TW200816454A - Memory arrays and methods of fabricating memory arrays - Google Patents

Memory arrays and methods of fabricating memory arrays Download PDF

Info

Publication number
TW200816454A
TW200816454A TW096128462A TW96128462A TW200816454A TW 200816454 A TW200816454 A TW 200816454A TW 096128462 A TW096128462 A TW 096128462A TW 96128462 A TW96128462 A TW 96128462A TW 200816454 A TW200816454 A TW 200816454A
Authority
TW
Taiwan
Prior art keywords
source
memory array
received
gates
trenches
Prior art date
Application number
TW096128462A
Other languages
Chinese (zh)
Other versions
TWI362743B (en
Inventor
Gordon A Haller
Sanh D Tang
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Publication of TW200816454A publication Critical patent/TW200816454A/en
Application granted granted Critical
Publication of TWI362743B publication Critical patent/TWI362743B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory array includes a plurality of memory cells formed on a semiconductor substrate. Individual of the memory cells include first and second field effect transistors respectively comprising a gate, a channel region, and a pair of source/drain regions. The gates of the first and second field effect transistors are hard wired together. A conductive data line is hard wired to two of the source/drain regions. A charge storage device is hard wired to at least one of the source/drain regions other than the two. Other aspects and implementations are contemplated, including methods of fabricating memory arrays.

Description

200816454 九、發明說明: 【發明所屬之技術領域】 本發明係關於記憶料列及f造記Μ Ρ車列之方法。 【先前技術】 記憶體係-積體電路類型,用於在電腦系統内儲存資 料。其通常係在個別記憶體單元之一或多個陣列内製造。、 記憶體單元可為揮發性、半揮發性或非揮發性。非揮發性 «己隐體單元可在延長時間週期内儲存資料,許多實例中包 括電腦關閉時。揮發性記憶體耗散,因此需要予以刷新二 重新寫入,且許多實例中包括每秒多次。 Ο 不範性揮發性半導體記憶體係動態隨機存取記憶體 (DRAM),圖1内顯示一示範性先前技術dram單元。圖1 描述個別/單-DRAM單元1Q,其包含場效存取電晶體似 儲存電容器i 4。場效電晶體i 2包括一對源極/汲極區域 I5三I6以及一閘極17。源極/汲極區域16係描述為與儲存 電容器14連接,而源極/汲極區域15與位元線18電性連 接閘,17通常採用延長字元線形式,其形成數個形成為 列之场效電晶體之閘極。位元線18通常與形成為"行"(— 般與間極/字元線列垂直)之場效電晶體的複數個源極/沒極 區域15連接。許多實例巾,㈣場效電晶 Μ㈣性連接之共用源極/純區域15。 产已提出採用電容器之雙電晶體DRAM單元,如美國 第6,81 8,937號内所揭示。 雖然本發明目的在於解決上述問題,但並不限於此。本 123126.doc 200816454 1月/、又所附申4專利範圍的文字表述(不包括本說明書 的解釋或其他限制)及其相當原理所限制。 【發明内容】 本發明之揭示内容已提交,以促進美國專利法”促進科 • 學及有用技術進步”(第1章,第8段)的憲法目的。 I發明之方面包含記憶體陣列及製造記憶體陣列之方 可藉由任何方法製造記憶體陣列構造,而不必受限於 〇 纟文所揭示之製造記憶體陣列的方法。同樣,製造記憶體 J方法不必叉限於如本文所揭示之記憶體陣列構造。 【實施方式】 首先參考圖2說明記憶體陣列構造之示範性方面。各種 實施方案中,根據本發明製造之記憶體陣列包含形成於半 導體基板上之複數個記憶體單元。此文件之背景中,術語 半導體基板,,或,,半|體性基板,,定義成意味著任何包含半 導體性材料之結構,其包括但不限於塊狀半導體性材料, 〇 例如半導體性晶圓(單獨或在包含其他材料之組裝内),以 2,半導體材料層(單_或在包含其他材料之組裝内)。術 • 基板杉任何支撐結構,包括但不限於上述半導體性美 ^示IU生較佳半導體基板包括大容積半導體基板,例: 大容積單晶石夕。本發明之方面當然亦可用於絕緣物上半導 -、板及任何其他基板(無論是現有或待開發的),可在其 内或其上製造可操作記憶體陣列。 =憶體陣列將包含複數個記憶體單S,根據本發明之各 種實施方案的示範性個別記憶體單元—般參考圖2之數字 123126.doc 200816454 20來指示。並非記情 、“心… 所有記憶體單元具有相同構 结一 .^ 貝負上相同構造之個別記憶體 早凡0無确如何僅藉由範例, ^ ^ ^ ^ Λ ^ 圖2柄述包含半導體材料23 之半導體基板22 〇半導體姑斗立〇 把m 牛導體材枓23可包含大容積半導體材 枓’例如已採用導雷率辦% a , μ 3強雜質整體或對於較小隔離區域 及/或井加以適當背景摻雜的 作」八谷積早晶矽。當鈥可者詹 其他半導體材料及基板。僅ϋ …、了考慮 ^ 偟稭由乾例,+導體材料23之示 範性$景摻雜具有Ρ型適當劑詈 剜里//辰度,以便可在閘極活化 後形成η型場效電晶體之通道區域。 個別記憶體單元2〇包括第一場效電晶體24及第二場效電 晶體26。其各包含一閑極、-通道區域、及-對源繞 極區域。例如’將第一場效電晶體24描述為包含一閘極 28’將第二場效電晶體26描述為包含—閘極。在描述但 僅係示範性的-較佳具體實施射,纟形成於半導體基板 22之半導體材料23内的開σ 29及31内分別接收閘極28及 3〇。-項實施方案中,帛口 29及31採用延長溝渠形式,其 中接收之導電材料將形成用於多個記憶體單元之字元線/ 閘極。僅藉由範例’開口29及31之示範性開口寬度及所描 述相鄰開口間的間距較佳的係小於或等於5〇〇埃。用於所 描述溝渠開口 29及31之示範性深度自半導體材料23之最外 表面起係從100埃至500埃。用於閘極28及3〇之示範性較佳 導電材料係導電摻雜半導體材料及/或金屬。本文件之背 景中,"金屬"定義任何元素金屬、合金或元素金屬之混合 物、或導電金屬化合物。僅藉由範例,用於閘極28及3〇之 123126.doc 200816454 一較佳導電材料係氮化鈦。 將閘極介電質32描述為内層開口 29及3 1。任何適當的現 有或待開發介電質均可使用,二氧化石夕係一範例,其示範 性較佳厚度範圍係從30埃至80埃。 ' 々 每放電晶體24包含一對源極/汲極區域34及36,第 • 昜效電晶體26包含一對源極/汲極區域38及40。此可藉 由任何離子植入、擴散摻雜等以及任何其他程序(無論現 f) 有或待開發)形成。此類源極/汲極區域34、36、38及40之 不耗性較佳厚度從材料23之外表面起小於或等於5〇〇埃。 述之示範性較佳具體實施例中,該對源極/汲極區域之 一係在閘極28及30中間橫向接收,並由第一及第二電晶體 24及26共享。所描述之示範性具體實施例中,第一場效電 晶體24之源極/汲極區域36及第二場效電晶體%之源極/汲 才C戍4 0構成相同源極/汲極區域,其係由此類第一及第 一場效電晶體共享。一項實施方案中,如圖所示,在閘極 Ο 28之外橫向接收對34/36之其他源極/汲極區域34,在閘極200816454 IX. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a method of storing a memory train and a vehicle. [Prior Art] Memory System - An integrated circuit type used to store data in a computer system. It is typically fabricated in one or more arrays of individual memory cells. The memory unit can be volatile, semi-volatile or non-volatile. Non-volatile «The hidden unit can store data for an extended period of time, many of which include when the computer is turned off. Volatile memory is dissipated and therefore needs to be refreshed and rewritten, and many instances include multiples per second. Ο An exemplary volatile semiconductor memory system, dynamic random access memory (DRAM), is shown in Figure 1 as an exemplary prior art dram unit. Figure 1 depicts an individual/single-DRAM cell 1Q that includes a field effect access transistor-like storage capacitor i4. The field effect transistor i 2 includes a pair of source/drain regions I5 three I6 and a gate 17. The source/drain region 16 is described as being connected to the storage capacitor 14, and the source/drain region 15 is electrically connected to the bit line 18, 17 is typically in the form of an extended word line, which is formed into a plurality of columns. The gate of the field effect transistor. The bit line 18 is typically connected to a plurality of source/nomogram regions 15 formed as field effect transistors of "row" (normally perpendicular to the interpole/word line columns). A number of example towels, (iv) a common source/pure region 15 of the field effect transistor (four) connection. A dual-crystal DRAM cell using a capacitor has been proposed, as disclosed in U.S. Patent No. 6,81,937. Although the present invention aims to solve the above problems, it is not limited thereto. The textual expression of the scope of the patent application (which does not include the interpretation or other limitations of this specification) and its equivalent principles is limited. SUMMARY OF THE INVENTION The disclosure of the present invention has been filed to promote the constitutional purpose of the U.S. Patent Law "Promoting Science and Progress in Useful Technology" (Chapter 1, Paragraph 8). Aspects of the invention include a memory array and a method of fabricating a memory array. The memory array configuration can be fabricated by any method without being limited to the method of fabricating a memory array as disclosed in the above. Likewise, the method of fabricating memory J does not have to be forked to a memory array configuration as disclosed herein. [Embodiment] First, an exemplary aspect of a memory array configuration will be described with reference to FIG. In various embodiments, a memory array fabricated in accordance with the present invention comprises a plurality of memory cells formed on a semiconductor substrate. In the context of this document, the term semiconductor substrate, or, semi-body substrate, is defined to mean any structure comprising a semiconducting material, including but not limited to bulk semiconductor materials, such as semiconductor wafers. (alone or in an assembly containing other materials), 2, a layer of semiconducting material (single_ or in an assembly containing other materials). • Any support structure of the substrate cedar, including but not limited to the above-mentioned semiconducting properties. The preferred semiconductor substrate includes a large-volume semiconductor substrate, for example: large-volume single crystal. Aspects of the invention may of course also be used for the upper semiconductor of the insulator, the board and any other substrate (whether existing or to be developed) in which the operational memory array can be fabricated or formed. The memory array will contain a plurality of memory banks S, and exemplary individual memory cells in accordance with various embodiments of the present invention are generally indicated with reference to Figure 12, number 123126.doc 20081645420. It's not a sensation, "heart... All memory cells have the same construction. ^B. The individual memory of the same structure is the same as 0. How can it be used only by example, ^ ^ ^ ^ Λ ^ Figure 2 contains the semiconductor The semiconductor substrate 22 of the material 23 〇 semiconductor 姑 〇 m m m m 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可 可Or the well is doped with a suitable background. When you are a good person, you can use other semiconductor materials and substrates. Only ϋ ..., consider ^ 偟 straw from the dry case, + conductor material 23 of the exemplary $ 景 doping with Ρ type appropriate agent / / / 辰, so that the gate can be activated after the formation of n-type field effect electricity The channel area of the crystal. The individual memory cells 2A include a first field effect transistor 24 and a second field effect transistor 26. Each of them includes a idle pole, a channel region, and a - source source region. For example, 'the first field effect transistor 24 is described as including a gate 28' to describe the second field effect transistor 26 as containing a gate. The gates 28 and 3 are received, respectively, in the openings σ 29 and 31 formed in the semiconductor material 23 of the semiconductor substrate 22, as described, but only by way of example. In the embodiment, the ports 29 and 31 are in the form of elongated trenches in which the conductive material received will form a word line/gate for a plurality of memory cells. Preferably, only the exemplary opening widths of the examples 'openings 29 and 31 and the spacing between adjacent openings are less than or equal to 5 angstroms. Exemplary depths for the described trench openings 29 and 31 are from 100 angstroms to 500 angstroms from the outermost surface of the semiconductor material 23. An exemplary preferred electrically conductive material for the gates 28 and 3 is a conductive doped semiconductor material and/or metal. In the context of this document, "metal" defines a mixture of any elemental metal, alloy or elemental metal, or a conductive metal compound. By way of example only, for gates 28 and 3, 123126.doc 200816454 A preferred conductive material is titanium nitride. Gate dielectric 32 is depicted as inner opening 29 and 31. Any suitable existing or pending dielectric material can be used, an example of a preferred range of thicknesses from 30 angstroms to 80 angstroms. ' 々 Each discharge crystal 24 includes a pair of source/drain regions 34 and 36, and a first effect transistor 26 includes a pair of source/drain regions 38 and 40. This can be formed by any ion implantation, diffusion doping, etc., as well as any other procedure (whether present or not). The non-consumable thickness of such source/drain regions 34, 36, 38 and 40 is less than or equal to 5 angstroms from the outer surface of material 23. In the exemplary preferred embodiment, the pair of source/drain regions are laterally received between gates 28 and 30 and shared by first and second transistors 24 and 26. In the exemplary embodiment described, the source/drain region 36 of the first field effect transistor 24 and the source/deuterium C戍40 of the second field effect transistor constitute the same source/drain A region that is shared by such first and first field effect transistors. In one embodiment, as shown, other source/drain regions 34 of the pair 34/36 are laterally received outside the gate Ο 28, at the gate

30之外橫向接收對38/4〇之其他源極/汲極區域%。所描述 之示範性較佳具體實施例中,在閘極28及3〇中間均橫向及 在其外部正面地接收共享源極/汲極區域36/4〇。另外在所 描述之較佳具體實施例中,在閘極28及30之外正面接收其 他源極/汲極區域3 4及3 8的各區域,而一較佳實施方案中 所描述之源極/汲極區域係形成於大容積半導體材料U 内。然而,當然可考慮其他構造,包括,僅藉由範例,提 兩之源極/汲極。 123126.doc -10- 200816454 第一場效電晶體24包含通道區域42,第二場效電晶體% 包含通道區域44。組合之下,但僅為一較佳具體實施例, 此會形成所描述斷面之一般w形狀。各通道區域U、料包 含至少一個基板斷面内之可切換電流路徑仆,其在共享源 • 極7汲極區域36M〇與個別其他源極/汲極區域34或延' 伸。較佳的係如圖所示,各電流路徑46包含互連之第一及 弟二Γf '垂直段48及50。所描述之示範性具體實施例 (") 中第及第一實質上垂直段48及50分別可視為包含正面 ㈣部分52’並且—互連段56係在第―實質上垂直段辦 接近正面内端部分52之第二實質上垂直段5〇間接收。所描 述之示範性具體實施例中,互連段56係相對於所描述之一 般基板方位實質上水平地加以定向。 圖2示意性地描述導電資料線6〇,其與源極/汲極區域對 34/36及源極/汲極區域對38/4〇之其他源極/汲極區域μ、 38的每—個電性連接。—項示範性較佳具體實施例中,在 G =極28及30之外正面接收導電資料線6〇。圖2亦示意性地 描述與共享源極/汲極區域36/4〇電性連接之電荷儲存裝置 62。所描述之示範性較佳具體實施例中,電荷儲存裝置α 包含一電容器。 “圖2不意性地描述與其個別源極/汲極區域電性連接之導 電資料線60及電荷儲存裝置62,此可能發生在任何方式下 或任何實施方案内。一較佳方面中,在閘極28及30之外正 面接收電荷儲存裝置62,且—較佳方面中,在閘極^及% 之外正面接收導電資料線6〇。另外在一較佳及示範性方面 123126.doc 200816454 ’在導電資料線60之外正面接收電荷儲存裝置62,例如 在-較佳實施方案中’如以下說明所例示。另外在一較佳 實施方案中’個別記憶體單元2G包含dram單元, 料線60包含一位元線。 Ο -較佳實施方案中’導電材料分別將第一及第二電晶體 24及26之閘極28及3()電性互連。例如,圖2概略性地描述 導電材料區域或段64 ’其將導電閘極取%電性連接。一 示範性實施方案中,與閘極28及3()互連之導電材料以係在 已形成於半導體基板22内(更佳的係半導體基板Μ之半導 體材料23内)之溝渠中接收。為清楚起見,圖2内描述之概 略性透視剖視圖中未顯示材料23及接近導電材料料之可能 的周邊絕緣材料3 2。 本發明之一方面包括記憶體陣列,其包含形成於半導體 基板上之複數個圮憶體單元。記憶體單元之個別單元包括 第一及第二場效電晶體,其分別包含一閘極、一通道區 ϋ 域、及一對源極/汲極區域。第一及第二場效電晶體之閘 極係硬佈線連接在一起。導電資料線係硬佈線連接至源極 //及極區域之二者,電荷儲存裝置係硬佈線連接至除該二 者外的源極/汲極區域之至少一個。例如,僅藉由範例, 圖2概略性地描述此一記憶體陣列之個別記憶體單元的示 摩巳性較佳構造,圖3示意性地描述此一示範性個別記憶體 單元。 此方面之一較佳實施方案中,在閘極之間橫向接收源極 /汲極區域之一。一較佳實施方案中,源極/汲極區域之一 123126.doc -12- 200816454 係由第-及第二場效電晶體共享,且在一較佳方面中 儲存裝置係連接至-共享源極/汲極區域。此方面之—較 佳實施方案中,藉由在形成於半導體基板之半導體材料内乂 並在閉極間延伸的至少一個溝渠内接收的導電材料將閉極 硬佈線連接在H而’可考慮電性互相極之盆他方 面’例如藉由分離互連線或層,或藉由現有或待開發之任 何其他方式,以及針對本揭示㈣之任何方面。—較佳實 Ο Ο 施方案中,各通道區域包含在源極/汲極區域間延伸的至 =一個斷面内之一電流路徑,其包含互連之第一及第二實 質上垂直段。亦可考慮首先描述之圖2具體實施例的任何 其他示範性屬性。 僅藉由範例,圖4至6描述關於圖2之示範性額外構造, 其併入導電資料線及電荷健存裝置結構。與圖2有相似的 代表符號’不同地係採用額外數字指示額外結構。絕緣蓋 7〇係在導電問㈣、30之上接收。示範性較佳材料係氮化 矽。已在半導體材料23之外正面形成層間介電質”。示範 !生材料係二氧化石夕,其可能加以摻雜或未換雜。已透過立 =成朝向源極m極區域34及38之導電資料線接觸開: ^已將導電材料75沉積及圖案化,以形成導電資料線 °此可藉由鑲鼓類程序形成’或藉由沉積及減法圖案化 =刻程序形成’僅藉由範例。一示範性較佳方法包括沉 =或多個導電材料75,其後跟隨後圖案化及減法蚀刻。 一圖案化材料75前或後將絕緣材料76沉積於其上,以及 /儿積及隨後各向異性蝕刻相同或不同絕緣材料%,以形成 123126.doc -13 - 200816454 絕緣導電資料線側壁間物 (禾颂不)。蝕刻以形成資料線 可有效地將材料75凹陷於接觸開口以内,如圖5之斷面 :所示,隨後在其内將某一絕緣間隔物形成材料%沉積於 圖5之斷面圖内的材料75之上。Outside the 30, the other source/drain regions % of the 38/4 接收 are received laterally. In the exemplary preferred embodiment described, the shared source/drain regions 36/4 are received laterally and laterally outside of the gates 28 and 3〇. In addition, in the preferred embodiment described, the regions of the other source/drain regions 3 4 and 38 are received on the front side of the gates 28 and 30, and the source is described in a preferred embodiment. The / drain region is formed in the bulk semiconductor material U. However, other configurations are of course contemplated, including, by way of example only, the source/drain of the two. 123126.doc -10- 200816454 The first field effect transistor 24 includes a channel region 42 and the second field effect transistor % includes a channel region 44. In combination, but only as a preferred embodiment, this will result in the general w shape of the depicted section. Each of the channel regions U, the material includes at least one switchable current path within the cross-section of the substrate, which extends or extends between the shared source/pole 7 drain region 36M and the respective other source/drain regions 34. Preferably, as shown, each current path 46 includes interconnected first and second Γf' vertical segments 48 and 50. The first and first substantially vertical segments 48 and 50 of the exemplary embodiment described (") can be considered to include a front (four) portion 52', respectively, and that the interconnect portion 56 is adjacent to the front side of the first substantially vertical segment. The second substantially vertical segment 5 of the inner end portion 52 is received. In the exemplary embodiment described, interconnect segment 56 is oriented substantially horizontally relative to one of the substrate orientations described. Figure 2 schematically depicts a conductive data line 6 〇 which is connected to the source/drain region pair 34/36 and the source/drain region pair 38/4 〇 other source/drain regions μ, 38. Electrical connection. In an exemplary preferred embodiment, the conductive data lines 6 are received on the front side of the G = poles 28 and 30. Figure 2 also schematically depicts a charge storage device 62 electrically coupled to a shared source/drain region 36/4. In the exemplary preferred embodiment described, the charge storage device a comprises a capacitor. "Figure 2 unintentionally describes conductive data lines 60 and charge storage devices 62 that are electrically coupled to their respective source/drain regions, which may occur in any manner or in any embodiment. In a preferred aspect, the gates The front side of the poles 28 and 30 receives the charge storage device 62, and in a preferred aspect, the conductive data line 6 is received on the front side of the gates and %. In addition, in a preferred and exemplary aspect, 123126.doc 200816454 ' The charge storage device 62 is received on the front side of the conductive data line 60, such as in the preferred embodiment, as exemplified in the following description. In a preferred embodiment, the 'individual memory cell 2G includes a dram unit, a feed line 60. A one-dimensional line is included. In the preferred embodiment, the conductive material electrically interconnects the gates 28 and 3() of the first and second transistors 24 and 26, respectively. For example, Figure 2 schematically depicts conductive The material region or segment 64' electrically connects the conductive gates. In an exemplary embodiment, the conductive material interconnected with the gates 28 and 3() is formed in the semiconductor substrate 22 (better) Semiconductor substrate Received in the trenches of material 23. For the sake of clarity, the material 23 and the possible peripheral insulating material 32 adjacent to the conductive material are not shown in the schematic perspective cross-sectional view depicted in Figure 2. One aspect of the invention includes memory An array comprising a plurality of memory cells formed on a semiconductor substrate. The individual cells of the memory cell include first and second field effect transistors, respectively comprising a gate, a channel region, and a pair Source/drain region: The gates of the first and second field-effect transistors are hard-wired together. The conductive data lines are hard-wired to the source// and the pole regions, and the charge storage device is hard. The wiring is connected to at least one of the source/drain regions except the two. For example, by way of example only, FIG. 2 schematically depicts a preferred configuration of the individual memory cells of the memory array. This exemplary individual memory cell is schematically depicted in Figure 3. In a preferred embodiment of this aspect, one of the source/drain regions is laterally received between the gates. In a preferred embodiment, the source Pole/bungee area One of the 123126.doc -12-200816454 is shared by the first and second field effect transistors, and in a preferred aspect the storage device is connected to the shared source/drain region. In the solution, the closed-pole hard wiring is connected to H by a conductive material received in at least one trench formed in the semiconductor material of the semiconductor substrate and extending between the closed electrodes, and the electrical mutual polarity can be considered. 'For example, by separating interconnects or layers, or by any other means existing or to be developed, and for any aspect of the present disclosure (4). - In a preferred embodiment, each channel region is included at the source/ A current path extending between the drain regions to = one of the sections, the first and second substantially vertical segments of the interconnect. Any other exemplary attributes of the specific embodiment of Figure 2 first described may also be considered. By way of example only, FIGS. 4-6 describe an exemplary additional configuration with respect to FIG. 2 that incorporates a conductive data line and a charge trap device structure. The same reference numerals as in Fig. 2 have different numbers indicating additional structures. The insulating cover 7 is received on the conductive (4), 30. An exemplary preferred material is tantalum nitride. The interlayer dielectric has been formed on the front side of the semiconductor material 23." Demonstration! The raw material is a dioxide dioxide, which may or may not be mis-doped. It has passed through the vertical direction toward the source m-pole regions 34 and 38. The conductive data line is in contact with: ^ The conductive material 75 has been deposited and patterned to form a conductive data line. This can be formed by a drum-like program or formed by deposition and subtraction patterning = patterning only by example An exemplary preferred method includes sinking = or a plurality of conductive materials 75 followed by post-patterning and subtractive etching. A patterned material 75 is deposited thereon before or after the insulating material 76, and / / and subsequently Anisotropically etching the same or different % of insulating material to form an edge of the insulating conductive wire between the layers 123126.doc -13 - 200816454. Etching to form the data line effectively recesses the material 75 within the contact opening. As shown in the cross section of Fig. 5, a certain insulating spacer forming material % is then deposited thereon over the material 75 in the cross-sectional view of Fig. 5.

ϋ 已沉積另-層間介電層78(圖5)。*範性較佳材料包括 雜或未摻雜—氧化石夕。已透過層間介電層Μ及Μ姓刻朝 向共享源極/汲極區域36/40之接觸開口 8〇。在其中接收導 電插入材料81。將電荷儲存褒置62描述為包含具有儲存節 點電極82之電容器,該電極與在接觸開σ8〇内接收之導電 ,塞81電性連接。在儲存節點電極82之外部及上方接收電 谷器 '電| 84,已在其上形成外導電單元板電極%。當 然對於電容器介電質84及導電電容器電極82及86可考慮任 何示範性或待開發之材料。 所榀述之圖2及圖4至6構造僅係根據本發明之各種方面 的個別5己憶體單元及記憶體陣列之示範性描述。熟習技術 人士會明白此可按多種方式中的任一種來製造,無論是現 有或待開發的。僅藉由範例,參考圖7說明製造記憶體陣 列之方法的示範性發明方面。圖7係包含(僅藉由範例)記憶 體陣列區域1〇〇之半導體基板的俯視圖。已將溝渠隔離區 域之作用面積區域及線1〇2的交替線1〇1形成於適當半導體 基板内,例如首先說明之具體實施例的基板22。已將一系 列跑道型溝渠104蝕刻成作用面積區域101及溝渠隔離區域 1 02 ’其一般與作用面積區域及溝渠隔離區域102的交替線 垂直。僅藉由範例,此可係用於製造個別記憶體單元的圖 123126.doc -14- 200816454 2之開口 29及31的形式。在該跑道型溝渠1〇4内形成導電材 料,以相對於跑道型溝渠之個別溝渠形成一對電性連接字 元線示範性較佳材料係參考閘極2 8及3 0所說明的上述材 料。相應地,並且亦在一示範性較佳具體實施例中,閘極 介電質(圖7中為清楚起見未顯示)係形成為在提供閘極材料 28/3 0前排列所描述之示範性跑道型溝渠1〇4。 可在跑道型溝渠1 04内部橫向地以及跑道型溝渠丄〇4外部 杈向地將源極/汲極區域形成於作用面積區域内。僅藉由 耗例,並參考圖2具體實施例,此類示範性橫向内部源極/ 汲極區域以36/40指定,此類示範性橫向外部源極/汲極區 域以圖7内之數字34及38指定。 將導電資料線(圖7内為清楚起見未顯示)形成為與在跑 道型溝渠外部橫向接收之源極/汲極區域電性連接,例如 其係朝向示範性圖2及4至6具體實施例之源極/汲極區域% 及38。將電荷儲存裝置(圖7内為清楚起見未顯示)形成為與 在跑道型溝渠1 〇4内部橫向接收之源極/汲極區域的個別區 域電I*生連接。例如且僅藉由範例,可相對於圖2及4至6具 體實施例之源極/汲極區域36/4〇形成電容器或其他裝置。 僅藉由範例,示範性分離導電接點110係顯示為在記憶體 陣列100外部接收,以便與導電材料(即相對於各溝渠1 之導電材料28及30)電性連接,以便存取/啟動各字元/間極 線對。 本毛明之一方面包含製造記憶體陣列之方法,其包含在 半導體基板内形成作用面積區域與溝渠隔離區域之交替 123126.doc -15- 200816454 線。圖7内僅藉由範例說明示範性此類交替線。將一系列 溝渠對姓刻成-般與作用面積區域與溝渠隔離區域之交替 線路垂直的作用面積區域及溝渠隔離區域。僅藉由範例, 圖7内所描述之示範性溝渠開口 2 9及3 1係示範性此類系列 溝渠對,而與是否形成跑道型溝渠無關。 無論如何在—實施方案中’在半導體基板内某處钱刻至 〆個互連溝渠,其將各對之溝渠的個別溝渠互連。例如 (-) 且僅藉由範例,所描述之示範性半圓/拱形溝渠區段112之 每-個係-示範性此類互連溝渠,其將個別溝渠對^及^ 互連。可僅製造或交替形成此類溝渠丨12之一,或可蝕刻 2態溝渠。另外’可同時及/或使用共同遮罩步驟钮刻示 範性溝渠對’或與遮罩步驟及/或蝕刻分離。 在溝渠對及互連溝渠内形成導電材料’以相對於溝渠對 之個別溝渠形成一對電性連接字元線。此可能包含同時或 完全不同時地在溝渠對及互連溝渠内沉積至少一些導電材 U 料。(圖2内互連材料/區域64對應於此類互連溝渠及導電材 料。) =對之溝渠的個別溝渠中間及各對之溝渠的個別溝渠 外部橫向地將源極/汲極區域形成於作用面積區域内。形 成與在各對之溝渠的個別溝渠外部接收之源極/沒極區域 電性連接的導電資料線。形成與在各對之溝渠的個別溝渠 中間接收之源極/汲極區域之個別區域電性連接的一電荷 儲存襄置。僅藉由範例,參考圖2及圖4至6之具體實施例 予以說明。 123126.doc -16- 200816454 圖2、圖4至6及圖7之上述示範性具體實施例可藉由許多 現有或待開發技術之任一技術來製造。另外,僅藉由範 二’圖2、4至6及7内描述之溝渠開口 29、31可製造成次微 衫。例如且僅藉由範例,溝渠開口輪廓可製造成第—硬遮 罩層内的最小可能之微影特徵大小。之後,可在其上沉積 額外適當薄之硬遮罩材料,以排列形成於第—硬遮罩層内 之溝渠的侧壁及基底。此可經受各向異性間隔物類姓刻,另 Another interlayer dielectric layer 78 has been deposited (Fig. 5). *Specially preferred materials include hetero or undoped - oxidized stone. The contact opening 8〇 of the shared source/drain region 36/40 has been traversed through the interlayer dielectric layer and the surname. The conductive insertion material 81 is received therein. Charge storage device 62 is depicted as including a capacitor having a storage node electrode 82 that is electrically coupled to a conductive plug 81 that is received within contact σ8〇. The battery 'Electrical' 84 is received outside and above the storage node electrode 82, and the outer conductive unit plate electrode % has been formed thereon. Of course, any exemplary or pending material may be considered for capacitor dielectric 84 and conductive capacitor electrodes 82 and 86. The diagrams of Figures 2 and 4 through 6 described herein are merely exemplary representations of individual 5 memory elements and memory arrays in accordance with various aspects of the present invention. Those skilled in the art will appreciate that this can be made in any of a variety of ways, whether existing or to be developed. Exemplary inventive aspects of a method of fabricating a memory array are illustrated by way of example only with reference to FIG. Figure 7 is a top plan view of a semiconductor substrate including (by way of example only) a memory array region. The active area area of the trench isolation region and the alternate line 1〇1 of the line 1〇2 have been formed in a suitable semiconductor substrate, for example, the substrate 22 of the specific embodiment will be described first. A series of runway trenches 104 have been etched into active area regions 101 and trench isolation regions 102' which are generally perpendicular to the alternating lines of active area and trench isolation regions 102. By way of example only, this can be used in the form of openings 29 and 31 of Figures 123126.doc - 14 - 200816454 2 for the manufacture of individual memory cells. A conductive material is formed in the track-type trench 1〇4 to form a pair of electrically connected word lines with respect to individual trenches of the track-type trench. Exemplary preferred materials are the materials described by the reference gates 28 and 30. . Accordingly, and also in an exemplary preferred embodiment, the gate dielectric (not shown in Figure 7 for clarity) is formed as an exemplary arrangement prior to providing the gate material 28/30. The runway type ditch is 1〇4. The source/drain regions may be formed laterally in the runway trench 104 and laterally outside the raceway trench 4 in the active area. By way of example only, and with reference to the specific embodiment of FIG. 2, such exemplary lateral internal source/drain regions are designated at 36/40, such exemplary lateral external source/drain regions are numbered in FIG. 34 and 38 are designated. The conductive data lines (not shown in FIG. 7 for clarity) are formed to be electrically connected to the source/drain regions that are laterally received outside of the track-type trench, for example, for example implementations of exemplary FIGS. 2 and 4-6. Example source/drain regions % and 38. The charge storage device (not shown in Fig. 7 for clarity) is formed to be electrically connected to the individual regions of the source/drain regions that are laterally received inside the track-type trenches 1 〇4. For example and by way of example only, capacitors or other devices may be formed with respect to the source/drain regions 36/4 of the specific embodiments of Figures 2 and 4-6. By way of example only, exemplary separate conductive contacts 110 are shown as being received external to the memory array 100 for electrical connection with conductive material (ie, conductive materials 28 and 30 relative to each trench 1) for access/activation Each character/interpolar line pair. One aspect of the present invention includes a method of fabricating a memory array comprising alternating between an active area region and a trench isolation region in a semiconductor substrate. 123126.doc -15-200816454 line. An exemplary such alternate line is illustrated by way of example only in FIG. A series of ditches are engraved into a region of active area that is perpendicular to the alternate line of the active area and the isolated area of the trench and the isolation area of the trench. By way of example only, the exemplary trench openings 2 9 and 3 1 depicted in Figure 7 are exemplary such pairs of trenches, regardless of whether a runway-type trench is formed. In any event, in an embodiment, a portion of the semiconductor substrate is engraved into an interconnected trench that interconnects individual trenches of each pair of trenches. For example, (-) and by way of example only, each of the exemplary semicircular/arched trench sections 112 described is an exemplary interconnected trench that interconnects individual trenches. Only one of such trench turns 12 may be fabricated or alternately formed, or a 2-state trench may be etched. Alternatively, the universal trench pair can be simultaneously and/or separated using a common mask step button or separated from the masking step and/or etching. A conductive material is formed in the trench pair and the interconnect trench to form a pair of electrically connected word lines with respect to the individual trenches of the trench pair. This may involve depositing at least some of the conductive material U in the trench pairs and interconnected trenches simultaneously or completely differently. (Interconnect material/region 64 in Figure 2 corresponds to such interconnected trenches and conductive materials.) = The source/drain regions are formed laterally in the middle of individual trenches in the trenches and in the individual trenches of each pair of trenches Within the area of the action area. A conductive data line electrically connected to the source/no-polar region received outside the individual trenches of each pair of trenches is formed. A charge storage device is formed that is electrically coupled to individual regions of the source/drain regions received between individual trenches of each pair of trenches. The specific embodiments of Fig. 2 and Figs. 4 to 6 will be described by way of example only. 123126.doc -16- 200816454 The above exemplary embodiments of Figures 2, 4-6, and 7 can be fabricated by any of a number of existing or pending techniques. In addition, the secondary micro-shirt can be fabricated only by the trench openings 29, 31 described in the Figures 2, 4 to 6 and 7. For example and by way of example only, the trench opening profile can be fabricated to the smallest possible lithographic feature size within the first hard mask layer. Thereafter, an additional suitably thin hard mask material can be deposited thereon to align the sidewalls and the substrate of the trench formed in the first hard mask layer. This can withstand the anisotropic spacer class name,

從而在將溝渠開口 29及31敍刻成基板材料^前減小溝渠之 開放寬度,將描述之溝渠形成為次微影。另外,藉由採用 各向異性银刻之硬遮罩間隔物,其係沉積至小於當前最小 微影钕刻特徵尺寸之橫向厚度,溝渠間之硬遮罩區塊亦可 製造成類似方式之次微影。 另外無論如何,可在形成溝渠開口 29、31前沉積周邊電 路閘極材料,接著在圖案化周邊閘極材料以在周邊電路面 積内形成場效電晶體閘極前,透過陣列面積内之周邊電路 閘極材料形成溝渠開口 29、31。另外僅藉由範例,可沉積 所描述之示範性閘極介電質32及閘極材料28、3〇,並在從 陣列移除周邊閘極材料前相對於陣列内之周邊導電閘極材 料平坦化。另外僅藉由範例,記憶體陣列内之導電閘極材 料28、30的所描述示範性凹陷可與周邊閘極材料的蝕刻相 干地發生。另外僅藉由範例,形成於導電閘極材料以、3〇 上之絕緣材料70可與相對於周邊閘極構造形成的絕緣間隔 物之製造相干地形成並具有相同材料。當然也可就製造本 文所識別及主張之任何基板來考慮任何其他現有或待開發 123126.doc -17- 200816454 之處理 以及結合本文所主 方法。 張及說明的製4記憶體陣列之 I、、條例,本發明已就結構及方 予以說明。然而應明白,本㈣…特…細程度 定牿n w 本發^不限於顯示及說明的特 式:因此太揭示的構件包含實施本發明的較佳形 i内=之任何形式或修改皆屬於根據等效物教 令、田解釋的隨附巾請專利範圍之合適範缚内。 【圖式簡單說明】 以上已參考以下附圖說明本發明之較佳具體實施例。 圖1係先前技術DRAM單元之示意圖。 圖2係包含根據本發明之各種方面的記憶體單元之基板 片段的概略性透視剖視圖及部分示意圖。 圖3係根據本發明之一方面的單一 /個別記憶體單元的示 意圖。 圖4係包含圖2内所述記憶體單元之基板片段的擴大概略 性俯視平面圖。 圖5係沿圖4内線5 _ 5所取的概略性斷面圖。 圖6係沿圖4内線6-6所取的概略性斷面圖。 圖7係根據本發明之方面的基板片段之另一擴大概略性 俯視平面圖。 【主要元件符號說明】 10 DRAM單元 12 場效存取電晶體 14 儲存電容器 123126.doc -18 - 200816454 Ο 15 源極/汲極區域 16 源極/汲極區域 17 閘極 18 位元線 20 記憶體單元 22 半導體基板 23 半導體材料 24 第一場效電晶體 26 第二場效電晶體 28 閘極/導電閘極材料 29 開口 30 閘極/導電閘極材料 31 開口 32 閘極介電質/周邊絕緣材料 34 源極/>及極區域 36 源極/>及極區域 36/40 共享源極/汲極區域 38 源極/汲極區域 40 源極/汲極區域 42 通道區域 44 通道區域 46 可切換電流路徑 48 第一實質上垂直段 50 第二實質上垂直段 123126.doc -19- 200816454 52 正面内端部分 56 互連段 60 導電資料線 62 電荷儲存裝置 64 導電材料 70 絕緣蓋/絕緣材料 72 層間介電質/層間介電層 74 導電資料線接觸開口 75 導電材料 76 絕緣材料 78 層間介電層 80 接觸開口 81 導電插入材料/導電插塞 82 儲存節點電極/導電電容器電極 84 電容器介電質 86 外導電單元板電極/導電電容器電極 100 記憶體陣列區域 101 交替線 102 線/溝渠隔離區域 104 跑道型溝渠 110 導電接點 112 溝渠區段 123126.doc •20-Therefore, the opening width of the trench is reduced before the trench openings 29 and 31 are engraved into the substrate material, and the described trench is formed as a secondary lithography. In addition, by using an anisotropic silver engraved hard mask spacer, which is deposited to a lateral thickness smaller than the current minimum lithography engraved feature size, the hard mask block between the trenches can be fabricated in a similar manner. Lithography. In addition, the peripheral circuit gate material may be deposited before the trench openings 29, 31 are formed, and then the peripheral circuits in the array area are transmitted before the peripheral gate material is patterned to form the field effect transistor gates in the peripheral circuit area. The gate material forms trench openings 29,31. Additionally, by way of example only, the exemplary gate dielectric 32 and gate material 28, 3〇 described can be deposited and planarized with respect to the perimeter of the conductive gate material prior to removal of the peripheral gate material from the array. Chemical. By way of example only, the described exemplary recesses of the conductive gate material 28, 30 within the memory array can occur coherently with the etching of the peripheral gate material. Further by way of example only, the insulating material 70 formed on the conductive gate material can be formed coherently with the insulating spacer formed with respect to the peripheral gate structure and have the same material. Of course, any other existing or pending development of 123126.doc -17-200816454 can be considered as well as in connection with any of the substrates identified and claimed herein. The present invention has been described with respect to the structure and the description of the invention. However, it should be understood that the present invention is not limited to the specific features of the display and description: therefore, any form or modification of the component that is disclosed in the preferred embodiment of the present invention is The equivalent of the teaching order, the interpretation of the field, please attach the scope of the patent to the appropriate scope. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention have been described above with reference to the accompanying drawings. 1 is a schematic diagram of a prior art DRAM cell. 2 is a schematic perspective cross-sectional view and partial schematic view of a substrate segment including a memory cell in accordance with various aspects of the present invention. Figure 3 is a schematic illustration of a single/individual memory unit in accordance with an aspect of the present invention. Figure 4 is an enlarged schematic top plan view of a substrate segment including the memory cell of Figure 2; Figure 5 is a schematic cross-sectional view taken along line 5-5 of Figure 4. Figure 6 is a schematic cross-sectional view taken along line 6-6 of Figure 4. Figure 7 is another enlarged schematic top plan view of a substrate segment in accordance with aspects of the present invention. [Main component symbol description] 10 DRAM cell 12 field effect access transistor 14 storage capacitor 123126.doc -18 - 200816454 Ο 15 source/drain region 16 source/drain region 17 gate 18 bit line 20 memory Body unit 22 Semiconductor substrate 23 Semiconductor material 24 First field effect transistor 26 Second field effect transistor 28 Gate/conductive gate material 29 Opening 30 Gate/conductive gate material 31 Opening 32 Gate dielectric/periphery Insulation material 34 source/> and pole region 36 source/> and pole region 36/40 shared source/drain region 38 source/drain region 40 source/drain region 42 channel region 44 channel region 46 switchable current path 48 first substantially vertical segment 50 second substantially vertical segment 123126.doc -19- 200816454 52 front inner end portion 56 interconnect segment 60 conductive data line 62 charge storage device 64 conductive material 70 insulating cover / Insulating material 72 interlayer dielectric/interlayer dielectric layer 74 conductive data line contact opening 75 conductive material 76 insulating material 78 interlayer dielectric layer 80 contact opening 81 conductive insert material / conductive Plug 82 storage node electrode / conductive capacitor electrode 84 capacitor dielectric 86 outer conductive unit plate electrode / conductive capacitor electrode 100 memory array area 101 alternate line 102 line / trench isolation area 104 runway type trench 110 conductive contact 112 trench section 123126.doc •20-

Claims (1)

200816454 十、申請專利範圍: 1 · 一種記憶體陣列,其包含: 複數個記憶體單元,其係形成於一半導體基板上,該 等記憶體單元之個別單元包含: • 第一及第二場效電晶體’其分別包含-閘極、一通 , 31區域、及—對源極/汲極區域;該等閘極係在形成於該 基板之半導體材料内的開口内接收,該對源極/汲極區域 f、 係在**亥專閘極中間橫向接收,並由該等第一及第二 電晶體共享’該等第一及第二電晶體之該對源極级極區 域的另一區域之每一個係在其個別閘極之外橫向接收,· 導電 > 料線,其係在該等閘極之外正面接收,並 與該對源極/汲極區域之另一區域的每一個電性連接; 以及 一電荷儲存裝置,其與共享源極/汲極區域電性連 接。 {) 2·如請求項1之記憶體陣列,其中該半導體材料包含大容 積半導體材料。 3.如請求項2之記憶體陣列,其中該大容積半導體材料包 含大容積單晶矽。 4·如請求項丨之記憶體陣列,其中在該等閘極之外正面接 收该對源極/汲極區域之一個區域。 5·如請求項1之記憶體陣列,其中在該等閘極之外正面接 收该對源極/汲極區域之該另一區域的每一個。 6.如請求項i之記憶體陣列,其中在該等閘極之外正面接 123126.doc 200816454 收孩對源極/汲極區域之該一個區域及該對源極/汲極區 域之該另一區域的每一個。 7·如請求項1之記憶體陣列,其中在該等閘極之外正面接 收該電荷儲存裝置。 8,如請求項1之記憶體陣列,其中在該等閘極之外正面以 及在4導電資料線之外正面接收該電荷儲存裝置。 9·如請求項1之記憶體陣列,其中各通道區域包含在該共 享源極/汲極區域與該個別另一源極/汲極區域間延伸的 至少一個斷面内之一電流路徑,其包含互連之第一及第 一貫質上垂直段。 1〇·如請求項1之記憶體陣列,其包含將該等第一及第二電 晶體之該等閘極電性互連的導電材料。 11·如請求項10之記憶體陣列,其中在形成於該半導體基板 内之一溝渠内接收該導電材料。 12.如請求項10之記憶體陣列,其中在形成於該半導體基板 之D亥半導體材料内的一溝渠内接收該導電材料。 13 ·如請求項1之記憶體陣列,其中 各通道區域包含在該共享源極/汲極區域與該個別另一 源極/汲極區域間延伸的至少一個斷面内之一電流路徑, 其包含互連之第一及第二實質上垂直段;以及 導電材料將該等第一及第二電晶體之該等閑極電性互 連。 14·如明求項i之記憶體陣列,其中該等記憶體單元包含 DRAM單元。 123126.doc 200816454 1 5 · —種記憶體陣列,其包含·· 複數個記憶體單元,其係形成於一半導體基板上,該 等記憶體單元之個別單元包含: 第一及第二場效電晶體,其分別包含一閘極、一通 道區域、及一對源極/汲極區域;該對源極/汲極區域之 一係在該等閘極中間橫向接收並由該等第一及第二電晶 體共旱’該等第一及第二電晶體之該對源極/汲極區域的 f/另〔域之母一個係在其個別閘極之外正面接收,各 通道區域包含在該共享源極/汲極區域與該個別另一源極/ 汲極區域間延伸的至少一個斷面内之一電流路徑,其包 含互連之第一及第二實質上垂直段; 一導電資料線,其與該對源極/汲極區域之該另一區 域的每一個電性連接;以及 一電荷儲存裝置,其與該共享源極/汲極區域電性連 接。 ο I6·如請求項15之記憶體陣列,其中該等第一及第二實質上 垂直^又包3正面内端部分,該一斷面内之該電流路徑包 含在接近該正面内端部分之該等第一與第二實質上垂直 段之間接收的一互連區段。 17· ^請求項15之記憶體陣列,其中該—斷面内之該電流路 4 13在6亥等第一與第二實質上垂直段之間接收的一互 連實質上水平段。 18· 士明求項15之記憶體陣列,其中在該等閘極之外正面接 收該導電資料線。 123126.doc 200816454 19·如請求項15之記憶體陣列,其中在該等閘極之外正面接 收該電荷儲存裝置。 20·如請求項15之記憶體陣列,其中在該等閘極之外正面以 及在該導|資料線之外正面接收該電荷儲存裝置。 2 1 ·如晴求項1 5之記憶體陣列,其包含將該等第一及第二電 晶體之該等閘極電性互連的導電材料。 22.如請求項15之記憶體陣列,其中該導電資料線包含一位 p 兀線’並且該等記憶體單元包含DRAM單元。 23· —種記憶體陣列,其包含: 複數個記憶體單元,其係形成於一半導體基板上,該 等記憶體單元之個別單元包含: 弟一及第一場效電晶體,其分別包含一閘極、一通 道區域、及一對源極/汲極區域;該對源極/汲極區域之 一係在該等閘極中間橫向接收,並由該等第一及第二電 晶體共享,該等第一及第二電晶體之該對源極/汲極區域 U 的另一區域之每一個係在其個別閘極之外橫向接收,導 電材料將該等第一及第二電晶體之該等閘極電性互連; 導電資料線’其與該對源極/汲極區域之該另一區 域的每一個電性連接;以及 一電荷儲存裝置,其與該共享源極/汲極區域電性連 接。 24.如印求項23之記憶體陣列,其中在形成於該半導體基板 内之一溝渠内接收該導電材料。 25·如印求項23之記憶體陣列,其中在形成於該半導體基板 123126.doc 200816454 之半導體材料内的一溝渠内接收該導電材料。 26. 如請求項23之記憶體陣列,其中在該等開極之外正面接 收該導電資料線。 27. 如請求項23之記憶體陣列,其中在該等閘極之外正面接 收該電荷儲存裝置。 28. 如請求項23之記憶體陣列,其中在該等閘極之外正面以 及在該導電資料線之外正面接收該電荷儲存裝置。200816454 X. Patent Application Range: 1 . A memory array comprising: a plurality of memory cells formed on a semiconductor substrate, the individual cells of the memory cells comprising: • first and second field effects The transistor 'includes a gate, a pass, a 31 region, and a pair of source/drain regions, respectively; the gates are received in openings formed in the semiconductor material of the substrate, the pair of sources/汲The pole region f is laterally received in the middle of the gate, and the first and second transistors share another region of the pair of source pole regions of the first and second transistors Each of which is laterally received outside its individual gates, a conductive > feed line that is received laterally outside of the gates and with each of the other regions of the pair of source/drain regions Electrically coupled; and a charge storage device electrically coupled to the shared source/drain region. {2] The memory array of claim 1, wherein the semiconductor material comprises a large volume semiconductor material. 3. The memory array of claim 2, wherein the large volume semiconductor material comprises a large volume single crystal germanium. 4. An array of memory as claimed in claim 1, wherein a region of the pair of source/drain regions is received frontside of the gates. 5. The memory array of claim 1 wherein each of the other regions of the pair of source/drain regions are received laterally outside the gates. 6. The memory array of claim i, wherein the front side of the gate is connected to the one of the source/drain regions and the pair of source/drain regions Each of the areas. 7. The memory array of claim 1, wherein the charge storage device is received in front of the gates. 8. The memory array of claim 1 wherein the charge storage device is received on the front side of the gates and on the front side of the four conductive data lines. 9. The memory array of claim 1, wherein each channel region comprises a current path in at least one of the sections extending between the shared source/drain region and the respective other source/drain region, The first and first upper vertical segments of the interconnect are included. The memory array of claim 1, comprising a conductive material electrically interconnecting the gates of the first and second transistors. 11. The memory array of claim 10, wherein the conductive material is received in a trench formed in the semiconductor substrate. 12. The memory array of claim 10, wherein the conductive material is received in a trench formed in the semiconductor material of the semiconductor substrate. 13. The memory array of claim 1, wherein each channel region comprises a current path in at least one of the sections extending between the shared source/drain region and the respective other source/drain region, And including a first and a second substantially vertical segment of the interconnect; and a conductive material electrically interconnecting the first and second transistors. 14. The memory array of claim i, wherein the memory cells comprise DRAM cells. 123126.doc 200816454 1 5 - A memory array comprising: a plurality of memory cells formed on a semiconductor substrate, the individual cells of the memory cells comprising: first and second field power a crystal, each of which includes a gate, a channel region, and a pair of source/drain regions; one of the pair of source/drain regions is laterally received in the middle of the gates and is received by the first and the first The two transistors of the first and second transistors are f/other of the pair of source/drain regions; the parent of the domain is received on the front side of the individual gates, and each channel region is included in the a current path in at least one of the sections extending between the source/drain region and the other source/drain region, comprising first and second substantially vertical segments of the interconnect; And electrically connected to each of the other regions of the pair of source/drain regions; and a charge storage device electrically coupled to the shared source/drain region. The memory array of claim 15, wherein the first and second substantially vertical portions of the front end portion of the package 3, the current path in the cross section is included near the inner end portion of the front surface An interconnected section received between the first and second substantially vertical segments. 17. The memory array of claim 15 wherein the current path 4 13 in the cross-section receives an interconnected substantially horizontal segment between the first and second substantially vertical segments, such as 6 hai. 18. The memory array of claim 15, wherein the conductive data lines are received in front of the gates. The memory array of claim 15 wherein the charge storage device is received laterally outside of the gates. 20. The memory array of claim 15 wherein the charge storage device is received on the front side of the gates and on the front side of the data line. 2 1 . The memory array of claim 1, comprising a conductive material electrically interconnecting the gates of the first and second transistors. 22. The memory array of claim 15, wherein the conductive data line comprises a bit of a p-line' and the memory cells comprise DRAM cells. A memory array comprising: a plurality of memory cells formed on a semiconductor substrate, the individual cells of the memory cells comprising: a first field effect transistor and a first field effect transistor each comprising a a gate, a channel region, and a pair of source/drain regions; one of the pair of source/drain regions is laterally received in the middle of the gates and shared by the first and second transistors Each of the other regions of the pair of source/drain regions U of the first and second transistors are laterally received outside of their respective gates, and the conductive material is such that the first and second transistors are The gates are electrically interconnected; the conductive data lines are electrically connected to each of the other regions of the pair of source/drain regions; and a charge storage device is associated with the shared source/drain Regional electrical connection. 24. The memory array of claim 23, wherein the conductive material is received in a trench formed in the semiconductor substrate. The memory array of claim 23, wherein the conductive material is received in a trench formed in the semiconductor material of the semiconductor substrate 123126.doc 200816454. 26. The memory array of claim 23, wherein the conductive data line is received in front of the open electrodes. 27. The memory array of claim 23, wherein the charge storage device is received laterally outside of the gates. 28. The memory array of claim 23, wherein the charge storage device is received on the front side of the gates and on the front side of the conductive data lines. U 29. 如請求項23之記憶體陣列,其中該電荷储存裝置包含一 電容器。 3 0 · —種記憶體陣列,其包含·· 複數個記憶體單元’其係形成於大容積半導體基板 上’該等記憶體單元之個別單元包含: 第一及第二場效電晶體,其分別包 道區域、及-對源臟極區域’·該等間極係=成= 基板之大容積半導體材料内的溝渠内接收,該對源極/沒 極區域之一係在該等閉極中間的大容積半導體材料内橫 向接收,並由該等第一及第二電晶體共享,該等第一及 第二電晶體之該對源極/汲極區域的另一區域之每一個係 在其個別閘極之外的大容積半導體材料内橫向接收,導 電材料將該等第-及第二電晶體之該等閘極電性互連, 各通道區域在該共享源極/没極區域與該個別另一源極/ 汲極間延伸的至少—個斷面内包含A容積半導體材料内 之—電流路徑,其包含互連之第一及第二實質 段; 、土且 123126.doc 200816454 ‘電 > 料線’其係在該等閘極之外正面接收,並 與該對源極/汲極區域之該另一區域的每一個電性連接; 以及 一電荷儲存裝置,其與該共享源極/汲極區域電性連 接’並且係在该導電資料線之外正面接收。 3 1 ·如請求項30之記憶體陣列,其中該導電材料包含金屬。 32·如請求項3 1之記憶體陣列,其中該金屬包含TiN。 3 3 · —種記憶體陣列,其包含: 複數個記憶體單元,其係形成於一半導體基板上,該 等記憶體單元之個別單元包含: 弟一及弟一場效電晶體,其分別包含一閘極、一通 道區域、及一對源極/汲極區域;該等第一及第二場效電 晶體之該等閘極係硬佈線連接在一起; 一導電資料線,其係硬佈線連接至該等源極/汲極區 域之兩個;以及 一電荷儲存裝置,其係硬佈線連接至除該等兩個以 外的该等源極/汲極區域之至少一個。 34·如請求項33之記憶體陣列,其中在該等閘極間橫向接收 該一個區域。 35·如請求項33之記憶體陣列,其中該等源極/汲極區域之一 係由該等第一及第二場效電晶體共享,該電荷儲存裝置 係連接至該一個共享源極/汲極區域。 36·如請求項33之記憶體陣列,其中藉由在形成於該半導體 基板之半導體材料内並在該等閘極間延伸的至少一個溝 123126.doc 200816454 渠内接收的導電材料將該等閘極硬佈線連接在一起。 37. 如請求項33之記憶體陣列’其中藉由在形成於料導體 基板之半導體材料内並在該等閘極間延伸的至少兩個溝 渠内接收的導電材料將該等閘極硬佈線連接在一起。 38. 如請求項33之記憶體陣列,其中在嗜犛 * ,、τ隹通寺閘極之外正面接 收該電荷儲存裝置。 39. 如請求項33之記憶體陣列,其中在該等間極之外正面接 ^ 收該導電資料線。 ’復如請求項33之記憶體陣列,其中各通道區域包含在源極/ 汲極區域間延伸的至少一個斷面内之一電流路徑,其包 含互連之第一及第二實質上垂直段。 41 · 一種製造一記憶體陣列之方法,其包含: 在一半導體基板内形成作用面積區域與溝渠隔離區域 之交替線; 將一系列跑道型溝渠蝕刻成一般與作用面積區域與溝 c, 渠隔離區域之該等交替線垂直的該等作用面積區域及溝 渠隔離區域; 在該跑道型溝渠内形成導電材料,以相對於該等跑道 型溝渠之個別溝渠形成一對電性連接字元線; 在該等跑道型溝渠内部橫向以及在該等跑道型溝渠外 部橫向形成該等作用面積區域内的源極/汲極區域; 形成與在該等跑道型溝渠外部橫向接收之該等源極/汲 極區域電性連接的導電資料線;以及 形成與在該等跑道型溝渠内部橫向接收之該等源極/汲 123126.doc 200816454 極區域之個別區域電性連接的一電荷儲存裝置。 42. —種製造一記憶體陣列之方法,其包含: 在-半導體基板内形成作用面積區域與溝渠隔離區域 之交替線; 冑一系列溝渠對蝕刻成-般與作用面積區域與溝渠隔 離區域之該等交替線垂直的該等作用面積區域及溝渠隔 離區域, 將至少一個互連溝準巍如+ c 蝕刻成互連各對之該等溝渠的個 別溝渠之該半導體基板; 在溝渠對及該互連溝渠内形成導電材料,以相對於該 等溝渠對之個別溝渠形成—對電性連接字元線; 在各對之該等溝渠的個別溝渠中間及各對之該等溝渠 的個別溝渠外部橫向形成該等作用面積區域内之源極/汲 極區域; 形成與在各對之該等溝渠的個別溝渠外部橫向接收之 I 該等源極/汲極區域電性連接的導電資料線;以及 形成與在各對之該等溝渠的個別溝渠中間接收之該等 源極/汲極區域之個別區域電性連接的—電荷儲存裝置。 43·如.月求項42之方法,其中钱刻該等系列溝渠對及钱刻該 互連溝渠包含一共同遮罩步驟。 牧如請求項42之方法,其中姓刻該等系列溝渠對及敍刻該 互連溝渠包含一共同蝕刻步驟。 45.=求項42之方法,其中形成該導電材料包含在該等溝 木對及邊互連溝渠内同時沉積至少—些導電材料。 123126.doc 200816454 46. 如請求項42之方法,其包含僅蝕刻用於各對之一個互連 溝渠。 47. 如請求項42之方法,其包含僅蝕刻用於各對之兩個互連 溝渠。 48. 如請求項42之方法,其包含蝕刻用於各對之多個互連溝 渠0 〇 ϋ 123126.docU 29. The memory array of claim 23, wherein the charge storage device comprises a capacitor. a memory array comprising: a plurality of memory cells 'formed on a large-volume semiconductor substrate'. The individual cells of the memory cells include: first and second field effect transistors, Each of the source/drain regions is received in a trench within the bulk semiconductor material of the substrate, and the source-drain region is formed in the substrate. The intermediate large volume semiconductor material is laterally received and shared by the first and second transistors, each of the other regions of the pair of source/drain regions of the first and second transistors being tied The large-capacity semiconductor material other than the individual gates is laterally received, and the conductive material electrically interconnects the gates of the first and second transistors, and each channel region is in the shared source/drain region At least one section extending between the respective other source/drain includes a current path in the A-volume semiconductor material, including the first and second substantial segments of the interconnection; and the soil and 123126.doc 200816454 ' Electric > feed line 'which is attached to the gates The front side receives and is electrically connected to each of the other regions of the pair of source/drain regions; and a charge storage device electrically coupled to the shared source/drain region and is coupled thereto The front side of the conductive data line is received. 3. The memory array of claim 30, wherein the electrically conductive material comprises a metal. 32. The memory array of claim 3, wherein the metal comprises TiN. 3 3 - a memory array comprising: a plurality of memory cells formed on a semiconductor substrate, the individual cells of the memory cells comprising: a brother and a young transistor, each comprising a a gate, a channel region, and a pair of source/drain regions; the gates of the first and second field effect transistors are hard-wired together; and a conductive data line is a hard-wired connection Up to two of the source/drain regions; and a charge storage device that is hardwired to at least one of the source/drain regions except the two. 34. The memory array of claim 33, wherein the one region is received laterally between the gates. 35. The memory array of claim 33, wherein one of the source/drain regions is shared by the first and second field effect transistors, the charge storage device being coupled to the one shared source/ Bungee area. 36. The memory array of claim 33, wherein the gate is received by a conductive material received in the trench of at least one trench 123126.doc 200816454 formed in the semiconductor material of the semiconductor substrate and extending between the gates Very hard wiring is connected together. 37. The memory array of claim 33, wherein the gates are hardwired by a conductive material received in at least two trenches formed in the semiconductor material formed in the conductor substrate and extending between the gates Together. 38. The memory array of claim 33, wherein the charge storage device is received in front of the gate of the sputum*, τ隹通寺. 39. The memory array of claim 33, wherein the conductive data lines are received in front of the inter-poles. The memory array of claim 33, wherein each channel region comprises a current path in at least one of the sections extending between the source/drain regions, the first and second substantially vertical segments of the interconnect . 41. A method of fabricating a memory array, comprising: forming alternating lines of active area regions and trench isolation regions in a semiconductor substrate; etching a series of runway trenches into a general and active area region and trenches c, isolated Forming a conductive material in the raceway-type trench to form a pair of electrically connected word lines with respect to individual trenches of the runway-type trench; The source/drain regions of the runway-type trenches are laterally formed and laterally outside the runway-type trenches; and the source/drain electrodes are formed laterally received outside the runway-type trenches a electrically conductive data line electrically connected to the area; and a charge storage device electrically connected to an individual region of the source/汲123126.doc 200816454 pole region laterally received within the racetrack trench. 42. A method of fabricating a memory array, comprising: forming alternating lines of active area regions and trench isolation regions in a semiconductor substrate; 胄 a series of trench pairs etched into a general-purpose area and a trench isolation region The alternating area of the active area and the trench isolation area, the at least one interconnect trench, such as +c, is etched to interconnect the semiconductor substrate of each of the individual trenches of the trench; in the trench pair and the Conductive materials are formed in the interconnected trenches to form electrical-connected word lines with respect to the individual trenches of the trenches; in the middle of individual trenches of the respective pairs of trenches and outside of individual trenches of the respective pairs of trenches Transmitting a source/drain region in the area of the active area; forming a conductive data line electrically connected to the source/drain regions that are laterally received outside the individual trenches of the respective pairs of the trenches; A charge storage device is formed that is electrically coupled to individual regions of the source/drain regions that are received between individual trenches of the respective pairs of trenches. 43. The method of claim 42, wherein the engraving of the series of trenches and the engraving of the interconnected trenches comprises a common masking step. The method of claim 42, wherein the surname engraving the series of trenches and engraving the interconnected trenches comprises a common etching step. 45. The method of claim 42, wherein forming the electrically conductive material comprises depositing at least some of the electrically conductive material in the trenches and interconnecting trenches. The method of claim 42, which comprises etching only one interconnected trench for each pair. 47. The method of claim 42, comprising etching only two interconnected trenches for each pair. 48. The method of claim 42, comprising etching for a plurality of interconnected trenches of each pair 0 〇 ϋ 123126.doc
TW096128462A 2006-08-21 2007-08-02 Memory arrays and methods of fabricating memory arrays TWI362743B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/507,696 US7772632B2 (en) 2006-08-21 2006-08-21 Memory arrays and methods of fabricating memory arrays

Publications (2)

Publication Number Publication Date
TW200816454A true TW200816454A (en) 2008-04-01
TWI362743B TWI362743B (en) 2012-04-21

Family

ID=38835017

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096128462A TWI362743B (en) 2006-08-21 2007-08-02 Memory arrays and methods of fabricating memory arrays

Country Status (8)

Country Link
US (2) US7772632B2 (en)
EP (1) EP2054928A1 (en)
JP (1) JP5445944B2 (en)
KR (1) KR101074594B1 (en)
CN (1) CN101506966B (en)
SG (1) SG174730A1 (en)
TW (1) TWI362743B (en)
WO (1) WO2008024171A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083924A1 (en) * 2012-11-28 2014-06-05 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and method for manufacturing same
US10062745B2 (en) 2017-01-09 2018-08-28 Micron Technology, Inc. Methods of forming an array of capacitors, methods of forming an array of memory cells individually comprising a capacitor and a transistor, arrays of capacitors, and arrays of memory cells individually comprising a capacitor and a transistor
TWI644415B (en) * 2016-11-01 2018-12-11 美商美光科技公司 Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10157913B2 (en) 2016-11-01 2018-12-18 Micron Technology, Inc. Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10192873B2 (en) 2017-01-12 2019-01-29 Micron Technology, Inc. Memory cell, an array of memory cells individually comprising a capacitor and a transistor with the array comprising rows of access lines and columns of digit lines, a 2T-1C memory cell, and methods of forming an array of capacitors and access transistors there-above
US10202583B2 (en) 2017-01-10 2019-02-12 Micron Technology, Inc. Arrays of memory cells individually comprising a capacitor and an elevationally-extending transistor, methods of forming a tier of an array of memory cells, and methods of forming an array of memory cells individually comprising a capacitor and an elevationally-extending transistor
US10388658B1 (en) 2018-04-27 2019-08-20 Micron Technology, Inc. Transistors, arrays of transistors, arrays of memory cells individually comprising a capacitor and an elevationally-extending transistor, and methods of forming an array of transistors
US10622366B2 (en) 2017-01-10 2020-04-14 Micron Technology, Inc. Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547945B2 (en) * 2004-09-01 2009-06-16 Micron Technology, Inc. Transistor devices, transistor structures and semiconductor constructions
US7384849B2 (en) * 2005-03-25 2008-06-10 Micron Technology, Inc. Methods of forming recessed access devices associated with semiconductor constructions
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7867851B2 (en) 2005-08-30 2011-01-11 Micron Technology, Inc. Methods of forming field effect transistors on substrates
JP2007194333A (en) * 2006-01-18 2007-08-02 Elpida Memory Inc Method for manufacturing semiconductor device
US7700441B2 (en) * 2006-02-02 2010-04-20 Micron Technology, Inc. Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US7602001B2 (en) 2006-07-17 2009-10-13 Micron Technology, Inc. Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells
US7772632B2 (en) * 2006-08-21 2010-08-10 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US7589995B2 (en) * 2006-09-07 2009-09-15 Micron Technology, Inc. One-transistor memory cell with bias gate
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US7969774B2 (en) 2009-03-10 2011-06-28 Micron Technology, Inc. Electronic devices formed of two or more substrates bonded together, electronic systems comprising electronic devices and methods of making electronic devices
JP2010245196A (en) * 2009-04-02 2010-10-28 Elpida Memory Inc Semiconductor device and method of forming the same
US8472227B2 (en) * 2010-01-27 2013-06-25 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits and methods for forming the same
JP2012084738A (en) 2010-10-13 2012-04-26 Elpida Memory Inc Semiconductor device, method of manufacturing the same, and data processing system
WO2014084006A1 (en) * 2012-11-27 2014-06-05 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
US9048410B2 (en) 2013-05-31 2015-06-02 Micron Technology, Inc. Memory devices comprising magnetic tracks individually comprising a plurality of magnetic domains having domain walls and methods of forming a memory device comprising magnetic tracks individually comprising a plurality of magnetic domains having domain walls
US9786551B2 (en) * 2014-04-29 2017-10-10 Stmicroelectronics, Inc. Trench structure for high performance interconnection lines of different resistivity and method of making same
TWI566334B (en) * 2015-03-26 2017-01-11 華邦電子股份有限公司 Method for fabricating dynamic random access memory device
CN109155145B (en) 2016-08-31 2022-11-01 美光科技公司 Memory array
KR102195321B1 (en) 2016-08-31 2020-12-24 마이크론 테크놀로지, 인크 Sense Amplifier Components
KR102208380B1 (en) 2016-08-31 2021-01-28 마이크론 테크놀로지, 인크 Memory cells and memory arrays
EP3507832A4 (en) 2016-08-31 2020-04-08 Micron Technology, Inc. Memory cells and memory arrays
US10355002B2 (en) 2016-08-31 2019-07-16 Micron Technology, Inc. Memory cells, methods of forming an array of two transistor-one capacitor memory cells, and methods used in fabricating integrated circuitry
WO2018044456A1 (en) 2016-08-31 2018-03-08 Micron Technology, Inc. Memory cells and memory arrays
KR102171724B1 (en) 2016-08-31 2020-10-30 마이크론 테크놀로지, 인크 Memory cells and memory arrays
CN110192280A (en) 2017-01-12 2019-08-30 美光科技公司 Memory cell, pair transistor single capacitor memory cell array, the method for forming pair transistor single capacitor memory cell array and the method for manufacturing integrated circuit
CN108735772B (en) * 2017-04-14 2020-08-21 上海磁宇信息科技有限公司 Shared high-density random access memory architecture
CN108735738B (en) * 2017-04-14 2020-07-07 上海磁宇信息科技有限公司 Random access memory architecture with special grid
CN108735894B (en) * 2017-04-14 2022-02-25 上海磁宇信息科技有限公司 High-density random access memory architecture
CN108735773A (en) * 2017-04-14 2018-11-02 上海磁宇信息科技有限公司 A kind of ultra high density random access memory framework
CN108735742B (en) * 2017-04-14 2020-07-07 上海磁宇信息科技有限公司 Method for manufacturing high-density random access memory
US10396082B2 (en) * 2017-07-05 2019-08-27 Micron Technology, Inc. Memory cells having a controlled-conductivity region
EP3676835A4 (en) 2017-08-29 2020-08-19 Micron Technology, Inc. Memory circuitry
US10833087B2 (en) 2018-08-21 2020-11-10 Micron Technology, Inc. Semiconductor devices including transistors comprising a charge trapping material, and related systems and methods
US10818665B2 (en) * 2018-08-24 2020-10-27 Micron Technology, Inc. Array of recessed access devices and an array of memory cells individually comprising a capacitor and a transistor
FR3091018B1 (en) * 2018-12-21 2023-01-20 St Microelectronics Sa microchip memory
US10818666B2 (en) * 2019-03-04 2020-10-27 Micron Technology, Inc. Gate noble metal nanoparticles
CN112510052B (en) 2019-06-27 2023-09-12 长江存储科技有限责任公司 Novel 3D NAND memory device and method of forming the same

Family Cites Families (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681974A (en) * 1979-12-07 1981-07-04 Toshiba Corp Manufacture of mos type semiconductor device
KR920010461B1 (en) * 1983-09-28 1992-11-28 가부시끼가이샤 히다찌세이사꾸쇼 Semiconductor memory
GB2190789B (en) 1986-04-17 1990-05-09 Plessey Co Plc System for optically coupling components of integrated circuits
US4722910A (en) * 1986-05-27 1988-02-02 Analog Devices, Inc. Partially self-aligned metal contact process
US4835741A (en) * 1986-06-02 1989-05-30 Texas Instruments Incorporated Frasable electrically programmable read only memory cell using a three dimensional trench floating gate
US5160491A (en) 1986-10-21 1992-11-03 Texas Instruments Incorporated Method of making a vertical MOS transistor
JPS63183691A (en) * 1987-01-26 1988-07-29 Mitsubishi Electric Corp Semiconductor storage device
FR2625044B1 (en) 1987-12-18 1990-08-31 Commissariat Energie Atomique TRANSISTOR MOS WITH END OF DIELECTRIC INTERFACE OF GRID / RAISED SUBSTRATE AND MANUFACTURING METHOD THEREOF
US4979004A (en) 1988-01-29 1990-12-18 Texas Instruments Incorporated Floating gate memory cell and device
DE3902701A1 (en) * 1988-01-30 1989-08-10 Toshiba Kawasaki Kk METHOD FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT
US5014110A (en) * 1988-06-03 1991-05-07 Mitsubishi Denki Kabushiki Kaisha Wiring structures for semiconductor memory device
US5108938A (en) * 1989-03-21 1992-04-28 Grumman Aerospace Corporation Method of making a trench gate complimentary metal oxide semiconductor transistor
US5021355A (en) * 1989-05-22 1991-06-04 International Business Machines Corporation Method of fabricating cross-point lightly-doped drain-source trench transistor
US5107459A (en) * 1990-04-20 1992-04-21 International Business Machines Corporation Stacked bit-line architecture for high density cross-point memory cell array
JPH0834302B2 (en) 1990-04-21 1996-03-29 株式会社東芝 Semiconductor memory device
JPH0414253A (en) * 1990-05-02 1992-01-20 Sony Corp Dynamic ram and its manufacture
US5013680A (en) * 1990-07-18 1991-05-07 Micron Technology, Inc. Process for fabricating a DRAM array having feature widths that transcend the resolution limit of available photolithography
US5244824A (en) 1990-09-05 1993-09-14 Motorola, Inc. Trench capacitor and transistor structure and method for making the same
US5047117A (en) 1990-09-26 1991-09-10 Micron Technology, Inc. Method of forming a narrow self-aligned, annular opening in a masking layer
US5289030A (en) 1991-03-06 1994-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide layer
US5122848A (en) * 1991-04-08 1992-06-16 Micron Technology, Inc. Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance
KR940006679B1 (en) * 1991-09-26 1994-07-25 현대전자산업 주식회사 Dram cell having a vertical transistor and fabricating method thereof
US5467305A (en) 1992-03-12 1995-11-14 International Business Machines Corporation Three-dimensional direct-write EEPROM arrays and fabrication methods
US5573837A (en) 1992-04-22 1996-11-12 Micron Technology, Inc. Masking layer having narrow isolated spacings and the method for forming said masking layer and the method for forming narrow isolated trenches defined by said masking layer
US5254218A (en) 1992-04-22 1993-10-19 Micron Technology, Inc. Masking layer having narrow isolated spacings and the method for forming said masking layer and the method for forming narrow isolated trenches defined by said masking layer
JP2748072B2 (en) * 1992-07-03 1998-05-06 三菱電機株式会社 Semiconductor device and manufacturing method thereof
US5281548A (en) * 1992-07-28 1994-01-25 Micron Technology, Inc. Plug-based floating gate memory
JP2889061B2 (en) * 1992-09-25 1999-05-10 ローム株式会社 Semiconductor storage device and method of manufacturing the same
JP3311070B2 (en) 1993-03-15 2002-08-05 株式会社東芝 Semiconductor device
US5358879A (en) 1993-04-30 1994-10-25 Loral Federal Systems Company Method of making gate overlapped lightly doped drain for buried channel devices
WO1994027325A1 (en) 1993-05-07 1994-11-24 Vlsi Technology, Inc. Integrated circuit structure and method
JPH07106435A (en) * 1993-10-08 1995-04-21 Hitachi Ltd Semiconductor memory and fabrication thereof
KR0141218B1 (en) * 1993-11-24 1998-07-15 윤종용 Fabrication method of semkonductor device
US5514604A (en) * 1993-12-08 1996-05-07 General Electric Company Vertical channel silicon carbide metal-oxide-semiconductor field effect transistor with self-aligned gate for microwave and power applications, and method of making
US5532089A (en) 1993-12-23 1996-07-02 International Business Machines Corporation Simplified fabrication methods for rim phase-shift masks
KR100362751B1 (en) * 1994-01-19 2003-02-11 소니 가부시끼 가이샤 Contact hole and method for forming the semiconductor device
US5964750A (en) 1994-03-15 1999-10-12 Medolas Gesellschaft Fuer Medizintechnik Gmbh Laser catheter for bypass surgery
JP2658870B2 (en) 1994-04-22 1997-09-30 日本電気株式会社 Semiconductor memory device and method of manufacturing the same
US5413949A (en) * 1994-04-26 1995-05-09 United Microelectronics Corporation Method of making self-aligned MOSFET
US5446299A (en) 1994-04-29 1995-08-29 International Business Machines Corporation Semiconductor random access memory cell on silicon-on-insulator with dual control gates
US5841611A (en) 1994-05-02 1998-11-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
KR0151195B1 (en) 1994-09-13 1998-10-01 문정환 Thin film transistor
US5753947A (en) * 1995-01-20 1998-05-19 Micron Technology, Inc. Very high-density DRAM cell structure and method for fabricating it
US5574621A (en) 1995-03-27 1996-11-12 Motorola, Inc. Integrated circuit capacitor having a conductive trench
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
DE19519160C1 (en) 1995-05-24 1996-09-12 Siemens Ag DRAM cell arrangement having packing density required for specified memory
DE19524092C2 (en) * 1995-07-01 1997-08-07 Hewlett Packard Gmbh Method and device for compressing and displaying digital data, in particular the heart rate of cardiotocographs
JPH0982918A (en) 1995-09-19 1997-03-28 Toshiba Corp Semiconductor storage device and its manufacture
KR0179175B1 (en) 1995-10-05 1999-03-20 문정환 Method of manufacturing semiconductor memory device
US5854501A (en) * 1995-11-20 1998-12-29 Micron Technology, Inc. Floating gate semiconductor device having a portion formed with a recess
US6420786B1 (en) 1996-02-02 2002-07-16 Micron Technology, Inc. Conductive spacer in a via
JP2751909B2 (en) * 1996-02-26 1998-05-18 日本電気株式会社 Method for manufacturing semiconductor device
JP3219677B2 (en) 1996-03-28 2001-10-15 三洋電機株式会社 Rod sorting system
BR9709333A (en) 1996-05-21 1999-08-10 Siemens Aktienesellschaft Multilayer condenser with high specific capacity and process and production for the same
DE19620625C1 (en) 1996-05-22 1997-10-23 Siemens Ag High packing density DRAM cell array
JPH1022476A (en) 1996-07-02 1998-01-23 Sony Corp Capacitive element
US5792687A (en) 1996-08-01 1998-08-11 Vanguard International Semiconductor Corporation Method for fabricating high density integrated circuits using oxide and polysilicon spacers
TW304290B (en) * 1996-08-16 1997-05-01 United Microelectronics Corp The manufacturing method for semiconductor memory device with capacitor
TW308727B (en) 1996-08-16 1997-06-21 United Microelectronics Corp Semiconductor memory device with capacitor (4)
US5739066A (en) * 1996-09-17 1998-04-14 Micron Technology, Inc. Semiconductor processing methods of forming a conductive gate and line
US5714786A (en) 1996-10-31 1998-02-03 Micron Technology, Inc. Transistors having controlled conductive spacers, uses of such transistors and methods of making such transistors
US5998256A (en) 1996-11-01 1999-12-07 Micron Technology, Inc. Semiconductor processing methods of forming devices on a substrate, forming device arrays on a substrate, forming conductive lines on a substrate, and forming capacitor arrays on a substrate, and integrated circuitry
JP4056588B2 (en) 1996-11-06 2008-03-05 富士通株式会社 Semiconductor device and manufacturing method thereof
US5714412A (en) * 1996-12-02 1998-02-03 Taiwan Semiconductor Manufacturing Company, Ltd Multi-level, split-gate, flash memory cell and method of manufacture thereof
KR19980064176A (en) 1996-12-17 1998-10-07 윌리엄비.켐플러 Integrated circuit dielectric
JP4053647B2 (en) * 1997-02-27 2008-02-27 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US5792690A (en) 1997-05-15 1998-08-11 Vanguard International Semiconductor Corporation Method of fabricating a DRAM cell with an area equal to four times the used minimum feature
US6337497B1 (en) * 1997-05-16 2002-01-08 International Business Machines Corporation Common source transistor capacitor stack
US5909618A (en) * 1997-07-08 1999-06-01 Micron Technology, Inc. Method of making memory cell with vertical transistor and buried word and body lines
US6191470B1 (en) * 1997-07-08 2001-02-20 Micron Technology, Inc. Semiconductor-on-insulator memory cell with buried word and body lines
US6150687A (en) 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US6072209A (en) * 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US5869359A (en) * 1997-08-20 1999-02-09 Prabhakar; Venkatraman Process for forming silicon on insulator devices having elevated source and drain regions
US6380026B2 (en) * 1997-08-22 2002-04-30 Micron Technology, Inc. Processing methods of forming integrated circuitry memory devices, methods of forming DRAM arrays, and related semiconductor masks
JP3502531B2 (en) * 1997-08-28 2004-03-02 株式会社ルネサステクノロジ Method for manufacturing semiconductor device
DE19801095B4 (en) 1998-01-14 2007-12-13 Infineon Technologies Ag Power MOSFET
US5963469A (en) 1998-02-24 1999-10-05 Micron Technology, Inc. Vertical bipolar read access for low voltage memory cell
US6246083B1 (en) 1998-02-24 2001-06-12 Micron Technology, Inc. Vertical gain cell and array for a dynamic random access memory
US6097065A (en) 1998-03-30 2000-08-01 Micron Technology, Inc. Circuits and methods for dual-gated transistors
US6259142B1 (en) 1998-04-07 2001-07-10 Advanced Micro Devices, Inc. Multiple split gate semiconductor device and fabrication method
US6696746B1 (en) * 1998-04-29 2004-02-24 Micron Technology, Inc. Buried conductors
US5972754A (en) 1998-06-10 1999-10-26 Mosel Vitelic, Inc. Method for fabricating MOSFET having increased effective gate length
US6767789B1 (en) 1998-06-26 2004-07-27 International Business Machines Corporation Method for interconnection between transfer devices and storage capacitors in memory cells and device formed thereby
US6458925B1 (en) 1998-08-03 2002-10-01 University Of Maryland, Baltimore Peptide antagonists of zonulin and methods for use of the same
KR100304717B1 (en) * 1998-08-18 2001-11-15 김덕중 Semiconductor device having a trench type gate and method for fabricating therefor
US6362506B1 (en) * 1998-08-26 2002-03-26 Texas Instruments Incorporated Minimization-feasible word line structure for DRAM cell
JP3239109B2 (en) 1998-08-28 2001-12-17 株式会社半導体理工学研究センター Ferroelectric nonvolatile memory and reading method therefor
JP4322330B2 (en) 1998-09-04 2009-08-26 エルピーダメモリ株式会社 Manufacturing method of semiconductor integrated circuit device
US6225669B1 (en) 1998-09-30 2001-05-01 Advanced Micro Devices, Inc. Non-uniform gate/dielectric field effect transistor
DE19845003C1 (en) * 1998-09-30 2000-02-10 Siemens Ag Vertical MOS transistor in semiconductor substrate
US6120952A (en) 1998-10-01 2000-09-19 Micron Technology, Inc. Methods of reducing proximity effects in lithographic processes
US6114205A (en) 1998-10-30 2000-09-05 Sony Corporation Epitaxial channel vertical MOS transistor
EP1003219B1 (en) 1998-11-19 2011-12-28 Qimonda AG DRAM with stacked capacitor and buried word line
US5977579A (en) 1998-12-03 1999-11-02 Micron Technology, Inc. Trench dram cell with vertical device and buried word lines
JP2000208762A (en) 1999-01-13 2000-07-28 Sony Corp Insulation gate field effect transistor and its manufacture
US6383861B1 (en) 1999-02-18 2002-05-07 Micron Technology, Inc. Method of fabricating a dual gate dielectric
JP3973819B2 (en) 1999-03-08 2007-09-12 株式会社東芝 Semiconductor memory device and manufacturing method thereof
US6180494B1 (en) * 1999-03-11 2001-01-30 Micron Technology, Inc. Integrated circuitry, methods of fabricating integrated circuitry, methods of forming local interconnects, and methods of forming conductive lines
KR100282452B1 (en) 1999-03-18 2001-02-15 김영환 Semiconductor device and method for fabricating the same
JP2001024161A (en) 1999-04-30 2001-01-26 Sony Corp Semiconductor memory cell
US6297106B1 (en) 1999-05-07 2001-10-02 Chartered Semiconductor Manufacturing Ltd. Transistors with low overlap capacitance
US6306755B1 (en) 1999-05-14 2001-10-23 Koninklijke Philips Electronics N.V. (Kpenv) Method for endpoint detection during dry etch of submicron features in a semiconductor device
WO2000070622A1 (en) 1999-05-14 2000-11-23 Hitachi, Ltd. Storage circuit
DE19928781C1 (en) 1999-06-23 2000-07-06 Siemens Ag DRAM cell array has deep word line trenches for increasing transistor channel length and has no fixed potential word lines separating adjacent memory cells
US6392271B1 (en) 1999-06-28 2002-05-21 Intel Corporation Structure and process flow for fabrication of dual gate floating body integrated MOS transistors
US6187643B1 (en) * 1999-06-29 2001-02-13 Varian Semiconductor Equipment Associates, Inc. Simplified semiconductor device manufacturing using low energy high tilt angle and high energy post-gate ion implantation (PoGI)
US6114735A (en) 1999-07-02 2000-09-05 Micron Technology, Inc. Field effect transistors and method of forming field effect transistors
US6630712B2 (en) 1999-08-11 2003-10-07 Advanced Micro Devices, Inc. Transistor with dynamic source/drain extensions
US6033963A (en) * 1999-08-30 2000-03-07 Taiwan Semiconductor Manufacturing Company Method of forming a metal gate for CMOS devices using a replacement gate process
US6461915B1 (en) * 1999-09-01 2002-10-08 Micron Technology, Inc. Method and structure for an improved floating gate memory cell
US6403442B1 (en) 1999-09-02 2002-06-11 Micron Technology, Inc. Methods of forming capacitors and resultant capacitor structures
DE19943760C1 (en) * 1999-09-13 2001-02-01 Infineon Technologies Ag DRAM cell arrangement comprises a substrate with a recess containing a storage node of a capacitor
JP3450758B2 (en) 1999-09-29 2003-09-29 株式会社東芝 Method for manufacturing field effect transistor
US6303518B1 (en) 1999-09-30 2001-10-16 Novellus Systems, Inc. Methods to improve chemical vapor deposited fluorosilicate glass (FSG) film adhesion to metal barrier or etch stop/diffusion barrier layers
US6255165B1 (en) 1999-10-18 2001-07-03 Advanced Micro Devices, Inc. Nitride plug to reduce gate edge lifting
TW432546B (en) 1999-11-25 2001-05-01 Taiwan Semiconductor Mfg Manufacturing method of copper damascene
US6383879B1 (en) * 1999-12-03 2002-05-07 Agere Systems Guardian Corp. Semiconductor device having a metal gate with a work function compatible with a semiconductor device
US6323506B1 (en) 1999-12-21 2001-11-27 Philips Electronics North America Corporation Self-aligned silicon carbide LMOSFET
JP4860022B2 (en) 2000-01-25 2012-01-25 エルピーダメモリ株式会社 Manufacturing method of semiconductor integrated circuit device
JP4363736B2 (en) * 2000-03-01 2009-11-11 新電元工業株式会社 Transistor and manufacturing method thereof
US6290572B1 (en) * 2000-03-23 2001-09-18 Micron Technology, Inc. Devices and methods for in-situ control of mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies
US6399490B1 (en) 2000-06-29 2002-06-04 International Business Machines Corporation Highly conformal titanium nitride deposition process for high aspect ratio structures
DE10036725C2 (en) 2000-07-27 2002-11-28 Infineon Technologies Ag Process for producing a porous insulating layer with a low dielectric constant on a semiconductor substrate
DE10038728A1 (en) 2000-07-31 2002-02-21 Infineon Technologies Ag Semiconductor memory cell arrangement and method for the production thereof
US6547945B2 (en) * 2000-07-31 2003-04-15 United Technologies Corporation Method and apparatuses for electrochemically treating an article
WO2002019396A1 (en) 2000-08-29 2002-03-07 Boise State University Damascene double gated transistors and related manufacturing methods
US6495474B1 (en) 2000-09-11 2002-12-17 Agere Systems Inc. Method of fabricating a dielectric layer
US6391720B1 (en) 2000-09-27 2002-05-21 Chartered Semiconductor Manufacturing Ltd. Process flow for a performance enhanced MOSFET with self-aligned, recessed channel
US6340614B1 (en) * 2000-10-03 2002-01-22 Vanguard International Semiconductor Corporation Method of forming a DRAM cell
JP2002151654A (en) 2000-11-10 2002-05-24 Sharp Corp Dielectric capacitor element and manufacturing method therefor
US6552401B1 (en) 2000-11-27 2003-04-22 Micron Technology Use of gate electrode workfunction to improve DRAM refresh
US6348385B1 (en) * 2000-11-30 2002-02-19 Chartered Semiconductor Manufacturing Ltd. Method for a short channel CMOS transistor with small overlay capacitance using in-situ doped spacers with a low dielectric constant
US6621112B2 (en) 2000-12-06 2003-09-16 Infineon Technologies Ag DRAM with vertical transistor and trench capacitor memory cells and methods of fabrication
JP4635333B2 (en) 2000-12-14 2011-02-23 ソニー株式会社 Manufacturing method of semiconductor device
US6864536B2 (en) * 2000-12-20 2005-03-08 Winbond Electronics Corporation Electrostatic discharge protection circuit
JP3696156B2 (en) * 2000-12-26 2005-09-14 株式会社東芝 Coating film heating apparatus and resist film processing method
KR100360414B1 (en) 2001-01-05 2002-11-13 삼성전자 주식회사 Method for forming a lower electrode of cylinder type capacitor preventing a twin bit failure
US6300177B1 (en) 2001-01-25 2001-10-09 Chartered Semiconductor Manufacturing Inc. Method to form transistors with multiple threshold voltages (VT) using a combination of different work function gate materials
JP3944367B2 (en) 2001-02-06 2007-07-11 松下電器産業株式会社 Method for forming insulating film and method for manufacturing semiconductor device
KR100388682B1 (en) 2001-03-03 2003-06-25 삼성전자주식회사 Storage electric terminal layer and method for forming thereof
DE10111755C1 (en) * 2001-03-12 2002-05-16 Infineon Technologies Ag Production of a storage cell used in DRAMs comprises using a multiple step process in which a word line contact is eventually formed to electrically connect the gate to the word line
CA2340985A1 (en) 2001-03-14 2002-09-14 Atmos Corporation Interleaved wordline architecture
US6734510B2 (en) 2001-03-15 2004-05-11 Micron Technology, Ing. Technique to mitigate short channel effects with vertical gate transistor with different gate materials
JP4895430B2 (en) 2001-03-22 2012-03-14 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP3671854B2 (en) 2001-04-05 2005-07-13 松下電器産業株式会社 Surface treatment method for silicon substrate
JP2002314072A (en) 2001-04-19 2002-10-25 Nec Corp Semiconductor device with high dielectric thin film and manufacturing method therefor, and film-forming method for dielectric film
TW544911B (en) 2001-04-26 2003-08-01 Toshiba Corp Semiconductor device
US6498062B2 (en) * 2001-04-27 2002-12-24 Micron Technology, Inc. DRAM access transistor
US6509612B2 (en) 2001-05-04 2003-01-21 International Business Machines Corporation High dielectric constant materials as gate dielectrics (insulators)
US6624486B2 (en) 2001-05-23 2003-09-23 International Business Machines Corporation Method for low topography semiconductor device formation
DE10125967C1 (en) 2001-05-29 2002-07-11 Infineon Technologies Ag DRAM cell arrangement used for a semiconductor storage device comprises a matrix arrangement of storage cells stacked over each other as layers, and a capacitor connected to the MOS transistor
JP2002353445A (en) 2001-05-30 2002-12-06 Sony Corp Method of manufacturing groove gate field-effect transistor
US6888198B1 (en) * 2001-06-04 2005-05-03 Advanced Micro Devices, Inc. Straddled gate FDSOI device
TWI230392B (en) 2001-06-18 2005-04-01 Innovative Silicon Sa Semiconductor device
JP4246929B2 (en) 2001-06-29 2009-04-02 株式会社東芝 Semiconductor memory device and manufacturing method thereof
JP2003023150A (en) 2001-07-10 2003-01-24 Sony Corp Trench gate type semiconductor device and manufacturing method therefor
KR100398955B1 (en) 2001-08-02 2003-09-19 삼성전자주식회사 Eeprom memory cell and method of forming the same
DE10139827A1 (en) 2001-08-14 2003-03-13 Infineon Technologies Ag Memory cell with trench capacitor and vertical selection transistor and an annular contact area formed between them
US6800899B2 (en) * 2001-08-30 2004-10-05 Micron Technology, Inc. Vertical transistors, electrical devices containing a vertical transistor, and computer systems containing a vertical transistor
KR100431656B1 (en) 2001-09-11 2004-05-17 삼성전자주식회사 Method of manufacturing semiconductor device
JP2003092367A (en) 2001-09-19 2003-03-28 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
US6825093B2 (en) 2001-09-28 2004-11-30 Infineon Technologies Ag Process window enhancement for deep trench spacer conservation
KR100436287B1 (en) * 2001-11-17 2004-06-16 주식회사 하이닉스반도체 Transistor of a semiconductor device and method of manufacturing thereof
US6724028B2 (en) 2001-12-10 2004-04-20 Hans Gude Gudesen Matrix-addressable array of integrated transistor/memory structures
US6630720B1 (en) 2001-12-26 2003-10-07 Advanced Micro Devices, Inc. Asymmetric semiconductor device having dual work function gate and method of fabrication
US6563183B1 (en) * 2001-12-31 2003-05-13 Advanced Micro Devices, Inc. Gate array with multiple dielectric properties and method for forming same
US6858500B2 (en) 2002-01-16 2005-02-22 Fuji Electric Co., Ltd. Semiconductor device and its manufacturing method
US6656748B2 (en) 2002-01-31 2003-12-02 Texas Instruments Incorporated FeRAM capacitor post stack etch clean/repair
DE10208249B4 (en) 2002-02-26 2006-09-14 Infineon Technologies Ag Semiconductor memory with vertical selection transistor
US6515325B1 (en) 2002-03-06 2003-02-04 Micron Technology, Inc. Nanotube semiconductor devices and methods for making the same
US6661042B2 (en) * 2002-03-11 2003-12-09 Monolithic System Technology, Inc. One-transistor floating-body DRAM cell in bulk CMOS process with electrically isolated charge storage region
US6586808B1 (en) 2002-06-06 2003-07-01 Advanced Micro Devices, Inc. Semiconductor device having multi-work function gate electrode and multi-segment gate dielectric
US6946371B2 (en) 2002-06-10 2005-09-20 Amberwave Systems Corporation Methods of fabricating semiconductor structures having epitaxially grown source and drain elements
DE10226583B4 (en) 2002-06-14 2010-07-08 Qimonda Ag DRAM memory cell for fast read / write access and memory cell array
US6756625B2 (en) 2002-06-21 2004-06-29 Micron Technology, Inc. Memory cell and method for forming the same
US7221596B2 (en) 2002-07-05 2007-05-22 Impinj, Inc. pFET nonvolatile memory
JP3934507B2 (en) 2002-08-08 2007-06-20 株式会社東芝 Semiconductor memory device and manufacturing method of semiconductor memory device
US7071043B2 (en) 2002-08-15 2006-07-04 Micron Technology, Inc. Methods of forming a field effect transistor having source/drain material over insulative material
US6914289B2 (en) 2002-08-15 2005-07-05 Intel Corporation Hourglass ram
US20040034587A1 (en) * 2002-08-19 2004-02-19 Amberson Matthew Gilbert System and method for calculating intra-period volatility
US6838723B2 (en) 2002-08-29 2005-01-04 Micron Technology, Inc. Merged MOS-bipolar capacitor memory cell
US6818947B2 (en) 2002-09-19 2004-11-16 Fairchild Semiconductor Corporation Buried gate-field termination structure
US6645869B1 (en) 2002-09-26 2003-11-11 Vanguard International Semiconductor Corporation Etching back process to improve topographic planarization of a polysilicon layer
US7033891B2 (en) 2002-10-03 2006-04-25 Fairchild Semiconductor Corporation Trench gate laterally diffused MOSFET devices and methods for making such devices
US6753228B2 (en) * 2002-10-15 2004-06-22 Semiconductor Components Industries, L.L.C. Method of forming a low resistance semiconductor device and structure therefor
TW588413B (en) * 2002-11-07 2004-05-21 Winbond Electronics Corp Manufacturing method and device of memory with different depths of isolation trench
KR100481867B1 (en) 2002-11-11 2005-04-11 삼성전자주식회사 Ferroelectric capacitor and method for fabricating the same
US6645818B1 (en) 2002-11-13 2003-11-11 Chartered Semiconductor Manufacturing Ltd. Method to fabricate dual-metal gate for N- and P-FETs
US7250650B2 (en) 2002-11-21 2007-07-31 Infineon Technologies Ag Field-effect transistor structure and associated semiconductor memory cell
US7030436B2 (en) * 2002-12-04 2006-04-18 Micron Technology, Inc. Embedded DRAM gain memory cell having MOS transistor body provided with a bi-polar transistor charge injecting means
TW574746B (en) 2002-12-19 2004-02-01 Taiwan Semiconductor Mfg Method for manufacturing MOSFET with recessed channel
TWI231042B (en) 2002-12-27 2005-04-11 Wintek Corp Method and device to promote the yield rate and uniformity of AMOLED panel
KR20040061967A (en) 2002-12-31 2004-07-07 동부전자 주식회사 Method for forming isolation layer of semiconductor device
TW578274B (en) * 2003-01-17 2004-03-01 Nanya Technology Corp Vertical flash memory cell with tip-shape floating gate and method therefor
JP4502173B2 (en) 2003-02-03 2010-07-14 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2004247656A (en) * 2003-02-17 2004-09-02 Renesas Technology Corp Semiconductor device and its manufacturing method
US6956256B2 (en) 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
JP2004281736A (en) 2003-03-17 2004-10-07 Nec Electronics Corp Semiconductor memory device
TW578328B (en) 2003-03-28 2004-03-01 Gemtek Technology Co Ltd Dual-frequency inverted-F antenna
KR100480645B1 (en) 2003-04-01 2005-03-31 삼성전자주식회사 Method for manufacturing SONOS memory device with twin-ONO by reverse self-aligning process
FR2853319B1 (en) * 2003-04-03 2005-05-06 Rhodia Chimie Sa RETICULABLE COMPOSITION FOR BATTERY ELECTROLYTE
US6720232B1 (en) 2003-04-10 2004-04-13 Taiwan Semiconductor Manufacturing Company Method of fabricating an embedded DRAM for metal-insulator-metal (MIM) capacitor structure
US6967143B2 (en) * 2003-04-30 2005-11-22 Freescale Semiconductor, Inc. Semiconductor fabrication process with asymmetrical conductive spacers
TW587338B (en) 2003-05-06 2004-05-11 Mosel Vitelic Inc Stop structure of trench type DMOS device and its formation method
JP2004335031A (en) * 2003-05-09 2004-11-25 Toshiba Corp Semiconductor storage device
JP3913709B2 (en) * 2003-05-09 2007-05-09 株式会社東芝 Semiconductor memory device
KR100568854B1 (en) 2003-06-17 2006-04-10 삼성전자주식회사 Method for forming transistor with recess channel for use in semiconductor memory
US7105406B2 (en) 2003-06-20 2006-09-12 Sandisk Corporation Self aligned non-volatile memory cell and process for fabrication
US6818515B1 (en) 2003-06-23 2004-11-16 Promos Technologies Inc. Method for fabricating semiconductor device with loop line pattern structure
KR100521381B1 (en) 2003-06-25 2005-10-12 삼성전자주식회사 Method Of Fabricating Metal-Oxide-Semiconductor Field Effect Transistor
KR100511045B1 (en) 2003-07-14 2005-08-30 삼성전자주식회사 Integration method of a semiconductor device having a recessed gate electrode
US7335934B2 (en) * 2003-07-22 2008-02-26 Innovative Silicon S.A. Integrated circuit device, and method of fabricating same
US7326619B2 (en) * 2003-08-20 2008-02-05 Samsung Electronics Co., Ltd. Method of manufacturing integrated circuit device including recessed channel transistor
US6784069B1 (en) 2003-08-29 2004-08-31 Micron Technology, Inc. Permeable capacitor electrode
US7067385B2 (en) 2003-09-04 2006-06-27 Micron Technology, Inc. Support for vertically oriented capacitors during the formation of a semiconductor device
US7125781B2 (en) 2003-09-04 2006-10-24 Micron Technology, Inc. Methods of forming capacitor devices
KR100546378B1 (en) 2003-09-09 2006-01-26 삼성전자주식회사 Method of manufacturing transistor having recessed channel
US6844591B1 (en) * 2003-09-17 2005-01-18 Micron Technology, Inc. Method of forming DRAM access transistors
JP2005093808A (en) 2003-09-18 2005-04-07 Fujio Masuoka Memory cell unit, nonvolatile semiconductor memory device having it and driving method of memory cell array
US7184298B2 (en) * 2003-09-24 2007-02-27 Innovative Silicon S.A. Low power programming technique for a floating body memory transistor, memory cell, and memory array
US7468311B2 (en) * 2003-09-30 2008-12-23 Tokyo Electron Limited Deposition of silicon-containing films from hexachlorodisilane
JP2005142203A (en) 2003-11-04 2005-06-02 Elpida Memory Inc Semiconductor device and its manufacturing method
US20050104156A1 (en) * 2003-11-13 2005-05-19 Texas Instruments Incorporated Forming a semiconductor structure in manufacturing a semiconductor device using one or more epitaxial growth processes
KR100521383B1 (en) * 2003-11-17 2005-10-12 삼성전자주식회사 Semiconductor device with source/drain formed on isolation layers and method of fabricating the same
JP2005175090A (en) 2003-12-09 2005-06-30 Toshiba Corp Semiconductor memory device and its manufacturing method
KR100518606B1 (en) 2003-12-19 2005-10-04 삼성전자주식회사 Method for fabricating a recess channel array transistor using a mask layer having high etch selectivity for silicon substrate
JP4342970B2 (en) 2004-02-02 2009-10-14 株式会社東芝 Semiconductor memory device and manufacturing method thereof
KR100540371B1 (en) 2004-03-02 2006-01-11 이태복 Semiconductor device of high breakdown voltage and manufacturing method thereof
US7262089B2 (en) 2004-03-11 2007-08-28 Micron Technology, Inc. Methods of forming semiconductor structures
KR100614240B1 (en) * 2004-06-10 2006-08-18 삼성전자주식회사 Semiconductor devices including a field effect transistor and methods of the same
US7042009B2 (en) * 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7160788B2 (en) 2004-08-23 2007-01-09 Micron Technology, Inc. Methods of forming integrated circuits
US7122425B2 (en) * 2004-08-24 2006-10-17 Micron Technology, Inc. Methods of forming semiconductor constructions
US7202127B2 (en) 2004-08-27 2007-04-10 Micron Technology, Inc. Methods of forming a plurality of capacitors
US7151040B2 (en) * 2004-08-31 2006-12-19 Micron Technology, Inc. Methods for increasing photo alignment margins
US7442976B2 (en) * 2004-09-01 2008-10-28 Micron Technology, Inc. DRAM cells with vertical transistors
US7547945B2 (en) * 2004-09-01 2009-06-16 Micron Technology, Inc. Transistor devices, transistor structures and semiconductor constructions
US7655387B2 (en) 2004-09-02 2010-02-02 Micron Technology, Inc. Method to align mask patterns
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
US7115525B2 (en) 2004-09-02 2006-10-03 Micron Technology, Inc. Method for integrated circuit fabrication using pitch multiplication
JP4083160B2 (en) * 2004-10-04 2008-04-30 株式会社東芝 Semiconductor memory device and driving method of FBC memory cell
US7608503B2 (en) 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
US20060113588A1 (en) 2004-11-29 2006-06-01 Sillicon-Based Technology Corp. Self-aligned trench-type DMOS transistor structure and its manufacturing methods
KR100640616B1 (en) 2004-12-21 2006-11-01 삼성전자주식회사 Field effect transistor structure comprising a buried gate pattern and method of manufacturing a semiconductor device comprising the field effect transistor structure
US20060167741A1 (en) 2005-01-25 2006-07-27 Cisco Technology, Inc. System and method for designing a supply chain
DE102005008478B3 (en) 2005-02-24 2006-10-26 Infineon Technologies Ag Process for the preparation of sublithographic structures
JP2006237455A (en) 2005-02-28 2006-09-07 Toshiba Corp Semiconductor device and manufacturing method thereof
US7244659B2 (en) * 2005-03-10 2007-07-17 Micron Technology, Inc. Integrated circuits and methods of forming a field effect transistor
US7253118B2 (en) * 2005-03-15 2007-08-07 Micron Technology, Inc. Pitch reduced patterns relative to photolithography features
US7390746B2 (en) * 2005-03-15 2008-06-24 Micron Technology, Inc. Multiple deposition for integration of spacers in pitch multiplication process
US7384849B2 (en) 2005-03-25 2008-06-10 Micron Technology, Inc. Methods of forming recessed access devices associated with semiconductor constructions
US7611944B2 (en) 2005-03-28 2009-11-03 Micron Technology, Inc. Integrated circuit fabrication
JP4541220B2 (en) 2005-04-13 2010-09-08 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
US7214621B2 (en) * 2005-05-18 2007-05-08 Micron Technology, Inc. Methods of forming devices associated with semiconductor constructions
US7429536B2 (en) 2005-05-23 2008-09-30 Micron Technology, Inc. Methods for forming arrays of small, closely spaced features
US7560390B2 (en) 2005-06-02 2009-07-14 Micron Technology, Inc. Multiple spacer steps for pitch multiplication
US7396781B2 (en) 2005-06-09 2008-07-08 Micron Technology, Inc. Method and apparatus for adjusting feature size and position
JP2006352005A (en) 2005-06-20 2006-12-28 Toshiba Corp Ferroelectric storage device and method for manufacturing the same
WO2007001953A1 (en) 2005-06-21 2007-01-04 Motorola, Inc. Method, apparatus, and system for establishing a direct route between agents of a sender node and a receiver node
US7517741B2 (en) * 2005-06-30 2009-04-14 Freescale Semiconductor, Inc. Single transistor memory cell with reduced recombination rates
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7413981B2 (en) 2005-07-29 2008-08-19 Micron Technology, Inc. Pitch doubled circuit layout
US7199005B2 (en) 2005-08-02 2007-04-03 Micron Technology, Inc. Methods of forming pluralities of capacitors
US7867851B2 (en) * 2005-08-30 2011-01-11 Micron Technology, Inc. Methods of forming field effect transistors on substrates
US7696567B2 (en) * 2005-08-31 2010-04-13 Micron Technology, Inc Semiconductor memory device
US7867845B2 (en) 2005-09-01 2011-01-11 Micron Technology, Inc. Transistor gate forming methods and transistor structures
US7393789B2 (en) 2005-09-01 2008-07-01 Micron Technology, Inc. Protective coating for planarization
US7687342B2 (en) * 2005-09-01 2010-03-30 Micron Technology, Inc. Method of manufacturing a memory device
JP4773182B2 (en) * 2005-10-28 2011-09-14 エルピーダメモリ株式会社 Manufacturing method of semiconductor device
KR100843139B1 (en) 2005-12-15 2008-07-02 삼성전자주식회사 Multi-level dynamic memory device having open bit line structure and driving method thereof
US7495294B2 (en) 2005-12-21 2009-02-24 Sandisk Corporation Flash devices with shared word lines
TWI293207B (en) 2006-01-11 2008-02-01 Promos Technologies Inc Dynamic random access memory structure and method for preparing the smae
US7700441B2 (en) * 2006-02-02 2010-04-20 Micron Technology, Inc. Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US7495946B2 (en) 2006-03-02 2009-02-24 Infineon Technologies Ag Phase change memory fabricated using self-aligned processing
US7476933B2 (en) 2006-03-02 2009-01-13 Micron Technology, Inc. Vertical gated access transistor
US7349232B2 (en) * 2006-03-15 2008-03-25 Micron Technology, Inc. 6F2 DRAM cell design with 3F-pitch folded digitline sense amplifier
US7351666B2 (en) 2006-03-17 2008-04-01 International Business Machines Corporation Layout and process to contact sub-lithographic structures
US7902074B2 (en) 2006-04-07 2011-03-08 Micron Technology, Inc. Simplified pitch doubling process flow
US8003310B2 (en) 2006-04-24 2011-08-23 Micron Technology, Inc. Masking techniques and templates for dense semiconductor fabrication
US7488685B2 (en) * 2006-04-25 2009-02-10 Micron Technology, Inc. Process for improving critical dimension uniformity of integrated circuit arrays
JP2008004738A (en) 2006-06-22 2008-01-10 Elpida Memory Inc Semiconductor device and method of manufacturing the same
US7602001B2 (en) * 2006-07-17 2009-10-13 Micron Technology, Inc. Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells
US7755132B2 (en) 2006-08-16 2010-07-13 Sandisk Corporation Nonvolatile memories with shaped floating gates
US7772632B2 (en) * 2006-08-21 2010-08-10 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US7589995B2 (en) 2006-09-07 2009-09-15 Micron Technology, Inc. One-transistor memory cell with bias gate
US7732275B2 (en) 2007-03-29 2010-06-08 Sandisk Corporation Methods of forming NAND flash memory with fixed charge
US7494870B2 (en) 2007-01-12 2009-02-24 Sandisk Corporation Methods of forming NAND memory with virtual channel
US7619311B2 (en) 2007-02-02 2009-11-17 Macronix International Co., Ltd. Memory cell device with coplanar electrode surface and method
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US8563229B2 (en) 2007-07-31 2013-10-22 Micron Technology, Inc. Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures
US7684245B2 (en) 2007-10-30 2010-03-23 Atmel Corporation Non-volatile memory array architecture with joined word lines
KR101374323B1 (en) 2008-01-07 2014-03-17 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US7759193B2 (en) 2008-07-09 2010-07-20 Micron Technology, Inc. Methods of forming a plurality of capacitors
US8859367B2 (en) * 2010-07-09 2014-10-14 Micron Technology, Inc. Gate constructions of recessed access devices and methods of forming gate constructions of recessed access devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083924A1 (en) * 2012-11-28 2014-06-05 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and method for manufacturing same
TWI644415B (en) * 2016-11-01 2018-12-11 美商美光科技公司 Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10157913B2 (en) 2016-11-01 2018-12-18 Micron Technology, Inc. Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10903122B2 (en) 2016-11-01 2021-01-26 Micron Technology, Inc. Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10062745B2 (en) 2017-01-09 2018-08-28 Micron Technology, Inc. Methods of forming an array of capacitors, methods of forming an array of memory cells individually comprising a capacitor and a transistor, arrays of capacitors, and arrays of memory cells individually comprising a capacitor and a transistor
US10202583B2 (en) 2017-01-10 2019-02-12 Micron Technology, Inc. Arrays of memory cells individually comprising a capacitor and an elevationally-extending transistor, methods of forming a tier of an array of memory cells, and methods of forming an array of memory cells individually comprising a capacitor and an elevationally-extending transistor
US10622366B2 (en) 2017-01-10 2020-04-14 Micron Technology, Inc. Methods of forming an array comprising pairs of vertically opposed capacitors and arrays comprising pairs of vertically opposed capacitors
US10192873B2 (en) 2017-01-12 2019-01-29 Micron Technology, Inc. Memory cell, an array of memory cells individually comprising a capacitor and a transistor with the array comprising rows of access lines and columns of digit lines, a 2T-1C memory cell, and methods of forming an array of capacitors and access transistors there-above
US10388658B1 (en) 2018-04-27 2019-08-20 Micron Technology, Inc. Transistors, arrays of transistors, arrays of memory cells individually comprising a capacitor and an elevationally-extending transistor, and methods of forming an array of transistors

Also Published As

Publication number Publication date
WO2008024171A1 (en) 2008-02-28
SG174730A1 (en) 2011-10-28
CN101506966B (en) 2010-09-01
US20080042179A1 (en) 2008-02-21
US7772632B2 (en) 2010-08-10
KR20090036595A (en) 2009-04-14
WO2008024171A8 (en) 2009-06-25
US8394699B2 (en) 2013-03-12
TWI362743B (en) 2012-04-21
CN101506966A (en) 2009-08-12
EP2054928A1 (en) 2009-05-06
JP2010502008A (en) 2010-01-21
KR101074594B1 (en) 2011-10-17
JP5445944B2 (en) 2014-03-19
US20100273303A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
TW200816454A (en) Memory arrays and methods of fabricating memory arrays
JP3671062B2 (en) Semiconductor device and manufacturing method thereof
TWI323511B (en) Semiconductor device having a recess channel transistor
US8716774B2 (en) Semiconductor device having a buried gate type MOS transistor and method of manufacturing same
TWI726521B (en) Array of capacitors, array of memory cells, methods of forming an array of capacitors, and methods of forming an array of memory cells
TWI300256B (en) Transistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
TWI295506B (en) Semiconductor device having transistor with vertical gate electrode and method of fabricating the same
CN115835626B (en) 3D stacked semiconductor device, 3D memory, preparation method of 3D stacked semiconductor device and preparation method of 3D memory, and electronic equipment
TW201203486A (en) Semiconductor device and method for manufacturing the same
KR100734495B1 (en) Semiconductor device
US8395198B2 (en) Semiconductor device that uses a transistor for field shield
US9461049B2 (en) Semiconductor device
JP2008300623A (en) Semiconductor device and its manufacturing method and data processing system
KR20120015940A (en) Semiconductor memory device having capacitor and method of fabricating the same
TW201123356A (en) Wiring structures and methods of forming wiring structures
TW200901327A (en) Method of forming self-aligned gates and transistors thereof
TW201007928A (en) Method of manufacturing high-integrated semiconductor device and semiconductor device manufactured using the same
TW546783B (en) Semiconductor memory device and manufacturing method thereof
JPH04283963A (en) Dynamic ram and manufacture thereof
TW201003903A (en) Semiconductor memory device and method of manufacturing the same
TW201019463A (en) Memory device and fabrication thereof
JP2001230388A (en) Manufacturing method for semiconductor device
JPH10125872A (en) Structure of dram cell and its manufacture
JP2000101047A (en) Capacitor arranged in semiconductor device on carrier and manufacture thereof
TW419726B (en) Semiconductor device and its manufacture method