TW200817879A - Scalable liquid cooling system with modular radiators - Google Patents

Scalable liquid cooling system with modular radiators Download PDF

Info

Publication number
TW200817879A
TW200817879A TW96116015A TW96116015A TW200817879A TW 200817879 A TW200817879 A TW 200817879A TW 96116015 A TW96116015 A TW 96116015A TW 96116015 A TW96116015 A TW 96116015A TW 200817879 A TW200817879 A TW 200817879A
Authority
TW
Taiwan
Prior art keywords
air
cooling system
cooling
fluid
heat exchanger
Prior art date
Application number
TW96116015A
Other languages
Chinese (zh)
Inventor
Bruce R Conway
Richard Grant Brewer
James Hom
Original Assignee
Cooligy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cooligy Inc filed Critical Cooligy Inc
Publication of TW200817879A publication Critical patent/TW200817879A/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A scalable and modular cooling system is disclosed. The cooling system includes an air plenum with a plurality of expansion slots. Each expansion slot is configured to receive a modularly configured fluid-to-air heat exchanger, such as a radiator. The air plenum also include one or more air movers for blowing air through the expansion slots, and therefore through any radiators fitted within the expansion slots. For those expansion slots that are not used, a blanking plate is fitted to each unused expansion slot. Each blanking plate is modularly configured in a manner similar to the modularly configured radiators. In this manner, air bypass is substantially prevented. Each radiator is part of an independent cooling loop, used directly or indirectly to cool heat generating devices.

Description

200817879 九、發明說明: 【相關申請】 本申請案請求於2006年5月4曰申請之美國臨時申請 案第60/797,955號中,於35 U.S.C· 199(e)下的效益,該臨 時申請案標題為,’LIQUID COOLING THROUGH REMOTE DRIVE BAY HEAT EXCHANGER,,。該標題為,,LIQUID COOLING THROUGH REMOTE DRIVE BAY HEAT EXCHANGER”的美國臨時申請案第60/797,955號在此也 整合為參考文獻。 【發明所屬之技術領域】 本發明一般來說與用來冷卻一熱產生裝置的方法與裝 置有關,而更具體的,本發明與利用一種具有模組化散熱 器的可縮放液冷系統,冷卻位於一個人電腦中熱產生裝置 的方法與裝置有關。 < 【先前技術】 利用高熱消散所進行的高效能積體電路冷卻對於目前 的電子冷卻範嘴來說是一項極大的挑戰。利用熱管與镶嵌 風扇散熱 的傳統冷卻方式,並稍合驗具有逐漸增加 功率要求的晶片冷卻。 冷卻在個人電腦之中積體電路的-項特殊問題是在相 同尺寸或小型個人電腦底架之中所配置的大量高功率積體 電路。當發展為具錢乡的高抖雜電路時 產生電晶體的密度增加,由每一各自積體電路所產生= 也將連續增加。此外,在個人電腦之中開始加入愈來衫 6 200817879 組。、而進-牛處理單元、微處理器以及多重晶片 底架之令也開始加入更固中或是在小尺寸個人電腦 增加這些裝置_位====_體_ ’因此便 供有限的尺寸,而在其中必須提供一種適 田勺W解決方案。傳統上來說,在一個人 體電路是利用-散埶月甘儀W Ί匈中勺積 吹拂空氣的方式,或風扇對該散熱片直接 電路板吹拂空氣進行含該積體電路的 中的有限自\=:'在考量個人電腦底架之 Μ旦1用於冷卻開積體電路所能利用的空 里,以及祕像是散糾與風鱗傳統冷卻配備所能 利用的空間是有限的。 b β對於傳統的冷卻解決方案而言,封閉回路液冷方式則 =種替j的方法。封閉回路液冷解決方案相較於氣冷解 /、方案而έ,可以更有效地將熱摒棄至周圍環境。 傳統個人電腦已經被發展成為更加具有可配置性 含升級現有組件或增加新組件的能力。隨著每一次的升級 及/或增加組件’便增加對於現有冷卻系統的冷卻能力要 求。大多數現有的冷卻系統都預期其目前的冷卻能力足以 提供因為新或升級組件所產生額外冷卻負載。替代的,可 以利用具妹大知卩能力的—崎冷m完全地置換 見有的。卩系統。在液冷系統的情況中’升級時則需要開 啟-密封冷卻系統以增加冷卻能力。這種過程不但耗費; 力’也需要從該個人電腦移除該現有液冷系統,以避免由 200817879 於流體漏出時對該内部電子組件造成可能的傷宝。 所需要的是一種更有效率的冷卻方式,以冷卻一個人 電腦中的積體電路。也需要的是-種更有效率的冷卻方 式,以冷卻在一個人電腦底架之中所鑲嵌多數電路板上的 積體電路。進-步所需㈣是—種冷卻方式,其可以縮放 以滿足現今個人電腦的可縮放配置。 【發明内容】 發表-種可、縮放以及模組化的冷卻系統。該冷卻系統 包含具有多數擴充槽的-空氣室。每—擴充槽都可以用來 接受一模組化配置流體-空氣熱交換器,像是一散熱器。該 空氣室也包含-或多個空氣動力n ’用以對該多數擴充槽 吹拂空氣,顧此也對在該錄擴充槽之中所安裝的任何 散熱器吹拂空氣。.那些未使用的擴絲來說,則在每 一個未使用的擴充槽之中安裝一空板。每—空板都可以以 模組化的方式’利用與該模組化配置散熱器一樣的方式加 置。在此方法中,大致上可以避免空氣分流的情形。 每-散熱H都是-獨立冷卻鹏的部分,直接或間接地用 來冷卻熱產生裝置。 在觀點中,發表用以冷卻在-個人電腦中-或多個 熱產生裝置的—冷卻系統。該冷卻系統包含-或多個獨立 的,冷回路,每—個冷卻回路都包含-個模組化流體-空氣 熱交換器以及在其中流動的一種流體,該冷卻系統也包含 &或多,氣動力器’用以提供空氣至每-冷卻回路的該 流體-空氣熱交換器,該冷卻系統還包含一空氣室,其包含 200817879 =二第二端,其中該第—端則與該—或多個空氣 動力⑼接’而該第二端則與多數接收區雛,其— 接收區都用來容納來自一對應冷卻回路的一個可移除 空氣熱交換器,進—步地,其中每—接收區_來容^ 固:移除空板,因此每一接收區都配置有一流體-空氣熱交 換器或-空板。每―模組化趙_空氣熱交換轉配置為 以,存在於-鄰近接收區之中的另一模組化流體-空氣熱交 換益進行堆疊。每—模組化流體空氣熱交換器都配置為可 以,存在於一鄰近接收區之中的另一模組化流體_空氣熱交 換器進行互鎖。每-模組化紐_空氣熱交換^、每—空^ ,及,空氣室的該第二端顧來大致上避免空氣分流通過 该空氣室的該第二端。該一或多個空氣動力器與該空氣室 =該第:端大致上顧來大致上避枝麵過該空氣 室的該第-端。每-空板都用來避免空氣流通過與該空板 搞接的該接收區。替代的,每一空板都包含一或多個空氣 通孔,其中該空氣通孔的數量與每一空氣通孔的尺寸則能 夠提供通過與該空_接減區的—特定线流通率i在 某些實施例中,每-空板的該空氣流通率大致上與通過與 該模組化流體-空氣熱交換器耦接接收區的空氣流通率相 等’藉此產生通過每-接收區的一大致上相等的空氣流通 率。每一冷卻回路也可以包含一或多個熱交換器與一泵。 在某些實施例中,每-空氣動力n都包括—風扇,而每一 流體-空氣熱父換裔都包括一散熱器。 在另一觀點中,發表用以冷卻在一個人電腦中一或多 9 200817879 個熱產生裝置的另一冷卻系統。該冷卻系統包含 ==冷回路,每—個冷卻回路都包含—個模組化流體-减…、父換糾及在其中流動的—種流體,該冷卻系統也 包含-或多個空氣動力器,用以提供空氣至每—冷卻回路 的該流體·空氣熱交換n,該冷卻系闕包含—空氣室,且 H端與一第二端’其中該第一端則與該:或多個 ^動力,而該第二端則與多數擴充_接,其中 每-擴充槽都用來接受來自一對應冷卻回路的一個可移除 流體-空氣熱交換器,因此接受—流體_空氣熱交換器的每二 擴巧都成為-被使用的擴充槽,而並未接受_流體-空氣 熱父換㈣每-擴充制成為—未使㈣擴充槽,進一步 ,,其中每-未使用擴充槽_來接受—個可移除空板^ 每-模組化流體空氣熱交換器都配置為可以與存在於一鄰 „之中的另-模組化流體_空氣熱交換器進行堆疊。 每一模組化流體-空氣熱交換器都配置為可以與存在於一鄰 近擴充槽之中的另-模組化流體_空氣熱交換^進行互鎖。 每:模組化流體-空氣熱交換器、每一空板以及該空氣室的 該第二端則用來大致上避免空氣分流通過該空氣室的該第 二端。該-或多個空氣動力器與該空氣室的該第一端大致 ^則用來大致上戦空氣分流通過該空氣室的該第一端。 每-空板_來避免空氣流通過能空_接的該擴充 槽。替代的’每-空板都包含一或多個空氣通孔,其中該 空氣通孔的數量與每一空氣通孔的尺寸則能夠提供通過與 該空板耦接擴充槽的一特定空氣流通率。在某些實施例 200817879 中,^板的該空氣流通率大致上與通過與該模組化流 體-空氣熱父換n轉接擴充槽的空氣流通率相等,藉此產生 通過每-擴充槽的-大致上縛的空氣流通率。每一冷卻 回路,可以包含—或多個熱交換器與-泵。在某些實施例 中母二氣動力益都包括一風扇,而每一流體-空氣熱交 換器都包括一散熱器。 而在另一觀點中,以上描述的該每一個冷卻系統都可 以用來容納用來安裝至多數擴充槽之中的(多數)散熱器 及/或(夕數)空板。特別是,該冷卻系統包含一或多個獨 立的液冷回路,每一個冷卻回路都包含一個模組化流體·空 氣熱父換器以及在其中流動的一種流體,該冷卻系統也包 3或夕個工氣動力器,用以提供空氣至每一冷卻回路的 該流體-空氣熱交換器,該冷卻系統還包含一空氣室,其包 含一第一端與一第二端,其中該第一端則與該一或多個空 氣動力器麵接,而該第二端則與多數擴充槽耦接,其中每 一流體-空氣熱交換器都以可移除的方式與一或多個擴充槽 摩馬接’因此與該流體_空氣熱交換器耦接的每一擴充槽都成 為一被使用的擴充槽,而並未與該流體_空氣熱交換器耦接 的每一擴充槽則成為一未使用的擴充槽,進一步地,其中 一空板則以可移除的方式與一或多個未使用擴充槽耦接。 在檢視以下設定的實施例詳細敘述之後,本發明的其 他特徵與優點將變的顯著。 【實施方式】 本發明的實施例將指導一種可縮放並模組化的冷卻系 11 200817879 統,其用於移除在一個人電腦之中由一或多個熱產生裝置 所產生的熱。該熱產生裝置包含但不侷限為一或多個中央 處理器(CPU)、用於管理該-或多個中央處理器(cpu) 輸入/輸出的一晶片組、一或多個圖形處理單元(GPUS)、 及/或固定在一母板、子板及/或個人電腦擴充板上的一或多 個實體處理單元(FPUS)。該冷卻系統也可以用來冷卻電力 電子裝置’像是金氧半場校電晶體、婦^,以及其他需 要被冷卻的高裤電子駭。—絲說,在崎描述的該 冷卻系統可以在任何包含—f要被冷卻熱產生裝置的 的電子次祕之中。對了簡化起見,在該個人電腦中所設 置包含-或多個需要被冷卻熱產线置的任何次系統都稱 做為一電腦卡(PC card)。 该冷卻系統是配置為可縮放並模組化,因此當在該個 人電腦之中加入包含熱產生裝置的新電腦卡時,便將額外 的冷卻組件祕至該冷卻系統。此外,已經設置的電腦卡 也可以利帛具有賴毅變冷卻丨統的新或升級電腦卡加 以交換。 、該冷卻系統較佳的是配置在一個人電腦底座之中。替 代的’該冷卻祕是配置為任何電子系蘭部分,該電子 系統包含被冷卻的熱產生裝置。該冷卻紐包含一或多個 獨立流體冷卻回路、—空氣室、—或多個動力器以及-或 多個擴充槽。當在此描述時,將參考使用—單—空氣動力 器的情況。應該瞭解的是,該單_空氣動力获代表一或 多個空氣動力器°每-空氣動力器較佳的都是—風扇。該 12 200817879 =動f器則與該錄室的-第—端耗接。該擴充槽則與 t氣至的—第二端祕。該空氣動力糾導线通過該 工乳室,並朝向該擴充槽前進。該空氣動力器利用一種大 致上避免空氣繞過該空氣動力賴奶氣錢之間的方 式,與該空氣室的該第一端耦接。200817879 IX. INSTRUCTIONS: [RELATED APPLICATIONS] This application claims the benefit of 35 USC 199(e) in US Provisional Application No. 60/797,955, filed May 4, 2006, the provisional application. Titled as 'LIQUID COOLING THROUGH REMOTE DRIVE BAY HEAT EXCHANGER,,. U.S. Provisional Application Serial No. 60/797,955, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in The method of producing a device is related to the device, and more particularly, the present invention relates to a method and apparatus for cooling a heat generating device located in a personal computer using a scalable liquid cooling system having a modular heat sink. 】 High-efficiency integrated circuit cooling using high-heat dissipation is a great challenge for current electronic cooling nozzles. It uses the traditional cooling method of heat pipe and inlaid fan cooling, and has a slight increase in power requirements. Wafer cooling. The special problem of cooling the integrated circuit in a personal computer is a large number of high-power integrated circuits arranged in the same size or small personal computer chassis. When developed into a high-frequency circuit with money The increase in the density of the transistors produced by each of the respective integrated circuits = will also increase continuously. In the personal computer, I started to join the group of 2008-17879. In addition, the order of the cattle processing unit, the microprocessor and the multi-chip chassis began to be added to the fixed or added to the small-sized personal computer. ====_body_ 'Therefore, there is a limited size, and in which a suitable solution must be provided. Traditionally, in a human body circuit is utilized - the promiscuity of the 埶 埶 仪 W The method of blowing the air, or the fan blowing the air on the direct circuit board of the heat sink, is limited by the inclusion of the integrated circuit. In consideration of the PC chassis, it can be used to cool the open circuit. The space used, as well as the secret image, is limited by the space available for traditional cooling equipment. b β For the traditional cooling solution, the closed-loop liquid cooling method is the method of replacing j. Closed-loop liquid-cooled solutions can more effectively dissipate heat to the surrounding environment than air-cooled solutions and solutions. Traditional PCs have evolved to be more configurable with upgrades to existing components or to add new groups. The ability to increase the cooling capacity requirements of existing cooling systems with each upgrade and/or addition of components. Most existing cooling systems are expected to have sufficient cooling capacity to provide additional cooling due to new or upgraded components. Load. Alternatively, it can be completely replaced with the ability to use the sister-in-law. The system is in the case of a liquid-cooled system. In the case of an upgrade, an open-sealed cooling system is required to increase the cooling capacity. This process is not only costly; the force 'also needs to remove the existing liquid cooling system from the personal computer to avoid possible damage to the internal electronic components caused by the fluid leaking from 200817879. What is needed is a more efficient Cooling method to cool the integrated circuit in a person's computer. What is also needed is a more efficient cooling method to cool the integrated circuits on most boards embedded in a human computer chassis. The required step (4) is a cooling method that can be scaled to meet the scalable configuration of today's personal computers. SUMMARY OF THE INVENTION A cooling system that can be scaled, modularized, and modularized. The cooling system contains an air chamber with a majority of expansion slots. Each expansion slot can be used to accept a modular configuration of a fluid-to-air heat exchanger, such as a heat sink. The air chamber also includes - or a plurality of aerodynamics n' for blowing air into the plurality of expansion slots, thereby also blowing air to any of the heat sinks installed in the recording expansion slots. For those unused filaments, an empty plate is installed in each unused expansion slot. Each of the empty boards can be installed in the same way as the modularized heat sink in a modular manner. In this method, the situation of air splitting can be substantially avoided. Each heat sink H is a part of the independent cooling chamber that is used directly or indirectly to cool the heat generating device. In the opinion, a cooling system for cooling a personal computer or a plurality of heat generating devices is issued. The cooling system comprises - or a plurality of independent, cold circuits, each of which comprises a modular fluid-air heat exchanger and a fluid flowing therein, the cooling system also comprising & An air-powered vehicle's air-to-air heat exchanger for providing air to each cooling circuit, the cooling system further comprising an air chamber comprising 200817879 = two second ends, wherein the first end is associated with the - or A plurality of aerodynamics (9) are connected to each other and the second end is associated with a plurality of receiving zones, the receiving zone being adapted to receive a removable air heat exchanger from a corresponding cooling circuit, step by step, each of which is Receiving area _ to ensure the solid: remove the empty board, so each receiving area is equipped with a fluid-air heat exchanger or - empty board. Each "Modular Zhao" air heat exchange is configured to be stacked with another modular fluid-air heat exchange present in the adjacent receiving zone. Each of the modular fluid air heat exchangers is configured to be interlocked by another modular fluid_air heat exchanger present in an adjacent receiving zone. The per-module neo-air heat exchange, the air-to-air, and the second end of the air chamber substantially prevent air from diverting through the second end of the air chamber. The one or more aerodynamics and the air chamber = the first end generally circumvents the first end of the air chamber. Each of the empty plates is used to prevent air flow through the receiving area that is engaged with the empty plate. Alternatively, each of the empty plates includes one or more air through holes, wherein the number of the air through holes and the size of each of the air through holes can provide a specific line flow rate i through the space In some embodiments, the air flow rate of each of the empty plates is substantially equal to the air flow rate coupled to the receiving area by the modular fluid-air heat exchanger 'by thereby generating one through each of the receiving regions A substantially equal air circulation rate. Each cooling circuit may also include one or more heat exchangers and a pump. In some embodiments, each aerodynamic n includes a fan, and each fluid-air heat father includes a heat sink. In another aspect, another cooling system is disclosed for cooling one or more of the 2008 17,879 heat generating devices in a personal computer. The cooling system includes a == cold circuit, each cooling circuit includes a modular fluid-minus, a parent-changing fluid, and a fluid flowing therein, the cooling system also includes - or a plurality of aerodynamics The fluid/air heat exchange n for supplying air to each of the cooling circuits, the cooling system comprising an air chamber, and the H end and a second end 'where the first end is associated with: or more ^ Power, and the second end is connected to a plurality of expansion slots, wherein each expansion slot is adapted to receive a removable fluid-to-air heat exchanger from a corresponding cooling circuit, thus accepting a fluid-air heat exchanger Every two expansions become the expansion slot that is used, and does not accept the _fluid-air heat father change (four) per-expansion made--not (four) expansion slot, further, where each - unused expansion slot _ to accept —Removable empty plate ^ Each-modular fluid air heat exchanger is configured to be stacked with another modular fluid_air heat exchanger present in a neighborhood. Fluid-air heat exchangers are configured to be present in a neighbor The other modular fluid _ air heat exchange in the expansion tank is interlocked. Each: the modular fluid-air heat exchanger, each empty plate and the second end of the air chamber are used to substantially avoid Air is split through the second end of the air chamber. The first or more aerodynamics and the first end of the air chamber are substantially configured to divert air through the first end of the air chamber. - empty plate _ to avoid air flow through the expansion slot of the air gap. The alternative 'each-empty plate contains one or more air through holes, wherein the number of air through holes and the size of each air through hole A specific air flow rate can be provided by coupling the expansion slot to the empty plate. In some embodiments 200817879, the air flow rate of the plate is substantially different from that of the module fluid-air heat master. The transfer expansion slots have equal air flow rates, thereby creating a substantially bound air flow rate through each of the expansion slots. Each cooling circuit may include - or multiple heat exchangers - pumps. In some implementations In the example, the mother's two pneumatic power benefits include a fan, and each flow The air heat exchangers each include a heat sink. In another aspect, each of the cooling systems described above can be used to house (most) heat sinks and/or In particular, the cooling system includes one or more independent liquid cooling circuits, each of which includes a modular fluid air heat exchanger and a fluid flowing therein, the cooling The system also includes 3 or a gas power generator for providing air to each of the cooling circuit of the fluid-air heat exchanger, the cooling system further comprising an air chamber including a first end and a second end The first end is in contact with the one or more aerodynamic devices, and the second end is coupled to a plurality of expansion slots, wherein each fluid-to-air heat exchanger is removably coupled to the Or a plurality of expansion slots are connected; thus each expansion slot coupled to the fluid_air heat exchanger becomes a used expansion slot and is not coupled to the fluid_air heat exchanger. The expansion slot becomes an unused one. Filling the groove, and further wherein a bare board places a removable manner with one or more unused expansion slots coupled. Other features and advantages of the present invention will become apparent after a detailed description of the embodiments set forth below. [Embodiment] Embodiments of the present invention will teach a scalable and modular cooling system 11200817879 for removing heat generated by one or more heat generating devices in a personal computer. The heat generating device includes, but is not limited to, one or more central processing units (CPUs), a chip set for managing the one or more central processing unit (CPU) inputs/outputs, and one or more graphics processing units ( GPUS), and/or one or more physical processing units (FPUS) that are attached to a motherboard, daughter board, and/or PC expansion board. The cooling system can also be used to cool power electronics such as MOSFETs, women, and other high-top electronic rafts that need to be cooled. - Silk said that the cooling system described in Saki can be in any electronic sub- secret containing -f to be cooled by the heat generating device. For the sake of simplicity, any subsystem included in the personal computer that contains - or multiple cooling lines required to be placed is referred to as a PC card. The cooling system is configured to be scalable and modular so that when a new computer card containing a heat generating device is added to the personal computer, additional cooling components are secreted to the cooling system. In addition, the computer card that has been set up can also be used to exchange new or upgraded computer cards with Laiyi's cooling system. Preferably, the cooling system is disposed in a personal computer base. The alternative 'cooling secret' is configured as any electronic lacquer portion that contains the cooled heat generating device. The cooling jacket includes one or more separate fluid cooling circuits, an air chamber, or a plurality of power units, and/or a plurality of expansion tanks. When described herein, reference will be made to the use of a single-air power unit. It should be understood that the single-aerodynamics is representative of one or more aerodynamics. Each of the aerodynamics is preferably a fan. The 12 200817879 = mobile device is connected to the - first end of the recording room. The expansion slot is the same as the second end. The aerodynamic correction wire passes through the working chamber and advances toward the expansion slot. The aerodynamic unit is coupled to the first end of the air chamber in a manner that substantially avoids air bypassing the aerodynamic energy.

每一冷卻系統都包含-流體_空氣熱交換器、-泵,以 及至少另外-熱交換器。在該冷卻回路中的該組件則透過 無性流體官路_接。在某些實施例中,該流體_ 換器是-種雜ϋ。當在此贿時,將參考制一散埶哭 的軌:應該瞭解的是,該參考散熱器只是任何流體ϋ 熱父換糸統形式的代表’除非明顯地指出該散熱器的具體 特徵。在該冷卻瞒中其他熱交換器的每—個都鱼另一敎 凹換器祕’其重圍-刊冷卻瞒錄 妓 與一熱產生裝置耦接。 疋 該擴充槽的每-個都做為用於該散熱器之—的接收 區。每-散熱器都配置為一模組化形式,以安褒於盎該空 氣是耦接的雜何舰槽之巾。-般練,該空氣室包含Ν 個擴充槽並為可縮放以在該Ν個擴充槽之中接受最多Ν 個拉組化散熱ϋ。該散熱H的每—錄佳的都是可以與另 一拉組化賴11進行堆疊。這種配置大致上可以避免空氣 繞過堆豐散絲之間。—般來說,該散熱器的每—個都可 以位於_卩近另—模組化散熱器的位置,以避免空器繞過兩 散熱器之間。鄰近的散熱H也可錄在彼此頂部,或是彼 此緊靠配置。 13 200817879 任何並未使用的擴充槽都安裝一可移除空板。任何並 未使用的擴充槽都安裝一可移除空板。每一空板都用來大 致上避免空氣繞過-鄰近放置的触^,或是另—空板之 間4玉氣至的邊第一端則配置為抵住該空氣室所定位的 一散熱恭或一空板大致上可以避免空氣繞過雨者之間。每 一空板都包含一或多個空氣通孔,其允許空氣通過。該空 氣通孔的數量與每一空氣通孔的尺寸則能夠調節通過該對 應擴充槽的一空氣流通率。在某些實施例中,通過一安裝 空板擴充槽的空氣流通率大致上與通過一安裝散熱器擴充 槽的空氣流通率。在此方法中,可以提供一醫治的空氣流 通率通過每一擴充槽,而不管該擴充槽是否與一散熱器或 一空板搞接。在其他實施例中,通過該空板的該空氣流通 率是根據一特定應用所配置,在這種情況中,通過該空板 的該空氣流通率可以與通過其他擴充槽的該空氣流通率相 同’或是不同。在某些實施例中,該空板則不具有空氣通 孔。在此配置中,該空板避免空氣通過該對應的擴充槽。 由一熱產生裝置所產生的熱將被轉換在該冷卻回路中 通過該熱交換器所流動的流體。該加熱流體流動至安裝在 該空氣室中一擴充槽之中的該散熱器。該空氣動力器對著 安裝在該空氣室中的每一散熱器吹拂空氣,藉此冷卻流動 通過每一散熱器的該加熱流體。該冷卻流體接著從該散熱 器流回至該熱交換器。 第1圖描述在該冷卻回路中所使用,並配置為與該空 氣室一擴充槽耦接的一示範散熱器前視圖。該散熱器1〇包 14 200817879 含與該流體通道16所耦接的多數鰭狀物 18。一入口 12 與 一出口 14則與該流體通道16相耦接。該散熱器1〇透過該 入口 12接文加熱流體。該加熱流體流通過該通道16。當該 加熱流體流通過該通道16時,熱便從該越轉換至該縛狀 物18。冷卻流體將透過該出口 14從該散熱器、1〇流出。利 用對該鰭狀齡部表面吹拂空氣的方式,將賴狀物18加 以冷卻。Each cooling system contains a -fluid_air heat exchanger, a pump, and at least an additional heat exchanger. The assembly in the cooling circuit is passed through the asexual fluid path. In certain embodiments, the fluid exchanger is a hybrid. When this is a bribe, the reference will be made to a crying track: it should be understood that the reference heat sink is just a representation of any fluid, hot father, and other forms, unless the specific characteristics of the heat sink are clearly indicated. In the cooling crucible, each of the other heat exchangers has another 凹 换 ’ ’ 其 其 其 其 其 其 其 。 。 。 。 。 。 。 妓 妓 妓 妓 妓 妓 妓 妓 妓 。 。 。 。每 Each of the expansion slots acts as a receiving area for the heat sink. Each of the heat sinks is configured in a modular form to accommodate the airbags that are coupled to the air. Normally, the air chamber contains 扩充 expansion slots and is scalable to accept up to 拉 of the set of heat sinks among the one expansion slots. Each of the heat sinks H can be stacked with another pull pack. This configuration generally prevents air from bypassing between the piles of bulk. In general, each of the heat sinks can be located near the other moduleized heat sink to prevent the empty device from bypassing the two heat sinks. Adjacent heat sinks H can also be recorded on top of each other or placed close to each other. 13 200817879 Any removable slot that is not in use is fitted with a removable blank. Any removable slot that is not in use is fitted with a removable blank. Each empty plate is used to substantially avoid air bypassing - adjacently placed touches, or another - between the empty plates and the first end of the side of the jade to be placed against the heat of the air chamber. Or an empty board can generally prevent air from bypassing the rain. Each empty panel contains one or more air through holes that allow air to pass through. The number of air through holes and the size of each air through hole can adjust an air flow rate through the corresponding expansion slot. In some embodiments, the air flow rate through an air plate expansion slot is substantially the same as the air flow rate through a heat sink expansion slot. In this method, a therapeutic air flow rate can be provided through each expansion slot regardless of whether the expansion slot is engaged with a heat sink or an empty plate. In other embodiments, the air flow rate through the empty plate is configured according to a particular application, in which case the air flow rate through the empty plate may be the same as the air flow rate through the other expansion slots. 'Or different. In some embodiments, the empty plate does not have an air passage. In this configuration, the empty plate prevents air from passing through the corresponding expansion slot. The heat generated by a heat generating device will be converted into the fluid flowing through the heat exchanger in the cooling circuit. The heating fluid flows to the heat sink mounted in an expansion tank in the air chamber. The aerodynamics blows air against each of the radiators installed in the air chamber, thereby cooling the heating fluid flowing through each of the radiators. The cooling fluid then flows back from the heat sink to the heat exchanger. Figure 1 depicts a front view of an exemplary heat sink used in the cooling circuit and configured to couple with an expansion slot of the air chamber. The heat sink 1 pack 14 200817879 includes a plurality of fins 18 coupled to the fluid passage 16. An inlet 12 and an outlet 14 are coupled to the fluid passage 16. The heat sink 1 is connected to the inlet 12 to heat the fluid. The heated fluid stream passes through the passage 16. As the heated fluid flows through the passage 16, heat is transferred from the more to the constrain 18. Cooling fluid will flow out of the radiator, 1 through the outlet 14. The lanthanum 18 is cooled by blowing air on the surface of the fin-shaped portion.

該散熱10則配置為一模組化形狀,以能夠與另一鄰 近放置散熱ϋ相配。該散熱器1G包含—模組化結構8,盆 包含用來與該鄰近放置散熱社—套件介面表面相配的一 介面表面6。第2圖描述在第i圖中所配置使賊模組化散 熱益的-散熱ϋ堆疊前侧。—散絲2G與—散熱器30 則配置為無細b散絲1G完全相同。該散熱器L透 ^其^別的相配表面6堆疊在該散熱器20上。該散熱器朋 透過,、各別的相配表面6堆疊在該散熱器3〇上。在每一相 配表面6處所職的該細大致上避免空氣通駐之間。 ^堆豐散熱器H)、20、3〇卿疊於彼此頂步上方,並利用 =維持位置。每-散絲也可吨含額外雜持裝置, 鉤扣或是通道、失鉗等等,以舆另—散熱器輕接。 ^in ’對每—端散熱器,例如該散熱器10與該 =二應广種外部保持裝置,以迫使 起。在某些實施例中,該散熱器一 第3圖顯示-示範空氣室配置的切除側視圖。由多數 200817879 壁78形成一空氣室7〇。該空氣室7〇包含多數擴充槽72、 74、76與一空氣動力器80。該空氣室7〇則配置為該空氣 動力器80是位在該空氣室70的一第一端處,而該擴充槽 72、74、76則位在該空氣室70的一第二端處。該空氣室 70配置為由該空氣動力器80所吹拂的空氣被引導朝向該空 氣室70的該第二端。雖然在第3圖中只顯示單一空氣動力 器80,但在該空氣室7〇的該第一端之中也可以使用並放置 多於一個的空氣動力器。雖然在第3圖中顯示具有三個擴 充槽72、74、76,在該空氣室70的該第二端之中也可以使 用並放置多於或少於三個擴充槽。每一擴充槽72、74、76 都配置用以接受在以上對於第丨與第2圖所描述形式的一 散熱器,或是用以接受一空板。該空板及/或該散熱器則配 置為可以彼此堆疊,並安裝在該空氣室7〇的該第二端之 中,以大至上避免空氣分流。換句話說,從該空器動力器 8〇所引導的空氣大致上可以避免通過在該空板、該散熱器 及/或該壁78之間。取而代之的是,該當該空板是具有空氣 通孔時,該空氣便可通過該空板及/或該散熱器。 在第3圖中顯示該擴充槽的一示範配置。在此示範配 置中,該擴充槽72安裝有一空板6〇,該擴充槽74安裝有 一散熱器40,而該擴充槽76也安裝有一散熱器5〇。該散 熱器40與該散熱器50則與第1與第2圖中的該散熱器1〇 相同。β亥放熱器40與该散熱器5〇則利用一種對於第2圖 中該散熱器10、20、30所描述的相同方式堆疊在一起。如 在第3圖中所顯示,其由一端檢視該散熱器4〇、5〇,其中 16 200817879 分別顯示每一散熱器40、50的該入口 42、52與該出口 44、 54。該空板60則配置有與該散熱器40之間的相配表面, 因此大致上可以避免空氣繞過該空板60與該散熱器40之 間。在一替代實施例中,該空板則配置有大致上與該散熱 器相同尺寸的一盒狀物或塊狀物。這樣的配置大致上可以 消除在安裝空板擴充槽之中的空氣在循環或是渦流。在另 一替代實施例中,該空板則配置為具有大於該散熱器尺寸 的一盒狀物、一塊狀物或是其他外型。 該空板60較佳的是包含一或多個空氣通孔(未顯示), 其允許空氣流通過。該空氣通孔的數量與每一空氣通孔的 尺寸則能夠調節通過該擴充槽72的該空氣流通率。在某些 實施例中,通過該空板60並因此通過該擴充槽72的該調 節空氣流通率大致上與通過在該擴充槽74中該散熱器4〇 與通過在該擴充槽76中該散熱器50的該空氣流通率相 等。在此情況中,將提供通過每一擴充槽72、74、76的一 相同空氣流通率。在其他實施例中,通過該空板⑹的該空 氣流通率是根據一特定應用所配置,在這種情況中,通過 該空板60的該空氣流通率可以與通過該擴充槽%、%的 忒空氣流通率相同,或是不同。在某些實施例中,該空板 60則不具有空軋通孔。在此配置中,該空板避免空氣通過 該擴充槽72。 該空氣室70的該多數壁78可以為硬式或是具有彈 性,或是這兩種型式的耦接。舉例而言,與該空氣動力器 8〇及/或該擴充槽72與76相接的該多數壁%部分可以: 17 200817879 $彈性’崎合任何對應她表面的職,然而,該多數 =8的其他部分可以為硬式以提供一支撐結構。在該較佳 二知例巾’ 4多數壁78為硬式,而與該擴充槽72與擴充 才广相接的該多數壁%部分則配置有與該散熱器4〇相配 白、相配表φ ’朗此也與該空板⑻相配,·能夠大致上 避免空氣繞過該壁78與該散熱H 50之間,也避免空氣繞 過该壁78與該空板60之間。 同第3圖中所顯示具有空板或是散熱器的該擴充槽 或定配置只歧為示範的目的。每—散熱器與空板都配置 為—種模減的元件,並可以安裝於任何齡槽之中。因 此’每-擴充槽都可以安裝—级或—散熱器。舉例而言, 該擴充槽74與該擴充槽%每一個都可以安裝一空板,而 該擴,槽72可以絲-散熱器。其中該空氣室是配置為可 乂在每個政熱益上方堆疊另一散熱器,其較佳的是,古亥 ,器從_部上方增加至該擴充槽。舉例而言,一第二 =器是增加至該底部擴充槽76,接著當增加—額外散執 盗時’該額外散熱器便可以增加在該擴充槽74處。如在第、 3圖中所顯示’絲包含賴器的任—擴充槽較佳的是從該 頂部擴充槽朝下安裝該空板。替代的,將散熱器增加至該 擴充槽的方式中並沒有—較佳的順序。在此情況中,每— 空板用來相配-散熱器(或另一空板或該空氣室的壁)的 該介面表面則配置為與該散熱器的對應介面表面—樣,具 有大致上相同的尺寸。在此方式中,空板則以一種穩定的 配置堆豐在-或多個散熱器之中,或—或多個散熱器下方。 18 200817879 t錄轉與—獨立冷卻回路_。_是,該散 :、益50 14-弟-冷卻回路_,而該散熱器⑼則與一第 二冷部回路減。該第—冷卻回路與該第二冷卻回路無 關。第4圖描述與該錢室7()_的該第_冷卻回路示範 塊狀圖示。為了簡化起見,在第4财顯示只有該第一冷 卻回路與該散鋪減,以下也只進—步針對這種情況描 述。可以瞭解的是,雖然在第4圖中並未顯示該第二冷卻 回路在町也並未職帛二冷卻鹏妨描述,該散熱 器也同樣地與該第二冷卻鹏健。該第—冷卻回路包含 該散熱器5〇、一泵90與一熱交換器92。其每-項都透過 流體管路94、96與98 _接。在此配置中,該第一冷卻 鹏透過流辟路94 _絲器切52 _,並透過流 體管路96與該賴難σ 54 _。可鱗_是這些流 體管路,以及因此流動通過該第—冷卻回路的該流體可以 猎由將該流體管路96搞接至該散熱器入σ &以及將該流 體管路94槠至該散熱㈣σ 54的方式所反轉。也可以 瞭,的是,在該第-冷卻回路中每—組件的該相關位置都 只是用於示範的目的。舉_言,該泵9()可錄在該熱交 換器92的人口侧上,而不是如在第4圖中所顯示位於該出 口側。 雜父換器92則與-熱產生裝置1〇〇墟。可以使用 任何傳統的方式將該熱交換器92與該熱產生裝置勘耦 接。較佳的是,使用_種可移_接裝置而使該熱交換器 可以被移除並再使用。替代的,也可以使用一種非可移除 19 200817879 式的I馬接裝置。由該熱產生裝置所產生的熱將被轉換至流 動通過該熱交換器92的該流體。該加熱流體接著從該熱交 換器輸出,並輸入該散熱器50。雖然該第一冷卻回路包含 一單一熱交換器92,實際上該第一冷卻回路也可以包含多 於一個以串聯或並聯方式與該熱交換器92耦接的熱交換 器。在此方式中,該第一冷卻回路可以用來冷卻多數個熱 產生裝置’其中該多數熱產生裝置全部都與一單一電腦卡 耦接,或分散於多數個電腦卡上。包含該散熱器4〇的該第 二冷卻回路則可以配置為與該第一冷卻回路相同或不同。 故樣的設計彈性可以使每一冷卻回味應用於特定配置之 中。耦接具有不同空氣通孔配置的空板,可以更進一步地 加強特定應用設計彈性。 在一替代貫施例中,在該第一冷卻回路與該熱產生裝 置100之_接-中間冷卻回路。第5圖描述在第4圖的 該第一冷卻回路與該熱產生裝置100之間耦接一中間冷卻 回路的不|&塊狀圖示。射間冷相關無第—冷卻回 路彼此獨立。射間冷卻回路包含—熱交換器⑽、一果 112與另—熱交換器114,其所有都透過流體管路116所耦 接。該熱交換器m則與該熱交換器92搞接。該熱交換器 =4也以-種在第4圖中該熱交換器92與該熱產生装置柄 的相同方式’與雜產线置_減。該熱交換器92 j同=地與雜父換器11〇麵接,藉此在其兩者之間形成 熱面。雖然該中間冷卻回路包含用於與一孰產生麥置 搞接的-單一熱交換器m’該中間冷卻回路也可以包^多 20 200817879 於一個這種以串聯或並聯方式與該熱交換器114耦接的熱 交換器。 由该熱產生裝置1〇〇所產生的熱被轉換至流動通過該 熱父換器114的流體。該加熱流體接著從該熱交換器114 輸出’並輸入該熱交換器110。熱將透過在該熱交換器11〇 與遠熱父換器92之間所行的熱介面,從該熱交換器no轉 換至該熱父換器92。從該熱交換器no轉換至該熱交換器 92的熱接著被轉換至流動通過該熱交換器92的流體。該加 熱流體接著從該熱交換器92輸出,並輸入該散熱器50。在 2007年2月16曰所申請的共有美國專利申請案第 11/707,350號中’詳細地描述了透過兩或多個獨立流體冷卻 回路將熱從一熱產生裝置轉換至一流體_空氣熱交換器的示 範方法’ 6玄專利申清案名為’’Liquid Cooling Loops for Server Application”,其在此完全整合為參考文獻。 而在另一替代實施例中,該第一冷卻回路的該熱交換 器則與一熱匯流排耦接,其中該熱匯流排具有接合來自於 多數不同冷卻回路的多數熱產生器的能力。這種配置則在 2007年4月6曰所申請的共有美國專利申請案c〇〇1 〇52〇1 號中描述,該專利申請案名為,,Methodology of Cooling Multiple Heat Sources in a Personal Computer Through the Use of Multiple Fluid-based Heat Exchanging Loops Coupled via Modular Bus_type Heat Exchangers”,其在此完全整合為 參考文獻。 在以上描述的實施例中,每一散熱器都能夠被安裝在 21 200817879The heat sink 10 is configured in a modular shape to be capable of mating with another adjacent heat sink. The heat sink 1G includes a modular structure 8 that includes an interface surface 6 for mating with the adjacent heat sink-kit interface surface. Figure 2 depicts the front side of the heat sink stack that is configured to illuminate the thief in Figure ith. - The loose wire 2G and the heat sink 30 are configured to be identical to the fine b-filament 1G. The heat sink L is stacked on the heat sink 20 through its mating surface 6. The heat sink is transmitted through, and the respective mating surfaces 6 are stacked on the heat sink 3 . This fineness at each of the mating surfaces 6 substantially avoids air passage between. ^Hefeng radiators H), 20, and 3 are stacked above each other's top steps and use = to maintain position. Each-filament can also contain additional miscellaneous holding devices, hooks or channels, tongs, etc., so that the other radiators can be lightly connected. ^in 'For each end heat sink, for example, the heat sink 10 and the = two should be widely used to hold the external holding device. In some embodiments, the heat sink, Figure 3, shows a cutaway side view of the exemplary air chamber configuration. An air chamber 7 is formed by a majority of 200817879 walls 78. The air chamber 7A includes a plurality of expansion slots 72, 74, 76 and an aerodynamic unit 80. The air chamber 7 is configured such that the aerodynamic device 80 is located at a first end of the air chamber 70 and the expansion slots 72, 74, 76 are located at a second end of the air chamber 70. The air chamber 70 is configured such that air blown by the aerodynamic unit 80 is directed toward the second end of the air chamber 70. Although only a single aerodynamic unit 80 is shown in Figure 3, more than one aerodynamic unit can be used and placed in the first end of the air chamber 7A. Although it is shown in Fig. 3 that there are three expansion slots 72, 74, 76, more or less than three expansion slots can be used and placed in the second end of the air chamber 70. Each of the expansion slots 72, 74, 76 is configured to accept a heat sink in the form described above for Figures 2 and 2 or to accept an empty panel. The empty plates and/or the heat sinks are configured to be stacked on one another and mounted in the second end of the air chamber 7's to avoid air splitting. In other words, the air directed from the empty power unit 8 大致 can be substantially prevented from passing between the empty plate, the heat sink and/or the wall 78. Instead, the air can pass through the empty plate and/or the heat sink when the empty plate has air through holes. An exemplary configuration of the expansion slot is shown in FIG. In this exemplary configuration, the expansion slot 72 is mounted with an air plate 6〇, the expansion slot 74 is mounted with a heat sink 40, and the expansion slot 76 is also mounted with a heat sink 5〇. The heat sink 40 and the heat sink 50 are the same as the heat sink 1 in the first and second figures. The β-Hair radiator 40 and the heat sink 5 are stacked together in the same manner as described for the heat sinks 10, 20, 30 in FIG. As shown in Fig. 3, the heat sinks 4, 5 are viewed from one end, wherein 16 200817879 shows the inlets 42, 52 and the outlets 44, 54 of each of the heat sinks 40, 50, respectively. The empty plate 60 is then provided with a mating surface with the heat sink 40 so that air is substantially prevented from bypassing between the empty plate 60 and the heat sink 40. In an alternate embodiment, the blank is configured with a box or block that is substantially the same size as the heat sink. Such a configuration substantially eliminates the circulation or eddy currents in the air in which the empty plate expansion slots are installed. In another alternative embodiment, the blank is configured to have a box, piece or other exterior that is larger than the size of the heat sink. The empty plate 60 preferably includes one or more air through holes (not shown) that allow air flow therethrough. The number of air through holes and the size of each air through hole enable adjustment of the air flow rate through the expansion slot 72. In some embodiments, the conditioned air flow rate through the empty plate 60 and thus through the expansion slot 72 is substantially the same as the heat dissipation through the heat sink 4 in the expansion slot 74 and through the expansion slot 76. The air flow rate of the device 50 is equal. In this case, an identical air flow rate through each of the expansion slots 72, 74, 76 will be provided. In other embodiments, the air flow rate through the empty plate (6) is configured according to a particular application, in which case the air flow rate through the empty plate 60 can be compared to the %, % through the expansion slot.忒Air circulation rate is the same or different. In some embodiments, the empty plate 60 does not have an empty through hole. In this configuration, the empty plate prevents air from passing through the expansion slot 72. The plurality of walls 78 of the air chamber 70 can be rigid or resilient, or a coupling of both types. For example, the majority of the wall portion that is in contact with the aerodynamic device 8 and/or the expansion slots 72 and 76 can be: 17 200817879 $elastic 'snaph any job corresponding to her surface, however, the majority = 8 The other part can be hard to provide a support structure. In the preferred embodiment, the plurality of walls 78 are rigid, and the majority of the wall portion that is in contact with the expansion slot 72 and the expansion is arranged to match the heat sink 4 白 and match the table φ ' This is also compatible with the empty plate (8), which can substantially prevent air from bypassing between the wall 78 and the heat sink H50, and also avoids air bypassing between the wall 78 and the empty plate 60. This expansion slot or configuration with an empty plate or heat sink as shown in Figure 3 is only exemplary. Each of the heat sink and the empty plate is configured as a type of die reduction component and can be installed in any age slot. Therefore, each expansion slot can be installed with a level or heat sink. For example, the expansion slot 74 and the expansion slot % can each be mounted with an empty plate, and the expansion groove 72 can be a wire-heat sink. Wherein the air chamber is configured to stack another heat sink over each of the political heats, and preferably, the Guhai is added from above the _ portion to the expansion slot. For example, a second = device is added to the bottom expansion slot 76, and then the additional heat sink can be added to the expansion slot 74 when added - additional scatter. Preferably, the expansion slot of the wire comprising the spacer as shown in Figures 3, 3 is such that the empty plate is mounted downwardly from the top expansion slot. Alternatively, there is no better order to add the heat sink to the expansion slot. In this case, the interface surface of each of the empty plates for mating-heat sinks (or another empty plate or the wall of the air chamber) is configured to be substantially identical to the corresponding interface surface of the heat sink. size. In this manner, the empty plates are stacked in a stable configuration - or a plurality of heat sinks, or - or a plurality of heat sinks. 18 200817879 t Recording and - independent cooling circuit _. _Yes, the scatter:, benefit 50 14-di-cooling circuit _, and the radiator (9) is reduced with a second cold circuit. The first cooling circuit is independent of the second cooling circuit. Figure 4 depicts an exemplary block diagram of the _cooling circuit with the money chamber 7()_. For the sake of simplicity, only the first cooling circuit and the spread are reduced in the fourth fiscal year, and the following is only described for this case. It can be understood that although the second cooling circuit is not shown in Fig. 4, the heat sink is similarly described with the second cooling. The first cooling circuit includes the radiator 5, a pump 90 and a heat exchanger 92. Each of its items is connected through fluid lines 94, 96 and 98. In this configuration, the first cooling pass through the flow path 94 _ the wire cut 52 _ and through the fluid line 96 and the lag σ 54 _. The scales are the fluid lines, and thus the fluid flowing through the first cooling circuit can be hooked up by the fluid line 96 to the radiator into the squirrel & The heat dissipation (four) σ 54 method is reversed. It is also possible that the relevant position of each component in the first cooling circuit is for demonstration purposes only. In other words, the pump 9() can be recorded on the population side of the heat exchanger 92 instead of being located on the outlet side as shown in Fig. 4. The parent-replacer 92 is connected to the heat generating device 1. The heat exchanger 92 can be coupled to the heat generating device in any conventional manner. Preferably, the heat exchanger can be removed and reused using a removable device. Alternatively, a non-removable 19 200817879 type I mating device can also be used. The heat generated by the heat generating device will be converted to the fluid flowing through the heat exchanger 92. The heated fluid is then output from the heat exchanger and input to the heat sink 50. Although the first cooling circuit includes a single heat exchanger 92, the first cooling circuit may actually include more than one heat exchanger coupled to the heat exchanger 92 in series or in parallel. In this manner, the first cooling circuit can be used to cool a plurality of heat generating devices, wherein the plurality of heat generating devices are all coupled to a single computer card or distributed over a plurality of computer cards. The second cooling circuit including the heat sink 4〇 may be configured to be the same as or different from the first cooling circuit. The design flexibility of the sample allows each cooling aftertaste to be applied to a particular configuration. Coupling of empty plates with different air through hole configurations can further enhance the flexibility of the specific application design. In an alternate embodiment, the first cooling circuit is coupled to the heat generating device 100 to an intermediate cooling circuit. Figure 5 depicts a block diagram of the uncooled coupling of an intermediate cooling circuit between the first cooling circuit of Figure 4 and the heat generating device 100. There is no correlation between the cold and the cooling channels. The intercooling circuit comprises a heat exchanger (10), a fruit 112 and a further heat exchanger 114, all of which are coupled via a fluid line 116. The heat exchanger m is coupled to the heat exchanger 92. The heat exchanger = 4 is also in the same manner as in the heat exchanger shank of Fig. 4, and the miscellaneous line is reduced. The heat exchanger 92 j is flushed with the miscellaneous deformer 11 to form a hot surface therebetween. Although the intermediate cooling circuit includes a single heat exchanger m' for coupling to a single mash, the intermediate cooling circuit can also include 20 200817879 in one or more parallel connection with the heat exchanger 114. Coupling heat exchanger. The heat generated by the heat generating device 1 is converted to the fluid flowing through the hot parent exchanger 114. The heating fluid is then outputted from the heat exchanger 114 and input to the heat exchanger 110. Heat is transferred from the heat exchanger no to the hot parent exchanger 92 through the thermal interface between the heat exchanger 11 and the remote heat exchanger 92. The heat transferred from the heat exchanger no to the heat exchanger 92 is then converted to the fluid flowing through the heat exchanger 92. The heated fluid is then output from the heat exchanger 92 and input to the heat sink 50. The conversion of heat from a heat generating device to a fluid through a two or more independent fluid cooling circuits is described in detail in the commonly-owned U.S. Patent Application Serial No. 11/707,350, filed on Jan. The exemplary method of the device is referred to as ''Liquid Cooling Loops for Server Application'', which is fully integrated herein as a reference. In another alternative embodiment, the heat exchange of the first cooling circuit The device is coupled to a heat bus that has the ability to engage a plurality of heat generators from a plurality of different cooling circuits. This configuration is a U.S. patent application filed on April 6, 2007. Methodology of Cooling Multiple Heat Sources in a Personal Computer Through the Use of Multiple Fluid-based Heat Exchanging Loops Coupled via Modular Bus_type Heat Exchangers, which is described in c〇〇1 〇52〇1 It is fully integrated into the reference here. In the embodiment described above, each heat sink can be installed at 21 200817879

一單一擴充槽之中。在替代實施例中,一單一散熱器可以 被安裝在多數擴充槽之中。舉例而言,一單一散熱器能夠 縮放成被堆疊在一起該散熱器40與50 (第3圖)的尺寸, 在此情況中,該單一散熱器便可安裝在兩鄰近擴充槽之 中。一般來說,一散熱器的尺寸可以被縮放成為以上描述 該模組化散熱器10 (第1圖)的多數倍。同樣的,一單一 空板的尺寸也可以被縮放成為該空板60 (第3圖)的多數 么,在此f月況中,該卓一空板可以安裝在對應的多數鄰近 擴充槽之中。任意多重配置的模組化散熱器以及任意多重 配置的模組化空板的耦接,將可以用來安裝至所有的擴充 槽之中。 對於本領域技術者而言,明顯的是本發明的冷卻系統 並不侷限於在帛1至f 5圖巾所顯示的組件,而替代的可 以包含其他的組件及裝置。舉躺言,雜在第$圖中並 未顯不,該第-冷相路也可以包含—流體貯存器。該流 體貯存器顧於隨著時間由滲漏所造成的流體損失。 此外,雖然以上對於第丨至第5圖中所描述的每一個 實施例都指導實作-種赠體為基礎並具有泵的冷卻系 統,也可以使㈣代的冷卻系統,像是錄與傳導裝置。 同樣可以考慮—種單—冷卻系統,其具有-或多個含泵的 冷部回路’並具有—或多個以熱管為基礎的冷卻回路。 在某些實施例中’該冷卻系統是用來冷卻在一個人 :底f中所包含的每—熱產生裝置。在其他實施例中,該 7部糸統則只用來冷卻所選擇的熱產生裝置,或是只用來 22 200817879 冷"卩單一熱產生裝置,而其他的熱產生裝置則留給其他 或是附加的裝置所冷卻。 本I月已經對於特定實施例加以描述,並搞接促進瞭 ,士建構勒m及本發明操作的細騎敘述。在此對於特 定實施例與其細節的參考說明並不預顧來_於在此所 附加的中請專利範圍觀點。冑於本領域技術者而言,寧顯 的是可以在不背離本發_精神與觀點下,於描述所 選擇的實施例中進行修改。 23 200817879 【圖式簡單說明】 第1圖描述一示範散熱器配置前視圖。 第2圖描述在第1圖中所配置使用該模組化散熱器的一 散熱器堆疊前視圖。 第3圖顯示一示範空氣室配置的切除側視圖。 第4圖顯示與第3圖中該空氣室耦接的該第一冷卻回路 示範塊狀圖示。 第5圖描述在第4圖該第一冷卻回路與該熱產生裝置之 間所麵接的一中間冷卻回路示範塊狀圖示。 本發明將對於該圖示的許多觀點加以敘述。在多於一份 圖不中所發表與齡的適當與相同元件,將在不同圖示之 間以相同的參考數字加以表示。 【主要元件符號說明】 介面表面 模組化結構 散熱器 入口 出口 流體通道 鰭狀物 空板 空氣室 擴充槽 壁 10、20、30、4〇、50、 12、42、52 14、44、54 16 18 60 70 72、74、76 78 24 200817879 80 94、96、98 116 空氣動力器 流體管路 流體管路Among a single expansion slot. In an alternate embodiment, a single heat sink can be mounted in a plurality of expansion slots. For example, a single heat sink can be scaled to the size of the heat sinks 40 and 50 (Fig. 3) stacked together, in which case the single heat sink can be mounted in two adjacent expansion slots. In general, the size of a heat sink can be scaled to many times as described above for the modular heatsink 10 (Fig. 1). Similarly, the size of a single empty plate can also be scaled to a majority of the empty plate 60 (Fig. 3), in which case the empty plate can be mounted in a corresponding plurality of adjacent expansion slots. The modular heatsink of any multi-configuration and the coupling of any multi-configuration modular air panels will be available for installation in all expansion slots. It will be apparent to those skilled in the art that the cooling system of the present invention is not limited to the components shown in the 帛1 to f5 drapes, but may alternatively include other components and devices. The lie, which is not shown in the $ map, may also include a fluid reservoir. The fluid reservoir takes care of fluid loss caused by leakage over time. In addition, although each of the embodiments described in the second to fifth figures above guides the implementation of a gift-based cooling system with a pump, it is also possible to make the (four) generation of the cooling system, such as recording and conduction. Device. It is likewise conceivable to have a single-cooling system with - or a plurality of pump-containing cold-circuit circuits' and having - or a plurality of heat pipe-based cooling circuits. In some embodiments the cooling system is used to cool each of the heat generating devices contained in a person: bottom f. In other embodiments, the seven systems are only used to cool the selected heat generating device, or only for the 22 200817879 cold "卩 single heat generating device, while the other heat generating devices are reserved for other or It is cooled by an additional device. This particular month has been described in the context of a specific embodiment, and has been facilitated by the construction of the finer rider and the operation of the present invention. The reference to a particular embodiment and its details is not intended to be taken as a part of the appended claims. Modifications to the selected embodiments may be made without departing from the spirit and scope of the invention. 23 200817879 [Simple description of the diagram] Figure 1 depicts a front view of an exemplary heat sink configuration. Figure 2 depicts a front view of a heat sink stack using the modular heat sink configured in Figure 1. Figure 3 shows a cutaway side view of an exemplary air chamber configuration. Figure 4 shows an exemplary block diagram of the first cooling circuit coupled to the air chamber of Figure 3. Figure 5 depicts an exemplary block diagram of an intermediate cooling circuit that is interfaced between the first cooling circuit and the heat generating device in Figure 4. The invention will be described in terms of numerous aspects of the illustration. Appropriate and identical elements of the ages disclosed in more than one figure will be denoted by the same reference numerals between the different figures. [Main component symbol description] Interface surface Modular structure Radiator inlet outlet Fluid channel fin empty plate Air chamber expansion groove wall 10, 20, 30, 4〇, 50, 12, 42, 52 14, 44, 54 16 18 60 70 72, 74, 76 78 24 200817879 80 94, 96, 98 116 Aerodynamic fluid line fluid line

2525

Claims (1)

200817879 卞、申請專利範圍: L 一種冷卻系統,用以冷卻在一個人電腦中的一或多個 熱產生裝置,該冷卻系統包括: a·或多個獨立的液冷之冷卻回路,各冷卻回路都包 含一模組化流體-空氣熱交換器以及流動於其中之一 流體; ^ ( b·或夕個空氣動力器,用以提供空氣至各冷卻回 路的該流體-空氣熱交換器;以及 c•一空氣室,其包含一第一端與一第二端,其中該第 一端則與該一或多個空氣動力器耦接,且該第二端與 多個接收區耦接,其中各接收區用與容納來自一對應 冷卻回路的一可移除流體-空氣熱交換器,此外,^ 接收區係用於容納一可移除空板,使得各接收區都配 置有一流體-空氣熱交換器或一空板。 \ 如申明專利範圍弟1項的冷卻系統,其中各模組化流 體-空氣熱交換器係配置為可與存在於一相鄰接收區中 的另一模組化流體_空氣熱交換器進行堆疊。 如申請專利範圍第1項的冷卻系統,其中各模組化流 體二氟熱父換器係配置為可與存在於一相鄰接收區中 4 的另一模組化流體-空氣熱交換器互鎖。 •如申請專利範圍第1項的冷卻系統,其中各模組化流 體_空氣熱交換器、各空板以及該空氣室的該第二端係 5用於實質上避免空氣分流通過該空氣室的該第二端。 •如申請專利範圍第1項的冷卻系統,其中該一或多個 26 200817879 线動力s與該找室的該帛於實質上避免 空氣分流通過該空氣室的該第一端。 6. 如申請專利範圍第i項的冷卻系統,其中各空板係用 來避免空氣流過與该空板輕接的該接收區。 7. 如申請專利範圍第1項的冷卻系統,其中各空板包含 -或多個空氣通孔’其巾該空氣通孔的數量與各空氣 通孔的尺寸個於提供稿_级雛之該接收區 〇 的一特定空氣流通率。 8·如申請專利範圍第7項的冷卻系統,其中每一空板的 該空氣流通率實質上與通過與該模組化流體_空氣熱交 換器耦接之該接收區的一空氣流通率相等,產' 通過各接收區的一實質上相等的空氣流通率。θ 9.如申請專利範圍第i項的冷卻系統,其中各冷卻回路 更包括一或多個熱交換器與一泵。 ια >申請翻範圍第1項的冷卻純,其t各空氣動力 I 器包括一風扇。 η·如申請專利範圍第i項的冷卻系統,其中各 熱交換器包括一散熱器。 π ΐ2·-種冷m用以冷卻在—個人電腦中的—或多個 熱產生裴置,該冷卻系統包括: a· —或多個獨立的液冷之冷卻回路,各冷卻回路包含 一杈組化流體-空氣熱交換器以及流動於其中之一漭 體,· ^ /;,L b· —或多個空氣動力器,用以提供空氣至於其中冷 27 200817879 卻回路的該流體-空氣熱交換器;以及 C· -空氣室,其包含-第—端與—第二端,其中該第 一端與該一或多個空氣動力器耦接,且該第二端與多 個擴充槽耦接,其巾於其巾擴充槽侧於接受來自一 對應的冷卻回路的一可移除流體-空氣熱交換器,使 得接文ifH氣熱交換II的於其巾擴充槽成為一 被使用之擴充槽,而未接受熱交換器的 於其中擴充槽則成為一未使用之擴充槽,此外,於其 中未使用之擴充槽係用於接受一可移除空板。 13·如申請專利範圍帛12項的冷卻系統,其中各模組化流 體''空軋熱父換器係配置為可與存在於一相鄰擴充槽中 的另一模組化流體-空氣熱交換器進行堆疊。 4·如申請專利範圍第12項的冷卻系統,其中各模組化流 體'二氣熱父換裔係配置為可與存在於一相鄰擴充槽中 的另一模組化流體-空氣熱交換器互鎖。 15. 如申請專利範圍第12項的冷卻系統,其中各模組化流 體-空氣熱交換H、各空板以及該空氣㈣該第二端係 用於實質上避免空氣分流通過該空氣室的該第二端。 16. 如申請專利範圍第12項的冷卻系統,其中該一或多個 空氣動力器與該空氣室的該第一端係用於實質上避免 空氣分流通過該空氣室的該第一端。 17·如申請專利範圍第12項的冷卻系統,其中各空板係用 於避免空氣流通過與該空板耦接的該擴充样。 1 〇 , 、 曰 •如申請專利範圍第12項的冷卻系統,其中各空板包含 28 200817879 一或多個空氣通孔,其中該空氣通孔的數量與各空氣 通孔的尺寸係用於提供通過與該空板耦接之該擴充槽 的一特定空氣流通率。 19·如申请專利範圍第18項的冷部系統,其中各空板的該 空氣流通率實質上與通過與該模組化流體_空氣熱交換 器耦接之該擴充槽的一空氣流通率相等,藉此產生通 過各擴充槽之一大致上相等的空氣流通率。 20·如申請專利範圍第12項的冷卻系統,其中各冷卻回路 更包括一或多個熱交換器與一泵。 21·如申請專利範圍第12項的冷卻系統,其中各空氣動力 器包括一風扇。 22·如申睛專利範圍第項的冷卻系統,其中各流體_空氣 熱交換器包括一散熱器。 3· 種冷部糸統,用以冷卻在一個人電腦中的一或多個 熱產生裝置,該冷卻系統包括: a•—或多個獨立的液冷之冷卻回路,各冷卻回路都包 含一模組化流體_空氣熱交換器以及流動於其中之一 流體; b· 一或多個空氣動力器,用以提供空氣至各冷卻回 路的該流體-空氣熱交換器;以及 c·—空氣室,其包含一第一端與一第二端,其中該第 一端與該一或多個空氣動力器耦接,且該第二端與多 個擴充槽耦接,其中各流體_空氣熱交換器都以可移 除的方式與一或多個擴充槽耦接,使得與該流體_空 29 200817879 氣熱交換器粞接的各擴充槽成為一被使用之擴充 槽,而未與該流體-空氣熱交換器耦接的各擴充槽則 成為一未使用之擴充槽,此外一空板係以可移除的方 式與一或多個未使用之擴充槽耦接。 4.如申請專利範圍第23項的冷卻系統,其中各模組化流 a氧熱父換器係配置為可與存在於一相鄰擴充槽中 的另一模組化流體-空氣熱交換器進行堆疊。 25. 如申請專利範圍第23項的冷卻纽,其中各模組化流 體-空氣熱交換器係配置為可與存在於一相鄰擴充槽中 的另一模組化流體_空氣熱交換器互鎖。 曰 26. 如申請專利範圍帛23項的冷卻$統,其中各模組化流 體-空氣熱交換器、各空板以及該空氣室的該第二端 用於實質上避免空氣分流通過該空氣室的該第二端。 .如申請專利範圍第23項的冷卻系統,其中該一或多個 =氣動力器與該空氣室的該第—端係用於實質上避免 空氣分流通過該空氣室的該第一端。 28. 如申請專利範圍第23項的冷卻系統,其中各空板係用 來避免空氣流通過與該空板耦接的該一或多個擴充 槽。 、 29. 如申請專利範圍第23項的冷卻系統,其中各空板都包 \或夕個空氣通孔’其巾該空氣通孔的數量與每一 空氣通孔的尺寸係用於提供通過與該空板耦接之該擴 充槽的一特定空氣流通率。 / 、 30. 如申請專利範圍第29項的冷部系統,其中通過各擴充 30 200817879 槽的該空氣流通率實質上相等。 31. 如申請專利範圍第23項的冷卻系統,其中各冷卻回路 更包括一或多個熱交換器與一泵。 32. 如申請專利範圍第23項的冷卻系統,其中各空氣動力 器包括一風扇。 33. 如申請專利範圍第23項的冷卻系統,其中各流體-空氣 熱交換器包括一散熱器。 31200817879 卞, patent application scope: L A cooling system for cooling one or more heat generating devices in a personal computer, the cooling system comprising: a· or a plurality of independent liquid cooling cooling circuits, each cooling circuit A modular fluid-air heat exchanger and one of the fluids flowing therein; ^ (b. or an aerodynamic device for supplying air to each of the cooling circuits; and c• An air chamber includes a first end and a second end, wherein the first end is coupled to the one or more aerodynamic devices, and the second end is coupled to the plurality of receiving regions, wherein each receiving The zone is adapted to receive a removable fluid-to-air heat exchanger from a corresponding cooling circuit, and further, the receiving zone is adapted to receive a removable empty plate such that each receiving zone is provided with a fluid-to-air heat exchanger Or an empty board. \ A cooling system of claim 1 of the patent scope, wherein each modular fluid-air heat exchanger is configured to be in contact with another modular fluid present in an adjacent receiving zone. Exchanger For example, in the cooling system of claim 1, wherein each modular fluid difluorothermal master is configured to be in contact with another modular fluid-air heat present in an adjacent receiving zone 4 Interlocking of the exchangers. The cooling system of claim 1, wherein each modular fluid_air heat exchanger, each of the empty plates, and the second end system 5 of the air chamber are used to substantially avoid air splitting Passing the second end of the air chamber. The cooling system of claim 1, wherein the one or more 26 200817879 line power s and the finder of the finder substantially avoid air splitting through the air chamber 6. The first end of the invention. 6. The cooling system of claim i, wherein each of the empty plates is for preventing air from flowing through the receiving area that is lightly connected to the empty plate. Cooling system, wherein each empty plate comprises - or a plurality of air through holes 'the number of the air through holes and the size of each air through hole are a specific air circulation rate of the receiving area of the draft 8. If the scope of patent application is 7 The cooling system of the item, wherein the air flow rate of each of the empty plates is substantially equal to an air flow rate of the receiving area coupled to the modular fluid_air heat exchanger, producing 'through one of the receiving areas A substantially equal air flow rate. θ 9. The cooling system of claim i, wherein each cooling circuit further comprises one or more heat exchangers and a pump. ια > application for cooling of the first item Purely, each of the aerodynamic units includes a fan. η· The cooling system of claim i, wherein each heat exchanger comprises a heat sink. π ΐ 2 · - cold m for cooling in - personal computer Medium- or multiple heat generating devices, the cooling system comprising: a·- or a plurality of independent liquid-cooled cooling circuits, each cooling circuit comprising a stack of fluid-air heat exchangers and flowing in one of a body, · ^ /;, L b · — or a plurality of aerodynamics for providing air to the fluid-air heat exchanger in which the cold 27 200817879 is looped; and a C·-air chamber containing - - end and - second The first end is coupled to the one or more aerodynamic devices, and the second end is coupled to the plurality of expansion slots, and the towel is disposed on the side of the towel expansion slot to receive a corresponding cooling circuit. The fluid-air heat exchanger is removed such that the paper ifH gas heat exchange II becomes a used expansion tank in the towel expansion tank, and the expansion tank in which the heat exchanger is not received becomes an unused expansion tank. In addition, the expansion slot that is not used therein is used to accept a removable empty board. 13. The cooling system of claim 12, wherein each modular fluid ''air rolling hot-family changer' is configured to be in contact with another modular fluid-air heat present in an adjacent expansion tank The switches are stacked. 4. The cooling system of claim 12, wherein each modular fluid 'two gas heat father' is configured to exchange heat with another modular fluid-air present in an adjacent expansion tank Interlocking. 15. The cooling system of claim 12, wherein each modular fluid-air heat exchange H, each empty plate, and the air (four) are used to substantially prevent air from being shunted through the air chamber Second end. 16. The cooling system of claim 12, wherein the one or more aerodynamics and the first end of the air chamber are configured to substantially prevent air from diverting through the first end of the air chamber. 17. The cooling system of claim 12, wherein each of the empty plates is for preventing air flow through the expansion sample coupled to the empty plate. 1 〇, 曰 • The cooling system of claim 12, wherein each empty plate contains 28 200817879 one or more air through holes, wherein the number of air through holes and the size of each air through hole are used to provide a specific air flow rate through the expansion slot coupled to the empty plate. 19. The cold section system of claim 18, wherein the air flow rate of each of the empty plates is substantially equal to an air flow rate of the expansion tank coupled to the modular fluid_air heat exchanger Thereby, a substantially equal air flow rate through one of the expansion slots is generated. 20. The cooling system of claim 12, wherein each of the cooling circuits further comprises one or more heat exchangers and a pump. 21. The cooling system of claim 12, wherein each of the aerodynamics comprises a fan. 22. The cooling system of claim 1, wherein each fluid-air heat exchanger comprises a heat sink. 3. A cold-type system for cooling one or more heat generating devices in a personal computer, the cooling system comprising: a•- or a plurality of independent liquid-cooled cooling circuits, each of which includes a module a fluidizing fluid_air heat exchanger and one of the fluids flowing therein; b. one or more aerodynamics for providing air to the fluid-to-air heat exchanger of each cooling circuit; and a c-air chamber, The first end and the second end are coupled to the one or more aerodynamics, and the second end is coupled to the plurality of expansion slots, wherein each fluid_air heat exchanger Removably coupled to one or more expansion slots such that each expansion slot that is coupled to the fluid_air 29 200817879 gas heat exchanger becomes a used expansion slot without the fluid-air The expansion slots to which the heat exchanger is coupled become an unused expansion slot, and an empty plate is removably coupled to one or more unused expansion slots. 4. The cooling system of claim 23, wherein each modular stream a oxythermal master is configured to be associated with another modular fluid-to-air heat exchanger present in an adjacent expansion tank Stack. 25. The cooling element of claim 23, wherein each modular fluid-to-air heat exchanger is configured to interact with another modular fluid-air heat exchanger present in an adjacent expansion tank lock.曰 26. The cooling system of claim 23, wherein each modular fluid-air heat exchanger, each of the empty plates, and the second end of the air chamber are used to substantially prevent air from being shunted through the air chamber The second end. The cooling system of claim 23, wherein the one or more = the aerodynamic device and the first end of the air chamber are for substantially avoiding the flow of air through the first end of the air chamber. 28. The cooling system of claim 23, wherein each of the empty plates is used to prevent air flow through the one or more expansion slots coupled to the empty plate. 29. The cooling system of claim 23, wherein each of the empty plates is covered with a hole or an air through hole, and the number of the air through holes and the size of each air through hole are used to provide The air plate is coupled to a specific air circulation rate of the expansion slot. / 30. For the cold part system of claim 29, the air circulation rate is substantially equal by each expansion 30 200817879 slot. 31. The cooling system of claim 23, wherein each of the cooling circuits further comprises one or more heat exchangers and a pump. 32. The cooling system of claim 23, wherein each of the aerodynamics comprises a fan. 33. The cooling system of claim 23, wherein each fluid-to-air heat exchanger comprises a heat sink. 31
TW96116015A 2006-05-04 2007-05-04 Scalable liquid cooling system with modular radiators TW200817879A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US79795506P 2006-05-04 2006-05-04

Publications (1)

Publication Number Publication Date
TW200817879A true TW200817879A (en) 2008-04-16

Family

ID=44765709

Family Applications (3)

Application Number Title Priority Date Filing Date
TW96116013A TW200817878A (en) 2006-05-04 2007-05-04 Methodology for the liquid cooling of heat generating components mounted on a daughter card/expansion card in a personal computer through the use of a remote drive bay heat exchanger with a flexible fluid interconnect
TW96116014A TWI429380B (en) 2006-05-04 2007-05-04 Joining system
TW96116015A TW200817879A (en) 2006-05-04 2007-05-04 Scalable liquid cooling system with modular radiators

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW96116013A TW200817878A (en) 2006-05-04 2007-05-04 Methodology for the liquid cooling of heat generating components mounted on a daughter card/expansion card in a personal computer through the use of a remote drive bay heat exchanger with a flexible fluid interconnect
TW96116014A TWI429380B (en) 2006-05-04 2007-05-04 Joining system

Country Status (1)

Country Link
TW (3) TW200817878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731483B (en) * 2019-11-26 2021-06-21 大陸商深圳市研派科技有限公司 Liquid cooling device with composite channel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105163563B (en) 2015-08-27 2018-04-17 苏州佳世达电通有限公司 Display device
TWI564631B (en) * 2015-08-28 2017-01-01 佳世達科技股份有限公司 Display device and heat dissipation system thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI731483B (en) * 2019-11-26 2021-06-21 大陸商深圳市研派科技有限公司 Liquid cooling device with composite channel

Also Published As

Publication number Publication date
TWI429380B (en) 2014-03-01
TW200803709A (en) 2008-01-01
TW200817878A (en) 2008-04-16

Similar Documents

Publication Publication Date Title
US10136551B2 (en) Liquid cooling system for server
US20070256815A1 (en) Scalable liquid cooling system with modular radiators
JP5671731B2 (en) Liquid cooling system, electronic equipment rack, and manufacturing method thereof
DK2294496T3 (en) Thermal insertion component for graphics card
TWI410209B (en) Modular, scalable thermal solution
CN111630470B (en) Modular computer cooling system
US20100128431A1 (en) Hybrid liquid-air cooled graphics display adapter
US7715194B2 (en) Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
US20110235271A1 (en) Mother and daughter board configuration to improve current and voltage capabilities of a power instrument
TW200817879A (en) Scalable liquid cooling system with modular radiators
US20080006396A1 (en) Multi-stage staggered radiator for high performance liquid cooling applications
JP2010212533A (en) Local cooling device
US20090272512A1 (en) Liquid cooling heat dissipating device
TW200809471A (en) Fluid providing module and electronic device using the same
CN114698330A (en) High performance substrate cooling architecture
TWI403883B (en) Methodology of cooling multiple heat sources in a personal computer through the use of multiple fluid-based heat exchanging loops coupled via modular bus-type heat exchangers
JPS63289999A (en) Mounting structure for information processor
US20240074032A1 (en) Outlet heat sink for cooling system of a supercomputer electronic board
US20070256825A1 (en) Methodology for the liquid cooling of heat generating components mounted on a daughter card/expansion card in a personal computer through the use of a remote drive bay heat exchanger with a flexible fluid interconnect
JP2021128979A (en) Server cooling device, electronic apparatus, and server cooling method