the substrate region is continued, and it is necessary to increase the number of 4 and 2 materials that can be stored in a given area of the substrate to increase the storage of the memory card and other types of seals. Capacity, or both capacity and size. One way to increase the density of the data is to store more than one bit in each memory cell. This is done by placing a window of floating gate charge level voltage ranges into two or more states. The use of four of these states allows for the storage of two bits of data per 7 cells, and the state of each person allows for the storage of one bit of material per cell. The multi-state flash EEpR〇M structure and operation are described in U.S. Patent Nos. 5,94, and 5,172,33. Increasing the data density can also be achieved by reducing the physical size of the memory cells and/or the total array. When processing techniques are modified over time to permit implementation of smaller feature sizes, the reduction in integrated circuit size is typically performed for all types of circuits. However, since there is usually at least a feature that is limited to what extent it can be reduced, so that the total layout can be reduced by =, so there is usually a limit on how much the circuit layout and the size of the given circuit can be & . When this happens, the designer will go to one of the new or different layouts or shelves # of the circuit being implemented to reduce the amount of area required to perform its function. The above flash EEPRQM integrated circuit system (reduction can achieve similar limitations. t Another flash EEPROM architecture uses a pair of floating gate memory cells and polymorphic memory on each floating gate. In this type of cell The two floating gates are included on the channel between the source and the drain diffusion region (having a selective transistor between the source and the non-polar diffusion region). Each of the floating gates 123977.doc 200820428 A row includes a pilot gate and a word line is provided thereon along each of the floating gates. When a given floating gate is accessed for reading or programming, the cell containing the floating gate of interest is The pilot gates on the other floating gates are raised enough to turn on the channels under the other floating gates regardless of the charge level present on them. When reading or programming the floating gates of interest in the same memory cell 'This effectively eliminates other floating gates as a factor. For example, the amount of current flowing through the cell (which can be used to read its state) is the floating gate of interest, not the other word in the same cell. An example of the amount of charge on the gate is described in U.S. Patent Nos. 5,712,180, 3,573, and 6,151,248. In volatile memory, carefully control the amount of field coupling between the floating gate and the control electrode passing over the floating gate. The coupling amount determines the percentage of voltage applied to the control gate coupled to its floating gate. The percentage of the surface area of the floating gate that overlaps the surface of the gate of the control gate J is determined by a number of factors. It is usually necessary to maximize the amount of overlap between the floating gate and the control gate. The method of increasing the area of the face is described in U.S. Patent No. 5,343, the disclosure of which is incorporated herein by reference. A large vertical surface of the gate surface. Another method for increasing the coupling-floating pole and a region of the control gate is described in Yuan Patent No. 6,9() 8, 817. When adding adjacent floating gates and controls Gate The vertical coupling area between the two is to be increased by increasing the area of the substrate occupied by each unit, 123977.doc -10- 200820428. Similarly, the buckle is also good to reduce the ocean gate and float. In order to make the neighboring floating 〇 子 子 子 子 子 。 。 。 。 。 。 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 r due to the reduced area of the relatively floating closed-face facet in the direction of the squall line, the shape of the listened M reduces the coupling between adjacent floating gates in the direction of the bit line. The size of the upper part of the positive gate

U 的減少(與具有—矩形形狀之浮動閘極相比)提供更多空間 用於在字線方向中之相鄰浮動間極之間的控制閑極及介電 層。可使用各種製程生產具有具倒τ形狀之浮動 憶體陣列。 用於形成-倒T形浮動閘極之一製程使用遮罩部分形成 在位元線方向中延伸之STI結構及通道區域。#由使用抗 敍劑細化(Slimming)形成遮罩部 >,使得通道區域比STI結 構窄。通道亦可窄於所使用微影製程之最小特徵大小 ⑺。隨後,形成第一浮動問極層,且使用具有側壁隔片 之額外遮罩部分將第一浮動閘極層圖案化成比下層通道區 域寬(且可比F寬)的第一浮動閘極部分’因此提供對第一 浮動閘極部分與通道區域之間的錯位之一高容限。隨後, 形j又一組遮罩部分及側壁隔片,使得側壁隔片之間的槽 自第浮動閘極部分延伸。第二浮動閘極部分形成於該等 槽中。隨後,將一介電層及控制閘極層形成於浮動閘極層 上且執行蝕刻以將控制閘極層分成字線,且同時將浮動閘 極部分分成個別浮動閘極。 123977.doc -11 · 200820428 用於形成-倒τ形浮動閉極的另_製程形成一第一浮動 閘極層且接著使用在第-浮動閑極層上之遮罩部分來建立 用於STm構之位置’使得STI結構自對準由第—浮動閉極 層形成的第一浮動閘極部分。STI結構具有垂直延伸至一 焉於第-浮動閘極部分之位準的側壁。側壁隔片形成於此 專側壁上,使得側壁隔片在第一浮動問極部分上留下卜 第二浮動閘極部分形成於此等槽中,使得其自對準第一浮 動閑極部分。隨後,移除側壁隔片且部分地回細結 構。介電層及控制閘極層沈積於浮動問極部分上。接著將 介電層:控制閉極層及浮動閘極部分一起餘刻,使得形成 自對準浮動閘極的字線。 用於形成-倒τ形浮_極的另_製程使用在位元線方 向中延伸的遮罩部分形成-浮動閉極層。使用遮罩部分部 分地㈣浮動間極層以覆蓋浮動閑極層之一部分,當移除 净動閘極層之未遮蔽部分時 動閘極層之一部分接著 I成垂直犬出物。此部分蝕丨 儀刻未餘刻穿過浮動閘極層。隨 :’精由-減少垂直突出物之厚度的氧化製程 出物之侧壁上形成側壁隔 大 罢” η μ而 稷者,將此等側壁用作一遮 “ 浮動閘極層,因此形成獨立浮動閘極部分。 亦將側壁隔片用作一用於蝕 辨的擄 下層基板中以形成STI溝 槽的遮罩。添加二氧化矽以填誃 及側壁隔片,且沈積一介電#二* a。移除遮罩部分 θ及拴制閘極層。接著將护 制閘極層、介電層及浮動 接者將& 浮動間極之字線。 卩刀μ刻以形成自對準 123977.doc -12- 200820428 【貫施方式】 記憶體操作 圖1之方塊圖中一般性地說明併入本發明之各種態樣的 記憶體系統100之實例。大量可個別定址之記憶體單元配 • |於列與行之規則陣列110中,但其他實體單元配置當然 , :系可能的M立元線(本文中表示為沿單元陣列110之行延伸) 精由線150而與一位元線解碼及驅動電路130電連接。字線 Γ (其在此:述中表示為沿單元陣列uo之列延伸)藉由線170 、 而與—字線解似驅動電路19G電連接。解碼及19〇 中之每-者經由匯流排160而自一記憶體控制器18〇接收記 憶體單元位址。解碼及驅動電路亦經由各別控制及狀態信 號線1 3 5及1 9 5連接至控制器1 8 0。 控制器180可藉由線140而連接至一主機設備(未圖示)。 :機可為個人電腦、筆記型電腦、數位相機、音訊播放 裔、各種其他手持式電子設備及其類似㉟。圖1之記憶體 ί, 系、、先100通#將實施於一根據若干現有物理及電氣標準中The reduction in U (compared to a floating gate having a rectangular shape) provides more space for controlling the idle and dielectric layers between adjacent floating electrodes in the word line direction. A variety of processes can be used to produce floating memory arrays with inverted τ shapes. One of the processes for forming an inverted-T-shaped floating gate uses a mask portion to form an STI structure and a channel region extending in the direction of the bit line. # Forming the mask portion > by using Slimming to make the channel region narrower than the STI structure. The channel can also be narrower than the minimum feature size of the lithography process used (7). Subsequently, a first floating gate layer is formed, and the first floating gate layer is patterned into a first floating gate portion that is wider (and comparable to F wide) than the lower channel region using an additional mask portion having sidewall spacers A high tolerance is provided for one of the misalignments between the first floating gate portion and the channel region. Subsequently, the pattern j is further provided with a mask portion and a sidewall spacer such that the grooves between the sidewall spacers extend from the first floating gate portion. A second floating gate portion is formed in the slots. Subsequently, a dielectric layer and a control gate layer are formed on the floating gate layer and etching is performed to divide the control gate layer into word lines, and at the same time, the floating gate portion is divided into individual floating gates. 123977.doc -11 · 200820428 Another process for forming a - inverted τ-shaped floating closed-pole forms a first floating gate layer and then uses the mask portion on the first-floating idler layer to establish a structure for STm The position ' makes the STI structure self-aligned with the first floating gate portion formed by the first floating closed layer. The STI structure has sidewalls that extend vertically to a level of the first floating gate portion. The sidewall spacers are formed on the side walls such that the sidewall spacers leave a second floating gate portion on the first floating pole portion formed in the slots such that they are self-aligned with the first floating idle portion. Subsequently, the sidewall spacers are removed and partially tapered. A dielectric layer and a control gate layer are deposited on the floating interrogation portion. The dielectric layer is then controlled to control the closed layer and the floating gate portions together such that the word lines of the self-aligned floating gates are formed. The other process for forming an inverted-to-theta-shaped floating-pole uses a mask portion extending in the direction of the bit line to form a floating closed-pole layer. A portion of the floating interlayer is partially covered by the mask portion (4) to cover a portion of the floating layer, and when the unshielded portion of the net gate layer is removed, a portion of the gate layer is followed by a vertical dog discharge. This part of the etched etched through the floating gate layer. With: 'fine by - reduce the thickness of the vertical protrusions on the sidewalls of the oxidation process to form a sidewall spacer" η μ and then use these sidewalls as a cover "floating gate layer, thus forming an independent Floating gate section. The sidewall spacer is also used as a mask for the etched underlying substrate to form the STI trench. Cerium oxide is added to fill the ruthenium and sidewall spacers, and a dielectric #二*a is deposited. Remove the mask portion θ and the gate layer. The gate layer, dielectric layer, and floater will then be protected with the word line of the floating pole. Sickle knives to form self-alignment 123977.doc -12- 200820428 [COMPLEX MODE] Memory Operation An example of a memory system 100 incorporating various aspects of the present invention is generally illustrated in the block diagram of FIG. A large number of individually addressable memory cells are arranged in the regular array 110 of columns and rows, but other physical unit configurations are of course: a possible M-series line (indicated herein as extending along the row of the cell array 110) The one-line decoding and driving circuit 130 is electrically connected by a line 150. The word line Γ (which is here shown as extending along the column of the cell array uo) is electrically connected to the word line delineation drive circuit 19G by the line 170. Each of the decoding and 19〇 receives the memory unit address from a memory controller 18 via the bus bar 160. The decode and drive circuits are also coupled to controller 180 via respective control and status signal lines 1 3 5 and 195. Controller 180 can be coupled to a host device (not shown) via line 140. The machine can be a personal computer, a notebook computer, a digital camera, an audio broadcast player, various other handheld electronic devices, and the like. Figure 1 memory ί, system, first 100 pass # will be implemented in a number of existing physical and electrical standards

之一者(諸如來自 PCMCIA、C〇mpactFlashTM 協會、MMCTM 及/、他協會中之—者)的抽取式卡中。其他抽取式格 式包括諸如Cruzer_閃驅動之USB快閃驅動。當處於抽 取式袼式時’線140終止於一與主機設備之互補連接器介 f的連接器中。許多抽取式記憶體系統之電介面遵循ΑΤΑ π準〃中°己饫體系統看來像是主機,好像其為磁碟驅動 器。亦存在其他記憶體卡介面標準。作為卡格式之替代, 可將圖1中所不之類型的記憶體系統永久嵌入於主機設備 123977.doc -13 - 200820428 中。 解碼及驅動電路130及190根據各別控制及狀態線135及 195中之控制信號而在經由匯流排16〇定址時在陣列11 〇之 其各別線中產生適當電壓以執行程式化、讀取及擦除功 能。陣列110經由相同控制及狀態線135及195將包括電壓 位準及其他陣列參數之任何狀態信號提供至控制器丨8〇。 電路130中之複數個感測放大器接收指示陣列丨丨〇中之經定 址記憶體單元之狀態的電流或電壓位準,且在讀取操作期 間將關於彼等狀態之資訊經由線145提供給控制器18〇。通 常使用大量感測放大器,以便能並行讀取大量記憶體單元 之狀態。在讀取及程式化操作期間,通常藉由電路190同 時定址單元之一列,以存取由電路130選擇的經定址列中 之多個單元。在擦除操作期間,通常將許多列中之每一者 中的所有單元作為一區塊一起定址以用於同時擦除。 圖2(A)中展示形成於一矽基板上之NAND記憶體單元陣 C; 列uo之一實例之平面圖,其中為解釋清楚起見,以存在 於70件之間的介電層的很少細節來說明其具有導電元件之 重複結構之-小部分。延伸穿過基板表面而形成淺溝槽隔 離(STI)、、O構210a-d。為了為此描述提供一約定,將STI結 構展示為在第-X方向中間隔開,長度在第二¥方向中延 伸,此等第一與第二方向基本上彼此正交。 -在STI結構210a_d之間,存在在¥方向中延行的記憶體單 兀串220a-c。因此,串之方向平行於STI結構之方向。串 22〇a-c中之每一者包括許多串聯連接的記憶體設備。圖 123977.doc -14- 200820428 2(A)展示三個串22〇a_c之一部分,其中每一串展示三個記 憶體單元。然而,串220a_c可含有圖2(A)中未展示之額外 單元。同樣,陣列110含有圖2(A)中未表示之額外串。此 類型陣列可具㈣千個串’每—串中具有16、32或32個以 上單元。One of the removable cards (such as from PCMCIA, C〇mpactFlashTM Association, MMCTM and/or his association). Other removable formats include USB flash drives such as the Cruzer_flash driver. When in the pick-up mode, the line 140 terminates in a connector with a complementary connector of the host device. The interface of many removable memory systems follows the ΑΤΑ π 〃 〃 ° 饫 饫 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来 看来There are also other memory card interface standards. As an alternative to the card format, a memory system of the type not shown in Fig. 1 can be permanently embedded in the host device 123977.doc -13 - 200820428. The decoding and driving circuits 130 and 190 generate appropriate voltages in their respective lines of the array 11 to perform programmatic and read operations in accordance with the respective control and status lines 135 and 195 when addressing via the bus bar 16? And erase function. Array 110 provides any status signals including voltage levels and other array parameters to controller 经由8 via the same control and status lines 135 and 195. A plurality of sense amplifiers in circuit 130 receive current or voltage levels indicative of the state of the addressed memory cells in array ,, and provide information regarding their states to control via line 145 during a read operation 18 〇. A large number of sense amplifiers are typically used so that the state of a large number of memory cells can be read in parallel. During a read and program operation, a plurality of cells in the addressed column selected by circuit 130 are typically accessed by circuit 190 at the same time as one of the addressed cells. During an erase operation, all of the cells in each of the many columns are typically addressed together as a block for simultaneous erasure. FIG. 2(A) shows a NAND memory cell array C formed on a substrate; a plan view of an example of a column uo, wherein for the sake of clarity, there are few dielectric layers present between 70 pieces. The details illustrate the small portion of the repeating structure of the conductive element. Extending through the surface of the substrate to form shallow trench isolation (STI), O-structure 210a-d. To provide an agreement for this description, the STI structures are shown spaced apart in the -X direction, the length extending in the second ¥ direction, and the first and second directions are substantially orthogonal to one another. - Between the STI structures 210a-d, there are memory strings 220a-c that are extended in the ¥ direction. Therefore, the direction of the string is parallel to the direction of the STI structure. Each of the strings 22A-c includes a plurality of memory devices connected in series. Figure 123977.doc -14- 200820428 2(A) shows one of three strings 22〇a_c, where each string shows three memory cells. However, string 220a-c may contain additional elements not shown in Figure 2(A). Similarly, array 110 contains additional strings not shown in Figure 2(A). This type of array can have (four) thousand strings 'each-string with 16, 32 or more units.

一例示性記憶體單元包括一浮動閘極23〇及在丫方向中之 任一側上的鄰近於浮動閘極23〇的在基板中之導電源極/汲 極區域240a-b。串藉由STI結構21〇a_d而分開。sti結構 21 Oa-d形成將源極/汲極區域與相鄰串中之單元的源極/汲 極區域電隔離的隔離元件。沿γ方向,相鄰單元共用源極/ 汲極區域。源極/汲極區域將一單元電連接至下一單元, 因而形成單元串。#由將雜質在所需區域中植入基板中而 形成此實例中之源極/汲極區域240a_c。 圖2(A)之實施例中所示之浮動閘極包含兩個可在圖2(B) 中所示之浮動閘極230a之三維圖中更佳地看見之部分。下 部洋動閘極部分231在-薄二氧切(氧化物)層上在基板的 表面上延伸。上部浮動閘極部分232自下部浮動閘極部分 231之上表面233向上突出以沿χ方向形成倒τ形橫截面。 上部浮動閘極部分232在Υ方向中延伸至下部浮動閘極部分 231之邊緣,但在χ方向中較窄。因此,浮動閘極在中間位 準以下寬於其在中間位準以上,從而使下部浮動閘極部分 231之上表面233之一部分曝露。 此實施例之下部及上部浮動閘極部分231、232皆由摻雜 多晶矽製成。多晶矽可以一未摻雜形式沈積且稍後被植入 123977.doc -15· 200820428 成推雜多晶秒’或可 中H 次了以摻雜形式沈積。在-實施例 下#動間極部分231沈積為未摻 動閘極部分232沈積為摻雜多_ 上“ 受 > H 4 @期間經 樜=X的⑤溫後,來自上部浮動閘極部分232之換 物擴散至下部浮動閘極邱八 ’、 道带 B 231中’使得其亦成為摻雜及 1。亦可使用其他適當導電性材料來替代摻雜多晶 石夕。下,浮動間極部分231及上部浮動閘極部分232亦可沈 積於一單一層而非兩個獨立層中。 圖2(A)中將字線250a-c展示為在又方向中在陣列上延 伸三字線250a-c覆蓋浮動閘極23〇a之部分,|亦部分地環 、凡浮動閘極230a。在所示之實施例中,字線2鳩覆蓋下部 浮動閘極部分231之上表面233之曝露部分,且封閉上部浮 動閘極部分232之上表面及側面。± _浮動閘極部分232增 加將浮動閘極230a與控制閘極25〇b耦合的浮動閘極之表面 積。與習知浮動閘極相比,此增加之面積提供改良之耦合 比率。 圖2(A)中未展示金屬導體層。由於諸如字線之多晶矽元 件通系具有一顯著小於金屬之電導率的導電率,所以金屬 導體包括於獨立層中,該等獨立層沿多晶矽元件之長度以 週期性間隔經由任何中間層連接至各別金屬線。同樣,字 線可包括金屬或金屬矽化物部分以增加字線之電導率。舉 例而言,諸如鈷或鎢之耐火金屬可用於在多晶矽層之頂部 上形成一矽化物層。矽化物材料具有一比多晶矽高的導電 率’且因此改良沿字線之電傳導。 123977.doc -16- 200820428 用於形成倒τ形浮動閘極之製程 圖3展示圖2(A)之NAND記憶體陣列11〇在製造早期之沿 由圖2(A)中之I-Ι所指示的X方向(字線方向)的橫截面圖。 氮化矽(SiN)或其他遮罩材料之層3〇1在基板3〇5之上表面 3 03上延伸。遮罩層301可經沈積以覆蓋整個上表面3〇3並 因此被認為係一毯覆式層。光阻部分3〇7a<形成於遮罩層 3〇1上。通常對光阻進行高速旋塗以形成一接著藉由在微 影製程中根據一預定圖案將光阻曝露至光(或在某些狀況 下,曝露至電子束)而加以圖案化之毯覆式層。此圖案確 定當光阻顯影時移除哪些部分及保留哪些部分。光阻部分 307a-c在Y方向(垂直於圖3之橫截面)中延伸且覆蓋遮罩層 301。給定所使用微影製程之限制,可形成非常小且間隔 非常緊密的光阻部分3〇7a_c。在一實例中,當沈積光阻部 /刀時’光阻部分之寬度等於最小特徵大小f,1當沈積光 阻部分時,相鄰光阻部分之間的距離為F。’然而,在本實 施例中,綠部分307a_c經受一細化處理,該細化處理移 除一些光阻’使得光阻部分斯a_e具有—小於最小特徵大 J之寬度纟美國專利第6,888,755號及美國專利中請案第 11/316,654號中据述抗餘劑細化處理之實例。隨後,使用 ^阻部分3G7a_e來在與纽部分斯a_e相同之圖案中將遮 罩層301圖案化成遮罩部 接者’將遮罩部分用作一餘 刻遮罩以形成用於隔離之溝槽。 圖4展示使用光阻部公^ .^ 7a_C圖案化之遮罩部分409a-c及 將遮罩部分409a-c用作_蝕 劍遮罩而形成的溝槽。一旦遮 123977.doc 200820428 罩層3(H經圖案化以形成獨立遮罩部分,便可移除 光阻部分307a-c。接著,使用遮罩部分在適當位置 執行一各向異性蝕刻。結果為在基板3〇5之由遮罩部分 4〇9a-c覆蓋的區域之間在基板3〇5中形成溝槽。接著用二An exemplary memory cell includes a floating gate 23A and a source/drain region 240a-b in the substrate adjacent to the floating gate 23A on either side of the meandering direction. The strings are separated by the STI structure 21〇a_d. The sti structure 21 Oa-d forms an isolation element that electrically isolates the source/drain regions from the source/drain regions of the cells in adjacent strings. In the gamma direction, adjacent cells share a source/drain region. The source/drain regions electrically connect one cell to the next cell, thus forming a cell string. The source/drain regions 240a_c in this example are formed by implanting impurities into the substrate in the desired region. The floating gate shown in the embodiment of Fig. 2(A) includes two portions which are better seen in the three-dimensional view of the floating gate 230a shown in Fig. 2(B). The lower oceanic gate portion 231 extends over the surface of the substrate on a thin layer of tantalum dioxide (oxide). The upper floating gate portion 232 protrudes upward from the upper surface 233 of the lower floating gate portion 231 to form an inverted z-shaped cross section in the meandering direction. The upper floating gate portion 232 extends in the meandering direction to the edge of the lower floating gate portion 231, but is narrower in the meandering direction. Therefore, the floating gate is wider than the intermediate level below the intermediate level, thereby partially exposing one of the upper surfaces 233 of the lower floating gate portion 231. The lower and upper floating gate portions 231, 232 of this embodiment are all made of doped polysilicon. The polycrystalline germanium may be deposited in an undoped form and later implanted in a doped form, or may be deposited in a doped form. In the embodiment - the inter-electrode pole portion 231 is deposited as an undoped gate portion 232 deposited as a doping _ on the upper side of the upper floating gate portion after the "temperature" of the "H 4 @ period 樜 = X The change of 232 is diffused to the lower floating gate Qiu Ba ', and the strip B 231 ' makes it also doped and 1. Other suitable conductive materials can also be used instead of doped polycrystalline stone. The pole portion 231 and the upper floating gate portion 232 may also be deposited in a single layer rather than in two separate layers. The word lines 250a-c are shown in Figure 2(A) as extending the three word lines on the array in the other direction. The portions 250a-c cover the floating gate 23A, and also partially ring the floating gate 230a. In the illustrated embodiment, the word line 2 鸠 covers the exposure of the upper surface 233 of the lower floating gate portion 231. Partially, the upper surface and the side surface of the upper floating gate portion 232 are closed. The ± _ floating gate portion 232 increases the surface area of the floating gate coupling the floating gate 230a with the control gate 25 〇 b. In contrast, this increased area provides an improved coupling ratio. Metal is not shown in Figure 2(A). Body layer. Since a polysilicon element such as a word line has a conductivity that is significantly less than the conductivity of the metal, the metal conductor is included in a separate layer that is connected at any periodic intervals along the length of the polysilicon element via any intermediate layer. Similarly, the word line may include a metal or metal germanide portion to increase the conductivity of the word line. For example, a refractory metal such as cobalt or tungsten may be used to form a germanide layer on top of the polysilicon layer. The telluride material has a higher conductivity than polysilicon' and thus improves the electrical conduction along the word line. 123977.doc -16- 200820428 Process for forming an inverted τ floating gate Figure 3 shows Figure 2(A) A cross-sectional view of the NAND memory array 11 at the early stage of manufacture along the X direction (word line direction) indicated by I-Ι in Fig. 2(A). Layer of tantalum nitride (SiN) or other mask material 3〇1 extends over the upper surface 310 of the substrate 3〇5. The mask layer 301 can be deposited to cover the entire upper surface 3〇3 and thus is considered to be a blanket layer. The photoresist portion 3〇7a<forms On the mask layer 3〇1. Usually The photoresist is spin coated at a high speed to form a blanket layer that is subsequently patterned by exposing the photoresist to light (or, in some cases, to an electron beam) according to a predetermined pattern in a lithography process. This pattern determines which portions are removed and which portions are retained when the photoresist is developed. The photoresist portions 307a-c extend in the Y direction (perpendicular to the cross section of Figure 3) and cover the mask layer 301. Given the lithography used The limitation of the process can form a very small and closely spaced photoresist portion 3〇7a_c. In an example, when the photoresist/knife is deposited, the width of the photoresist portion is equal to the minimum feature size f, 1 when the photoresist is deposited In part, the distance between adjacent photoresist portions is F. 'However, in the present embodiment, the green portion 307a_c is subjected to a refinement process that removes some of the photoresist' such that the photoresist portion a_e has a width less than the minimum feature size J, U.S. Patent No. 6,888,755 and An example of the refining agent refining treatment is described in U.S. Patent Application Serial No. 11/316,654. Subsequently, the resist layer 3G7a_e is used to pattern the mask layer 301 into a mask connector in the same pattern as the Newports a_e. The mask portion is used as a residual mask to form a trench for isolation. . Fig. 4 shows a mask portion 409a-c patterned using the photoresist portion and a trench formed by using the mask portion 409a-c as a mask. Once the mask layer 3 (H is patterned to form a separate mask portion), the photoresist portions 307a-c can be removed. Next, an anisotropic etch is performed at the appropriate location using the mask portion. A groove is formed in the substrate 3〇5 between the regions of the substrate 3〇5 covered by the mask portions 4〇9a-c.

氧化矽(Si〇2或”氧化物,,)411填充此等溝槽。隨後,可移除 (例如,藉由CMP或使用一回蝕處理)遮罩部分及過 1二氧化矽411以留下一如圖5中所示之平坦表面。二氧化 矽填充之溝槽形成淺溝槽隔離(STI)結構21〇a_d。sti結構 21〇a-d提供相鄰記憶體單元之間的隔離。STI結構2i〇a_d在 Y方向中延伸。在相鄰STI結構21〇a_d之間為剩餘基板部分 5 1 5 a c (務後5己丨思體單元形成於此處)。不同於某些先前結 構,圖5之STI結構21〇a-d寬於在其間的剩餘基板部分 515a-c,且剩餘基板部分515a_c窄於所使用的微影製程之 最小特徵大小。 在平坦化步驟之後,如圖6中所示,在基板3〇5上形成 (例如藉由熱氧化或沈積)閘極介電層6 1 7 (在此實例中, 二氧化矽),且將導電材料(在此實例中,多晶矽)之第一導 電層519沈積於閘極介電層617上。遮罩層沈積於第一導電 層5 19上且圖案化成位於剩餘基板部分515a_c上的遮罩部 分521a-c。在此實例中,遮罩部分521a_c為氮化矽且使用 光阻來圖案化,但在此狀況下未使用抗蝕劑細化。為了將 遮罩部分521a-c定位於剩餘基板部分515a-c上,形成遮罩 部分521a-c之圖案與STI結構21〇a_c及剩餘部分515a_c之現 有圖案對準。在形成遮罩部分521a_c後,沿其側面形成側 123977.doc -18- 200820428 壁隔片523a-f。此側壁隔片形成眾所熟知且可藉由沈積一 介電層且接著執行-各向異性钱刻來達成。在形成側壁隔 片523a-f之前,遮罩部分521a_c之間的間隙為最小特徵大 小(F)。侧壁隔片523a_f減小此間隙,使得其小於最小特徵 大小。接著將具有侧壁隔片523a_f之遮罩部分52la_c用作 -蝕刻遮罩以蝕刻穿過第一導電層519。#由此餘刻移除Cerium oxide (Si 〇 2 or "oxide,") 411 fills the trenches. Subsequently, the mask portion and the over 1 cerium oxide 411 can be removed (for example, by CMP or using an etch back treatment) to remain The next flat surface is shown in Figure 5. The ruthenium dioxide filled trench forms a shallow trench isolation (STI) structure 21〇a_d. The sti structure 21〇ad provides isolation between adjacent memory cells. STI structure 2i〇a_d extends in the Y direction. Between adjacent STI structures 21〇a_d is the remaining substrate portion 5 1 5 ac (after which 5 丨 丨 单元 unit is formed here). Unlike some previous structures, The STI structure 21〇ad of 5 is wider than the remaining substrate portions 515a-c therebetween, and the remaining substrate portions 515a-c are narrower than the minimum feature size of the lithography process used. After the planarization step, as shown in FIG. Forming a gate dielectric layer 617 (in this example, cerium oxide) on the substrate 3〇5 (eg, by thermal oxidation or deposition), and first of the conductive material (in this example, polysilicon) A conductive layer 519 is deposited on the gate dielectric layer 617. The mask layer is deposited on the first conductive layer 5 19 and patterned The mask portions 521a-c are formed on the remaining substrate portions 515a-c. In this example, the mask portions 521a-c are tantalum nitride and patterned using photoresist, but in this case no resist refinement is used. The mask portions 521a-c are positioned on the remaining substrate portions 515a-c such that the pattern of the mask portions 521a-c is aligned with the existing pattern of the STI structures 21a-c and the remaining portions 515a-c. After forming the mask portions 521a-c, Side 123977.doc -18-200820428 wall spacers 523a-f are formed along the sides thereof. This sidewall spacer is well known and can be achieved by depositing a dielectric layer and then performing an anisotropic engraving. Prior to the sidewall spacers 523a-f, the gap between the mask portions 521a-c is the minimum feature size (F). The sidewall spacers 523a-f reduce this gap such that it is smaller than the minimum feature size. It will then have sidewall spacers 523a-f The mask portion 52la_c acts as an etch mask to etch through the first conductive layer 519.

C 的第-導電層519之部分接著由一適當介電質(在此實例 中’ '一氧化^ )加以替代。 分圖7展示在將第一導電層519分成在γ方向(垂直於圖7之 也、截面)中I伸之第一導電部分5! 並移除遮罩部分 52U-C及側壁隔片523以從而提供—平坦表面後之圖6之結 構。遮罩部分52la-c及侧壁隔片523a_f之移除亦可移除任 何過量介電質,使得僅剩下位於第一浮動閘極部分I 之間的電#分725a-b。第—導電部分519a_c藉由介電部 刀ab而彼此電隔離且藉由閘極介電層617而與下層剩 餘基板部分515a_e隔離。隨後,形成並圖案化另一遮罩 層0 圖8展示具有形& %楚 $升成於第一導電部分519a-c及介電部分 725a-c之上的(氮化石夕 、 )第一遮罩部分827 a-d及(二氧化砍 之)側土隔片829a_f的圖7之結構。可如前所述形成遮罩部 β ~ 壁隔片829a_f ’使得側壁隔片㈣^之間的間 隙小於最小特徵大^ J ’且此等間隙形成自第一導電部分 519 a-c向上延伸之揭 如6:51a'e。形成遮罩部分827a-d涉及將 用於形成遮罩部公』 刀827a-d之圖案與先前存在之結構對準。 123977.doc -19_ 200820428 在此狀況下,遮罩部分827a_d位於STI結構2i〇a_d之上,使 得側壁隔片之間的槽831a_c在第一導電部分519a_c上居 中。iw後,第二浮動閘極層經沈積以填充槽83丨a_c。 圖9展示沈積第二導電層933以填充槽831a_c之結果。在 此實例中’第二導電層933之材料為摻雜多晶石夕。第二導 電層933在槽83^之底部與第一導電部分Η.。接觸並在 此等點處形成電接觸。在沈積第二導電層933後,可執行A portion of the first conductive layer 519 of C is then replaced by a suitable dielectric (in this example ''oxidation^). 7 shows that the first conductive layer 519 is divided into the first conductive portion 5 in the γ direction (perpendicular to the cross section of FIG. 7), and the mask portion 52U-C and the sidewall spacer 523 are removed to thereby remove the mask portion 52U-C and the sidewall spacer 523. The structure of Figure 6 after the flat surface is provided. Removal of the mask portions 52la-c and sidewall spacers 523a-f may also remove any excess dielectric such that only the electrical points 725a-b between the first floating gate portions I remain. The first conductive portions 519a-c are electrically isolated from each other by the dielectric portion ab and are isolated from the lower remaining substrate portions 515a-e by the gate dielectric layer 617. Subsequently, another mask layer is formed and patterned. FIG. 8 shows that the shape & % Chu is raised above the first conductive portions 519a-c and the dielectric portions 725a-c (Nitride, first) The structure of FIG. 7 of the mask portion 827 ad and the (secondary oxide cut) side soil spacer 829a_f. The mask portion β ~ wall spacer 829a_f ' may be formed as described above such that the gap between the sidewall spacers (4) is smaller than the minimum feature size J J and the gaps are formed to extend upward from the first conductive portion 519 ac 6:51a'e. Forming the mask portions 827a-d involves aligning the pattern used to form the mask portion knives 827a-d with the pre-existing structure. 123977.doc -19_ 200820428 In this case, the mask portions 827a-d are located above the STI structure 2i〇a_d such that the trenches 831a-c between the sidewall spacers are centered on the first conductive portions 519a-c. After iw, the second floating gate layer is deposited to fill the trenches 83a-c. FIG. 9 shows the result of depositing the second conductive layer 933 to fill the trenches 831a-c. In this example, the material of the second conductive layer 933 is doped polycrystalline. The second conductive layer 933 is at the bottom of the trench 83^ and the first conductive portion. Contact and form electrical contacts at these points. After depositing the second conductive layer 933, executable

:蝕刻(或系列不同蝕刻)以移除第二導電層933之過量材料 並移除遮罩部分827a-d及側壁隔片829a_f。 圖展示移除第二導電層933之過量材料、遮罩部分 827a-d及側壁隔片829a_f的結果。如圖1〇中所示,第二導 電部分933a-c仍為自第―導電部分519a_c向上延伸以形成 一倒τ形橫截面。第二導電部分933a_c保留在槽831&<所形 成之處且其尺寸由槽831 a_c確定且可小於最小特徵大小。 隨後,將第二彳電層沈積於第一及第二導電部分上,且將 一控制閘極層沈積於第二介電層上。 、 、圖11展示具有一覆蓋第一導電部分519a_c及第二導電部 刀933a_C之第二介電層1135且具有一覆蓋第二介電層1135 之控制閘極層1137的圖10之結構。在本實例中,控;閘極 層1137之材料為摻雜多晶矽。亦可在多晶矽上添加矽化 鎢、矽化鈷或其他導電材料之一額外層以提供一具有較低 薄片電阻之控制閘極層。可將第二介電層i出: etching (or a series of different etches) to remove excess material of the second conductive layer 933 and removing the mask portions 827a-d and sidewall spacers 829a-f. The figure shows the result of removing excess material of the second conductive layer 933, the mask portions 827a-d, and the sidewall spacers 829a-f. As shown in Fig. 1A, the second conductive portions 933a-c are still extended upward from the first conductive portion 519a-c to form an inverted Tau-shaped cross section. The second conductive portion 933a_c remains at the location where the slot 831&<> is formed and its size is determined by the slot 831a-c and may be less than the minimum feature size. Subsequently, a second tantalum layer is deposited on the first and second conductive portions, and a control gate layer is deposited on the second dielectric layer. FIG. 11 shows the structure of FIG. 10 having a second dielectric layer 1135 covering the first conductive portions 519a-c and the second conductive portions 933a_C and having a control gate layer 1137 covering the second dielectric layer 1135. In this example, the material of the gate layer 1137 is doped polysilicon. An additional layer of tungsten, cobalt telluride or other conductive material may also be added to the polysilicon to provide a control gate layer having a lower sheet resistance. The second dielectric layer i can be

Poly 下,非多晶矽之材料可用於導電部分或控制閑極材料,或 123977.doc -20- 200820428 用於導電部分材料與控制閘極材料。在圖丨丨之實例中,第 二介電層!135為-由二氧化矽(氧化物)層、接著氮化矽(氮 化物)層、接著二氧化矽(氧化物)之另一層組成的複合層。 此氧化物-氮化物-氧化物(0N0)堆疊可提供比單一介電材 可執行一圖案 ’且在相同步 料更仏的效此。在形成控制閘極層113 7後, 化步驟以將控制閘極層1137分成字線25〇a_cUnder Poly, non-polycrystalline materials can be used for conductive parts or for control of idler materials, or for use in conductive part materials and control gate materials in 123977.doc -20- 200820428. In the example of the figure, the second dielectric layer !135 is composed of a layer of cerium oxide (oxide), followed by a layer of tantalum nitride (nitride), followed by another layer of cerium oxide (oxide). Composite layer. This oxide-nitride-oxide (0N0) stack provides a pattern that can be performed more than a single dielectric material and is more awkward in phase synchronization. After forming the control gate layer 113 7 , the step of dividing the control gate layer 1137 into word lines 25 〇 a_c

驟中,將第-及第二導電部分分成獨立之浮動間極。以此 方式’浮動閘極及字線自對準。 圖12展示概括圖3至圖丨丨之製程之流程圖。首先,在一 基板上形成一·遮罩層且在遮罩層上形成一光阻層(i24i)。 圖案化該光阻層(1243)且接著使該圖案經受抗钱劑細化 (1245)。接著使用經細化之光阻部分將遮罩層圖案化成遮 罩邛刀(1247)。遮罩部分形成一用於建立溝槽之位置的遮 罩層以一氧化矽填充該等溝槽且執行平坦化以形成STI 結構(1249)。接著沈積—閘極介電層及一第—浮動問極層 (1251) H浮動閘極層上形成遮罩部分(1253)且在遮 罩部分之側面上形成側壁隔片(1255)。接著,將遮罩部分 U 土隔片用作一遮罩以蝕刻第一浮動閘極層(1Μ7),且 成獨立之第一浮動閘極部分。沈積介電質以填充第 斤動閘極部分之間的間隙’且接著執行平坦化⑽9)以 f:過量介電質、遮罩部分及側壁隔片。在第一浮動閘極 部分上形成另—組遮罩部分與側壁隔片(1261)。定位遮罩 部为及側壁隔# ,使得在側壁隔片之間形成的槽覆蓋第一 '心]和Ρ刀。用第二浮動閘極層填充該等槽(1263),且 123977.doc -21 · 200820428 接著將過量第二浮動閘極材料與遮罩部分及側壁隔片一起 移除(1265),留下第二浮動閘極部分。此使得第一及第二 浮動閘極部分之表面曝露。隨後,在第一及第二浮動閘極 部分上沈積一介電層,且在介電層上沈積一控制閘極層 (1267)。一蝕刻步驟蝕刻由先前處理形成之堆疊,使得控 制閘極層被分成獨立字線,且第一及第二浮動閘極部分被 分成獨立浮動閘極(1269)。因此,浮動閘極自對準字線。In the step, the first and second conductive portions are divided into independent floating electrodes. In this way, the floating gate and word line are self-aligned. Figure 12 shows a flow chart summarizing the process of Figures 3 through 。. First, a mask layer is formed on a substrate and a photoresist layer (i24i) is formed on the mask layer. The photoresist layer (1243) is patterned and then subjected to retouching (1245). The mask layer is then patterned into a mask trowel (1247) using a refined photoresist portion. The mask portion forms a mask layer for establishing the location of the trenches, filling the trenches with a hafnium oxide and performing planarization to form an STI structure (1249). Next, a deposition-gate dielectric layer and a first floating-level layer (1251) H are formed on the floating gate layer to form a mask portion (1253) and a sidewall spacer (1255) is formed on the side of the mask portion. Next, the mask portion U-sl separator is used as a mask to etch the first floating gate layer (1Μ7) and become a separate first floating gate portion. A dielectric is deposited to fill the gap between the gate portions and then planarization (10) 9) is performed to f: excess dielectric, mask portions, and sidewall spacers. A further set of mask portions and sidewall spacers (1261) are formed on the first floating gate portion. The positioning mask portion is and the side wall spacer # such that the groove formed between the side wall spacers covers the first 'heart' and the file. The slots (1263) are filled with a second floating gate layer, and 123977.doc -21 · 200820428 then the excess second floating gate material is removed (1265) along with the mask portion and the sidewall spacers, leaving the first Two floating gate sections. This exposes the surfaces of the first and second floating gate portions. Subsequently, a dielectric layer is deposited over the first and second floating gate portions, and a control gate layer (1267) is deposited over the dielectric layer. An etch step etches the stack formed by the previous process such that the control gate layer is divided into individual word lines and the first and second floating gate portions are divided into independent floating gates (1269). Therefore, the floating gate is self-aligned with the word line.

圖13以三維方式展示圖2A之結構。字線25〇a_d在X方向 中延伸且在Y方向中間隔開。字線250a_d形成其覆蓋於其 上並與個別洋動閘極耦合的控制閘極。STI結構在Y 方向中延伸且在X方向中間隔開。可將字線25〇a_c用作一 植入遮罩以在Y方向中於記憶體單S之間植人源極/没極區 域。此植人將記憶體單元連接成在¥方向中於STI結構 210a-e之間延伸的串。個別浮動閘極由如圖中所示之一 下部部分及一上部部分組成。 圖Π之結構之-優點在於在相鄰浮動閘極之間沿γ方向 存在較少的電容耗合。某些先前結構使用-沿X方向之橫 所使用的微影製程之最小特徵大小確 定的橫向尺寸的浮動閘極。相比 I下圖13之實施例具有 具窄於最小特徵大小之上部部分 的’予動閘極。此意謂圖i 3 之浮動閘極的曝露刻面之面積 ^ 償j减小,精此減少相鄰浮動 閘極之間的電容耦合。可為 了在不》咸少控制閑極與浮動閘極之 間的耦合的情況下執行以此方式 Λ减小刻面面積。控制 與浮動閘極之間的_合視覆蓋 動閘極之表面的控制閘極 123977.doc -22 - 200820428 之總面積而定。此不受^; γ 士 在χ方向中使浮動閘極之上部部分 較窄的影響。另外,在圖13 上0f 刀 牡口u之只施例中,相對於浮 與其γ方向中之鄰近者之間 町电%而$ ,净動閘極與耦合 至其之控制閘極之間的邊绫揚 旧瓊緣~可減小。此係因為,與浮動 閘極之刻面與在Y方向中夕士一 相郇洋動閘極之刻面之間的距 離相比’控制閉極盘淫ΘΒ jL^r 。子動閘極之刻面的中心之間的距離減 小。與浮動閘極與苴在 ,、在Y方向中之鄰近者之間的耦合相 比’此趨於改良浮動閘極與控制閘極之間的輕合。 圖13之結構之-優點在於其可比某些其他結構更易於按 比例^放至小尺寸。詳言之,因為浮動閘極之上部部分相 對較窄二所以在此位準處,此在浮動閘極之間留下更多空 間’使传存在更多空間用於控制閘極及介電層。給定在可 將控制閘極及介電層製造得多小之某些限制,此可允許記 憶體早兀被製造得比若上部部分較大則其將具有的尺寸要 小。圖14說明此概念。沿字線25〇〇(亦即,沿χ方向)之橫 截面展不為具有所指示之某些尺寸。浮動閘極230χ上之一 點與〜X方向之相鄰浮動閘極23心上之一對應點之間的距 離為最小特彳玫大小之兩倍(2F)。在圖14中,距離展示為 自浮動閘極230x之上部部分的側面延伸至在χ方向中之相 鄰浮動閘極23 Oy之上部部分的側面。在距離2F中存在一具 有厚度h之上部浮動閘極部分1471及具有厚度“之字線 250c之一部分1473及在其間的具有厚度“之介電層ιΐ35。 因此,在此實例中,2F=tl+t2 + 2t3。尺寸tl、。及“對於任 何給定材料可具有某些最小值,以避免高故障率。通常, 123977.doc -23- 200820428 當上部浮動閘極部分由多 相/ , 夕$成k不小於1〇〇埃。 類似地’右字線由多晶石夕开< 7成’則1:2將不小於1〇〇埃。者介 電質為ΟΝΟ層時,t3通當將又丨从 、田" 3通吊將不小於埃。所以使用此等最 小值,2F=440埃且!7=22〇埃(2 、, 璆(22不未)。因此,對於某些材 料’可在展示為具有小黾太 2不未之最小特徵大小的結構中 保持足夠效能。相比之下,若 ^右“-F(上部部分具有等於最小 特徵大小之尺寸),則ρ,且代入畀|姑^ 五代入最小值,;p = 3 4 0埃Figure 13 shows the structure of Figure 2A in three dimensions. The word lines 25〇a_d extend in the X direction and are spaced apart in the Y direction. Word lines 250a-d form control gates that overlie them and are coupled to individual oceanic gates. The STI structures extend in the Y direction and are spaced apart in the X direction. The word line 25A_c can be used as an implant mask to implant the source/drain region between the memory sheets S in the Y direction. This implant connects the memory cells into a string extending between the STI structures 210a-e in the ¥ direction. The individual floating gates consist of a lower portion and an upper portion as shown in the figure. The advantage of the structure is that there is less capacitance dissipation in the gamma direction between adjacent floating gates. Some prior structures use a floating gate of lateral dimensions determined by the minimum feature size of the lithography process used in the X direction. The embodiment of Figure 13 has a 'preferred gate that is narrower than the upper portion of the minimum feature size. This means that the area of the exposed facet of the floating gate of Figure i3 is reduced by j, which in turn reduces the capacitive coupling between adjacent floating gates. This can be done in such a way as to reduce the facet area without coupling the idle control and the floating gate. The _-view coverage between the control and the floating gate depends on the total area of the control gate of the surface of the gate. 123977.doc -22 - 200820428. This is not affected by ^; γ 士 in the χ direction makes the upper part of the floating gate narrower. In addition, in the only example of the 0f knife mouth u in Fig. 13, between the floating gate and the control gate coupled to it, relative to the floating power between the neighbors in the gamma direction and the neighboring one in the gamma direction The side of the old Qiongyuan ~ can be reduced. This is because the distance between the facet of the floating gate and the facet of the eclipse of the eclipse in the Y direction is compared to the control of the closed disc obscenity jL^r. The distance between the centers of the facets of the sub-gates is reduced. The coupling between the floating gate and the control gate is improved with the floating gate and the ,, , and the ratio between the adjacent ones in the Y direction. The structure of Figure 13 - the advantage is that it can be scaled down to a smaller size than some other structures. In detail, because the upper part of the floating gate is relatively narrow, so at this level, this leaves more space between the floating gates' to allow more space for controlling the gate and dielectric layers. . Given some limitations on how much control gates and dielectric layers can be fabricated, this allows the memory to be fabricated earlier than if the upper portion were larger. Figure 14 illustrates this concept. The cross-section along the word line 25 〇〇 (i.e., along the χ direction) does not have some of the dimensions indicated. The distance between one point on the floating gate 230 and one of the points on the center of the adjacent floating gate 23 in the ~X direction is twice the size of the minimum characteristic (2F). In Fig. 14, the distance is shown to extend from the side of the upper portion of the floating gate 230x to the side of the upper portion of the adjacent floating gate 23 Oy in the x direction. At a distance 2F, there is a floating gate portion 1471 having a thickness h above and a dielectric layer ι 35 having a thickness "the portion 1473 of the word line 250c and having a thickness therebetween". Therefore, in this example, 2F = tl + t2 + 2t3. Size tl,. And “There may be certain minimums for any given material to avoid high failure rates. Typically, 123977.doc -23- 200820428 when the upper floating gate is partially multiphase/, ‧$ k is not less than 1 〇〇 Similarly, the 'right word line is made up of polycrystalline stone eves < 7 into '1:2 will be no less than 1 〇〇. When the dielectric is ΟΝΟ layer, t3 will be 丨 、, 田" The 3-way hoist will be no less than angstroms, so use these minimums, 2F = 440 angstroms and !7 = 22 angstroms (2, 璆 (22 not). Therefore, for some materials 'can be shown as small黾太2 does not have enough minimum feature size structure to maintain sufficient performance. In contrast, if ^ right "-F (the upper part has a size equal to the minimum feature size), then ρ, and substitute 畀|姑^ five generations Minimum value; p = 3 4 0 angstrom

(34奈米)。雖然此等實例盘特定 τ只π /、荷疋材枓及其限制有關,但在 使用其他材料之情況下,可應用其他限制。 圖13之實施例之另一優點在於其對可能發生在組件之間 的錯位相對不敏感。舉例而纟,若第—浮動閘極23(^相 對於STI結構210a-d錯位,此可能不會嚴重影響設備效 能。圖15展示第一導電部分519a-c與由剩餘基板部分515心 c形成的通道區域之間的錯位δι。因為第一導電部分519a_c 製造得比最小特徵大小寬,而剩餘部分5丨5a<製造得比最 小特徵大小小,所以第一導電部分51%<仍覆蓋通道區域 之整個寬度,且第一導電部分與通道區域之間的耦合在此 狀況下沒有大的變化。在其他實施例中,在未將第一浮動 閘極部分製造得較大的情況下,可將通道區域製造得較 小,且此可提供足夠的裕度用於對準時的誤差。類似地, 在未將通道製造得較小的情況下提供寬的第一浮動閘極部 分可係足夠的。 圖16展示在一下部浮動閘極部分1675與一上部浮動間極 部分1677之間的錯位§2。在此狀況下,浮動閘極ι679(由下 123977.doc -24- 200820428 部部分1675及上部部分1677 丨刀1677形成)與上覆控制閘極之間的 麵合保持不變’因為輕合淳私卩 祸口汙動閘極1679與控制閘極之 不受在X方向中移動上部、、全如 、 勖上邛汙動閘極部分丨677的影響。因 此,圖13之結構相對能忍受錯位。 θ 自對準製程 上文所述之製程之-替代製程使用自對準來產生無需— 獨立對準步驟來建立其相對位置的特徵。藉由無需獨立對 準步驟’可簡化全部製程流程,且因此可減少成本。另 外,可減少或消除歸因於錯位之故障。 圖17展示NAND記憶體陣列在製造早期沿X方向的橫截 面。STI結構1701以在丫方向中延伸且展示於圖17中之橫 截面中。在STI結構1701a_d之間,閘極介電部分17〇3^4及 第一導電部分HOSa-c在γ方向中延伸。圖17中所示之結構 通常藉由沈積閘極介電質(在此狀況下為二氧化矽)之一毯 覆式層繼之以導電材料之一毯覆式層而形成。在本實例 中,導電材料為沈積至10奈米厚度之多晶矽。接下來,在 Y方白中延伸之遮罩部分形成於浮動閘極層上。根據遮罩 部分之圖案形成溝槽。該等溝槽延伸穿過導電層、閘極介 包層並延伸至下層基板中。此等溝槽將導電層及閘極介電 層分別分成第一導電部分17〇5a_c及閘極介電部分1703a_c。 用介電材料(在此狀況下為二氧化矽)來填充該等溝槽以形 成STI結構I701a-d。隨後,遮罩部分自第一導電部分 1705a_c上移除以使得STI結構1701a-d之側壁曝露。隨後, 侧壁隔片形成於STI側壁上。 123977.doc -25- 200820428 圖18展不在沿STI結構17〇la-d之曝露側壁形成側壁隔片 1807a-f後之圖17之結構。側壁隔片18〇7a_f係藉由使用一 基於四乙基正矽酸酯(Tetraethyl 0rth〇siHcate,tE〇s)之掣 程沈積二氧化矽層及接著執行各向異性蝕刻而形成。側壁 隔片l807a_f覆盍第一導電部分POSa-c。槽1809a-c形成於 第一導電部分1705a-c上之側壁隔片18〇7a_f之間,使得第 一導電部分1705a-c部分曝露。圖18展示在槽18〇9a_c下移 ( 除第一導電部分1705a<中之一些,以在此等位置處形成 空穴1811a-C。空穴1811a-c在側壁隔片18〇7a_f與第一導電 部分1705a-c之間延伸。在介電層經蝕刻以形成槽i8〇9a_e 後,可藉由執行一額外濕式蝕刻而形成空穴丨8丨丨a_c。在某 些狀況下,無空穴形成於第一導電部分中,所以無需濕式 蝕刻。隨後,沈積一第二浮動閘極層。 圖19展示沈積於圖18之結構上的(摻雜多晶矽之)第二導 電層1913。詳言之,沈積第二導電層1913以填充第一導電 C; 邻刀n〇5a-c中的空穴1811a_c,且填充覆蓋第一導電部分 a c的槽1809a-c。第二導電層1913亦覆蓋STI結構 1701&-(1及側壁隔片18〇7&彳。形成空穴1811&^允許第一導 電部分17〇5a-C與第二導電層1913之間的良好_。詳言 之,當沈積第二導電層1913時,其填充空穴i8iiw,且此 為稱後形成之結構提供一穩定基底。在第一導電部分 5a c舁第一 ^電層1913之間的增加之介面面積改良此 等部分之間的結合之物理強度。此對於避免在稍後處理期 間的損害可係重要的。詳言之,若第二浮動閑極部分未經 123977.doc -26- 200820428 充分地固定,則CMP或其他製程可使第二浮動閘極部分折 斷。在某些其他實例中,可不使用此等空穴,因為在沒有 此等空穴的情況下可達成足夠的接觸。 圖20展示在平坦化以移除第二導電層1913之過量材料後 • 之圖19之結構。此使得第二導電部分1913a-c附著至第一 導電部分1705a-c。此可藉由化學機械研磨(CMp)或回蝕或 其他方法來達成。此平坦化亦可自STI結構17〇u_d以及側 堇隔片l8〇7a_f移除一些材料。隨後,自STI結構i7〇la-d及 側壁隔片18〇7a-f移除額外材料。 圖21展不在移除側壁隔片18〇7a_f且移除ST][結構i7〇ia_d 之邛刀直至一接近閘極介電部分17〇3a_c之位準後之圖 之結構。在某些狀況下,將STI結構之部分移除直至一低 於所不之位準。舉例而言,可在閘極介電部分之 頂部的位準之下蝕刻STI結構。在其他狀況中,移除STI材 料直至一尚於所示之位準,諸如第一導電部分 1 / 頁f的位準。隨後,在導電部分上形成一介電層及控制閘 極層。 圖22展示在沈積一介電層2215及一控制閘極層2217後之 圖21之結構。可根據先前描述沈積此等層,且隨後根據一 圖案餘刻此等層而以自對準之方式形成字線及獨立浮動間 ' 口此,形成一類似於圖2Α中所示之記憶體陣列的記憶 體陣列,其中浮動閘極具有一如圖2β中所示之倒丁形狀。 在^實例中,控制閘極層2217之一部分2219在相鄰第一導 電邛刀1705a、1705b之間向下延伸,且因此提供在字線方 123977.doc -27- 200820428 向中之相鄰下部浮動閘極部分之間的屏蔽。 圖23展示概括圖17至圖22之製程的流程圖。首先,將第 一洋動閘極層及閘極介電層形成為毯覆式層(2321)。接 著,形成STI結構(2323),因此將第一浮動閘極層分成稍後 形成個別浮動閘極的獨立部分。在覆蓋第一浮動閘極部分 之sti結構的曝露側面上形成側壁隔片(2325),使得槽保留 於弟浮動閘極部分上。濕式餘刻移除一些曝露之第一浮 動閘極材料及在側壁隔片下的一些浮動閘極材料(2327)。 /尤積一第二浮動閘極層以填充槽及空穴(2329)。接著,將 過置第二浮動閘極材料與側壁隔片及8丁1結構之部分一起 移除(2331)。接著,在浮動閘極部分ST][結構上沈積一介電 層及控制閘極層(2333)。接著執行圖案化蝕刻以形成自對 準的獨立字線及浮動閘極(2335)。 側壁氧化製程 在一替代實施例中,藉由以下步驟形成倒T形浮動閘 極:藉由移除導電材料而成形一導電層,及隨後將該導電 層分成獨立導電部分且形成STI溝槽以使得其自對準導電 部分。 圖24展示NAND記憶體陣列在製造早期之沿χ方向的橫 截面。一閘極介電層2402(此實例中為二氧化矽閘極介電 層)存在於基板2400上,且一導電層2404(此實例中為摻雜 多晶矽導電層)覆蓋閘極介電層2402。可在單一步驟中沈 積導電層2404以形成一均勻層,或可在一個以上步驟中沈 積導電層2404,使得導電層2404在不同層中包括(例如)不 123977.doc -28- 200820428 同摻雜程度的多晶梦。遮罩部分24〇6a_c(此實例中為氮化 石夕遮軍部分)在導電層2404上在γ方向(垂直於所示之橫截 面)中延伸。藉由在遮罩部分24G6a_e之圖案中進行餘刻而 成形導電層2404。在此狀況下,未敍刻導電層·4直至下 -閘極"電層2402。可藉由反應性離子敍刻⑻或—些 其他各向異性蝕刻方法來蝕刻掉導電層24〇4之部分。圖S 之遮罩部分24(^的寬度可等於所使用的微影製程之最 Η寺试大小或在某些狀況下可更小。可使用抗韻劑細化或 其他方法來減小遮罩部分24〇6a_c之寬《。因&,相鄰遮 罩部分2406a-c之間的間隔可為最小特徵大小(F)或可為更 大。當蝕刻已移除導電層24〇4之部分時,藉由遮罩部分 2406a-c所覆盍的導電層24〇4之剩餘部分而形成垂直突出 物2408a-c。垂直突出物24〇8a-c稍後形成浮動閘極之上部 部分。 圖25展示在執行氧化以在導電層24〇4之曝露表面及遮罩 部分2406a-c之曝露表面上生長二氧化矽層251〇後之圖24 、、、。構 $電層2404之多晶石夕的氧化消耗一些多晶石夕以形 成一氧化矽層25 1 0。因此,當形成二氧化矽層25丨〇時,部 分地消耗浮動閘極層24〇4且尺寸減小。詳言之,垂直突出 物2408a-c之沿X方向的尺寸減小。類似地,藉由氧化減小 遮罩部分2406a-c之尺寸。可藉由控制總氧化時間及控制 處理條件來控制二氧化矽層25丨〇之厚度及所消耗之多晶矽 與氮化石夕之ϊ。用於氧化多晶矽及氮化.石夕之適當製程包括 在相對較低的溫度(小於攝氏5〇〇度)下使用氧基執行氧化之 123977.doc -29- 200820428 彼等製程。舉例而言,去耦電漿氮化(卿)或槽平面天線 (SPA)電漿處理系統可用於氧化多晶矽與氮化矽。在一替 代貫施例中’抗餘劑細化或其他方法可用於形成窄遮罩部 分及垂直突出物。接著,一介電層可沈積於該等變窄之遮 I部分及垂直突出物上以形成類似於圖25之結構的結構。 . _展示在各向異性餘刻以形成sTI結狀溝槽2612“ 後之圖25之結構。各向異性钕刻留下沿垂直突出物應心 f °及遮罩部分_a_C之側壁的二氧切,使得形成側壁隔 片251〇a-f。二氧化矽經蝕刻穿過側壁隔片2510a_f之間, 且接著蚀刻穿過下層導電層24〇4之一部分以形成獨立導電 P刀2404a c 後,基板2400經蝕刻以形成具有界定溝 槽2612a-b之側面之位置的側壁隔片251〇以的溝槽2612以。 二氧化石夕層25U)及下層基板鳩之㈣可作為使用不同化 學處理之獨立钱刻步驟來執行。接著用二氧化石夕填充溝槽 2612a_b。二氧化矽可填充溝槽2612a-b超出基板24〇〇之表 C 面,使得二氧化石夕填充在側壁隔片2510a-f(亦由二氧化石夕 形成)之間的槽。隨後’可執行平坦化以移除遮罩部分 鳩及二氧切直至某—位準。接著執行—㈣以移 除額外二氧化矽。 圖27展示平坦化及額外敍刻之結果,使得二氧化石夕經移 除直至導電冑分2404a_c之下部部分的位_,留下ST】結構 在某些實例中’可將二氧切移除至不同位 準。在此階段無遮罩部分保留。使用一僅在移除遮罩部分 2406a-c之所有材料後停止的製程可達成平坦化。在其他 123977.doc -30- 200820428 實例中,在平坦化後可留下遮罩部分24〇以<之一些材 料。(34 nm). Although these examples are specific to τ only π /, 疋 枓 and their limitations, other restrictions may apply if other materials are used. Another advantage of the embodiment of Figure 13 is that it is relatively insensitive to misalignment that may occur between components. For example, if the first floating gate 23 is misaligned with respect to the STI structures 210a-d, this may not seriously affect device performance. Figure 15 shows the first conductive portions 519a-c and the core c formed by the remaining substrate portion 515. The misalignment between the channel regions is δι. Since the first conductive portion 519a_c is made wider than the minimum feature size, and the remaining portion 5丨5a < is made smaller than the minimum feature size, the first conductive portion 51% < still covers the channel The entire width of the region, and the coupling between the first conductive portion and the channel region does not vary greatly under such conditions. In other embodiments, where the first floating gate portion is not made larger, The channel area is made smaller, and this provides sufficient margin for alignment errors. Similarly, providing a wide first floating gate portion without adequately making the channel small can be sufficient Figure 16 shows the misalignment § 2 between a lower floating gate portion 1675 and an upper floating interpole portion 1677. In this case, the floating gate ι 679 (from the lower 123977.doc -24-200820428 portion 1675 and Upper The portion 1677 trowel 1677 is formed) and the surface contact between the overlying control gate remains unchanged. 'Because the light and the smear of the gate 1679 and the control gate are not moved in the X direction, The effect is that the structure of Figure 13 is relatively resistant to misalignment. θ Self-alignment process The process described above - the alternative process uses self-alignment to generate no need - Independent alignment steps to establish features of their relative position. The entire process flow can be simplified by eliminating the need for a separate alignment step, and thus the cost can be reduced. Additionally, faults due to misalignment can be reduced or eliminated. Figure 17 shows NAND memory. The body array has a cross section in the X direction at the beginning of fabrication. The STI structure 1701 extends in the x direction and is shown in the cross section in Figure 17. Between the STI structures 1701a-d, the gate dielectric portion 17〇3^4 The first conductive portion HOSa-c extends in the gamma direction. The structure shown in Fig. 17 is usually formed by depositing a blanket layer of a gate dielectric (in this case, cerium oxide) followed by a conductive material. Formed by a blanket layer. In this In the example, the conductive material is a polysilicon deposited to a thickness of 10 nm. Next, a mask portion extending in the Y square white is formed on the floating gate layer. The trench is formed according to the pattern of the mask portion. Extending through the conductive layer, the gate dielectric layer and extending into the underlying substrate. The trenches divide the conductive layer and the gate dielectric layer into the first conductive portion 17〇5a_c and the gate dielectric portion 1703a_c, respectively. An electrical material (cerium oxide in this case) is used to fill the trenches to form STI structures I 701a-d. Subsequently, the mask portions are removed from the first conductive portions 1705a-c to expose the sidewalls of the STI structures 1701a-d. . Subsequently, sidewall spacers are formed on the sidewalls of the STI. 123977.doc -25- 200820428 Figure 18 shows the structure of Figure 17 after the sidewall spacers 1807a-f are formed along the exposed sidewalls of the STI structure 17〇la-d. The sidewall spacers 18〇7a-f are formed by depositing a hafnium oxide layer using a process based on tetraethyl orthophthalate (Tetraethyl 0rth〇siHcate, tE〇s) and then performing an anisotropic etching. The side spacers l807a_f cover the first conductive portions POTa-c. Slots 1809a-c are formed between sidewall spacers 18A, 7a-f on first conductive portions 1705a-c such that portions of first conductive portions 1705a-c are exposed. Figure 18 shows the movement down of the grooves 18〇9a-c (except for some of the first conductive portions 1705a <RTIgt; to form holes 1811a-C at such locations. The holes 1811a-c are in the sidewall spacers 18〇7a-f and the first The conductive portions 1705a-c extend between. After the dielectric layer is etched to form the trenches i8〇9a_e, the holes 丨8丨丨a_c can be formed by performing an additional wet etch. In some cases, there is no space. The hole is formed in the first conductive portion, so no wet etching is required. Subsequently, a second floating gate layer is deposited. Figure 19 shows a (doped polysilicon) second conductive layer 1913 deposited on the structure of Figure 18. In other words, the second conductive layer 1913 is deposited to fill the first conductive C; the holes 1811a_c in the adjacent knives n〇5a-c, and the trenches 1809a-c covering the first conductive portion ac are filled. The second conductive layer 1913 is also covered. STI structure 1701 &- (1 and sidewall spacers 18〇7 & 彳. The formation of holes 1811 & ^ allows good between the first conductive portion 17 〇 5a-C and the second conductive layer 1913. In detail, when When the second conductive layer 1913 is deposited, it fills the holes i8iiw, and this provides a stable substrate for the structure formed after the formation. The increased interface area between the first conductive portions 5a c 舁 the first electrical layer 1913 improves the physical strength of the bond between the portions. This can be important to avoid damage during later processing. If the second floating idle portion is not sufficiently fixed by 123977.doc -26-200820428, the CMP or other process may break the second floating gate portion. In some other examples, such holes may not be used. Because sufficient contact can be achieved without such holes. Figure 20 shows the structure of Figure 19 after planarization to remove excess material from the second conductive layer 1913. This causes the second conductive portion 1913a- c is attached to the first conductive portions 1705a-c. This can be achieved by chemical mechanical polishing (CMp) or etch back or other methods. This planarization can also be moved from the STI structure 17〇u_d and the side spacers l8〇7a_f Except for some materials. Subsequently, additional material was removed from the STI structure i7〇la-d and the sidewall spacers 18〇7a-f. Figure 21 shows that the sidewall spacers 18〇7a_f are not removed and the ST] is removed [structure i7〇ia_d The file is up to a level close to the gate dielectric portion 17〇3a_c The structure of the latter figure. In some cases, the portion of the STI structure is removed until it is below the level. For example, the STI structure can be etched under the level of the top of the gate dielectric portion. In other cases, the STI material is removed until a level as indicated, such as the level of the first conductive portion 1 / page f. Subsequently, a dielectric layer and a control gate layer are formed over the conductive portion. Figure 22 shows the structure of Figure 21 after depositing a dielectric layer 2215 and a control gate layer 2217. The layers can be deposited as previously described, and then the word lines and the individual floating spaces are formed in a self-aligned manner by patterning the layers according to a pattern to form a memory array similar to that shown in FIG. The memory array in which the floating gate has a inverted shape as shown in FIG. 2β. In the example, one portion 2219 of the control gate layer 2217 extends downward between adjacent first conductive files 1705a, 1705b, and thus is provided adjacent to the lower end of the word line side 123977.doc -27-200820428 Shielding between floating gate sections. Figure 23 shows a flow chart summarizing the processes of Figures 17-22. First, the first oceanic gate layer and the gate dielectric layer are formed as a blanket layer (2321). Next, an STI structure (2323) is formed, thus dividing the first floating gate layer into separate portions that later form individual floating gates. A sidewall spacer (2325) is formed on the exposed side of the sti structure covering the first floating gate portion such that the trench remains on the floating gate portion. The wet residual removes some of the exposed first floating gate material and some of the floating gate material (2327) under the sidewall spacers. / A second floating gate layer is accumulated to fill the trenches and holes (2329). Next, the overlying second floating gate material is removed (2331) along with the sidewall spacers and portions of the 8-but 1 structure. Next, a dielectric layer and a control gate layer (2333) are deposited on the floating gate portion ST]. A patterned etch is then performed to form a self-aligned independent word line and floating gate (2335). Sidewall Oxidation Process In an alternate embodiment, an inverted T-shaped floating gate is formed by: forming a conductive layer by removing a conductive material, and then dividing the conductive layer into individual conductive portions and forming an STI trench to Make it self-aligned with the conductive portion. Figure 24 shows a cross-section of the NAND memory array along the x-direction in the early stages of fabrication. A gate dielectric layer 2402 (in this example, a cerium oxide gate dielectric layer) is present on the substrate 2400, and a conductive layer 2404 (in this example, a doped polysilicon conductive layer) covers the gate dielectric layer 2402 . Conductive layer 2404 can be deposited in a single step to form a uniform layer, or conductive layer 2404 can be deposited in more than one step such that conductive layer 2404 includes, for example, no. 123977.doc -28-200820428 in different layers. The degree of polycrystalline dreams. The mask portion 24?6a-c (in this example, the nitride-shield portion) extends in the gamma direction (perpendicular to the cross-section shown) on the conductive layer 2404. The conductive layer 2404 is formed by making a ruling in the pattern of the mask portions 24G6a-e. In this case, the conductive layer 4 is not illustrated until the lower-gate " electrical layer 2402. The portion of the conductive layer 24〇4 can be etched away by reactive ion characterization (8) or by some other anisotropic etching method. The mask portion 24 of Figure S (the width of the ^ can be equal to the size of the last lithography process used or can be smaller under certain conditions. Anti-pseudo-refinement or other methods can be used to reduce the mask The width of the portion 24〇6a_c". Because &, the spacing between adjacent mask portions 2406a-c may be the minimum feature size (F) or may be larger. When etching has removed the portion of the conductive layer 24〇4 The vertical protrusions 2408a-c are formed by the remaining portions of the conductive layer 24A4 covered by the mask portions 2406a-c. The vertical protrusions 24A8a-c later form the upper portion of the floating gate. 25 shows the polycrystalline stone of the electric layer 2404 after the oxidation is performed to grow the ceria layer 251 on the exposed surface of the conductive layer 24〇4 and the exposed surface of the mask portions 2406a-c. The oxidation of the eve consumes some polycrystalline stone to form the ruthenium oxide layer 25 1 0. Therefore, when the ruthenium dioxide layer 25 形成 is formed, the floating gate layer 24 〇 4 is partially consumed and the size is reduced. The size of the vertical protrusions 2408a-c decreases in the X direction. Similarly, the size of the mask portions 2406a-c is reduced by oxidation. The thickness of the ruthenium dioxide layer 25 and the polysilicon and nitrite consumed can be controlled by controlling the total oxidation time and controlling the processing conditions. Suitable processes for oxidizing polysilicon and nitriding. Lower temperature (less than 5 degrees Celsius) using an oxy group to perform oxidation of 123977.doc -29- 200820428. For example, decoupling plasma nitriding (clear) or slotted planar antenna (SPA) A plasma processing system can be used to oxidize polysilicon and tantalum nitride. In an alternative embodiment, 'anti-reagent refinement or other methods can be used to form narrow mask portions and vertical protrusions. Next, a dielectric layer can be deposited on The narrowed portion I and the vertical protrusions are formed to form a structure similar to that of Fig. 25. The structure shown in Fig. 25 after the anisotropic residue is formed to form the sTI junction trench 2612. Etching to the opposite sex leaving a dioxent along the vertical protrusion center f ° and the sidewall of the mask portion _a_C such that sidewall spacers 251 〇 af are formed. The cerium oxide is etched through the sidewall spacers 2510a-f, And then etched through the underlying conductive layer 24〇4 After partially forming the individual conductive P-knife 2404a c, the substrate 2400 is etched to form a trench 2612 having sidewall spacers 251 defining the locations of the sides of the trenches 2612a-b. The dioxide dioxide layer 25U) and the lower layer The substrate (4) can be performed as a separate process using different chemical treatments. The trenches 2612a-b are then filled with the dioxide. The ruthenium dioxide fills the trenches 2612a-b beyond the surface C of the substrate 24, such that The dioxide is filled in a groove between the side spacers 2510a-f (also formed by the formation of the dioxide). Then, flattening can be performed to remove the mask portion and the dioxo until a certain level. Then perform - (iv) to remove additional cerium oxide. Figure 27 shows the results of planarization and additional characterization, such that the dioxide is removed until the bit _ of the lower portion of the conductive enthalpy 2404a_c, leaving the ST] structure in some instances 'can remove the dioxin To different levels. At this stage, no mask is partially retained. Flattening can be achieved using a process that stops only after removing all of the material of the mask portions 2406a-c. In other examples of 123977.doc -30-200820428, some of the material of the mask portion 24 can be left after planarization.

隨後,將一介電層2818沈積於導電部分24〇4&<上,且 將一控制閘極層2820沈積於如圖28中所示之介電層28 18 上。如前所述,接著圖案化介電層2818及控制閘極層282〇 以用自對準方式形成獨立字線及獨立浮動閘極β 結 構27 16a-b比由此實例中之導電部分24〇4a_c形成之浮動閘 極窄’但精由使用不同氧化時間及條件來確定所形成氧化 物之量及所消耗下層多晶矽之量可達成一定範圍的尺寸。 因此’類似®2A中所示之記憶體陣列(儘管具有較窄STI結 構)形成有具有-類似於圖2B中所示之倒τ形狀的個別浮動 閘極。 ,圖29展示-概括圖24至圖28中所描述之製程的流程圖。 首先’在基板之表面上形成閘極介電層及浮動閘極㈣層 (2922)。接著’在該浮動閘極層上形成一遮罩層並圖案:匕 該遮罩層㈣成在Y方向中延伸之遮罩部分(2924)。在一 由遮罩部分所建立之圖案中餘刻該浮動閘極層(2926),使 得一些浮動閘極材料被移除,但在此階段未似彳穿過該浮 動閘極層。接著,勃并 _ 、 ^丁减製程(2928)以在浮動問極層 及遮罩部分之曝露表面上生長二氧切。接著執行各向異 『银相由所生長之—氧化⑪形成側壁隔片(Μ 側壁隔片提供遮罩以用於將浮動閘極㈣㈣獨 = 錢《基f TI溝槽(29外 石夕以填充溝槽(2934)並填充側壁隔片之間的槽。接著 123977.doc 200820428 平坦化步驟移除遮罩部分及―些:氧化邦936)。藉由钱 _除更多的二氧切,使得浮動閘極之上部部分曝露。二 氧化矽保留於溝槽中以形成STI結構。隨後,沈積一介電 層且在4介電層上沈積—控制閘極層(別8)。接著一圖案 製私以自對準方式形成獨立字線及獨立浮動閘極(2940)。 雖然已參考本發明之例示性實施例描述了本發明之各種 態樣’但將瞭解’本發明有受附加中請專利範圍之全部範 臂保護的權利。 【圖式簡單說明】 圖1展示本發明之各種實施例可用於其中的包括一控制 裔及€憶體單元之一陣列的非揮發性記憶體系統。 θ A展示根據本發明之一實施例之nand快閃記憶體陣 列的俯視圖。 圖2B展示具有倒τ形橫截面之圖2A之NAND快閃記憶體 陣列的個別浮動閘極。 圖3展示在製造初期具有覆蓋一覆蓋一基板之遮罩層之 經細化光阻部分的圖2A之NAND快閃記憶體陣列的橫截 面。 圖4展不在將遮罩層圖案化成接著用於定位以二氧化矽 填充的STI溝槽之遮罩部分後之圖3之結構。 圖5展示在平坦化以移除遮罩部分及過量二氧化矽後之 圖4之結構。 圖6展示在形成一閘極介電層、一第一浮動閘極層、遮 罩部分及在遮罩部分之曝露側壁上的側壁隔片後之圖5之 123977.doc -32- 200820428 圖7展示在將第-浮動閘極層分成在其間具有介電質的 第-浮動閘極部分並移除遮罩部分及側^隔片後 結構。 圖8展示在形成遮軍部分及側壁隔片以形成在浮動閘極 部分上之槽後之圖7之結構。 圖9展不在沈積一填充:笛 00 ^ 具兄在弟一予動閘極部分上之槽的第 二浮動閘極層後之圖8之結構。 圖1〇展示在移除過量第二浮動閘極材料、遮罩部 壁隔片後之圖9之結構。 圖11展不在於浮動問極部合卜#人 J ?丨刀上形成介電層及控制閘極層 後之圖10之結構。 曰 圖12展示圖3至圖11之製程的流程圖。 圖13展示圖11之結構的剖示圖’其包括在具有控制閉極 的汙動閘極上延伸之獨立字線及自對準浮動閘極。Subsequently, a dielectric layer 2818 is deposited over the conductive portions 24〇4 &< and a control gate layer 2820 is deposited over the dielectric layer 28 18 as shown in FIG. As previously described, the dielectric layer 2818 and the control gate layer 282 are then patterned to form individual word lines and independent floating gate beta structures 27 16a-b in a self-aligned manner than the conductive portions 24 in this example. The floating gate formed by 4a_c is extremely narrow, but a certain range of sizes can be achieved by using different oxidation times and conditions to determine the amount of oxide formed and the amount of underlying polycrystalline germanium consumed. Thus, a memory array similar to that shown in ® 2A (although having a narrower STI structure) is formed with individual floating gates having an inverted τ shape similar to that shown in Fig. 2B. Figure 29 shows a flow chart summarizing the process described in Figures 24-28. First, a gate dielectric layer and a floating gate (four) layer (2922) are formed on the surface of the substrate. Next, a mask layer is formed on the floating gate layer and patterned: 匕 The mask layer (4) is a mask portion (2924) extending in the Y direction. The floating gate layer (2926) is engraved in a pattern created by the mask portion such that some of the floating gate material is removed, but at this stage it does not appear to pass through the floating gate layer. Next, the Bosch _, ^ Ding process (2928) was used to grow the dioxotomy on the exposed surface of the floating interrogation layer and the mask portion. Then perform an anisotropic "silver phase from the grown - oxidation 11 to form a sidewall spacer (Μ sidewall spacer provides a mask for the floating gate (4) (four) alone = money "base f TI trench (29 outside Shi Xi Fill the trench (2934) and fill the trench between the sidewall spacers. Then 123977.doc 200820428 The planarization step removes the mask portion and "some: Oxide State 936." By dividing the money with more dioxo, The upper portion of the floating gate is exposed. The cerium oxide remains in the trench to form an STI structure. Subsequently, a dielectric layer is deposited and deposited on the 4 dielectric layer - the control gate layer (8). Separate word lines and independent floating gates (2940) are formed in a self-aligned manner. Although various aspects of the invention have been described with reference to the exemplary embodiments of the invention, it will be understood that the invention RIGHTS OF THE ENTIRE OBJECT PROTECTION OF THE TENDENCY OF THE INVENTION [BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 shows a non-volatile memory system in which various embodiments of the present invention may be used, including an array of control and memory cells. A shows an embodiment in accordance with the present invention A top view of the nand flash memory array. Figure 2B shows the individual floating gates of the NAND flash memory array of Figure 2A having an inverted τ-shaped cross section. Figure 3 shows a mask covering a substrate covering at the beginning of fabrication. The cross-section of the NAND flash memory array of Figure 2A of the thinned photoresist portion of the layer. Figure 4 shows that after the mask layer is patterned for subsequent use in locating the mask portion of the STI trench filled with cerium oxide Figure 3 shows the structure of Figure 4 after planarization to remove the mask portion and excess ceria. Figure 6 shows the formation of a gate dielectric layer, a first floating gate layer, Figure 5 shows the mask portion and the sidewall spacer on the exposed sidewall of the mask portion. Figure 7 shows the division of the first floating gate layer with a dielectric-first float. The gate portion and the structure of the mask portion and the side spacer are removed. Fig. 8 shows the structure of Fig. 7 after forming the shield portion and the sidewall spacer to form a groove on the floating gate portion. Deposit a fill: flute 00 ^ with the brother in the slot of the first gate The structure of Figure 8 after the second floating gate layer. Figure 1A shows the structure of Figure 9 after removing the excess second floating gate material and the spacer wall spacer. Figure 11 is not a floating question pole. Fig. 10 shows the structure of the process of Fig. 3 to Fig. 11. Fig. 13 shows the structure of the structure of Fig. 11. The diagram 'includes a separate word line and a self-aligned floating gate that extend over a dirty gate that controls the closed pole.

C 圖14展示圖13之結構的某些尺寸。 圖15展示在記憶體陣列中之浮動閑極與通道區域之間的 錯位。 圖16展示-浮動閘極之一下部浮動閘極部分與一… 動閘極部分之間的錯位。 ^ i 圖1 7展示根據本發明之另一實施例的在製 構及以自料方式形成之第—浮動閘極部分的财 快閃記憶體陣列之橫截面。 圖18展示在STI結構之曝露㈣上形成側壁隔片,使得 123977.doc -33 - 200820428 在第一浮動閘極部分上形成槽,在样 曰之底亦形成办々你 之圖17之結構。 力心成二八後 圖19展示在沈積一填充側壁 斤一、4 <間的槽且填充空穴之 弟一洋動閘極層後之圖1 8之結構。 圖20展示在平坦化以移除過量第二 19之結構。 〖動間極材料後之圖 圖21展示在移除側壁隔片且 2。之結構。1結構之部分後之圖 展示在沈積一介電層且在浮動問極上沈積一控制問 極層後之圖2 1之結構。 圖23展示圖17至圖22中描述之製程的流程圖。 圖24展示根據本發明之另—實施例的在製造早期且有建 立-圖案以用於部分敍刻—浮動問極層的遮罩部分之 NAND快閃記憶體陣列之橫截面。 圖25展示在氧化所曝露之浮動閘極層及遮罩部分後之圖 24之結構。 圖26展不在由氧化層形成側壁隔片且使用建立溝槽之位 置的側壁隔片形成STI溝槽後之圖25之結構。 圖27展示在移除侧壁隔片及遮罩部分且填充饤丨溝槽後 之圖26之結構。 圖28展示在沈積介電層及控制閘極層後之圖”之結構。 【主要元件符號說明】 圖29展示圖24至圖27中描述之製程的流程圖。 3己憶體系統 123977.doc -34- 100 200820428 110 單元陣列 130 位元線解碼及驅動電路 135 、 195 控制及狀態信號線 140 線 145 線 150 線 160 匯流排 170 線 180 控制器 190 字線解碼及驅動電路 210a 、 210b 、 210c 、 210d ST1結構 220a、220b、220c 記憶體单元之串 230a、230b、230n、230x、 230y 浮動閘極 231 下部浮動閘極部分 232 上部浮動閘極部分 233 表面 240a 、 240b 、 240c 源極/汲極區域 250a 、 250b 、 250c 字線 301 遮罩層 303 上表面 305 基板 307a、307b、307c 光阻部分 409a ' 409b、409c 遮罩部分 123977.doc -35- 200820428 411 515a 、 515b 、 515c 519 519a 、 519b 、 519c 521a、521b、521c 523a、523b、523c、523d、 523e 、 523f 617 I 725a、725b 827a、827b、827c、827d 829a、829b、829c、829d、 829e > 829f 831a、831b、831c 933 933a、933b、933c 1135 1 ^ 1137 1471 1473 1675 1677 1679 1701a、1701b、1701c、 1701d 二氧化矽 剩餘基板部分 第一導電層 第一導電部分 遮罩部分 側壁隔片 閘極介電層 介電部分 遮罩部分 側壁隔片 槽 第二導電層 第二導電部分 介電層 控制閘極層 上部浮動閘極部分 字線之一部分 下部浮動閘極部分 上部浮動閘極部分 浮動閘極 ST1結構 123977.doc -36- 200820428 1703a、1703b、1703c 閘極介電部分 1705a、1705b、1705c 第一導電部分 1807a、1807b、1807c、 側壁隔片 1807d 、 1807e 、 1807f 1809a、1809b、1809c 槽 1811a、1811b、1811c 空穴 1913 第二導電層 1913a、1913b、1913c 第二導電部分 2215 介電層 2217 控制閘極層 2219 控制閘極層之一部分 2400 基板 2402 閘極介電層 2404 導電層 2404a、2404b、2404c 導電部分 2406a、2406b、2406c 遮罩部分 2408a、2408b、2408c 垂直突出物 2510 二氧化矽層 2510a、2510b、2510c、 側壁隔片 2510d 、 2510e 、 2510f 2612a、2612b 溝槽 2716a、2716b STI結構 2818 介電層 2820 控制閘極層 123977.doc -37-C Figure 14 shows certain dimensions of the structure of Figure 13. Figure 15 shows the misalignment between the floating idle and channel regions in the memory array. Figure 16 shows the misalignment between the lower floating gate portion and the lower gate portion of one of the floating gates. ^ i Figure 17 shows a cross section of a flash memory array in a structure and a self-material formed first floating gate portion in accordance with another embodiment of the present invention. Figure 18 shows the formation of a sidewall spacer on the exposure (4) of the STI structure such that 123977.doc -33 - 200820428 forms a groove on the first floating gate portion, and the structure of Figure 17 is also formed at the bottom of the sample. After the force is made into a twenty-eighth, FIG. 19 shows the structure of FIG. 18 after depositing a trench filled between the sidewalls of the first and fourth sides and filling the cavity with the oceanic gate layer. Figure 20 shows the structure in which planarization is performed to remove excess second 19 . Figure 〖After the moving pole material Figure 21 shows the removal of the sidewall spacer and 2. The structure. Figure 1 is a diagram showing the structure of Figure 21 after depositing a dielectric layer and depositing a control layer on the floating gate. Figure 23 shows a flow chart of the process described in Figures 17-22. Figure 24 shows a cross section of a NAND flash memory array in an early stage of fabrication and having a pattern-formed portion for the mask portion of the floating interrogation layer in accordance with another embodiment of the present invention. Figure 25 shows the structure of Figure 24 after oxidation of the exposed floating gate layer and the mask portion. Figure 26 shows the structure of Figure 25 after the sidewall spacers are formed from the oxide layer and the sidewall spacers are used to form the STI trenches. Figure 27 shows the structure of Figure 26 after removal of the sidewall spacers and mask portions and filling the trenches. Figure 28 shows the structure of the diagram after depositing the dielectric layer and the control gate layer. [Main component symbol description] Figure 29 shows a flow chart of the process described in Figures 24 to 27. 3 Recall system 123977.doc -34- 100 200820428 110 Cell array 130 bit line decoding and driving circuit 135, 195 control and status signal line 140 line 145 line 150 line 160 bus bar 170 line 180 controller 190 word line decoding and driving circuit 210a, 210b, 210c 210d ST1 structure 220a, 220b, 220c memory cell string 230a, 230b, 230n, 230x, 230y floating gate 231 lower floating gate portion 232 upper floating gate portion 233 surface 240a, 240b, 240c source/drain Area 250a, 250b, 250c word line 301 mask layer 303 upper surface 305 substrate 307a, 307b, 307c photoresist portion 409a ' 409b, 409c mask portion 123977.doc -35 - 200820428 411 515a , 515b , 515c 519 519a , 519b , 519c 521a, 521b, 521c 523a, 523b, 523c, 523d, 523e, 523f 617 I 725a, 725b 827a, 827b, 827c, 827d 829a, 829b, 829c, 829d, 829e > 829f 831a, 831b, 831c 933 933a, 933b, 933c 1135 1 ^ 1137 1471 1473 1675 1677 1679 1701a, 1701b, 1701c, 1701d ruthenium dioxide remaining substrate portion first conductive layer first conductive portion mask portion sidewall spacer Chip gate dielectric layer dielectric portion mask portion sidewall spacer trench second conductive layer second conductive portion dielectric layer control gate layer upper floating gate portion word line one lower portion floating gate portion upper floating gate portion Floating gate ST1 structure 123977.doc -36- 200820428 1703a, 1703b, 1703c Gate dielectric portion 1705a, 1705b, 1705c First conductive portion 1807a, 1807b, 1807c, sidewall spacers 1807d, 1807e, 1807f 1809a, 1809b, 1809c Slot 1811a, 1811b, 1811c cavity 1913 second conductive layer 1913a, 1913b, 1913c second conductive portion 2215 dielectric layer 2217 control gate layer 2219 control gate layer portion 2400 substrate 2402 gate dielectric layer 2404 conductive layer 2404a , 2404b, 2404c conductive portion 2406a, 2406b, 2406c mask portion 2408a, 2408b, 2408c vertical protrusion 2510 dioxo矽 layer 2510a, 2510b, 2510c, sidewall spacers 2510d, 2510e, 2510f 2612a, 2612b trench 2716a, 2716b STI structure 2818 dielectric layer 2820 control gate layer 123977.doc -37-

Claims (1)

200820428 十、申請專利範圍: 1. -種在一半導體基板表面上形成非揮發性記憶體單元之 一陣列之方法,其包含·· 形成在一第一方向中延伸之複數個淺溝槽隔離結構; 形成在該第一方向中延伸之複數個第一導電部分; 在該等第-導電部分中之一個別部分上形成一槽,該 槽比該在一垂直於該第一方向的第二方向中之第—導電 部分窄; …在該槽中形成一第二導電部分,該第二導電部分與該 第一導電部分電接觸;及 藉由蝕刻該第一導電部分及該第二導電部分而形成複 數個浮動閘極。 女明求項1之方法,其中該槽在該第二方向中之該寬度 小於用於界定記憶體陣列組件之一微影製程的最小特徵 大小。 月求項1之方法,其進一步包含在該第一導電部分及 Λ第一導電部分上形成一介電層及一控制閘極層。 月求項3之方法,其中自對準該等個別浮動閘極之字 線係藉由該蝕刻而由該控制閘極層形成。 5·如明求項1之方法,其中該複數個第一導電部分自對準 該複數個淺溝槽隔離結構。 月求項5之方法,其中該槽係由該複數個淺溝槽隔離 結構中之多者之側壁上的側壁隔片形成。 在具有一表面之半導體基板上形成非揮發性記憶 123977.doc 200820428 體單元之一陣列之方法,其包含: 形成在一第一方向中延伸且在一垂直於該第一方向之 第二方向中間隔開的複數個淺溝槽隔離結構,該複數個 淺溝槽隔離結構藉由複數個第一導電部分分開; 酼後形成沿该複數個淺溝槽隔離結構中之多者之曝露 側壁在該第一方向中延伸的複數個側壁隔片,該複數個 側壁隔片覆蓋第一導電部分; Ο200820428 X. Patent Application Range: 1. A method for forming an array of non-volatile memory cells on a surface of a semiconductor substrate, comprising: forming a plurality of shallow trench isolation structures extending in a first direction Forming a plurality of first conductive portions extending in the first direction; forming a groove on one of the first conductive portions, the groove being in a second direction perpendicular to the first direction No. - the conductive portion is narrow; ... forming a second conductive portion in the groove, the second conductive portion is in electrical contact with the first conductive portion; and by etching the first conductive portion and the second conductive portion A plurality of floating gates are formed. The method of claim 1, wherein the width of the slot in the second direction is less than a minimum feature size for defining a lithography process of the memory array component. The method of claim 1, further comprising forming a dielectric layer and a control gate layer on the first conductive portion and the first conductive portion. The method of claim 3, wherein the self-aligned word lines of the individual floating gates are formed by the control gate layer by the etching. 5. The method of claim 1, wherein the plurality of first conductive portions are self-aligned to the plurality of shallow trench isolation structures. The method of claim 5, wherein the trench is formed by sidewall spacers on sidewalls of the plurality of shallow trench isolation structures. A method of forming an array of non-volatile memory 123977.doc 200820428 body elements on a semiconductor substrate having a surface, the method comprising: forming an extension in a first direction and a second direction perpendicular to the first direction Separating a plurality of shallow trench isolation structures separated by a plurality of first conductive portions; forming an exposed sidewall along the plurality of shallow trench isolation structures a plurality of sidewall spacers extending in the first direction, the plurality of sidewall spacers covering the first conductive portion; 隨後形成由該複數個側壁隔片界定的複數個第二導電 部分並接觸該等第一導電部分;及 私 隨後移除該複數個側壁隔片,藉此曝露該複數個第一 導電部分及該複數個第二導電部分之表面。 8.如請求項7之方法,其中該等第一導電部分係由_第一 導電層形成,藉由形成該複數個淺溝槽隔離結構將該第 -導電層分成該複數個第一導電部分,使得該複數個第 一導電部分自對準淺溝槽隔離結構。 9·如請求項7之方法,其中該複數個第二導電部分中之一 個別部分沿該第二方向具有—小於用於圖案化該陣列之 一微影製程之一最小特徵大小的尺寸。 10·如明求項7之方法,其進一步包含在該複數個第一導· 部分及該複數個第二導電部分之該等曝露表面: 介電層及一控制閘極層。 ^ 11 ·如請求項1 〇之方法, 字線及由該複數個第 分形成個別浮動閘極 其進一步包含由該_閘極層形成 一導電部分及該複數個第二導電部 ,使得字線自對準浮動閘極。 123977.doc 200820428 12. 13.Forming a plurality of second conductive portions defined by the plurality of sidewall spacers and contacting the first conductive portions; and subsequently removing the plurality of sidewall spacers, thereby exposing the plurality of first conductive portions and the The surface of the plurality of second conductive portions. 8. The method of claim 7, wherein the first conductive portions are formed by a first conductive layer, and the first conductive layer is divided into the plurality of first conductive portions by forming the plurality of shallow trench isolation structures. The plurality of first conductive portions are self-aligned to the shallow trench isolation structure. 9. The method of claim 7, wherein the individual portions of the plurality of second conductive portions have a dimension in the second direction that is less than a size of a minimum feature size for patterning a lithography process of the array. 10. The method of claim 7, further comprising the exposed surfaces of the plurality of first conductive portions and the plurality of second conductive portions: a dielectric layer and a control gate layer. ^11. The method of claim 1, wherein the word line and the forming of the individual floating gates by the plurality of segments further comprise forming a conductive portion and the plurality of second conductive portions from the _ gate layer, such that the word line Align the floating gate. 123977.doc 200820428 12. 13. 如請求項11之方法,直中 中延伸且在該第一方… 基板上在該第二方向 Λ乐方向中間隔開。 一種形成-記憶體陣列之方法,其包含: 形成一導電浮動閘極層; =動閑極層上形成複數個遮罩部分,該 ::在一第一方向中延伸且在-第二方向中分開广 二订—弟—#刻以移除由該複數個遮罩部分曝露 的该浮動閘極層之部分,哕箄 " ^ 1刀。亥寺經移除之部分延伸至一 + 於該洋動閘極層之厚度的深度; 隨後在該浮動閉極層之曝露表面上形成在該第一方向 中延伸之複數個側壁隔片;及 」:後執行一第二蝕刻以在該基板中形成複數個溝槽, 該複f個溝槽中之-個別溝槽在該第-方向中延伸,且 在忒第一方向中具有一由該複數個側壁隔片中之 定之寬度。 界 14.如明求们3之方法,其中該第二㈣將該浮動閘極層分 成複數個獨立導電料,該複數個導電部分及該複數個 溝槽在一第一方向中延伸。 A:請求項14之方法,其進一步包含形成在一垂直於該第 方向之第二方向中延伸的複數個字線。 16.如'^求们5之方法’其中該複數個字線係藉由-餘刻步 驟而形成,㈣刻步驟將該複數個導電部分分成複數^ 獨立浮動閘極。 女明求項13之方法,其中該複數個側壁隔片係藉由氧化 123977.doc 200820428 該浮動閘極層而形成。 18·如請求項17之方法,其中該複數個遮罩部分亦經受該氧 化0 19·如請求項13之方法,其中該複數個側壁隔片係藉由沈積 介電質而形成。 20· —種在一基板上之非揮發性記憶體陣列,其包含:The method of claim 11 is extended in the middle and spaced apart on the first side of the substrate in the direction of the second direction. A method of forming a memory array, comprising: forming a conductive floating gate layer; forming a plurality of mask portions on the movable idle layer, the: extending in a first direction and in a second direction Separate the two-parts to remove the portion of the floating gate layer exposed by the plurality of mask portions, 哕箄 " ^ 1 knife. The removed portion extends to a depth of a thickness of the oceanic gate layer; subsequently forming a plurality of sidewall spacers extending in the first direction on the exposed surface of the floating closed layer; And performing a second etching to form a plurality of trenches in the substrate, wherein the individual trenches of the plurality of trenches extend in the first direction, and have a The width of the plurality of sidewall spacers. 14. The method of claim 3, wherein the second (four) divides the floating gate layer into a plurality of individual conductive materials, and the plurality of conductive portions and the plurality of trenches extend in a first direction. A: The method of claim 14, further comprising forming a plurality of word lines extending in a second direction perpendicular to the first direction. 16. The method of claim 5 wherein the plurality of word lines are formed by a -to-step process, and the (four) step of dividing the plurality of conductive portions into a plurality of independent floating gates. The method of claim 13, wherein the plurality of sidewall spacers are formed by oxidizing the floating gate layer of 123977.doc 200820428. 18. The method of claim 17, wherein the plurality of mask portions are also subjected to the oxidization. The method of claim 13, wherein the plurality of sidewall spacers are formed by depositing a dielectric. 20. A non-volatile memory array on a substrate, comprising: 複數個記憶體單元串,其在一第一方向中延伸且在一 垂直於該第一方向之第二方向中分開; 該複數個串之-個別串,其包含在該第—方向中串聯 連接在一起的複數個記憶體單元,該複數個記憶體單元 中之一個別單元具有一浮動閘極;及 該浮動閘極,其沿該第二方向具有一倒τ形橫截面。 2 1 ·如請求項20之非揮發性記憶體陣列,其 人一々—贫—+ 、Τ §亥浮動閘極包 各一在该弟二方向中具有一第一寬度的下 士方穿—+人〇丨部分及一在 Θ弟一方向中具有一小於該第一寬度之 部分。 二寬度的上部 22. 如凊求項21之非揮發性記憶體陣列,其中兮> ^ 少為所使用的微影製程之最小特徵大小。卜九度至 23·如請求項22之非揮發性記憶體陣列,其中★亥々 於该所使用的微影製程之該最小特徵大小。第 該上部部分及 具有一未由該 讀上部部分與 24·如明求項23之非揮發性記憶體陣列,其中 該下部部分沿一平面相遇,且該下部部分 上部部分覆蓋的沿該平面之表面。 25·如明求項24之非揮發性記憶體陣列,其中 123977.doc 200820428 该下部部分係經各別地形成。 其中該上部部分自 26·如明求項25之非揮發性記憶體陣列 對準該下部部分。 27·如凊求項20之非揮發性記憶體陣列,其進一步包人二 第一方向中延伸之淺溝槽隔離結構。 /匕3在該 28. —種在一基板上之非揮發性記憶體陣列,其包含: 複數個記憶體單元串,一個別串包含沿一第—方口 聯連接之複數個記憶體單元,該複數個單元中之每2串 包括一覆蓋一通道之浮動閘極; 者 個別淺溝槽 分開相鄰串之複數個淺溝槽隔離結構, 隔離結構延伸至該基板中; 在該基板上在一垂直於該第一方向之第二方向中延伸 的複數個字線,一個別字線覆蓋該複數個 , ’予動閘 極;及 W 一個別浮動閘極,其具有一平行於該基板之一表面正 伸的下部部分及一自該下部部分之一中間區域突出的L 部部分,在該第二方向中,該上部部分比該下部呷八 窄。 ^ Q分 29. 如請求項28之非揮發性記憶體陣列,其中該上部部八 對準該下部部分。 77胃 30. 如請求項28之非揮發性記憶體陣列,其中該下部部八 對準該複數個淺溝槽隔離結構之相鄰者。 自 31·如請求項28之非揮發性記憶體陣列,其進一步包八〜 入於該個別浮動閘極與一字線之間的介電層,該介 123977.doc 200820428 直接地覆蓋該上部部分及該下部部分。 32.如請求項28之非揮發性記憶體陣列,其中淺溝槽隔離結 構在該第二方向中具有一小於所使用之微影製程之最小 特徵大小之寬度。a plurality of memory cell strings extending in a first direction and separated in a second direction perpendicular to the first direction; the plurality of strings - individual strings comprising series connected in the first direction a plurality of memory cells together, one of the plurality of memory cells having a floating gate; and the floating gate having an inverted zigzag cross section along the second direction. 2 1 · The non-volatile memory array of claim 20, which has a 々----, Τ 浮动 浮 浮 浮动 浮动 浮动 浮动 浮动 浮动 浮动 浮动 + + + + + + + + + + + + + + + + + + The 〇丨 portion and one have a portion smaller than the first width in the direction of the Θ. The upper portion of the second width 22. The non-volatile memory array of claim 21, where 兮> ^ is less than the minimum feature size of the lithography process used. The non-volatile memory array of claim 22, wherein the minimum feature size of the lithography process used is. a first upper portion and a non-volatile memory array not having the upper portion and the second portion, wherein the lower portion meets along a plane, and the upper portion of the lower portion is covered along the plane surface. 25. The non-volatile memory array of claim 24, wherein 123977.doc 200820428 the lower portion is formed separately. The upper portion is aligned with the lower portion from the non-volatile memory array of claim 25. 27. The non-volatile memory array of claim 20, further comprising a shallow trench isolation structure extending in a first direction. /匕3 in the non-volatile memory array on a substrate, comprising: a plurality of memory cell strings, one string comprising a plurality of memory cells connected along a first-square port, Each of the plurality of cells includes a floating gate covering a channel; the individual shallow trenches separate a plurality of shallow trench isolation structures of adjacent strings, and the isolation structure extends into the substrate; a plurality of word lines extending in a second direction perpendicular to the first direction, a different word line covering the plurality of, a pre-active gate; and W a floating gate having a parallel to the substrate A lower portion of the surface extending forward and an L portion projecting from an intermediate portion of the lower portion, the upper portion being narrower than the lower portion in the second direction. ^ Q. 29. The non-volatile memory array of claim 28, wherein the upper portion eight is aligned with the lower portion. 77 Stomach 30. The non-volatile memory array of claim 28, wherein the lower portion 八 is aligned with a neighbor of the plurality of shallow trench isolation structures. 31. The non-volatile memory array of claim 28, further comprising a dielectric layer between the individual floating gate and a word line, the layer 123977.doc 200820428 directly covering the upper portion And the lower part. 32. The non-volatile memory array of claim 28, wherein the shallow trench isolation structure has a width in the second direction that is less than a minimum feature size of the lithography process used. 123977.doc123977.doc
TW096132318A 2006-09-21 2007-08-30 Nonvolatile memory with reduced coupling between f TWI359499B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/534,135 US7615445B2 (en) 2006-09-21 2006-09-21 Methods of reducing coupling between floating gates in nonvolatile memory
US11/534,139 US20080074920A1 (en) 2006-09-21 2006-09-21 Nonvolatile Memory with Reduced Coupling Between Floating Gates

Publications (2)

Publication Number Publication Date
TW200820428A true TW200820428A (en) 2008-05-01
TWI359499B TWI359499B (en) 2012-03-01

Family

ID=39166676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096132318A TWI359499B (en) 2006-09-21 2007-08-30 Nonvolatile memory with reduced coupling between f

Country Status (2)

Country Link
TW (1) TWI359499B (en)
WO (1) WO2008036484A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512513B (en) * 2011-04-14 2015-12-11 Cadence Design Systems Inc Method and non-transitory computer readable medium for editing or creating a schematic, and system for creating a schematic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179163B1 (en) * 1995-12-26 1999-03-20 문정환 Method of manufacturing non-volatile memory cell
US7105406B2 (en) * 2003-06-20 2006-09-12 Sandisk Corporation Self aligned non-volatile memory cell and process for fabrication
JP4005962B2 (en) * 2003-09-22 2007-11-14 株式会社東芝 Nonvolatile semiconductor memory device
US7183153B2 (en) * 2004-03-12 2007-02-27 Sandisk Corporation Method of manufacturing self aligned non-volatile memory cells
JP2005277035A (en) * 2004-03-24 2005-10-06 Renesas Technology Corp Nonvolatile semiconductor memory device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512513B (en) * 2011-04-14 2015-12-11 Cadence Design Systems Inc Method and non-transitory computer readable medium for editing or creating a schematic, and system for creating a schematic

Also Published As

Publication number Publication date
TWI359499B (en) 2012-03-01
WO2008036484A2 (en) 2008-03-27
WO2008036484A3 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US8288225B2 (en) Method of reducing coupling between floating gates in nonvolatile memory
TWI280669B (en) Self aligned non-volatile memory cells and processes for fabrication
US7541240B2 (en) Integration process flow for flash devices with low gap fill aspect ratio
KR101140151B1 (en) Floating gate structure with vertical projections
KR101032266B1 (en) Scalable self-aligned dual floating gate mamory cell array and methods of forming the array
US7755132B2 (en) Nonvolatile memories with shaped floating gates
JP5106022B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
US20080074920A1 (en) Nonvolatile Memory with Reduced Coupling Between Floating Gates
US7494860B2 (en) Methods of forming nonvolatile memories with L-shaped floating gates
TWI356472B (en) Nonvolatile memories with shaped floating gates
TW200820428A (en) Nonvolatile memory with reduced coupling between floating gates
JP2000049243A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees