TWI566334B - Method for fabricating dynamic random access memory device - Google Patents

Method for fabricating dynamic random access memory device Download PDF

Info

Publication number
TWI566334B
TWI566334B TW104109694A TW104109694A TWI566334B TW I566334 B TWI566334 B TW I566334B TW 104109694 A TW104109694 A TW 104109694A TW 104109694 A TW104109694 A TW 104109694A TW I566334 B TWI566334 B TW I566334B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
trench
width
memory device
Prior art date
Application number
TW104109694A
Other languages
Chinese (zh)
Other versions
TW201635443A (en
Inventor
田中義典
江明崇
顏懋祥
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW104109694A priority Critical patent/TWI566334B/en
Publication of TW201635443A publication Critical patent/TW201635443A/en
Application granted granted Critical
Publication of TWI566334B publication Critical patent/TWI566334B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

動態隨機存取記憶裝置之製造方法 Method for manufacturing dynamic random access memory device

本發明係有關於一種半導體技術,特別是關於一種動態隨機存取記憶裝置之製造方法。 The present invention relates to a semiconductor technology, and more particularly to a method of fabricating a dynamic random access memory device.

隨著技術的演進,動態隨機存取記憶裝置的尺寸持續微縮化,使其密度越來越高,且各個記憶裝置更加接近彼此。如此一來,記憶裝置內產生的電荷容易洩漏至相鄰的記憶裝置而發生位元翻轉(bit flip)現象,進而造成錯誤訊號。這個現象稱為字元線干擾(Row hammer)。 As technology evolves, the size of dynamic random access memory devices continues to shrink, making their density increasingly higher, and individual memory devices closer to each other. As a result, the charge generated in the memory device easily leaks to the adjacent memory device and a bit flip phenomenon occurs, thereby causing an error signal. This phenomenon is called the word hammer.

第1圖係繪示出一習知動態隨機存取記憶裝置之剖面示意圖。動態隨機存取記憶裝置包括一虛設字元線(dummy word line)14及二個一般字元線12,設置於一基底10中。虛設字元線14的結構通常與一般字元線12相同。再者,一般字元線12之間的基底10以及一般字元線12與虛設字元線14之間的基底10分別設置摻雜區18及摻雜區19,其中摻雜區18藉由位元線接觸窗20與位元線22電性連接,且摻雜區19藉由電容接觸窗24與儲存電容26電性連接。 1 is a cross-sectional view showing a conventional dynamic random access memory device. The DRAM device includes a dummy word line 14 and two general word lines 12 disposed in a substrate 10. The structure of the dummy word line 14 is generally the same as that of the general word line 12. Furthermore, the substrate 10 between the general word lines 12 and the substrate 10 between the general word lines 12 and the dummy word lines 14 are respectively provided with a doping region 18 and a doping region 19, wherein the doping region 18 is provided by a bit The contact line 20 is electrically connected to the bit line 22 , and the doped region 19 is electrically connected to the storage capacitor 26 via the capacitive contact window 24 .

在動態隨機存取記憶裝置操作過程中,為了寫入/抹除之需要,會於相鄰一般字元線12中的一者反覆施加偏壓及 停止施加偏壓。於施加偏壓時,會有電子累積於一般字元線12上,如第1圖所示。於停止施加偏壓時,電子會朝不同之方向散佈,例如A、B及C方向。對於B方向來說,電子會散佈至基底10中,其對於記憶裝置的影響較小。 During the operation of the DRAM device, a bias voltage is repeatedly applied to one of the adjacent general word lines 12 for the purpose of writing/erasing. Stop applying bias. When a bias voltage is applied, electrons accumulate on the general word line 12, as shown in FIG. When the bias is stopped, the electrons will spread in different directions, such as A, B, and C directions. For the B direction, electrons are scattered into the substrate 10, which has less effect on the memory device.

對於A方向來說,電子越過相鄰一般字元線12的另 一者並通過位於A方向的摻雜區19再進入儲存電容26中,造成字元線干擾。然而,可以藉由於相鄰一般字元線12間的摻雜區18下方形成一深摻雜區(未繪示),以阻擋A方向的電子進而防止該區的字元線干擾現象。 For the A direction, the electrons cross over the adjacent general character line 12 One again enters the storage capacitor 26 through the doped region 19 located in the A direction, causing word line interference. However, a deep doped region (not shown) may be formed under the doped region 18 between adjacent general word lines 12 to block electrons in the A direction and thereby prevent word line interference in the region.

而對於C方向來說,由於動態隨機存取記憶體裝置 製程及結構的限制,故無法於C方向的摻雜區19下方形成一深摻雜區。據此,習知的解決方式是對虛設字元線14施以一負偏壓(例如,-0.5V)以阻斷電子的散佈路徑,進而改善相鄰記憶裝置之字元線干擾現象。然而,由於虛設字元線14的負偏壓會引起漏電流(例如,閘極誘發汲極洩漏電流,gated-induce drain leakage(GIDL)),因此對動態隨機存取記憶裝置的再新時間(refresh time)造成不良的影響。 For the C direction, due to the dynamic random access memory device Due to the limitations of the process and structure, a deep doped region cannot be formed under the doped region 19 in the C direction. Accordingly, a conventional solution is to apply a negative bias voltage (for example, -0.5 V) to the dummy word line 14 to block the propagation path of the electrons, thereby improving the word line interference phenomenon of the adjacent memory device. However, since the negative bias of the dummy word line 14 causes leakage current (for example, gate-induced drain leakage (GIDL)), the renewing time for the dynamic random access memory device ( Refresh time) causes adverse effects.

有鑒於此,業界需要一種新的動態隨機存取記憶裝置及其製作方法,以改善上述之問題。 In view of this, the industry needs a new dynamic random access memory device and a manufacturing method thereof to improve the above problems.

本發明一實施例係提供一種動態隨機存取記憶裝置之製造方法,包括:在一基底上形成彼此隔開的二個罩幕層;在具有罩幕層的基底上順應性形成一材料層,使材料層於罩幕層之間形成一凹陷區;在凹陷區的相對的側壁上形成二個 間隙壁,以在間隙壁之間定義出一第一區且在間隙壁與罩幕層之間定義出二個第二區;以罩幕層及間隙壁作為蝕刻罩幕進行多重蝕刻製程,以在第一區及第二區的基底內對應形成一第一溝槽及二個第二溝槽,其中第一溝槽的深度深於第二溝槽的深度;以及在第一溝槽內填入一虛設閘極層及在第二溝槽內分別填入一閘極層。 An embodiment of the present invention provides a method for fabricating a dynamic random access memory device, comprising: forming two mask layers spaced apart from each other on a substrate; forming a material layer conformally on the substrate having the mask layer, Forming a layer of material between the mask layers; forming two recesses on opposite side walls of the recessed area a spacer, wherein a first region is defined between the spacers and two second regions are defined between the spacers and the mask layer; and the mask layer and the spacers are used as etching masks for performing multiple etching processes, Forming a first trench and two second trenches in the substrate of the first region and the second region, wherein the depth of the first trench is deeper than the depth of the second trench; and filling in the first trench A dummy gate layer is inserted into the dummy gate layer and a gate layer is filled in the second trench.

10、400‧‧‧基底 10,400‧‧‧Base

12‧‧‧一般字元線 12‧‧‧General word line

14‧‧‧虛設字元線 14‧‧‧Dummy word line

16‧‧‧絕緣層 16‧‧‧Insulation

18、19‧‧‧摻雜區 18, 19‧‧‧Doped area

20‧‧‧位元線接觸窗 20‧‧‧ bit line contact window

22‧‧‧位元線 22‧‧‧ bit line

24‧‧‧電容接觸窗 24‧‧‧Capacitive contact window

26‧‧‧儲存電容 26‧‧‧ Storage Capacitor

28、402‧‧‧淺溝槽隔離結構 28, 402‧‧‧ shallow trench isolation structure

404‧‧‧主動區 404‧‧‧active area

406‧‧‧氧化矽層 406‧‧‧Oxide layer

407‧‧‧氮化矽層 407‧‧‧ nitride layer

408‧‧‧蝕刻停止層 408‧‧‧etch stop layer

410‧‧‧罩幕層 410‧‧‧ Cover layer

412‧‧‧材料層 412‧‧‧Material layer

414‧‧‧凹陷區 414‧‧‧ recessed area

416‧‧‧間隙壁 416‧‧‧ spacer

418‧‧‧第一區 418‧‧‧First District

420‧‧‧第二區 420‧‧‧Second District

422‧‧‧第一溝槽 422‧‧‧ first trench

424‧‧‧第二溝槽 424‧‧‧Second trench

426‧‧‧虛設閘極層 426‧‧‧Dummy gate layer

428‧‧‧閘極層 428‧‧ ‧ gate layer

430‧‧‧閘極介電層 430‧‧ ‧ gate dielectric layer

432‧‧‧第一絕緣層 432‧‧‧first insulation

434‧‧‧第二絕緣層 434‧‧‧Second insulation

600、700‧‧‧動態隨機存取記憶裝置 600, 700‧‧‧ dynamic random access memory device

w1‧‧‧第一寬度 W1‧‧‧first width

w2‧‧‧第二寬度 W2‧‧‧second width

D1‧‧‧第一深度 D1‧‧‧first depth

D2‧‧‧第二深度 D2‧‧‧second depth

D3‧‧‧第一距離 D3‧‧‧First distance

D4‧‧‧第二距離 D4‧‧‧Second distance

S‧‧‧位移 S‧‧‧ displacement

第1圖係繪示出習知之動態隨機存取記憶裝置之剖面示意圖。 Figure 1 is a schematic cross-sectional view showing a conventional dynamic random access memory device.

第2圖係繪示出根據本發明一實施例之動態隨機存取記憶裝置之剖面示意圖。 2 is a cross-sectional view showing a dynamic random access memory device in accordance with an embodiment of the present invention.

第3A至3H圖係繪示出根據本發明一實施例之動態隨機存取記憶裝置之中間製造階段平面示意圖。 3A to 3H are schematic plan views showing an intermediate manufacturing stage of a dynamic random access memory device according to an embodiment of the present invention.

第4A至4H圖係分別繪示出第3A至3H圖中沿4-4’線的剖面示意圖。 4A to 4H are schematic cross-sectional views taken along line 4-4' of Figs. 3A to 3H, respectively.

第5A至5H圖係分別繪示出於第3A至3H圖中沿5-5’線的剖面示意圖。 5A to 5H are schematic cross-sectional views taken along lines 5-5' in Figs. 3A to 3H, respectively.

第6圖係繪示出根據本發明一實施例之動態隨機存取記憶裝置之剖面示意圖。 Figure 6 is a cross-sectional view showing a dynamic random access memory device in accordance with an embodiment of the present invention.

第7圖係繪示出根據本發明一實施例之動態隨機存取記憶裝置之剖面示意圖。 Figure 7 is a cross-sectional view showing a dynamic random access memory device in accordance with an embodiment of the present invention.

以下說明本發明實施例之動態隨機存取記憶裝置 製造方法。然而,可輕易了解本發明所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。 Hereinafter, a dynamic random access memory device according to an embodiment of the present invention will be described Production method. However, the present invention is to be understood as being limited to the details of the present invention.

第2圖係繪示根據本發明一實施例之動態隨機存取記憶裝置實施例之剖面示意圖,其中相同於第1圖之部件,係使用相同之標號並省略其說明。在本實施例中,記憶裝置之結構相似於第1圖所示之結構,不同之處在於將淺溝槽隔離結構28取代虛設字元線14。淺溝槽隔離結構28包括氧化矽、氮化矽、氮氧化矽、其他合適材料或前述之組合。由於淺溝槽隔離結構28中的溝槽與設置一般字元線12的溝槽並非於以同一製程來製作,因此淺溝槽隔離層28的溝槽深度可深於設置一般字元線12的溝槽的深度,藉以阻斷第1圖所述於C方向的電子散佈路徑,進而降低字元線干擾。 FIG. 2 is a cross-sectional view showing an embodiment of a dynamic random access memory device according to an embodiment of the present invention, wherein the same components as those in FIG. 1 are denoted by the same reference numerals and the description thereof is omitted. In the present embodiment, the structure of the memory device is similar to that shown in FIG. 1, except that the shallow trench isolation structure 28 is substituted for the dummy word line 14. Shallow trench isolation structure 28 includes hafnium oxide, tantalum nitride, hafnium oxynitride, other suitable materials, or combinations of the foregoing. Since the trenches in the shallow trench isolation structure 28 and the trenches in which the general word lines 12 are disposed are not fabricated in the same process, the trench trench isolation layer 28 may have a trench depth deeper than the general word line 12 The depth of the trench is used to block the electron dispersion path in the C direction as described in FIG. 1, thereby reducing word line interference.

然而,在上述的配置中,通常以微影及蝕刻製程先形成淺溝槽隔離結構28的溝槽,而在後續製程步驟中再以微影及蝕刻製程形成用於設置一般字元線12的溝槽。因此,後續形成的溝槽位置容易發生位移S而不同於原先設計,如第2圖所示。此位移S使一側的摻雜區19的面積相對縮小而另一側的摻雜區19的面積相對增加,造成具有相對較小面積的摻雜區19與電容接觸窗24之間的接觸面積減少,進而造成較高的接觸電阻。 However, in the above configuration, the trenches of the shallow trench isolation structure 28 are generally formed by a lithography and etching process, and in the subsequent process steps, the general word line 12 is formed by a lithography and etching process. Groove. Therefore, the position of the subsequently formed groove is likely to occur with the displacement S different from the original design, as shown in FIG. This displacement S causes the area of the doped region 19 on one side to be relatively reduced while the area of the doped region 19 on the other side is relatively increased, resulting in a contact area between the doped region 19 having a relatively small area and the capacitive contact window 24. Reduced, resulting in higher contact resistance.

為了改善上述問題,以下配合第3A至3H圖、第4A至4H圖及第5A至5H圖說明本發明一實施例之動態隨機存取記憶裝置之製作方法。其中,第3A至3H圖係繪示出根據本發明 一實施例之動態隨機存取記憶裝置之中間製造階段平面示意圖,第4A至4H圖係分別繪示出第3A至3H圖中沿4-4’線的剖面示意圖,第5A至5H圖係分別繪示出第3A至3H圖中沿5-5’線的剖面示意圖。請參照第3A圖、第4A圖及第5A圖,提供一基底400,其包括矽或其他適合之半導體材料。在基底400中形成複數淺溝槽隔離結構結構402。淺溝槽隔離結構402的形成可包括:使用微影製程在基底400上定義出淺溝槽隔離結構402的形成區域、蝕刻上述形成區域而形成深溝槽、及以一或多個介電材料填充溝槽。藉由淺溝槽隔離結構402定義出複數主動區404,以在後續製程步驟中形成動態隨機存取記憶裝置。 In order to improve the above problem, a method of fabricating a dynamic random access memory device according to an embodiment of the present invention will be described below with reference to FIGS. 3A to 3H, FIGS. 4A to 4H, and 5A to 5H. Wherein, the 3A to 3H drawings are drawn according to the present invention. A schematic plan view of an intermediate manufacturing stage of a dynamic random access memory device according to an embodiment, and FIGS. 4A to 4H are schematic cross-sectional views taken along line 4-4' of FIGS. 3A to 3H, respectively, and FIGS. 5A to 5H are respectively A schematic cross-sectional view along line 5-5' in the 3A to 3H drawings is shown. Referring to Figures 3A, 4A, and 5A, a substrate 400 is provided that includes germanium or other suitable semiconductor material. A plurality of shallow trench isolation structures 402 are formed in the substrate 400. The forming of the shallow trench isolation structure 402 may include: forming a formation region of the shallow trench isolation structure 402 on the substrate 400 using a lithography process, etching the formation region to form a deep trench, and filling with one or more dielectric materials. Groove. The complex active region 404 is defined by the shallow trench isolation structure 402 to form a dynamic random access memory device in subsequent processing steps.

請參照第3B圖、第4B圖及第5B圖,在基底400上形成彼此隔開的二個罩幕層410。在一實施例中,罩幕層410可包括一氧化矽層406及位於其上的一氮化矽層407。再者,可使用化學氣相沉積形成氧化矽層406及氮化矽層407。之後,可使用微影製程及蝕刻製程對氮化矽層407及其下的氧化矽層406進行圖案化,以形成彼此隔開的罩幕層410。上述蝕刻製程包括:乾蝕刻(例如,電漿蝕刻(plasma etching)、反應性離子蝕刻(reactive ion etching,RIE)或其他適合的蝕刻製程)。 Referring to FIGS. 3B, 4B, and 5B, two mask layers 410 spaced apart from each other are formed on the substrate 400. In an embodiment, the mask layer 410 can include a hafnium oxide layer 406 and a tantalum nitride layer 407 disposed thereon. Further, the yttrium oxide layer 406 and the tantalum nitride layer 407 may be formed using chemical vapor deposition. Thereafter, the tantalum nitride layer 407 and the underlying hafnium oxide layer 406 may be patterned using a lithography process and an etch process to form the cap layer 410 spaced apart from each other. The etching process includes: dry etching (for example, plasma etching, reactive ion etching (RIE) or other suitable etching process).

之後,在罩幕層410之間的基底400上形成一蝕刻停止層408。在一實施例中,蝕刻停止層408包括氧化矽。再者,可使用熱氧化製程或沉積製程形成蝕刻停止層408。接著,在具有罩幕層410及蝕刻停止層408的基底400上順應性形成一材料層412,使材料層412於罩幕層410之間形成一凹陷區414。在一實施例中,材料層412包括多晶矽。再者,可使用化學氣相 沉積或是其他適合的沉積製程形成材料層412。 Thereafter, an etch stop layer 408 is formed on the substrate 400 between the mask layers 410. In an embodiment, the etch stop layer 408 comprises hafnium oxide. Further, the etch stop layer 408 can be formed using a thermal oxidation process or a deposition process. Next, a material layer 412 is formed conformally on the substrate 400 having the mask layer 410 and the etch stop layer 408 such that the material layer 412 forms a recessed region 414 between the mask layers 410. In an embodiment, material layer 412 includes polysilicon. Furthermore, chemical vapor can be used A deposition or other suitable deposition process forms a layer 412 of material.

請參照第3C圖、第4C圖及第5C圖,順應性形成一 第二材料層(未繪示)於材料層412上。在一實施例中,第二材料層可包括氮化矽、氧化矽或其組合。接著,藉由對第二材料層實施一蝕刻製程(如,非等向性蝕刻(anisotropic)),而在凹陷區414的相對的側壁上形成二個間隙壁416,以在間隙壁416之間定義出一第一區418且在間隙壁416與罩幕層410之間定義出二個第二區420。 Please refer to the 3C, 4C, and 5C diagrams for compliance. A second material layer (not shown) is on the material layer 412. In an embodiment, the second material layer may include tantalum nitride, tantalum oxide, or a combination thereof. Then, by performing an etching process (eg, anisotropic etching) on the second material layer, two spacers 416 are formed on the opposite sidewalls of the recessed region 414 to be between the spacers 416. A first zone 418 is defined and two second zones 420 are defined between the spacers 416 and the masking layer 410.

接著,對第3C圖、第4C圖及第5C圖的結構進行多 重蝕刻製程,如以下第3D至3F圖、第4D至4F圖及5D至5F圖所示。 Next, the structure of the 3C, 4C, and 5C is increased. The re-etching process is as shown in Figures 3D to 3F, 4D to 4F, and 5D to 5F below.

請參照第3D圖、第4D圖及第5D圖,以間隙壁416 作為蝕刻罩幕,蝕刻材料層412至露出第一區418的蝕刻停止層408。蝕刻製程可包括乾蝕刻(例如,電漿蝕刻、反應性離子蝕刻或其他適合的蝕刻製程)。 Please refer to the 3D, 4D, and 5D, with the spacer 416 As an etch mask, the material layer 412 is etched to expose the etch stop layer 408 of the first region 418. The etching process can include dry etching (eg, plasma etching, reactive ion etching, or other suitable etching process).

請參照第3E圖、第4E圖及第5E圖,蝕刻去除位於 第一區418的蝕刻停止層408至露出主動區404的基底400。接著,以間隙壁416及罩幕層410作為蝕刻罩幕,蝕刻位於第二區420的材料層412至露出蝕刻停止層408。在一實施例中,由於材料層412及基底400包括矽,因此在蝕刻材料層412期間會同時蝕刻位於第一區418的基底400,而在第一區418的基底400內形成一開口419。上述的蝕刻製程可包括乾蝕刻(例如,電漿蝕刻、反應性離子蝕刻或其他適合的蝕刻製程)。 Please refer to Figures 3E, 4E and 5E for etching removal. The etch stop layer 408 of the first region 418 is exposed to the substrate 400 of the active region 404. Next, the spacer 416 and the mask layer 410 are used as an etch mask to etch the material layer 412 located in the second region 420 to expose the etch stop layer 408. In one embodiment, since the material layer 412 and the substrate 400 include germanium, the substrate 400 in the first region 418 is simultaneously etched during the etching of the material layer 412, while an opening 419 is formed in the substrate 400 of the first region 418. The etching process described above can include dry etching (eg, plasma etching, reactive ion etching, or other suitable etching process).

請參照第3F圖、第4F圖及第5F圖,蝕刻位於第二 區420的蝕刻停止層408至露出基底400。接著蝕刻第一區418的開口419下方的基底400,且同時蝕刻第二區420的基底400,以在第一區418及第二區420的基底400內對應形成一第一溝槽422及二個第二溝槽424,其中第一溝槽422具有一第一寬度w1,且第二溝槽424具有一第二寬度w2。上述的蝕刻製程包括乾蝕刻(例如,電漿蝕刻、反應性離子蝕刻或其他適合的蝕刻製程)。在本實施例中,第一區418的基底400中已先形成一開口419(如第4E圖所示),因此在進行溝槽蝕刻製程後,位於第一區418的第一溝槽422之深度D1會深於位於第二區420的第二溝槽424之深度D2。 Please refer to the 3F, 4F, and 5F, and the etching is at the second. The etch stop layer 408 of the region 420 is exposed to the substrate 400. Then, the substrate 400 under the opening 419 of the first region 418 is etched, and the substrate 400 of the second region 420 is simultaneously etched to form a first trench 422 and two in the substrate 400 of the first region 418 and the second region 420. A second trench 424, wherein the first trench 422 has a first width w1 and the second trench 424 has a second width w2. The etching process described above includes dry etching (eg, plasma etching, reactive ion etching, or other suitable etching process). In the present embodiment, an opening 419 is formed in the substrate 400 of the first region 418 (as shown in FIG. 4E), so after the trench etching process, the first trench 422 is located in the first region 418. The depth D1 will be deeper than the depth D2 of the second trench 424 located in the second region 420.

另外,在本實施例中,可藉由控制材料層412的厚 度及間隙壁416的寬度(即,第二材料層的厚度)來改變第一寬度w1及第二寬度w2之尺寸。在本實施例中,第一寬度w1可大於第二寬度w2。在另一實施例中,第一寬度w1可等於第二寬度w2。 In addition, in the present embodiment, the thickness of the material layer 412 can be controlled by The width and the width of the spacer 416 (i.e., the thickness of the second material layer) are varied to change the dimensions of the first width w1 and the second width w2. In this embodiment, the first width w1 may be greater than the second width w2. In another embodiment, the first width w1 may be equal to the second width w2.

接著,在第一溝槽422及第二溝槽424的側壁及底 部上形成一介電層,例如氧化矽,以作為閘極介電層430。之後,可選擇性在閘極介電層430上形成一金屬阻障層(未繪示)或黏著層,例如鈦、鉭、氮化鈦(TiN)、氮化鉭(TaN)或其組合。 Next, sidewalls and bottoms of the first trench 422 and the second trench 424 A dielectric layer, such as hafnium oxide, is formed on the portion to serve as the gate dielectric layer 430. Thereafter, a metal barrier layer (not shown) or an adhesive layer such as titanium, tantalum, titanium nitride (TiN), tantalum nitride (TaN), or a combination thereof may be selectively formed on the gate dielectric layer 430.

接著,在基底400上的罩幕層410及間隙壁416上覆蓋一導體層(未繪示)並填入至第一溝槽422及第二溝槽424中。在一實施例中,導體層包括鎢(W)或其他合適的閘極材料,且可使用物理氣相沉積或其他合適的沉積製程形成。接著可對導體層實施一平坦化製程(例如,化學機械研磨(CMP)製程)至露 出間隙壁416。 Next, a mask layer 410 and a spacer 416 on the substrate 400 are covered with a conductor layer (not shown) and filled into the first trench 422 and the second trench 424. In an embodiment, the conductor layer comprises tungsten (W) or other suitable gate material and may be formed using physical vapor deposition or other suitable deposition process. A planarization process (eg, a chemical mechanical polishing (CMP) process) can be applied to the conductor layer to the exposed The gap wall 416 is exited.

在進行平坦化製程之後,對導體層實施一回蝕刻 製程,以在第一溝槽422中形成一虛設閘極層426及在第二溝槽424中對應形成一閘極層428(作為字元線)。在本實施例中,由於第一溝槽422的第一寬度w1大於第二溝槽424的第二寬度w2,因此第一溝槽422中導體層的回蝕刻速率會大於第二溝槽424中導體層的回蝕刻速率,進而造成基底400的上表面與虛設閘極層426的上表面之間的一第一距離D3大於基底400的上表面與閘極層428的上表面之間的一第二距離D4。在一些實施例中,第一距離D3與第二距離D4的差距為10nm。 After the planarization process, the conductor layer is etched back The process is such that a dummy gate layer 426 is formed in the first trench 422 and a gate layer 428 (as a word line) is formed in the second trench 424. In this embodiment, since the first width w1 of the first trench 422 is greater than the second width w2 of the second trench 424, the etch back rate of the conductor layer in the first trench 422 is greater than that in the second trench 424. The etch back rate of the conductor layer, which in turn causes a first distance D3 between the upper surface of the substrate 400 and the upper surface of the dummy gate layer 426, is greater than a distance between the upper surface of the substrate 400 and the upper surface of the gate layer 428. Two distances D4. In some embodiments, the difference between the first distance D3 and the second distance D4 is 10 nm.

請參照第3G圖、第4G圖及第5G圖,在基底400上 的罩幕層410及間隙壁416上覆蓋一第一絕緣層432並填入第一溝槽422及第二溝槽424中。在一實施例中,第一絕緣層432可包括氮化矽,且可使用化學氣相沉積或是原子層沉積(atomic layer deposition,ALD)而形成。接著,對第一絕緣層432實施一平坦化製程(例如,化學機械研磨(CMP)製程),其中利用間隙壁416下方的材料層412作為平坦化停止層,以去除間隙壁416而停止並露出位於其下方的材料層412。 Please refer to FIG. 3G, FIG. 4G and FIG. 5G on the substrate 400. The mask layer 410 and the spacer 416 are covered with a first insulating layer 432 and filled in the first trench 422 and the second trench 424. In an embodiment, the first insulating layer 432 may include tantalum nitride and may be formed using chemical vapor deposition or atomic layer deposition (ALD). Next, a planarization process (for example, a chemical mechanical polishing (CMP) process) is performed on the first insulating layer 432, wherein the material layer 412 under the spacers 416 is used as a planarization stop layer to remove the spacers 416 to stop and expose A layer of material 412 located below it.

請參照第3H圖、第4H圖及第5H圖,進行一蝕刻製 程,以去除材料層412。在一實施例中,蝕刻製程包括乾蝕刻(例如,電漿蝕刻、反應性離子蝕刻或其他適合的蝕刻製程)或濕蝕刻。接著,於氧化矽層406、第一絕緣層432上形成一第二絕緣層434並填入去除材料層412所形成的空間。在一些實施例中,第二絕緣層434與氧化矽層406具有相同材料,且可使用化 學氣相沉積而形成。接著對第二絕緣層434進行一平坦化製程(例如,化學機械研磨(CMP)製程),以露出第一絕緣層432。 Please refer to the 3H, 4H, and 5H for an etching process. The process is to remove the material layer 412. In an embodiment, the etching process includes dry etching (eg, plasma etching, reactive ion etching, or other suitable etching process) or wet etching. Next, a second insulating layer 434 is formed on the yttrium oxide layer 406 and the first insulating layer 432 and filled in a space formed by the material removing layer 412. In some embodiments, the second insulating layer 434 has the same material as the yttrium oxide layer 406 and can be used. Formed by vapor deposition. The second insulating layer 434 is then subjected to a planarization process (eg, a chemical mechanical polishing (CMP) process) to expose the first insulating layer 432.

在完成如第3H圖、第4H圖及第5H圖所示之結構之 後,可利用習知金氧半(MOS)電晶體製程、金屬化製程及電容製程,在基底400的主動區404中形成摻雜區18及19(即,源極/汲極區),且在基底400上方形成位元線接觸窗20、位元線22、電容接觸窗24以及儲存電容26,以完成一動態隨機存取記憶裝置600,如第6圖所示。 Finishing the structure as shown in Figures 3H, 4H, and 5H Thereafter, doped regions 18 and 19 (ie, source/drain regions) may be formed in active region 404 of substrate 400 using conventional metal oxide half (MOS) transistor processes, metallization processes, and capacitor processes, and A bit line contact window 20, a bit line 22, a capacitive contact window 24, and a storage capacitor 26 are formed over the substrate 400 to complete a dynamic random access memory device 600, as shown in FIG.

根據上述實施例,第一溝槽422的第一深度D1大於 第二溝槽424的第二深度D2,因此可利用在第一溝槽422中的虛設閘極層426施加負偏壓來阻斷從第二溝槽424中的閘極層428表面散佈出來之電子通往相鄰記憶裝置的路徑,進而改善相鄰記憶裝置之間字元線干擾之現象。 According to the above embodiment, the first depth D1 of the first trench 422 is greater than The second depth D2 of the second trench 424 can thus be blocked from the surface of the gate layer 428 in the second trench 424 by applying a negative bias voltage to the dummy gate layer 426 in the first trench 422. The path of electrons to adjacent memory devices, thereby improving the phenomenon of word line interference between adjacent memory devices.

再者,由於第一溝槽422的第一寬度w1大於第二溝 槽424的第二寬度w2,因此基底400的上表面與虛設閘極層426的上表面之間的第一距離D3可大於基底400的上表面與閘極層428的上表面之間的第二距離D4。如此一來,相較於閘極層428,虛設閘極層426距離相鄰的摻雜區19(例如,汲極區)之距離較長,因此在虛設閘極層426上施加負偏壓時,能降低或防止閘極誘發汲極洩漏電流的發生,以提高或維持記憶裝的效能。 Furthermore, since the first width w1 of the first trench 422 is larger than the second trench The second width w2 of the trench 424, such that the first distance D3 between the upper surface of the substrate 400 and the upper surface of the dummy gate layer 426, may be greater than the second distance between the upper surface of the substrate 400 and the upper surface of the gate layer 428 Distance D4. As a result, the dummy gate layer 426 is longer than the adjacent doping region 19 (eg, the drain region) compared to the gate layer 428, and thus a negative bias is applied to the dummy gate layer 426. It can reduce or prevent the occurrence of gate-induced buckling leakage current to improve or maintain the performance of the memory device.

另外,由於第一溝槽422及第二溝槽424在同一蝕 刻製程中形成,且後續的閘極層428及虛設閘極層426可透過自對準(self-alignment)製程而形成,因此第一溝槽422及第二溝 槽424並不會產生與原先設計不符的位移,因此可避免摻雜區19與電容接觸窗24之間因接觸面積減少而造成接觸電阻的增加。 In addition, since the first trench 422 and the second trench 424 are in the same etch Formed in the engraving process, and the subsequent gate layer 428 and the dummy gate layer 426 can be formed by a self-alignment process, so the first trench 422 and the second trench The groove 424 does not produce a displacement that is inconsistent with the original design, so that an increase in contact resistance between the doped region 19 and the capacitive contact window 24 due to a decrease in contact area can be avoided.

請參照第7圖,其繪示出本發明另一實施例之動態 隨機存取記憶裝置700。其中相同於第7圖之部件,係使用相同之標號並省略其說明。不同於第6圖之動態隨機存取記憶裝置600,本實施例之動態隨機存取記憶裝置700中第一溝槽422的第一寬度w1等於第二溝槽424的第二寬度w2,使基底400的上表面與虛設閘極層426的上表面之間的第一距離D3等於基底400的上表面與閘極層428的上表面之間的第二距離D4。 Please refer to FIG. 7 , which illustrates the dynamics of another embodiment of the present invention. The random access memory device 700. The same components as those in the seventh embodiment are denoted by the same reference numerals and the description thereof will be omitted. Different from the dynamic random access memory device 600 of FIG. 6, the first width w1 of the first trench 422 in the dynamic random access memory device 700 of the embodiment is equal to the second width w2 of the second trench 424, so that the substrate A first distance D3 between the upper surface of the 400 and the upper surface of the dummy gate layer 426 is equal to a second distance D4 between the upper surface of the substrate 400 and the upper surface of the gate layer 428.

根據本實施例,相似地,由於第一溝槽422的第一 深度D1大於第二溝槽424的第二深度D2,因此可改善相鄰記憶裝置之間字元線干擾之現象。再者,由於第一溝槽422及第二溝槽424在同一蝕刻製程中形成,且後續的閘極層428及虛設閘極層426可透過自對準製程而形成,因此可避免摻雜區19與電容接觸窗24之間因接觸面積減少而造成接觸電阻的增加。 According to the embodiment, similarly, due to the first of the first trenches 422 The depth D1 is greater than the second depth D2 of the second trench 424, thereby improving the phenomenon of word line interference between adjacent memory devices. Moreover, since the first trench 422 and the second trench 424 are formed in the same etching process, and the subsequent gate layer 428 and the dummy gate layer 426 are formed through a self-aligned process, the doped region can be avoided. The contact resistance is increased between the contact opening window 19 and the capacitor contact window 24 due to a decrease in contact area.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

18、19‧‧‧摻雜區 18, 19‧‧‧Doped area

20‧‧‧位元線接觸窗 20‧‧‧ bit line contact window

22‧‧‧位元線 22‧‧‧ bit line

24‧‧‧電容接觸窗 24‧‧‧Capacitive contact window

26‧‧‧儲存電容 26‧‧‧ Storage Capacitor

400‧‧‧基底 400‧‧‧Base

404‧‧‧主動區 404‧‧‧active area

422‧‧‧第一溝槽 422‧‧‧ first trench

424‧‧‧第二溝槽 424‧‧‧Second trench

426‧‧‧虛設閘極層 426‧‧‧Dummy gate layer

428‧‧‧閘極層 428‧‧ ‧ gate layer

430‧‧‧閘極介電層 430‧‧ ‧ gate dielectric layer

w1‧‧‧第一寬度 W1‧‧‧first width

w2‧‧‧第二寬度 W2‧‧‧second width

D1‧‧‧第一深度 D1‧‧‧first depth

D2‧‧‧第二深度 D2‧‧‧second depth

D3‧‧‧第一距離 D3‧‧‧First distance

D4‧‧‧第二距離 D4‧‧‧Second distance

600‧‧‧動態隨機存取記憶裝置 600‧‧‧ Dynamic Random Access Memory

Claims (10)

一種動態隨機存取記憶裝置之製造方法,其包括:在一基底上形成彼此隔開的二個罩幕層;在具有該等罩幕層的該基底上順應性形成一材料層,使該材料層於該等罩幕層之間形成一凹陷區;在該凹陷區的相對的側壁上形成二個間隙壁,以在該等間隙壁之間定義出一第一區且在該等間隙壁與該等罩幕層之間定義出二個第二區;以該等罩幕層及該等間隙壁作為蝕刻罩幕進行多重蝕刻製程,以在該第一區及該等第二區的該基底內對應形成一第一溝槽及二個第二溝槽,其中該第一溝槽的深度深於該等第二溝槽的深度;以及在該第一溝槽內填入一虛設閘極層及在該等第二溝槽內分別填入一閘極層。 A manufacturing method of a dynamic random access memory device, comprising: forming two mask layers spaced apart from each other on a substrate; forming a material layer on the substrate having the mask layers to make the material Forming a recessed region between the mask layers; forming two spacers on opposite sidewalls of the recessed region to define a first region between the spacers and at the spacers Two second regions are defined between the mask layers; the mask layer and the spacers are used as an etching mask to perform a multiple etching process to the substrate in the first region and the second regions Correspondingly, a first trench and two second trenches are formed, wherein a depth of the first trench is deeper than a depth of the second trenches; and a dummy gate layer is filled in the first trench And filling a gate layer in the second trenches. 如申請專利範圍第1項所述之動態隨機存取記憶裝置之製造方法,其中在形成該材料層之前,更包括在該等罩幕層之間的該基底上形成一蝕刻停止層。 The method of manufacturing a dynamic random access memory device according to claim 1, wherein an etch stop layer is formed on the substrate between the mask layers before forming the material layer. 如申請專利範圍第2項所述之動態隨機存取記憶裝置之製造方法,其中該多重蝕刻製程包括:蝕刻該材料層至露出位於該第一區的該蝕刻停止層;蝕刻位於該第一區的該蝕刻停止層至露出該基底;蝕刻位於該第一區的該基底,且同時蝕刻位於該等第二區的該材料層,以在該第一區的該基底內形成一開口,且露出位於該等第二區的該蝕刻停止層; 蝕刻位於該等第二區的該蝕刻停止層至露出該基底;蝕刻位於該開口下方及該等第二區的該基底,以在該第一區及該等第二區的該基底內形成該第一溝槽及該等第二溝槽。 The method of fabricating a dynamic random access memory device according to claim 2, wherein the multiple etching process comprises: etching the material layer to expose the etch stop layer in the first region; etching is located in the first region The etch stop layer to expose the substrate; etching the substrate in the first region and simultaneously etching the material layer in the second regions to form an opening in the substrate of the first region and exposing The etch stop layer located in the second regions; Etching the etch stop layer in the second regions to expose the substrate; etching the substrate under the opening and the second regions to form the substrate in the first region and the second regions a first trench and the second trenches. 如申請專利範圍第1項所述之動態隨機存取記憶裝置之製造方法,其中該第一溝槽具有一第一寬度,且該等第二溝槽具有一第二寬度,該第一寬度大於該第二寬度。 The method of manufacturing a dynamic random access memory device according to claim 1, wherein the first trench has a first width, and the second trench has a second width, the first width being greater than The second width. 如申請專利範圍第4項所述之動態隨機存取記憶裝置之製造方法,其中藉由控制該材料層的厚度及該等間隙壁的寬度,使該第一寬度大於該第二寬度。 The method of manufacturing a dynamic random access memory device according to claim 4, wherein the first width is greater than the second width by controlling a thickness of the material layer and a width of the spacers. 如申請專利範圍第4項所述之動態隨機存取記憶裝置之製造方法,其中該該基底的上表面與該虛設閘極層的上表面之間具有一第一距離,該基底的上表面與該閘極層的上表面之間具有一第二距離,且該第一距離大於該第二距離。 The method of manufacturing a dynamic random access memory device according to claim 4, wherein the upper surface of the substrate and the upper surface of the dummy gate layer have a first distance, and the upper surface of the substrate is There is a second distance between the upper surfaces of the gate layer, and the first distance is greater than the second distance. 如申請專利範圍第6項所述之動態隨機存取記憶裝置之製造方法,其中該第一距離與該第二距離之差距為10nm。 The method of manufacturing a dynamic random access memory device according to claim 6, wherein the difference between the first distance and the second distance is 10 nm. 如申請專利範圍第1項所述之動態隨機存取記憶裝置之製造方法,其中該第一溝槽具有一第一寬度,且該等第二溝槽具有一第二寬度,該第一寬度等於該第二寬度。 The method of manufacturing a dynamic random access memory device according to claim 1, wherein the first trench has a first width, and the second trench has a second width, the first width being equal to The second width. 如申請專利範圍第8項所述之動態隨機存取記憶裝置之製造方法,其中藉由控制該材料層的厚度及該等間隙壁的寬度,使該第一寬度等於該第二寬度。 The method of manufacturing a dynamic random access memory device according to claim 8, wherein the first width is equal to the second width by controlling a thickness of the material layer and a width of the spacers. 如申請專利範圍第8項所述之動態隨機存取記憶裝置之製造方法,其中該該基底的上表面與該虛設閘極層的上表面 之間具有一第一距離,該基底的上表面與該閘極層的上表面之間具有一第二距離,且該第一距離等於該第二距離。 The method of manufacturing a dynamic random access memory device according to claim 8, wherein an upper surface of the substrate and an upper surface of the dummy gate layer There is a first distance between the upper surface of the substrate and the upper surface of the gate layer, and the first distance is equal to the second distance.
TW104109694A 2015-03-26 2015-03-26 Method for fabricating dynamic random access memory device TWI566334B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104109694A TWI566334B (en) 2015-03-26 2015-03-26 Method for fabricating dynamic random access memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104109694A TWI566334B (en) 2015-03-26 2015-03-26 Method for fabricating dynamic random access memory device

Publications (2)

Publication Number Publication Date
TW201635443A TW201635443A (en) 2016-10-01
TWI566334B true TWI566334B (en) 2017-01-11

Family

ID=57847394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104109694A TWI566334B (en) 2015-03-26 2015-03-26 Method for fabricating dynamic random access memory device

Country Status (1)

Country Link
TW (1) TWI566334B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI795703B (en) * 2020-12-29 2023-03-11 華邦電子股份有限公司 Semiconductor memory structure and method for forming the same
US11631675B2 (en) 2021-01-28 2023-04-18 Winbond Electronics Corp. Semiconductor memory structure and method for forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077875A1 (en) * 2001-10-24 2003-04-24 International Business Machines Corporation Method for multi-depth trench isolation
US20050224852A1 (en) * 2004-03-30 2005-10-13 International Business Machines Corporation Offset vertical device
US20080042179A1 (en) * 2006-08-21 2008-02-21 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030077875A1 (en) * 2001-10-24 2003-04-24 International Business Machines Corporation Method for multi-depth trench isolation
US20050224852A1 (en) * 2004-03-30 2005-10-13 International Business Machines Corporation Offset vertical device
US20080042179A1 (en) * 2006-08-21 2008-02-21 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays

Also Published As

Publication number Publication date
TW201635443A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
US8350321B2 (en) Semiconductor device having saddle fin transistor and manufacturing method of the same
CN106158751B (en) The manufacturing method of dynamic random access memory device
US9048293B2 (en) Semiconductor device and method for manufacturing the same
TW201303980A (en) Method for fabricating semiconductor device with vertical gate
JP2013149686A (en) Semiconductor device
CN114005791B (en) Memory device and method of forming the same
CN113707612B (en) Memory device and method of forming the same
TWI566334B (en) Method for fabricating dynamic random access memory device
JP2008166747A (en) Manufacturing method of semiconductor element
US20070224756A1 (en) Method for fabricating recessed gate mos transistor device
TWI769797B (en) Dynamic random access memory and method of fabricating the same
KR100753125B1 (en) Method for manufacturing saddle type fin transistor
US20080166864A1 (en) Method for forming trench gate and method for manufacturing semiconductor device
JP2011243690A (en) Semiconductor device manufacturing method
TWI617007B (en) Memory device
CN113725164B (en) Capacitor hole forming method
TWI833423B (en) Semiconductor device and manufacturing method thereof
TWI783534B (en) Dynamic random access memory and method of manufacturing the same
CN113517286B (en) Semiconductor device, forming method thereof and electronic equipment
KR100961195B1 (en) Method for manufacturing transistor in semiconductor device
US7700435B2 (en) Method for fabricating deep trench DRAM array
KR20070064009A (en) Method of fabricating the fin-step typed transistor with uniform doping profile in channel
TWI425521B (en) Method of forming bit line
US20090298271A1 (en) Method for manufacturing a semiconductor device
TW202420935A (en) Semiconductor device and manufacturing method thereof